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Abstract

To investigate how high-frequency traders (HFTs) can predict price-changes, I analyze

novel, comprehensive, account-labeled message records from the E-mini S&P 500 futures mar-

ket that allow me to identify and study HFTs' individual behaviors. I model how an HFT

could actively learn about market conditions, by initiating small �exploratory� trades and ob-

serving other traders' responses. Empirical tests of the model's predictions provide evidence

that HFTs in the E-mini use this technique to identify periods when prices are likely to change.

These �ndings indicate that the HFTs' superior capacity to predict price-changes involves more

than merely reacting to news faster than other traders. The empirical results also elucidate

other connections between high-frequency trading and speed.

JEL classi�cation: G14; G19

Keywords: High-frequency trading; Learning; Market microstructure

∗Department of Finance, University of Illinois at Urbana-Champaign. E-mail: adcj@illinois.edu. I thank
Jonathan Brogaard, Eric Budish, Terrence Hendershott, Alp Simsek, and Jeremy Stein for their detailed sug-
gestions and discussion. I also thank seminar participants at Harvard, UBC Sauder, Indiana Kelley, Stanford GSB,
Illinois, OSU Fisher, Dartmouth Tuck, Wharton, and NYU Stern for their useful feedback. I am particularly in-
debted to John Campbell and Andrei Shleifer for their invaluable advice and guidance. All remaining errors are
my own. I gratefully acknowledge the support of an NSF Graduate Research Fellowship. The views expressed in
this paper are my own and do not constitute an o�cial position of the Commodity Futures Trading Commission,
its Commissioners, or sta�.

1



1 Introduction

High-frequency algorithmic traders are now responsible for almost half of the trading on �nancial

exchanges. Analyzing modern markets requires not only characterizations of what high-frequency

traders (HFTs) do, but also explanations of how and why they do those things. Many HFTs manage

to predict price-movements with unprecedented success, and understanding how HFTs accomplish

this feat is crucial for determining the economic mechanisms that underlie high-frequency trading

and its e�ects. The standard assumption in the literature has been that HFTs can predict price-

movements because�and only because�they digest and respond to new public information before

slower traders can do so. Although using new information sooner than other traders unquestion-

ably improves HFTs' forecasting to some extent, the assumption that this sort of superior speed

is the only mechanism driving HFTs' exceptional predictions is both strong and restrictive, and

this assumption's validity has not been assessed empirically. Using novel data at the Commodity

Futures Trading Commission (CFTC) that enable me to analyze individual HFTs' actions, I study

how HFTs in the E-mini S&P 500 futures market acquire superior information about imminent

price-changes. Speci�cally, I investigate whether HFTs obtain any valuable private knowledge in

a way other than just reacting to public information the fastest, and I �nd explicit evidence that

in fact they do.

I model a simple framework in which an HFT places small aggressive (i.e., marketable) or-

ders and actively learns about expected price-impact by observing the responses that these �ex-

ploratory� orders elicit. In the E-mini, as in many markets, aggressive order-�ow exhibits strong

predictability at short horizons. However, front-running predictable orders is pro�table only when

those orders have a su�ciently large price-impact, and price-impact is too small on average for

indiscriminate front-running to be pro�table. Through exploratory trading, the HFT gathers in-

formation that helps him to trade ahead of predictable orders at only those times when doing so

will be pro�table.1 In general, the market activity following an arbitrary aggressive order often

doesn't convey information about expected price-impact, because the activity is just a response to

the same stimulus that prompted the order rather than a true reaction caused by the order itself.

1Time-variation in price-impact is a robust empirical fact in the data, and my results neither depend upon
nor dictate the speci�c interpretation of that variation. Section 1.3 discusses some of the related empirical and
theoretical literature.
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The trader who placed the order can judge whether it causes the subsequent activity, but other

traders cannot, and the possibility that they are observing the uninformative scenario diminishes

how much they learn from the market activity. The HFT learns more from his exploratory order

than other traders can learn from it, simply because he alone knows why his exploratory order was

placed. By using exploratory trading, the HFT can leverage his seemingly inconsequential private

knowledge about why he placed a particular order to obtain signi�cant private information that

helps him to predict price movements.

Using the unique CFTC data, I test the predictions of the exploratory trading model under the

conservative assumption that HFTs' small aggressive orders all are exploratory in nature. There

are many reasons other than exploration for which HFTs might place small aggressive orders, so

treating all of those orders as exploratory dilutes the e�ects from any truly exploratory orders and

therefore raises the bar for obtaining signi�cant results. Nevertheless, consistent with the model's

predictions, I �nd that a simple measure of the market response to the last small aggressive order

by a given HFT helps to explain a signi�cant component of that HFT's earnings on subsequent,

larger aggressive orders, even after controlling for the market response to the last small aggressive

order placed by anyone. Also as predicted, after controlling for the market response to the last

small aggressive order by anyone, the market response to the HFT's last small aggressive order

does not help to explain other traders' earnings on their subsequent, larger aggressive orders. As

Section 1.2 explains in detail, although futures trades are typically thought of as just one segment

of some cross-market play (hedging, arbitrage, etc.), for the purposes of this paper, empirical

features of the E-mini and of the HFTs' behavior make it meaningful to analyze HFTs' earnings

in the E-mini market by itself.

In principle, the two results above could be consistent with the alternative hypothesis that

HFTs somehow possess long-lived private information about future prices and split up their orders

over time (plausible in the context individual equities, if perhaps less so for index futures).2 Unlike

the exploratory trading theory, though, this informed-order-splitting story has the counter-factual

implication that the market response to an HFT's small order will only help to explain the HFT's

2The recent theoretical models by Martinez and Rosu (2103), and Foucault et al. (2013), motivate this alternative
hypothesis. These models include a long-lived �forecast error� component of information, in addition to the standard
in�nitesimally lived component of information (called �news� in the models).
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earnings on a subsequent large order when the two orders have the same sign (i.e., buy or sell).

Empirically, the market response to an HFT's small order helps to explain the HFT's earnings on

the larger order regardless of whether both orders have the same sign.

Contrary to the prevailing assumption that HFTs' superior information derives exclusively from

superior reaction speed, the empirical evidence in this paper indicates that HFTs in the E-mini

also obtain part of their informational edge through a separate channel: exploratory trading. At

a minimum, this evidence about an important group of HFTs in an important market provides

a signi�cant counterexample to the standard �simply superior speed� assumption. As discussed

in Section 1.3, though, my results are likely not unique to the E-mini, or even to futures mar-

kets, because the microstructure elements that enable exploratory trading are common features of

numerous other markets and have well-established economic foundations.

Beyond illuminating several important issues speci�c to high-frequency trading and modern

microstructure, my results also bear on an issue of broad signi�cance to the �eld of �nance,

namely how the quantitative changes in the absolute speed at which markets operate have lead to

qualitative changes in the economic mechanisms at work in those markets. Exploratory trading

only yields substantive information when the time-delay between placing an order and observing

the e�ects is su�ciently brief, and the temporal resolution of market data is su�ciently �ne.

Whereas superior reaction time is only a matter of relative speed�be it measured in months or

microseconds�exploratory trading is tied to the absolute speed at which market activity occurs.

1.1 Related analyses of HFTs

HFTs are not all alike, but they share some distinctive features. They have the capacity to

react to market events and news in milliseconds or less, they trade very frequently and unwind

positions within minutes, and they usually end the trading day holding minimal net inventory. As

Hagstromer and Norden (2013) document in the NASDAQ-OMX equities market, and Baron et al.

(2013) document in the E-mini market, some HFTs basically behave like traditional market-makers

and supply liquidity/immediacy, but many others do just the opposite, predominantly placing

marketable orders, which consume liquidity/immediacy. Baron et al. directly compute individual

HFTs' trading pro�ts in the E-mini and �nd that HFTs of both varieties tend earn large and stable
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pro�ts. Since HFTs' trading pro�ts are necessarily some combination of compensation for providing

liquidity/immediacy, and gains from trading on information that other market participants do not

have, the Baron et al. results suggest that HFTs of the second variety, at least, possess some kind

of superior information. Reinforcing this conclusion, Brogaard et al. (2013) analyze aggregate

HFT activity in a large sample of NASDAQ stocks and �nd that HFTs' aggressive orders tend

to go in the same direction as subsequent permanent price movements, and su�ciently so for the

orders to be pro�table on average.

The studies above indicate that HFTs enjoy some sort of valuable informational advantage,

but the empirical literature o�ers less clarity about the nature and sources of the advantageous

information. The standard assumption has been that HFTs' ability to use new public information

fastest is the sole source of their informational edge, and this premise underlies much of the

theoretical work on high-frequency trading, including that of Biais et al. (2010), Jovanovic and

Menkveld (2010), and Budish et al. (2013). This assumption tightly circumscribes the character,

scope, and e�ects of high-frequency trading. Empirical evidence indicates that HFTs make use of

publicly available information (cf. Brogaard et al.), and without question they can do so more

quickly than other traders. However, there is no rigorous empirical basis for the strong assumption

that this �superior speed� mechanism is the only source of HFTs' exceptional information. The

nature of HFTs' superior information has far-reaching implications for HFTs' e�ects on markets,

for the structure and functioning of the high-frequency trading industry, and for optimal policy

design, so understanding it is of �rst-order importance.

1.2 Studying HFTs' superior information

When a trader initiates a transaction in the E-mini, i.e., places a so-called �aggressive� order,

he mechanically pays his counterparty a fraction of the bid-ask spread, and so to pro�t on his

aggressive order, the trader must correctly anticipate a price movement.3 I use pro�ts on aggressive

orders in the E-mini as a medium through which to study HFTs' superior information. Much of

my empirical analysis involves the pro�tability of individual aggressive orders. Because all E-

3If the trader �anticipates a price movement� because a mispricing in the ask (bid) presents an arbitrage oppor-
tunity, he pays part of the spread in only a nominal sense, because the spread-cost is o�set by the simultaneous
gain from buying (selling) the mispriced contracts. I thank an anonymous referee for this observation.
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mini contracts of a given expiration date are identical, it is neither meaningful nor possible to

distinguish among the individual contracts in a trader's inventory, so there is generally no way to

determine the exact prices at which a trader bought and sold a particular contract. As a result,

it is typically impossible to measure directly the pro�ts that a trader earns on an individual

aggressive order. However, the cumulative price change following an aggressive order, normalized

by the order's direction (+1 for a buy, or −1 for a sell), can be used to construct a meaningful

estimate of the order's pro�tability, and this general approach is standard in the literature. I

discuss implementation details in Section 4.1 and Internet Appendix B, but roughly speaking,

the average expected trading pro�t from an aggressive order equals the expected permanent price

movement in the order's direction, minus trading/clearing fees and half the bid-ask spread.

Since HFTs exhibit great heterogeneity, aggregate HFT activity reveals little about what indi-

vidual HFTs really do. Regulatory records that the Chicago Mercantile Exchange provides to the

CFTC are currently some of the only data for U.S. markets disaggregated enough to be fully ade-

quate for studying high-frequency trading at the level of individual HFTs. Kirilenko et al. (2010)

pioneered the use of transaction data from these records to investigate high-frequency trading in

the E-mini S&P 500 futures market during the �Flash Crash� of 2010. That paper introduces a

data-driven scheme to classify trading accounts, and speci�cally to identify HFTs, using simple

measures of overall trading activity, and of inter- and intra-day variation in net inventory position.

In the present paper, I analyze a richer sample of E-mini data, and I build upon the techniques of

Kirilenko et al. to identify the HFT accounts; I identify 30 HFTs in my sample.

As a group, the 30 HFTs earn roughly 40% of their trading pro�ts in the E-mini from their

aggressive orders. Examining these HFTs individually, however, reveals that although all of them

make money in the E-mini, only eight of the 30 pro�t on average from their aggressive trading.

For brevity, I refer to these eight HFTs as �A-HFTs,� and to the remaining 22 as �B-HFTs.�

The B-HFTs may or may not possess unusually valuable information, but the A-HFTs de�nitely

do. Therefore I focus on the A-HFTs and investigate the origins of their superior information,

speci�cally, whether the A-HFTs obtain any of it through exploratory trading.
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1.3 Microstructure foundations of exploratory trading

Exploratory trading is just a simple form of active learning in a �nancial market, an idea that

dates back to the theoretical work of Leach and Madhavan in 1992 and 1993, if not further.

At a mechanical level, exploratory trading involves nothing more than placing small aggressive

orders, then learning about expected price-impact using the responses that the exploratory orders

elicit from market-makers.4 From an economic perspective, exploratory trading is a device for

obtaining knowledge from market-makers about the probability that orders in the near future

will be followed by a permanent price change, i.e., the probability of what can loosely be termed

�informed trading.�5 Prices in real markets are necessarily discrete, so quoted prices alone can

never perfectly reveal or perfectly aggregate every individual market-maker's private knowledge.

This slight but inevitable heterogeneity in di�erent market-makers' beliefs makes it possible for an

exploring trader to gather knowledge from some market-makers that other market-makers do not

possesses, and such knowledge enables the explorer to identify order �ow that is more likely to be

informed than some market-makers realize. Order �ow exhibits strong short-run predictability in

most markets, so the explorer can typically trade ahead of some of the identi�ed informed orders,

and thereby earn pro�ts.

Starting with Hasbrouck's work in 1991, short-run persistence in order-�ow sign (buy vs. sell)

has been a robust empirical �nding across numerous markets. Equally robust and widespread is

the �nding that trades tend to cluster together in time. In their 2000 paper, Engle and Dufour

document each of these features independently, and they further �nd that the autocorrelation in

order-�ow sign increases as orders arrive more closely together in time. In the E-mini data analyzed

for the present paper, the signs of aggressive orders exhibit strong positive autocorrelation (the

average probability that an aggressive order will have the same sign as the one before it is around

75%) and this autocorrelation becomes even stronger when the arrival rate of aggressive orders

increases. These �ndings yield a picture of trading characterized by frequent, sporadic �bursts� of

many orders with the same sign arriving in close succession.6

4I use �market-maker� as a heuristic short-hand for �trader with limit orders resting in the order book.� In the
E-mini market, speci�cally, there are no o�cial market-makers.

5This mechanical sense of �informed trading� is observationally equivalent to the traditional notion for equities
of �trading based on private insider information.� However, the mechanical characterization is more suitable for the
futures markets that I analyze, in which the appropriate analogue of �private insider information� may be unclear.

6See, for example, Ellul et al. (2007), Biais et al. (1995), and more generally, the literature review by Parlour
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Such bursts of intense trading activity have two classic, con�icting explanations. Admati and

P�eiderer (1988) explain the clusters as coordinated liquidity trading among uninformed traders,

while Easley and O'Hara (1992) posit that such bursts arise from information-based clustering

of informed traders. Engle and Russell (1998) present evidence that some clusters of trades

seem largely information-based, while other clusters of trades appear to be liquidity-based. If

market-makers know the current probability of informed trading, standard theory suggests that

the bid-ask spread should widen as that probability increases. Consistent with theory, Engle and

Russell �nd that intense clusters of trades tend to be liquidity-based when the spread is narrow,

and information-based when the spread is wide. Permanent price impact will tend to be large for

an information-based burst of orders, but small for a liquidity-based burst.

Because order-�ow sign is persistent, especially when orders are arriving rapidly, it is not

di�cult to aggressively buy (sell) ahead of future aggressive buy (sell) orders.7 However, indis-

criminately trading ahead of the foreseeable remnants of a burst of orders tends to be unpro�table,

since the subsequent price-change is generally smaller than the part of the spread you would pay

to aggressively trade ahead of the foreseeable orders. To pro�t from order-�ow predictability,

a trader needs some private knowledge that helps him distinguish uninformed bursts of orders

from informed ones. More speci�cally, the trader needs to be able to make this distinction more

accurately than some market-makers.

If prices were continuous, competitive market-makers would, in equilibrium, post quotes at

precisely the levels that would earn zero expected pro�t. In this case, through the spread, all the

market-makers would reveal to one another, and to everyone else, all of their relevant knowledge

about the expected adverse-selection risk. If the market-makers all know the same information,

then knowledge obtained from the market-makers clearly could not give a trader an informational

edge that would permit pro�t any market-maker's expense.

When prices are discrete, the situation is di�erent. Competitive market-makers only have to

post quotes within the same tick as the zero-pro�t price. Therefore the spread will not be perfectly

revealing, di�erent market-makers can hold slightly di�erent beliefs, and knowledge obtained from

and Seppi (2008).
7I emphasize that exploiting this robust statistical property of order �ow is very di�erent from anticipating a

particular trader's orders.
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one (or more) market-maker could therefore grant an informational edge su�cient for a trader to

pro�t at the expense of a di�erent market-maker. Scope for exploratory trading arises precisely

because of this possibility for heterogeneously informed market-makers. Moreover, the larger is the

tick-size as a fraction of the spread, the greater is the potential heterogeneity in market-makers'

information and beliefs. Exploratory trading closely ties to emerging research on the relationship

between tick-size and high-frequency trading, e.g., Yao and Ye (2014).

The remainder of this paper is organized as follows: Section 2 introduces a simple model of

exploratory trading along with the model's central predictions, and sets the empirical agenda.

Section 3 describes the data set, presents some summary statistics, and precisely de�nes HFTs.

Section 4 addresses the overall pro�tability of HFTs' aggressive orders and precisely characterizes

the A-HFTs. Section 5 presents direct empirical tests of the exploratory trading model's key

predictions, and section 6 examines the practical signi�cance of exploratory information. Section

7 discusses extensions and implications of the empirical results, and Section 8 concludes.

2 Exploratory trading model

This section introduces a stylized model of exploratory trading that provides the framework for

my empirical analysis. Because my empirical analysis centers on the A-HFTs' information, my

model shares this tight focus, and it abstracts away from the detailed microstructure foundations

discussed in Section 1.3.

2.1 Preliminaries

In an order-driven market, such as the E-mini, every regular transaction is initiated by one of

the two executing transactors. The transactor who initiates is referred to as the �aggressor,�

while the opposite transactor is referred to as the �passor.� The passor's order was resting in the

order book, and the aggressor entered a new order that executed against the passor's preexisting

resting order. If the best bid and best ask were held �xed, a trader who aggressively entered then

aggressively exited a position would lose the bid-ask spread on each contract, whereas a trader

who passively entered then passively exited a position would earn the bid-ask spread on each

contract. Intuitively, aggressors pay for the privilege of trading precisely when they wish to do
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so, and passors are compensated for the costs of supplying this �immediacy,� cf. Grossman and

Miller (1988). These costs include �xed operational costs and costs arising from adverse selection,

cf. Glosten and Milgrom (1985), Stoll (1989).

An aggressive order will execute against all passive orders at the best available price level

before executing against any passive orders at the next price, so an aggressive order will only have

a literal price-impact if it eats through all of the resting orders at the best price. In the E-mini

market, it is rare for an aggressive order to have a literal price-impact, not only because there are

typically enormous numbers of contracts at the best bid and best ask, but also because aggressive

orders overwhelmingly take the form of limit orders priced at the opposite best (which cannot

execute at the next price level).

Because the bid-ask spread in the E-mini is essentially constant, movements of the best bid,

best ask, and mid-point prices are generally interchangeable, so unless otherwise noted, I restrict

attention hereafter to price changes distinct from bid-ask bounce.

2.2 Model

Consider an order-driven market with discrete prices, and two periods t = 1, 2. Both the order

book and order �ow are observable. I refer to the aggregated quantities of the passive orders in

the order book as �resting depth.�

2.2.1 The HFT

Consider a single trader, �the HFT,� who has the opportunity to submit an aggressive order at the

start of each time-period. The HFT submits only aggressive orders, and these orders are limited

in size to N contracts or fewer. Let qt denote the signed quantity of the aggressive order that

the HFT places in period t, where a negative quantity represents a sale, and a positive quantity

represents a purchase. The HFT only trades contracts at the initial best bid or ask, so his orders

a�ect resting depth in the order book but have no literal price-impact.

The HFT pays constant trading costs of α ∈ (0.5, 1) per contract. The lower bound of 0.5 on

α corresponds to half of the minimum possible bid-ask spread, while the upper bound of 1 merely

excludes trivial cases of the model in which aggressive orders will always be unpro�table for the
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HFT.

2.2.2 Passive orders

There are two possible �liquidity states� (Λ) for the behavior of passive orders: accommodating

(Λ = A) and unaccommodating (Λ = U). The is the same in both time-periods, t = 1, 2. With

ex-ante probability u, Λ = U , and Λ = A with ex-ante probability 1 − u. Assume 0 < u < 1, so

that both liquidity states are possible.

Intuitively, aggressive orders have a small price-impact in the accommodating liquidity state,

and a large price-impact in the unaccommodating liquidity state. The liquidity state characterizes

the behavior of resting depth in the order book after an aggressive order executes�a generalization

of price-impact appropriate for an order-driven market. When an aggressive buy (sell) order

executes, it mechanically depletes resting depth on the sell (buy) side of the order book. Following

this mechanical depletion, traders may enter, modify, and/or cancel passive orders, so resting

depth at the best ask (bid) can either replenish, stay the same, or deplete further. The aggressive

order's impact is o�set to some extent�or even reversed�if resting depth replenishes, whereas

the aggressive order's impact is ampli�ed if resting depth depletes further. In the accommodating

state (Λ = A) resting depth weakly replenishes, while in the unaccommodating state (Λ = U)

resting depth further depletes.

Although the order book is observable, the static features of passive orders in the order book

do not directly reveal the liquidity state Λ. Because the liquidity state relates to the dynamic

behavior of resting depth after an aggressive order executes, Λ can only be deduced from the

changes in the order book that follow the execution of an aggressive order.

As a baseline, assume that the HFT learns Λ prior to period 2 if and only if he places an

aggressive order in period 1. This assumption is relaxed in Section 2.4.

2.2.3 Aggressive order-�ow

At the end of period 2, traders other than the HFT place aggressive orders. Let the variable

ϕ ∈ {−1, 0,+1} characterize this aggressive order-�ow. The realization of ϕ does not depend on

the liquidity state, Λ, nor does it depend on the HFT's actions; assume that ϕ = +1 and ϕ = −1
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with equal probabilities P {ϕ = +1} = P {ϕ = −1} = v/2, and ϕ = 0 with probability 1− v. The

variable ϕ is just a coarse summary of the order-�ow�it does not represent the actual number

of contracts. Intuitively, ϕ = −1 represents predictable aggressive selling, ϕ = +1 represents

predictable aggressive buying, and ϕ = 0 represents the absence of predictable aggressive trading

in either direction.

Note about exogeneity assumptions Aggressive order-�ow is assumed to be independent

of liquidity state for convenience; introducing dependence between aggressive order-�ow and the

liquidity state complicates the algebra but does not change the model in any interesting ways.

The assumption that neither aggressive order-�ow nor the liquidity state depend on the HFT's

actions is more innocuous than it might initially seem, because the HFT will turn out not to do

anything that would particularly stand out to other traders. In the �rst period, the HFT will

either place a very small order, or no order. In the second period, if the HFT places an order, it

may be large, but if it is, it will always be in the same direction as expected aggressive order-�ow.

2.2.4 Prices and price-changes

Prices remain constant between periods 1 and 2, then at the end of period 2 the price changes by

y ∈ {−1, 0,+1}. Together, the aggressive order-�ow, ϕ, and the liquidity state, Λ, determine y as

follows:

y =


ϕ if Λ = U

0 if Λ = A

(1)

When the liquidity state is unaccommodating (Λ = U), the aggressive order-�ow can a�ect the

price, and y = ϕ. However, if the liquidity state is accommodating (Λ = A), aggressive order-�ow

does not a�ect the price, and y = 0 even when ϕ 6= 0. In the spirit of Easley and O'Hara/

Engle and Russell, we would suppose that trading in the unaccommodating state is driven by

information, so that the associated price movements would tend to be permanent.
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2.2.5 Pro�ts

The HFT's pro�t from the aggressive order he places in period t is given by

πt = yqt − α |qt| (2)

= ϕI {Λ = U} qt − α |qt| (3)

Where I {Λ = U} is an indicator variable that equals 1 when Λ = U , and 0 when Λ = A. (See

Section 4.1 for discussion of why this speci�cation for pro�ts is reasonable.)

Denote the HFT's total combined pro�ts from periods 1 and 2 by

πtotal := π1 + π2 (4)

The HFT is risk-neutral and seeks to maximize the expectation of πtotal.

Note that because E [y|Λ = U ] = E [ϕ] = 0 and E [y|Λ = A] = 0, the unconditional expectation

of y is zero, as is the period-1 expectation of y. In expectation, the HFT will therefore lose money

on any aggressive order he places in the �rst period.

2.2.6 Model time-line

Period 1 In period 1, the HFT has the opportunity to submit an aggressive order and then

observe any subsequent change in resting depth. The HFT cannot observe the liquidity state

directly, but he can infer the value of Λ from changes in resting depth if he places an aggressive

order. Speci�cally, the HFT can conclude that Λ = U if resting depth further depletes following

his order, and that Λ = A otherwise. If the HFT does not place an aggressive order in period 1,

he does not learn Λ.

Period 2 At the start of period 2, the HFT observes the signal of future aggressive order-�ow, ϕ.

The HFT observes ϕ regardless of whether he placed an aggressive order in period 1 (this re�ects

the idea that aggressive order-�ow is easy to predict on the basis of public market data). After the

HFT observes ϕ, he once again has an opportunity to place an aggressive order. Finally, after the

HFT has the chance to trade, aggressive order-�ow characterized by ϕ arrives, then prices change
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as determined by ϕ and Λ in equation (1).

2.3 Analysis of the model

By design, the model is not subtle, and determining the HFT's optimal strategy is straightforward

(Appendix A contains full mathematical details). The HFT faces a trade-o� between the direct

trading costs of placing an exploratory order, and the informational gains from exploration.8

By placing a (costly) aggressive order in period 1, the HFT �buys� the perturbation needed to

elicit a response in resting depth that reveals the liquidity state. Knowing the liquidity state

enables the HFT, in period 2, to better determine whether he would pro�t by trading ahead of

predictable aggressive order �ow. Despite its simplicity, the model delivers testable implications

of the hypothesis that a given trader engages in exploration.

2.3.1 Order-sizes and conditions for exploratory trading

For the HFT to weakly prefer to engage in period-1 exploratory trading with order-size |q1| ≥ 1,

the expected gains from knowing the liquidity state in period two (which work out to equal

|q2| vu (1− α)) must weakly exceed the expected losses on the exploratory order itself (given by

−α |q1|). In other words, a necessary condition for exploratory trading to occur in the model is

|q2| vu (1− α) ≥ α |q1| (5)

⇐⇒ |q2| ≥
α

1− α

(
1

vu

)
|q1| (6)

⇒ |q2| > |q1| (7)

where the �nal strict inequality follows from the assumptions that α ≥ 0.5, and u < 1. This

�small exploratory order/large follow-up order� pattern arises because the exploratory orders are

always costly in expectation, while the resulting exploratory information is only valuable when

there is predictable aggressive order-�ow in the next period (i.e., when ϕ 6= 0). The per-contract

losses on exploratory orders will therefore be greater in magnitude than the per-contract pro�ts

8Parameters of the model determine the relative costs and payo�s of exploration. I derive routine comparative
statics in Appendix A, but because exogenous variation in N, v, α, or u is scarce, these comparative statics provide
little in the way of testable implications.
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on follow-up orders, so the total pro�ts on follow-up orders will only exceed the total losses on

exploratory orders if the follow-up orders are larger.

As a stand-alone result, this order-size pattern isn't particularly interesting or distinctive, but

it plays an important supporting role in the empirics to follow.

2.3.2 Testable predictions

Assuming for the moment that candidate exploratory orders can be distinguished from the trader's

other orders (I address this issue in Section 2.5), the model generates two key testable implications

of the hypothesis that a given trader engages in exploration.

First, the model predicts that the market response following an exploratory order helps to

forecast whether or not the explorer will place a follow-up order. The trader will not place a

follow-up order if Λ = A, while he will place a follow-up order if Λ = U and ϕ 6= 0. As noted

in Section 2.3.1, the follow-up orders must tend to be larger than the exploratory orders, so the

model implies that, holding �xed ϕ, the incidence of the trader's large aggressive orders will be

higher when Λ = U than when Λ = A, if the trader engages in exploration. In other words, if

a given trader engages in exploration, then the market response to his exploratory orders should

help to explain the incidence of his larger aggressive orders (holding �xed the expectation of future

aggressive order-�ow analogous to ϕ).

Next, the market response following an exploratory order also helps to forecast whether or not

prices will change soon thereafter, according to equation (1). Because both the price-change and

an exploring trader's decision to place a follow-up order (in the direction of an imminent price-

change) will depend on Λ, the model implies that if a given trader engages in exploration, then

equation (1) will explain his earnings better than ϕ alone. In other words, the market response to

his exploratory orders should help to explain his earnings on subsequent aggressive orders.

2.4 Private knowledge from exploratory trading

Exploratory trading hinges on the fact that the HFT will learn more if he places an exploratory

order than he would learn otherwise. In the model introduced earlier, the HFT could only observe

a market response if he placed an exploratory order, since no one else submitted aggressive orders
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in the �rst period. In reality though, other traders place aggressive orders all the time, so an

HFT can observe a market response to an aggressive order (placed by someone else) even if he

doesn't place an exploratory order himself. Because exploratory orders are costly in expectation,

a necessary condition for exploratory trading�and a testable prediction of the model�is that the

HFT learns more from the market response to his own exploratory orders than he does from the

market response to aggressive orders placed by other traders. In an anonymous market (such as

the E-mini), we obtain by symmetry the related prediction that each other trader obtains no more

useful information from the market response to the exploring trader's aggressive orders than they

would from the market response to another, arbitrary trader's aggressive orders.

The testable predictions above do not depend on the particular reason why the HFT learns

more from the market response to his own orders than from the response to others' orders, but

as mentioned in the introduction, there is a natural explanation for this. Sometimes, the changes

in the order book following the arrival of an aggressive order are truly a response caused by the

aggressive order, in which case the order book activity provides information about the liquidity

state. Often, though, both the aggressive order and the subsequent order book activity are really

just common responses to some third event, so there is no causal link between the aggressive

order and the subsequent order book changes, and consequently the order book activity does not

provide information about the liquidity state. If someone else placed the aggressive order, these two

scenarios are indistinguishable to the HFT, so the possibility that he is observing the uninformative

non-causal scenario attenuates the amount that he can learn from the market response to someone

else's aggressive order. By contrast, if the HFT places an aggressive order himself, he can be

entirely sure whether he did so for exogenous reasons, so the uninformative scenario need not be

a concern. The HFT learns more about the liquidity state from his own aggressive orders than he

does from those of traders because he can better infer causal e�ects from aggressive orders that

he himself placed. (For completeness, in Appendix A, I formalize the arguments above using a

variation of the baseline model.)

Although they would not be consistent with exploratory trading, there are possible scenarios

in which an HFT might learn only as much, or perhaps even less, from the response to his own

orders as he would from the response to others' orders. Whether an HFT truly learns more from
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the market response to his own orders is an empirical question, and indeed, this is one of the

questions that the empirical analysis in Section 5 and Section 6 helps to address.

2.5 Empirical agenda

Before attempting any empirical evaluation of the hypothesis that the A-HFTs engage in ex-

ploratory trading, suitable candidates for putative exploratory orders must be identi�ed in some

manner among the A-HFTs' aggressive orders. The results from Section 2.3.1 suggest that small,

unpro�table aggressive orders are prime candidates. Empirical results presented in Section 4.3 in-

dicate that the A-HFTs tend to lose money on their smallest aggressive orders, so I test the model's

predictions under the assumption that all of the A-HFTs' small aggressive orders are exploratory.

Given the myriad other reasons for which an A-HFT might place small aggressive orders, the

assumption is conservative. The high probability that some of the orders are not exploratory only

strengthens my results.

With that preliminary matter resolved, I turn to direct empirical tests of the model's key

predictions. As a benchmark, I consider the market response following the last small aggressive

order placed by anyone, which is public information. The empirical implications discussed earlier

in this section can then be condensed into three central predictions, namely that relative to the

public-information benchmark, information from the market response following an A-HFT's small

aggressive orders:

Prediction.1 Explains a significant additional component of that A-HFT's earnings on

subsequent aggressive orders, but

Prediction.2 Does not explain any additional component of other traders' earnings on

subsequent aggressive orders, and

Prediction.3 Further explains by a significant margin the incidence of that A-HFT's sub-

sequent large aggressive orders

In Section 5, I introduce an explicit numeric measure of �market response,� and in Section 5.3, I

make precise the notion of �explaining earnings on subsequent aggressive orders,� then I formally

test the predictions above. The variables and functional forms used in these empirical tests follow

closely from the structure of the baseline model and the predictions highlighted in Section 2.3.2.
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3 High-frequency trading in the E-mini market

The E-mini S&P 500 futures contract is a cash-settled instrument with a notional value equal to

$50.00 times the S&P 500 index. Prices are quoted in terms of the S&P 500 index, at minimum

increments, �ticks�, of 0.25 index points, equivalent to $12.50 per contract. E-mini contracts

are created directly by buyers and sellers, so the quantity of outstanding contracts is potentially

unlimited.

All E-mini contracts trade exclusively on the CME Globex electronic trading platform, in an

order-driven market. Transaction prices/quantities and changes in aggregate depth at individual

price levels in the order book are observable through a public market-data feed, but the E-mini

market provides full anonymity, so the identities of the traders responsible for these events are

not released. Limit orders in the E-mini market are matched according to strict price and time

priority; a buy (sell) limit order at a given price executes ahead of all buy (sell) limit orders at lower

(higher) prices, and buy (sell) limit orders at the same price execute in the sequence that they

arrived. Certain modi�cations to a limit order, most notably size increases, reset the time-stamp

by which time-priority is determined.

E-mini contracts with expiration dates in the �ve nearest months of the March quarterly cycle

(March, June, September, December) are listed for trading, but activity typically concentrates

in the contract with the nearest expiration. Aside from brief maintenance periods, the E-mini

market is open 24 hours a day, though most activity occurs during �regular trading hours,� namely,

weekdays between 8:30 a.m. and 3:15 p.m. CT.

3.1 Description of the data

The data are account-labeled, millisecond-timestamped records at the CFTC of the so-called �busi-

ness messages� entered into the Globex system between September 17, 2010 and November 1, 2010

for all E-mini S&P 500 futures contracts. These message records capture not only transactions,

but also events that do not directly result in a trade, such as the entry, cancellation, or modi-

�cation of a resting limit order. Essentially, business messages include any action by a market

participant that could potentially result in or a�ect a transaction immediately, or at any point in
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the future.9

I restrict attention to the December-expiring E-mini contract, ticker ESZ0. During my sample

period, ESZ0 activity accounted for roughly 98% of the message volume across all E-mini con-

tracts, and more than 99.9% of the trading volume. Trading volume in ESZ0 by the HFTs that I

study is roughly 500 times greater than the total trading volume (by all traders) in all E-mini con-

tracts other than ESZ0 combined, so cross-contract arbitrage is a negligible issue for my empirical

analysis.

The price of an ESZ0 contract during the sample period was around $55, 000 to $60, 000, and

(one-sided) trading volume averaged 1, 991, 252 contracts or approximately $115 billion per day.

Message volume averaged approximately 5 million business messages per day, and the number

of aggressive orders executed per day day averaged 132, 127. The intensity of trading varies

considerably throughout the day (aggressive orders typically arrive in tight clusters), so the median

time interval between aggressive orders during regular trading hours is closer to 20 milliseconds

than it is to the mean interval of roughly 200 milliseconds.

3.2 De�ning �high-frequency trader�

Kirilenko et al. identify as HFTs those traders who exhibit minimal accumulation of directional

positions, high inventory turnover, and high levels of trading activity. I, too, use these three

characteristics to de�ne and identify HFTs. To quantify an account's accumulation of directional

positions, I consider the magnitude of changes in end-of-day net position as a percentage of the

account's daily trading volume. Similarly, I use an account's maximal intraday change in net

position, relative to daily volume, to measure inventory turnover. Finally, I use an account's total

trading volume as a measure of trading activity.

I select each account whose end-of-day net position changes by less than 6% of its daily volume,

and whose maximal intraday net position changes are less than 20% of its daily volume. I rank the

selected accounts by total trading volume, and classify the top 30 accounts as HFTs. The original

classi�cations of Kirilenko et al. and Baron et al. guided the rough threshold choices for inter-day

9Excluded from these data are purely administrative messages, such as log-on and log-out messages. The good-
'til-cancel orders in the order book at the start of September 2, and a small number of modi�cation messages (around
2 − 4%) are also missing from these records. Because I restrict attention to aggressive orders, and I only look at
changes in resting depth (rather than its actual level), my results are not sensitive to these omitted messages.
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and intraday variation. Thereafter, since con�dentiality protocols prohibit disclosing results for

groups smaller than eight trading accounts, the precise cuto� values of 6%, 20%, and 30 accounts

were chosen to ensure that all groups of interest would have at least eight members. My central

results are not sensitive to values of these parameters.

Changing the 30-account cuto� to (e.g.) 15 accounts or 60 accounts does not substantially

alter my results, because activity heavily concentrates among the largest HFTs. For example,

the combined total trading volume of the 8 largest HFTs exceeds that of HFTs 9-30 by roughly

three-quarters, and the combined aggressive volume of the 8 largest HFTs exceeds that of HFTs

9-30 by a factor of almost 2.5. The set of HFTs corresponds closely to the set of accounts with the

greatest trading volume in my sample, so the set of HFTs is largely invariant both to the exact

characterizations of inter-day and intraday variation in net position relative to volume, and to the

exact cuto� values for these quantities. The 6% and 20% cuto�s are not remotely binding for the

HFTs with the greatest trading volumes.

3.3 HFTs' prominence and pro�tability

Although HFTs constitute less than 0.1% of the 41, 778 accounts that traded the ESZ0 contract

between September 17, 2010 and November 1, 2010, they participate in 46.7% of the total trading

volume during this period. In addition to trading volume, HFTs are responsible for a large fraction

of message volume. During the sample period, HFTs account for 31.9% of all order entry, order

modi�cation and order cancellation messages. In aggregate, approximately 48.5% of HFTs' volume

is aggressive, and this �gure rises to 54.2% among the 12 largest HFTs. The HFTs also appear

to earn large and stable pro�ts. Gross of trading fees, the 30 HFTs earned a combined average

of $1.51 million per trading day during the sample period. Individual HFTs' annualized Sharpe

ratios are in the neighborhood of 10 to 11.10

10These average trading pro�ts re�ect the total cumulative trading pro�ts during my sample period, divided by
the number of trading days. Total cumulative trading pro�ts are computed using all transactions over the full
course of my sample period, plus the marked-to-market value of each HFTs' net inventory position at the end of
my sample period, minus the initial marked-to-market value of each HFTs' net inventory position at the start of
my sample period. Positive (negative) initial inventory values are marked to market at the initial best ask (bid),
while positive (negative) �nal inventory values are marked to market at the �nal best bid (ask); this yields more
conservative estimates than marking to market at midpoint prices. Empirically, the initial/�nal net inventory values
are tiny relative to the full cumulative pro�ts from transactions.
Using the same methodology, I compute trading pro�ts for each trading day in my sample period (for each

individual HFT), and I calculate the standard deviation of those daily trading pro�ts (for each individual HFT). I
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The Chicago Mercantile Exchange reduces E-mini trading fees on a tiered basis for traders

whose average monthly volume exceeds various thresholds. Trading and clearing fees were either

$0.095 per contract or $0.12 per contract for the 20 largest HFTs, and were at most $0.16 per

contract for the remaining HFTs. Initial and maintenance margins were both $4, 500 per contract

for all of the HFTs.

Hereafter, unless otherwise noted, I restrict attention to activity that occurred during regular

trading hours. HFTs' aggressive trading occurs almost exclusively during regular trading hours

(approximately 95.6%, by volume), and market conditions during these times di�er substantially

from those during the complementary o�-hours.

4 HFTs' trading pro�ts on aggressive orders

4.1 Measuring aggressive order pro�tability

The familiar �bookkeeping� approach used for computing trading pro�ts in the preceding section

is not suitable for measuring trading pro�ts on individual aggressive orders because it inevitably

commingles earnings from multiple orders. A more suitable general approach, fairly standard

in the literature, involves examining the cumulative price change following an aggressive order,

normalized by the order's direction (+1 for a buy, or −1 for a sell). Intuitively, the average

expected trading pro�t from an aggressive order equals the expected favorable price movement,

minus trading/clearing fees and half the bid-ask spread. This approach is particularly well-suited

to estimating the pro�tability of individual HFTs' aggressive orders in the E-mini, both because

the number of aggressive-order observations for each HFT is large, and because the bid-ask spread

in the E-mini is essentially constant.

To obtain meaningful estimates, we must accumulate the price-changes following an HFT's

aggressive order out to some time past the maximum horizon at which the HFT can predict

price-movements. We can �nd a suitable accumulation period empirically by calculating cumula-

tive direction-normalized price changes over longer and longer windows until their mean ceases to

signi�cantly change; beyond that point, the HFT displays no signi�cant capacity to forecast addi-

divide average daily pro�ts by this standard deviation, to get the Sharpe ratio for my sample period, then multiply
that Sharpe ratio by 251

32
, i.e. total # trading days in a year

# trading days in my sample
, to obtain the annualized Sharpe ratio.
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tional price-changes. Using too long an accumulation period introduces extra noise, but it will not

bias the estimates. I �nd that an accumulation period, measured in event-time, of 30 aggressive

order arrivals is su�cient to obtain unbiased estimates, but for all of the empirical work in this

paper I use an accumulation period of 50 aggressive order arrivals to allow a wide margin for error.

Estimates do not signi�cantly di�er using an accumulation period of 200, or even 500 aggressive

order arrivals instead of 50, so we can reasonably interpret the estimated price-movements to be

permanent. See Internet Appendix B for further details.

As noted earlier, the bid-ask spread for the E-mini is almost constantly $12.50 (one tick)

during regular trading hours, and the HFTs in my sample face trading/clearing fees of $0.095 to

$0.16 per contract, so the average favorable price movement necessary for an HFT's aggressive

order to be pro�table is between $6.345 and $6.41 per contract. Since trading/clearing fees vary

across traders, I report aggressive order performance in terms of favorable price movement, that

is, earnings gross of fees and the half-spread.

4.2 HFTs' overall pro�ts from aggressive orders in the E-mini

To measure the overall mean pro�tability of a given account's aggressive trading, I compute the

average cumulative price change following each aggressive order placed by that account, weighted

by executed quantity and normalized by the direction of the aggressive order. As a group, the

30 HFTs in my sample achieve average aggressive order performance of $7.01 per contract. On

an individual basis, nine HFT accounts exceed the relevant $6.25 + fees pro�tability hurdle, and

each of these nine accounts exceeds this hurdle by a margin that is statistically signi�cant at the

0.05 level. One of these nine accounts is linked with another HFT account, and their combined

average performance also signi�cantly exceeds the pro�tability hurdle.

Overall, the HFTs vastly outperform non-HFTs, who earn a gross average of $3.19 per aggressively-

traded contract. However, these overall averages potentially confound e�ects of very coarse dif-

ferences in the times at which traders place aggressive orders with e�ects of the �ner di�erences

more directly related to strategic choices. For example, if all aggressive orders were more prof-

itable between 1 p.m. and 2 p.m. than at other times, and HFTs only placed aggressive orders

during this window, the HFTs' out-performance would not depend on anything characteristically
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high-frequency.

To control for potential low-frequency confounds, I divide each trading day in my sample

into 90-second segments and regress the pro�tability of non-HFTs' aggressive orders during each

segment on both a constant and the executed quantities of the aggressive orders. Using these

local coe�cients, I compute the pro�tability of each aggressive order by an HFT in excess of the

expected pro�tability of a non-HFT aggressive order of the same size during the relevant 90-second

segment. With these additional controls, only 27 HFT accounts continue to exhibit signi�cant

out-performance of non-HFTs, and only eight of the 27 accounts are among those whose absolute

performance exceeded the pro�tability hurdle.

4.2.1 A-HFTs and B-HFTs

For expositional ease, I will refer to the eight HFT accounts that make money on their aggressive

trades and outperform the time-varying non-HFT benchmark as �A-HFTs,� and to the comple-

mentary set of HFTs as �B-HFTs.� The eight A-HFTs have a combined average daily trading

volume of 982, 988 contracts, and on average, 59.2% of this volume is aggressive. The 22 B-HFTs

have a combined average daily trading volume of 828, 924 contracts, of which 35.9% is aggressive.

Together, the eight A-HFTs place a daily average of 8, 994 aggressive orders (during regular trad-

ing hours), with a mean size of 60.3 contracts and a median size of 10 contracts. The 22 B-HFTs

together place an average of 31, 113 aggressive orders per day (during regular trading hours), with

a mean size of 8.3 contracts and a median size of 1 contract. Gross of fees, the A-HFTs earn a

combined average of $793, 342 per day, or an individual average of $99, 168 per day, while the B-

HFTs earn a combined average of $715, 167 per day, or an individual average of $32, 508 per day.11

The highest pro�tability hurdle among the A-HFTs is $6.37 per aggressively traded contract.

4.3 Identifying some potential exploratory orders

As noted in Section 2.5, to test the empirical predictions of the exploratory trading model, we

must �rst specify some orders to treat as exploratory. Motivated by theory, I examine the A-HFTs'

small aggressive orders. To make precise the meaning of �small� aggressive order, I specify a cuto�

11The preceding descriptive statistics include the small amount of trading activity that occurred outside regular
trading hours, except where noted otherwise.
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Table 1: Summary Statistics for A-HFTs' Small Aggressive Orders

Dollars Earned per Contract (95% CI)

AOs Below AOs Above AOs Below Cuto� AOs Below Cuto�
Cuto� Cuto� Size Cuto� Size % of All AOs % of Aggr. Volume

1 (3.78, 3.89) (7.59, 7.74) 24.31% 0.40%

5 (4.17, 4.29) (7.62, 7.78) 43.74% 1.44%

10 (3.42, 3.55) (7.71, 7.85) 54.64% 3.09%

15 (3.79, 3.92) (7.71, 7.86) 56.75% 3.54%

20 (4.08, 4.20) (7.75, 7.90) 60.82% 4.80%

Table 1 presents descriptive statistics about aggressive orders of varying sizes placed by the A-HFTs. The �Cuto��

column indicates the maximum size for orders included in the �below cuto�� statistics. All orders of sizes exceeding

the speci�ed cuto� are included in calculations of the �above cuto�� statistics. Columns two and three present 95%

con�dence intervals for the average gross earnings per contract (in dollars) among aggressive orders in the indicated

size division. Column four reports the percentage of all aggressive orders placed by the A-HFTs with an order-size

no greater than the indicated cuto�. Column �ve reports the A-HFTs' aggressive volume from orders of size no

greater than the indicated cuto�, as a percentage of the A-HFTs' total aggressive volume.

for order-size and de�ne an order to be �small� if and only if its size is no greater than the speci�ed

cuto�. Because there is no natural unique cuto�, I consider a range of di�erent order-size cuto�s.

The A-HFTs tend to pro�t on aggressive orders above size 20, so I consider various order-size

cuto�s between 1 and 20.12 Table 1 summarizes some important characteristics of the A-HFTs'

small aggressive orders.

A given A-HFT places an aggressive order of size 20 or less roughly once every 34 seconds on av-

erage, and this average interval drops to about 3 seconds during periods of intense market activity.

Furthermore, A-HFTs' aggressive orders of size 20 or less tend to lose money on average. Because

the A-HFTs' small aggressive orders tend to be unpro�table and to arrive rather frequently, they

are at least plausible candidates to be exploratory orders. Clearly, these results don't provide any

compelling evidence of exploratory trading; orders with analogous features could also arise from

12Presenting statistics for every order-size cuto� between 1 and 20 could potentially reveal individually identi�able
information, so I only present results for a regularly spaced subset of order-size cuto�s.
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A-HFTs controlling risk, testing out new strategies, hedging, etc. However, identifying candidate

exploratory orders provides the starting point for direct tests of the exploratory trading model's

sharper empirical predictions, which, it turns out, do provide compelling evidence of exploratory

trading.

5 Testing the exploratory trading hypothesis

If the A-HFTs indeed engage in exploration using their small aggressive orders, the exploratory

trading model generates the testable predictions presented in Section 2. The present section

introduces empirical analogues of the two quantities from the exploratory trading model that

appear in the model's predictions: the market-response that reveals the liquidity state (Λ), and

the signal of future aggressive order-�ow, ϕ. I use these to directly test the predictions from

Section 2.

The model's �rst two predictions concern the explanatory power of market-response informa-

tion for the earnings of subsequent aggressive orders, and I test these two predictions in the same

empirical framework. The third prediction, concerning the incidence of large aggressive orders,

requires a slightly di�erent empirical approach, so I consider this prediction separately. I estimate

results for the A-HFTs individually, but for compliance with con�dentiality protocols, I present

cross-sectional averages of these estimates. Empirically, these average results are representative of

the results for individual A-HFTs.13

5.1 A simple measure of market response

The predictions in Section 2 involve the market response to a given A-HFT's exploratory orders,

which we have conjectured, for the purposes of testing, to be the A-HFT's small aggressive orders.

To make this precise, de�ne an aggressive order to be �small� if that order's submitted size is less

than or equal to a speci�ed size parameter, which I will denote by q̄.

I characterize the market response to a small aggressive order using subsequent changes in

13Throughout the E-mini market, there exist assorted linkages between various trading accounts (as, for example,
in the simple case where single �rm trades with multiple accounts), so the trading-account divisions do not neces-
sarily deliver appropriate atomic A-HFT units. Though the speci�cs are con�dential, the appropriate partition of
the A-HFTs is entirely obvious. For brevity, I use �individual A-HFT� as shorthand to �individual atomic A-HFT
unit,� as applicable.
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order book depth. I examine the interval starting immediately after the arrival and execution of a

given small aggressive order and ending immediately before the arrival of the next aggressive order

(which may or may not be small), and I sum the changes in depth at the best bid and best ask

that occur during this interval.14 For symmetry, I adopt the convention that sell depth is negative

and buy depth is positive. I also normalize these depth changes by the sign of the preceding small

aggressive order to standardize across buy orders and sell orders.

To simplify the analysis and stack the odds against �nding signi�cant results, I initially focus

only on the signs of the direction-normalized depth changes. These signs merely indicate whether

or not resting depth moved further in the direction of the preceding small aggressive order�or in

the language of the model, whether resting depth further depletes or weakly replenishes.

For a given value of q̄, I construct the indicator variable Ω, with kth element Ωk de�ned by

Ωk =


1 if DC (k; any, q̄) > 0

0 otherwise

(8)

where DC (k; any, q̄) denotes the direction-normalized depth change following the last small ag-

gressive order (submitted by anyone) that arrived before the kth aggressive order. Similarly, I

construct the indicator variable ΩA, with kth element ΩA
k de�ned by

ΩA
k =


1 if DC (k;AHFT, q̄) > 0

0 otherwise

(9)

where DC (k;AHFT, q̄) denotes the direction-normalized depth change following the last small

aggressive order submitted by a speci�ed A-HFT that arrived before the kth aggressive order.

Note the direct parallel between the omega variables and the binary liquidity states in the

exploratory trading model.

14The best bid and best ask prices at which I measure changes in depth are the best bid and ask at start of the
interval. The price levels at which changes in depth are recorded remain the same throughout an interval, even if
the bid and/or ask prices move during the interval.
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5.2 Order-�ow signal

To test the exploratory trading theory, in addition to the measure of market response, we need

something analogous to the signal of future aggressive order-�ow, ϕ. Because we are ultimately

interested in how future aggressive order-�ow will a�ect prices, the task of �nding an empirical

analogue to ϕ simpli�es to �nding variables other than market-response measures that forecast

price movements.

I select a handful of lagged market variables that forecast the cumulative price-change between

the aggressive orders k and k+50, which I denote by yk. These variables are: the signs of aggressive

orders k−1 through k−4, the signed executed quantities of aggressive orders k−1 through k−4,

and changes in resting depth between aggressive orders k − 1 and k at each of the six price levels

within two ticks of the best bid or best ask (with sell depth negative and buy depth positive, as

before). To lighten notation, I concatenate these 14 variables in the row vector zk−1. This vector,

zk−1, is the analogue of ϕ.

In the same way that price movements in the exploratory trading model can still be forecast

to some extent by ϕ when the liquidity state is unknown, the variables in zk−1 should have some

power to forecast yk, even without the market-response omega variables. As a check on this and

as a benchmark, I estimate the equation

yk = zk−1Γ + εk (10)

where Γ is a column vector of 14 coe�cients. As desired, the estimated coe�cients have the

expected signs, and their joint signi�cance is extremely high. I discuss the regression results

directly, report coe�cient estimates, and discuss the choice of explanatory variables in Internet

Appendix C.

Naturally, the set of right-hand-side variables in equation (10) is not comprehensive, and many

other variables can be added that could somewhat improve the price forecasts. However, the

tests of the exploratory trading model's predictions do not rely on equation (10) as the means of

controlling for public information, but rather rely on a di�erent approach (described in the next

section). The tests merely require that equation (10) have some forecasting power.
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5.3 Testing predictions about explaining earnings

5.3.1 Explained earnings

The �rst testable prediction of the exploratory trading model is that the information from the

market response following a given A-HFT's small aggressive orders will explain a signi�cant addi-

tional component of that A-HFT's earnings on subsequent (large) aggressive orders, beyond what

is explained by a public-information benchmark.

In this paper, the particular notion of �explaining earnings� that I employ involves computing

what a trader's earnings are expected to be on the basis of some econometric forecast of price

movements, and comparing that with the trader's actual earnings. For concreteness, consider a

price forecast based on equation (10). Letting Γ̂ denote the estimate of Γ, we have

ŷk = zk−1Γ̂

Given the sign of the kth aggressive order, we can compute the forecast earnings on that order,

conditional on the order's sign. Much as the direction-normalized cumulative price-change signk ∗

yk provides an estimate of the true earnings on aggressive order k (see Section 4.1), the direction-

normalized forecast cumulative price-change signk∗ŷk provides an estimate of the forecast earnings

on aggressive order k.

Rather than working with the earnings on order k that are explained by a given econometric

price forecast, it is convenient to work with the earnings on order k that are not explained by the

speci�ed forecast. I will refer to the earnings on order k that are not explained by the speci�ed

forecast as the �excess earnings on order k relative to [the speci�ed forecast].� In the case above,

the excess earnings on order k relative to the forecast from equation (10), denote it ξk, is given by

ξk = signk ∗ yk − signk ∗ ŷk

= signk (yk − ŷk)

so ξk is simply the kth regression residual multiplied by the sign of aggressive order k.15 The

15Because ŷk uses only information available prior to the arrival of the kth aggressive order, there is no orthogo-
nality constraint on the kth regression residual and signk.
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additional component of earnings on aggressive order k explained by some price forecast F, relative

to some other price forecast G is given by ξGk − ξFk .

Finally, note that the all of the earnings discussed in this section are per contract.

5.3.2 Empirical strategy: overview

Though the implementation is slightly involved, my empirical strategy is straight-forward�it is

basically just a di�-in-di�s approach. First, I augment the regression equation (10) from Section

5.2 using either:

1. Market response information from the last small aggressive order placed by anyone�i.e., Ω,

or

2. Both market response information from the last small aggressive order placed by anyone,

and market response information from the last small aggressive order placed by a speci�ed

A-HFT�i.e., both Ω and ΩA

After estimating both of the regression speci�cations above, I �nd the additional component of

earnings on larger aggressive orders explained by the second speci�cation relative to the �rst one.

The market response following an arbitrary small aggressive order is publicly observable. However,

because the E-mini market operates anonymously, the distinction between a small aggressive

order placed by a particular A-HFT and an arbitrary small aggressive order is private knowledge,

available only to the A-HFT who placed the order. Because the market response information

from the last small aggressive order placed by anyone is weakly more recent than the market

response information from last small aggressive order placed by the A-HFT, comparing the second

speci�cation above to the �rst helps to isolate the e�ects attributable to private knowledge from

e�ects attributable to public information.

Finally, I compare the additional explained earnings for the speci�ed A-HFT to the additional

explained earnings for all other traders. Intuitively, we want to verify that the A-HFT's exploratory

information provides extra explanatory power for the subsequent performance of the trader privy

to that information (the A-HFT), but not for the performance of traders who aren't privy to it

(everyone else). Note that �everyone else� includes the A-HFTs other than the speci�ed A-HFT.
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Some A-HFT accounts and B-HFT/non-HFT accounts belong to the same �rms, and various B-

HFTs/non-HFTs may be either directly informed or able to make educated inferences about what

one or more A-HFTs do. As a result, we should not necessarily expect exploratory information

generated by an A-HFT's small orders to provide no explanatory power whatsoever for all other

traders' performance. However, we should still expect the additional explanatory power for the

A-HFT's performance to signi�cantly exceed that for the other traders' performance.

Controlling for public information Comparing the second regression speci�cation to the �rst

one controls for the e�ects of most public information, but there could conceivably be some public

information that is correlated with the market response to a speci�ed A-HFT's small aggressive

orders and yet uncorrelated with the market response to small aggressive orders placed by everyone

else. One way to handle this concern is to compare the additional explained performance for the

speci�ed A-HFT to the additional explained performance for some other traders who use the

same public information. Although trading objectives and sophistication vary widely across many

participants in the E-mini market, all of the HFTs are sophisticated, pro�table traders, with similar

(very short) investment horizons, so it is extremely plausible that they all use very similar public

data. Comparing the additional explained performance for the speci�ed A-HFT to that for the

other HFTs therefore serves as an added control for any lingering e�ects from public information.

5.3.3 Estimation procedure

In the model of exploratory trading presented in Section 2, exploratory information was valuable

only in conjunction with information about future aggressive order �ow. Following this notion,

I incorporate market-response information by using the indicators Ω and ΩA to partition the

benchmark regression from Section 5.2.

Recall that Section 5.2 introduced the regression equation (10),

yk = zk−1Γ + εk

where yk denoted the cumulative price-change between the aggressive orders k and k + 50, and

the vector zk−1 consisted of changes in resting depth between aggressive orders k − 1 and k, as
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well as the signs and signed executed quantities of aggressive orders k − 1 through k − 4. Using

the indicator Ω, I now partition the equation above into two pieces and estimate the equation

yk = Ωkzk−1Γa + (1− Ωk) zk−1Γb + εk (11)

Next, I use the indicator ΩA to further partition (11), and I estimate the equation

yk = ΩA
k (k)

(
Ωkzk−1Γc + (1− Ωk) zk−1Γd

)
+ (12)(

1− ΩA
k

) (
Ωkzk−1Γe + (1− Ωk) zk−1Γf

)
+ εk

The variables yk and zk−1 denote the same quantities as before, and the Γj terms each represent

vectors of 14 coe�cients.

I estimate (11) and (12) for q̄ = 1, 5, 10, 15, 20, and for each speci�cation I calculate the relative

excess earnings of the speci�ed A-HFT, and of all other trading accounts, on aggressive orders

of size strictly greater than q̄. As in Section 5.3.1, to compute the earnings of aggressive order k

in excess of that explained by each regression speci�cation, I normalize the kth residual from the

regression by the sign of the kth aggressive order. I now also control for order-size e�ects directly

by regressing the direction-normalized residuals (for the orders of size strictly greater than q̄) on

the (unsigned) executed quantities and a constant, then subtracting o� the executed quantity

multiplied by its estimated regression coe�cient. Controlling for size e�ects in this manner makes

results more comparable for di�erent choices of q̄. Size e�ects can be addressed by other means

with negligible impact on the �nal results.

For each aggressive order larger than q̄ placed by the A-HFT under consideration, I compute

the additional component of earnings explained by (12) relative to (11) by subtracting the order's

excess earnings relative to (12) from its excess earnings relative to (11); I stack these additional

explained components in a vector that I denote by ΞA. I repeat this procedure to obtain the

analogous vector for everyone else, Ξee.

Equation (12) has more free parameters than (11), so ΞA and Ξee will both have positive

means. However, additional explanatory power of (12) due exclusively to the extra degrees of

freedom will, in expectation, manifest equally for all traders, so the extra degrees of freedom alone
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Figure 1: Additional Earnings Explained by Exploratory Information

Figure 3. Additional Performance Explained (95% Confidence Intervals)
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Figure 1 displays averages (with 95% con�dence intervals) of the additional earnings per contract explained by (12)

beyond what is explained by (11). This di�erence re�ects added explanatory power that arises from including in

(12) information about the market response to the last small aggressive order placed by a speci�ed A-HFT (plus

the slight mechanical increase that arises from introducing extra degrees of freedom). The horizontal axis speci�es

the cuto�, q̄, for the maximum size of order de�ned to be �small.� The white circles mark this average computed

among orders placed by an A-HFT, and the black squares mark this average computed among orders placed by

everyone else. Estimates were run and means were computed for each individual A-HFT and the corresponding

�everyone else�; the displayed numbers are cross-sectional averages of the individual estimates' means.

should not cause ΞA and Ξee to di�er signi�cantly.

5.3.4 Results on explaining earnings

I initially evaluate the �rst two empirical predictions of the exploratory trading model by com-

paring the additional explained component of earnings for each A-HFT (ΞA) to the additional

explained component of earnings for all other traders (Ξee). Figure 1 displays the cross-sectional

means of ΞA and Ξee for di�erent values of q̄. To formally compare the gain in explanatory power

for the A-HFTs to the gain for everyone else, I construct 95% bootstrap con�dence intervals for the

di�erence of the pooled means Mean (ΞA) −Mean (Ξee), displayed in Figure 2. Table 2 reports

the numeric values from Figures 1 and 2.

Both of the tested predictions are borne out in these results. Information about the market

activity immediately following an A-HFT's smallest aggressive orders (in the form of ΩA) improves

our ability to explain that A-HFT's earnings on larger subsequent aggressive orders by a highly
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Figure 2: Di�erence in Additional Earnings Explained by Exploratory Information
Figure 4. [A-HFT Addt'l Explained] - [Everyone Else Addt'l Explained]  (95%  Conf. Intervals) 
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Figure 2 depicts the di�erence for A-HFTs vs. for everyone else of the additional earnings per contract explained by

exploratory information. E�ectively, this is just the di�erence of the two series displayed in Figure 1. For a given

A-HFT, and the corresponding �everyone else,� I �nd the additional earnings per contract explained by (12) beyond

what is explained by (11), and I compute the di�erence between the average for the A-HFT, and the average for

everyone else. Estimates were run and means were computed for each individual A-HFT, and the displayed points

are cross-sectional averages of these individual estimates' means (with 95% con�dence intervals). The horizontal

axis speci�es the cuto�, q̄, for the maximum size of order de�ned to be �small� when estimating (12) and (11).

signi�cant margin, relative to using only information about the activity following any small ag-

gressive order (in the form of Ω). Furthermore, the extra component of A-HFTs' earnings on large

aggressive orders explained by using ΩA in addition to Ω is signi�cantly greater than the extra

component explained for other traders.

I re�ne my empirical evaluation of the �rst two predictions by comparing the additional ex-

plained component of earnings for each A-HFT to the additional explained component of earnings

for the other HFTs. Consistent with the notion that certain HFTs may know something about

what various A-HFTs are doing, the extra component of earnings explained by using ΩA in addi-

tion to Ω is larger for the complementary set of HFTs than it is for the broader �everyone except

the A-HFT of interest� group. Nevertheless, aside from the case of q̄ = 1, the average added

explanatory power for each A-HFT is still signi�cantly greater than is that for the complementary

set of HFTs, as shown in Figure 3. See Table 2 for numeric values.
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Figure 3: Di�erence from Other HFTs in Additional Earnings Explained by Exploratory Informa-
tion

Figure 5. [A-HFT Addt'l Explained] - [Other HFTs Addt'l Explained]  (95% Conf. Intervals) 
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Figure 3 depicts the average di�erence in additional earnings per contract explained by exploratory information for

a given A-HFT vs for all other HFTs. For a given A-HFT, and the complementary set of all other HFTs, I �nd the

additional earnings per contract explained by (12) beyond what is explained by (11), and I compute the di�erence

between the average for the A-HFT, and the average for all the other HFTs. Note that �other HFTs� includes the

other A-HFTs. Estimates were run and means were computed for each individual A-HFT, and the displayed points

are cross-sectional averages of these individual estimates' means (with 95% con�dence intervals). The horizontal

axis speci�es the cuto�, q̄, for the maximum size of order de�ned to be �small� when estimating (12) and (11).

5.4 Incidence of A-HFTs' larger aggressive orders

In this subsection I test the exploratory trading model's third prediction, namely that the market

response to a given A-HFT's small aggressive order provides signi�cant explanatory power for the

incidence of that A-HFT's subsequent large aggressive orders, above and beyond that explained

using the market response to the last small aggressive order placed by anyone. Since elements of the

binary Ω-operators correspond almost directly to the binary liquidity-state Λ in the exploratory

trading model, the incidence prediction can be made even more precise. In particular, all else

being equal, the exploratory trading model predicts that an A-HFT will have a greater tendency

to place large aggressive orders when ΩA = 1 than when ΩA = 0.

5.4.1 Empirical implementation

Much as the HFT in the model from Section 2 considered the signal of future aggressive order-

�ow as well as the liquidity state, A-HFTs consider public market data as well as exploratory

information to decide when to place large aggressive orders. The size and direction of A-HFTs'

aggressive orders depend on the same variables that forecast price movements, or equivalently
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on the forecasts of price movements themselves. On average, the signed quantity of an A-HFT's

aggressive order should be an increasing function of the future price-change expected on the basis

of public information. In this context, the exploratory trading model predicts that the expected

future price-change will have a larger e�ect on the signed quantity of an A-HFT's aggressive orders

when ΩA = 1 than it will when ΩA = 0.

To test the exploratory trading model's prediction about the incidence of A-HFTs' larger

aggressive orders, I regress the signed quantities of a given A-HFT's aggressive orders on the

associated �tted values of y from equation (11), partitioned by ΩA. In other words, for a speci�ed

A-HFT and a given value of q̄, I estimate the equation

qk = β0

(
1− ΩA

k

)
ŷk + β1ΩA

k ŷk + εk (13)

where qk denotes the signed submitted quantity of the A-HFT's kth aggressive order, ŷk denotes

the relevant �tted value of yk from the public-information regression (11), and ΩA is the usual

indicator function. I restrict the β coe�cients to be the same across all A-HFTs. Note that the

�tted value ŷk includes the public market-response information through the inclusion of Ωk in

(11), so di�erences between β0 and β1 do not arise from any public information in ΩA.

5.4.2 Results on explaining incidence

Table 3 displays the coe�cient estimates from (13) for various values of q̄. A Wald test rejects the

null hypothesis β0 = β1 at the 10−15 level for all values of q̄. As the exploratory trading model

predicts, holding �xed the price-change expected on the basis of public information, the average

A-HFT places signi�cantly larger aggressive orders when ΩA = 1 than when ΩA = 0.

5.5 Possible alternative explanations of the results

Although the empirical results in this section con�rm the predictions of the exploratory trading

theory, that does not necessarily rule out alternative explanations for those results. To the extent

that a movement of resting depth in the same direction as the last aggressive order is indicative

of informed trading, the empirical results at �rst glance appear to be potentially consistent with

the story that the A-HFTs (somehow) already possess private information and they split up their
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Table 3: Di�erential E�ects of Predicted Price-Changes on A-HFT Signed Order Size

q̄ = 1 q̄ = 5 q̄ = 10 q̄ = 15 q̄ = 20

β0 13.35 13.41 13.42 13.34 13.23

(β0 Standard Error) (0.094) (0.093) (0.095) (0.095) (0.094)

β1 15.26 15.11 14.97 15.10 15.30

(β1 Standard Error) (0.162) (0.169) (0.160) (0.159) (0.160)

Table 3 reports coe�cient estimates from the regression of the signed quantities of the A-HFTs' aggressive orders
on the �tted values of cumulative future price changes from equation (11):

qk = β0
(

1− ΩA
k

)
ŷk + β1ΩA

k ŷk + εk

The q̄ values specify the maximum size of order de�ned to be �small� when computing estimates.

The indicator ΩA is the same market-response variable used elsewhere. The kth element of ΩA equals unity if,

following the most recent small aggressive order placed by a speci�ed A-HFT, resting depth moved in the same

direction as that order; otherwise, the kth element of ΩA equals zero. The coe�cients β0 and β1 respectively re�ect

the relative sizes of the average aggressive order that an A-HFT places when ΩA = 0, versus when ΩA = 1, holding

ŷ �xed. Di�erences between β0 and β1 can be attributed to the private component of information in ΩA because ŷ

already incorporates the public-information analogue of ΩA. The exploratory trading model predicts that β1 > β0.

orders as they trade on that information. While this alternative story would be more appropriate

for individual stocks than for index futures such as the E-mini, it nevertheless merits considera-

tion. However, closer examination indeed con�rms that the order-splitting story is not a viable

explanation of the empirical results.

There are three main types of order-splitting to consider, two of which can be readily dismissed.

First, an A-HFT might split one large order into a near-instantaneous salvo of small orders�e.g.,

submit 500 1-contract orders in a millisecond. If all of these child-orders were large, or if they were

all small (relative to q̄), then they would not show up in my results, since I look at the market

response to small aggressive orders, and the explained characteristics of larger orders. A second

type of order-splitting that would appear in my results would be a salvo of alternating/mixed

large and small orders. However, if an A-HFT actually did this kind of splitting and submitted all

of the orders almost instantaneously, there would be essentially no chance that the resting depth

would further deplete in the minuscule intervals between the arrival of these child orders. During

my sample period, latency (the amount of time required for messages to be processed and pass
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back and forth between a trader and the market) was several milliseconds in the E-mini market, so

any further depletion in depth during an one- or two- millisecond salvo of orders almost certainly

could not be a response to those orders, and hence almost certainly would not be an indication

that those orders were informed.

The �nal type of order-splitting to consider cannot be so easily ruled out as an explanation.

An A-HFT might split orders into small and large child orders, and submit them at each at least

several milliseconds apart, such that depth depletion following the small ones would indeed appear

in the data. Slow order-splitting of that type, though, necessarily implies that the A-HFTs possess

private information which they do not trade on as quickly as they are able. This story leads to the

same fundamental implication as the exploratory trading explanation, namely that the A-HFTs

obtain some of their superior information through some channel other than merely reacting to

public information faster than everyone else.

The slow-order-splitting story isn't quite observationally equivalent to the exploratory trading

theory. In its simplest form, the order-splitting story would imply that the market response to an

A-HFT's small aggressive order will only help to explain the A-HFT's earnings on a subsequent

large aggressive order if both the small order and the large order have the same sign. The ex-

ploratory trading theory predicts that the market response to the small order will help to explain

earnings on the large order, regardless of whether the two orders have the same sign. Consis-

tent with the exploratory trading theory, and in contradiction to the slow-order-splitting story,

the results in this section do not change qualitatively when we restrict attention to the market

response to an A-HFT's last small aggressive order with the opposite sign from the present order.

Furthermore, as the simulated trading strategy results in the next section will suggest, the market

response to an A-HFT's small aggressive order can be used to better forecast the performance of

a subsequent aggressive order in either direction.

6 Practical signi�cance of exploratory information

The empirical evidence in Section 5 provides strong support for the hypothesis that the A-HFTs

engage in exploratory trading as modeled in Section 2. However, while these results suggest that

exploratory trading plays some part in how A-HFTs obtain the superior information that enables
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them to pro�t from their aggressive orders, the results tell us little about how large that part is.

Estimates of the additional component of the A-HFTs' aggressive-order earnings directly ex-

plained by the private information in ΩA are likely to dramatically understate the true contribution

of exploratory information, for two reasons. First, ΩA is nearly the simplest possible characteri-

zation of exploratory information. Representations of exploratory information richer than ΩA are

extremely easy to construct. For example, an obvious extension would be to consider the not only

the sign, but also the magnitude of the direction-normalized depth change following an exploratory

order. Regardless of the particular representation of exploratory information used, though, the

additional explained component of A-HFTs' pro�ts on the aggressive orders they place is likely

to understate the true gains from exploration. As the simple model from Section 2 illustrates,

exploratory information is valuable in large part because it enables a trader to avoid placing un-

pro�table aggressive orders. However, estimates of the additional explained component of pro�ts

on A-HFTs' aggressive orders necessarily omit the e�ects of such avoided losses. While this bias,

if anything, makes the preceding �ndings of statistical signi�cance all the more compelling, it also

complicates the task of properly determining the practical importance of exploratory information.

6.1 Simulated trading strategies

To investigate the gains from exploratory information, including the gains from avoiding unprof-

itable aggressive orders, I examine the e�ects of incorporating market-response information from

small aggressive orders into simulated trading strategies. The key advantage of working with these

simulated trading strategies is that avoided unpro�table aggressive orders can be observed directly.

The basic trading strategy that I consider is a simple adaptation of the benchmark regression

from Section 5.2. I specify a threshold value, and the strategy entails nothing more than placing

an aggressive order with the same sign as ŷk whenever |ŷk| exceeds that threshold. To make

this strategy feasible (in the sense of using only information available before time t to determine

the time-t action) I compute the forecast of the future price movement, ŷk, using the regression

coe�cients estimated from the previous day's data. I incorporate market-response information

into this strategy by modifying the rule for placing aggressive orders to, �place an aggressive order

(with the same sign as ŷk) if and only if all three of the following conditions hold:
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• |ŷk| exceeds its speci�ed threshold,

• The direction-normalized depth-change following the last small aggressive order (placed by

anyone) exceeds a speci�ed threshold, and

• The direction-normalized depth-change following the last small aggressive order placed by an

A-HFT exceeds a (possibly di�erent) speci�ed threshold.�

Choosing a threshold of −∞ will e�ectively remove any of these conditions.

Each strategy yields a set of times to place aggressive orders, and the associated direction for

each order. To measure the performance of a given strategy, I compute the average pro�tability

of the indicated orders in the usual manner, with the assumption that these aggressive orders are

all of a uniform size.

Relative to A-HFTs' losses on small aggressive orders, the additional component of A-HFTs'

pro�ts directly explained using ΩA is smallest when q̄ = 10, and I present results for q̄ = 10 to

highlight the impact of accounting for avoided losses on estimates of the gains from exploratory

information. Results for other values of q̄ are similar.

6.2 Three speci�c strategies

All three threshold parameters a�ect strategy performance, so to emphasize the role of market-

response information, I present results with the threshold for |ŷk| held �xed. Varying the threshold

for |ŷk| does not alter the qualitative results. In particular, it is not possible by merely raising

the threshold for |ŷk| to achieve the same gains in performance that arise from incorporating

exploratory information. The forecast ŷk uses coe�cients estimated from the previous day's data,

and these forecasts exhibit increasing bias as the zk−1 observations assume more extreme values.

I consider a range of threshold values for the direction-normalized depth-change following the

last small aggressive order placed by anyone, but, for expositional clarity, I present results for

three illustrative threshold choices for the direction-normalized depth-change following the last

small aggressive order placed by an A-HFT. Speci�cally, I consider thresholds of −∞ (no A-

HFT market-response information), 0 (the same information contained in ΩA), and 417 (the 99th

percentile value). Figure 4 displays the performance of these three strategies over a range of
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Figure 4: Exploratory Information Improves Performance of Simulated StrategiesFigure 6. Absolute Gains from Exploratory Information
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Figure 4 displays the estimated average gross earnings per aggressively traded contract for the three simulated
trading strategies. The starting point for all three trading strategies is a simple linear forecast of the future price-
change, call it ŷ, using the same lagged market variables as in the baseline regression, equation (10) (i.e., signs and
signed quantities of the last four aggressive orders, and one lag of the changes in resting depth at prices within
two ticks of the best bid and ask). The strategies also involve the change in resting depth following the last small
aggressive order placed by anyone (normalized by the direction of that order), and similarly, the depth-change
following the last small aggressive order placed by any A-HFT (again, normalized by that order's direction). The
trading rule is to place an aggressive order with the same sign as ŷ whenever |ŷ|, and both depth-changes exceed
their respective speci�ed thresholds.

The three strategies di�er in the threshold value for direction-normalized depth-change following the last small

aggressive order placed by an A-HFT that must be satis�ed in order for the strategy to enter a trade, as labeled in

the �gure. The threshold value for |ŷ| is held �xed, and the horizontal axis is the threshold value (in percentiles)

for the direction-normalized depth-change following arbitrary small aggressive orders.

threshold values for the market response following arbitrary small aggressive orders.

While the performance gains from incorporating A-HFT exploratory information are obvious,

an equally important feature of the results above is more subtle. The A-HFTs' average gross

earnings on aggressive orders over size 10 of $7.78 per contract are well above the peak performance

of the strategy that uses only public information, but substantially below the performance of the

strategy that incorporates the A-HFTs' exploratory information with the higher threshold. This

is exactly the pattern that we should expect, given that the former strategy excludes information

that is available to the A-HFTs and the latter strategy includes information that is not available to

any individual A-HFT, so these results help to con�rm the relevance and validity of this simulation

methodology.
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6.2.1 Gains from exploration relative to losses on exploratory orders

Although the two strategies that incorporate exploratory information from the A-HFTs' small

aggressive orders outperform the strategy that does not, the orders that generated the exploratory

information were costly. To compare the gains from this exploratory information to the costs of

acquiring it, I �rst multiply the increases in per-contract earnings for the two exploratory strategies

(scaled by the respective number of orders relative to the public-information strategy) by the A-

HFTs' combined aggressive volume on orders over size 10.16 I then divide these calibrated gains

by the A-HFTs' actual losses on aggressive orders size 10 and under.

Figure 5 displays the calibrated ratio of additional gains to losses for each exploratory simu-

lated strategy over a range of threshold values for the market response following arbitrary small

aggressive orders. Using information from the A-HFTs' exploratory orders analogous to that in

ΩA, the additional gains are roughly 15% larger than the losses on exploratory orders. Whereas

the extra component of the A-HFTs' performance directly explained using ΩA represents less than

5% of A-HFTs' losses on exploratory orders, the analogous estimated performance increases more

than o�set the costs of exploration once we include the gains from avoiding unpro�table aggressive

orders. In the case of the strategy that employs information from the A-HFTs' exploratory orders

with the higher threshold, the estimated gains from exploration exceed the costs by more than

one-third.

Even after netting out the calibrated losses on exploratory orders from the better-performing

exploratory-information simulated strategy in 6.2, the simulated performance exceeds the maxi-

mum pro�tability hurdle among HFTs of $6.41 per aggressively traded contract. An almost trivial

trading strategy that incorporates exploratory trading appears to be pro�table, suggesting very

strongly that exploratory trading is at least su�cient to explain how a trader in the E-mini market

could predict price-movements with accuracy adequate to consistently pro�t on average from her

aggressive orders.

16The two strategies that incorporate exploratory information select subsets of the aggressive order placement
times generated by the public-information-only strategy. Although the selected orders tend to be more pro�table,
they are also fewer in number.
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Figure 5: Gains from A-HFT Exploratory Info Relative to Losses on Exploratory Orders
Figure 7. Gains from A-HFT Exploratory Info Relative to Losses on Exploratory Orders
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Figure 5 displays the calibrated ratio of additional gains to losses for the two exploratory simulated strategies across

a range of threshold values (in percentiles) for the market response following arbitrary small aggressive orders.

7 Discussion

7.1 Broader opportunities for exploratory gains from aggressive orders

The empirical analysis in the preceding sections focused on the information generated by the A-

HFTs' smallest aggressive orders. While these orders were the most natural starting point for

an empirical study of exploratory trading, there is no theoretical reason why these small orders

should be the sole source of exploratory information. In the baseline exploratory trading model, it

was only to highlight the key aspects of the model that I assumed the HFT's period-1 order was

expected to lose money and served no purpose other than exploration.

In principle, even aggressive orders that an A-HFT expects to be directly pro�table could

produce valuable, private, exploratory information. To investigate this possibility, I repeat the

analysis of Section 5.3 setting q̄ = 25, 30, 35, 40, 45, 50, 60, 75, 90. The A-HFTs' incremental ag-

gressive orders included with each increase of q̄ beyond q̄ = 20 are directly pro�table on average,

and yet the market response following these orders still provides signi�cantly more additional ex-

planatory power for the A-HFTs' performance on larger aggressive orders than it provides for that

of other traders. See Figure 6, and see Table 4 for numeric results.

These results have the interesting implication that the A-HFTs enjoy natural and almost

inevitable economies of scale�simply by being in the market and engaging in lots of aggressive
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Figure 6: Di�erence in Additional Earnings Explained by Exploratory Information
Figure 8. [A-HFT Addt'l Explained] - [Everyone Else Addt'l Explained]  (95%  Conf. Bands)
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Figure 6 is just an extended version of Figure 2, extended to larger values of q̄. It depicts the di�erence for A-HFTs

vs. for everyone else of the additional earnings per contract explained by exploratory information. For a given

A-HFT, and the corresponding �everyone else,� I �nd the additional earnings per contract explained by (12) beyond

what is explained by (11), and I compute the di�erence between the average for the A-HFT, and the average for

everyone else. Estimates were run for each individual A-HFT, and the displayed solid line displays cross-sectional

averages of these individual estimates (with 95% con�dence bands in dotted lines). The horizontal axis speci�es

the cuto�, q̄, for the maximum size of order de�ned to be �small� when estimating (12) and (11).
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trading, they automatically generate lots of valuable, private information. Other, more obvious

economies of scale and scope likely exist for high-frequency traders (e.g., tiered trading costs,

applicability of similar algorithms across di�erent markets), but the economies of scale arising from

exploratory information appear to be new. The impressive performance of the extremely simple

simulated strategies in Section 6 casts doubt on the standard fallback of �intellectual capital� as a

barrier to entry. Although the A-HFTs earn positive pro�ts on average, their marginal pro�ts need

not be strictly positive, so there may be no incentive for new A-HFTs to enter. However, should

the structure of the A-HFT industry indicate the existence of some barriers to entry, the A-HFTs'

apparent economies of scale could potentially act as one such barrier. Industrial organization of

high-frequency trading entities is an intriguing open area for future investigation, but detailed

treatment lies beyond the scope of this paper.

7.2 Speed and exploratory trading

Evidence in this paper provides empirical justi�cation for using the exploratory trading model

to draw conclusions about real-world high-frequency trading. Further analysis of the exploratory

trading model reveals natural connections between exploration and two important concepts of

speed. These connections in turn help to illuminate the role that the two types of speed play in

high-frequency trading. More importantly, although questions of speed arise most commonly in

the context of high-frequency trading, the implications below are applicable much more broadly.

7.2.1 Low latency

One common measure of trading speed is latency�the amount of time required for messages to be

processed and pass back and forth between a trader and the market. While low-latency operation

and high-frequency trading are not equivalent, minimal latency is nonetheless a hallmark of high-

frequency traders. HFTs can certainly react and communicate faster than some other market

participants, but analogous di�erences in the relative reaction speed of various traders long predate

high-frequency trading. For a trader who can identify pro�table trading opportunities, there is

obvious value to possessing latency low enough to take advantage of these opportunities before

they disappear. The new insight from the exploratory trading model concerns the more subtle
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matter of how low latency connects to the identi�cation of such opportunities, that is, why it

might matter for latency to be low in absolute terms.

In the model of exploratory trading developed in Section 2, the HFT's inference about the

liquidity state, Λ, on the basis of market activity following his aggressive order in period 1 implicitly

depends on a notion related to latency. If we suppose that random noise perturbs the order

book, say according to a Poisson arrival process, then the amount of noise present in the HFT's

observation of the market response in some interval following his aggressive order will depend on

the duration of that interval. The duration of this interval will depend in large part upon the rate

at which market data is collected and disseminated to the HFT, that is, the �temporal resolution�

of the HFT's data. Although this temporal resolution does not directly depend on the HFT's

latency, the temporal resolution of the HFT's market information does implicitly constrain how

quickly the HFT can learn about market events.

The �ner temporal resolution required for low-latency operation enables low-latency traders to

obtain meaningful�and empirically valuable�information about the market activity immediately

following their aggressive orders, and this information degrades at coarser temporal resolutions.

The empirical results from Section 5.3.4 provide a concrete illustration of this e�ect. The changes

in resting depth immediately following an arbitrary aggressive order are less useful for forecasting

price movements than are the analogous changes following an A-HFT's aggressive order, but

the two can only be distinguished (by the A-HFT) in data with a su�cient level of temporal

disaggregation.

7.2.2 High frequency

Exploratory trading bears a natural relationship to the practice of placing large numbers of ag-

gressive orders�what might be considered �high-frequency trading� in the most literal sense.

Any exploratory information generated by a given aggressive order is only valuable to the

extent that it can be used to improve subsequent trading performance. Because exploratory

information remains relevant for only some �nite period, the value of exploratory information

diminishes as the average interval between a trader's orders lengthens. The exploratory trading

model readily captures this e�ect if we relax the simplifying assumption that the liquidity state
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Λ remains the same between periods 1 and 2. Suppose that Λ evolves according to a Markov

process, such that with probability τ , a second Λ is drawn in period 2 (from the same distribution

as in period 1), and with probability 1 − τ , the original value from period 1 persists in period 2.

Intuitively, τ parametrizes the length of period 1, and this length increases from zero to in�nity as

τ increases from zero to unity. As τ tends towards unity�i.e., as the length of period 1 increases to

in�nity�the liquidity state in period 1 becomes progressively less informative about the liquidity

state in period 2.

As discussed in Section 7.1, both theory and empirical evidence suggest that almost any aggres-

sive order that a trader places generates some amount of exploratory information. Consequently,

as a trader places aggressive orders in greater numbers, he will gain access to greater amounts

of exploratory information. Furthermore, the average time interval between a trader's aggressive

orders necessarily shrinks as the number of those orders grows, so the exploratory information

produced by each order tends to become more valuable to the trader. These synergistic e�ects

dramatically magnify the potential gains from exploratory information for traders who place large

numbers of aggressive orders.

8 Conclusion

This paper presents empirical evidence that HFTs use exploratory trading to obtain part of the

superior information that enables them, among other things, to pro�tably predict price movements.

In particular, these results demonstrate that HFTs do not obtain their informational advantage

purely by reacting to public information milliseconds or microseconds sooner than other traders.

Speed matters immensely, but by no means does it matter exclusively.

The theory of exploratory trading introduced in this paper sheds light on a number of issues

related to HFTs, but it leaves many standing questions unresolved, and indeed, it raises several

new questions. For example, exploratory trading could be considered a form of costly information

acquisition (albeit an unusual one) which raises at least the possibility that HFTs uniquely con-

tribute to the process of e�cient price discovery. However, unlike traditional costly information

acquisition, exploratory trading does not generate information that relates directly to the traded

asset's fundamental value, but that pertains rather to unobservable aspects of market conditions
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that could eventually become public, ex-post, through ordinary market interactions. Furthermore,

because exploratory trading operates through the market mechanism itself, exploration exerts di-

rect e�ects on the market, distinct from the subsequent e�ects of the information that it generates.

Comprehensive analysis of the myriad theoretical and empirical aspects of such issues lies beyond

the scope of this paper, but the theory and evidence presented herein provide a starting point

from which to more rigorously address the market-quality implications of high-frequency trading

going forward.
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A Exploratory trading model details

This appendix presents the full details of solving the models of Section 2.

A.1 Solving the baseline exploratory trading model (leading case)

A.1.1 Solving for the HFT's optimal trading strategy

When α > u, the HFT will never place an order in period 2 if he doesn't know the liquidity state,

and I focus on this case initially to provide a more intuitive exposition; results are qualitatively

unchanged for u ≥ α, but for completeness, I analyze the general case in the next subsection.

I solve for the HFT's optimal trading strategy via backward induction.

Period 2 If the HFT learned the liquidity state during period 1, his optimal aggressive order in

period 2 will depend on the values of both ϕ and Λ. The HFT's optimal strategy when he knows

Λ is to set q2 = ϕN if Λ = U , and to set q2 = 0 if Λ = A . Taking expectations with respect to ϕ

and then Λ, we �nd

E [π2|Λ known] = Nv (1− α)∗ u+ 0∗ (1− u) (14)

= Nvu (1− α)

If the HFT did not learn the liquidity state during period 1, his (constrained) optimal aggressive

order in period 2 will still depend on the value of ϕ, but it will only depend on the distribution of

Λ, rather that the actual value of Λ. The HFT's optimal strategy when he does not know Λ is to

set q2 = ϕN when u ≥ α, and to set q2 = 0 when α > u. I assumed for simplicity that α > u, so

E [π2|Λ unknown] = 0 (15)

Period 1 At the start of period 1, the HFT knows neither ϕ nor Λ, but he faces the same trading

costs (α per contract) as in period 2. Consequently, the HFT's expected direct trading pro�ts

from a period-1 aggressive order are negative, given by

E [π1] = −α |q1| (16)
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Since there is no noise in this baseline model, and the HFT learns Λ perfectly from any aggressive

order that he places in the �rst period, we can restrict attention to the cases of q1 = 0 and |q1| = 1.

We obtain the following expression for the di�erence in the HFT's total expected pro�ts if he

sets |q1| = 1 instead of q1 = 0:

E [πtotal| |q1| = 1]− E [πtotal|q1 = 0] = Nvu (1− α)− α (17)

The HFT engages in exploratory trading if he sets |q1| = 1, and he does not engage in exploratory

trading if he sets q1 = 0, so equation (17) represents the expected net gain from exploration.

Exploratory trading is optimal for the HFT when this expected net gain is positive.

A.2 Solving the baseline exploratory trading model (general case)

Let st denote the sign of qt.

A.2.1 Solving the model: period 2

If ϕ = 0, the HFT's optimal choice is to not submit an aggressive order in period 2, or equivalently,

to set |q2| = 0. If ϕ 6= 0, then it is optimal for the HFT to set s2 = ϕ (unless the optimal |q2| is

zero), so we only need to determine the optimal magnitude, |q2| . Because π2 is linear in |q2| when

s2 is held �xed, we can restrict attention to corner solutions (0 or N) for the optimal choice of |q2|

without loss of generality. Note that if q2 = 0, then π2 = 0, regardless of the values of ϕ and Λ.

Suppose that the HFT sets |q2| = N . Without loss of generality, assume that s2 = ϕ 6= 0. The

HFT's period-2 pro�ts are given by

π̃2 =


N (1− α) if Λ = U

−Nα if Λ = A

(18)

where the tilde on π̃2 denotes the fact that the HFT's choice of q2 does not condition on the value

of Λ.
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HFT does not know Λ If the HFT does not know the value of Λ, then in the case where ϕ 6= 0,

the HFT's expected period-2 pro�t if he sets |q2| = N is

E [π̃2|ϕ 6= 0, |q2| = N ] = uN (1− α)− (1− u)Nα (19)

= (u− α)N

Taking expectations with respect to ϕ, we �nd that the ex-ante expectation of π̃2 when the HFT

sets |q2| = N (and s2 = ϕ) is given by

E [π̃2| |q2| = N ] = v (u− α)N (20)

When u − α < 0, if the HFT did not know Λ, he would set q2 = 0 rather than |q2| = N . Hence

the ex-ante expectation of π̃2 is

E [π̃2] = max {v (u− α)N, 0} (21)

HFT knows Λ Next, if the HFT does know the value of Λ, then he will set |q2| = N (and

s2 = ϕ) only when Λ = U and ϕ 6= 0. Denoting the HFT's period-2 pro�ts from this strategy by

π̂2, we �nd

E [π̂2|ϕ 6= 0] = u (1− α)N (22)

= (u− α)N + α (1− u)N

E [π̂2] = vu (1− α)N (23)

= v (u− α)N + vα (1− u)N

Note that

E [π̂2] > max {v (u− α)N, 0} (24)

so the HFT's expected period-2 pro�ts are strictly greater when he knows Λ than when he doesn't

know Λ.
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A.2.2 Solving the model: period 1

At the start of period 1, the HFT knows neither ϕ nor Λ, but he faces the same trading costs, α,

as he does in period 2. Consequently, the HFT's expected direct trading pro�ts from a period-1

aggressive order are negative:

E [π1|q1] = E [|q1| (s1y − α) |s1, q1] (25)

= |q1| s1E [y]− α |q1|

= −α |q1|

The second equality relies on the assumptions that ϕ and Λ (and hence y) are independent of s1

and q1, while the �nal equality uses the fact that E [y] = 0.

Since there is no noise in this baseline model, the HFT learns Λ perfectly from any aggressive

order that he places in the �rst period with |q1| ≥ 1. An aggressive order of size greater than one

yields no more information about Λ than a one-contract aggressive order in this setting, but the

larger aggressive order incurs additional expected losses. Thus without loss of generality, we can

restrict attention to the case of q1 = 0 and the case of |q1| = 1.

If the HFT sets q1 = 0, he neither learns Λ nor incurs any direct losses in period 1, so his total

expected pro�ts are simply

E [πtotal|q1 = 0] = E [π̃2] (26)

= max {v (u− α)N, 0}

Alternatively, if the HFT sets |q1| = 1, his total expected pro�ts are given by

E [πtotal| |q1| = 1] = −α |q1|+ E [π̂2] (27)

= vu (1− α)N − α
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A.2.3 Comparative statics for model parameters

Recall that when the exogenous aggressive order-�ow is described by ϕ = 0, the HFT does not have

any pro�table period-2 trading opportunities in either liquidity state. The probability that ϕ 6= 0,

given by the parameter v, represents the extent to which the exogenous aggressive order-�ow is

predictable. To characterize how various parameters a�ect the viability of exploratory trading, I

consider the minimal value of v for which the HFT �nds it optimal to engage in period-1 (i.e.,

exploratory) trading. Denoting this minimal value by v, we have

v =
(α
u

) 1

(1− α)N
(28)

The closer is v to 0, the more conducive are conditions to exploratory trading, and by inspection,

∂v
∂α > 0, ∂v

∂N < 0 and ∂v
∂u < 0.

The above results are intuitive. First, higher trading costs (α) tend to discourage exploratory

trading. Second, when the HFT can use exploratory information to guide larger orders, the gains

from exploration are magni�ed, so larger values of N tend to promote exploratory trading. Finally

exploratory trading becomes less viable when u is smaller. The HFT will take the same action in

period 2 when he knows that Λ = A as when he doesn't know Λ, so when u is small, knowledge of

the liquidity state is less valuable because it is less likely to change the HFT's period-2 actions.17

A.3 Solving the model of Section 2.4

A.3.1 Formalizing the intuitive argument

To make more rigorous the intuitive explanation of why the HFT could learn from the market

response to his own orders than he could from the market response to an order placed by someone

else, consider a variant of the baseline model from Section 2.2, in which now someone other than the

HFT places an aggressive order at the beginning of period 1. With probability ρ, this aggressive

order is the result of an unobservable informational shock, and resting depth further depletes

following the order, regardless of the liquidity state Λ. Otherwise (with probability 1− ρ) resting
17When u > α, the HFT will take the same action in period 2 when he knows that Λ = U as when he doesn't

know Λ, so knowledge of the liquidity state is less likely to change the HFT's period-2 actions when u is large. In
the case of u > α, equation (28) becomes v = 1

(1−u)N
, and exploratory trading indeed becomes less viable as u

approaches 1.

54



depth further depletes after the order if and only if the liquidity state is unaccommodating. Aside

from this new aggressive order, all other aspects of the baseline model remain unchanged.

If the HFT places an aggressive order in period 1, his expected total pro�ts are the same as

they were in the baseline model, i.e.,

E [πtotal| |q1| = 1] = Nvu (1− α)− α (29)

However, the HFT's expected pro�ts if he does not place an order in period 1 are now higher

than they were in the baseline model, because the HFT learns something from the depth changes

following the other trader's aggressive order. If resting depth weakly replenishes after that order,

the HFT learns with certainty that the liquidity state is accommodating (i.e., Λ = A), so the HFT

will not submit an aggressive order in period 2, and his total pro�ts will be zero. Alternatively, if

resting depth further depletes following the aggressive order in period 1 (denote this event by g1),

we have

P {Λ = U |g1} =
P {Λ = U, and g1}

P {g1}
(30)

=
P {g1|Λ = U}P {Λ = U}

P {g1|Λ = U}P {Λ = U}+ P {g1|Λ = A}P {Λ = A}

=
1 ∗ P {Λ = U}

1 ∗ P {Λ = U}+ ρ ∗ P {Λ = A}

=
u

u+ ρ (1− u)
(31)

The HFT's optimal strategy when he does not know Λ is to set q2 = ϕN when u
u+ρ(1−u) ≥ α, and

to set q2 = 0 otherwise. Taking expectations with respect to Λ and ϕ, we �nd that the HFT's

ex-ante expected total pro�ts in this case are given by

E [πtotal|AO by someone else] = max

{
Nv

(
u

u+ ρ (1− u)
− α

)
, 0

}
(32)

The features of the baseline model discussed in Section 2.3 are qualitatively unchanged in the

modi�ed version, but now the �privacy� parameter ρ also exerts an in�uence. In the limiting
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case where the depth change following an aggressive order placed by someone else is completely

uninformative to the HFT (i.e., ρ = 1), equation (32) collapses down to equation (15) from the

baseline model. At the opposite extreme, when the HFT learns the liquidity state perfectly from

observing another trader's aggressive order (i.e., ρ = 0), the HFT's expected total pro�ts are

unambiguously lower if he places an aggressive order in period 1 himself. When the HFT can

learn more about the liquidity state through mere observation, as he can when ρ is smaller, he has

less incentive to incur the direct costs of exploratory trading.
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B Measuring Aggressive Orders' Pro�tability

Calculating round-trip pro�ts using a FIFO or LIFO approach is not a useful way to measure

the pro�tability of individual aggressive orders. Even the most aggressive HFTs engage in some

passive trading, so a FIFO/LIFO-round-trip measure would either confound aggressive trades with

passive trades, or require some arbitrary assumption to distinguish between inventory acquired

passively and inventory acquired aggressively (on top of the already-arbitrary assumption of FIFO

or LIFO). A second, more general problem is that a measurement scheme based on inventory

round-trips will always combine at least two orders (an entry and an exit), so such measurement

schemes do not actually measure the pro�tability of individual aggressive orders.

In this appendix, I provide rigorous justi�cation for the claim that the average expected pro�t

from an aggressive order in the E-mini market equals the expected favorable price movement,

minus trading/clearing fees and half the bid-ask spread. After presenting the formal proof, I

discuss details of empirically estimating expected favorable price movement.

B.1 Preliminaries

Trading/clearing fees apply equally to both passively and aggressively traded E-mini contracts,

so to simplify the exposition, I will initially ignore these fees. Similarly, I make the simplifying

assumption that the bid-ask spread is constant, and identically equal to one tick; for the E-mini

market, this assumption entails minimal loss of generality.

In the E-mini market, the pro�tability of individual aggressive orders can be considered in

isolation from passive orders. Because E-mini contracts can be created directly by buyers and

sellers, a trader's net inventory position does not constrain his ability to participate in a given

trade18. As long as he can �nd a buyer, a trader who wishes to sell an E-mini contract can always

do so, regardless of whether he has a preexisting long position. More generally, if a trader enters

a position aggressively then exits it passively, he could have conducted the passive transaction

even if he hadn't engaged in the preceding aggressive transaction. While a desire to dispose of

passively-acquired inventory might motivate a trader to submit an aggressive order, the question

18The one exception would arise in the extremely rare event that a trader who did not qualify for a position-limit
exemption held so many contracts (either long or short) that his inventory after the trade would exceed the position
limit of 100, 000 E-mini contracts. For HFTs, this minor exception can safely be ignored.
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of underlying motivation is distinct from the question of whether the aggressive order was directly

pro�table.

B.2 Formal Argument

With these preliminaries established, I turn to the rigorous argument. Consider a trader who

executes J aggressive sell orders of size one, and J aggressive buy orders of size one, for some large

J . Following the remarks above, the trader's passive transactions can be ignored. Let the average

direction-normalized price change after these aggressive orders be ϑ̃ ≡ ϑ
(

2J
2J−1

)
ticks for some ϑ

that does not depend on J .

First, suppose that the trader always submits an aggressive sell after an aggressive buy, and

always submits an aggressive buy after an aggressive sell. Without loss of generality, assume that

the trader's �rst aggressive order is a buy. The trader's combined pro�t from all 2J aggressive

orders is

π2J = −a1 + b2 − a3 + b4 − . . .− a2J−1 + b2J (33)

= −a1 + (a2 − 1)− a3 + (a4 − 1)− . . .− a2J−1 + (a2J − 1) (34)

= −a1 + a2 − a3 + a4 − . . .− a2J−1 + a2J − J (35)

= −a1 + (a1 + ζb,1)− (a2 + ζs,2) + (a3 + ζb,2)− . . . (36)

. . .− (a2J−2 + ζs,J) + (a2J−1 + ζb,J)− J

=

J∑
i=1

(a2i−1 + ζb,i)−
J∑
j=2

(a2j−2 + ζs,j)− a1 − J (37)

=

J∑
i=1

a2i−1 −

a1 +
J−1∑
j=1

a2j

+
J∑
i=1

ζb,i −
J∑
j=2

ζs,j − J (38)

where ak and bk respectively denote the prevailing best ask and best bid at the time the kth

aggressive order executes, ζb,r denotes the change in midpoint price following the rth aggressive

buy order, and ζs,r denotes the change in midpoint price following the rth aggressive sell order.

Note that ϑ ≡ 1
2J

(∑J
r=1 ζb,r +

∑J
r=1 (−ζs,r)

)
.

Next, taking expectations, we �nd

62



E [π2J ] =

J∑
i=1

E [a2i−1]−

E [a1] +

J−1∑
j=1

E [a2j ]

 (39)

+

J∑
i=1

E [ζb,i]−
J∑
j=2

E [ζs,j ]− J

= JE [a1]− E [a1]− (J − 1)E [a1] + JE
[
ϑ̃
]
− (J − 1)

(
−E

[
ϑ̃
])
− J (40)

= (2J − 1)E
[
ϑ̃
]
− J (41)

= (2J − 1)

(
E [ϑ]

2J

2J − 1

)
− J (42)

= J (2E [ϑ]− 1) (43)

where the second equality uses the assumption that midpoint prices follow a martingale with

respect to their natural �ltration, together with the assumption of a constant bid-ask spread.

From the �nal equality above, it follows immediately that the trader's average expected pro�t on

an individual aggressive order is given by

1

2J
E [π2J ] = E [ϑ]− 1

2
(44)

Finally, note that none of the calculations above relied on the assumption that the aggressive orders

alternated between buys and sells (this only simpli�ed the notation). It follows immediately from

grouping together multiple aggressive orders of the same sign that the result would hold for orders

of varying sizes, provided that the overall aggressive buy and aggressive sell volumes were equal.

Under the usual regularity conditions, as J →∞, ϑ̃→A.S. limJ→∞ E
[
ϑ̃
]

= E [ϑ]. �

B.3 Obtaining Unbiased Estimates

Recall that the discussion in section 4.1 implied that we can estimate the pro�tability of an

HFT's aggressive order using the (direction-normalized) accumulated price-changes following that

aggressive order out to some time past the HFT's maximum forecasting horizon. If we choose

too short an accumulation window, the resulting estimates of the long-run direction-normalized

average price changes following an HFT's aggressive orders will be biased downward. This enables
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us to empirically determine an adequate accumulation period by calculating cumulative direction-

normalized price changes over longer and longer windows until their mean ceases to signi�cantly

increase

Market activity varies considerably in its intensity throughout a trading day, so event-time,

which I measure in terms of aggressive order arrivals, provides a more uniform standard for tempo-

ral measurements than does clock-time. Empirically, an accumulation period of about 30 aggressive

orders su�ces to obtain unbiased estimates of the price movement following an HFT's aggressive

order, but I consider results for an accumulation period of 50 aggressive orders to allow a wide

margin for error. The mean direction-normalized price changes following individual HFTs' ag-

gressive orders does not di�er signi�cantly for accumulation periods of 50, 200, or 500 aggressive

orders, even if we distinguish aggressive orders by size. The same holds true for aggressive orders

placed by non-HFTs. Using too long an accumulation period will not bias the estimates, but it

will introduce unnecessary noise, so I opt for an accumulation period of 50 aggressive orders.

As I discuss at greater length in section C.1, future price movements are moderately predictable

from past aggressive order �ow and order book activity, but only at very short horizons. Of the

variables that meaningfully forecast future price changes, the direction of aggressive order �ow

is by far the most persistent, but even its forecasting power diminishes to nonexistence for price

movements more than either about 12 aggressive orders or 200 milliseconds in the future. The

adequacy of a 30+ aggressive order accumulation period is entirely consistent with these results.

As a simple empirical check on the validity of direction-normalized cumulative price changes

as a proxy for the pro�tability of aggressive orders, I use each HFT's explicit overall pro�ts and

passive trading volume, together with the pro�ts on aggressive orders as measured by the proxy,

to back out the HFT's implicit pro�t on each passively traded contract. The resulting estimates of

HFTs' respective pro�ts from passive transactions are all plausible from a theoretical perspective,

and are comparable to non-HFTs' implicit performance on passive trades.
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C Benchmark Regression Results

C.1 Variables that Forecast Price Movements

Bid-ask bounce notwithstanding, the price at which aggressive orders execute changes rather

infrequently in the E-mini market. On average, only about 1− 3% of aggressive buy (sell) orders

execute at a �nal price di�erent from the last price at which the previous aggressive buy (sell)

order executed, and the price changes that do occur are almost completely unpredictable on the

basis of past price changes. However, several other variables forecast price innovations surprisingly

well.

In contrast to price innovations, the direction of aggressive order-�ow in the E-mini market

is extremely persistent and predictable. On average, the probability that the next aggressive

order will be a buy (sell) given that the previous aggressive order was a buy (sell) is around

75%. In addition to forecasting the direction of future aggressive order-�ow, the direction of

past aggressive order-�ow also forecasts future price innovations to statistically and economically

signi�cant extent, and forecasts based on past aggressive order signs alone are moderately improved

by information about the (signed) quantities of past aggressive orders. Simple measures of recent

changes in the order book o�er further, yet modest, improvement in price forecasts.

The levels of resting depth in the order book, in addition to the changes in resting depth, also

improve price forecasts slightly, but these stock variables cannot be reliably recovered in much

of my data-set because a small number of modi�cation messages (around 2 − 4%) are missing.

These occasional missing modi�cations introduce only transient noise into �ow variables such as

changes in resting depth, but they have permanent e�ects on the corresponding stock variables.

Fortunately, omitting resting-depth stock variables from the direct tests of the exploratory trading

model's predictions in section 5 is harmless. These tests use the explanatory variables in the

benchmark regression (45) only as an empirical analogue of ϕ, the signal of future aggressive

order-�ow in the exploratory trading model. Thus the tests require only that the benchmark

explanatory variables o�er some predictive power, not that those variables control for all public

information (I control for public information by other means, discussed in section 5).
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C.2 Econometric Benchmark

For each trading day in my sample, I regress the cumulative price-change (in dollars) between the

aggressive orders k and k + 50, denoted yk, on lagged market variables suggested by the remarks

in section C.1. Speci�cally, I regress yk on the changes in resting depth between aggressive orders

k − 1 and k at each of the six price levels within two ticks of the best bid or best ask, the signs

of aggressive orders k − 1 through k − 4, and the signed executed quantities of aggressive orders

k − 1 through k − 4. For symmetry, I adopt the convention that sell depth is negative and buy

depth is positive, so that an increase in buy depth has the same sign as a decrease in sell depth.

Denoting the row vector of the 14 regressors by zk−1, and a column vector of 14 coe�cients by Γ,

I estimate the equation

yk = zk−1Γ + εk (45)

:= γ1d
1
k−1 + . . .+ γ6d

6
k−1 + (46)

γ7signk−1 + . . .+ γ10signk−4 +

γ11qk−1 + . . .+ γ14qk−4 + εk

Table 3 summarizes the estimates from the regression above, computed over my entire sample. All

of the variables are antisymmetrical for buys and sells, and so have means extremely close to zero,

but the mean magnitudes in the rightmost column of Table 3 provide some context for scale.
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Table 5: Estimates from Benchmark Regression

Coe�cient (×1000) Robust t-Statistic Variable Avg. Magnitude

dbest bid−2
k−1 -0.90 -1.02 4.13

dbest bid−1
k−1 -2.08 -4.29 10.8

dbest bidk−1 1.13 4.94 23.1

dbest askk−1 1.11 4.97 23.4

dbest ask+1
k−1 -2.03 -4.24 11.2

dbest ask+2
k−1 -1.60 -1.90 4.44

signk−1 1186 33.3 1

signk−2 753 20.2 1

signk−3 544 14.6 1

signk−4 472 13.4 1

qk−1 4.09 9.29 12.6

qk−2 2.66 6.59 12.6

qk−3 1.85 4.66 12.6

qk−4 1.16 2.98 12.6

Comparable results obtain using as few as two lags of aggressive order sign and signed quantity.

Linear forecasts of yk do not bene�t appreciably from the inclusion of data on aggressive orders

before k−4, or on changes in resting depth prior to aggressive order k−1. Because the price-change

yk is not normalized by the sign of the kth aggressive order, it has an expected value of zero, so I

do not include a constant term in the regression. Including a constant term in the regression has

negligible e�ect on the results.

Although the last several aggressive order signs do o�er rather remarkable explanatory power,

the respective distributions of resting depth changes and executed aggressive order quantities have

much heavier tails than the distribution of order sign, so price forecasts are meaningfully improved

by the inclusion of these variables.

The positive coe�cients on the lagged aggressive order variables and on the depth changes at
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the best bid and best ask are consistent with the general intuition that buy orders portend price

increases, and sell orders portend price decreases. The negative coe�cients on depth changes at

the outside price levels require slightly more explanation.

Because the E-mini market operates according to strict price and time priority, a trader who

seeks priority execution of his passive order will generally place that order at the best bid (or best

ask); however, if the trader believes that an adverse price movement is imminent, he will place

his order at the price level that he expects to be the best bid (ask) following the price change. It

is relatively uncommon for prices to change immediately after an aggressive order in the E-mini

market, but when prices do change, it is extremely rare during regular trading hours for the change

to exceed one tick. As a result, the expected best bid (ask) following a price change is typically

one tick away from the previous best, so it is not surprising that (e.g.) an increase in resting

depth one tick below the best bid tends to precede a downward price change. These features of

the E-mini market also shed some light on why changes in depth more than one tick away from

the best (i.e., dbest bid−2
k−1 and dbest ask+2

k−1 ) are not signi�cant predictors of future price movements.
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D Supplemental Tables of Empirical Results
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