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I. Introduction

Explaining the cross section of stock returns is one of the most important topics in asset

pricing, and the value premium anomaly is a key issue in this enterprise. Many theoretical and

empirical studies attempted to account for the cause and nature of this phenomenon. Recently

the role of cash flow risk, defined as the covariance between a firm’s cash flow and the aggregate

cash flow, has been emphasized in the literature. Abel (1999), Bansal and Yaron (2004), Da

(2009), and others study theoretical aspects. Bansal, Dittmar, and Lundblad (2005), Santos

and Veronesi (2006), Yang (2007), Cohen, Polk, and Vuolteenaho (2009), Campbell, Polk, and

Vuolteenaho (2010), and many others study empirical aspects of cash flow risks in the cross

section of stock returns. Notably several papers have tried to link cash flow risk and cash

flow duration to cross-sectional return variation. For instance, Campbell and Vuolteenaho

(2004), Bansal, Dittmar, and Lundblad (2005), Kiku (2007), Hansen, Heaton, and Li (2008),

Zhang (2005), Lettau and Wachter (2007), Da (2009), Santos and Veronesi (2010), and Choi,

Johnson, Kim, and Nam (2013) developed structural models that directly associate cash flow

risk or cash flow duration with book-to-market and expected stock returns to this end.

When a prototypical asset pricing model produces a cross-sectional variation associated

with cash flows, one puzzling feature arises. Value (growth) stocks have shorter (longer) du-

rations, therefore; value stocks have a smaller risk premium in light of discount risk than

growth stocks contrary to the empirical evidence. Thus, economic models that explain the

time-series properties of asset prices have difficulty in matching their cross sectional variations

and vice versa. Little attention was paid to this issue until recently. Lettau and Wachter

(2007, 2011) state that this problem can disappear if the time-varying price of discount-rate

risk is uncorrelated with aggregate dividends or consumption in their reduced-form model.

However, significant empirical evidence exists that time-varying equity risk premia are coun-

tercyclical and closely associated with aggregate consumption or dividends. Further, Santos

and Veronesi (2010) show that, in equilibrium, when the stochastic discount factor generates a

time-varying risk premia correlated with aggregate cash flows and simultaneously accounts for

the aggregate moments of macroeconomic and stock market variables, a counterfactual growth

premium arises. In their model, a value premium can prevail only when aggregate cash flows

are counterfactually volatile so that a cash flow puzzle appears.

In this paper, we tackle this issue in an exchange economy setting by investigating the

effect of idiosyncratic cash flow fluctuations on the cross-section of stock returns. The main

departure of our paper is to incorporate belief differences of investors into cash flow dynamics

of individual firms with the following features.

First, we model both aggregate and individual cash flow processes consistently by using

an exogenous model that is impacted by aggregate risk only. However, an individual firm’s
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cash flow process is subject to idiosyncratic risk in addition to aggregate risk. The dynamics

of the cash flow processes (including idiosyncratic risk exposure) implies that our model is

constructed such that in the aggregate, idiosyncratic cash flow risk cancels out.

Second, we introduce investors’ heterogeneous beliefs into cash flow processes. The key

assumption regarding investors’ belief heterogeneity is that investors have different opinions on

the long-run mean of the share process with respect to firm- or asset-specific risk.1 This differs

from most of the heterogeneous beliefs literature where investors update their perceptions of

the drift of underlying processes through aggregate risk. Since the market is equipped with a

sufficient number of assets to make the asset market complete, idiosyncratic cash flow risk is

priced in equilibrium through belief differences.

One of our main theoretical findings is that individual expected stock returns are positively

affected by idiosyncratic cash flow risk through belief differences.2 The higher the belief dif-

ference, the stronger the effect of idiosyncratic cash flow risks on equilibrium stock returns.

Individual equilibrium returns are positively affected by the cash flow share ratio (s̄/st), neg-

atively by the habit ratio (H̄/Ht), and negatively by the interaction between the share ratio

and the habit ratio.3 Cross-sectional return variations result from differences in those vari-

ables in addition to idiosyncratic cash flow risk via belief differences. It turns out that value

stocks have higher values in the share ratio and belief differences. Thus, the theory connects

these firm characteristics and related investor behavior to the cross section of stock returns.

Furthermore, our quantitative study reveals that the cross-sectional return variation is largely

attributed to the pricing of idiosyncratic cash flow risk in equilibrium. Specifically, our simu-

lation results state that a growth premium arises with a model where idiosyncratic cash flow

risk is ignored because of the absence of belief differences, which is consistent with Santos and

Veronesi (2010). Our results imply that sorting stocks based on price-to-fundamental ratios

endogenously picks up stocks with higher (idiosyncratic) cash flow risk and higher degrees of

belief differences in the cross-section, so that the value premium arises.

In this light, the main contribution of our paper is to show that idiosyncratic cash flow

1This assumption is similar to Basak (2000) where investors have different beliefs about the cash flow growth
rate through non-fundamental risk.

2Babenko, Boguth, and Tserlukevich (2013) show that in an option theoretic setting, idiosyncratic cash
flow risk negatively affects equilibrium stock returns. High idiosyncratic cash flow shocks positively affect a
firm’s profit, which in turn increases the firm size. When the firm size increases, the price of risk, measured
by the CAPM beta, decreases so that the expected excess return decreases. However, Cochrane, Longstaff,
and Santa-Clara (2008), Martin (2013), Choi, Johnson, Kim, and Nam (2013), and Choi and Kim (2014) show
that in an equilibrium setting, larger idiosyncratic cash flows can increase the market risk, because of under-
diversification. Because their model does not consider the stochastic discount factor derived in equilibrium,
the overall effect is unclear. In fact, later, we show that firms with higher idiosyncratic cash flow risks happen
to be value firms.

3Cash flow share, st, is defined as the ratio of firm cash flow to the market cash flow, and s̄ is the long-run
mean. Following Menzley, Santos, and Veronesi (2004), we use the share process to represent individual cash
flows.
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risk, in conjunction with investors’ heterogeneous beliefs, can explain the cross section of stock

returns and the related cash flow dynamics. Another contribution of the paper is to shed light

on the characteristics of value and growth stocks. Empirically, we estimate individual cash

flow share using data on stock returns, firm characteristics, and analyst forecasts. From our

empirical results, value stocks tend to have the lower long-run mean of the share, the higher

share ratio of the long-run mean to the current share, and a slower mean reversion of the share

than growth stocks.

Lower long-run mean of the share can be interpreted that value firms have lower growth

potential compared to growth firms. In addition, higher share ratios of value stocks imply that

value firms, despite their lower long-run mean of the share, have even lower current shares,

implying that the value firms currently suffer from lower profitability.4 A slower mean reversion

of the share process also indicates that value firms may grow more slowly. In addition, value

stocks have higher idiosyncratic volatilities of the cash flow share and a higher degree of belief

differences. Interestingly, aggregate cash flow volatilities of the two types of equities do not

differ, reinforcing our argument on the importance of idiosyncratic cash flows.

The importance of the pricing of idiosyncratic cash flow risk via belief differences sheds light

on the challenge that existing asset pricing models such as Campbell and Cochrane (1999),

Menzley, Santos, and Veronesi (2004), Lettau and Wachter (2007), Santos and Veronesi (2010),

and Lettau and Wachter (2011) face. In particular, Lettau and Wachter (2007) and Santos and

Veronesi (2010) show that if there is a negative correlation between shocks to aggregate cash

flows and shocks to the stochastic discount factor, as in the model of Campbell and Cochrane

(1999), then a growth premium will prevail in the cross-section that is opposite to the data.

Lettau and Wachter (2007) assume that the two shocks above have zero correlation. With

this structure, shocks to state variables that drive the stochastic discount factor increases the

impact of cash flows relative to discount rate leading to a value premium. In our model, while

the aggregate shock to the stochastic discount factor is negatively correlated with the shock

to aggregate cash flows, investor belief differences, related to idiosyncratic shocks appearing

in the stochastic discount factor, are uncorrelated with shocks to aggregate cash flows. The

idiosyncratic cash flow risk in equilibrium via belief differences increases the overall cash flow

risk effect. The increased cash flow risk component can suppress the effect of the discount-rate

risk in the cross-section so that the value premium arises. Therefore, our model provides an

economic rationale for the partial equilibrium set up of the stochastic discount factor in Lettau

and Wachter (2007), as well as for the counterfactual magnification of cash flow risk in the

cross-section in Santos and Veronesi (2010).

Finally, this paper is related to the heterogeneous beliefs literature with the following

4The relation between book-to-market ratio and share ratio is consistent with Avramov, Cederburg, and
Hore (2012) and Chen (2013).
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additions. First, we impose that investors’ beliefs work through idiosyncratic risk, unlike

the existing work on belief differences that focuses on aggregate risk. Second, our study is

related to the literature studying the risk premium relation from belief disagreement. There

is conflicting evidence that investors’ belief differences lead to either a positive or a negative

risk premium. Positive risk premium has been shown in Varian (1985), Varian (1989), Abel

(1989), David (2008), Qu, Starks, and Yan (2004), and Carlin, Longstaff, and Matoba (2013)

for example. Negative premium has been shown in Miller (1977), Harrison and Kreps (1978),

Diether, Malloy, and Scherbina (2005), Chen, Hong, and Stein (2002), Goetzmann and Massa

(2005), Johnson (2004), Park (2005), Zhang (2006), and others. Anderson, Ghysels, and

Juergens (2005) find both negative and positive risk premium depending on the frequency of

belief dispersion. Our equilibrium result shows that a positive risk premium exists, both in

time series and cross section and is closely linked to the value premium anomaly.

This paper is organized starting with Section 2 that introduces our model. In Section 3, we

derive equilibrium quantities and discuss the equilibrium impact of idiosyncratic cash flow risk

both qualitatively and quantitatively. Section 4 studies quantitative implications of the model

and provides a detailed discussion on how the value premium arises in our model. Proofs are

in the appendix and additional equilibrium results are found in the internet appendix.

II. The Economy

In this section, we develop our model. We begin with modeling the cash flows of as-

sets, followed by describing how belief differences are incorporated. Then, we define investor

preferences and securities, along with equilibrium conditions. In so doing, we label major

assumptions related to cash flows and belief differences to highlight the main features of the

model.

A. Cash Flow Modeling

We consider a continuous-time, pure-exchange equilibrium model with two trees. For the

specification of the tree process, we follow Menzley, Santos, and Veronesi (2004) by taking the

cash flow share process as exogenous to describe the relative movement of individual cash flow

processes in the economy.

Assumption 1. Individual cash flow processes follow mean-reverting share processes. The

share, st, is defined as individual cash flow (≡ Ds(t)) divided by aggregate cash flow (≡ D(t)).
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st follows

dst = φs(s̄− st)dt+ σ̃(st)dB
′
t, (II.1)

where

σ̃(st) ≡ st · σ(st),

σ(st) ≡ (σs,A(t), σs,I(t)),

σs,j ≡ vs,j − stvs,j − (1− st)v(1−s),j, j = A, I

dBt ≡ (dBA(t), dBI(t)),

φs > 0,

(II.2)

where s̄ is the long-run mean of the share of the asset under consideration, BA(t) and BI(t)

represent the aggregate Brownian risk and the idiosyncratic Brownian risk respectively, and

vs,j and v(1−s),j are the diffusion coefficients of individual assets with the share st and the share

(1− st).

Assumption 1 states that a single asset cannot dominate the entire market in the long-run

as was shown in Menzley, Santos, and Veronesi (2004). This stationarity enables us to analyze

the cross-section of stock returns in the long-run. Also note that this specification is a simpler

version of Menzley, Santos, and Veronesi (2004) and Santos and Veronesi (2010). The reason

that we have this specification is closely related to the specification of individual cash flow

process that can be derived from the share process. (II.6) shows that individual cash flow

process is influenced from its own idiosyncratic risk but not from other idiosyncratic risks. As

we want that individual cash flow process has two risk exposures, i.e., aggregate risk and its

own idiosyncratic risk, our specification in (II.1) fits our purpose.

Our share process is also flexible and tractable in modeling risks in an equilibrium setting.

Gabaix (2009) shows that this share process belongs to the family of linearity-generating

processes such that a closed-form solution can be derived. Appendix A provides more details

of the individual cash flow share process.

B. Belief Difference

Now we embed heterogeneous beliefs into the cash flow share process. The importance of

modeling investors’ heterogeneous beliefs is emphasized early by Lintner (1965), Miller (1977),

and Harrison and Kreps (1978). Later work studied the impact of economic agents’ different

beliefs about underlying fundamental economic processes on equilibrium quantities. Detemple

and Murthy (1994) study the effect of belief differences in a production economy. For exchange

economies, key contributions include Zapatero (1998), Basak (2000), Basak (2005), Buraschi
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and Jiltsov (2006), Jouini and Napp (2007), Gallmeyer and Hollifield (2008), David (2008), Du-

mas, Kurshev, and Uppal (2009), Weinbaum (2009) and Ehling, Gallmeyer, Heyerdahl-Larsen,

and Illeditsch (2012). In particular, we assume that investors have different beliefs about the

long-run mean of the share (s̄), which can be viewed as a measure of growth potentials. The

following assumption spells this out.

Assumption 2. Investors face the same information about the underlying cash flow processes

including both aggregate and individual cash flow processes, but agree to disagree about the long-

run mean of individual cash flow share processes. Specifically, investors have different beliefs

through idiosyncratic risk (or firm-specific information). By including the belief difference into

the share process, we write investors’ perceived share process as follows:

dst
st

= φs

(
s̄(k)

st
− 1

)
dt+ σs,A(t)dBA(t) + σs,I(t)dB

(k)
I (t), (II.3)

where k = 1, 2 refers to the individual investors. From the optimal filtering theory (Liptser and

Shiryaev (2001)), the innovation process BI(t) is given as

dB
(k)
I (t) ≡ η

(k)
t dt+ dBI(t), (II.4)

where η
(k)
t ≡

φs(s̄−s̄(k))
σs,I(t)st

. Note that η
(k)
t measures the difference between the true long-run mean

of the share and k-th investor’s perceived long-run mean of the share.

The aggregate cash flow process is given by

dDt

Dt

= µDdt+ σD,AdBA(t). (II.5)

Theoretical foundation for the “agree-to-disagree” assumption is found in Varian (1985),

Harris and Raviv (1993), Morris (1994), and Morris (1996). Although Assumption 2 is similar

to the assumptions in the previously mentioned papers, a major difference of our model is that

investors hold their different beliefs on the long-run mean of the cash flow through idiosyncratic

risk, and they agree about the aggregate cash flow dynamics and the impact of aggregate risk

on individual cash flow processes.

This assumption seems plausible as investors are more likely to disagree with each other in

interpreting individual firm-specific information due to their differences in educational back-

grounds, cultural views, expertise, or even cognitive capabilities. In addition, this particular

assumption shares a common feature with the rational inattention theory as seen in Sims

(2003). Rational inattention theory suggests that economic agents process important informa-

tion first. If they still have information processing capacity, then they process the remaining

information. This assumption comes from the notion that agents’ informational capacity is a
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scarce resource.

If we view aggregate risk as the important information and firm-specific risk as residual

information where different investors have different capacities of processing information, our

assumption can be thought of as a special form of rational inattention. For example, all

investors process the aggregate information first in the same manner so that they all agree

about how aggregate risk affects underlying economic processes. After that, they process the

remaining individual firm-specific information, but with differences due to limited resources in

information processing (Sims (2006) and Xiong and Peng (2006) for details).

Although individual cash flow processes are subject to both aggregate and idiosyncratic

risks, the aggregate cash flow process has exposure only to aggregate risk. Thus, equation

(II.5) implies that in the aggregate, the idiosyncratic risks are diversified away such that both

individual and aggregate cash flows are modeled consistently. According to the definition of

the share process st, an individual cash flow process is defined as the product of the share

process and the aggregate dividend. By applying Ito’s lemma to the product of st and Dt, we

can write perceived individual cash flow process as:

dDs(t)

Ds(t)
= µ

(k)
Ds

(t)dt+ σDs,A(t)dBA(t) + σDs,I(t)dB
(k)
I (t) k = 1, 2, (II.6)

where

µ
(k)
Ds

(t) ≡ µD + φs

(
s̄(k)

st
− 1

)
+ θCFs − stθCFs − (1− st)θCF(1−s),

σDs,A(t) ≡ σD,A + σs,A(t),

σDs,I(t) ≡ σs,I(t),

(II.7)

where θCFs ≡ vs,A · σDA. θCFs is the unconditional covariance between the share process and

the aggregate cash flow process. We define θCFs as a fundamental cash flow risk parameter

following Menzley, Santos, and Veronesi (2004). θCFs plays an important role in quantitative

study later because it enables us to estimate individual cash flow parameters vs,A and vs,I .
5

C. Investor Preference

Investor preferences are represented by a constant relative risk aversion utility function with

an external habit formation, such as “catching-up-with-Joneses”. Risk aversion parameters are

5Identification of individual cash flow risk parameters such as vs,A, vs,I , v(1−s),A and v(1−s),I is explained
in the appendix. The roles of the parameters are discussed in the quantitative results.
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set to be the same across investors for simplicity. Investor k’s utility function is given by:

u(ck(t)) =
1

1− γ

(
ck(t)

X(t)

)1−γ

, k = 1, 2. (II.8)

where X(t) represents a ratio habit as in Abel (1989). For tractability, we assume the economy

is populated by two investors. The habit process X is defined following Constantinides (1990),

Detemple and Zapatero (1991), and Santos and Veronesi (2010):

Xt ≡ δ

∫ t

0

e−δ(t−τ)Dτdτ. (II.9)

In particular, we follow Santos and Veronesi (2010) to define the process ofHt ≡ (Dt/Xt)
(1−γ)

and assume:

dHt = h1(H̄ −Ht)dt+ h2HtdBA(t), (II.10)

where h1 > 0, h2 > 0.

D. Equilibrium

In our economy, there are two risky assets and one riskless asset. Without loss of generality,

we consider the market portfolio and an asset with the share process st for the risky assets.

The asset with share s is referenced as asset s, while the market portfolio is referenced as M .

The price process of the market portfolio is computed as:

dPM,t +Dt

PM,t

= µPM (t)dt+ σPM ,A(t)dBA(t). (II.11)

Accordingly, the perceived price of the asset s, denoted as Ps is given by

dPs,t +Ds,t

Ps,t
= µ

(k)
Ps

(t)dt+ σPs,A(t)dBA(t) + σPs,I(t)dB
(k)
I (t) for k = 1, 2, (II.12)

where

µ
(k)
Ps

(t) ≡ µPs(t)−
σPs,I(t)φs(s̄− s̄

(k))

σs,I(t)s(t)
. (II.13)

Further, rt refers to the rate of return for the riskless asset.

Turning to the consumption-portfolio problem of the individual investor, investor k’s wealth
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W (k)(t) evolves as:

dW
(k)
t =W

(k)
t

[
rt − c̃k,t + π

(k)
M (t)(µP (t)− rt) + π(k)

s (t)(µ
(k)
Ps

(t)− rt)
]
dt

+W
(k)
t

[
π

(k)
M (t)σP,A(t) + π(k)

s (t)σPs,A(t)
]
dBA(t)

+W
(k)
t

[
π(k)
s (t)σPs,I(t)

]
dB

(k)
I (t),

(II.14)

where c̃k,t is the consumption fraction of the k-th investor, ck,t/W
(k)
t . The quantities π

(k)
M

and π
(k)
s are the k-th investor’s risky investment fractions of wealth in the market portfolio

and the asset that corresponds to the share process, st. The riskless investment is defined as

bk(t) ≡ 1− π(k)
M (t)− π(k)

s (t). Following Dybvig and Huang (1988), we impose a non-negativity

condition on the wealth process in order to rule out arbitrage strategies.

We now specify state price densities across investors as follows:

dξ
(k)
t = −ξ(k)

t

[
rtdt+ θA(t)dBA(t) + θ

(k)
I (t)dB

(k)
I (t)

]
for k = 1, 2, (II.15)

where θA is the market price of aggregate risk and θ
(k)
I s is the perceived market price of

idiosyncratic risk for investor k. Market prices of risks are:

θA(t) ≡ µP (t)− rt
σP,A

,

θ
(k)
I (t) ≡

[
−
σPs,A
σPs,I

θA(t) +
1

σPs,I

(
µPs − r

)
− η(k)

t

]
.

(II.16)

Thus, the following link exists between the two idiosyncratic market prices of risks:

θ
(1)
I (t)− θ(2)

I (t) = η
(2)
t − η

(1)
t = η̄t. (II.17)

For simplicity, we assume the second investor is always the more optimistic investor such that

s̄(2) is bigger than s̄(1) which brings us to our next assumption.

Assumption 3.

η̄t ≡ η
(2)
t − η

(1)
t =

φs(s̄
(1) − s̄(2))

σs,I(t)st
< 0.

Assumption 3 simply states that a belief difference exists in this economy and is represented

by the η̄ term which is negative.

Investors are assumed to be infinitely lived and the market is complete in our economy.

Thus, we can formulate an individual optimization problem using martingale methods as fol-
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lows:

max
ck

E(k)

[∫ ∞
0

uk(ck(t))dt

]
subject to

E(k)

[∫ ∞
0

ξ(k)(t)ck(t)dt

]
≤ W (k)(0) ≡ wkP (0),

(II.18)

where P (t) is the total wealth held by both investors at time t since it is the value of the

market portfolio. Also note that W (1)(t)+W (2)(t) is the total wealth in the economy such that

it equals P (t). The quantity wk is the initial fraction of wealth held by investor k of the market

portfolio. From the maximization problem in (II.18), the optimality condition for investor k’s

consumption is given by:

ck(t) = Ik

(
ξ(k)(t)

λk

)
=

(
1

Xt

) 1−γ
γ
[
ξ(k)(t)

λk

]− 1
γ

,

(II.19)

where 1/λk is the Lagrange multiplier for investor k’s optimal consumption-portfolio choice

problem and Ik(·) is the inverse of investor k’s utility function. From the static budget con-

straint of investor k’s problem, we have:

λk =

E(k)
[∫∞

0

{
ξ(k)(t)Xt

} γ−1
γ dt

]
wkPM(0)


−γ

. (II.20)

Then, equilibrium in this economy is defined as follows:

Definition 1. Given preferences, endowments, and beliefs structures, an equilibrium in this

economy is a collection of allocations

(
∗
ck,

∗
πM

(k)
,
∗
πs

(k)
,
∗
bk

)
k=1,2

and a supporting price system(
r, µP , µ

(k)
Ps
, σP , σPs

)
such that

(
∗
ck,

∗
πM

(k)
,
∗
πs

(k)
,
∗
bk

)
optimally solves investor k’s consumption-

portfolio choice problem given his/her perceived price processes, security prices are consistent
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across investors, and all markets clear for t ∈ [0, T ]:

2∑
k=1

∗
ck(t) = D(t),

2∑
k=1

∗
πM

(k)
(t) = 1,

2∑
k=1

∗
πs

(k)
(t) = s(t),

2∑
k=1

∗
bk(t) = 0.

(II.21)

To derive the equilibrium prices, we find two stochastic discount factors that clear the

consumption good market:

∗
c1(ξ(1)(t)/λ1, t) +

∗
c2(ξ(2)(t)/λ2, t) = D(t). (II.22)

For computational purpose, we define the stochastic weighting process λt as follows:

λt ≡
λ1ξ

(2)
t

λ2ξ
(1)
t

, (II.23)

where λ0 = λ1
λ2

, since ξ(k)(0) = 1 for k = 1, 2. As discussed in Basak (2000), λt provides

information about the differences in the investors’ opportunity sets given heterogeneous beliefs.

To solve for the equilibrium, we construct a representative investor’s utility function. For this,

we follow Huang (1987) and Cuoco and He (1994). This method has been applied in many

equilibrium studies such as Basak and Cuoco (1998), Basak (2000), Detemple and Serrat

(2003), Basak and Gallmeyer (2003), and Gallmeyer and Hollifield (2008). The λt process is a

stochastic weight in the representative investor’s utility function for computing the equilibrium

as follows:

U(C, λ) = max
c1+c2≤D

λt
λ1

(c1/X)1−γ

1− γ
+

1

λ2

(c2/X)1−γ

1− γ
, (II.24)

where C is the aggregate consumption; therefore, C ≡ D. By applying Itô’s lemma to λt, we

obtain the diffusion process of λ(t) as:

dλt
λt

= η̄tdB
(2)
I (t). (II.25)

Thus the process of λt is fully described by investors’ disagreements, η̄t ≡
[
η

(2)
t − η

(1)
t

]
, and

12



the second (optimistic) investor’s perceived idiosyncratic Brownian risk B
(2)
I (t). Using this

stochastic weight process, we can write the consumption goods clearing condition as:

∗
c1(ξ(2)(t)/[λ2λ(t)], t) +

∗
c2(ξ(2)(t)/λ2, t) = D(t). (II.26)

Since the risk aversion coefficient, γ, is the same across two investors, the stochastic discount

factor for each investor is obtained as follows:

ξ
(2)
t

λ2

= D−γt

(
1

Xt

)1−γ
[

1 +

(
1

λt

)−(1/γ)
]γ
,

ξ
(1)
t

λ1

=
ξ

(2)
t

λ2

1

λt
.

(II.27)

III. Theoretical Results

We now derive equilibrium prices and quantities of the economy. Because ξ(1) and ξ(2)

are linked through the λt process, which is the Radon-Nikodym derivative between the two

investors’ perceived probability measures, it is sufficient to compute the price of an asset with

the share, st, using the second investor’s state price density. The equilibrium price-dividend

ratio of asset s is derived as follows:

Proposition 1. The equilibrium stock price with the share process st is given by:

Ps(t)

Ds(t)
=

[
βs,0 + βs,1

(
H̄

Ht

)
+ βs,2

(
s̄(2)

st

)
+ βs,3

(
s̄(2)

st

H̄

Ht

)]
, (III.1)

where coefficients βs,k are functions of average of investors’ belief difference ηt, and parameters

determining cash flow characteristics as follows:

βs,k ≡ fk(vs,I , vs,A, η̄t, γ, h1, h2, φs, s̄
(2)), (III.2)

for k = 0, 1, 2, 3 and η̄t is the time-series average of belief difference measure for the stock with

the share, st. Details of the coefficients βs,k’s are given in Appendix C. The quantities s̄/st and

H̄/Ht are referred to the share ratio and the habit ratio, respectively.

Proof: See Appendix C.

Equation (III.1) states that the equilibrium price-dividend ratio of a stock with the share st

depends on three main variables: the share ratio (s̄(2)/st), the habit ratio (H̄/Ht), and the

13



interaction between the share ratio and the habit ratio. As coefficients βs,k’s are different across

different assets (depending on characteristics of the share st), we might have strong equilibrium

cross sectional effects from the coefficients. In addition, the βs,k coefficients are nonlinear

functions of the habit parameters (h1 and h2), long-run mean of the cash flow share, and the

average value of belief differences. This raises an important issue to assess the sensitivity of

the price-dividend ratio of a stock with respect to the key state variables, such as the share

ratio. For instance, if βs,2 and βs,3 were positive constants, then as the share ratio increases,

its price-dividend ratio will increase. However, in our case, the effect is more complicated as

the price-dividend ratio is affected by the interaction between the share ratio and the habit

ratio as well as the habit ratio.

[Insert Figure 1]

To verify this, we plot the time-series of the share ratio and the price-dividend ratio of value

and growth U.S. stocks during 1983-2011 period. Figure 1 suggests that the relation between

the share ratio and the price-dividend ratio is nonlinear. Although the overall trend of the two

variable appears to have a weakly positive correlation, negative correlations often prevail at

business cycle frequencies and this pattern is stronger for value stocks. In addition, the share

ratios of value stocks are much higher that those of growth stocks. This suggests that simple

models linking the cash flow shares and the price-dividend ratios face difficulties in explaining

time-series and cross-sectional features of stock returns.

Similarly, we compute the expected excess return of an asset with share st.

Proposition 2. Equilibrium return process for a stock with the share process, st is given by

dRs = µ
(2)
Rs
dt+ σRs,AdBA + σRs,IdB

(2)
I , (III.3)

where µ
(2)
Rs

is the expected excess return, i.e., E
(2)
t [dRs,t], and it is given by:

E
(2)
t [dRs,t] =

[
Ds(t)

Ps(t)

] [
µA,Is,t + µIs,t

]
, (III.4)

where

µA,Is,t ≡ βs,0
(
σD,A + σs,A(t)

) (
σD,A − h2

)
+ βs,1

(
σD,A + σs,A(t)− h2

) (
σD,A − h2

) [ H̄
Ht

]
+ βs,2σD,A

(
σD,A − h2

) [ s̄(2)

st

]
+ βs,3

(
σD,A − h2

)2
[
s̄(2)

st

H̄

Ht

]
,

µIs,t ≡ −
1

2
σs,I(t)η̄t

(
βs,0 + βs,1

H̄

Ht

)
,

(III.5)
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and
(
βs,0 + βs,1

H̄
Ht

)
> 0.

Proof: See Appendix C

Similar to Proposition 1, the individual equilibrium expected excess return depends on three

variables. As was shown previously, we have equilibrium cross sectional effects from βs,k

coefficients, idiosyncratic cash flow risk σs,I(t) , and the share ratio s̄(2)/st. By carefully

grouping components, we can decompose the equilibrium expected excess return into two parts.

The first one is mixed with both aggregate and idiosyncratic cash flow risks, µA,Is,t , and the other

is purely an idiosyncratic cash flow risk part, µIs,t which depends on the interaction between

the idiosyncratic cash flow risk and investors’ belief differences. We show that µIs,t is positive

because −σs,I(t)η̄t is positive. This implies that the idiosyncratic cash flow risk can positively

affect the equilibrium individual expected excess return. The reason this happens is that the

idiosyncratic cash flow risk is priced in equilibrium through the investors’ belief differences.

This is captured by the covariance between the idiosyncratic shock to the stochastic discount

factor and the idiosyncratic shock to the share process, which is σs,I(t)η̄t. In equilibrium,

this covariance includes −(1/2)σs,I(t)η̄t. Thus, in our model, belief differences can induce a

positive risk premium, particularly, in light of idiosyncratic cash flow risks. Nevertheless, the

overall effect of the share ratio on the expected excess return from the other terms is uncertain,

according to the equations (III.4) and (III.5). Before we quantitatively assess the model, the

following figure empirically shows how the share ratios are associated with future stock returns

sorted by the book-to-market ratio.

[Insert Figure 2]

Figure 2 shows that there is a positive relation between share ratios and the returns of

portfolios in value deciles. Because Figure 1 shows a negative relation between the share ratio

and the price-dividend ratio at business cycle frequencies, these two empirical observations

suggest that the share ratio measures a source of risk in the short run. Previous studies such

as Menzley, Santos, and Veronesi (2004) and Avramov, Cederburg, and Hore (2012) also report

that the share ratio is positively related to the expected excess return. In these studies, the

share ratio is viewed as the expected future dividend growth rate to interpret that higher

expected returns result from higher discount risk. However, we note that the difference in the

share ratio comes from both the difference in the long-run mean of the share and the difference

in the current share. If the long-run mean is lower and the current share is even lower, this

makes the share ratio high, but this stock is risky and distressed in terms of current and future

cash flows. Furthermore, in this case, if the speed of catching up to its long-run mean is slow,

a high share ratio can reflect a serious cash flow risk.
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Recently, many asset pricing studies have investigated the relative contribution of the dis-

count rate risk component and the cash flow risk component to the cross sectional variation

of stock returns.6 Following this fashion, we attempt to decompose the equilibrium individual

expected excess return into the discount rate risk component and the cash flow risk component.

We first compute the cash flow risk premium and define the discount rate risk premium

as the difference between the equilibrium expected excess return and the return driven by

the cash flow risk. In order to extract the cash flow risk component, we pay attention to

the effect of changes in individual cash flows on the expected excess return. The cash flow

risk component in the equilibrium expected excess return is directly affected by changes to

individual cash flows, Ds(t), and indirectly affected by changes in st.
7 A direct cash flow effect

can be obtained by investigating the price elasticity with respect to the cash flow Ds:

∂Ps(t)/Ps(t)

∂Ds(t)/Ds(t)
=

[
βs,0 + βs,1

(
H̄

Ht

)](
Ds(t)

Ps(t)

)
. (III.6)

The indirect effect caused by st is embedded in the share ratio, s̄/st. Thus, the expected return

that is associated with the share ratio:

βs,2σD,A
(
σD,A − h2

)( s̄(2)

st

)(
Ds(t)

Ps(t)

)
is regarded as a part of the cash flow risk premium. Putting these together, we define the cash

flow risk component, µCFs,t as:

µCFs,t ≡ µIs,t +

[
βs,0 + βs,1

(
H̄

Ht

)](
Ds(t)

Ps(t)

)(
σD,A + σs,A(t)

)
(σD,A − h2)

+ βs,2σD,A
(
σD,A − h2

)( s̄(2)

st

)(
Ds(t)

Ps(t)

)
.

(III.7)

As a result, the discount rate risk component, µDRs,t is defined as the residual as follows:

µDRs,t ≡ E
(2)
t [dRs,t]− µCFs,t . (III.8)

The following proposition summarizes the above result.

Proposition 3. The equilibrium expected excess return of a stock with the share, st, is decom-

6See Campbell and Vuolteenaho (2004), Campbell, Polk, and Vuolteenaho (2010), Lettau and Wachter
(2007), Santos and Veronesi (2010), as well as many others for the study of the relative importance of the
discount rate risk component and the cash flow risk component in explaining the cross sectional return variation.

7When the share, st, changes, the individual cash flow, Ds, also changes.
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posed into the discount rate risk return and the cash flow risk return:

E(2) [dRs,t] = µDRs,t + µCFs,t . (III.9)

As a special case of an individual equilibrium quantity when the share is one, st ≡ 1,

without investor belief differences, the equilibrium expected return of the market portfolio is

given as follows:

Proposition 4. The aggregate cash flow corresponds to the case of st ≡ 1. By applying st ≡ 1

and no individual belief differences, we get the approximate equilibrium expected excess return

of the market portfolio as:

Et [dRM,t] =
(
σD,A − h2

)2
+
h2

h1

(
σD,A − h2

) Dt

Pt
. (III.10)

Proof: See Appendix C.

Because there is no belief difference about the aggregate risk, the aggregate equilibrium quan-

tities have no exposure to idiosyncratic cash flow risks. The aggregate equilibrium return of

the market portfolio depends only on aggregate risk parameter (σD,A) and the parameters in

the habit process, h1 and h2.

In summary, when idiosyncratic cash flow risk is priced in equilibrium through investor

belief differences, it positively affects the individual equilibrium expected excess return. How-

ever, since all the coefficients in the equilibrium price-dividend ratio and expected excess return

are (nonlinear) functions of the share st, investors’ belief difference, ηt, as well as parameters

determining firms’ cash flow characteristics, it is hard to predetermine the effects of the main

variables. We investigate the effects of the main variables on the equilibrium expected excess

return both in the cross-section and in the time-series in the next section.

IV. Quantitative Analysis

A. Data

In this subsection, we construct cash flow data of individual assets, measures of investor

belief differences, and corresponding individual asset returns covering the period 1983-2011.

We begin with investor belief differences. We use earnings forecasts (EPS forecasts) from

Institutional Brokers’ Estimate System (I/B/E/S) to extract investors belief differences. In

particular, we use monthly EPS forecasts with the most recent forecasts from the I/B/E/S
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STATSUM data set. Each month, we find the latest analysts’ forecasts available. If missing

values exist in EPS forecasts, we replace them with the previously available forecast values.

At the end of each forecast period, we take the standard deviation of EPS forecasts. If there

is more than one report on the standard deviation, we average them. We then compute the

coefficient of variation of EPS forecasts, i.e., the standard deviation of EPS forecasts divided by

the mean EPS forecasts.8 We use this quantity as an empirical measure for belief differences,

denoted as BD. Our measure is similar to Diether, Malloy, and Scherbina (2005) and Yu

(2011).9 Note that at each point in time, the belief difference measure is determined prior to

the actual report date of an asset’s return. Thus, we have a stock’s belief difference measure

whose value is determined in the previous month to make sure that the belief difference measure

is formed only using the information available to investors in each period.

Recall that the belief difference measure proposed in the theory, η̄t is defined as the dif-

ference between the pessimistic investor’s long-run mean of the cash flow share and that of

the optimistic investor and hence its sign is negative. Therefore, to be consistent with the

empirical measure based on dispersion, we put a minus in front of η̄. In addition, the empirical

measure uses the earnings per share and the theoretical measure is based upon the cash flow

share. We construct −η̄t for the purpose of simulation, by projecting the share ratio onto the

EPS and using the estimated coefficients times the EPS forecast as the predicted share.

For stock price and return data, we use the data from the Center for Research in Se-

curity Prices (CRSP) and the COMPUSTAT. For the benchmark, we use both the CRSP-

COMPUSTAT merged data set and the CRSP-COMPUSTAT-I/B/E/S merged data set from

January, 1983 to December, 2011. The latter data set is the one incorporating the belief

difference measure. One caveat of the CRSP-COMPUSTAT-I/B/E/S merged data set is the

coverage of stocks and due to a low coverage of stocks in I/B/E/S data set, we have about

43% of the whole universe of CRSP stocks.

Regarding the cash flows of individual stocks, we follow Stephens and Weisbach (1998) and

Grullon and Michaely (2002) to use accounting information in the COMPUSTAT data set. We

define the cash flow as the sum of dividends and stock repurchases. We construct time-series

of cash flows of each stock on a monthly basis. For dividends, we use returns with and without

dividends to compute the dividend yield. Then, multiplying the dividend yield by the market

capitalization of a stock is defined as the dividend. For market capitalization, we take the

8 We take the coefficient of variation of EPS forecasts to get rid of a size effect embedded in standard
deviation as it is well known that the bigger the market size of a stock, the larger the standard deviation. In
addition, this measure is invariant in its direction in portfolio deciles sorted by book-to-market when we replace
the mean EPS forecasts with the book-equity price. This invariance has been explored in Diether, Malloy, and
Scherbina (2005).

9This method is also similar to using a confidence interval as a measure of belief difference. See David
(2008).
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product between the mid-point price of a stock within a month and the outstanding number

of shares of a stock. For stock repurchases, we first compute the decrease in numbers of the

outstanding shares of a stock every month by using accounting information in COMPUSTAT. If

this decrease is positive (number of shares decreases), then we multiply the decrease in number

of shares with the mid-price of a stock in a month. If decreases in the outstanding number

of shares are negative (numbers of shares increase), then we take zero as a stock repurchase.

This is the same procedure as the one used in Stephens and Weisbach (1998). Finally, we

take the moving sum of current and past two months of dividends with share repurchases as

the monthly cash flow to mitigate the missing value problem which frequently occurs at the

firm level. The aggregate cash flow is computed by summing individual cash flows across all

individual firms. After constructing individual cash flows, we assign each stock its book-to-

market ratio decile using the NYSE breakpoints. This sorting procedure can be found on

Kenneth French’s website.

[Insert Table I]

[Insert Figure 3]

Table I shows summary statistics of the market portfolio and portfolios in value deciles. Panel

A shows summary statistics of the market portfolio from 1983 to 2011. Panels B and C

show the cross-sectional properties of average returns, average book-to-market ratio, average

price-dividend ratio, and the Sharpe ratio of decile portfolios sorted by book-to-market from

the CRSP-COMPUSTAT merged data and the CRSP-COMPUSTAT-I/B/E/S merged data,

respectively.

Figure 3 displays the cross-section of stock returns from the CRSP-COMPUSTAT merged

data set in Panel B of Table I. According to the table and figure above, the value premium is

clearly pronounced from 1983 to 2011. When stocks are sorted based on the book-to-market

ratio, stocks with high book-to-market ratio (value stocks) earn about 0.5% extra return per

month over stocks with low book-to-market ratio (growth stocks) on average. A very similar

pattern prevails in average returns across stocks sorted on the price-dividend ratio where stocks

with high book-to-market ratios correspond to stocks with low price-dividend ratios. Given

that our model considers a simple exchange economy, we regard firms with low (high) price-

dividend ratios as value (growth) firms.

B. Calibrated Parameters

Aggregate parameters representing the investor preferences (γ, δ, h1, and h2) and the

aggregate cash flows (µD and σD,A) are calibrated by matching the first and second aggregate

moments to their data counterparts.
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[Insert Table II and Table III]

Tables II and III report the matched moments and the resulting calibrated values of the

parameters. In Table II, Panel A refers to the moments at the monthly frequency and Panel

B at the quarterly frequency. Both cases show nearly identical results. We use the monthly

version as the baseline parameters. Details of the calibration method are described in Appendix

B.

C. Estimation Results of Cash Flow Processes

In this subsection, we report the parameter estimates that characterize the cash flows of

value and growth stocks in equations II.1 to II.4. We also compute the covariance between the

share and the aggregate cash flow (θCF ), average share ratio (Avg(s̄/st)), and the ratio of the

standard deviation of the share to its mean (CV (st)) to discuss economic implications. All the

results are displayed in Tables IV and V. Panel A shows the result without merging the IBES

data, whereas Panel B is the table incorporating the IBES data to show the degree of belief

difference in portfolios with the book-to-market ratio deciles.

[Insert Table IV and Table V]

Table IV reveals several characteristics of cash flow risk associated with the value premium.

First, the long-run mean of the share, s̄, is higher in growth firms than in value firms. This is

intuitively plausible because the long-run mean of the share represents a firm’s long-run growth;

and therefore, measures how well a firm is expected to perform in terms of total payout. Thus,

consistent with the labels of value and growth firms, a growth firm is likely to have a higher

long-run mean of the cash flow share s̄ than a value firm.

How about the conditional expected growth in cash flow share or Et(dst/st)? This is also

a popular measure of firm growth and from the equation (II.1) Et(dst/st) = φs(s̄/st − 1)dt

holds. Thus, both the share ratio (s̄/st) and the mean reversion (φs) matter to measure the

expected growth of payout.

Given this information, Table IV illustrates the estimate of the share ratio, s̄/st, is higher

in value firms than growth firms. To check the robustness of this observation, we measure

several different estimates of the share ratio in value deciles: the average of the share ratio

over time, the quantile values of the share ratio, and the average of the share ratio in each

quantile group. Table V shows that the share ratio of value stocks is still higher than that of

growth stocks in all cases. This appears to be counter-intuitive in that the value stocks are

associated with a longer distance between s̄ and st, suggesting a higher share growth. However,

because the long-run mean of the share (s̄) is lower for the value stock, higher share ratios of
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the value stocks mean that the value stocks’ current shares (st) are quite low, despite the low

value of the long-run mean of shares. Thus, value firms are distressed and likely to suffer from

lower profitability than growth firms, as reported in previous studies such as Fama and French

(1992), Zhang (2005) and Choi, Johnson, Kim, and Nam (2013).

This leaves the mean reversion coefficient φs to account for the different expected growth in

the cash flow share between value and growth firms. Table IV reports that the speed of mean

reversion is clearly higher for the growth stocks, implying higher expected growths. Thus,

value stocks have lower growth potentials (s̄), even lower current cash flow shares (st), and

slower mean reversion (φs). In addition, the share ratio (s̄/st) can proxy for the degree of cash

flow risk in the short run because mean reversion is going to occur rather slowly, especially for

the value firms. This cross-sectional result is consistent with our time-series empirical finding

in the previous section. The relation between the share ratio and the price-dividend ratio is

negative at business cycle frequencies, though the long-run trend is weakly positive suggesting

that the share ratio measures a short-term risk source.

Related, we find that a higher share ratio is associated with bigger cash flow fluctuations.

The bottom of Panel A in Table IV displays the coefficient of variation of the share in the value

decile. The coefficient of variation of a value firm is higher than that of growth firms. This

implies that value firms have larger exposure to current cash flow fluctuations. Interestingly,

the higher cash flow fluctuation in value stocks is mostly captured by higher idiosyncratic cash

flow risk (vs,I) of the value stocks, as aggregate cash flow risks (vs,A) do not significantly differ

in value decile.

Lastly, we can infer an important aspect of consumption risk from belief differences in the

data. The last row of Panel B in Table IV shows that belief differences (BD) are positively

associated with the share ratio or the belief difference is higher in case of the value stocks. In

our theory, equilibrium consumption sharing rules are exposed to both aggregate and idiosyn-

cratic risk.10 Aggregate risk is the same as the risk of the aggregate cash flow process, but

the idiosyncratic consumption risk depends on investors’ belief differences. This implies that

value firms induce larger idiosyncratic consumption risk because they are exposed to higher

investors’ belief differences through which idiosyncratic cash flow risk translates into equilib-

rium consumption. Therefore, investors can be subject to larger idiosyncratic consumption

risks when they invest in value firms which result from higher idiosyncratic cash flow risk as

well as larger belief dispersion.

10See the internet appendix for additional equilibrium results.
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D. Simulation Results

In this subsection, we describe the simulation method and results. We first compute the

unconditional covariance between the share process and the aggregate cash flow process for

10 book-to-market sorted portfolios. This covariance yields the fundamental aggregate cash

flow risk, θCFs . Dividing this by the diffusion coefficient of the aggregate cash flow process,

σD,A, enables us to pin down individual aggregate cash flow risk parameter, vs,A, as shown in

Appendix A.11 With this estimated parameter, we proceed to compute the total variability of

the individual cash flow process that is defined by the product of the share process and the

aggregate cash flow process. The total variability of the individual cash flow process gives us a

restriction by which we can compute the individual idiosyncratic cash flow risk parameter, vs,I .

Specifically, as shown in Appendix A, if we evaluate the total variability of an individual cash

flow at the long-run mean of the share, then we can extract the idiosyncratic cash flow risk

parameter, vs,I . Finally, we use the identification condition of the share process from Appendix

A to compute v(1−s),A and v(1−s),I . Once these parameters are retrieved, we estimate the mean

reversion coefficient of the share process, using the generalized least square method using the

fact that σs,A and σs,I are computed from their parametric restrictions.

We simulate 200 firms for 5,000 months and report results with the last 2,000 months. In

so doing, we put the first set of values of φs, vs,A, and vs,I in Panel A of Table IV on the first

20 firms (growth firms) and repeat the procedure for the next set of firms. .

[Insert Figure 4]

[Insert Figure 5]

Figures 4 and 5 show simulated sample paths of the equilibrium price-dividend ratios, equi-

librium expected excess returns, and the share ratios on value and growth firms respectively.

In particular, Figures 4 and 5 correspond to their empirical counterparts Figure 1 and Figure2.

The nonlinear relation between the share ratio and the price-dividend ratio is clear with a

negative correlation in the short run and a positive link between the share ratio and future

returns. Thus, our model can produce data compatible with the actual times series data.

Now, we investigate cross-sectional properties of the simulation results. Table VI and

Figure 6 show the cross-sectional results of the simulated data. The equilibrium expected

excess returns sorted by price-dividend ratios show a sizable value premium and resemble the

empirical cross-sectional pattern in Figure 3. Sharpe ratios are increasing from growth to value

firms, which is also consistent with the empirical evidence in Table I.

11The diffusion coefficient of the aggregate cash flow process, σD,A, is estimated by using a maximum
likelihood method.
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[Insert Table VI]

[Insert Figure 6 ]

Additionally, the decomposition of the simulated average excess returns reveals that the

returns of growth firms are mostly explained by the discount risk (DR), yet those of value

firms are heavily dependent upon the cash flow risks (CF). Consistent with this observation,

the coefficient of variation (CV (st)) is greater for the value firms and the sensitivity of stock

price with respect to cash flow changes also increases along the value decile. Thus, our model

produces a growth premium that results from discount risks, but incorporating cash flow risks

generates a value premium consistent with the data. In a similar setting, Santos and Veronesi

(2010) show that the value premium prevails only by making the aggregate cash-flow volatility

abnormally high and the cash-flow volatility puzzle arises. On the other hand, our model

emphasizes the role of belief differences related to idiosyncratic cash flows and the quantitative

result shows the reasonable size of the value premium.

E. Value or Growth? Role of Belief Differences

If the belief differences explain the cross-sectional variations of stock returns, the simu-

lated data without the belief differences on idiosyncratic cash flows should produce a growth

premium. To verify this, we simulate the model by turning off the belief differences channel.

Figure 7 shows the mean cross-sectional returns across the logarithm of the price-dividend

ratios.

[Insert Figure 7]

The top panel of Figure 7 illustrates our baseline model and the bottom panel shows the

case without belief differences.12 Consistent with our prediction, the model generates a strong

growth premium when there are no belief differences. In the case of no belief differences,

the idiosyncratic cash flow risk can still be priced through the share process in equilibrium, as

pointed out by Cochrane, Longstaff, and Santa-Clara (2008). However, as quantitatively shown

by Santos and Veronesi (2010), the discount rate risk plays a major role in the cross-section

to produce a counterfactual growth premium.

Thus, the comparison between our model and the one without belief differences highlights

their importance. If the idiosyncratic cash flow risk is positively associated with belief dif-

ferences in the cross-section, its effect can be magnified by the belief differences mechanism

12The simulation with no belief differences is carried out using the same cash flow risk parameters in the value
decile, but with the fixed mean-reversion coefficient of the share process at 0.09. This method of simulation is
very similar to the one in Santos and Veronesi (2010).
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even if fluctuations of idiosyncratic cash flows are relatively moderate. Recall that the value

firms have higher idiosyncratic cash flow risk and higher belief differences empirically. Thus,

they are exposed to more (idiosyncratic) cash flow risk than growth firms. According to our

computations, when the idiosyncratic cash flow risk is priced in equilibrium, increased cash

flow risk component dominates the discount rate risk component hence the value premium

arises.

Lettau and Wachter (2007) study the value premium puzzle in this context using an ex-

ogenous stochastic discount factor that generates a time-varying risk premium. They consider

value stocks as those that pay currently and growth stocks as those that will pay in the distant

future. They assume that shocks to the state variables in the stochastic discount factor are

uncorrelated with shocks to the aggregate dividend. As a result, shocks to the stochastic dis-

count factor suppress the effect of the discount rate risk in determining the cross-section while

matching aggregate moments. Since value stocks covary more with front-loaded cash flows and

growth stocks covary more with cash flows far in the future, a value premium arises if investors

fear fluctuations of front-loaded cash flows. Under a typical asset pricing model, such as an

external habit formation of Campbell and Cochrane (1999), the two aforementioned shocks

are perfectly negatively correlated which is the key to explain the aggregate equity premium.

However, Lettau and Wachter (2007) show that given the negative correlation between the

two shocks, a growth premium arises because the effect of the discount rate risk is strongly

pronounced. This result is in line with Santos and Veronesi (2010) in that they generate the

value premium by incorporating excessively high aggregate cash flow volatilities. Thus, both

Lettau and Wachter (2007) and Santos and Veronesi (2010) raise an important issue faced by

equilibrium asset pricing models.

Our model complements both Lettau and Wachter (2007) and Santos and Veronesi (2010).

The most crucial assumption in Lettau and Wachter (2007) is that shocks to taste are uncor-

related with shocks to the aggregate cash flows. This differs from asset pricing models, such

as Campbell and Cochrane (1999), Menzley, Santos, and Veronesi (2004), and other models

with external habit formation, since these models produce time-varying risk premiums via cur-

rent and past aggregate cash flows. In our model, the measure of investors’ belief differences

showing up in the stochastic discount factor has a zero correlation with shocks to aggregate

cash flows. Hence, it is similar to shocks in stochastic discount factor of Lettau and Wachter

(2007). Priced idiosyncratic cash flow risk increases the overall cash flow risk component which

reduces the effect of discount rate risk such that the value premium arises. Therefore, our model

provides potential microeconomic foundations to the reduced form of the stochastic discount

factor proposed by Lettau and Wachter (2007). Additionally, our model explains the puzzle

of magnified cash flow risk in Santos and Veronesi (2010). Their results show that individual

aggregate cash flow risk does not differ much in the value decile so that a growth premium
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arises as discount rate risk dominates. Our model offers an equilibrium pricing of idiosyncratic

cash flow risk that increases with the overall cash flow risk component without challenging the

empirical facts on stock returns.

V. Conclusions

In this paper, we show that differences in investors’ beliefs on firms’ cash flows play an

instrumental role in explaining the return of portfolios sorted by the book-to-market ratio. In

the data, we find that aggregate cash flow risks do not differ much in value deciles, yet the

fluctuation of cash flow shares increases from the growth stocks to the value stocks. This implies

that idiosyncratic cash flow risk should be high for the value stocks. Our model with belief

heterogeneity allows the idiosyncratic cash flow risk to be priced in equilibrium. Furthermore,

our model states that idiosyncratic cash flow risk and belief difference are positively associated.

The effect of idiosyncratic cash flow risk can be magnified along the value deciles, if the value

stocks are more prone to divergence of opinions. That is, value stocks can have higher expected

returns than the growth stocks due to the (idiosyncratic) cash flow risk along with higher

belief difference. Our empirical result shows that the value stocks indeed have higher belief

differences. We can quantitatively produce the size of the value premium observed in the data.
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Appendix A : Basics of the Share Process

For the model of individual cash flow share process, we follow Menzley, Santos, and Veronesi (2004).

Thus the regularity conditions such as st ≥ 0 and
∑
st = 1 hold. Specifications of diffusion coefficients are

similar to Menzley, Santos, and Veronesi (2004) but ours is simpler version. As mentioned before, this simpler

specification allow us to deal with only one idiosyncratic risk in individual dividend processes while keeping

the flexibility of modeling individual cash flow processes.

Following Menzley, Santos, and Veronesi (2004), restrictions are imposed to guarantee that dividends are

positive and the share is positive. Since σs,j and σ(1−s),j for j = A, I are invariant to adding the same vector

to each vs or v(1−s), we can normalize vs and v(1−s) so that , as in Menzley, Santos, and Veronesi (2004), we

have the following equation (identification condition):

s̄vs + (1− s̄)v(1−s) = 0, (1)

where vi is the row vector of vi,A and vi,I for i = s, (1− s).
We now derive the individual cash flow process. Given the share process, an individual cash flow Ds(t) is

defined as Ds(t) ≡ stDt. By applying Itô lemma to stDt, we can derive the diffusion process of an individual

cash flow Ds(t):
dDs(t)

Ds(t)
= µDs

(t)dt+ σDs,A(t)dBA(t) + σDs,I(t)dBI(t), (2)

where

µDs
(t) ≡ µD + φs

(
s̄

st
− 1

)
+ θCFs − stθCFs − (1− st)θCF(1−s),

σDs,A(t) ≡ σD,A + σs,A(t),

σDs,I(t) ≡ σs,I(t),

(3)

with θCFs ≡ σD,Avs,A and θCF(1−s) ≡ σD,Avs,A. The covariance between share and the aggregate dividend(consumption)

growth is given by

Covt

(
dst
st
,
dDt

Dt

)
= θCFs −

[
θCFs st + θCF(1−s)(1− st)

]
. (4)

By computing the unconditional covariance from the data, we obtain:

E

[
Covt

(
dst
st
,
dDt

Dt

)]
= vs,A · σD,A ≡ θCFs , (5)

due to the identification condition of the share process (1). Thus we can pin down vs,A by computing un-

conditional covariance between the share process and aggregate cash flow process in the data. Note that the

conditional variance of individual cash flow process is given by

vart

(
dDs(t)

Ds(t)

)
=
[
σD,A + σs,A(t)

]2
+
[
σs,I(t)

]2
. (6)

When the conditional variance is evaluated at st = s̄, we get

(
σD,A + vs,A

)2
+ (vs,I)

2
. (7)

Since vs,A is already pinned down from unconditional covariance between the share process and the aggregate
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cash flow process, one can recover vs,I based on a individual total cash flow volatility. Finally by using (1), we

have:

v(1−s),j = −
s̄vs,j
1− s̄

, j = A, I, (8)

for both aggregate and idiosyncratic terms.

Appendix B : Calibration

In this appendix, we explain the calibration of our model. The calibration is applied to the aggregate

moments which include: the mean aggregate market excess return, aggregate market volatility, the mean

aggregate price-to-dividend ratio, the Sharpe ratio, the mean riskless rate, and the volatility of riskless rate.

After the computing the aggregate price-dividend ratio, we obtain the diffusion process of aggregate excess

market return as follows:

dRM,t = µRM
dt+ σRM ,AdBA, (1)

where

µRM
≡ (σDA − h2)

2
+
h2

h1
(σDA − h2)

Dt

Pt
,

σRM ,A ≡ (σDA − h2) + 2
h2

h1

Dt

Pt
.

(2)

Note that the stochastic discount factor is also represented by Ht. Thus, when we match the unconditional

theoretical aggregate moments to their sample counterpart, we need the probability density function of Ht.

The stationary density function of Ht is given by:

f(H) =
exp

[
−2b

(
H̄
H

)]
×H−2b−2∫∞

0
exp

[
−2b

(
H̄
h

)]
× h−2b−2

, (3)

where b ≡ h1/h
2
2. By using the stationary density f(H), we can compute E [dRt], E [rf ], E

[
Pt

Dt

]
, E

[
σ2
rf

]
,

and
E[dRM,t]

E[dR2
M,t]

. We proceed by matching the mean aggregate price-dividend ratio first and then matching other

aggregate moments to their sample counterpart; such as the average of the aggregate excess return, the average

riskless rate, the volatility of riskless rate, and the aggregate Sharpe ratio. In matching first and second

moments of the aggregate excess return, we focus on matching the Sharpe ratio.

Appendix C : Proofs

Derivation of λt process. By applying Itô’s lemma to the definition of λt process, we get:

dλ(t)

λ(t)
=
[
−rt + µξ(1)−1(t) − θ

2
A(t)− θ(1)

I (t)θ
(2)
I (t)

]
dt+ θ

(1)
I (t)dB

(1)
I (t)− θ(2)

I (t)dB
(2)
I (t), (1)
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where

µξ(1)−1(t) ≡ rt + θ2
A(t) + θ

(1)
I

2
(t). (2)

Diffusion terms are expressed as η̄tdB
(2)
I (t)− η̄tθ(1)

I (t)dt. And the drift term in (1) and −η̄tθ(1)
I (t)dt are summed

up to zero since η̄t = η
(2)
t − η

(1)
t = θ

(1)
I (t)− θ(2)

I (t); therefore:

dλt
λt

= η̄tdB
(2)
I (t). (3)

Derivation of market prices of risks. Since the financial market is dynamically complete, we can use

price processes of the market portfolio and the asset with the share process, st,, for determining the market

prices of risks; thus: (
θA

θ
(k)
I

)
=

(
σPM ,A 0

σPs,A σPs,I

)−1(
µPM

− r
µ

(k)
Ps
− r

)(
dBA

dB
(k)
I

)

=
1

σPM ,AσPs,I

(
σPs,I

(µP − r)
−σPs,A

(µP − r) + σPM ,A

(
µ

(k)
Ps
− r
))

=

 µPM
−r

σP,A

−σPs,A

σPs,I

1
σP,A

(
µPM

− r
)

+ 1
σPs,I

(
µ

(k)
Ps
− r
)

=

 µPM
−r

σPM,A

−σPs,A

σPs,I
θA + 1

σPs,I

(
µPs
− r
)
− η(k)

 .

(4)

Proof of Proposition 1. Note that the equilibrium stock price can be represented by using either one of the

state price densities across investors due to the existence of the λt process. The equilibrium price of an asset

with the share process st is represented as:

Ps(t) = E
(2)
t

[∫ ∞
t

ξ
(2)
τ

ξ
(2)
t

sτDtdτ

]

=
1(

1 + λ
1/γ
t

)γ (
1
Xt

)1−γ
D−γt

E
(2)
t

[∫ ∞
t

(
1 + λ1/γ

τ

)γ ( 1

Xτ

)1−γ

D−γτ sτDτdτ

]

=
stDt

st

(
1 + λ

1/γ
t

)γ (
Dt

Xt

)1−γE
(2)
t

[∫ ∞
t

sτ

(
1 + λ1/γ

τ

)γ (Dτ

Xτ

)1−γ

dτ

]

=
stDt

qt
E

(2)
t

[∫ ∞
t

qτdτ

]
=
Ds(t)

qt
E

(2)
t

[∫ ∞
t

qτdτ

]
,
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where

qt ≡ stztHt,

zt ≡
(

1 + λ
1/γ
t

)γ
,

Ht ≡
(
Dt

Xt

)1−γ

.

(4)

Now we define the diffusion process Ht. We name H̄/Ht as a “Habit Ratio”. In Campbell and Cochrane

(1999) and Santos and Veronesi (2010), the consumption surplus ratio, Sγt , is the proxy for the shock to

aggregate discount rate as an element in stochastic discount factor. However, in our model, a similar variable

Ht does not directly proxy the aggregate discount rate since it does not induce the time-varying risk preference.

It represents the aggregate shock to stochastic discount factor, as well as an indicator of economic conditions.

When this ratio is high, the economy is in a good condition and vice versa. By applying Itô’s lemma to the

process Ht ≡ (Dt/Xt)
1−γ , we get:

d

(
Dt

Xt

)1−γ

= (1− γ)

(
Dt

Xt

)1−γ
{[

µD − λ
(
Dt

Xt
− 1

)
− 1

2
γσ2

DA

]
dt+ σDAdBA

}
. (5)

Following Campbell and Cochrane (1999), Menzley, Santos, and Veronesi (2004), and Santos and Veronesi

(2010), we assume a simpler process of Ht as follows13:

dHt = h1(H̄ −Ht)dt+ h2HtdBA(t). (6)

Note that the diffusion process of λ
1/γ
t is given by:

dλ
1/γ
t

λ
1/γ
t

= α1(t)dt+ α2(t)dB
(2)
I , (7)

where

α1(t) ≡ 1

2

1

γ

(
1

γ
− 1

)
η̄2
t , α2(t) ≡ 1

γ
η̄t. (8)

Using this we get the diffusion process of zt ≡
(

1 + λ
1/γ
t

)γ
, as follows:

dzt
zt

=

[
1

2
γ(γ − 1)

(
xt

1 + xt

)2

α1(t) + γ

(
xt

1 + xt

)
α2

2(t)

]
dt+ γ

(
xt

1 + xt

)
α2(t)dB

(2)
I , (9)

where xt ≡ λ1/γ
t . For mathematical tractability, we approximate this process by simplifying xt/(1 +xt). Belief

differences, ηt, determines the process of Radon-Nikodym derivative λt. In our quantitative, study we use 0.02

to 0.2 of ηt for firms in value decile. Simulation shows that xt/(1 +xt) is very similar to 0.5. By plugging α1(t)

and α2(t) into the equation above and using the approximation that xt/(1 + xt) ≈ 1/2 (see Figure below), we

have an approximate process of zt as follows:

dzt
zt
≈ α̃1(t)dt+ α̃2(t)dB

(2)
I , (10)

13The assumption on the process Ht is very similar to the one in Santos and Veronesi (2010).
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where

α̃1(t) ≡ −1

8

(
1− 1

γ

)
η̄2
t ,

α̃2(t) ≡ 1

2
η̄t.

(11)

0 50 100 150 200 250 300 350 400 450 500
0.4975

0.498

0.4985

0.499

0.4995

0.5

0.5005

0.501

0.5015

0.502

0.5025
x/(1 + x) with low belief difference

0 50 100 150 200 250 300 350 400 450 500
0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52
x/(1 + x) with high belief difference

0 50 100 150 200 250 300 350 400 450 500
12.8

12.85

12.9

12.95

13

13.05
z(t) with low belief difference

 

 
exact z(t)
approximate z(t)

0 50 100 150 200 250 300 350 400 450 500
11

11.5

12

12.5

13

13.5
z(t) with low belief difference

 

 
exact z(t)
approximate z(t)

Accordingly, we use this approximate zt process for the rest of the proof. In order to get the diffusion process

of qt, we use the diffusion process of ztHt:

d(ztHt)

ztHt
= µzHdt+ h2dBA + α̃2dB

(2)
I , (12)

where µzH ≡ α̃1 + h1

[
H̄/Ht − 1

]
. By using this process, we get the diffusion process of qt as follows:

dqt
qt

= µq(t)dt+
(
σs,A(t) + h2

)
dBA +

(
α̃2(t) + σs,I(t)

)
dB

(2)
I , (13)

where

µq(t) ≡ α̃1(t) + h1

(
H̄

Ht
− 1

)
+ φs

(
s̄(2)

st
− 1

)
+ h2σs,A(t) + α̃2(t)σs,I(t)

. In drift term of dqt, qtµq(t), we have terms of qt, stzt and ztHt as:

qtµq(t) ≡
(
α̃1(t) + α̃2(t)σs,I(t) + h2σs,A(t)− h1 − φs

)
[qt] + h1H̄ [stzt] + φss̄

(2) [ztHt] . (14)

Note that:

d(stzt) =
{(
α̃1(t)− φs + α̃2(t)σs,I(t)

)
[stzt] + φss̄

(2) [zt]
}
dt+ [· · · ]dBA + [· · · ]dB(2)

I ,

d(ztHt) =
{

(α̃1(t)− h1) [ztHt] + h1H̄ [zt]
}
dt+ [· · · ]dBA + [· · · ]dB(2)

I .
(15)
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We have zt, qt, stzt, and ztHt variables in the diffusion processes of variables in the drift of dqt. Thus, we take

a vector process yt ≡ [zt, qt, stzt, ztHt]
′ for computing equilibrium price-dividend ratio. yt follows a diffusion

process as follows:

dyt = Y1ytdt+ Σ(yt)dB
′(2)

, (16)

where Σ(yt) is the appropriate matrix of diffusion coefficients, Y1 ≡ [yij ]4×4 is the matrix of drift coefficients:
α̃1(t) 0 0 0

0 α̃1(t) + α̃2(t)σs,I(t) + h2σsA(t)− h1 − φs h1H̄ φss̄
(2)

φss̄
(2) 0 α̃1(t) + α̃2(t)σs,I(t)− φs 0

h1H̄ 0 0 α̃1(t)− h1

 . (17)

To avoid notational abuse, we denote Y1 as:
y11 0 0 0

0 y22 y23 y24

y24 0 y33 0

y23 0 0 y44

 , (18)

where y11 = y11(η̄t), y22 = y22(η̄t, st), y33 = y33(η̄t, st), and y44 = y44(η̄t) since σs,A(t) and σs,I(t) are functions

of st. For the feasibility of the computation of the expectation in the right hand side of above equation, we

approximate the time-varying terms in yij ’s so that the expectation can be done without technical difficulty.

In order to approximate yij ’s, especially y22 and y33, we follow MSV (2004). In their approximation, MSV

(2004) uses the normalization condition for parameters vs,A, v(1−s),A, vs,I and v(1−s),I in σs,A and σs,I ;

s̄vs,A + (1− s̄)v(1−s),A = 0,

s̄vs,I + (1− s̄)v(1−s),I = 0.
(19)

Associated with the condition (19), the parametric definition of σs,A and σs,I that are evaluated at st = s̄,

yields that both σs,A and σs,I are approximated by vs,A and vs,I . Thus we have

y22 ≈ α̃1(t) + h2vs,A + α̃2(t)vs,I − h1 − φs,

y33 ≈ α̃1(t) + vs,I + α̃2(t)− φs.
(20)

Also α̃1 and α̃2 can be substituted by fixed mean value of η̄t, η̄t. By using approximate value of yij , expected

value of E
(2)
t [qτ ] can now be computed as follows.

E
(2)
t [qτ ] = E

(2)
t [qt+τ ] = e2E

(2)
t [yt+τ ]

= e2Ψ(τ)yt,
(21)

where e2 ≡ (0, 1, 0, 0),

Ψ(τ) = U exp (Λ · τ)U−1, (22)

Λ is the diagonal matrix with eigenvalues of Y1 as its elements and U is the eigenvector matrix of Y1.

Eigenvalues of the matrix, Y1, are given by diagonal elements of Y1. For mathematical tractability, we

assume that all eigenvalues are negative following Menzley, Santos, and Veronesi (2004). Later our simulation

study shows that all diagonal elements are indeed negative. Note that the conditional expectation Et[qt+τ ] is
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given by:

E
(2)
t [qt+τ ] = e2E

(2)
t [yt+τ ]

= e2Ψ(τ)yt,
(23)

where e2 ≡ (0, 1, 0, 0),

Ψ(τ) = U exp (Λ · τ)U−1, (24)

Λ is the diagonal matrix with its elements being eigenvalues of Y1 and U is the matrix of eigenvectors of Y1.

Note that eigenvalues of Y1 are diagonal elements of Y1. Thus U is given by:

U =


u11 0 0 0

u21 1 u23 u24

u31 0 1 0

1 0 0 1

 , (25)

where

u11 =
y11 − y44

y23
,

u21 =
y24(2y11 − y33 − y44)

(y11 − y22)(y11 − y33)
,

u31 =
y31(y11 − y44)

y23(y11 − y33)
,

u23 =
y23

y33 − y22
,

u24 =
y24

y44 − y22
.

(26)

The inverse matrix U−1 ≡ V = [vij ] is given by:
v11 0 0 0

v21 1 v23 v24

v31 0 1 0

v41 0 0 1

 , (27)

where

v11 = 1/u11,

v21 =
−u21 + u24 + u23u31

u11
,

v23 = −u23,

v24 = −u24,

v31 =
−u31

u11
,

v34 = −u34,

v41 = −1/u11.

(28)
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Using these quantities, we can compute Ψ(τ) so that we get Et [qt+τ ] as following:

Et [qt+τ ] = e2Ψ(τ)yt = Ψ1(τ)zt + Ψ2(τ)qt + Ψ3(τ)stzt + Ψ4(τ)ztHt, (29)

where

Ψ1(τ) = v11u21e
y11τ + v21e

y22τ + v31u23e
y33τ + v41u24e

y44τ ,

Ψ2(τ) = ey22τ ,

Ψ3(τ) = v23e
y22τ + u23e

y33τ ,

Ψ4(τ) = v24e
y22τ + u24e

y44τ .

(30)

Therefore:

E
(2)
t

[∫ ∞
0

qt+τdτ

]
=

∫ ∞
0

E
(2)
t [qt+τ ] dτ

=

∫ ∞
0

e2Ψ(τ)ytdτ

=

4∑
k=1

[∫ ∞
0

Ψk(τ)dτ

]
yk(t),

(31)

where yk(t) is the k-th row vector yt.
∫∞

0
Ψk(τ)’s are given by:∫ ∞

0

Ψ1(τ)dτ =

[
−v11u21

y11
− v21

y22
− v31u23

y33
− v41u24

y44

]
,∫ ∞

0

Ψ2(τ)dτ = − 1

y22
,∫ ∞

0

Ψ3(τ)dτ = −v23

y22
− u23

y33
,∫ ∞

0

Ψ4(τ)dτ = −v24

y22
− u24

y44
.

(32)

The integrations above were conducted under the continuing assumption that all the eigenvalues are negative.

Thus, the approximated equilibrium stock price with the share process st is given by:

Ps(t) ≈
Ds(t)

qt

4∑
k=1

[∫ ∞
0

Ψk(τ)dτ

]
yk(t)

= Ds(t)

4∑
k=1

[∫ ∞
0

Ψk(τ)dτ

] [
yk(t)

qt

]
= Ds(t)

{[∫ ∞
0

Ψ1(τ)dτ

]
1

stHt
+

[∫ ∞
0

Ψ2(τ)dτ

]
+

[∫ ∞
0

Ψ3(τ)dτ

]
1

Ht
+

[∫ ∞
0

Ψ4(τ)dτ

]
1

st

}
= Ds(t)

{[∫ ∞
0

Ψ2(τ)dτ

]
+

[∫ ∞
0

Ψ1(τ)

s̄(2)
dτ

]
s̄(2)

st
H−1
t +

[∫ ∞
0

Ψ3(τ)dτ

]
H−1
t +

[∫ ∞
0

Ψ4(τ)

s̄(2)
dτ

]
s̄(2)

st

}
= Ds(t)

[
β0,t + β1,t

(
H̄

Ht

)
+ β2,t

(
s̄(2)

st

)
+ β3,t

(
s̄(2)

st

H̄

Ht

)]
,

(33)
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where βj ’s are

βs,0 ≡
∫ ∞

0

Ψ2(τ)dτ, βs,1 ≡
∫ ∞

0

Ψ3(τ)

H
dτ, βs,2 ≡

∫ ∞
0

Ψ4(τ)

s̄(2)
dτ, βs,3 ≡

∫ ∞
0

Ψ1(τ)

s̄(2)H
dτ. (34)

The equilibrium price-dividend ratio of the shared stock is, hence, given by:

Ps(t)

Ds(t)
=

[
βs,0 + βs,1

(
H̄

Ht

)
+ βs,2

(
s̄(2)

st

)
+ βs,3

(
s̄(2)

st

H̄

Ht

)]
. (35)

Proof of Proposition 2. First we find diffusion coefficients of
dPst

Pst
for investor 2. Applying Itô’s lemma to

Ps(t) that was derived in the previous Proposition, we get diffusion coefficients of
dPst

Pst
as follows.

dBA :

(
Ds

Ps

)
βs,0

(
σD,A + σs,A(t)

)
+

(
Ds

Ps

)
βs,1

(
σD,A + σs,A(t)− h2

) H̄
Ht

+

(
Ds

Ps

)
βs,2σD,A

(
s̄(2)

st

)
+

(
Ds

Ps

)
βs,3

(
σD,A − h2

)( s̄(2)

st

1

Ht

)
,

dB
(2)
I :

(
Ds

Ps

)
σs,I(t)

(
βs,0 + βs,1

H̄

Ht

)
.

The diffusion coefficients of a shared asset’s excess return (defined as Rs and dRs ≡
dPst+Ds(t)

Pst
− rtdt) is

the same as ones in
dPst

Pst
. Note that in equilibrium the expected excess stock return Et [dRs] is given by the

negative of the inner product of the diffusion coefficient vector of dRs and the diffusion coefficient vector of the

state price density ξ
(2)
t since the equilibrium return is defined by the covariance between the aforementioned

two quantities. Applying Itô’s lemma to ξ
(2)
t = (1 + λ

1/γ
t )γ(1/Xt)

1−γD−γt = ztHtD
−1
t using the approximate

diffusion process of zt, gives:

dξ
(2)
t /ξ

(2)
t = µξ(2)dt+ (h2 − σD,A)dBA + α̃2(t)dB

(2)
I , (36)

where µξ(2) = α̃1(t) + h1(H̄/Ht − 1) + σ2
D,A − µD − h2σD,A. Since the expected excess return is determined

by the negative of the sum of multiplications of diffusion coefficients given in the equation (36) with σD,A− h2

and −α̃2(t), respectively:

E
(2)
t [dRs,t] ≈

[
Ds(t)

Ps(t)

] [
µA,Is,t + µIs,t

]
, (37)

where

µA,Is,t ≡ βs,0
(
σD,A + σs,A(t)

) (
σD,A − h2

)
+ βs,1

(
σD,A + σs,A(t)− h2

) (
σD,A − h2

) 1

Ht

+ βs,2σD,A
(
σD,A − h2

) s̄(2)

st
+ βs,3

(
σD,A − h2

)2 s̄(2)

st

H̄

Ht
,

µIs,t ≡ −σs,I(t)α̃2(t)

(
βs,0 + βs,1

H̄

Ht

)
.

(38)

As was already shown above, the diffusion process of the return of an shared asset, Rs(t), is given by:

dRs = µ
(2)
Rs
dt+ σRs,AdBA + σRs,IdB

(2)
I , (39)
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where µ
(2)
Rs

is the expected excess return given above and both σRs,A
and σRs,I

are diffusion coefficients of

dPs/Ps given above.

Proof of Proposition 3. The equilibrium price dividend ratio of the market portfolio can be obtained as a

special case of the equilibrium price of the individual shared asset. Applying Itô’s lemma to the equilibrium

aggregate price dividend ratio, we get the diffusion coefficient of dPt/Pt as follows:

(
σD,A − h2

)
+
h2

h1

(
Dt

Pt

)
. (40)

Aggregate expected excess return is given by the negative of product of the diffusion coefficient above and the

aggregate market price of risk.

Et [dRM,t] =
(
σD,A − h2

)2
+
h2

h1

(
σD,A − h2

) Dt

Pt
. (41)

And the diffusion coefficient of the aggregate excess return Rt is given by:

dRM = µRM
dt+ σRM ,AdBA, (42)

where µRM
is the expected excess return given above and σRM ,A is the diffusion coefficient given above.
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Table I Summary Statistics of the Data – Panel A summarizes basic statistics for the market portfolio
from 1983 to 2011 on a monthly basis. Mean return of the market, ReM , is the average of excess returns
on the market portfolio. rf is the riskless rate of return. Return and volatility are expressed in percentage.
Panel B and C summarize key cross sectional moments for book-to-market decile portfolios for CCM (CRSP-
COMPUSTAT merged) data and CCIM (CRSP-COMPUSTAT-I/B/E/S merged) data respectively. Returns
and volatilities are expressed in percentage.

Panel A: Summary statistics on the market portfolio

ReM σRe
M

Sharpe ratio rf σrf

0.57 4.57 0.126 0.36 0.22

Panel B: Statistics on decile portfolio CCM

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

Mean Return 0.89 0.99 1.04 0.99 0.96 1.10 1.07 1.06 1.07 1.41

Mean B/M 0.15 0.309 0.415 0.514 0.614 0.72 0.84 0.99 1.22 2.43

Mean ln(P/D) 5.07 4.81 4.75 4.61 4.53 4.52 4.43 4.42 4.49 4.52

Sharpe Ratio 0.103 0.13 0.139 0.127 0.121 0.162 0.14 0.146 0.123 0.152

Panel C: Statistics on decile portfolio CCIM

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

Mean Return 0.953 1.00 1.02 0.97 0.91 1.08 1.1 1.01 1.04 1.53

Mean B/M 0.167 0.307 0.416 0.513 0.615 0.721 0.841 0.986 1.218 2.08

Mean ln(P/D) 5.80 5.67 5.50 5.37 5.32 5.29 5.09 5.35 5.19 5.63

Sharpe Ratio 0.1139 0.1271 0.1307 0.1193 0.1075 0.1431 0.1356 0.1228 0.1126 0.1477
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Table II Calibration – Panel A shows the calibration of aggregate moments using monthly data from
1983 to 2011. Panel B shows the calibration of aggregate moments using quarterly data from 1946 to 2011.
Both calibrations use the same aggregate equilibrium equations in matching expected moments to their sample
counterparts. Returns and volatilities are expressed in percentage. ∗ indicates the matched moments.

Panel A: Monthly data from 1983 to 2011

Data Calibration

Average Excess Return∗ 0.57% 0.6%

Volatility of Excess Return 4.61% 9.0%

Sharpe Ratio 0.123 0.067

Average P/D ∗ 93.36 93.36

Average Riskless Rate ∗ 0.036% 0.036%

Volatility of Riskless Rate 0.22% 0.55%

Panel B: Quarterly data from 1946 to 2011

Data Calibration

Average Excess Return ∗ 1.9% 1.9%

Volatility of Excess Return 8.3% 12.96%

Sharpe Ratio 0.229 0.1466

Average P/D ∗ 93.36 93.36

Average Riskless Rate ∗ 0.035% 0.035%

Volatility of Riskless Rate 0.22% 0.25%

Table III Calibrated Parameters – This table shows calibrated parameters that correspond to Panel
A in table II.

µD σD,A γ δ h1 h2

0.02 0.13 3.7 0.9 0.0107 0.08851
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Table IV Characteristics of decile portfolio – This table shows basic statistics of characteristics
of decile portfolios sorted by book-to-market from 1983 to 2011 for CRSP-COMPUSTAT(CCM) and CRSP-
COMPUSTAT-I/B/E/S(CCIM) respectively. θCF is an unconditional covariance between the share process
and the aggregate cash flow process. vs,A is pinned down by the relation θCF = vs,AσD,A. vs,I can be computed
from the identification condition imposed on the share process. Mean-reverting coefficients, φs, are estimated
using generalized least square estimation using σs,A and σs,I . Coefficient of variation of st, the ratio of the
standard deviation of st to the mean of the share st for each portfolio is defined as CV (st).

Panel A: CCM, 1983 to 2011

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

θCF -0.028 -0.025 -0.030 -0.032 -0.028 -0.035 -0.027 -0.031 -0.031 -0.025

vs,A -0.184 -0.166 -0.195 -0.205 -0.181 -0.229 -0.177 -0.204 -0.201 -0.163

vs,I 0.205 0.234 0.222 0.214 0.240 0.206 0.276 0.283 0.300 0.458

φs 0.068 0.077 0.120 0.078 0.118 0.123 0.123 0.133 0.096 0.039

s̄ 0.131 0.108 0.080 0.077 0.078 0.064 0.067 0.059 0.051 0.036

Avg( s̄st ) 1.249 1.214 1.140 1.209 1.224 1.208 1.315 1.290 1.444 2.140

CV (st) 0.415 0.40 0.31 0.39 0.431 0.40 0.614 0.499 0.713 1.08

Panel B: CCIM, 1983 to 2011

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

θCF -0.027 -0.017 -0.029 -0.033 -0.030 -0.031 -0.026 -0.029 -0.028 -0.033

vs,A -0.176 -0.111 -0.186 -0.213 -0.197 -0.201 -0.166 -0.190 -0.184 -0.215

vs,I 0.354 0.434 0.437 0.442 0.365 0.451 0.368 0.579 0.657 0.624

φs 0.14 0.08 0.041 0.033 0.022 0.038 0.025 0.016 0.02 0.011

s̄ 0.0039 0.0039 0.0032 0.0031 0.0037 0.0022 0.0026 0.0021 0.0025 0.0017

Avg( s̄st ) 1.3647 1.5656 2.0512 2.1637 2.4594 2.0390 2.5351 3.2580 3.5944 6.2508

BD (∝ −η̄) 0.045 0.053 0.081 0.085 0.102 0.126 0.174 0.160 0.273 0.419
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Table V Share ratio of decile portfolio – This table shows the quantile values, the average values in
each quantile group, and the percentage of share ratios less than 1 of share ratios of decile portfolios sorted by
book-to-market from 1983 to 2011 in CRSP-COMPUSTAT(CCM) data set.

CRSP-COMPUSTAT, 1983 to 2011

Growth Value

Portfolio 1 2 3 4 5 6 7 8 9 10

Quantile value 0.821 0.829 0.867 0.867 0.798 0.819 0.900 0.814 0.791 0.817
1.037 1.016 1.011 1.056 1.079 1.074 1.129 1.075 1.304 1.183
1.476 1.442 1.228 1.326 1.450 1.373 1.760 1.594 1.794 2.779

11.107 10.886 8.654 11.020 6.640 6.434 3.912 4.684 5.800 12.115

Average in Quantile 0.660 0.696 0.743 0.694 0.639 0.658 0.614 0.624 0.551 0.566
0.922 0.909 0.942 0.961 0.960 0.961 1.007 0.952 1.084 0.989
1.232 1.218 1.109 1.170 1.250 1.192 1.399 1.279 1.54 1.832
2.184 2.032 1.765 2.012 2.048 2.023 2.239 2.306 2.601 5.172

% of share ratio < 1 45.4 49.1 46.8 42.2 40.8 40.2 36.8 42.0 32.5 37.4
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Figure 1. The Relation between Price-Dividend Ratio and Share Ratios between Value and
Growth Stocks – Figures of time-series relation between price-dividend ratios and share ratios of value and
growth stocks. First row is for the value portfolio and the second row is the case for the growth portfolio. The
left column is the time-series relation between price-dividend ratios and share ratios and the right column is
the scatter plot of share ratios and price-dividend ratios.
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Figure 2. The Relation between Returns and Share Ratios between Value and Growth Stocks
– Figures of time-series relation between returns and share ratios of value and growth stocks. First row is for
the value portfolio and the second row is the case for the growth portfolio. The left column is the time-series
relation between 1-month ahead returns and share ratios and the right column is the scatter of 1-month ahead
returns and share ratios.
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Figure 3. Value Premium in the Data – January, 1983 to December, 2011. The data is adopted from CRSP-
COMPUSTAT merged data. Stocks are sorted based on both Book-to-Market ratios and Price-to-Dividend
ratios whose breakpoints are given in Kenneth French’s Data Library.
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Figure 4. The Relation between the Equilibrium Price-Dividend Ratio and the Share Ratio
– The model is simulated with (γ, δ) = (3.7, 1.9) and (h1, h2) = (0.0107, 0.089). The upper row shows the
relation between equilibrium price-dividend ratios and the share ratios for value firms and lower row shows the
same relation for growth firms.
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Figure 5. The Relation between Equilibrium Expected Excess Return and the Share Ratio
– The model is simulated with (γ, δ) = (3.7, 1.9) and (h1, h2) = (0.0107, 0.089). Upper row shows the relation
between equilibrium expected excess returns and the share ratios for value firms and lower row shows the same
relation for growth firms.
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Figure 6. The Value Premium and Return Decomposition – The model is simulated with (γ, δ) =
(3.7, 1.9) and (h1, h2) = (0.0107, 0.089). The top figure shows simulated cross-sectional average excess returns
and cash flow risk returns. The bottom figure shows the discount-rate risk return. The simulation and return
decompositions follow equilibrium equation in Proposition 2 and equations (III.7) and (III.8). Returns are
expressed in percentage.
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Figure 7. Results with and without belief difference – The first figure shows simulated cross-sectional
average excess returns sorted by price-dividend ratio from our model. The Second figure is the simulated cross-
sectional average excess returns sorted by price-dividend ratio from the benchmark model where investors’
belief differences do not exist. In this case, vs,I does not exist in equilibrium, neither does σs,A. Benchmark
result roughly corresponds to the cross-sectional return simulation of Santos and Veronesi (2010) in the sense
that we fix the mean-reverting coefficient, φs, for all assets at 0.09. The simulation method is the same as the
description in Table VI. Mean returns are expressed in percentage.
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