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Abstract

We study the design of optimal unemployment insurance in an environment with

moral hazard and cyclical fluctuations. The optimal unemployment insurance contract

balances the insurance motive to provide consumption for the unemployed with the

provision of incentives to search for a job. This balance is affected by aggregate condi-

tions, as recessions are characterized by reductions in job finding rates. We show how

benefits should vary with aggregate conditions in an optimal contract. In a special case

of the model, the optimal contract can be solved in closed form. We show how this

contract can be implemented in a rather simple way: by allowing unemployed workers

to borrow and save in a bond (whose return depends on the state of the economy), pro-

viding flow payments which are constant over an unemployment spell but vary with the

aggregate state, and giving additional lump sum payments (or charges) upon finding a

job or when the aggregate state switches. We then consider a calibrated version of the

model and study the quantitative impact of changing from the current unemployment

system to the optimal one. In a recession, the optimal system reduces unemployment

rates by roughly 2.5 percentage points and shortens the duration of unemployment by

about 50%.

1 Introduction

In the United States, unemployment insurance is implemented at the state level, with a

typical program providing 26 weeks of benefits, at a level determined as a fraction of previ-
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ous earnings (the replacement rate) up to a cap. However in times of recession, the federal

government has typically provided extended unemployment benefits which kick in once state

benefits are exhausted. During the most recent recession, these extensions happened in sev-

eral rounds. In June 2008 Congress instituted the Emergency Unemployment Compensation

program. This provided an additional 34 weeks of benefits to all states (in two tiers), a

third tier providing a further 13 weeks for states with a 3-month average unemployment rate

of 6% or greater, and a fourth tier with an additional 6 weeks for states with a 3-month

average unemployment rate of 8.5% or greater.1 Then in 2009, a federal-state Extended

Benefits program was passed (and extended in July 2010), which provided an additional 20

weeks by essentially adding 13 weeks to tier three and 7 weeks to tier four. Thus in high

unemployment states, benefits were provided for a maximum of 99 weeks. It is intuitive

that unemployment insurance should change with changes in the labor market, as economic

slowdowns naturally lead to longer unemployment spells. However the observed pattern of

extensions and the threshold unemployment rates of the different tiers are rather arbitrary,

and the whole program has been subject to uncertainties in its implementation. In this pa-

per, we study the design of optimal unemployment insurance when the economy experiences

cyclical fluctuations in job finding and job loss rates.

In particular, we build on previous work by Shavell and Weiss [1979] and Hopenhayn

and Nicolini [1997], who studied optimal unemployment insurance with moral hazard.2 As

in their papers, a risk averse unemployed worker puts forth effort to search for a new job,

with effort increasing the likelihood of finding a job, but being costly in utility terms. A risk-

neutral unemployment agency provides unemployment benefits to help the worker smooth

his consumption over the unemployment spell, and seeks to minimize the cost of providing

a given level of expected utility to the worker. However the agency cannot observe the level

of search effort, and so must structure the benefits in order to provide appropriate search

incentives.

Our model adds business cycle fluctuations by having the job finding rate switch according

to an exogenous Markov process. When the economy enters a recession state, job finding

rates fall for all levels of search effort, while finding rates rise once the recession ends. We

also allow for changes in job loss rates over the business cycle, although the recent literature

such as Shimer [2012] has suggested that these may be less important. We analyze how

the cyclical fluctuations affect the optimal level and duration of benefits provided over an

unemployment spell, and how those benefits change when the aggregate state of the economy

changes. We also compare the optimal unemployment program with a version of the current

1The information on the unemployment programs comes from the Department of Labor website,

http://ows.doleta.gov/unemploy.
2He [2012] develops a related continuous time model of management compensation.
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system to evaluate potential gains from reform.

Similar issues have been addressed recently in the literature. However ours is the most

complete analysis of the optimal contracting problem in unemployment insurance design,

which complements some of the recent work which is more applied and empirical. Hopen-

hayan and Nicolini [2001] considered the impact of cyclical changes like ours in a two-period

model. A similar discrete time model was analyzed by Sanchez [2008], who showed that bene-

fits decrease faster in booms than recessions. However he did not characterize the differences

in benefit levels across states. Kroft and Notowidigdo [2011] analyze how unemployment

benefits (but not durations) should vary in a related job search model. Landais et al. [2012]

study a general equilibrium matching model with search effort and focus on characterizing

the optimal benefit level over the cycle. They also consider an extension where benefits ex-

pire. Mitman and Rabinovich [2013] consider the cyclical behavior of unemployment benefits

in a Diamond-Mortensen-Pissarides model where business cycles are driven by productivity

shocks.

After laying out the model, we turn to a special case which yields an explicit solution.

Here we assume that workers have exponential utility and the unemployment insurance

agency has an exponential cost function. This case allows us to contrast in a simple way how

the information frictions affect the insurance system, as we contrast the optimal system under

moral hazard with one where job search effort is observable. As in the previous literature, we

show that consumption declines over an unemployment spell, and the consumption that the

agent would obtain upon finding a job also decreases the longer he is unemployed. Our results

also illustrate how the contract varies over the business cycle, with the resulting variations

in search effort and consumption. Under moral hazard, the optimal contract trades off

insurance with incentives, and this relationship varies with the business cycle. That is, in

a recession the required insurance is greater, as for a given amount of search effort the a

worker will be unemployed for a longer period of time. However the incentive problem is

also magnified, as a worker will get fewer job contacts and so generate less information.

The optimal contract resolves this tension by inducing more search effort when it is more

productive in a boom, but with a greater reward (in promised utility terms) when the worker

finds a job in a recession.

Continuing with the special case, we show how to implement the contract via relatively

simple instruments. That is, rather than a direct implementation where we equate consump-

tion and unemployment benefits, we show that the contract can be implemented by allowing

the worker to save and borrow, providing benefits which are constant in each aggregate

state, providing a re-employment bonus, and giving an additional bonus or charge when the

aggregate state changes. This implementation is similar to Werning [2002] and Shimer and

Werning [2008] who find that constant unemployment benefits are optimal in related models
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with exponential utility. Werning [2002] studies a model like ours, absent business cycle

fluctuations but allows the agent hidden savings.3 Throughout we suppose that the agent’s

wealth is observable, and one instrument in our implementation is the effective rate of return

on wealth. Allowing hidden savings would shut down this channel, as the agency could not

effectively tax (or subsidize) the agent’s wealth. Williams [2013] provides an example along

these lines in a moral hazard model. We abstract from hidden savings in order to focus di-

rectly on search incentives, and thus suppose that workers provide the unemployment agency

with access to their financial records in exchange for receiving unemployment benefits.

Shimer and Werning [2008] study a related sequential search model with unobservable

offers (but no search decisions) and exponential utility. Our implementation shares the

features that they highlight, namely the distinction between consumption and liquidity which

the insurance benefits provide. However in our environment benefits and the interest rate

on savings are constant over an unemployment spell within a given aggregate state, but vary

across states. In addition, our information friction differs. Since our contract must provide

incentives for search, it includes a re-employment bonus upon finding a job.4 Finally, when

an agent is unemployed but the aggregate state switches, we find that the agency provides

a payment (or charge) reflecting the impact of the switch on his future income. Thus our

implementation mixes elements of the current system of constant benefits, the unemployment

insurance savings accounts of Feldstein and Altman [2007], and the re-employment bonuses

which have been tried as experiments in various locations. The effects of these programs in US

states were studied by Robins and Spiegelman [2001] and OLeary et al. [2005] among others

and in Canada by Card and Hyslop [2005]. Cyclical fluctuations are new to our study, and

necessitate the additional payment when the state of the economy switches, which captures

changes in incentives and costs of insurance over the cycle.

We then turn to a quantitative version of the model to illustrate the impact of reforming

the unemployment insurance system. We calibrate the model using a stylized version of

the current system, which provides constant replacement rate of 47% for six months in a

boom and nine months in a recession. We simulate a large population of workers, and match

the cyclical behavior of job finding rates documented by Shimer [2012]. We also target

an elasticity of unemployment duration with respect to an increase in benefits between the

estimates of Meyer [1990] which has been commonly used in the literature and the more recent

findings of Kroft and Notowidigdo [2011] and Chetty [2008]. We show that the optimal

unemployment insurance contract leads to a significant increase in job finding rates and

3Mitchell and Zhang [2010] study a related model with exponential utility and hidden savings, but unlike

the monetary cost of effort here and in Werning [2002], they consider a separable utility cost. They find a

rather different optimal contract, with increasing benefits during unemployment spells.
4Pavoni [2009] finds that with duration dependence in unemployment spells it may be optimal to subsidize

the wages of the long-term unemployed.
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corresponding reduction the unemployment rate and the average duration of unemployment.

In a recession, the optimal system reduces unemployment rates by roughly 2.5 percentage

points and shortens the duration of unemployment by roughly 50%.

To gain insight on the impact of the reform of unemployment insurance in the most

recent recession, we simulate a recession seventy weeks long and compar the performance of

the benchmark current system with 39 weeks of benefits, the current system with benefits

extended to 99 weeks, and our optimal system. Under the benchmark system, unemployment

rates increase by 1.4 percentage points as the economy goes from a boom to the long recession.

However, consistent with the empirical evidence of Rothstein [2011], we find the extension

of benefits has a very small impact, increasing unemployment rates by only an additional

0.1 percentage point. However that does not imply that unemployment insurance has no

impact, as we find that under our optimal system the unemployment rate increases by only

0.4 percentage points in the recession, and throughout the recession remains 2.7 percentage

points lower than the current system.

2 The Model

In this section, we layout the model. The model is essentially a continuous time version

of Hopenhayn and Nicolini [1997] with multiple unemployment spells and business cycle

fluctuations.

2.1 The Setup

We assume that an infinitely-lived worker transits over time between employment and un-

employment. When he is in an unemployment spell, he may exert effort to find a job, with

effort being costly but increasing the arrival rate of a job. An unemployed worker does not

have any income except perhaps a minimal amount of consumption, α ≥ 0. This can be

interpreted as the consumption the agent derives from sources other than unemployment

insurance. For example Hopenhayn and Nicolini [1997] consider variants where the agent

has assets which yield a constant flow of income for consumption.5 For simplicity, we as-

sume that all jobs are identical and pay a constant wage ω. Employed workers lose their

jobs according to an exogenous separation rate.6 When employed, the worker does not take

effort. In addition, we assume that the state of the economy st switches between a good or

5Technically, with α being positive, we prevent the utility level from being −∞ if consumption is 0 when

the utility function is unbounded below.
6An extension of the model, following Wang and Williamson [1996] would incorporate costly effort to

retain the job.
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boom state (st = G) and a bad or recession state (st = B). In the good state, job finding

rates are higher and separation rates are lower.

Let at be the search effort chosen from [0, ā] by the worker at t.7 If the economy is

currently in state s and an unemployed worker puts forth search effort at, the Poisson arrival

intensity of a job offer is

qs(at) ≡ qs0 + qs1at with qs0, qs1 > 0.

To interpret this, suppose that the state does not change and the agent puts forth a constant

effort a0. Then the waiting time until a job offer arrives is an exponentially distributed

random variable with rate qs(a0). Equivalently, over a short time interval of length ∆ > 0 in

which a0 is taken, the probability that the worker gets a job is approximately qs(a0)∆. We

assume that finding rates are higher in booms for all levels of effort:

qB(â) < qG(â) for all â ∈ [0, ā].

Note that since qG(·) and qB(·) are affine, this is equivalent to qB0 < qG0 and qB0 + qB1 <

qG0 + qG1.

For simplicity, we assume that an employed worker loses his job with an exogenous

separation rate ps, where pB > pG. The aggregate state of the economy switches between

booms and recessions according to a two-state Markov switching process with switching rate

λs.

2.2 Preferences and Incentive Compatible Contracts

If the worker consumes c and takes effort a, his instantaneous utility is u(c, a) = ū(c+ α, a)

where u is strictly increasing and concave in c and strictly decreasing and convex in a with

u(c, 0) = u(c). Note that we incorporate the lower bound on consumption α ≥ 0 here and

thus require c ≥ 0. We also assume that workers die stochastically, which is governed by

an idiosyncratic Poisson process with constant arrival rate κ > 0. When the shock hits,

the worker dies, receives zero utility forever and the contract is terminated. The subjective

discount rate of the worker is ρ̂ > 0, but incorporating the death probability the effective

discount rate is ρ = ρ̂+ κ.

We assume that an insurance agency (“the principal”) provides unemployment insurance

to help the worker (“the agent”) smooth his consumption. The worker’s employment status

and the aggregate state are publicly observable, but the search effort is not observable to the

insurance agency. So moral hazard arises and the agency needs to offer an unemployment

7We set an upper bound of effort, ā, to make the maximization problem well defined. In all the examples,

ā is sufficiently large that the optimal effort is always interior.
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insurance contract which induces the worker to take appropriate search effort. A contract

is a pair of processes (c, a) ≡ ({ct}t∈[0,∞), {at}t∈[0,∞)). Specifically, c is the consumption

process with ct being the amount of instantaneous consumption promised by the contract

at t. We assume that ct ∈ [0, c̄] for all t ∈ [0,∞). We impose the upper bound c̄ as a

resource constraint on the insurance agency. The process a is the effort process with at the

instantaneous effort level suggested by the contract, with at = 0 if the worker is employed.

The contract is history dependent in the sense that ct and at depend on the entire history

of the worker’s employment status and the aggregate state up to time t. Technically, if we

denote the filtration generated by the history as {Ft}t∈[0,∞), then (c, a) is Ft-adapted.

We can now describe the worker’s utility maximization problem. Under a contract (c, a),

the true effort level is not verifiable, so the worker chooses effort to maximize his expected

utility:

max
â∈A

E â

[

ρ

∫

∞

0

e−ρtu(ct, ât)dt

]

(1)

Here, A is the set of all Ft-adapted processes with values in [0, ā]. E â[·] is the expectation

operator induced by the effort process â ∈ A. A contract is incentive compatible if and only

if a is the optimal choice in problem (1).

If the worker is unemployed, to promise consumption ct the agency needs to deliver ct to

the worker. However if he is employed, the agency needs only to deliver ct−ω. The discount

rate of the agency is also ρ̂ and so the effective rate is ρ. Although most studies of social

insurance consider a risk-neutral agency, we allow for the agency to have a cost function v

which is increasing and convex. Thus the objective of the agency is to design an insurance

contract as follows.

max
(c,a)∈C

Ea

[

−ρ

∫

∞

0

e−ρtv(ct − 1({the worker is employed})ω)dt

]

such that

(c, a) is incentive compatible

and

Ea

[

ρ

∫

∞

0

e−ρtu(ct, at)dt

]

≥ W̄ .

Here, C is the set of all feasible contracts, 1(·) is the indicator function of an event and W̄

is the reservation utility of the worker.8 The first constraint is the incentive constraint and

the second is the participation constraint. We assume that enforcement and commitment

are complete, so once the contract is signed neither party can leave it until the worker dies.

8A contract (c, a) is feasible if c and a are Ft-adapted and ct ∈ [0, c̄] and at ∈ [0, ā] for all t ∈ [0,∞).
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3 The Optimal Contract

We now derive the law of motion for the agent’s promised utility, the key endogenous state

variable in our setting. Then we derive the Hamilton-Jacobi-Bellman equations determining

the optimal contract.

3.1 The Worker’s Incentives and Promised Utility

We first show how the worker chooses his optimal search effort under a contract and how

the agency provides incentives to induce appropriate effort. Under a contract, consumption

can in general depend on the worker’s entire employment history. Thus traditional dynamic

programming methods cannot be applied directly because of the lack of a recursive structure.

Therefore, as in Sannikov [2008] and Schättler and Sung [1993], we use a martingale approach

to formulate the key incentive compatibility condition. This allows us to show that the

agent’s promised utility captures the relevant history, which in turn allows us to use recursive

methods.9 The martingale approach for controlled Markov jump process was developed by

Boel et al. [1975] and Davis [1976].

We have already defined the aggregate state st ∈ {G,B} , which we now assign the

numerical values G = 0 and B = 1. Similarly, we define jt ∈ {E,U} as the worker’s

job status, with E being employed (numerical value of one) and U unemployed (numerical

value of zero). All the information observable to the insurance agency is characterized by

the two processes j and s, which are two-state Markov jump processes with unpredictable

jumps between 0 and 1.10 The associated compensated jump martingales, {mJ
t }t∈[0,∞) and

{mS
t }t∈[0,∞), are defined as:

m
j
t =

∫ t

0

(−(1− jt̂) [(1− st̂) qG(at̂) + st̂qB(at̂)] + jt̂ [(1− st̂) pG + st̂pB]) dt̂+ jt

and

mS
t =

∫ t

0

[(1− st̂)λG + st̂pG] dt̂+ jt.

Equivalently

dmJ
t = (−(1− jt) [(1− st) qG(at) + stqB(at)] + jt [(1− st) pG + stpB]) dt+∆jt

and

dmS
t = [− (1− st)λG + jtλB] dt+∆st,

9The same results hold using a stochastic maximum principle as in Williams [2011].
10See Elliott [1982] for details on jump processes. For technical reasons, we assume that their trajectories

are right continuous.
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with ∆jt and ∆st being the indicators of job finding or loss events and switches of the

aggregate state. For example, if at date t the worker is unemployed (jt = 0) and the

economy is in a boom (st = 0), then:

dmJ
t = −qG(at)dt+∆jt.

Thus the martingale mJ
t has a negative drift but a positive jump when the worker finds a

job, so that its expectation is zero.

Given a feasible contract (c, a) and arbitrary effort process â, we define the promised

utility of the worker as

Wt ≡ E â

[

ρ

∫

∞

t

e−ρtu(ct, ât)dt|Ft

]

for t ∈ [0,∞]

which is the expected utility of the worker under the contract from date t on. We then have

the following result which is derived from a martingale representation theorem.

Proposition 1 Under a contract (c, a) ∈ C, suppose that the effort process â is chosen.

Then, there exist two Ft-predictable processes {gJt }t∈[0,∞) and {gSt }t∈[0,∞) such that

E â

[
∫

∞

0

(

e−ρtgJt
)2

dt

]

< ∞ and E â

[
∫

∞

0

(

e−ρtgSt
)2

dt

]

< ∞ (2)

and

dWt = ρ(Wt − u(ct, ât))dt+ ρgJt dm
J
t + ρgSt dm

S
t for t ∈ [0,∞]. (3)

Proof. See Appendix A.1.

Here, gJt is the sensitivity of promised utility to changes in employment status while gSt is the

sensitivity to changes in the aggregate state. In fact, the worker’s promised utility encodes

all the relevant information in the observable history. With this state variable, we can make

the model recursive and so can use dynamic programming methods.

Since search effort is costly but affects the worker’s employment status, {gJt }t∈[0,∞) governs

the incentive to take search effort. This is demonstrated by the following Proposition.

Proposition 2 Given a contract (c, a) ∈ C, suppose that {gJt }t∈[0,∞) is the process given in

Proposition 1. Then the contract is incentive compatible if and only if at any date t when

the worker is unemployed:

at ∈ arg max
ã∈[0,ā]

gJt qst(ã) + u(ct, ã) (4)

Proof. See Appendix A.2
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Thus the proposition shows that the local or instantaneous incentive constraint (4) is

sufficient to characterize full incentive compatibility. To see how the incentive constraint

captures the worker’s tradeoff between the utility cost of effort against the benefit of an

increase in promised utility, suppose that the optimal effort choice from (4) is interior. Then

we have:

gJt qst1 = −ua(ct, at)

By (3), the worker’s promised utility increases by ρgJt if he finds a job at t. Increases in

search effort make job finding more likely, and the expected marginal benefit is ρgJt qs1, which

is equated to the marginal cost −ρua(ct, at). Thus the contract provides search incentives

by increasing promised utility by gJt when an unemployed worker finds a job.

3.2 The Value Functions and the Optimal Contract

In this section, we derive the conditions the value function of the insurance agency must

satisfy, which is key to solving for the optimal contract. Define V (W, j, s) as the maximum

expected payoff the agency can attain under an incentive compatible contract which promises

utility W to the worker when his employment status is j and the current aggregate state

is s. Since j and s are binary variables, we effectively have four separate value functions

V (·, j, s) for j = e, u and s = G,B.

3.2.1 The Boundary Points of the Value Functions

As a first step in the construction of the value functions, we compute their boundary points.

The left boundary points are generated by the harshest contracts, which promise the lowest

expected utility to the worker, and the right boundary points are generated by the most

generous contracts, which promise the highest expected utility to the worker.

The left boundary points are denoted by the pairs (W js
l , V (W js

l , j, s)) with W
js
l being

the lowest expected utility that the insurance agency can promise to the worker in the four

different cases. Since the worker’s utility is strictly increasing and consumption is bounded

by α, the harshest punishment to the worker provides zero (additional) consumption when

he is unemployed and takes away all his wage income when he is employed. Under this

contract the worker has no incentive to search because his consumption is constant at α,

regardless of his employment status. His expected utility is thus constant at:

u ≡ ρ

∫

∞

0

e−ρtu(0, 0)dt = ū(α)

Under this contract, the insurance agency’s income is 0 when the worker is unemployed and

ω if he is employed. We show how to compute the agency’s expected payoff in the four cases

in Proposition 4 in the appendix.
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Symmetrically, the right boundary points are denoted (W js
r , V (W js

r , j, s)), with W js
r the

highest expected utility that the insurance agency can promise to the worker. The most gen-

erous reward to the worker is providing the maximum consumption c̄ constantly. Therefore,

the agency’s value is always −v(c̄). In an unemployment spell, the worker’s consumption is

α + c̄ and in an employment spell it is α + c̄ + ω. Therefore, the worker has incentive to

take search effort when unemployed. The details of the calculation of the worker’s expected

utility are given by Proposition 4 in the appendix.

3.2.2 The Hamilton-Jacobi-Bellman Equations

With the boundaries established, we now characterize the value functions in the interior of

their domains. We derive the Hamilton-Jacob-Bellman (HJB) equations they satisfy, which

allows us to construct the optimal contract by solving a system of differential equations.

First, it is convenient to change the control variables. Given a contract (c, a), let

{gJt }t∈[0,∞) and {gSt }t∈[0,∞) be the sensitivity processes defined in Proposition 1. By (3),

if an unemployed worker finds a job at time t then ∆jt = 1 and his promised utility jumps

up by ρgJt . Similarly, when an employed worker loses his job, ∆jt = −1 and his promised

utility falls by ρgJt . So if we define W J
t as the worker’s promised utility immediately after

the change of his job status, then:

gJt ∆jt =
W J

t −Wt

ρ
. (5)

Then we can re-write the incentive constraint (4) as:

max
â

W J
t −Wt

ρ
qs(â) + u(ct, â). (6)

Note that this incentive constraint effectively ties down one of the potential degrees of free-

dom of the contract, as a and W J as they are linked by the incentive constraint. We define

the function as(W,W J) as the unique solution of (6).

In addition, all workers experience a change in promised utility when the aggregate state

switches. By (3), promised utility jumps by ρgSt if the economy transits from boom into

recession (∆st = 1) and falls −ρgSt if the economy goes from a recession to a boom. So if

W S
t is the promised utility right after the switch in the aggregate state then

gSt ∆st =
W S

t −Wt

ρ
.

Thus we now view the agency’s instruments in designing a contract as: ct, consumption

above the minimal level; W J
t , promised utility after a change in the worker’s employment

status; and W S
t , promised utility after a change in the aggregate state.
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Since the proofs of the existence, differentiability and concavity of the value functions are

highly technical, and follow standard methods, we assume these properties without proof.

The following proposition characterizes the HJB equations that the value functions satisfy.

Proposition 3 Suppose that the value functions V (·, j, s) exist, are differentiable, and con-

cave. Then their left and right boundaries satisfy the conditions in Proposition 4(in Appendix

A.3). Furthermore, they satisfy the following set of HJB equations11:

ρV (W,u, s) = max
ĉ∈[0,c̄]

W J
∈[W es

l
,W es

r ]

WS
∈[Wus′

l
,Wus′

r ]

−ρv(ĉ) (7)

+ρVW (W,u, s)

[

W − u(ĉ, as(W,W J))− qs(a
s(W,W J))

W J −W

ρ
− λs

W S −W

ρ

]

+qs(a
s(W,W J))

(

V (W J , e, s)− V (W,u, s)
)

(8)

+λs

(

V (W S, u, s′)− V (W,u, s)
)

for any W ∈ [W us
l ,W us

r ] with s = G,B;

ρV (W, e, s) = max
ĉ∈[0,c̄]

W J
∈[Wus

l
,Wus

r ]

WS
∈[W es′

l
,W es′

r ]

−ρv(ĉ− ω) + ρVW (W, e, s)

(

W − u(ĉ)− ps
W J −W

ρ
− λs

W S −W

ρ

)

+ps
(

V (W J , u, s)− V (W, e, s)
)

+ λs

(

V (W S, e, s′)− V (W, e, s)
)

(9)

for any W ∈ [W es
l ,W es

r ] and s = G,B.

Proof. See Appendix A.4.

The HJB equations capture the expected change in the agency’s value. The first terms

summarize the instantaneous cost of providing consumption and the expected marginal cost

of the change in a the worker’s promised utility. The final two terms capture the expected

changes in costs when the worker’s employment status or aggregate state switch.

We now show how the worker’s promised utility reacts to the switches of the aggregate

state, which are out of his control. The jumps in promised utility follow the “slope matching”

rule documented in Piskorski and Tchistyi [2011] and Li [2012]. That is, the contract equates

the marginal value (to the agency) of promised utility before and after a change in the

aggregate state.

Corollary 1 Suppose that the value functions exist, are differentiable and concave. Given

the current state s, the worker’s employment status j and promised utility Wt, then W S
t the

11See Proposition 4 for notations.
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promised utility after the aggregate state switches to s′ satisfies:

W S
t =







W
js′

l if VW (Wt, j, s) ≥ VW (W js′

l , j, s′)

W js′

r if VW (Wt, j, s) ≤ VW (W js′

r , j, s′)

or else W S
t solves

VW (Wt, j, s) = VW (W S
t , j, s

′).

Proof. In each HJB equation listed in Proposition 3, Wt independently solves the following:

max
WS

−ρVW (W, j, s)λs

W S −W

ρ
+ λsV (W S, j, s′),

whose solution gives the result.

4 A Solvable Special Case

While the results above hold for general utility functions, we typically require numerical

methods to solve for the optimal contracts. In this section we consider a special case which

allows for explicit solutions. This allows us to gain insight on the structure of the optimal

contract and how consumption and effort should respond to cyclical fluctuations.

For simplicity, we focus on a single unemployment spell with permanent jobs, so we set

ps = 0 for s = G,B.12 We also assume the job finding rate is linear, qs(a) = qsa. That is,

we set q0s = 0 and we drop the subscript “1” on q1s. We also assume that both workers and

the unemployment agency have exponential preferences. Thus workers’ utility function is:

u(c, a) = − exp (−θA (c− h(a)))

where h in increasing and convex with h(0) = 0. The agency’s cost function is given by:

v(c) = exp (θP c) .

Of these special assumptions, the most important are the exponential utility and cost func-

tions, which often give explicit solutions (see Holmstrom and Milgrom [1987] and Williams

[2011], for example). Models of optimal social insurance typically consider risk neutral cost

functions for the government, as we will also do below in our quantitative study. However

the unemployment agency may well care about the variability of unemployment insurance

payments in order to making budgeting decisions. Below we will see how variation in θP ,

the agency’s coefficient of absolute risk aversion, affects the structure of the contract.

12The same form of the solution holds with ps 6= 0.
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4.1 The Value of an Employed Worker

With permanent employment, the agency’s value of an employed worker is easy to establish.

First, note that the HJB equation (9) simplifies to:

ρV (W, e, s) = max
c

−ρv(c− ω) + ρVW (W, e, s)[W − u(c)]

The optimality equation for c is thus:

−v′(c− ω) = VW (W, e, s)uc(c).

Since the worker values consumption smoothing and there is no more risk or need to

provide incentives once a worker is employed, it is easy to see that the optimal contract

provides constant consumption for an employed worker. Thus agency’s value function is

independent of the aggregate state, with promised utility simply determining how much

consumption the agency must provide. In particular, we show in Appendix B.1 that the

value function is given by:

V (W, e, s) = V (W, e) = − exp(−θPω)(−W )
−

θP
θA

and the consumption of an employed agent is:

c(W, e) = −
1

θA
log(−W ).

Thus we just invert the utility function in order to determine how much consumption is

needed to deliver the promised utility to the agent.

4.2 Full Information

Although we did not consider it above, in order to analyze the effect of moral hazard in

unemployment insurance contracts, it is useful to first analyze the case when the agent’s

effort is observable and contractible. With full information, we can simply dispense with the

incentive constraint in our analysis above. Therefore the HJB equation (8) for the value of

an unemployed worker is:

ρV (W,u, s) = max
c,a,W J ,WS

−ρv(c) + ρVW (W,u, s)

[

W − u(c, a)− qsa
W J −W

ρ
− λs

W S −W

ρ

]

+qsa[V (W J , e)− V (W,u, s)] + λs[V (W S, u, s′)− V (W,u, s)]

The optimality conditions for c and a are:

−v′(c) = VW (W,u, s)uc(c, a)

ρVW (W,u, s)

[

ua(c, a) + qs
W J −W

ρ

]

= qs[V (W J , e)− V (W,u, s)].

14



The optimality conditions for W J and W S imply the “slope matching” conditions:

VW (W,u, s) = VW (W J , e)

VW (W,u, s) = VW (W S, u, s′).

In Appendix B.2 we show that the value function for an unemployed worker takes the

same form as that for an employed worker, but with a different leading constant that depends

on the aggregate state. That is:

V (W,u, s) = −Vu(s)(−W )
−

θP
θA .

We also show that the optimal choice of effort is independent of W , that is a = ā(s). In the

appendix, we use the optimality condition for effort and the HJB equation to derive the four

equations which determine the four unknowns (ā(G), Vu(G), ā(B), Vu(B)). Our results also

imply that the optimal consumption and the adjustments in promised utility can be written:

c(W,u, s) =
log(Vu(s)) + θAh(ā(s))

θP + θA
−

1

θA
log(−W )

W J(W, s) =

(

Vu(s)

exp(−θPω)

)

−
θA

θP +θA

W

W S(W, s) =

(

Vu(s)

Vu(s′)

)

−
θA

θP+θA

W.

Thus the consumption function again inverts the utility function, but now also compen-

sates the worker for putting forth costly effort. In addition, the agency’s marginal value of

providing consumption varies with the aggregate state s through Vu(s), so that changes the

consumption delivery. Upon finding a job or having a switch in the aggregate state, there

is a multiplicative adjustment in promised utility, capturing changes in the relative costs of

providing utility to the worker.

4.3 Moral Hazard

Under moral hazard, a is no longer a free choice variable for the unemployment agency, but

instead must satisfy the incentive constraint (6). The agent’s optimality condition captures

the incentive constraint here:

−ua(c, a) = qs
W J −W

ρ
.

Above we used this relation to determine as(W,W J), but here it is easiest to solve for W J :

W J = W −
ρ

qs
ua(c, a)
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Imposing the incentive constraint, the agency’s value function for an unemployed worker

satisfies the HJB equation (8), which now can be written:

ρV (W,u, s) = max
c,a,WS

−ρv(c) + ρVW (W,u, s)

[

W − u(c, a) + aua(c, a)− λs

W S −W

ρ

]

+qsa

[

V

(

W −
ρ

qs
ua(c, a), e

)

− V (W,u, s)

]

+ λs[V (W S, u, s′)− V (W,u, s)]

The optimality condition for c is then:

−v′(c) = uc(c, a)VW (W,u, s)− auac(c, a)

[

VW (W,u, s)− VW

(

W −
ρ

qs
ua(c, a), e

)]

,

while the optimality condition for a is:

ρauaa(c, a)

[

VW (W,u, s)− VW

(

W −
ρ

qs
ua(c, a), e

)]

= qs

[

V (W,u, s)− V

(

W −
ρ

qs
ua(c, a), e

)]

.

In Appendix B.3 we show that the value function takes the same form as in the full

information case, but with different leading constants. That is:

V (W,u, s) = −V ∗(s)(−W )
−

θP
θA .

We also show that the optimal choice of effort is again independent of W : a = a∗(s) and the

consumption policy function is of the same form as in the full information case:

c(W,u, s) = c∗(s) + h(a∗(s))−
1

θA
log(−W ). (10)

The appendix shows how to determine the six constants (V ∗(s), a∗(s), c∗(s)) for s = G,B,

using the optimality conditions for c and a and the HJB equation. We also show that the

adjustments in continuation utility are again multiplicative and can be written:

W J(W,u, s) = wJ(s)W

W S(W,u, s) = wS(s)W.

The consumption function captures the same factors as under full information: delivering

utility to the agent, compensating him for putting forth effort, and reflecting variations in the

agency’s costs. However now the constant term c∗(s) also reflects the incentive effects and

the corresponding compensation for the additional employment risk the worker must bear.

The utility adjustment factor wS for the change in the aggregate state is as before, reflecting

changes in the agency’s marginal cost of providing utility. However now the adjustment term

wJ captures the incentive effects of increases in utility upon finding a job.
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Therefore under the optimal contract, promised utility when unemployed evolves as:

dWt = ρ

[

Wt − u(ct, at)− qstat
W J

t −Wt

ρ
− λst

W S
t −Wt

ρ

]

dt

+(W J
t −Wt)∆sJt + (W S

t −Wt)∆sSt

= Wt [ρ+ ρu(c∗(st))− qsta
∗(st)(wJ(st)− 1)− λst(wS(st)− 1)] dt

+Wt(wJ(st)− 1)∆sJt +Wt(wS(st)− 1)∆sSt

= Wt

[

µW (st)dt+ (wJ(st)− 1)∆sJt + (wS(st)− 1)∆sSt
]

,

where the last line defines µW . Under the contract an unemployed worker’s promised utility

grows at a constant rate in each aggregate state, and experiences proportional jumps when

the state switches or when the worker finds a job. For later use we define a new variable

X = − log(−W ), which converts promised utility to physical units. Using a generalized

version of Ito’s lemma it evolves as13:

dXt = −µW (st)dt− log(wJ(st))∆sJt − log(wS(st))∆sSt .

In our implementation below Xt will be tied to the worker’s wealth.

4.4 Illustration

Figure 1 illustrates the dynamics of the contract over an unemployment spell during a reces-

sion. In this and the following figures we use some parameters from our calibration below:

qG = 0.0038, qB = 0.0035, λG = 0.0058, λB = 0.0078, ρ = 0.001 and ω = 495. We also

choose these baseline preference parameters: θA = 0.00015, θP = 0.00005, h(a) = v a1+φ

1+φ
with

v = 0.01 and φ = 1.7. The low levels of absolute risk aversion imply plausible levels of

relative risk aversion given the relatively high levels of consumption and wages in the model.

Figure 1 illustrates the differences between the contract under full information and with

moral hazard, plotting the levels of consumption and effort over the unemployment spell,

the level of consumption the agent would obtain were he to find a job, and the change in

promised utility upon finding a job.

We see that under full information, all of these variables are constant over the spell, as

the contract effectively insures the worker. By contrast, under moral hazard consumption

declines over time in order to provide search incentives, as was emphasized by Shavell and

Weiss [1979] and Hopenhayn and Nicolini [1997]. We also see that the more rapidly the

unemployed worker can find a job the higher will be his consumption in the moral hazard

case. In addition, we see that (at least for these parameter values) effort is slightly higher

under moral hazard than under full information. The reason is that the information friction

13See Theorem 1.14 and Example 1.15 in Øksendal and Sulem [2005]
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Figure 1: Behavior of selected variables in the optimal contracts with full information and

moral hazard during a recession.

reduces the efficiency of the contract during a unemployment spell and increases the cost of

staying unemployed. By inducing the agent to search harder, unemployment spells would be

shortened and hence the costs of benefits would be reduced.14 In order to induce this higher

level of effort, the agency promises the agent higher consumption upon finding a job, at a

level which is larger (at least at the outset) than under full information, and increases his

promised utility to a greater extent.

Figure 2 plots the same variables, now focusing on how the optimal contract under moral

hazard differs in booms and recessions. Since search is more productive in a boom, the

optimal contract has agents search harder in a booms, and so provides greater consumption

as compensation for increased effort. Consumption upon finding a job is nearly identical in

booms and recessions, but decreases at a slightly more rapid rate in recessions. In addition

the agent gets a larger increase in promised utility upon finding a job in a recession than a

14This is different from the case of CRRA preferences in Section 6 below, where the effort level is lower

with moral hazard. In that case the contract becomes inefficient if the agent’s promised utility becomes too

high or too lower because of the boundaries of the agent’s compensation and the income effect. Inducing

high search effort makes the promised utility move to inefficient regions and increases the cost of incentive

provision. However, in the current CARA case consumption is unbounded and there is no income effect, so

incentive provision is less costly.
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Figure 2: Behavior of selected variables in the optimal contracts with moral hazard in booms

and recessions.

boom. Both of these effects capture the worsening of the information friction in a recession.

That is, in a recession with the reduction in the effect of search on job finding, it is harder

for the agency to tell whether agents remain unemployed due to bad luck or shirking. Thus

the contract must provide additional incentives relative to the full information case, making

consumption decline at a slightly faster rate but at the same time increasing the promised

utility reward for successful search.

With our explicit solutions for the optimal contract, we can also analyze how the contract

varies with changes in any of the parameters of the model. Figure 3 summarizes some of these

comparative statics, plotting the optimal level of effort a∗(s) and the constant c∗(s) from

the consumption function. Recall that the constant (independent of the promised utility) in

the consumption function is c∗(s) + h(a∗(s)), which includes the compensation for effort as

well. Thus c∗(s) accounts for purely the changes in consumption which are not compensating

search effort. In each panel of the figure we fix all of the parameters at the baseline levels

except for the one shown, and plot the optimal policies in booms and recessions. We see that

as the agent’s risk aversion parameter θA increases, consumption increases and effort falls in

both states. As the principal’s risk aversion parameter θP increases, consumption falls and

effort decreases. In both of these cases, it becomes costlier to provide incentives so less effort

is induced, and the benefit to the party whose risk aversion has gone up is increased. When
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Figure 3: Comparative statics of effort a∗(s) and the consumption constant c∗(s) for varia-

tions in the parameters.

the productivity of search in recession qB increases, the recession becomes less severe and

the information friction is also lessened. In this case the effort and consumption levels in

booms and recessions get closer together, with effort increasing in a recession and falling in

a boom and consumption falling in a recession and increasing in a boom. When recessions

are of shorter duration as λB increases, there is little effect on consumption or effort in a

boom. Effort decreases and consumption increases in the recession, as the shorter durations

make recessionary periods less influential in the overall costs of the optimal system.

5 Implementation of the Optimal Contract

We now show how to implement the optimal contract via some simple instruments. Previous

studies of optimal unemployment insurance contracts have generally focused on a direct

implementation, where the unemployment agency tracks the worker’s promised utility and

makes payments conditional upon it. Promised utility and consumption decline over an

unemployment spell, providing a rationale for declining unemployment insurance benefits.

However in this section we show that the optimal contract can be implemented by allowing

the worker to save and borrow, providing unemployment benefits which are constant in each

aggregate state, giving a re-employment bonus, and incorporating an additional bonus or

charge when the aggregate state changes. Thus our implementation mixes elements of the
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current system of constant benefits with the unemployment insurance savings accounts of

Feldstein and Altman [2007], and the re-employment bonuses which were tried in some US

states and whose effects were studied by Robins and Spiegelman [2001]. Cyclical fluctuations

are new to our study, and necessitate the additional payment or charge when the state of

the economy switches to capture changes in incentives and costs of insurance.

As discussed above, our implementation is related to Werning [2002] and Shimer and

Werning [2008], who find that constant benefits are optimal with exponential utility in

related search models when agents can save and borrow. Although our setting differs, our

results are similar and provide the same distinction between benefits and consumption, and

thus insurance and liquidity, as in their papers. The re-employment bonus and the payments

when the aggregate state switches are new to our paper.

5.1 A Worker’s Consumption-Savings-Effort Problem

We consider an implementation of the optimal contract via a consumption-savings-effort

problem for a worker. The worker has wealth xt and has access to a bond with a state-

dependent instantaneous rate of return r(st) when unemployed and re when employed. In

addition, the worker gets a flow payment each instant, which is time-independent but depends

on the worker’s employment status and the aggregate state. Let be be the constant flow

payment when employed and bu(st) be the payment when unemployed. Finally, when the

worker is unemployed he gets a lump sum payment of B(st) when he finds a job and A(st, xt)

when the aggregate economy switches state. Note that although all of these terms are referred

to as “payments” they may be negative, in which case they are charges or taxes the agent

must pay. When the agent is employed his wealth evolves as:

dxt = [rext − ct + be]dt. (11)

When the worker is unemployed his wealth follows:

dxt = [r(st)xt − ct + bu(st)]dt+B(st)∆sJt + A(st, xt)∆sSt . (12)

The goal of our implementation is to choose the parameters (re, be, r(st), b
u(st), B(st), A(st, xt))

so that the agent’s optimal choices agree with those given above under the contract.

5.2 An Employed Worker

We now consider the problem of a worker who chooses his consumption and effort optimally,

given the wealth evolution above. We begin with an employed worker, later turning to an

unemployed worker. We denote the worker’s value function J(x, e) and note that it satisfies
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the HJB equation:

ρJ(x, e) = max
c

ρu(c) + Jx(x, e)[r
ex− c+ be],

and the first order condition is:

ρu′(c) = Jx(x, e).

In Appendix C.1, we show that the value function is J(x, e) = −Je exp(−reθAx), where:

Je =
ρ

re
exp

(

re − ρ− reθAb
e

re

)

.

We also show that the consumption function is:

c(x, e) =
ρ− re

θAre
+ be + rex.

To implement the optimal contract, we need to ensure that consumption and wealth are

constant (as they are under the optimal contract), and that the levels of consumption and

expected utility agree with those in the contract. For the promised utility levels to agree we

need:

W = J(x, e) = −Je exp(−reθAx)

and therefore note that we have:

c(W (x), e) = −
1

θA
log(−J(x, e)) = −

1

θA
log(Je) + rex.

Thus for c(W (x), e) = c(x, e) we need re = ρ, so the interest rate must equal the rate of time

preference. In this case:

c(x, e) = be + ρx

and wealth x is indeed constant. In addition, we can simplify the agent’s value function to:

J(x, e) = − exp(−θA(b
e + ρx)).

There is an indeterminacy in the implementation at this stage, as to deliver a given level

of promised utility W we can trade off the constant payment be with the initial wealth x. We

can interpret be as the after-tax wage, so one implementation would set x = 0 and choose

the labor income tax (or subsidy) in order to deliver the appropriate level of utility. But

a different implementation would set be = 0, completely taxing away labor income, with

the agent financing his consumption out of an appropriately chosen stock of wealth x. We

resolve this indeterminacy below when we consider the unemployed.
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5.3 An Unemployed Worker

We now suppose that once the worker finds a job, he receives a constant payment be which

is tied to his wealth and the aggregate state at the date he becomes employed. That is, if

the worker finds a job at some date T and his wealth upon beginning the job is xT (after he

the receives the bonus B(sT ) as in (12)), then in employment he gets the constant payment

be = (r(sT )− ρ)xT . Thus:

J(xT , e) = − exp(−θA(b
e(xT ) + ρxT )) = − exp(−θAr(sT )xT ).

Note that once employed, the worker’s wealth is constant at xt = xT for t > T , so the above

expression determines J(x, e) for all x. We also specify that the payment upon a switch of

the aggregate state A(s, x) takes the form:

A(s, x) =

(

r(s)

r(s′)
− 1

)

x+
r(s)

r(s′)
Â(s)

for some constants Â(s). Thus upon the switch of the aggregate state, the worker is given

a payment Â independent of wealth, as well as an additional term proportional to wealth

which accounts for the gain or loss to the worker from the change in interest rates.

We now consider the problem of an unemployed worker, who must choose consump-

tion and effort over his unemployment spell, with wealth evolution given by (12) and post-

employment value function determined above. The HJB equation for the unemployed worker

in aggregate state s is then:

ρJ(x, u, s) = max
c,a

ρu(c, a) + Jx(x, u, s)[r(s)x− c + bu(s)]

+qsa[J(x+B(s), e)− J(x, u, s)] + λs[J(x+ A(s, x), u, s′)− J(x, u, s)].

The first order condition for c is as above:

ρuc(c, a) = Jx(x, u, s),

while the first order condition for a is:

−ρua(c, a) = qs[J(x+B(s), e)− J(x, u, s)].

We now set the parameters of the policy (bu(s), Â(s), B(s), r(s)) to implement the op-

timal contract. To do so, we guess that the value function takes the form J(x, u, s) =

− exp(−r(s)θAx). In Appendix C.2, we show that this implies that effort is a = a(s) inde-

pendent of x. We also show that the optimal consumption function can be written:

c(x, u, s) = −
1

θA
log

r(s)

ρ
+ h(a(s)) + r(s)x.

23



Thus to implement the optimal contract, we must clearly have the same effort and consump-

tion choices, and we must have the utility levels match as well, so:

W = − exp(−r(s)θAx),

and thus from (10) we have:

c(W (x), u, s) = c∗(s) + h(a∗(s)) + r(s)x.

So to have the consumption policies agree c(W (x), u, s) = c(x, u, s) we must have:

c∗(s) = −
1

θA
log

r(s)

ρ
.

This determines the required interest rates r(s) for the implementation:

r(s) = −ρu(c∗(s)) (13)

Finally, the evolution of xt must agree with the evolution of promised utility above. Note

that we have:

xt = −
log(−Wt)

r(st)θA
=

Xt

r(st)θA

and therefore, using a generalized Ito’s lemma15:

dxt = −
µW (st)

r(st)θA
dt−

log(wJ(st))

r(st)θA
∆sJt −

1

θA

(

log(wS(st))

r(st)
−

(

1

r(s′t)
−

1

r(st)

)

(Xt − log(wS(st)))

)

∆sSt

= −
µW (st)

r(st)θA
dt−

log(wJ(st))

r(st)θA
∆sJt −

(

log(wS(st))

r(s′t)θA
+

log(−Wt)

r(s′t)θA
+ xt

)

∆sSt .

= −
µW (st)

r(st)θA
dt−

log(wJ(st))

r(st)θA
∆sJt −

(

log(wS(st))

r(s′t)θA
+

(

1−
r(st)

r(s′t)

)

xt

)

∆sSt .

At the same time, under the optimal policies derived here we have:

dxt = [
1

θA
log

r(st)

ρ
− h(a∗(st)) + bu(st)]dt+B(st)∆sJt + A(st, xt)∆sst .

Thus, recalling the form of A(s, x) above, we must have:

bu(s) = −
µW (s)

r(s)θA
−

1

θA
log

r(s)

ρ
+ h(a∗(s)) (14)

B(s) = −
log(wJ(st))

r(st)θA
(15)

Â(s) = −
log(wS(st))

r(st)θA
. (16)

In Appendix C.2 we show that under this policy the HJB equation for the unemployed

worker’s problem is satisfied, which verifies the guess of the functional form of the value

function. Therefore this policy implements the optimal contract.

15See Theorem 1.16 in Øksendal and Sulem [2005].
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Figure 4: Comparative statics of the effective interest rate r(s) and the benefit bu(s) for

variations in the parameters.

5.4 An Illustration

In figures 4 and 5 we illustrate the implementation, showing the changes in some of the

key implementation parameters when there are variations in the model parameters. We use

the same baseline parameters and variations as in our illustration of the contract above. In

figure 4 we plot the effective interest rate r(s) and the constant benefit payment bu(s) for

unemployed workers. First, note that r(s) > ρ in all of the settings, so the contract provides

an interest rate subsidy. In this example the wealth levels consistent with a given level

of utility are relatively large, and with high interest rates the effective consumption out of

wealth is thus fairly substantial, so the benefit levels bu are actually negative. Clearly these

features depend on the particular parameter specification shown. In figure 5 we plot the

lump sum payments B(s) when the worker finds a job and Â(s) when the aggregate state

switches. The re-employment bonuses are quite substantial, and are larger in recessions

than booms in order to provide incentives. Interestingly, the payment Â(s) is positive when

the economy switches from a boom to a recession and negative when the economy enters a

recession. This payment is at least an order of magnitude smaller than the re-employment

bonus, and seems to reflect the fact that consumption falls is a recession.

Qualitatively, the comparative statics are similar to those shown above in the optimal con-

tract. When the risk aversion parameters increase, interest rates increase and re-employment
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Figure 5: Comparative statics of the payment for finding a job B(s) and the payment when

the state switches Â(s) for variations in the parameters.

bonuses decrease, and benefits increase when it is the agent’s risk aversion and decrease when

it is the principal’s. When the productivity of search in a recession increases, again all of

the parameters get closer together across business cycle states, due to the direct effect of the

smaller difference across states and the lessening of the information friction.

6 A Quantitative Example

While the previous sections provided useful insight the optimal contract and its implemen-

tation, the assumptions we made there were rather special. In this section we study the

quantitative implications of the optimal contract under more standard assumptions in a cal-

ibrated version of the model. We now assume workers’ preferences are additively separable

and of the form:

u(c, a) = u(c)− h(a) =
(c+ α)1−γ

1− γ
−

a1+φ

1 + φ

with γ, φ > 0. Here γ > 0 is the coefficient of relative risk aversion, α > 0 is the minimal

consumption of the worker, and φ governs the elasticity of job search. We also now assume

that the unemployment agency is risk neutral, so v(c) = c. In addition to having job loss

(ps > 0), we reintroduce the (small) constant terms q0s in the job finding rate in order to

ease computation.
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6.1 The Benchmark Contract

To calibrate the model and measure the effects of switching to the optimal unemployment

insurance system, we consider a stylized version of the current system, which we call the

benchmark contract. Under the benchmark contract, an unemployed worker receives the

constant benefit cB for a fixed length of time. To capture the regular extensions of benefits

during recessions, we assume that the worker receives benefits for at most TG weeks in a boom

and TB > TG weeks in a recession. Once the benefits have expired, the agency provides no

further consumption. In Appendix D we show how to calculate the worker’s utility and

search effort under the benchmark contract.

6.2 Data and Calibration

We take a time period to be one week. First, we fix a few parameters following the literature.

Following Hopenhayn and Nicolini [1997], we set the coefficient of risk aversion to be γ = 0.5

and the weekly discount rate ρ = 0.001, which corresponds to annual discount rate of 5%.

Since utility is bounded below by zero, we set α = 0, which is interpretable as the worker

having no outside assets or other sources of income. We set the constants in the job finding

rate to very small numbers qs0 = 10−5, which prevents some singularity problems but has no

impact on our results. We set the maximum compensation that the UI agency can give to a

worker (in addition to his wage if any), at c̄ = ω, the wage. Thus the worker can consume

at most ω when unemployed and 2ω when employed. This is simply used to determine the

upper bounds on the worker’s utility and the agency’s costs. The data set for our estimation

below ends in 2007, and the median annual wage then was $25,737 so we set ω = $495, the

corresponding weekly value.16

For the benchmark contract, we set the benefit length to be TG = 26 weeks in booms,

which is the average duration across US states, and TB = 39 weeks in recessions, corre-

sponding to the length of the regular federal extended unemployment benefits program. We

consider an example below where we extend benefits to TB = 99 weeks, the maximum length

with the emergency benefits extension during the most recent recession. We set the unem-

ployment benefit to cb = 0.47ω, consistent with the 47% average replacement ratio in the

US in fiscal 2009.17

We estimate the Markov process for the aggregate state, and the corresponding job finding

and job loss rates, using the data from Shimer [2012], which consists of quarterly averages

of monthly job finding and separation rates from 1948-2006. As Shimer emphasized, most

of the cyclicality in the data comes from the job finding rates. To focus on this cyclical

16This data comes from the SSA at http://www.ssa.gov/oact/cola/central.html.
17See http://workforcesecurity.doleta.gov/unemploy/ui replacement rates.asp
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Figure 6: Cyclical job finding and unemployment rates, along with the estimated recession

indicator.

component, we use a Hodrick-Prescott filter to remove a low frequency trend from the job

finding rate data. Then we estimate a two-state Markov chain on this data, following the

approach of Hamilton [1989]. That is, letting the H-P filtered job finding rate be ft we

estimate:

ft = mst + ǫt,

where st is the aggregate state and ǫt is an error. We obtain the estimates mG = 0.487 and

mB = 0.411 for the mean job finding rates in booms and recessions, and diagonals of the

transition matrix are 0.933 and 0.911. Thus, for example, the probability of remaining in

a boom in the next quarter conditional on being in a boom in the current quarter is 0.933.

These transition probabilities imply switching rates of the aggregate state of λG = 0.0173

and λB = 0.0233 on a weekly basis.

The cyclical job finding rates and the estimated recession indicator, which is one when

the smoothed (full-sample) probability of a recession is greater than 0.5, are shown in the top

panel of Figure 6. Using this recession indicator, we then read off the mean separation rates

in booms and recessions from the H-P filtered separation rate data. These are 0.0337 and

0.0353 in booms and recessions, respectively, which imply weekly job loss rates of pG = 0.0085

and pB = 0.0089. Although we do not use it in the calibration, we also extracted the cyclical

unemployment rate, which is shown in the bottom panel of Figure 6. There we see that our
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Benchmark Optimal

Boom Recess Boom Recess

Unemployment Rate (%) 5.33 6.57 3.60 4.00

Unemployment Duration (weeks) 6.21 7.33 4.44 4.67

Finding Rate (month) 0.49 0.41 0.64 0.61

Separation Rate (month) 0.033 0.035 0.033 0.035

Net Cost/Worker (% of ω) 2.50 3.09 1.95 2.21

Table 1: Summary statistics from our simulation of the benchmark contract and the optimal

contract

recession indicator corresponds quite well to periods of high unemployment, as the average

unemployment rate is 4.93 in booms and 6.56 in recessions.

We calibrate the rest of the parameters by simulating a population of 2 million workers

and computing the average job finding rates as well as directly calculating the elasticities

of unemployment duration with respect to an increase in benefits. For this simulation, we

assume a mortality rate of 0.1% per year, which is significantly less than the 0.8% average

in US data, reflecting that we focus on working-age adults. In practice, this means that

we terminate and re-start the contracts for 0.1% of our population at an annual rate. For

the unemployment elasticity, as discussed by Landais et al. [2012] and Chetty [2008], the

typical range of estimates is 0.5-1, and we target an elasticity in the middle of this range

at 0.7. This is midway between the value of 0.9 of Meyer [1990] which has been commonly

used in the literature and the more recent estimates around 0.55 by Kroft and Notowidigdo

[2011] and Chetty [2008]. We find this elasticity in our simulations by computing the average

unemployment duration under our benchmark contract as well as a contract with benefits

increased by 1%. The job average job finding rates are largely driven by the parameters

governing the impact of job search on finding rates, and we find that qG1 = 0.0038 and

qB1 = 0.0035 match the data quite well. The elasticity is largely driven by the effort cost

function parameter, and we find that φ = 0.16 gives us an elasticity of 0.72.

6.3 Quantitative Implications

In Table 1 we summarize the results of our simulations. We report the average over booms

and recessions of unemployment rate, unemployment duration, job finding and separation

rates, and the net cost per worker of the unemployment system. In the simulations, we

initialize the optimal contract at the utility level provided by the benchmark contract. That

is, we keep workers indifferent between remaining in the current system and switching to
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the optimal system. Overall, the unemployment durations we find are short relative to the

data, where under the current system average durations are roughly 10 weeks in booms and

15 in recessions. In our model there is very little heterogeneity, so average durations are

essentially the inverse of the finding rates. We choose to match the relatively high average

finding rate which is observed in the data, so as a consequence we find durations that are

too short relative to the data. Incorporating heterogeneity in jobs and workers could help

to generate more realistic unemployment durations.

The table shows that switching from the current system to the optimal one would yield

substantial reductions in unemployment, mainly driven by large increases in the job finding

rate. For example, in a recession, the optimal system reduces unemployment rates by roughly

2.5 percentage points and shortens the duration of unemployment by roughly 50% relative

to the benchmark system. Moreover, the cyclical fluctuations in unemployment rates and

durations are substantially dampened under our optimal system. Under the benchmark

system, the unemployment rate increases by 1.2 percentage points and the average duration

increases by more than one week. However under the optimal system, the unemployment

rate only increases by 0.4 percentage points and the duration only increases by one quarter

of a week on average. In addition to providing better economic performance, the optimal

system costs less. On average the net cost of the current system, measured as the average

net payments to the unemployed workers, is 2.5-3% of wages, which is roughly equal to

paying the replacement benefit of 47% of wages to 5.3-6% of the population. By contrast,

the optimal system costs only around 2% of wages, even though (as we show below) the

effective replacement rate is significantly higher under the optimal system. In addition to

paying out benefits to a smaller base of unemployed workers, the net cost of the optimal

system is reduced because it taxes the income of employed workers.

In figures 7-9 we illustrate how the optimal contract differs from the benchmark contract,

and how it varies over the business cycle. The characteristics of the optimal contract here

are similar to the solvable case. In Figure 7 we plot an unemployed worker’s consumption

over an unemployment spell under the optimal contract, the benchmark contract, and the

optimal contract with observable effort. With observable effort consumption is constant over

an unemployment spell, as there is no need to provide incentives, and the replacement ratio

is very close to one. In order to provide incentives, the optimal contract has declining con-

sumption over the unemployment spell, as we discussed above. Quantitatively, the rate of

decline is very low and the replacement ratio is very high in the calibrated model. By con-

trast, the replacement rate is fixed at 47% in the benchmark contract, and falls to zero after

39 weeks in a recession. Thus the optimal contract provides substantially more consumption

smoothing than the current system.

In Figure 8 we plot the job finding rate in a recession over an unemployment spell under
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Figure 7: Consumption over an unemployment spell in a recession under the optimal con-

tract, the benchmark contract, and the optimal contract with observable effort.
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Figure 8: The job finding rate over an unemployment spell in a recession under the optimal

contract, the benchmark contract, and the optimal contract with observable effort.
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Figure 9: The job finding rate over an unemployment spell in a boom and a recession under

the optimal contract.

the optimal contract, the benchmark contract, and the optimal contract with observable ef-

fort. We report the finding rate instead of the effort level directly, as it is easier to interpret.

With observable effort, the finding rate is constant at 0.6 over the spell, and with unob-

servable effort it increases over time. The increasing rate reflects the impact of incentives

in the optimal contract, but again moral hazard has a relatively small quantitative effect

relative to full information. Under the benchmark contract, the finding rate starts very low,

around 0.4, and remains low until the near the expiration of benefits when increases rapidly.

However since typical unemployment spells are short, 7.3 weeks on average, relatively few

workers stay unemployed long enough to experience the large increase in finding rates.

Figure 9 shows the job finding rate over an unemployment spell in a boom and a recession

under the optimal contract. Here we see that the job finding rate in a boom is essentially

a parallel shift up of the job finding rate in a recession. This reflects two factors: first, for

any given effort level by assumption the finding rate is higher in a boom, and second, the

effort level in a boom is higher by a roughly constant amount at each point in time. Search

effort is more productive in a boom, and thus it is efficient for the agent to search harder

in a boom. In both aggregate states, the incentive effects lead to an increase in effort over

time at a similar rate.

Finally, we consider a simulation which helps to gauge the potential impact the reform of

unemployment insurance could have had during the recession of 2007-2009. For this exercise,

we start the economy in a boom, then suppose that the economy enters a recession seventy

weeks long. We then compare the performance of the benchmark current system with 39
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Figure 10: Unemployment rates in a long recession under the optimal contract, the bench-

mark contract, and a contract with benchmark contract with benefits extended to 99 weeks.

weeks of benefits, a version of the current system with benefits extended to 99 weeks, and

our optimal system. Our model is calibrated to match typical business cycles from 1948-

2006, with an average increase of about 1.5 percentage points in a recession, and so cannot

account for the 5 percentage point increase in unemployment which occurred in 2008-2009.

Nonetheless, our results, shown in Figure 10 (where the recession begins at week 30), are

indicative of the effects that reform may have. Under the benchmark system, unemployment

rates increase by 1.4 percentage points, from 5.3% to 6.7% as the economy goes from the

boom to the long recession. The benchmark system with extended benefits has only a very

small impact on unemployment, as the unemployment rate in the recession increases by 0.1

percentage point to 6.8%. This is similar to the empirical evidence of Rothstein [2011], who

estimated that the benefits extensions increased unemployment rates by 0.2-0.6 percentage

points. As the overall increase in the unemployment rate in 2008 was roughly three times

that in the model, the proportion of the increase attributable to benefits extensions in the

model is similar to Rothstein [2011]. However the relative insensitivity of unemployment

rates to benefit durations clearly does not imply that that unemployment insurance overall

has a minor impact on the unemployment rate. We find that under our optimal system the

unemployment rate increases by only 0.4 percentage points in the recession, from 3.6% to

4.0%, and remains 2.7 percentage points lower than the current system in the long recession.

Thus our findings, although clearly only illustrative, suggest that a reformed unemployment

insurance system would have led to a lower and more stable unemployment rate.
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7 Conclusion

In this paper we have characterized the optimal unemployment insurance system in an

economy with cyclical fluctuations. An optimal unemployment insurance contract trades

off the provision of insurance through consumption smoothing with providing incentives to

search, and this tradeoff is affected by aggregate conditions. After laying out a relatively

general model, we showed that with exponential utility and exponential costs, the contract

could be solved explicitly. This allowed us to characterize how the contract varies over the

business cycle, as well as to study the dependence of the contract on the various parameters

of the model, such as the depth and duration of recessions. We also showed that the optimal

contract could be implemented in a rather simple way: by allowing unemployed workers to

borrow and save in a bond (whose return depends on the state of the economy), providing

flow payments which are constant over an unemployment spell but vary with the aggregate

state, and giving additional lump sum payments (or charges) upon finding a job or when

the aggregate state switches. Finally, we showed in a calibrated version of the model that

reform of the unemployment system could yield substantial gains in economic performance.

Even though the unemployment rate may be relatively insensitive to the length of benefits

in the current system, an unemployment insurance system which provides more smoothing

of consumption and at same time provides better search incentives can lead to substantial

reductions in unemployment.

The simplicity of our model allowed us to isolate the effects of insurance and incentives

on job search as a determinant of unemployment. However it also meant that we were unable

to address several important issues bearing on the impact of unemployment insurance on

job search and employment. For example, following Hopenhayn and Nicolini [1997] we

assumed that all jobs were identical and paid the same constant wage. While this yielded

tractability, it meant that there was no scope for mismatch between unemployed workers

and job vacancies in our model, or the related issue of workers potentially accepting jobs

that require less education or training than they possess. In addition, our model assumed

that all unemployed workers remained in the labor force and continued to search, even when

their benefits expired. Both the issue of mismatch and changes in labor force participation

have been important in the recent recession, and our model could be extended to allow us

to address these issues.
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A Proofs

A.1 Proof of Proposition 1

Let

ϕt(c, a) = Ea
t [ρ

∫ ∞

0

eρt̂u(ct̂, at̂)dt̂|Ft]

= ρ

∫ t

0

e−ρt̂u(ct̂, at̂)dt̂+ e−ρtWt. (17)

In words, ϕt(c, a) is the conditional expected total utility of the worker based on the information unfolded

up to time t. Therefore, process {ϕt(c, a)}t∈[0,∞) is a Ft-adapted martingale. According to the martin-

gale representation theorem,18 there exist two Ft-predictable and square integrable (equation (2)) processes

{gJt }t∈[0,∞) and {gSt }t∈[0,∞) such that

dϕt(c, a) = ρe−ρtgJt dm
J
t + ρe−ρtgSt dm

S
t . (18)

So (18) and (17) imply (3).

A.2 Proof of Proposition 2

Suppose not and that the process a does not satisfy (4) for some t̃ > 0 with strictly positive probability. Let

{Wt}t∈[0,∞) be the promised utility process generated by a under the contract (c, a). We define

ϕ̂t(a
′) = ρ

∫ t

0

e−ρsu(cs, a
′
s)ds+ e−ρtWt for t ∈ [0,∞)

for some alternative feasible effort process a′. Obviously, ϕ̂0(a
′) = W0. According to (3), we have

dϕ̂t(a
′) = ρe−ρtu(ct, a

′
t)dt− ρe−ρtWtdt+ e−ρtdWt

= ρe−ρt
{

[u(ct, a
′
t)− u(ct, at)] dt+ gJt dm

J
t + gSt dm

S
t

}

.

Without loss of generality, we assume that the worker is unemployed at t. Let
{

m′J
t

}

t∈[0,∞)
be the compen-

sated jump martingale associated with j under the effort process a′. Then

dmJ
t =

{

[(1 − st)qG(a
′
t) + stqB(a

′
t)]− [(1− st)qG(at) + stqB(at)] dt+ dm′J

t

}

.

Therefore

dϕ̂t(a
′) = ρe−ρt {[u(ct, a

′
t)− u(ct, at)

+gJt ((1− st)qG(a
′
t) + stqB(a

′
t))− gJt ((1− st)qG(at) + stqB(at))

]

dt

+gJt dm
′J
t + gSt dm

S
t

}

.

Note that a′, {m′J
t }t∈[0,∞) and {mS

t }t∈[0,∞) are two martingales. The drift of {ϕ̂(a′)} has the same sign as

[gJt ((1 − st)qG(a
′
t) + stqB(a

′
t)) + u(ct, a

′
t)]− [gJt ((1− st)qG(at) + sSt qB(at)) + u(ct, at)].

18Note that, u(ct, at) is bounded in compact intervals, {ϕt(c, a)}t∈[0,∞) is a uniformly integrable martingale,

so the martingale representation theorem is valid here. See Elliott [1982] for technical details.
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So we choose a′ such that (4) is satisfied. Then {ϕ̂t(a
′)}t∈[0,∞) is a sub-martingale under the measure

generated by a′. Therefore

Ea′

[ϕ̂t̃(a
′)] > ϕ̂0(a

′) = W0

which implies that a is dominated by the effort plan that adopting a′ from 0 to t̃ and then switching to a.

So a is not optimal.

To prove the other direction, suppose that a satisfies the incentive compatibility conditions in Proposition

2. Then, by definition, {ϕ̂t(a
′)}t∈[0,∞) is a super-martingale under a′ for any alternative effort process a′.

Since ct, at, and a′t are bounded in compact intervals according to the feasibility conditions, ϕ̂∞(a′) is

bounded. Then

W0 = ϕ̂0(a
′) ≥ Ea′

[ϕ̂∞(a′)]

and a dominates a′.

A.3 Proposition 4

Proposition 4 The lower bounds of the expected utility of the worker are W
js
l = u for j = e, u and s = G,B

and the corresponding values of the insurance agency, V (W js
l , j, s), satisfies:

ρV (Wus
l , u, s) = λs

(

V (Wus′

l , u, s′)− V (Wus
l , u, s)

)

+ qs0 (V (W es
l , e, s)− V (Wu

l , u, s)) (19)

ρV (W es
l , e, s) = ρv(ω) + λs

(

V (W es′

l , e, s′)− V (W es
l , e, s)

)

+ps (V (Wus
l , u, s)− V (W es

l , e, s)) (20)

for s = G,B and s′ 6= s. The upper bounds of the expected utility of the worker W js
r satisfy the following:

ρWus
r = max

â∈[0,â]
ρu(c̄, a) + λs(W

us′

r −Wus
r ) + qs(â) (W

es
r −Wus

r ) (21)

ρW es
r = ρu(c̄+ ω) + λs

(

W es′

r −W es
r

)

+ pG (Wus
r −W es

r ) (22)

and the corresponding expected values of the insurance agency are V (W js
r , j, s) = −v(c̄).

For the proof, we start with the left boundaries and assume that the worker is unemployed. Let τ =

τS ∧ τJ with τS being the time of the next economic state change and τJ the time the next job offer. Then,

for any ∆ > 0, note that the current instantaneous payoff is 0 and we have

V (Wus
l , u, s) = e−ρ(∆∧τ)Pr (τ > ∆)V (Wus

l , u, s) + e−ρ(∆∧τ)
[

Pr
(

∆ < τ, τ = τS
)

V (Wus′

l , u, s′)

+Pr
(

∆ < τ, τ = τJ
)

V (W es
l , e, s)

]

or

V (Wus
t , u, s) = e−ρ(∆∧τ)e−(λs+qs0)∆V (Wus

l , u, s)

+e−ρ(∆∧τ)
(

1− e−(λs+qs0)∆
)

[

λs

λs + qs0
V (Wus′

l , u, s′) +
qs0

λs + qs0
V (W es

l , e, s)

]

.

So

0 = e−ρ(∆∧τ)e−(λs+qs0)∆
(

V (Wus′

l , u, s′)− V (Wus
l , u, s)

)

+e−ρ(∆∧τ)
(

1− e−(λs+qs0)∆
)

[

λs

λs + qs0
V (Wus′

l , u, s′) +
qs0

λs + qs0
V (W es

l , e, s)

]

.
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Let ∆ → 0, then we have (19). (20) can be proved by a similar procedure.

Now, we prove the result on the right boundary point, focusing first on an unemployed worker who solves

the following problem:

max
a∈A

E0[ρ

∫ ∆∧τ

0

e−ρtu(c̄, a)dt]

+e−ρ(∆∧τ)
[

Pr (τ > ∆)Wus
r + Pr

(

τ > ∆, τ = τS |at
)

Wus′

r + Pr
(

τ > ∆, τ = τJ |at
)

W es
r

]

or equivalently:

max
a∈A

E0

[

ρ

∫ ∆∧τ

0

e−ρtu(c̄, a)dt

]

+e−ρ(∆∧τ)

[

e−(λs+qs(at))∆Wus
r +

(

1− e−(λs+qs(at))∆
)

(

λs

λs + qs(at)
Wus′

r +
qs(at)

λs + qs(at)
W es

r

)]

The objective value is Wus
r . So for any â ∈ [0, ā] and ∆ > 0 we have:

Wus
r ≥ E0

[

ρ

∫ ∆∧τ

0

e−ρtu(c̄, â)dt

]

+e−ρ(∆∧τ)

[

e−(λs+qs(â))∆WUs
r +

(

1− e−(λs+qs(â))∆
)

(

λs

λs + qs(â)
Wus′

r +
qs(â)

λs + qs(â)
W es

r

)]

and

0 ≥
1

∆
E0

[

ρ

∫ ∆∧τ

0

e−ρtu(c̄, â)dt

]

+
1

∆

(

e−ρ(∆∧τ)e−(λs+qs(at))∆WUs
r −WUs

r

)

+
1

∆
e−ρ(∆∧τ)

(

1− e−(λs+qs(â))∆
)

(

λs

λs + qs(â)
Wus′

r +
qs(â)

λs + qs(â)
W es

r

)

.

Let ∆ → 0, then we have

0 ≥ ρu(c̄, â)−Wus
r + λs

(

Wus′

r −Wus
r

)

+ qs(â) (W
es
r −Wus

r )

and the equality holds only if â is optimal. So we have (21).

If the worker is employed, for any ∆ > 0, we have

W eEs
r = E0[ρ

∫ ∆∧τ

0

e−ρtu(c̄+ ω, â)dt]

+e−ρ(∆∧τ)

[

e−(λs+ps)∆W es
r + e−ρ(∆∧τ)

(

1− e−(λs+ps)∆
)

(

λs

λs + ps
W es′

r +
ps

λs + ps
Wus

r

)]

or

0 =
1

∆
E0

[

ρ

∫ ∆∧τ

0

e−ρtu(c̄+ ω, â)dt

]

+
1

∆

(

e−ρ(∆∧τ)e−(λs+ps)∆W es
r −W es

r

)

+
1

∆
e−ρ(∆∧τ)(1− e−(λs+ps)∆)(

λs

λs + ps
W es

r +
ps

λs + ps
Wus

r )

and let ∆ → 0 we have (22).
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A.4 Proof of Proposition 3

We suppose that the economy is in boom and the worker is unemployed (other cases can be proved by a

similar procedure). At time t, we assume that the promised utility of the worker is Wt = W ∈ (WuG
l ,WuG

r ).

Let c be a consumption process. Let W J
t and WS

t be the adjusted continuation utility levels at the arrival of

a job offer and the economic state change respectively.
{

W J
t

}

t∈[0,∞)
induces effort process a. Let τ = τS∧τJ

with τS being the next recession and τJ be that of the next job offer. At time t we have

V (Wt, u,G) ≥ −Et

[

ρ

∫ (t+∆)∧τ

t

e−ρt̂v(ct̂)dt̂|Ft−

]

+e−ρ((t+∆)∧τ)Pr (τ > t+∆|a)V (Wt+∆, u,G)

+e−ρ((t+∆)∧τ)Pr
(

τ > t+∆, τ = τJ |a
)

V (W J
t+∆, e, G)

+e−ρ((t+∆)∧τ)Pr
(

τ > t+∆, τ = τS |a
)

V (WS
t+∆, u, B).

In particular, we let ∆ be a small positive number and W J
t̃

= Wt̃ + ξ such that Wt̃ + ξ ∈ [WGe
l ,WGe

r ] for

some ξ and t̃ ∈ [t, t+∆]. Then the effort is constant in [t, t+∆] and equal to aG(Wt,W
J
t )and

0 ≥ −
1

∆
Et

[

ρ

∫ (t+∆)∧τ

t

e−ρt̂v(ct̂)dt̂|Ft−

]

+
1

∆

(

e−ρ((t+∆)∧τ)e−(λG+qG(aG(Wt,W
J

t
)))∆V (Wt+∆, u,G)− V (Wt, u,G)

)

+
1

∆
e−ρ((t+∆)∧τ)

(

1− e−(λG+qG(aG(Wt,W
J

t
)))∆

) qG(a
G(Wt,W

J
t ))

λG + qG(aG(Wt,W
J
t ))

V (W J
t+∆, e, G)

+
1

∆
e−ρ((t+∆)∧τ)

(

1− e−(λG+qG(aG(Wt,W
J

t
)))∆

) λG

λG + qG(aG(Wt,W
J
t ))

V (WS
t+∆, u, B).

Let ∆ → 0 and we have

0 ≥ −ρ (v(ct) + V (Wt, u,G)) + VW (Wt, u,G)ρ (Wt − u(ct, at))

−qGa
G(Wt,W

J
t )

(

W J
t −Wt

ρ
− λG

WS
t −Wt

ρ

)

+qGa
G(Wt,W

J
t )

(

V (W J
t , e, G)− V (Wt, u,G)

)

+ λG

(

V (WS
t , u, B)− V (Wt, u,G)

)

.

The equality holds if ct, W
J
t and WS

t are optimal, so we have (8).

B Calculations for the Solvable Special Case

B.1 Employed Workers

It is easy to see that the value function is independent of s and we guess that it is of the form:

V (W, e, s) = V (W, e) = −Ve(−W )
−

θP

θA .

One can verify this directly by using the fact that c is constant under employment, but here we use the guess

and verify approach because many similar calculations will be repeated below. Note that this implies:

VW (W, e) = −Ve

θP

θA
(−W )

−
θP
θA

−1
.
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Substituting this expression into the optimality condition for c implies:

−θP exp(θP (c− ω)) = −Ve

θP

θA
(−W )

−
θP

θA
−1

θA exp(−θAc)

⇒ exp((θP + θA)c) = Ve

θP

θA
(−W )

−
θP +θA

θA θA exp(θPω)

⇒ c =
1

θP + θA
log(Ve)−

1

θA
log(−W ) +

θP

θP + θA
ω

Therefore we have:

v(c− ω) = V
θP

θP +θA
e exp(−

θAθP

θA + θP
ω)(−W )

−
θP

θA ,

and:

u(c) = −V
−

θA

θP +θA
e exp(−

θAθP

θA + θP
ω)(−W ).

Thus we can write the HJB equation as:

−Ve(−W )
−

θP

θA = −V
θP

θP +θA
e exp(−

θAθP

θA + θP
ω)(−W )

−
θP

θA

−Ve

θP

θA
(−W )

−
θP +θA

θA [−1 + V
−

θA

θP +θA
e exp(−

θAθP

θA + θP
ω)](−W )

The terms in W cancel and we see that Ve solves:

−Ve = −V
θP

θP +θA
e exp(−

θAθP

θA + θP
ω)− Ve

θP

θA
[−1 + V

−
θA

θP +θA
e exp(−

θAθP

θA + θP
ω)]

⇒ −(1 +
θP

θA
) = −V

−
θA

θP +θA
e exp(−

θAθP

θA + θP
ω)(1 +

θP

θA
)

⇒ Ve = exp(−θPω)

Substituting this into the expression for c gives the other result.

B.2 Full Information

Using the conjectured form of the value function in the first slope matching condition gives:

−Vu(s)
θP

θA
(−W )

−
θP +θA

θA = − exp(−θPω)(−W J )
−

θP +θA

θA ,

so therefore we have:

W J =

(

Vu(s)

exp(−θPω)

)−
θA

θP +θA

W.

In turn this implies:

V (W J , e)− V (W,u, s) = [−Vu(s)
θP

θP +θA V
θA

θA+θP
e + Vu(s)](−W )

−
θP

θA

Similarly, for the second slope matching condition we get

−Vu(s)
θP

θA
(−W )

−
θP +θA

θA = −Vu(s
′)
θP

θA
(−WS)

−
θP +θA

θA

and thus we have:

WS =

(

Vu(s)

Vu(s′)

)−
θA

θP +θA

W,
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and therefore:

V (WS , u, s′)− V (W,u, s) = [−Vu(s
′)

(

Vu(s)

Vu(s′)

)

θP

θP +θA

+ Vu(s)](−W )
−

θP
θA .

From the optimality condition for c we then have:

c =
1

θP + θA
log(Vu(s))−

1

θA
log(−W ) +

θA

θP + θA
h(ā(s))

Therefore we have in addition:

u(c, ā(s)) = −Vu(s)
−

θA

θP +θA exp(
θAθP

θA + θP
h(ā(s)))(−W )

ua(c, ā(s)) = −θAh
′(ā(s))Vu(s)

−
θA

θP +θA exp(
θAθP

θA + θP
h(ā(s)))(−W )

v(c) = Vu(s)
θP

θP +θA exp(
θAθP

θA + θP
h(ā(s)))(−W )

−
θP
θA

Then we can write the optimality condition for a as:

−ρVu(s)
θP

θA
(−W )

−
θP +θA

θA

(

−θAh
′(ā(s))Vu(s)

−
θA

θP +θA exp(
θAθP

θA + θP
h(ā(s)))(−W )

)

+ρVu(s)
θP

θA
(−W )

−
θP +θA

θA

qs

ρ





(

Vu(s)

exp(−θPω)

)−
θA

θP +θA

− 1



 (−W )

= qs[−Vu(s)
θP

θP +θA V
θA

θA+θP

e + Vu(s)](−W )
−

θP

θA

Thus we see that W cancels out and we get:

Vu(s)
−

θA

θP +θA

(

ρθPh
′(ā(s)) exp(

θAθP

θA + θP
h(ā(s))) + (1 +

θP

θA
)qsV

θA

θA+θP
e

)

= qs(1 +
θP

θA
) (23)

Substituting all of the above results into the HJB equation gives:

−ρVu(s)(−W )
−

θP

θA = −ρVu(s)
θP

θP +θA exp(
θAθP

θA + θP
h(ā(s)))(−W )

−
θP

θA

−ρVu(s)
θP

θA
(−W )

−
θP +θA

θA

(

W − Vu(s)
−

θA

θP +θA exp(
θAθP

θA + θP
h(ā(s)))(−W )

)

−ρVu(s)
θP

θA
(−W )

−
θP +θA

θA





qs

ρ
ā(s)





(

Vu(s)

exp(−θPω)

)−
θA

θP +θA

− 1



+
λs

ρ





(

Vu(s)

Vu(s′)

)−
θA

θP +θA

− 1







 (−W )

+qsā(s)[−Vu(s)
θP

θP +θA V
θA

θA+θP
e + Vu(s)](−W )

−
θP

θA + λs[−Vu(s
′)

(

Vu(s)

Vu(s′)

)

θP
θP +θA

+ V (s)](−W )
−

θP

θA

Therefore again the terms in W cancel. After simplifying and again canceling a common (1 + θP
θA

) factor we

get:

Vu(s)
−

θA

θP +θA

(

ρ exp(
θAθP

θA + θP
h(ā(s))) + qsā(s)V

θA

θA+θP
e + λsVu(s

′)
θA

θP +θA

)

= ρ+ qsā(s) + λs (24)

Therefore we have 4 equations, (23) and (24) which each must hold for s = G,B, in the 4 unknowns

(ā(G), Vu(G), ā(B), Vu(B)).
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B.3 Moral Hazard

To ease some of the derivations, define the constant in the consumption function as c∗(s) + h(a∗(s)). Then

given the forms of the guesses for c and a we can evaluate:

v(c) = exp(θP (c
∗(s) + h(a∗(s))))(−W )

−
θP

θA

u(c, a∗(s)) = − exp(−θAc
∗(s))(−W )

uc(c, a
∗(s)) = θA exp(−θAc

∗(s))(−W )

ua(c, a
∗(s)) = −θAh

′(a∗(s)) exp(−θAc
∗(s))(−W )

uaa(c, a
∗(s)) = −[θ2Ah

′(a∗(s))2 + θAh
′′(a∗(s))] exp(−θAc

∗(s))(−W )

uac(c, a
∗(s)) = θ2Ah

′(a∗(s)) exp(−θAc
∗(s))(−W )

In addition, we can evaluate:

W J = W −
ρ

qs
(−θAh

′(a∗(s)) exp(−θAc
∗(s)))(−W ) = [1−

ρ

qs
θAh

′(a∗(s)) exp(−θAc
∗(s))]W.

So therefore we have:

V (W J , e) = −Ve[1−
ρ

qs
θAh

′(a∗(s)) exp(−θAc
∗(s))]

−
θP

θA (−W )
−

θP

θA

VW (W J , e) = −
θP

θA
Ve[1−

ρ

qs
θAh

′(a∗(s)) exp(−θAc
∗(s))]

−
θA+θP

θA (−W )
−

θP +θA

θA

The first order conditions and solution for WS are of the same form as in the full information case, and

thus we can write:

WS =

(

V ∗(s)

V ∗(s′)

)−
θA

θP +θA

W,

and therefore:

V (WS , u, s′)− V (W,u, s) = [−V ∗(s′)

(

V ∗(s)

V ∗(s′)

)

θP

θP +θA

+ V ∗(s)](−W )
−

θP

θA .

The optimality condition for c then can be written, canceling the terms in W :

θP exp(θP (c
∗(s) + θPh(a

∗(s)))) = −V ∗(s)
θP

θA

[

−θA exp(−θAc
∗(s)) + a∗(s)θ2Ah

′(a∗(s)) exp(−θAc
∗(s))

]

+a∗(s)θ2Ah
′(a∗(s)) exp(−θAc

∗(s))
θP

θA
Ve[1−

ρ

qs
θAh

′(a∗(s)) exp(−θAc
∗(s))]

−
θA+θP

θA .

Simplifying this gives:

exp((θP + θA)c
∗(s) + θPh(a

∗(s))) = V ∗(s) [1− a∗(s)θAh
′(a∗(s))] (25)

+a∗(s)θAh
′(a∗(s))Ve

[

1−
ρ

qs
θAh

′(a∗(s)) exp(−θAc
∗(s))

]−
θA+θP

θA

The optimality condition for a can be written, again canceling the terms in W :

a∗(s)
[

θ2Ah
′ (a∗(s))

2
+ θAh

′′ (a∗(s))
]

exp (−θAc
∗(s))

θP

θA



−V ∗(s) + Ve

(

1−
ρ

qs
θA exp (−θAc

∗(s))h′ (a∗(s))

)−
θA+θP

θA





=
qs

ρ



−Ve

(

1−
ρ

qs
θA exp (−θAc

∗(s))h′ (a∗(s))

)−
θP

θA

+ V ∗(s)





41



Simplifying yields:

a∗(s)θP

(

θAh
′ (a∗(s))

2
+ h′′ (a∗(s))

)



V ∗(s)− Ve

(

1−
ρ

qs
θA exp (−θAc

∗(s)) h′ (a∗(s))

)−
θA+θP

θA





= exp (θAc
∗(s))

qs

ρ



V ∗(s)− Ve

(

1−
ρ

qs
θA exp (−θAc

∗(s)) h′ (a∗(s))

)−
θP

θA



 (26)

The final equation comes from substituting the results into the HJB equation and simplifying, which gives:

0 = (ρ+ qsa
∗(s) + λs)V

∗(s)− ρ exp (θP (c∗(s) + h (a∗(s)))) (27)

+ρ
θP

θA
V ∗(s)



1− exp (−θAc
∗(s)) + a∗(s)θA exp (−θAc

∗(s))h′ (a∗(s))−
λs

ρ





(

V ∗(s′)

V ∗(s)

)

θA

θA+θP

− 1









−qsa
∗(s)Ve

(

1−
ρ

qs
θA exp (−θAc

∗(s))h′ (a∗(s))

)−
θP
θA

− λsV
∗(s′)

θA

θA+θP V ∗(s)
θP

θA+θP

Thus for s = G,B the equations (25) - (27) determine the six constants (V ∗(s), a∗(s), c∗(s)).

C Calculations for the Implementation

C.1 An Employed Worker

Using the guess in the first order condition we can find c as:

c(x, e) = −
1

θA
log

reJe

ρ
+ rex,

and so we have:

u(c) = −
reJe

ρ
exp(−reθAx).

Substituting this into the HJB equation, and canceling the terms in Je exp(−reθAx) gives:

−ρ = −re + re log
reJe

ρ
+ reθAb

e

Solving for Je gives the result in the text. Substituting the resulting Je into the consumption function gives

the other result.

C.2 An Unemployed Worker

Using the guess of the value function and the structure of A we have:

J(x +B(s), e)− J(x, u, s) = [1− exp(−r(s)θAB(s))] exp(−r(s)θAx)

J(x+A(s, x), u, s′)− J(x, u, s) = exp(−r(s)θAx)− exp(−r(s′)θA(x+A(s, x)))

= [1− exp(−rθAÂ(s))] exp(−r(s)θAx)

The first order condition for c then implies the consumption function in the text. The first order condition

for a gives:

ρθAh
′(a) exp(−θA(c− h(a))) = qs[1− exp(−r(s)θAB(s))] exp(−r(s)θAx).
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Using the result for c and canceling terms in x gives:

r(s)θAh
′(a(s)) = qs[1− exp(−r(s)θAB(s))],

which verifies that effort is independent of x.

Using the previous results, and canceling the terms in x, the HJB equation then becomes:

−ρ = −r(s) + r(s)θA[
1

θA
log

r(s)

ρ
− h(a(s)) + bu(s)]

+qsa(s)[1 − exp(−r(s)θAB(s))] + λs[1− exp(−r(s)θAÂ(s))].

We now substitute in the policies for bu(s), B(s) and Â(s) from (14)-(16), and evaluate at c∗, a∗:

−ρ = −r(s)− µW (s) + qsa
∗(s)(1− wJ (s)) + λs(1 − wS(s)). (28)

But then we recall that:

µW (s) = ρ+ ρu(c∗(s))− qsa
∗(s)(wJ (s)− 1)− λs(wS(s)− 1).

Using this in (28) leaves us with (13), the interest rate policy. Thus the HJB equation is satisfied, which

verifies our guess of the form of the value function and shows that the policy implements the optimal contract.

D The Benchmark Contract

We now show how to calculate the worker’s utility levels and search effort under the benchmark contract.

First, let W e
s be the expected utility of the worker under the benchmark contract when he is employed in

state s. We suppose these levels are given, and now show how to determine the evolution of promised utility

over an unemployment spell. First, we consider the period after TB, in which all unemployment benefits are

expired in both states, and denote the worker’s promised utility by Wu3
s in this region. Suppose at some

date t̄ > TB, the economy is in a boom and let τ be the first date of a switch in either job status or the

aggregate state. That is τ = τS ∧ τJ with τS the time at which the economy enters a recession and τJ the

time at which the worker finds a job. So the worker chooses his optimal effort to solve the following problem:

Wu3
G = max

a∈A
Ea

t̄ [ρ

∫ τ

t̄

e−ρ(t−t̄)(u(α)− h(at))dt + e−ρ(τ−t̄)(1({τ = τJ})W e
G + 1({τ = τS})Wu3

B )].

Following the same steps as in deriving the HJB equations above, we see that the values Wu3
s solve the HJB

equations for s = G,B:

ρWu3
s = max

â∈[0,ā]
ρ(u(α)− h(â)) + qs(â)(W

e
s −Wu3

s ) + λs(W
u3
s′ −Wu3

s ).

Now, we turn to the time interval [TG, TB] when the worker only receives benefits in a recession, but

not in a boom. Denote the continuation value of the worker during this period by Wu2
s (t), where the values

are now time dependent due to the impending termination of benefits. Similar to the previous case, these

values satisfy the following pair of HJB equations:

ρWu2
G (t)−

d

dt
Wu2

G (t) = max
â∈[0,ā]

ρ(u(α)− h(â)) + qG(â)(W
e
G −Wu2

G (t)) + λG(W
u2
B (t)−Wu2

G (t))

ρWu2
B (t)−

d

dt
Wu2

B (t) = max
â∈[0,ā]

ρ(u(cB + α)− h(â)) + qB(â)(W
e
B −Wu2

B (t)) + λB(W
u2
G (t)−Wu2

B (t))
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with boundary conditions Wu2
G (TB) = Wu3

G and Wu2
B (TB) = Wu3

B .

Finally, in the time interval [0, TG], the worker receives unemployment benefits in both booms and

recessions. Again, promised utility which we denote by Wu1
s (t) is time dependent and satisfies the HJB

equation for s = G,B:

ρWu1
s (t)−

d

dt
Wu1

s (t) = max
â∈[0,ā]

ρ(u(cB + α)− h(â)) + qs(â)(W
e
s −Wu1

s (t)) + λs(W
u1
s′ (t)−Wu1

s (t))

with boundary conditions Wu1
s (TG) = Wu2

s (TG).
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