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Abstract

We propose a simple approach to dynamic multi-period portfolio choice with quadratic trans-

action costs. The approach is tractable in settings with a large number of securities, realistic

return dynamics with multiple risk factors, many predictor variables, and stochastic volatility.

We obtain a closed-form solution for a trading rule that is optimal if the problem is restricted to

a broad class of strategies we define as ‘linearity generating strategies’ (LGS). When restricted

to this parametric class the highly non-linear dynamic optimization problem reduces to a deter-

ministic linear-quadratic optimization problem in the parameters of the trading strategies. We

show that the LGS approach dominates several alternative approaches in realistic settings. In

particular, we demonstrate large performance differences when there is a dynamic factor struc-

ture in returns or stochastic volatility (i.e., when the covariance matrix is stochastic), and when

transaction costs covary with return volatility.



1 Introduction

The seminal contribution of Markowitz (1952) has spawned a large academic literature on portfo-

lio choice. The literature has extended Markowitz’s one period mean-variance setting to dynamic

multiperiod setting with a time-varying investment opportunity set and more general objective func-

tions.1 Yet there seems to be a wide disconnect between this academic literature and the practice

of asset allocation, which still relies mostly on the original one-period mean-variance framework.

Indeed, most MBA textbooks tend to ignore the insights of this literature, and even the more

advanced approaches often used in practice, such as that of Grinold and Kahn (1999), propose

modifications of the single period approach with ad-hoc adjustments designed to give solutions

which are more palatable in a dynamic, multiperiod setting.

Yet the empirical evidence on time-varying expected returns suggests that the use of a dynamic

approach should be highly beneficial to asset managers seeking to exploit these different sources of

predictability.2

One reason for this disconnect is that the academic literature has largely ignored realistic

frictions such as trading costs, which are paramount to the performance of investment strategies in

practice. This is because introducing transaction costs and price impact in the standard dynamic

portfolio choice problem tends to make it intractable. Indeed, most academic papers studying

transaction costs focus on a very small number of assets (typically two) and limited predictability

(typically none).3 Extending their approach to a large number of securities and several sources of

predictability quickly runs into the curse of dimensionality.

In this paper we propose an approach to dynamic portfolio choice in the presence of transaction

costs that can deal with a large number of securities and realistic return generating processes.

1Merton (1969), Merton (1971), Brennan, Schwartz, and Lagnado (1997), Kim and ohmberg (1991), Campbell
(1999), Campbell, Chan, and Viceira (2003), Liu (2007), Detemple and Rindisbacher (2010) and many more. See
Cochrane (2012) for a survey.

2The academic literature has documented numerous variables which forecast the cross-section of equity returns.
Stambaugh, Yu, and Yuan (2011) provides a list of many of these variables, and also argue that the structure and
magnitudes of this forecastability exhibits considerable time variation.

3Constantinides (1986), Davis and Norman (1990), Dumas and Luciano (1991), Shreve and Soner (1994) study the
two-asset (one risky-one risk-free) case with iid returns. Cvitanić (2001) surveys this literature. Balduzzi and Lynch
(1999) and Lynch and Balduzzi (2000) add some predictability in the risky asset. Lynch and Tan (2011) extend this
to two risky assets at considerable computational cost. Liu studies the multiasset case under CARA preferences and
for i.i.d. returns.
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For example, our approach can handle a large number of predictors, a general factor structure for

returns, and stochastic volatility. The approach relies on three features. First, we assume investors

maximize the expected terminal wealth net of a risk-penalty that is linear in the variance of their

portfolio return. Second, we assume that the total transaction cost for a given trade is quadratic

in the dollar trade size. Third, we assume that the conditional mean vector and covariance matrix

of returns are known functions of an observable state vector, and the dynamics of this state vector

can be simulated. Thus, this framework nests most factor based models that have been proposed

in the literature.

For a standard set of return generating processes, the portfolio optimization problem does not

admit a simple solution because the wealth equation and return generating process introduce non-

linearities in the state dynamics. Thus, the problem falls outside the linear-quadratic class which is

known to be tractable (Litterman (2005), Gârleanu and Pedersen (2012)) even though we use the

same objective function as they do. However, we identify a particular set of strategies, which we

call “linearity generating strategies” (LGS), for which the problem admits a closed-form solution.

An LGS is defined as a strategy for which the dollar position in each security is a weighted average

of current and lagged stock “exposures” interacted with its own past returns (i.e., effectively a

linear combination of managed portfolios).

The exposures are selected ex-ante for each stock, and should include all stock specific state

variables on which the optimal dollar position in each security depends: variables summarizing

the conditional expected return and variance for each security, and variables summarizing the cost

of trading this security. Note that the exposures can also include variables such as the vector of

optimal security weights when transaction costs are zero, or the solution to a related optimization

problem, such as that proposed by Litterman (2005) and Gârleanu and Pedersen (2012) or various

rules of thumb (e.g., Brown and Smith (2010)).

The optimal trade and position for each security will be a linear function of that security’s

exposures, interacted with its past-returns, for a set of lags. This implies a very high dimensional

optimization problem. While one would anticipate that this high-dimensional problem is difficult

to solve, we show that for strategies in the LGS class this optimization problem reduces to a

deterministic linear-quadratic problem that can be solved very efficiently.

3



Another key question is whether the set of LGS’s is sufficiently rich that the optimal LGS

approximates the unconstrained optimum. This is an empirical question. However, assuming the

specifications of the return generating process and transaction cost function are correct, the LGS

can always be designed to perform as well as any alternative approach: the reason is that the

solution of any other approach can be used as an input to the LGS approach. The magnitude of

the improvement of the LGS will depend on the value of the additional exposures in getting closer

to the unconstrained optimum.

We solve several realistic examples which allow us to study the magnitude of this improvement in

different settings. First, we compare the performance of our approach to that of several alternatives

in two benchmark simulated economies: one we call the characteristics model and the other the

factor model. In both cases expected returns are driven by three characteristics which mimic the

well-known reversal (Jegadeesh 1990), momentum (Jegadeesh and Titman 1993) and long-term-

reversal/value (DeBondt and Thaler 1985, Fama and French 1993) effects. However, the economies

differ in their covariance matrix of returns. The characteristics model assumes that the covariance

matrix is constant (implying a failure of the APT in a large economy). In contrast, the factor

model assumes that the three characteristics reflect loadings on common factors. Thus, they are

reflected in the covariance matrix of returns. Since factor exposures are time-varying and drive

both expected returns and covariances, in this model the covariance matrix is stochastic.

The characteristics model is similar to the return model used in the recent works of Litterman

(2005) and Gârleanu and Pedersen (2012) (henceforth L-GP) Their linear-quadratic programming

approaches provides a useful benchmark since they solve for the exact closed-form solution for

strategies with a similar objective function.4 Indeed, we find that the LGS and the L-GP closed-

form of solution perform almost equally well in the characteristics based economy we simulate, as

the covariance matrix is close to time-invariant.5

However, in the factor model economy, where the covariance matrix changes as the factor

4One important difference is that to obtain a closed-form solution Litterman (2005) and Gârleanu and Pedersen
(2012) specify their model for price changes and not returns and the objective function of the investor in terms of
number of shares. They further assume the covariance matrix of price changes is constant. This allows them to retain
a linear objective function avoiding the non-linearity in the wealth equation due to the compounding of returns over
time.

5More precisely, the GP solution is optimal if the covariance matrix of changes in the dollar price per share is time
invariant.
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loadings of individual securites change, the L-GP solution is further from optimal, since their

approach relies on a constant covariance matrix, and their trading rule significantly underperforms

our approach based on LGS. This is because the latter explicitly takes into account the dual effect of

higher factor exposures in both raising expected returns and covariances. The LGS also outperforms

a myopic mean-variance approach optimized for the presence of transaction-costs – as suggested by

Grinold and Kahn (1999) – which is often used by practitioners. This alternative approach consists

in using the one-period mean-variance solution with transaction costs, but recognizing that this

approach ignores the dynamic objective function, it adds a multiplier to the transaction costs

incurred when trading. This t-cost multiplier is chosen so as to maximize the actual performance

of the strategy across many simulations.

We also perform an experiment with real return data. We analyze the performance of a trading

strategy involving the 100 largest stocks traded on the NYSE over the time period from 1974 to

2012. We trade these stocks exclusively based on the short-term reversal factor, which is a well-

known predictor of stock returns. Because the half-life of reversal is several days, portfolio turnover

is high and the performance of a strategy based on this factor is highly dependent on transaction

costs. Also, the literature suggests that strategy performance is dependent on volatility (Khandani

and Lo (2007), Nagel (2012)). We therefore use a realistic return process that features GARCH in

the common market factor as well as in the cross-sectional idiosyncratic variance. This captures

salient empirical features of the reversal factor as documented in Collin-Dufresne and Daniel (2013).

In our experiment the costs of trading shares of an individual firm depend on that firm’s return

volatility, consistent with the findings in the transaction cost literature. Thus, transaction costs

are stochastic. We solve for the optimal trading strategy using our LGS and backtest our strategy

in comparison with a myopic t-cost optimized strategy. We find that our approach outperforms

this benchmark significantly.

There is a growing literature on portfolio selection that incorporates return predictability with

transaction costs. Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) illustrate the impact

of return predictability and transaction costs on the utility costs and the optimal rebalancing rule

by discretizing the state space of the dynamic program. Their approach runs into the curse of

dimensionality and only applies to very few stocks and predictors. Brown and Smith (2010) discuss
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this issue and instead provide heuristic trading strategies and dual bounds for a general dynamic

portfolio optimization problem with transaction costs and return predictability that can be applied

to larger number of stocks.

Our approach is closest related to two strands of literature: First, Brandt, Santa-Clara, and

Valkanov (2009, BSV) model the portfolio weight on each asset directly as linear functions of

a set of asset “characteristics” that are determined ex-ante to be useful for portfolio selection.6

The vector of characteristic weights are optimized by maximizing the average utility the investor

would have obtained by implementing the policy over the historical sample period. The BSV

approach explicitly avoids modeling the asset return distribution, and therefore avoids the problems

associated with the multi-step procedure of first explicitly modeling the asset return distribution

as a function of observable variables, and then performing portfolio optimization as a function

of the moments of this estimated distribution.7 However, the BSV approach is limited in that

the optimization is performed via numerical simulation, and therefore is limited to a relatively

small number of predictive variables. Further, since the performance of the objective function is

optimized in sample, restricting to a small number of parameters and predictors is desirable to

avoid over-fitting. Our contribution is that we identify a set of trading strategies for which the

optimization can be performed in closed-form using deterministic linear quadratic control for very

general return processes in a dynamic setting with transaction costs. We can thus achieve a greater

flexibility in parameterizing the trading rule.

As noted earlier, our approach is also closely related to the L-GP approach – as proposed by

Litterman (2005) and Gârleanu and Pedersen (2012). L-GP obtain a closed-form solution for the

optimal portfolio choice in a model where: (1) expected price change per share for each security is

a linear, time-invariant function of a set of predictor variables; (2) the covariance matrix of price

changes per share is time-invariant; and (3) trading costs are a quadratic function of the number

of shares traded, and investors have a linear-quadratic objective function expressed in terms of

number of shares. Their approach relies heavily on linear-quadratic stochastic programming (e.g.,

Ljungqvist and Sargent (2004)). Our approach considers a problem that is more general, in that

6See also Aı̈t-Sahalia and Brandt (2001), Brandt and Santa-Clara (2006) and Moallemi and Saglam (2012).
7See Black and Litterman (1991), Chan, Karceski, and Lakonishok (1999), as well as references given in footnote

2 of BSV (p. 3412).
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our return generating process can allow for a general factor structure in the covariance matrix with

stochastic volatility, the transaction costs can be stochastic, and our objective function is written

in terms of dollar holdings. In general, such a problem does not belong to the linear-quadratic

class and thus does not admit a simple closed-form along the lines of the L-GP solution. Our

contribution is to find a special parametric class of portfolio policies, such that when the portfolio

choice problem is considered in that class it reduces to a deterministic linear-quadratic program in

the policy parameters.

2 Model

In this section we lay out the return generating process for the set of securities our agent can trade.

Then we describe the portfolio dynamics in the presence of transaction costs. Finally, we present

the agent’s objective function and our solution technique.

2.1 Security and factor dynamics

We consider a dynamic portfolio optimization problem where an agent can invest in N risky secu-

rities with price Si,t i = 1, . . . , N and a risk-free cash money market with value S0,t. We assume

that security i pays a dividend Di,t at time t. The gross return to our securities is thus defined by

Ri,t+1 =
Si,t+1+Di,t+1

Si,t
. We assume that the conditional mean return vector and covariance matrix

of security returns are both known functions of an observable vector of state variables Xt:

Et[Rt+1] = 1 +m(Xt, t) (1)

Et[(Rt+1 − Et[Rt+1])(Rt+1 − Et[Rt+1])′] = Σt→t+1(Xt, t) (2)

The vector of observable state variable Xt may include both individual security characteristics

(such as individual firms’ book to market ratios, past returns or idiosyncratic volatilities) as well

as common drivers of security returns (such as market volatility, and market or industry factors).

It is important for our approach that the dynamics of Xt are known so as to us to simulate

the behavior of the conditional moments of security returns. An example that nests many return

7



generating processes used in the literature is:

Ri,t+1 = g(t, β>i,t(Ft+1 + λt) + εi,t+1) i = 1, . . . , N (3)

for some function g(t, ·) : R→ R, increasing in the second argument, and where:

• βi,t is the (K, 1) vector of firm i’s factor exposures at time t.

• Ft+1 is the (K, 1) vector of random (as of time t) factor realizations over period t + 1. Ft+1

is mean 0, and follows a multivariate GARCH process with conditional covariance matrix

Ωt,t+1.

• εi,t+1 is security i’s idiosyncratic return over period t+ 1.

We assume that ε·,t+1 are mean zero, have a time-invariant covariance matrix Σε, and are

uncorrelated with the contemporaneous factor realizations.

• λt is the (K, 1) vector of conditional expected factor returns at time t.

In this case the vector of state variables Xt = [β1,t;β2,t; . . . βN,t;λt; Ωt,t+1] has NK+K+K ·(K+1)/2

elements. We further assume that βi,t and λt are observable and follow some known dynamics. In

the empirical applications below, we assume that both λt and the βi,t follow Gaussian AR(1)

processes.

Note that this setting captures two standard return generating processes from the literature:

1. The “discrete exponential affine” model for security returns in which log-returns are

affine in factor realizations:8

logRi,t+1 = αi + β>i,t(Ft+1 + λ) + εi,t+1 −
1

2

(
σ2
i + β>i,tΩβi,t

)

2. The “linear affine factor model” where returns (and therefore also excess returns) are

8The continuous time version of this model is due to Vasicek (1977), Cox, Ingersoll, and Ross (1985), and gener-
alized in Duffie and Kan (1996). The discrete time version is due to Gourieroux, Monfort, and Renault (1993) and
Le, Singleton, and Dai (2010).

8



affine in factor exposures:

Ri,t+1 = αi + β>i,t(Ft+1 + λt) + εi,t+1

As we show below, our portfolio optimization approach is equally tractable for both of these return

generating processes. We emphasize that the approach does not rely on this factor structure

assumption. All that is required is that there be some known relation between the conditional first

and second moments of security returns and the known state vector Xt so that conditional means

and variances of security returns can be simulated along with the state vector.

2.2 Cash and security position dynamics

We assume discrete time dynamics. At the end of each period t the agent buys ui,t dollars of

security i at price Si,t. All trades in risky securities incur transaction costs which are quadratic in

the dollar trade size. Trades in risky securities are financed using the cash money market position,

which we assume incurs no trading costs. The cash position (wt) and dollar holdings (xi,t) in each

security i = 1, . . . , N held at the end of each period t are thus given by:

xi,t = xi,t−1Ri,t + ui,t i = 1, . . . , N

wt = wt−1R0,t −
N∑
i=1

ui,t −
1

2

N∑
i=1

N∑
j=1

ui,tΛt(i, j)uj,t,

or, in vector notation,

xt = xt−1 ◦Rt + ut (4)

wt = wt−1R0,t − 1>ut −
1

2
u>t Λtut (5)

where the operator ◦ denotes element by element multiplication if the matrices are of same size

or if the operation involves a scalar and a matrix, then that scalar multiplies every entry of the

9



matrix.9

The matrix Λt captures (possibly time-varying) quadratic transaction/price-impact costs, so

that 1
2u
>
t Λtut is the dollar cost paid given a vector of trades at time t of (dollar) size ut. Without

loss of generality, we assume this matrix is symmetric. Gârleanu and Pedersen (2012) discuss some

micro-economic foundations for such quadratic costs. It is also very convenient analytically.

2.3 Objective function

We assume that the agent is endowed with a portfolio of dollar holdings in securities x0 and an

initial amount of cash w0. We assume that the investor’s objective function is to maximize his

expected terminal wealth net of a risk penalty which, following L-GP, we take to be linear in the

sum of per-period variances. For simplicity, we also assume that the risk-free rate is zero, i.e.,

R0,t = 1.10 Thus the objective is:

max
u1,...,uT

E

[
wT + x>T 1−

T−1∑
t=0

γ

2
x>t Σt→t+1xt

]
(8)

Recall that Σt→t+1 = Et
[
(Rt+1 − Et[Rt+1])(Rt+1 − Et[Rt+1])>

]
is the conditional one-period variance-

covariance matrix of returns and γ can be interpreted as the coefficient of risk aversion.

9The timing convention could be changed so that the agent buy ui,t dollars of security i at price Si,t at the
beginning of period t. In that case the dynamics would be:

xt+1 = (xt + ut) ◦Rt+1 (6)

wt+1 = (wt − 1>ut −
1

2
u>t Λtut)R0,t+1 (7)

All our results go through for this alternative timing convention. We make the choice in the text because, for one
parameterization of our objective function identified below, it allows us to closely approximate the objective function
of Litterman (2005) and Gârleanu and Pedersen (2012) and thus makes the link between the two frameworks more
transparent.

10It is straightforward to extend our approach to a non-zero risk-free rate and to an objective function that is
linear-quadratic in the position vector (i.e., F (xt, wT ) = wT + a>1 xT − 1

2
x>T a2 xT ) rather than linear in total wealth.

See Appendix A.
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Note that by recursion we can write:11

xT = x0 +

T−1∑
t=0

xt ◦ rt+1 +

T∑
t=1

ut (9)

wT = w0 −
T∑
t=1

(u>t 1 +
1

2
u>t Λtut) (10)

where we have defined the net return rt+1 = Rt+1 − 1 with corresponding expected net return

mt = Et[Rt+1] − 1. Inserting in the objective function and simplifying we find the optimization

reduces to:

max
u1,...,uT

E

[
T−1∑
t=0

{
x>t mt −

γ

2
x>t Σt→t+1xt −

1

2
u>t+1Λt+1ut+1

}]
s.t. eq (4) (11)

We see that this objective function is very similar to that used in L-GP (see, e.g., equation (4)

of GP): we maximize the expected sum of local-mean-variance objectives, net of transaction costs

paid.12 However, there are several notable and important differences. First, our objective function

is in terms of dollar holdings (xt, wt) and trades (ut). In contrast, the L-GP objective function is

terms of number of shares held and traded (their xt and ∆xt). For the price processes, our expected

returns (m’s) and covariance matrix (Σt−1→t) are in terms of returns, while in the L-GP framework

rt+1 and Σ necessarily denote the expected price change and the price-change variance, both on a

per share basis.

At first glance this may appear to be an innocuous change of units. However, to obtain an

analytical solution, the L-GP framework requires a constant covariance matrix of price changes.

This implies that the return variance will be inversely related to the security price squared: if a

security’s price falls from $100/share to $50/share, the return variance must quadruple. It also

requires that the transaction cost function – as measured in the transaction costs per share traded

– must be independent of the share price. This is generally inconsistent with empirical evidence on

11Indeed, xT = xT−1 ◦ (RT − 1) + xT−1 + uT = xT−1 ◦ (RT − 1) + xT−2 ◦ (RT−1 − 1) + xT−2 + uT−1 + uT = . . ..
12While, to our knowledge, there is no utility based axiomatic foundation for this objective function, it is useful

to point out that for the case where γ = 1 this objective function is essentially logarithmic. Indeed, assuming the
terminal wealth follows a continuous time diffusion process we can write E[logWT ] = logW0 + E[

∫ T
0
dWt − 1

2
dW 2

t ],
which is a continuous time version of our objective function. As is clear from this example, in the absence of
transaction costs, the objective function is myopic.
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security return dynamics. As a result some of the implications of the L-GP framework seem to go

against the intuition developed in previous literature.

To better illustrate this, we first focus on the special case where expected return and variances

are constant, which can be solved for in closed-form before turning to the more general case with

predictability.

2.4 Constant expectation and variance of price changes or of returns?

If mt,Σt, and Λt are constant, then the optimal portfolio choice problem in equation (11) admits

a closed-form solution. In Appendix (A.1) we derive this solution for comparison with the GP

framework in an infinite horizon stationary model, i.e., we consider the problem:

max
u1,...,

E

[ ∞∑
t=0

ρt
{
x>t m−

γ

2
x>t Σxt −

1

2
u>t+1Λut+1

}]
s.t. eq (4) (12)

We show that the optimal dollar trade ut is linear-affine in the current position, i.e.,

ut = a0 + a1xt (13)

where the coefficients are given explicitly in equation (84) in the Appendix A.1. Instead, if one

assumes that the expected price change and the variance of price changes are constant, then the

optimal policy would imply an optimal trade such that the number of shares traded h∗t is linear

affine in the number of shares held, nt:

ht = b0 + b1nt (14)

where the coefficients b0, b1 are given in equation (89) in the appendix. Clearly, these two trading

rules are inconsistent (since by definition ut = htSt and xt = ntSt both equations (13) and (14)

cannot both hold at the same time). As expected, the optimal trading strategy obtained for

constant covariance of returns differs from that obtained for a constant covariance of price changes.

One important difference between the two solutions is that if the covariance of price changes is

constant, then if at some point we hold the mean-variance optimal portfolio (i.e., if xt = (γΣ)−1m or
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equivalently nt = (γΣs)
−1µs where Σs = Σ∗S2

t and µs = m∗St are defined as the (constant) variance

and expectation of price changes respectively) then it is optimal to never trade hence-forth (see

Appendix B.6). This implies that if we held the mean-variance optimal portfolio, and the price of a

security were to fall by a factor of two, the optimal solution would be not to trade. Intuitively, there

is no trade to rebalance the portfolio because, given the assumed dynamics (constant expectation

and variance of price changes), when the price halves, the security’s expected return and return

volatility both double, meaning the optimal dollar holdings also halve, so there is no motive for

rebalancing.

If instead we were to assume that the expectation and variance of returns (rather than price

changes) were constant, then there would be no position such that it is never optimal to trade

at all future dates. Indeed, this is is because random shocks to return induce random changes in

future dollar positions via equation (4), which in turn would lead to deviations in dollar portfolio

holdings from the first best, and thus to a rebalancing motive for trading even in the i.i.d case. This

rebalancing motive for trading is the one investigated in the traditional transaction cost literature

(such as Constantinides (1986)). In addition, we point out in the appendix that in the i.i.d. case,

there exists a position xno given in equation (94) such that it is optimal not to trade for one period

(i.e., if xt = xno then ut = 0). However, interestingly this no-trade position is not equal to the

mean-variance efficient portfolio. The intuition is that the current position does not reflect where

it is expected to be in one period, since it will experience random return shocks. So in effect, even

in the i.i.d. case, current optimal trades reflect a trade-off between where we are today and where

we expect to be in the future given the return shocks we will experience.

While we can obtain a closed-form solution in the i.i.d. case, the general framework we lay

out in the previous section allows for security price processes to have more general dynamics,

with time-varying expected returns, variances and trading costs. So in general, we cannot obtain

a closed-form solution. However, just as in the i.i.d. case the model will typically capture this

rebalancing motive for trading (which is, for example, at the heart of the classic Merton (1969)

dynamic portfolio optimization with constant investment opportunity set). The i.i.d. solution is

also interesting as it motivates our choice of focusing on ‘linearity generating strategies.’ Indeed,

combining the linearity of the trading rule in (13) and the dynamics of the state in (4) and iterating
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backwards we see that both the optimal state and the optimal trade are of the form

ut =
∑
s≤t

πs,tRs→t (15)

xt =
∑
s≤t

θs,tRs→t (16)

where we define the holding period returns Rs→t = Rs→s+1Rs+1→s+2 . . . Rt−1→t. The optimal

loadings πs,t, θs,t are constant and obtained from the optimal solution. They can be shown to be

related (by equation (4)) such that:

 θs,t = θs,t−1 + πs,t for s < t

θt,t = πt,t for s = t

For the general case, where the investment opportunity set is time-varying, we will seek a solu-

tion within a set of LGS that has the same structure, but where the loadings on past holding period

returns can be increased or decreased depending on a set of instruments that can be stochastic.

We now turn to the general case and introduce the set of ‘linearity generating strategies’ that we

consider.

2.5 Linearity generating strategies

Even though the objective function is similar to that of a linear-quadratic problem which are

known to be very tractable (e.g., Litterman (2005), Gârleanu and Pedersen (2012)) our problem

is not in that class because of the non-linearity introduced by the state equation, and because of

the general return process, which may display stochastic volatility (and thus make the matrix Qt

stochastic). Thus the problem appears difficult to solve in full generality, even numerically. Instead,

we introduce a specific set of ‘linearity generating trading strategies’ (LGS) for which the problem

remains tractable. The idea of restricting the set of strategies to make the problem tractable is

not new. For example, this is the idea underlying Brandt, Santa-Clara, and Valkanov (2009),

who consider strategies which are restricted to be linear in security characteristics and numerically

optimize directly the empirical objective function on a sample of data over the parameters of the
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trading strategy. Because their approach relies on a numerical in-sample optimization, they have

to specify fairly simple strategies so as to not over-fit the data. In contrast, with our approach

the optimization is done in closed-form so, assuming our specification is correct, we can consider a

rich class of path-dependent strategies. This is particularly useful in optimization problems with

transaction costs.13

The remarkable result we demonstrate below is that, for linearity generating strategies, the

problem reduces to a deterministic linear-quadratic optimization problem in the parameters of the

policy. The only other approaches in the literature that yield a closed form solution – the L-GP

approach – makes some strong assumptions about the return generating process and the objective

function to obtain a closed-form solution. Specifically, these approaches require that the covariance

matrix of price changes per share and the per share transaction cost function be time-invariant, and

require that the agents’ objective function be expressed in number of shares rather than dollars.

With these assumptions, the L-GP solution is the exact optimal solution. However, it is the solution

to a problem which will be an accurate representation of reality in only a very limited number of

situations.

The advantage to our approach is that we can determine the optimal solution given a wide

range of security price dynamics. The drawback to our approach is that the solution we derive is

only optimal among the set of all solutions that are linear functions of the exposures we select.

So the key to getting a good solution with the LGS methodology is selecting a set of exposures

that come close to spanning the globally optimal solution. One advantage that our method has

on this front is that virtually any variable in the information set can be used as an exposure. So,

for example, the solution to the simple myopic or the more complex L-GP problem, or both can

be chosen as exposures. In this case, our methodology will assign weights to additional exposures

– including scaled-lagged exposures — if and only if they provide an improvement over and above

what can be obtained with the myopic or L-GP solution. For example, in a setting where the L-GP

solution was optimal, these additional exposures would add nothing, consequently they would get

13One advantage of the Brandt, Santa-Clara, and Valkanov (2009) approach is that they dispense with specifying
the return generating process altogether, instead relying on the empirical performance of there propose strategies.
Instead, for our approach we need to specify the return generating process, and in particular, the way in which
expected returns and variances depend on the characteristics used for the trading rule.
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no weight and our solution would be identical to the L-GP solution.

The magnitude of the improvement of LGS over alternative solutions depends on how much

improvement these additional exposures provide. In Section 3, we investigate this via simulations.

First though, we describe the strategy set we consider and explain how the portfolio optimization

can be done in closed-form, within that restricted set.

2.5.1 Derivation of the LGS Solution

At this stage it is convenient to introduce the following notation (inspired from Matlab): We write

[A;B] (respectively [AB]) to denote the vertical (respectively horizontal) concatenation of two

matrices.

To define our set of LGS we first specify, for each security, a K-vector Bi,t of “security ex-

posures.” The exposures are typically non-linear transformations of the general state vector Xt

(i.e., Bi,t = hi(Xt)). For example, Bi,t may include the individual security’s conditional expected

return divided by its conditional variance (see, e.g., Aı̈t-Sahalia and Brandt (2001)), the optimal

dollar position in the security in the absence of transaction costs given by the myopic solution, or

a t-cost aware solution from another method. More generally, it would include security specific

factor exposures, conditional variances and other relevant information for portfolio formation.

The restriction for our set of strategies is that the dollar holdings and dollar trades of security

i must be specified as linear functions of current and lagged exposures via sets of K-dimensional

vectors of parameters, πi,s,t and θi,s,t, defined for all i = 1, . . . , N and for all s ≤ t. These parameters

fully determine the dollar trades (ui,t) and the corresponding positions (xi,t) for asset i via the

parametric relations:

xi,t =
t∑

s=0

θ>i,s,tBi,s→t for t = 0, ..., T (17)

ui,t =

t∑
s=0

π>i,s,tBi,s→t for t = 1, ..., T (18)

where Bi,s→t is defined as the vector of time s exposures Bi,s, scaled by the gross-return on security

16



i between s and t:

Bi,s→t = Bi,sRi,s→t . (19)

In effect, the dollar trades and dollar positions in security i at time t in asset i (xi,t) can be

thought of as a weighted sum of simple buy and hold trading strategies that went long the security

at past dates (s < t) proportionally to time s exposures and held the security until date t.

However in the LGS framework, this time-s scaled exposure can be built up gradually after

time s, and then sold gradually. Scaled exposure, because it is scaled by the firm’s cumulative

gross return, is time invariant: if you bought one unit of scaled-exposure at time s and didn’t trade

further, you would still hold one unit at all future times. The value of a unit of scaled time-s

exposure at time t is given by Bi,s→t. The number of units of time-s exposure purchased at time

t ≥ s is given by πi,s,t, and the number of units held at time t (θi,s,t) is just the sum of the number

of units purchased between s and t.

Perhaps the easiest way to illustrate this is to examine the equations for the dollar positions

and trades of firm i at t = 0, 1, 2, as given below:

xi,0 = θ>i,0,0Bi,0

ui,1 = π>i,0,1Bi,0→1 +π>i,1,1Bi,1

xi,1 = (θi,0,0 + πi,0,1︸ ︷︷ ︸
=θi,0,1

)>Bi,0→1 + π>i,1,1︸ ︷︷ ︸
=θ>i,1,1

Bi,1

ui,2 = π>i,0,2Bi,0→2 +π>i,1,2Bi,1→2 +π>i,2,2Bi,2

xi,2 = (θi,0,0 + πi,0,1 + πi,0,2︸ ︷︷ ︸
=θi,0,2

)>Bi,0→2 +(πi,1,1 + πi,1,2︸ ︷︷ ︸
=θi,1,2

)>Bi,1→2 + π>i,2,2︸ ︷︷ ︸
=θ>i,2,2

Bi,2

The first equation gives the initial position as a function of the time 0 exposures. Since the

initial position is generally not a choice variable, the vector θi,0,0 must be constrained so that the

first equation holds. 14

The second equation gives the first trade, ui,1. Note that this trade is a function of both the

lagged exposures for time 0, scaled by Ri,0→1, and the current (t = 1) exposures. The dependence

14In general, one of the elements of the vector Bi,0 will be a one, so a straightforward way to impose this constraint
is to require that the corresponding elements of θi,0,0 be equal to the initial dollar position xi,0.
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on the time zero exposure is important here, because the optimal trade at t = 1 and later are

dependent on the initial position. Intuitively, if we are given a large initial position in a security,

the strategy will start trading out of that position with the first trade at time 1 – how quickly it

trades out will be determined by πi,0,1.

The third equation gives the total dollar holdings of security i at t = 1. xi,1 is equal to initial

position, grossed up by the realized return on firm i from 0 to 1, plus ui,1. However, note that this

equation decomposes these holdings into the number of units of scaled time zero exposure θi,0,1, and

time 1 exposure θi,1,1. Since the first time we purchase time 1 exposure is at time 1, θi,1,1 = πi,1,1.

The fourth and fifth equations give, respectively, the time 2 trade and position. The trade is

decomposed into the number of units of time 0, 1, and 2 scaled exposure we buy. The vector of costs

of the exposures are given by the Bs. θi,0,2 – the total number of units of time 0 scaled exposure

held at time 2 – is the sum of the initial endowment (θi,0,0) plus the number of units purchased at

time 1 and at time 2. The number of units of time 1 exposure held at time 2 (θi,1,2) is the sum of

the number of units purchased at time 1 and 2.

In an environment with transaction costs, the position in the lagged return-scaled time s ex-

posure will generally be accumulated gradually over time. That is, following a shock at time s to

exposures that raises a security’s expected return (holding constant its risk) the corresponding ele-

ments of πi,s,t will be positive for t slightly bigger than s, and then will turn negative as t increases,

and then finally asymptote to zero. That is, it will be optimal to gradually trade into positions in

securities, and then trade out of these positions as the expected return decays towards zero. We’ll

illustrate this via simulation in Section 3.5.

As is apparent in the discussion above, θi,s,t and πi,s,t must be chosen so that holdings and

trades are consistent. Specifically the trades and positions in equations (17) and (18), respectively,

are required to satisfy the dynamics given in equations (4) and (5). It follows that the parameter
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vectors πi,s,t and θi,s,t have to satisfy the following restrictions, for all i = 1, . . . , N :

θi,s,t = θi,s,t−1 + πi,s,t ∀t ≥ 1 and 0 ≤ s < t

θi,t,t = πi,t,t ∀t ≥ 1 (20)

θi,0,0Bi,0 = xi,0

πi,0,0 = 0

These restrictions are intuitive. The first specifies that number of units of scaled time s exposure

held at time t is equal to the number of units held at time t − 1 plus the number of units bought

at time t. The second restriction specifies that the number of units of scaled time t exposure held

at time t is the number bought at time t. Since Bi,t is not in the information set until time t,

you cannot buy time t exposure before time t. The last two conditions specify that the inital

scaled-exposures much be chosen to match the initial holdings xi,0, and that the time 0 trade is

zero, consistent with the dynamics laid out in Section 2.2.

Intuitively, the dependence on current exposures is important. In a no-transaction cost affine

portfolio optimization problem where the optimal solution is well-known, the optimal holdings

will involve only today’s exposures (see, e.g., Liu (2007)).15 With transaction costs, allowing

today’s weights and trades to also depend on lagged security exposures, scaled by each security’s

return up to today, is useful because these variables summarize the positions – held today – as

a result of trades made in previous periods. When transactions costs are present, the optimal

trades today will generaally depend on what positions were taken on in past periods. This path-

dependence is observed in known closed-form solutions in environments with transaction costs. (see

Constantinides (1986), Davis and Norman (1990), Dumas and Luciano (1991), Liu and Loewenstein

(2002) and others).

To proceed, we first rewrite the policies in equation (20) in a concise matrix form. First, define

15Note that this is also the choice made by Brandt, Santa-Clara, and Valkanov (2009) for their ‘parametric portfolio
policies.’ However, while BSV specify the loadings on exposure of individual securities to be identical, we allow two
securities with identical exposures (and with perhaps different levels of idiosyncratic variance) to have different weights
and trades.
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the NK(t+ 1)-dimensional vectors πt and θt as

πt = [π1,0,t; . . . ;πn,0,t;π1,1,t; . . . ;πn,1,t; . . . ;π1,t,t; . . . ;πn,t,t] (21)

θt = [θ1,0,t; . . . ; θn,0,t; θ1,1,t; . . . ; θn,1,t; . . . ; θ1,t,t; . . . ; θn,t,t] (22)

Also, we define the following (NK,N) matrices (defined for all 0 ≤ s ≤ t ≤ T ) as the diagonal

concatenations of the N vectors Bi,s→t ∀i = 1, . . . , N :

Bs,t =



B1,s→t 0 · · · 0

0 B2,s→t · · · 0

...
...

. . .
...

0 0 · · · Bn,s→t


Finally, we define the (NK(t+ 1), N) matrix Bt by stacking the t+ 1 matrices Bs,t ∀s = 0, . . . , t:

Bt = [B0,t;B1,t; . . . ;Bt,t] (23)

With these definitions, it is straightforward to verify that:

ut = B>t πt (24)

xt = B>t θt (25)

Further, in terms of these definitions the constraints on the parameter vectors in (20) can be

rewritten concisely as:

θt = θ0
t−1 + πt (26)

where we define x0 = [x; 0NK ] to be the vector x stacked on top of an NK-dimensional vector of

zeros 0NK .

The usefulness of restricting ourselves to this set of ‘linearity generating trading strategies’ is

that optimizing over this set amounts to optimizing over the parameter vectors πt and θt, and that,

as we show next, that problem reduces to a deterministic linear-quadratic control problem, which
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can be solved in closed form.

Indeed, substituting the definition of our linear trading strategies from equations (24) and (25)

into our objective function in equation (11) and then taking expectations gives:

max
π1,...,πT

T−1∑
t=0

θ>t mt −
1

2
π>t+1Λt+1πt+1 −

γ

2
θ>t Σtθt (27)

subject to θt = θ0
t−1 + πt (28)

and where we define the vector mt and the square matrices Σt and Λt for t = 0, . . . , T by

mt = E0[Btmt] (29)

Σt = E0[BtΣt→t+1B>t ] (30)

Λt = E0[BtΛtB>t ] (31)

Note that the time indices also capture their size: mt is a vector of length NK(t+ 1), and Σt and

Λt are square matrices of the same dimensionality.16 Equation (27) is just the objective function

(equation (11)) with the ut’s and xt’s rewritten as linear functions of the elements in Bt, with

coefficients πt and θt, respectively. Since the policy parameters πt and θt are set at time 0, they

can be pulled outside of the expectation operator.

Intuitively equation (27) is a linear-quadratic function of the policy parameters πt and θt, with

mt, Σt, Λt as the coefficients in this equation. These three components give, respectively, the effect

on the objective function of: the expected portfolio returns resulting from trades at time t; the

transaction costs paid as a result of trades at time t; and finally the effect of the holdings at time

t on the risk-penalty component of the objective function.

Since mt, Σt, Λt are not functions of the policy parameters, they can be solved for explicitly

or by simulation, and this only needs to be done once. Their values will depend on the initial

conditions, and on the assumptions made about the state vector Xt driving the return generating

process Rt and the corresponding security-specific exposure dynamics Bi,t. But, since equation

16It is important to note that these matrices mt,Σt,Λt will depend on the initial conditions (in particular on the
initial exposures B0, which typically will depend on the initial positions in each stock).
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(27) is a linear-quadratic equation, albeit a high-dimensional one, it can be solved using standard

methods. We next calculate the closed form solution.

2.6 Closed form solution

We begin with the linear-quadratic problem defined by equations (27) and (28). Define recursively

the value function starting from V (T ) = 0 for all t ≤ T by:

V (t− 1) = max
πt

{
θ>t mt −

γ

2
θ>t Σtθt −

1

2
π>t Λtπt + V (t)

}
subject to θt = θ0

t−1 + πt

Then it is clear that V (0) gives the solution to the problem we are seeking. To solve the problem

explicitly, we guess that the value function is of the form:

V (t) = −γ
2
θ>t Mtθt + L>t θt +Ht (32)

with Mt a symmetric matrix. Since V (T ) = 0, it follows that MT = 0, LT = 0 and HT = 0. To

find the recursion plug the guess in the Bellman equation:

V (t− 1) = max
πt

{
θ>t mt −

1

2
π>t Λtπt −

γ

2
θ>t (Σt +Mt)θt + L>t θt +Ht

}
(33)

subject to θt = θ0
t−1 + πt (34)

Now plugging in the constraint, it is simpler to optimize over the state θt rather than πt, so we

obtain:

V (t− 1) = max
θt

{
θ>t mt −

1

2
(θt − θ0

t−1)>Λt(θt − θ0
t−1)− γ

2
θ>t (Σt +Mt)θt + L>t θt +Ht

}
(35)

The first order condition gives the optimal position vector:

θt = [Λt + γ(Σt +Mt)]
−1
(
mt + Lt + Λtθ

0
t−1

)
,
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and plugging into the state equation (equation (28)) we find the optimal trade vector:

πt = [Λt + γ(Σt +Mt)]
−1
(
mt + Lt − γ(Σt +Mt)θ

0
t−1

)
.

Next, substitute these optimal policies into the Bellman equation in (33), giving:

V (t− 1) =
1

2

(
mt + Lt + Λtθ

0
t−1

)>
[Λt + γ(Σt +Mt)]

−1
(
mt + Lt + Λtθ

0
t−1

)
+Ht −

1

2

(
θ0
t−1

)>
Λtθ

0
t−1

(36)

Comparing this equation and the conjectured specification for V (t−1) in equation (32) shows that

this specification will be correct if Ht, Lt, and Mt are chosen to satisfy the recursions:

Ht−1 = Ht +
1

2
(mt + Lt)

> [Λt + γ(Σt +Mt)]
−1 (mt + Lt)

L>t−1 = (mt + Lt)
> [Λt + γ(Σt +Mt)]

−1Λt

γMt−1 = Λt − Λt[Λt + γ(Σt +Mt)]
−1Λt

with initial conditions HT = 0, LT = 0 and MT = 0 and where Y denotes the vector (or matrix)

obtained from Y by deleting the last NK rows (or rows and columns).

We have thus derived the optimal value function and the optimal trading strategy in the LGS

class.

Before discussing some specific examples it is useful to introduce a set of LGS strategies which

uses the exposures lagged at most ` periods. This set of “restricted lag” LGS is useful in applications

when the time horizon is fairly long, and for signals that have a relatively fast decay rate, so that

the dependence on lagged exposures can be restricted without a significant cost. We next show

that the same tractability obtains for the restricted lag setting.

2.7 LGS with finite number of lags

In the baseline LGS, trades and positions are a linear function of return-scaled-exposures (i.e., Bi,s,t

for 0 ≤ s < t). In most settings, the coefficients in both the position and the trade equations (θi,s,t

and πi,s,t) should converge to zero for s << t. Indeed, we shall show via impulse response functions
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in Section 3.5 that this is exactly the behavior that is observed.17 Thus, to reduce complexity it can

be advantageous to use strategies for which the trades are dependent on scaled exposures lagged

at most ` periods.

We first specify that the trading rule will only trade based on at most ` lags, i.e. such that:

ui,t =

t∑
s=t−`∨0

π>i,s,tBi,s→t (37)

where t− ` ∨ 0 denotes the maximum of t− ` and 0. If we want the holdings to remain linear and

of the form:

xi,t =

t∑
s=0

θ>i,s,tBi,s→t (38)

Then we see that the linear constraints in equations (20) have to be modified so as to still satisfy

the wealth dynamics in equations (4) and (5). Specifically, we require that :

θi,t,t = πi,t,t ∀ t ≥ 1

θi,s,t = θi,s,t−1 + πi,s,t for t− ` ∨ 0 ≤ s < t

θi,s,t = θi,s,t−1 for 0 < s < t− `

(39)

Since this is still a set of linear constraints we can straightforwardly extend the previous method

to derive the optimal LGS strategy with trades that only look back ` periods.

However, it is also generally the case that it will not be optimal to have any weight on scaled-

exposures that are sufficiently old. Inspecting these constraints, we see that if we impose the

additional constraint that (πi,t−`,t = −θi,t−`,t−1) ∀ t > ` (i.e., that we completely trade out of any

remaining time-(t−`) scaled-exposure at time t), then it follows that θi,s,t = 0 ∀ 0 < s ≤ t− `. In

other words, by imposing one additional linear constraint on the trading strategy one can find a

set of LGS where the trading strategy ut look-backs at most ` periods and the dollar position xt

look-backs at most `− 1 periods. Formally, we have

ui,t =

t∑
s=t−`∨0

π>i,s,tBi,s→t

17See, in particular Figures 2 and 4, and the related discussion.
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and

xi,t =

t∑
s=t−`+1∨0

θ>i,s,tBi,s→t

We summarize this second set of linear constraints as:

θi,t,t = πi,t,t ∀t ≥ 1

θi,s,t = θi,s,t−1 + πi,s,t ∀ and t− ` ∨ 1 ≤ s < t

πi,s,t = −θi,s,t−1 for 0 < s = t− `

θi,s,t = 0 for 0 < s ≤ t− `

Because these constraints are linear, we can follow the approach above and derive the optimal

trading strategy coefficients by solving a deterministic dynamic programming problem.

3 Simulation Experiment

How much our proposed method improved on approaches proposed in the literature remains an

empirical question. In this section we present several experiments to illustrate the usefulness of

our portfolio selection approach. We compare portfolio selection in a characteristics-based versus

factors-based return generating environment.

As we show below the standard linear-quadratic portfolio approach proposed in Litterman

(2005) and Gârleanu and Pedersen (2012) is well-suited to the characteristics-based environment,

but in a factor-based environment, since it cannot adequately capture the systematic variation in

the covariance matrix due to variations in the exposures it is less successful. Instead, our approach

can handle this feature and thus performs better.

3.1 Characteristics versus Factor-based return generating model

We wish to compare the following two environments:
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• The factor-based return generating process with excess return and exposure dynamics

ri,t+1 = β>i,t(Ft+1 + λ) + εi,t+1, (40)

βki,t+1 = (1− φk)βki,t + εi,t+1.

• The characteristics based return generating process with excess return and exposure dynamics

ri,t+1 = β>i,tλ+ εi,t+1 (41)

βki,t+1 = (1− φk)βki,t + νεi,t+1.

where in both cases we assume that βi,t is a (3, 1) vector with elements corresponding to firm is

exposure to (1) short term reversal (Jegadeesh 1990, Lehmann 1990), (2) medium term momentum

(Jegadeesh and Titman 1993), and (3) long-term reversal (DeBondt and Thaler 1985), which we

henceforth label str, mom and ltr. We set the half-life of the str factor is 5 days, that of the mom

factor is 150 days, and that of the ltr factor is 700 days. These half lives are designed to roughly

match the documented horizons at which short-term reversal, momentum, and long-term reversal

are typically found.

In both frameworks, expected returns are the product of the ex-ante observable factor exposures

and the factor premia, β>i,tλ. However, consistent with the specification in equation (41), in the

characteristics based framework, we assume that the conditional covariance matrix of security

returns is constant, i.e. Σt→t+1 = Et[εt+1ε
>
t+1] = Σ. In contrast, in the factor-based framework, the

residual covariance matrix is constant, Et[εt+1ε
>
t+1] = Σ, but the conditional covariance matrix of

returns is time varying: Σt→t+1 = βtΩβ
>
t +Σ where βt = [β>1,t;β

>
2,t; . . . ;β

>
n,t] is the (N,K) matrix of

factor exposures, and Ω is the (time-invariant) (K,K) factor covariance matrix. Finally, ν is a free

parameter used to match the sharpe ratios generated in both environments for a myopic investor

trading costlessly.

Note that the innovations in the factor exposure are driven entirely by idiosyncratic return

shocks consistent with their interpretation as ‘technical’ return based factors. The AR(1) repre-

sentation has the convenient representation as a weighted average of past shocks where the weights
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Table 1: Parameters for Simulation Experiment

The table presents the parameters estimated using the proceedure described in Appendix C, and used in the simulation
exercise. The three factors are designed to capture the short-term reversal, momentum, and long-term reversal
effects. ĥk is the factor half-life in days, φk is the factor decay rate, λk the factor premium, and σf,k the factor
volatility. The final three columns give the estimated factor correlations. The factor covariance matrix Ω is equal to
diag(σf )ρ diag(σf )
All of the numbers given in this table are daily.

ρ̂ (correlations)

k Factor ĥk φk λ̂k σ̂f,k 1 2 3

1 str 3 0.206299 -0.093482 0.406887 1 -0.366 0.167
2 mom 150 0.004610 0.001484 0.006999 -0.366 1 -0.576
3 ltr 700 0.000990 -0.000400 0.001764 0.167 -0.576 1

depend on the φk. This makes the interpretation as short, medium and long-term return based

factors transparent.

The value of φk is tied to its half-life (expressed in number of days) ĥk by the simple relation

φk = 1− (1
2)1/ĥk .

3.2 Calibration of main parameters

The number of assets in our experiment is 15. Our trading horizon is 26 weeks with weekly

rebalancing. Our objective is to maximize the net terminal wealth minus penalty terms for excessive

risk (see Section 2.3).

We calibrate the factor mean, λ, and covariance matrix, Ω, using the Fama-French decile portfo-

lios sorted on short-term reversal, momentum, and long term reversal. The calibration is described

in Appendix C. The parameters obtained from this calibration and used in the simulation are given

in Table 1.

For our simulations, we assume that both F and ε vectors are serially independent and normally

distributed with zero mean and covariance matrix Ω and Σ, respectively. We calibrate Σ using

our empirical return data on 100 largest firms by market capitalization18. We randomly choose

15 stocks, estimate the daily variance-covariance matrix from their returns, and calibrate Σ by

converting it to its weekly counterpart. We set initial exposures to zero, i.e., βki,0 = 0 ∀i, k. Finally,

ν is computed to be 0.2498 so that the Sharpe ratios generated in both models in the absence of

18See Section 4.1 for details of the data construction
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transaction costs are equal.

The transaction cost matrix, Λ is assumed to be a constant multiple of the conditional covariance

matrix, Σ or βtΩβ
>
t + Σ, with proportionality constant η in characteristics or factor-based return

generating model respectively. Consequently, in the factor-based framework, trading a constant

dollar amount will be time-varying.

We use a rough estimate of η according to widely used transaction cost estimates reported in the

algorithmic trading community 19. We provide three regimes: low, medium and high transaction

cost environment. The slippage values for these three regimes are assumed to be around 2.5 bps, 5

bps and 10 bps respectively. Therefore, we expect that a trade with a notional value of $1 million

results in $250, $500 and $1,000 of transaction costs in these regimes. In our model, ησ2
εu

2 measures

the corresponding transaction cost of trading u dollars. Using weekly volatility of σε = 0.05, this

yields an η roughly around 1×10−7, 2×10−7 and 4×10−7 for the low, medium and high transaction

cost regimes respectively.

Finally, we assume that the coefficient of risk aversion γ equals 10−8, which can be thought of

as corresponding to a relative risk aversion of 1 for an agent with $100 million under management

and trades 1% of the fund every week on average.

3.3 Approximate policies

Due to the nonlinear dynamics in our wealth function, solving for the globally optimal policy even

in the case of a concave objective function is intractable due to the curse of dimensionality. Thus to

assess the performance of the LGS, we compare it to alternative policies suggested in the literature

and used in practice. In this section, we lay out how we implement these policies and discuss the

implementation of the optimal LGS, which we label the Best Linear or BL strategy.

19See Moallemi, Saglam, and Sotiropoulos (2014) for a recent empirical study.
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3.3.1 Myopic Policy (MP):

We can solve for the myopic policy using only one-period data. We solve the myopic problem given

by

max
xt

E
[(
x>t rt+1 −

γ

2
x>t Σt→t+1xt −

η

2
u>t Σt→t+1ut

)]
. (42)

Using the dynamics for rt+1, the optimal myopic policy is given (in the factor based framework) by

xMP
t = ((η + γ) Σt→t+1)−1 (βtλ+ ηΣt→t+1 (xt−1 ◦Rt)) (43)

3.3.2 Myopic Policy with Transaction Cost Multiplier (MP-TC):

A problem with the myopic optimization problem in equation (42) is that Rt+1 and Σ have units of

time−1 (i.e., return or return variance per unit time), but the transaction costs are unitless. Thus,

the myopic policy may give nonsensical solutions, particularly if the period length does not line up

with the units in which expected returns and variances are measured. For this reason, it is common

among practitioners to modify the myopic policy by multiplying the final terms in (42) by an

amortization factor τ (with units of time−1).20 In our implementation, we choose this multiplier so

as to maximize the unconditional performance (i.e., across all simulations) of the trading strategy.

This modified problem gives a solution of:

xMP−TC
t = ((τ∗η + γ) Σt→t+1)−1

(
βtλ+ τ∗ηΣt→t+1

(
xMP−TC
t−1 ◦Rt

))

where τ∗ is given by

τ∗ = argmax
τ

E
[(
x>t rt+1 −

γ

2
x>t Σt→t+1xt −

τη

2
u>t Σt→t+1ut

)]
,

subject to xt = ((τη + γ) Σt→t+1)−1 (βtλ+ τηΣt→t+1 (xt−1 ◦Rt)) .

20see, e.g., Grinold and Kahn (1999).
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3.3.3 Gârleanu & Pedersen Policy (GP):

Using the estimation methodology in Gârleanu and Pedersen (2012), we can construct an approxi-

mate trading policy in closed-form calibrated from a model using price changes instead of percentage

returns. Using a simulated data from our characteristics and factor-based framework, we can es-

timate the model parameters. Assuming an initial stock price of $1 for each security and using

percentage returns from the simulated data, we can obtain the price change vector ∆St+1 = St+1−St

for our two regimes. We can estimate the predictive ability of the each characteristic, `k from the

following regression:

∆Si,t+1 = `1β1
i,t + `2β2

i,t + `3β3
i,t + εi,t+1. (44)

We estimate the constant covariance matrix, Σ̄pc, taking the unconditional covariance of price

changes, that is to say, Σ̄pc = Var(∆St). Since Gârleanu and Pedersen (2012) also uses AR(1)

representation for exposure dynamics, decay rate parameters, φ, do not need to be estimated.

Transaction cost matrix, Λ̄pc, is a constant multiple of the covariance matrix which is given by

ηΣ̄pc.

Using these estimated parameters, a suboptimal trading policy can be obtained based on

Gârleanu and Pedersen (2012) seeking optimal number of shares, ht, to hold maximizing the fol-

lowing objective function:

max
h1,...,hT

E

[
T∑
t=1

(
h>t ∆St+1 −

γ

2
h>t Σ̄pcht −

1

2
n>t Λ̄pcnt

)]
(45)

subject to ht = ht−1 + nt (46)

The optimal solution to this problem is given by

ht =
(
Λ̄pc + γΣ̄pc +Atxx

)−1 (
Λ̄pcht−1 +

(
C +Atxf (I − Φ)

)
βstt
)

where βstt = [β1
:,t; . . . ;β

3
:,t] is the stacked vector of factor exposures, C = `> ⊗ IN×N and Φ =
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diag(φ⊗ IN×1) and At−1
xx and At−1

xf satisfy the following recursions,

At−1
xx = −Λ̄pc

(
Λ̄pc + γΣ̄pc +Atxx

)−1
Λ̄pc + Λ̄pc,

At−1
xf = Λ̄pc

(
Λ̄pc + γΣ̄pc +Atxx

)−1 (
Atxf (I − Φ) + C

)
,

with ATxx = 0 and ATxf = 0.

3.3.4 Gârleanu & Pedersen Policy with Resolve (GP-R):

GP policy as calibrated from data will not work very well especially in the factor-based model as the

price-change implementation with constant covariance matrix and factor returns will not capture

the true dynamics of the return generating process. We can improve the performance by using a

similar strategy but now resolving the set of Riccati recursions at every trading period. For this

implementation, we need to compute conditional factor returns and covariance matrix and solve

for optimal number of shares to hold as if they will stay constant in the future. However, in the

next period these quantities will change and we will resolve the recursions using the realizations

in the next period. Thus, clearly this approach will be computationally demanding especially for

large number of periods.

We will input the conditional covariance matrix of price changes by letting Σ̄pc
t = diag(St)Σ diag(St)

in the characteristics based model and Σ̄pc
t = diag(St)

(
βtΩβ

>
t + Σ

)
diag(St) in the factor-based

model. Transaction cost matrix, Λ̄pct , will be also time-varying with ηΣ̄pc
t . With this parametriza-

tion, GP-R will choose the following suboptimal solution:

ht =
(
Λ̄pct + γΣ̄pc

t +At,txx
)−1

(
Λ̄pct ht−1 +

(
Ct +At,txf (I − Φ)

)
βstt

)

where βstt = [β1
:,t; . . . ;β

3
:,t] is the stacked vector of factor exposures, Ct = λ> ⊗ diag(St) and Φ =

diag(φ⊗ IN×1) and At,t−1
xx and At,t−1

xf satisfy the following recursions,

At,t−1
xx = −Λ̄pct

(
Λ̄pct + γΣ̄pc

t +At,txx
)−1

Λ̄pct + Λ̄pct ,

At,t−1
xf = Λ̄pct

(
Λ̄pct + γΣ̄pc

t +At,txx
)−1

(
At,txf (I − Φ) + Ct

)
,
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with At,Txx = 0 and At,Txf = 0. Here, we have double time superscripts in At,txx and At,txf in order to

illustrate the necessity to resolve the Riccati recursion at each time period.

3.3.5 Best Linear Policy (BL):

We define the relevant stock exposure variables for each security to be the stock specific myopic

portfolio holdings and a constant term, i.e., Bi,t = [xMP
i,t ; 1]. We then follow the methodology

developed in Section 2 to determine the optimal LGS satisfying our nonlinear state evolution:

uBLt = B>t π∗t

xBLt = B>t θ∗t

where as before Bt is constructed from the return-scaled exposures Bi,s→t = Bi,sRs→t, where π∗t

and θ∗t solve:

max
π1,...,πT

T∑
t=1

θ>t mt −
1

2
π>t Λtπt −

γ

2
θ>t Σtθt

subject to θt = θ0
t−1 + πt

3.4 Simulation Results

We now discuss the performance of the approximate policies and the best linear (LGS) policies

in the simulation for both the factor- and the characteristics-models, for low, medium and high

transaction costs. We also provide performance statistics for a zero transaction-cost setting as a

benchmark case.

3.4.1 Characteristics Model Simulation Results

The upper panel of Table 2 shows the results when the simulated returns are generated according

to the characteristics model in equation (41), (i.e., when there are no common factors, and thus

all return variance is idiosyncratic), and when transaction costs are zero. Because there are no

transaction costs, the myopic policy is optimal. Since all other policies except GP (MP-TC, GP-
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Table 2: Policy performance: no common factor, zero t-cost environment.

This table summarizes the performance of each policy in the characteristics environment (no com-
mon factors) for four different levels of transaction costs. For each policy, we report the average
across the 10,000 runs of the: the objective value, standard error of the objective value, terminal
wealth, the standard error of the terminal wealth, and the information ratio using myopic policy
as a benchmark. (Dollar values are in hundred thousands of dollars.)

MP MP-TC GP GP-R BL BL-GPR

Zero Transaction Costs

Avg Objective 2739.75 2739.75 1704.41 2739.75 2739.65 -0.10
Std Err 22.59 22.59 8.98 22.59 22.59 0.34
Avg Wealth 5487.37 5487.37 2159.97 5487.37 5488.35 0.98
Std Err 22.01 22.01 8.87 22.01 22.01 0.34
TC 0.00 0.00 0.00 0.00 0.00 0.00
IR NA NA -3.47 0.05 0.04 NA
SR 3.53 3.53 3.44 3.53 3.53 0.04

Low Transaction Costs (η = 1× 10−7)

Avg Objective 254.34 255.08 207.59 327.39 329.55 2.16
Std Err 5.37 5.11 1.46 3.46 3.47 0.56
Avg Wealth 427.69 412.19 221.89 404.08 407.30 3.21
Std Err 5.06 4.82 1.44 3.38 3.39 0.53
TC 226.71 194.49 40.65 252.25 249.86 -2.39
IR NA -0.79 -0.74 -0.12 -0.10 NA
SR 1.20 1.21 2.19 1.69 1.70 0.09

Medium Transaction Costs (η = 2× 10−7)

Avg Objective 147.83 147.92 119.73 187.74 190.04 2.30
Std Err 3.39 3.25 0.95 2.20 2.24 0.55
Avg Wealth 219.03 213.83 125.82 218.98 222.82 3.84
Std Err 3.24 3.12 0.94 2.16 2.19 0.53
TC 123.79 111.54 25.55 157.38 155.94 -1.44
IR NA -0.57 -0.52 0.00 0.03 NA
SR 0.96 0.97 1.90 1.43 1.44 0.10

High Transaction Costs (η = 4× 10−7)

Avg Objective 85.28 85.33 66.26 103.22 105.46 2.24
Std Err 1.96 1.99 0.60 1.34 1.42 0.52
Avg Wealth 110.00 110.70 68.67 114.92 118.77 3.85
Std Err 1.91 1.93 0.59 1.32 1.39 0.51
TC 64.93 66.96 15.07 92.02 91.34 -0.69
IR NA 0.40 -0.40 0.06 0.10 NA
SR 0.82 0.81 1.65 1.23 1.20 0.11
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R, and BL) nest the unconstrained myopic one, we see that all policies all achieve the same high

objective functions, and corresponding Sharpe ratios of 3.53. We note that BL nests the myopic

strategy because we use as stock exposures the myopic strategy holdings. This illustrates the

necessity of choosing a large enough set of exposures for the LGS to span a large enough set of

strategies.

The second panel of Table 2 illustrates that even when transaction costs are relatively low, the

dynamic trading strategies can improve on the myopic policy. However, GP does underperform as

the model is estimated as if the data is generated from an arithmetic process.

We see that for non zero t-costs BL and the GP-R perform very closely, with BL outperforming

slightly. What makes GP-R slightly non-optimal here however is that, in our simulations, returns

have constant variance rather than price changes. Thus we suspect that the small performance

difference between GP-R and BL is due to the fact that the log-normal return dynamics we simulate

do not exactly conform to the assumed (normal) return dynamics assumed in the GP-R solution.

3.4.2 Factor Model Simulation Results

Now we turn to the results for the “factor model” simulations, where cross-sectional variation in

expected returns are linked to common factor loadings as given in equation (40). The upper panel

of table 3 below shows the results with zero t-costs. As before the myopic strategy is optimal,

and since it is nested by all strategies considered, all achieve the same objective value to within

experimental error.

First, we note that BL significantly outperforms all other strategies in terms of objective value

(up to 14% higher than the second-best)21. Even GP-R is substantially suboptimal compared to

BL in this factor-based model as the return dynamics now differ substantially from the model that

underlies GP-R. The underperformance is very large for the case of data-driven GP. GP-R has the

second-best performance in all cases except in the low transaction cost regime in which MP-TC

achieves a higher objective value. Also, recall that the t-cost multiplier for the MP-TC strategy is

21Note that the Sharpe and information ratios for the strategies do not always line up with the average objective
functions. The reason is that these ratios are not the objective function that is optimized and hence can be a
misleading performance criterion. For example, in the medium transaction cost case MP achieves the second-lowest
objective but has the highest Sharpe ratio.
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chosen via simulation so as to maximize the objective function.

We observe that BL and MP-TC seem to be much more aggressive in trading compared to MP

and GP-R as measured by the size of average transaction costs. In the next section, we illustrate

how all strategies differ in trading in various regimes in a simplified framework.

3.5 Discussion of the Trading Rules

In this section, we construct impulse response functions for the BL, GP-R, MP and MP-TC policies

described in Section 3.3. We do this for the two sets of return dynamics we considered in Section

3.4: i.e., Equation (40) for the economy with both factor and residual risk, and Equation (41) for

the economy with residual risk only. This analysis provides some insights into the differences in

performance uncovered in our analysis in Section 3.4.

The basic environment is the same as in the preceding section. We begin by setting the time

1 positions and exposures for each security equal to the long run mean of zero: xj,1 = βj,rev,1 =

βj,mom,1 = βj,value,1 = 0 ∀j. We further constrain the residuals for all securities over week 1

to be zero. Over week 2, we “shock” the idiosyncratic return of security i with a positive 2-

standard-deviation shock, i.e., εi,2 = 2σi, but set the idiosyncratic shocks for all other assets to

zero (εj,2 = 4∀i 6= j). From week 3 to week 26, all future shocks are set to zero so that the path of

realized return is equal to the path of expected returns.

3.5.1 Characteristics Model Results

The upper panel of Figure 1 plots the path of realized returns of security i for this experiment.

The positive return at time 2 is the shock itself. The subsequent effects are due to the interplay

between reversal, momentum and value which affect the future expected return path of the security

subsequent to the time 2 shock.

Indeed, the lower panel of Figure 1 shows the path of the factor exposures. All three factor

exposures at the end of week 2 are equal to approximately one-fourth of idiosyncratic shock (recall

that ν = 0.2498 per equation (41)), but then decay at very different rates. In the determination of

the expected return, the reversal effect dominates for the first few weeks, which leads to a negative

expected return. After week 11, the positive (but much smaller) premium for momentum a positive
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Table 3: Policy Performance: Common factor noise

This table summarizes the performance of each policy in the factor model environment for four
different levels of transaction costs. For each policy, we report the average across the 10,000 runs of
the: the objective value, standard error of the objective value, terminal wealth, the standard error
of the terminal wealth, and the information ratio using myopic policy as a benchmark. (Dollar
values are in hundred thousands of dollars.)

MP MP-TC GP GP-R BL BL-GPR

Zero Transaction Costs

Avg Objective 3001.31 3001.31 -98689.21 3001.31 3000.60 -0.71
Std Err 24.39 24.39 391.02 24.39 24.40 0.32
Avg Wealth 6007.09 6007.09 37659.88 6007.09 6006.76 -0.34
Std Err 24.37 24.37 163.16 24.37 24.38 0.34
TC 0.00 0.00 0.00 0.00 0.00 0.00
IR NA NA 3.17 0.59 -0.01 NA
SR 3.49 3.49 3.26 3.49 3.49 -0.01

Low Transaction Costs (η = 1× 10−7)

Avg Objective 429.61 452.37 -8036.32 447.94 490.57 42.63
Std Err 3.18 4.02 37.02 3.21 4.19 1.78
Avg Wealth 489.25 546.45 -5756.90 509.32 593.44 84.12
Std Err 3.16 4.00 31.14 3.18 4.14 1.72
TC 234.41 385.42 10297.69 236.30 385.78 149.48
IR NA 0.94 -3.01 0.17 0.72 NA
SR 2.19 1.93 -2.61 2.26 2.03 0.69

Medium Transaction Costs (η = 2× 10−7)

Avg Objective 229.21 242.62 -5002.27 251.86 279.06 27.20
Std Err 1.74 2.23 22.25 2.09 2.62 1.56
Avg Wealth 247.82 272.87 -4200.74 280.71 323.65 42.94
Std Err 1.74 2.23 20.05 2.07 2.59 1.53
TC 132.27 223.98 6812.61 158.05 232.64 74.59
IR NA 0.71 -3.28 0.31 0.59 NA
SR 2.02 1.73 -2.96 1.91 1.77 0.40

High Transaction Costs (η = 4× 10−7)

Avg Objective 118.48 125.57 -2990.79 136.65 155.83 19.17
Std Err 0.92 1.19 12.92 1.44 1.79 1.42
Avg Wealth 123.88 134.51 -2727.93 152.10 179.26 27.16
Std Err 0.92 1.19 12.15 1.44 1.77 1.41
TC 70.44 120.45 4169.41 98.60 130.81 32.21
IR NA 0.55 -3.44 0.31 0.50 NA
SR 1.90 1.60 -3.18 1.49 1.44 0.27
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Figure 1: Security i returns and factor exposures following a 2σ idiosynctratic shock in
characteristics based model

The top panel plots the realized return across one sample path, and the bottom panel plots the factor exposures for
reversal, momentum and value in this sample path for security i. In this experiment, security i experiences a two
standard deviation idiosyncratic volatility shock in week 2.

expected return, but because the premium for momentum is about two orders of magnitude smaller

than that for reversal – as seen in Table 1 – the momentum effect is difficult to see in the plot.

Of course, because momentum is much longer-lived than reversal, the cumulative effects are more

comparable.

Figure 2 plot the dollar trades and corresponding positions in security i for the four policies,

for the characteristics-based setting when the return generating process is given by equation (41)

and the transactions costs are “medium.”

It is clear from these plots that GP-R and BL trades and positions are nearly identical in this

characteristics environment. One would expect that, since apart from modeling price changes versus

dollar returns, the setting is very similar to that used in GP-R and for that setting the GP-R policy

is close to optimal. The comparison of the optimal strategy with that used by the Myopic strategies
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Figure 2: Security i Trades and Positions – Characteristics Environment with Medium
Transaction Costs

The upper panel plots the dollar size of trades, and the lower panel the dollar size of positions in security i for various
trading policies, following a two standard deviation idiosyncratic volatility shock in week 2. The characteristic-based
return generating process is used (equation (41)), and the transaction costs parameter corresponds to “medium” (i.e.,
η = 2× 10−7)

is instructive. While the myopic strategy trades into the position very similarly to GP-R and BL

it does not trade out of the position fast enough. The reason for this is that the myopic policy

trade is based only on the expected returns and covariance at any point in time, and not on how

quickly the expected return and covariance will change. In contrast, both GP-R and BL optimally

incorporate the expected return dynamics of the security.

3.5.2 Factor Model Results

The upper panel of Figure 3 plots the path of realized returns of security i and the lower panel of

Figure 3 shows the path of the factor exposures. The main difference here is that all three factor

exposures at the end of week 2 are now equal to the value of idiosyncratic shock (per equation (40))
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Figure 3: Security i returns and factor exposures following a 2σ idiosynctratic shock in
factor-based model

The top panel plots the realized return across one sample path, and the bottom panel plots the factor exposures for
reversal, momentum and value in this sample path for security i. In this experiment, security i experiences a two
standard deviation idiosyncratic volatility shock in week 2.

and lead to four-times the magnitude of the expected returns when compared to characteristics-

based model. Consequently, the sign of the realized return stay the same as in the previous model.

Figure 4 plots security i trades and positions for the four policies for the factor-based model

setting (i.e., when the return generating process is given by equation (40). Comparing this to Figure

2, we see that there is now substantial differences between the BL and GP-R trades immediately

following the shock. It is clear that BL trades more aggressively: builds larger short position in

the first few weeks (due to short-term reversal) and over time builds up a larger positive position

in security i (due to momentum). The end result, as discussed previously, is that BL outperforms

GP-R.

In the characteristics model of the previous section we found that BL and GP-R both outper-

formed the myopic strategies. The reason is that both BL and GP-R properly account for the
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Figure 4: Security i Trades and Positions – Factor Model with Medium Transaction
Costs

The upper panel plots the dollar size of trades, and the lower panel the dollar size of positions in security i for various
trading policies, following a two standard deviation idiosyncratic volatility shock in week 2. The factor-model-based
return generating process is used (equation (40)), and the transaction costs parameter corresponds to “medium” (i.e.,
η = 2× 10−7)

dynamics of the expected return. However, in the factor-model setting, the covariance matrix is

changing with the shocks to expected return. The BL method takes into account the future dynam-

ics associated with the changing covariance matrix. Recall that we optimize the GP-R method with

respect to the instantaneous covariance matrix so in that sense it is optimal but it cannot take into

account in the trading decision the future dynamics associated with this covariance matrix. For

example, this may explain why the week 2 trade that is done in response to the shock is smaller

for GP-R then for BL: the GP-R methodology implicitly assumes that the high risk for security i at

time 2 will continue indefinitely. The BL trade incorporates the notion that, as the factor loading

decays over time the risk will fall and therefore trades more aggressively.
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4 Trading the Short-Term Reversal Effect

The short-term reversal anomaly was noted in Fama (1965), and was later explored more fully in

Jegadeesh (1990) and Lehmann (1990). This negative serial correlation is generally interpreted as

evidence consistent with incomplete liquidity provision, and much empirical evidence is consistent

with this.22 Collin-Dufresne and Daniel (2013, CD) develop a detailed dynamic model for the

short-term reversal effect, and use this to examine the time variation in the reversal effect.

In this section we apply the LGS methodology we develop in Section 2 to a trading strategy based

on the CD model and a simple model for transaction costs. We then apply this model to estimate

the effectiveness of an LGS-based strategy using historical equity returns and simulated transaction

costs, and compare the performance of the LGS strategy with other approaches suggested in the

literature.

We include this for several reasons: first, we demonstrate the steps necessary for implementing

the LGS methodology in a setting like that would be faced by an investor. Second, this gives us an

opportunity to compare the performance of the LGS methodology to other candidate methodology

using actual rather than simulated data.

The short-term-reversal strategy is a good test-bed for dynamic-portfolio-choice methods. The

strategy returns, gross of transaction costs, are large. But the returns associated with short-term-

reversal die out quickly: CD show that the half life associated with this decay averages 2.4 days

over this sample period.

4.1 Sample and Data

We implement our LGS-based trading strategy on the 100 largest firms by market capitalization in

the CRSP universe, over the period from January 1974-March 2013. At close on the last trading

day of each calendar year we select the 100 firms with the largest market capitalization. We then

22There is now a voluminous academic literature on this topic: Chan (2003) and Tetlock (2011) show that large
security price moves exhibit more reversal if they are not associated with news and Da, Liu, and Schaumburg (2013)
show that within industry/residual based reversals have a far higher Sharpe ratio. In addition, Avramov, Chordia,
and Goyal (2006) argue that the reversal effect is present only in small, illiquid securities with high turnover, and
Khandani and Lo (2007) document a dramatic decline over time in the efficacy of the strategy. Finally, the strength
of the reversal strategy appears to depend on arbitrageurs ability to access capital: Nagel (2012) documents that the
return of a $1-long/$1-short short-term-reversal portfolio is far higher when market volatility is higher. He attributes
this time variation to limited investor capital in times of high volatility.
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trade those firms over the next calendar year. What this means is that our cross-section is the very

largest firms in the CRSP universe. We do this to ensure that there is high liquidity in each of the

securities in our sample on each trading day.

Because we trade only the largest firms in the CRSP universe, every one of the firms in our

sample has a fairly liquid market. Almost every one of the firms in our sample trades every day.

There are a relatively small number of delistings, and for those firms that are delisted, a reliable

delisting return is available.23

Note the firms in our sample often change at close on the last trading day of each calendar year.

If a firm leaves our sample (because it is no longer one of the 100 largest firms) we close out our

position at the closing price on that date. Similarly, if a firm enters the sample of the 100 largest

firms, we allow our simulation to trade into that firm starting at close on the last trading day of

the year.

4.2 Model Specification

Our baseline specification for the individual firm excess returns (r̃i,t+1) is:

r̃i,t+1 = βi,mr̃m,t+1 +Bi,tλt + σihε,tε̃i,t+1︸ ︷︷ ︸
≡ũi,t+1

ε̃i,t+1 ∼ N (0, 1) (47)

where Et[ε̃i,t+1ε̃j,t+1] = 0 ∀ i 6= j, and where 1
n

∑n
i=1 σ

2
i = 1.

Firm i’s excess return r̃i,t+1 has a loading of βi,m a single common factor (the market). ui,t+1

denotes firm i’s residual return at time t+ 1.

4.2.1 The market return

The process for the excess market return (r̃m,t+1) is:

r̃m,t+1 = µ+ hm,tυ̃t+1︸ ︷︷ ︸
≡ũm,t+1

, υ̃t+1 ∼ N (0, 1) (48)

23In tests of our trading strategy, if a firm is delisted, up until the delisting takes place, we trade as if we are
unaware that the delisting will take place. On the delist date, we assume that any holdings, long or short, of that
firm’s shares earn the return on that date plus the CRSP delisting return.
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where Et[υ̃t+1ε̃i,t+1] = 0 ∀ i. The market return r̃m,t+1 has a constant mean return, and variance

that follows a Glosten, Jagannathan, and Runkle (1993) GARCH process:

h2
m,t = ωm + βmh

2
m,t−1 + (αm + γmI[(r̃m,t − µ)<0])u2

m,t. (49)

Maximum likelihood estimates of the parameters in equations (48) and (49) are given in Table 4.

4.2.2 Residual return specification

Expected return: Consistent with the literature showing that residual returns exhibit reversal,

we specify that a firm’s residual return ui,t+1 is not mean zero, but rather has a conditional expected

return that is negatively correlated with it’s lagged residual returns for lags of several weeks.

Specifically, equation (47) specifies that firm i’s conditional expected residual return Et[ũi,t+1] =

Bi,tλt is the product of a firm specific exposure Bi,t and a common premium λt. The exposure

(Bi,t) is governed by an auto-regressive process:

Bi,t = βrBi,t−1 + (1− βr)ũi,t−1

= (1− βr)
∞∑
l=1

βlrui,t−l (50)

Firm i’s time t exposure at time t is thus an exponentially weighted sum of its lagged daily residuals,

starting at time t − 1. Note that our specification does include the day t return in the expected

return for day t+ 1 – we skip a day to avoid various econometric problems. 24 Collin-Dufresne and

Daniel (2013, CD) show that the specification in equation (50) does a good job of capturing the

short-term reversal process. For this sample of firms, over the 1974-2013 time period, the average

λt is about -0.12. This means that, following a residual shock of 1%, the price of a firm i will fall

(starting in one day) by about 12 basis points over the next few weeks. CD’s estimation of equation

(50) for daily returns gives a β̂r = 0.720, corresponding to a half-life of this price decay of 2.4 days.

24With this specification, the expected residual return at time t + 1 is a function of residuals at times t − 1 and
before. This is, at least in part, to avoid potential bid-asked bounce effects. Note that every firm in our sample trades
(almost) every day. See Collin-Dufresne and Daniel (2013) for details.
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Variance Process Specification: Equation (47) specifies that the volatility of firm i’s residual

return is σihε,t – the product of a time-invariant but firm-specific term σi, and the (common) level

of cross-sectional volatility, hε,t. Our specification is consistent with Kelly, Lustig, and Van Nieuwer-

burgh (2012), who argue that time variation in individual firm idiosyncratic volatilities are largely

captured by a single factor structure. Here, all changes in idiosyncratic volatility a result of changes

in the common level hε,t.

Equation (47) specifies that the shock to firm i’s residual returns is

(ũi,t+1 −Bi,tλt) = σihε,tε̃i,t+1

This means that:

Et

[
1

n

n∑
i=1

(ũi,t+1 −Bi,tλt)2

]
= h2

ε,tEt

[
1

n

n∑
i=1

σ2
i ε̃

2
i,t+1

]

= h2
ε,t

(
1

n

n∑
i=1

σ2
i

)
= h2

ε,t (51)

That is, given our restrictions that 1
n

∑n
i=1 σ

2
i = 1 and that the ε’s are i.i.d., unit-variance, h2

ε,t is

the conditional cross-sectional variance (as defined by the LHS of equation (51).)

The dynamics of h2
ε,t are captured by an GARCH(1,1) process (Bollerslev 1986):

h2
ε,t = κε + αεh

2
ε,t−1 + µεσ

2
xs,t, (52)

where σ2
xs,t denotes the realized cross-sectional variance in period t:

σ2
xs,t ≡

1

n

n∑
i=1

(ũi,t −Bi,t−1λt−1)2 .

For an individual firm, equation (47) specifies that Et
[
(ũi,t+1 −Bi,tλt)2

]
= σ2

i h
2
ε,t. That is, σ2

i

is the ratio of an individual firm’s residual variance to the average residual variance of the n firms

in our sample. Following CD, in our empirical implementation, we estimate σi at the beginning of
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each year, and then hold it fixed from the first trading day of the year through the last, consistent

with the specification in equation (47). Empirically, CD find considerable cross-sectional variation

in σi.

Premium Specification: From equation (47), λt is the time-t expectation of the premium per

unit of exposure that will be earned over period t+1 (i.e., between t and t+1). The updating rule

for λt is:

λt+1 = αλλt + (1−αλ)ũB1,t+1 (53)

where ũB1,t+1 denotes the period t+ 1 residual return of a portfolio with unit exposure to the str

factor (that is, Bp,t = 1), and specifically the portfolio with time-t weights:25

wB1
i,t =

Bi,t∑
iB

2
i,t

Here, λt should be interpreted as the econometrician’s expectation of the latent period-t+1

premium λ∗t – i.e., λt = Et[λ
∗
t ]. Similarly, equation (53) should be interpreted as describing the

evolution of this expectation. It is a reduced form for the Kalman filter solution to the system of

equations:

λ∗t+1 = ρλ∗t + (1− ρ)λ̄∗ + ṽt+1

ũB1,t+1 = λ∗t + ε̃B1,t+1

where λ∗t+1 is the latent/unobserved premium.

In summary, according to this specification, a large positive residual-return is associated with

future price declines. However, the half-life associated with this decline is short, with a point

estimate of 2.4 days. In contrast, the magnitude of the price decline varies quite slowly, following

an AR(1) process with a half-life of about 1 year.
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Table 4: Maximum Likelihood Estimates of Market Process Parameters

This table presents the estimates, standard errors and t-statistics from the joint estimation GJR-
GARCH process (equations (48) and (49)). All parameter estimates are obtained from an iterative
ML procedure run on daily market returns, where the market is defined as the equal-weighted
average of the returns of the 100 largest firms, measured at the beginning of each year. The sample
period is January 2, 1974 through March 28, 2013.

Joint Estimation of Equations (48) and (49)

Variable ML. Est. std. err. t-stat

µ† 2.6119 1.0658 2.4505

ω†m 1.5646 0.3555 4.4008
αm 0.0152 0.0039 3.9286
γm 0.1006 0.0171 5.8844
βm 0.9207 0.0102 90.3474

†The coefficients and std. errors for µ are ×104, and for ω are ×106.

4.3 Model Estimation

In this section we present the results of the estimation of the reversal model described in Section

4.2 for our sample of the 100 largest CRSP firms, and over our sample period of 1974:01-2013:03.

The details of the model estimation are reported in Collin-Dufresne and Daniel (2013).

We begin with the estimation of the market process (equations (48) and (49)), which we estimate

jointly using a numerical maximum likelihood procedure. The results of this estimation are reported

in Table 4

We also estimate the parameters of the individual firm process (equations (50), (53) and (52)).

Consistent with this specification, CD find that this the auto-regressive process in equations (47)

and (50) do a reasonable job of capturing the short-term reversal phenomemon. CD estimate

β̂r = 0.7195 using a Fama and MacBeth (1973) regression. Based on this value of βr, other

parameters are estimated using an iterative MLE procedure. The results of this estimation are

reported in Table 5.26

In the next section, we develop a LGS based on: (1) the process specification laid out in Section

4.2, (2) the estimated parameters, (3) a simple model of transaction costs.

25Note that
∑
i w

B1
i,t Bi,t = 1. If the residuals were uncorrelated and with uniform variance, this would be the

portfolio with minimum variance portfolio subject to the constraint that Bp,t = 1.
26The value of α̂ in this table is s.t. α = 1 can’t be rejected. Should probably instead use unit-root estimation

techniques to see whether we can reject α = 1.
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Table 5: Maximum Likelihood Estimates of Individual Firm Model Parameters

This table presents the estimates, standard errors and t-statistics for the model parameters in
equations (50), (52) and (53). All estimates are obtained from an iterative ML procedure run on
daily returns from the 100 largest market capitalization at the start of each year. The sample
period is January 2, 1974 through March 28, 2013. Note that λ̂0 is the starting value of λt that
maximizes the the likelihood function.

param. ML-est. std. err t-stat

β̂r 0.751470

λ̂0 0.084259 0.046678 1.805094
αλ 0.997765 0.001298 768.672674

κ†ε 4.741034 1.109324 4.273805
αε 0.723503 0.021953 32.956604
µε 0.260749 0.019914 13.093699

†The coefficient and std. error for κε are ×106.

4.4 An LGS-based methodology applied to short-term reversal

In this section we document the construction of the objective function for the short term reversal

trading strategy based on the methodology developed in Section 2, and the estimated model of

short-term-reversal described in Sections 4.2 and 4.3.

4.4.1 Objective function

We use an objective function similar to that used in recent literature as discussed in Section 2.3.

max

T∑
t=1

E
[
x>t rt+1 −

γ

2
x>t Σt→t+1xt −

η

2
u>t INΣt→t+1ut

]
,

where Σt→t+1 = h2
m,tββ

> + h2
e,t diag(σ1, . . . , σN ) from the dynamics of the security returns. With

this objective function we assume that transaction cost of trading a particular asset varies linearly

with the variance of only this asset’s return but does not depend on the variance of the remaining

security returns (i.e., no cross-impact). We multiply Σt→t+1 in the transaction cost term by IN in

order to ensure this, i.e., diagonal transaction cost matrix. Note that this is chosen for brevity as our

methodology is general enough to incorporate any quadratic function, deterministic or stochastic.

We calibrate η to be 2×10−7, as in the medium transaction cost environment in the simulation

experiment. Note that as η approaches to zero, the complexity of the problem decreases drastically
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and myopic policy becomes optimal. Finally, we assume that the coefficient of risk aversion, γ,

equals 1× 10−8 which we can think of as corresponding to a relative risk aversion of 1 for an agent

with $100 Million under management.

4.4.2 Policies

We compare the gains from trading according to a Myopic Policy (MP) and the Restricted Best

Linear (RBL) policy.

We use a similar approach undertaken in Section 3.3 to compute both trading policies. Let xMP
t

be the vector of dollar positions that the myopic policy chooses in each asset. Then,

xMP
t =

(
INΣt→t+1 + γΣt→t+1

)−1
(
Btλt + Λ

(
xMP
t−1 ◦Rt

))
,

where Σt→t+1 = h2
m,tββ

>+h2
e,t diag(σ1, . . . , σN ). Note that in the absence of transaction costs, xMP

t

simplifies to 1
γΣ−1

t→t+1
Btλt.

We will compare the myopic policy with restricted best linear policy that uses two most recent

myopic positions. Formally, we solve for the optimization

max
θ,π

T∑
t=1

E
[
x>t rt+1 −

γ

2
x>t Σt→t+1xt −

η

2
u>t INΣt→t+1ut

]
,

subject to xi,t = θi,tx
MP
i,t ,

ui,t = πi,1,tx
MP
i,t + πi,2,tx

MP
i,t−1,

πi,1,t = θi,t for t > 1,

πi,2,t = −θi,t−1 for t > 1,

πi,1,1 = 0.

4.4.3 Results

We run the performance statistics of our myopic and restricted best linear policy for the short-

term reversal experiment. Table 6 illustrates that the restricted best linear policy outperforms the
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Table 6: Short-Term Reversal Experiment: Policy Performance.

For the myopic policy (MP) and the restricted best-linear policy (RBL), we report average terminal
wealth, average objective value, Sharpe ratio for terminal wealth at the end of each trading year
and Sharpe ratio for daily trading gains. (Dollar values are in thousands of dollars.)

MP RBL

Avg Objective 718.6 724.4
Avg Wealth 1313 1047
Std Dev 1966 1446
TC 178.1 166.1
Sharpe Ratio of Terminal Wealth 0.9108 0.962
Sharpe Ratio of Daily Profit 0.7164 0.7883

myopic policy in terms of average objective value and Sharpe ratios for the one-year and daily

trading profits. The improvement is significant, but clearly both appear to do very well in this

medium t-cost environment (which is our calibration assumption for this experiment). It would

be interesting to investigate higher t-cost levels and perhaps a greater dependence of t-costs on

market volatility to see how they affect the relative performance of the dynamic versus myopic

trading strategy and the overall profitability of the reversal strategy.

Figure 5 illustrates the back-tested cumulative profits of trading the reversal strategy using

the BL trading strategy. We do see a marked tapering during the recent years of the average

profitability of the trading strategy as well as significant drawdowns.

5 Conclusion and Future Directions

The LGS framework we propose here accommodates complex return predictability models studied

in the literature in multiperiod models with transaction costs. Our return predicting factors do

not need to follow any pre-specified model but instead can have arbitrary dynamics. We allow for

factor dependent covariance structure in returns driven by common factor shocks, as well as time

varying transaction costs.

The main insight is that for the class of LGS the optimal policy can be computed in closed-form

by solving a deterministic linear quadratic problem, which is computationally very efficient.
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Figure 5: Cumulative profits net of t-costs of trading short-term-reversal using the BL
strategy

Numerical experiments show that the LGS performs similarly to the linear-quadratic solutions

of Litterman (2005) and Gârleanu and Pedersen (2012) when the return generating process is

close to having a constant covariance matrix of price changes (where L-GP provide the optimal

solution). Instead, the LGS framework performs better in other situations, such as when returns

display stochastic volatility, e.g., when they are driven by a factor model. We also investigate the

performance of the LGS framework when trading a high turnover strategy based on return reversal,

for which transaction costs are a first order concern. The benefits to using a dynamic framework

appear significant compared to a widely used approach that relies on a myopic objective function

with a transaction cost multiplier that is chosen to maximize the in-sample performance.
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A General quadratic objective function

It is straight-forward to extend our approach to a non-zero risk-free rate R0,t and an objective

function that is linear-quadratic in the position vector (i.e., F (xt, wT ) = wT + a>1 xT − 1
2x
>
T a2 xT )

rather than linear in total wealth. The F (·, ·) function parameters could be chosen to capture

different objectives, such as maximizing the terminal gross value of the position (wT +1>xT ) or the

terminal liquidation (i.e., net of transaction costs) value of the portfolio (wT + 1>xT − 1
2x
>
T ΛTxT ),

or the terminal wealth penalized for the riskiness of the position (wT +1>xT − γ
2x
>
T ΣT xT ), or some

intermediate situation.

Suppose the objective function is:

max
u1,...,uT

E

[
F (wT , xT )−

T−1∑
t=0

γ

2
x>t Σt→t+1xt

]
(54)

By recursive substitution xT and wT can be rewritten as:

xT = x0 ◦R0→T +
T∑
t=1

ut ◦Rt→T (55)

wT = w0R0,0→T −
T∑
t=1

(
u>t 1R0,t→T +

1

2
u>t ΛtutR0,t→T

)
(56)

where we have defined security i’s cumulative return between date t and T as:

Ri,t→T =
T∏

s=t+1

Ri,s (57)

(with the convention that Ri,t→t = 1) and the corresponding N -dimensional vector Rt→T =

[R1,t→T ; . . . ;RN,t→T ].

Now note that:

a>1 xT = (a1 ◦R0→T )>x0 +
T∑
t=1

(a1 ◦Rt→T )>ut (58)
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Substituting, we obtain the following:

F (wT , xT ) = F0 +

T∑
t=1

{
G>t ut −

1

2
u>t Ptut

}
− 1

2
x>T a2 xT (59)

F0 = w0R0,0→T + (a1 ◦R0→T )>x0 (60)

Gt = a1 ◦Rt→T − 1 ◦R0,t→T (61)

Pt = Λt ◦R0,t→T (62)

With these definitions, the objective function in equation (54) it can be rewritten as:

F0 −
γ

2
x>0 Q0x0 + max

u1,...,uT

T∑
t=1

E

[
G>t ut −

1

2
u>t Ptut −

γ

2
x>t Qtxt

]
(63)

subject to the non-linear dynamics given in equations (4) and (5) and where we have defined

Qt =

 Σt→t+1 for t < T

1
γa2 for t = T

(64)

Indeed, substituting the definition of our linear trading strategies from equations (24) and (25)

into our objective function in equation (63) and then taking expectations gives:

F0 −
γ

2
x>0 Q0x0 + max

π1,...,πT

T∑
t=1

G>t πt −
1

2
π>t Ptπt −

γ

2
θ>t Qtθt (65)

subject to θt = θ0
t−1 + πt (66)

and where we define the vector Gt and the square matrices Pt and Qt for t = 1, . . . , T by

Gt = E0[BtGt] (67)

Pt = E0[BtPtB>t ] (68)

Qt = E0[BtQtB>t ] (69)

Note that the time indices for Gt,Pt,Qt also capture their size: Gt is a vector of length NK(t+ 1),
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and Pt and Qt are square matrices of the same dimensionality.27 Equation (65) is just the objective

function (equation (63)) with the ut’s and xt’s rewritten as linear functions of the elements in Bt,

with coefficients πt and θt, respectively. Since the policy parameters πt and θt are set at time 0,

they can be pulled outside of the expectation operator.

Intuitively equation (65) is a linear-quadratic function of the policy parameters πt and θt, with

Gt, Pt, Qt as the coefficients in this equation. These three components give, respectively, the effect

on the obective funtion of: the expected portfolio returns resulting from trades at time t; the

transaction costs paid as a result of trades at time t; and finally the effect of the holdings at time

t on the risk-penalty component of the objective function.

Since Gt, Pt, Qt are not functions of the policy parameters, they can be solved for explicitly

or by simulation, and this only needs to be done once. Their values will depend on the initial

conditions, and on the assumptions made about the state vector Xt driving the return generating

process Rt and the corresponding security-specific exposure dynamics Bi,t. But, since equation

(27) is a linear-quadratic equation, albeit a high-dimensional one, it can be solved using standard

methods. We next calculate the closed form solution.

A.1 Closed form solution

We begin with the linear-quadratic problem defined by equations (65) and (66). Define recursively

the value function starting from V (T ) = 0 for all t ≤ T by:

V (t− 1) = max
πt

{
G>t πt −

1

2
π>t Ptπt −

γ

2
θ>t Qtθt + V (t)

}
subject to θt = θ0

t−1 + πt

Then it is clear that V (0) is the solution to the problem we are seeking. To solve the problem

explicitly, we guess that the value function is of the form:

V (t) = −γ
2
θ>t Mtθt + L>t θt +Ht (70)

27It is important to note that these matrices Gt,Pt,Qt will depend on the initial conditions (in particular on the
initial exposures B0, which typically will depend on the initial positions in each stock).
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with Mt a symmetric matrix. Since V (T ) = 0, it follows that MT = 0, LT = 0 and HT = 0. To

find the recursion plug the guess in the Bellman equation:

V (t− 1) = max
πt

{
G>t πt −

1

2
π>t Ptπt −

γ

2
θ>t (Qt +Mt)θt + L>t θt +Ht

}
subject to θt = θ0

t−1 + πt

Now plugging in the constraint, we can simplify the Bellman equation using the following

notation x is the vector (submatrix) obtained from x by deleting the last NK rows (rows and

columns). In Matlab notation x = x[1 : end−NK, 1 : end−NK].

V (t− 1) = max
πt

{
(Gt + Lt)

>πt −
1

2
π>t [Pt + γ(Qt +Mt)]πt −

γ

2
θ>t−1(Qt +M t)θt−1

−γθ0>
t−1[Qt +Mt]πt + L

>
t θt−1 +Ht

}
(71)

The first order condition gives:

πt = [Pt + γ(Qt +Mt)]
−1
(
Gt + Lt − γ(Qt +Mt)

>θ0
t−1

)
,

and plugging into the state equation (equation (66)) we find

θt = [Pt + γ(Qt +Mt)]
−1
(
Gt + Lt + P>t θ0

t−1

)
.

Next, substitute these optimal policies into the Bellman equation in (71), giving:

V (t− 1) =
1

2
(Gt + Lt − γ(Qt +Mt)

>θ0
t−1)>[Pt + γ(Qt +Mt)]

−1
(
Gt + Lt − γ(Qt +Mt)

>θ0
t−1

)
− γ

2
θ>t−1(Qt +M t)θt−1 + L

>
t θt−1 +Ht
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Setting Ψt = [Pt + γ(Qt +Mt)]
−1 and expanding we find:

V (t− 1) = Ht +
1

2
(Gt + Lt)

>Ψt(Gt + Lt)

− γ(Gt + Lt)
>Ψt(Qt +Mt)

>θ0
t−1 + L

>
t θt−1

− γ

2
θ>t−1

[
Qt +M t − γ(Qt +M t)

>Ψt(Qt +M t)
]
θt−1

Comparing this equation and the conjectured specification for V (t) in equation (70) shows that

this specification will be correct if Ht, Lt, and Mt are chosen to satisfy the recursions:

Ht−1 = Ht +
1

2
(Gt + Lt)

>Ψt(Gt + Lt)

Lt−1 = Lt − γ(Qt +Mt)Ψt(Gt + Lt)

Mt−1 = Qt +M t − γ(Qt +M t)
>Ψt(Qt +M t)

with initial conditions HT = 0, LT = 0 and MT = 0.

We have thus derived the optimal value function and the optimal trading strategy in the LGS

class.

Before discussing some specific examples it is useful to introduce a set of LGS strategies which

uses the exposures lagged at most ` periods. This set of ’restricted lag’ LGS is useful in applications

when the time horizon is fairly long, and for signals that have a relatively fast decay rate, so that

the dependence on lagged exposures can be restricted without a significant cost. We next show

that the same tractability obtains for the restricted lag setting.

B Constant variance of returns versus price changes

B.1 In dollars

Suppose xt is vector of dollar holdings in risky shares and ut is dollar trade at time t. Rf is the

risk-free rate and Rt is the vector of Gross returns. The net returns are given by rt = Rt − 1 and

rf = Rf − 1.
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Then we have with the convention that we trade at the end of the period:

xt+1 = xt. ∗Rt+1 + ut+1 (72)

Wt+1 = WtRf + x′t(Rt+1 −Rf )− 1

2
ut+1Λ

d
ut+1 (73)

B.2 In shares

Suppose nt is vector of number of shares held in risky shares and ht is number of shares traded at

time t. Rf is the risk-free rate and dSt+1 = St+1 − St is the vector of price changes (Assume no

dividends for simplicity).

Then we have with the convention that we trade at the end of the period:

nt+1 = nt + ht+1 (74)

Wt+1 = WtRf + n′t(dSt+1 − rfSt)−
1

2
ht+1Λsht+1 (75)

B.3 The objective function

For simplicity we set rf = 0 and as in GP we solve the infinite horizon problem where the investor

maximizes the discounted value of mean-variance objective functions.

In dollars

E

[ ∞∑
t=0

ρt
{
xtµd −

1

2
utΛd

ut −
γ

2
x′tΣd

xt

}]
(76)

or, equivalently, in shares:

E

[ ∞∑
t=0

ρt
{
ntµs −

1

2
htΛsht −

γ

2
n′tΣsnt

}]
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Now, note that by definition:

xt = nt. ∗ St (77)

ut = ht. ∗ St (78)

µs = µ
d
. ∗ St (79)

Σs = IStΣd
ISt (80)

Λs = IStΛd
ISt (81)

So clearly, assuming that the expectation and variance of dollar returns are constant is inconsis-

tent with assuming that the expectation and variance of price changes are constant. We compare

both cases next.

B.4 Constant expectation and variance of dollar returns

Let’s assume that the expectation and variance of returns are constant. Then it is helpful to

introduce the state variable xt = xt − ut, so that

xt+1 = (xt + ut). ∗Rt+1 (82)

We can define the value function recursively by:

J(xt) = max
ut

{
(xt + ut)µd −

1

2
utΛd

ut −
γ

2
(xt + ut)

′Σ
d
(xt + ut) + ρEt[J(xt+1)]

}
(83)

Guess that the value function is quadratic.

J(x) = M0 +M ′1x+ x′M2x

Let’s first consider the one risky asset case. Then the solution is simply:

ut + xt =
xtΛd

+ µ
d

+M1ρµd
Λ
d

+ γΣ
d
− 2M2ρ(µ2

d
+ Σ

d
)

(84)

where the coefficient of the optimal value function are given by:
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M2 = −

√
(γΣ− Λ (ρ (µ2 + Σ)− 1))2 + 4γΛρΣ (µ2 + Σ)− γΣ + Λ

(
ρ
(
µ2 + Σ

)
− 1
)

4ρ (µ2 + Σ)
(85)

M1 =
2Λµ√

(γΣ− Λ (ρ (µ2 + Σ)− 1))2 + 4γΛρΣ (µ2 + Σ) + γΣ + Λµ2ρ− 2Λµρ+ ΛρΣ + Λ
(86)

and

M0 =
−µ2

(
µ2 + Σ

)
(ρ− 1)

((
Σ− µ2(ρ− 1)

)√
γ2Σ2 + 2γΛΣ

(
ρ
(
µ2 + Σ

)
+ 1

)
+ Λ2

(
ρ
(
µ2 + Σ

)
− 1

)2 + γΣ
(
µ2(ρ + 1) + Σ

)
+ Λ

(
µ2(ρ(µ(µρ + µ− 4) + 1) + 1) + µρΣ(µ(ρ + 2)− 4) + ρΣ2 + Σ

))
(87)

B.5 Constant expectation and variance of price changes

For comparison purposes we make the same change of variables nt = nt − ht so that

nt+1 = nt + ht

Then we define the value function recursively by:

J(nt) = max
ht

{
(nt + ht)µs −

1

2
htΛsht −

γ

2
(nt + ht)

′Σs(nt + ht) + ρEt[J(nt+1)]

}
(88)

Guess that the value function is quadratic.

J(x) = N0 +N ′1n+ n′N2n

Let’s first consider the one risky asset case. Then we can solve everything in closed-form and

we obtain:

ht + nt =
ntΛs + µs +N1ρ

Λs + γΣs − 2N2ρ
(89)

where the coefficient of the optimal value function are given by:
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N2 =
−
√

(γΣ + Λ(−ρ) + Λ)2 + 4γΛρΣ + γΣ + Λ(−ρ) + Λ

4ρ
(90)

N1 =
2Λµ√

(γΣ + Λ(−ρ) + Λ)2 + 4γΛρΣ + γΣ + Λ(−ρ) + Λ
(91)

and

N0 =

−µ
2
(

(ρ− 1)
√
γ2Σ2 + 2γΛ(ρ+ 1)Σ + Λ2(ρ− 1)2 + γ(ρ+ 1)Σ + Λ(ρ− 1)2

)
4γ2(ρ− 1)ρΣ2

 (92)

B.6 Comparing the two solutions

The most obvious difference between the two solutions is that in ”shares” example there exists a

no-trade solution.

Indeed, if at some t, we hold nt shares such that:

ntΛs + µs +N1ρ

Λs + γΣs − 2N2ρ
= nt

which is equivalent to

nno =
µ

γΣ
(93)

So if nt = nno at some time t, then it is optimal to NEVER trade from then on, since ht = 0 and

therefore nt+s = nt+1 = nt = nno ∀s > 0 by induction. Instead, in the dollar case, we see the the

system can never settle into a no-trade equilibrium, since the dynamics of the state always lead to

xt+1 6= xt even if ut = 0.

Further, it is interesting to note that the state where it is optimal not to trade for one period

at time t in the dollar case, is actually NOT the mean-variance efficient portfolio. Indeed, the no

trade position for that case corresponds to a dollar position such that:

xt =
xtΛd

+ µ
d

+ +M1ρµd
Λ
d

+ γΣ
d
− 2M2ρ(µ2

d
+ Σ

d
)
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Solving for xno we find:

xno =
2µ
(
µ2 + Σ

)
((µ− 1)µ + Σ)

√
γ2Σ2 + 2γΛΣ

(
ρ
(
µ2 + Σ

)
+ 1

)
+ Λ2

(
ρ
(
µ2 + Σ

)
− 1

)2 + γΣ
(
µ2 + µ + Σ

)
+ Λ((µ− 1)µ + Σ)

(
ρ
(
µ2 + Σ

)
− 1

) (94)

Note that xno =
µ
d

γΣ
d

if Λ
d

= 0 or if ρ = 0, but otherwise it is different!

Further, even if xt = xno at some t and thus ut = 0 is optimal, since xt+1 = xtRt+1 in that

case, it will become optimal to trade at time t+ 1.

C Calibration of the Simulation Experiment

The RGPs for the characteristics and the factor environments (equations (40) and (41)) are, re-

spectively

Ri,t+1 = β>i,t(Ft+1 + λ) + εi,t+1

where Et[Ft+1] = 0 and Et[Ft+1F
>
t+1] = Ω and

Ri,t+1 = β>i,tλ+ εi,t+1,

where the factor exposures βi,t and premia λ are each (K, 1) vectors, and and where the evolution

of the factor exposures is given by equation (40):

βki,t+1 = (1− φk)βki,t + εi,t+1,

or equivalently:

βki,t =

∞∑
s=0

(1− φk)sεi,t+s.
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Taken together, these imply, for either environment, that:

Et [Ri,t+1] = β>i,tλ

=
K∑
k=1

λkβ
k
i,t

=
K∑
k=1

λk

∞∑
s=0

(1− φk)sεi,t−s.

In our simulation experiment in Section 3, we model the return-generating process for equities as

consisting of K = 3 factors consistent with the short-term-reversal, medium-term-momentum, and

long-term-reversal effects. Consistent with the evidence on these three effect, we choose half-lives

for these factors of 5 days, 150 days, and 700 days.

To determine the parameters λ and Ω, we calibrate this factor model using the monthly returns

of portfolios formed on the basis of momentum, short- and long-term reversal, available on Ken

French’s website. We use the full sample, 1927:01-2013:12. Note that data is available on both

the pre-formation and the post-formation returns of these sets of portfolios. We perform a Fama-

MacBeth-like regression of the post-formation returns on the pre-formation returns for each of the

three sets of decile portfolios, and use the resulting coefficients to estimate the set of λs, given our

assumed set of φs.

We characterize the slope coefficients for the three regressions with the formation period return

horizons: our notation is that the formation period, for regression j ∈ {str,mom, ltr}, runs from

time t −mj to t − nj . For the characteristics model, the (cross-sectional) projection of a one-day

return onto a sum of returns from time t −mj to t − nj will give, under the assumptions of our

model.28

cov

Ri,t+1,

mj∑
s=nj

εi,t−s

 = σ2
ε

3∑
k=1

λkβ
k
i,t

= σ2
ε

3∑
k=1

mj∑
s=nj

λk(1− φk)s

28I calculate the betas using returns rather than residals, so this is an approximation. However, given that most of
the variance of returns is idiosyncratic as opposed to expected return variation, something which is unambiguously
true in the data, particularly at short horizons.
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and

var

 mj∑
s=nj

εi,t−s

 = (mj − nj + 1)σ2
ε .

and finally

βj =
cov

(
Ri,t+1,

∑mj
s=nj

εi,t−s

)
var

(∑mj
s=nj

εi,t−s

) =
3∑

k=1

λk
1

(mj − nj + 1)

mj∑
s=nj

(1− φk)s.

=
3∑

k=1

(
(1− φk)nj − (1− φk)mj+1

φk(mj − nj + 1)

)
λk

=
3∑

k=1

aj,kλk

where

aj,k =

(
(1− φk)nj − (1− φk)mj+1

φk(mj − nj + 1)

)
(95)

We find the three values of λk by solving the set of linear equations (for the three empirically

estimated βjs).


βstr

βmom

βltr

 =


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ·

λ1

λ2

λ3


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λ Estimation:

The Fama-MacBeth regressions yield (average) coefficients of:


βstr

βmom

βltr

 =


−0.00116273

0.00044366

−0.00010126


The resulting λ estimates are: 

λ1

λ2

λ3

 =


−0.093482

0.001484

−0.000400


Ω Calibration:

The goal in the Ω calibration is to come up with an upper bound on the magnitude of the

covariance matrix. We employ the following procedure to estimate the 3×3 factor covariance

matrix Ω using the three sets of decile portfolio returns: str, mom, and ltr.

First, we use only the excess returns of the zero-investment portfolios formed by going long the

top decile and short the bottom decile (i.e., the 10−1 portfolios). The factor loadings for these

excess return portfolios are (from equation (40)

β10−1
j,k,t =

∞∑
s=0

(1− φk)sε10−1
j,t−s

Here, j ∈ {str,mom, ltr} is French’s portfolio formation method; k ∈ {1, 2, 3} is the factor identifier,

and t is the time (end-of-period) at which we are measuring the factor loading. As in the preceding

section, t − nj and t − mj are the starting and ending times for the period over which the pre-

formation returns are measured for portfolio j.

We are going to make several assumptions to allow the calculation of the factor loadings for each

of these three portfolios. First, since portfolio j is formed on the basis of individual firm returns

from t −mj to t − nj , we’ll assume that the residual returns for the portfolios are zero outside of
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that time range. This means that:

β10−1
j,k,t =

mj∑
s=nj

(1− φk)sε10−1
j,t−s

Second, note that French only provides the formation period return on an annual basis. So, for

example, for the LHR portfolios we have their cumulative return from t-60 months through t-12

months. So what we do is to assume that the average return was earned equally over each day in

the 48 month period. If we denote the total pre-formation return as Rpre, I assume that the daily

return, for each day in the 4 year period, was Rpre/(4 · 252). In general, given a 10−1 differential

pre-formation return for strategy j in year y of Rpre,10−1
j,y , I calculated the each daily return over

the formation period as:

Rpre,10−1
j,s =

Rpre,10−1
j,y

(mj − nj + 1)

for each day s between t −mj and t − nj , and zero outside of the formation period. This means

that the factor loading for portfolio 10−1 portfolio j on factor k is:

β10−1
j,k,t =

Rpre,10−1
j,y

(mj − nj + 1)

mj∑
s=nj

(1− φk)s ∀t ∈ y

=

(
(1− φk)nj − (1− φk)mj+1

φk(mj − nj + 1)

)
Rpre,10−1
j,y ∀t ∈ y

= aj,kR
pre,10−1
j,y

where aj,k is defined in equation (95).

Next, we assume that, since these are relatively well diversified portfolios, the residual risk (σ2
ε )

is zero and further assume that all of the systematic risk comes from the three factors. These two

assumptions imply that the covariance matrix for the time t+1 returns of the three 10−1 portfolios,

which we denote Σt, is given by:

Σt = βtΩtβ
>
t
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where

βt =


β10−1
str,1,t β10−1

str,2,t β10−1
str,3,t

β10−1
mom,1,t β10−1

mom,2,t β10−1
mom,3,t

β10−1
ltr,1,t β10−1

ltr,2,t β10−1
ltr,3,t


Note that this system is just identified, and Ω is given by:

Ω =
(
β>t βt

)−1
β>t Σtβt

(
β>t βt

)−1

We can estimate this either using the full sample covariance and the average pre-formation

returns, or year-by-year and averaging the results.

Over the full-sample the average daily volatility of the daily 10−1 portfolio returns are (in basis

points):


σstr

σmom

σlhr

 =


28.464

37.817

30.367


and the correlation matrix of the returns is:

1 0.250744 0.087098

0.250744 1 0.333539

0.087098 0.333539 1


The factor loading matrix for these three portfolios is:

B =


0.007291874 0.2927041 0.3146322

1.974574× 10−05 0.6481128 1.0529

1.061207× 10−28 0.2732635 2.100848

 (96)
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giving an estimated Ω̂ of:

Ω̂ =


0.1655572 −0.001041718 0.000119914

−0.001041718 4.898553× 10−05 −7.10805× 10−06

0.000119914 −7.10805× 10−06 3.109768× 10−06


Or, decomposing this, the (daily) factor volatilities are:29

σ̂f =


0.4068872

0.0069990

0.0017635


and the correlation matrix of the factors is estimated to be:

ρ̂ =


1 −0.3657987 0.1671214

−0.3657987 1 −0.5759073

0.1671214 −0.5759073 1



29Note that the first factor has a large volatility (40%/day). This is a result of the way that we define the factor
loadings in equation (40), where a firm’s factor loading is an exponentially weighted sum of past residual returns.
When φk is large, as it is for k = 1, the dispersion in factor loadings across firms in the economy will be small. This
is apparent in equation (96). Thus, a large factor volaility is required to explain the the volatility of the long-short
str volatility of only 28 bp/days.
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