
Dynamic Noisy Rational Expectations Equilibria
with Anticipative Information1

Jerome Detemple2, Marcel Rindisbacher2 and Thu Truong2

November 4, 2014

Abstract

This paper studies a dynamic continuous time economy with discrete dividend payment dates

and anticipative private information about future dividends. The economy is populated by informed

and uninformed investors as well as active unskilled investors. Both competitive and monopolistic

informed behaviors are examined. The existence of noisy rational expectations equilibria is demon-

strated. Equilibria are derived in closed form and their properties analyzed. Weak-form efficiency

is shown to fail. Informed trading is found to reduce price volatility, hence to stabilize the market.

Conditions for Pareto efficiency of equilibria with private information are derived.

Keywords: Intertemporal noisy rational expectations equilibria, anticipative information, compet-

itive behavior, monopolistic behavior, noise trading model, price volatility, market price of risk,

premium, welfare, Pareto optimality, multiple dividend cycles.

1This paper was presented at Boston University, Baruch College, AQFC 2014 and ESSFM 2014. We thank seminar
and conference participants for their comments.

2Graduate School of Management, Boston University, 595 Commonwealth Ave Boston, MA 02215. Jerome Detem-
ple: detemple@bu.edu, Marcel Rindibacher : rindisbm@bu.edu, Thu Truong: tthu@bu.edu.

1



1 Introduction

The question of informational efficiency of the stock market has been hotly debated for decades.

On the one hand, a more efficient financial market seems desirable to the extent that it transmits

more information to uninformed investors and therefore helps to improve the allocation of resources.

On the other hand, it can be argued that allowing informed trading is inherently unfair, because

it favors those with private information. Moreover, the presence of informed trading could reduce

participation, leading to a decrease in liquidity (adverse selection problem). Regulation restricting

informed trading has therefore been enacted in several countries. Regulation is meant to offer some

protection to small investors and ensure the smooth operation of the financial market.

This article examines issues surrounding the informational and allocational efficiency of the stock

market, in a dynamic framework with private information about future dividends. Closed form

solutions for dynamic equilibria with competitive as well as monopolistic informed behavior are

derived. Price, volatility and risk premium properties are studied. In both types of equilibria, weak

form efficiency fails. The price is not a sufficient statistic for public information. The informational

efficiency of the economy, however, is shown to increase and the stock price volatility to decrease,

relative to an equilibrium without private information. Strong horizon effects are found. The price

reactions to the underlying fundamental and to the endogenous noisy signal revealed vary through

the dividend cycle. Equilibria are compared. Monopolistic behavior reduces informational efficiency

and increases volatility, hence destabilizes the market, relative to the competitive outcome.

Classical studies pertaining to informational efficiency are based on static models. Seminal

articles, identifying the determinants of efficiency in competitive markets, are those of Grossman

(1976, 1978) and Grossman and Stiglitz (1980). They demonstrate the possibility, as well as the

limits, of informationally efficient markets. Issues related to non-competitive behavior are examined

by Hellwig (1980), Kyle (1989) and Leland (1992). The first study argues that informed investors

who are aware of their price impact should not behave competitively. It resolves this apparent

inconsistency, dubbed the “schizophrenia” problem, by showing that agents can no longer affect the

price, in the limit competitive equilibrium, as the number of informed investors becomes large. The

second study considers informed investors who explicitly account for the impact of their demands on

the equilibrium price. It shows that imperfect competition resolves the schizophrenia problem. It
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also finds that prices are less informative with imperfect competition. The third study focuses more

specifically on insider trading and on properties of equilibrium in a static model with production

and monopolistic insider behavior. Among other results, it finds that private information trading

increases the average stock price, decreases the stock return’s expectation and variance for the

uninformed, reduces the liquidity of the market and can increase or decrease welfare.

Dynamic models with asymmetric information and competitive behavior were pioneered byWang

(1993, 1994). In these models, the stock is an infinitely-lived asset that pays dividends continuously

through time. Informed investors observe the state variable driving the expected future dividend.

Uninformed investors do not, but they learn through dividends and prices. Noise trading injects

supply uncertainty and prevents full revelation. Wang (1993) derives a competitive noisy rational

expectations equilibrium (NREE). This equilibrium is stationary as the coefficients of the price pro-

cess are constant. Asymmetric information is shown to increase the stock’s long run risk premium.

It can also increase the price volatility and enhance negative serial correlation. Asymmetric infor-

mation can therefore have a destabilizing effect. Wang (1994) focuses on issues pertaining to the

volume of trade in a similar, but not identical, setting. The article highlights the relation between

volume and price changes. The effects of imperfect competition and asymmetric information on the

dynamic properties of prices and liquidity are examined in Vayanos and Wang (2012). Their analysis

is cast in a model with three periods. They show, in particular, that asymmetric information and

imperfect competition can have opposite effects on ex-ante expected returns.3

Albuquerque and Miao (2014) extend the competitive model of Wang (1994) by allowing for

private advance information about future dividends. They also allow for a private investment

opportunity. In their model, time is discrete and advance information pertains to the temporary

component of the dividend paid at the next date. Agents derive utility over next period wealth.

They solve for the stationary equilibrium by conjecturing a state space and a pricing rule. The

stationary solution is obtained up to a system of non-linear equations. The paper shows that good

advance information increases the stock price and the risk premium. It also shows that informed

3A vast microstructure literature also deals with non-competitive informed trading. Fundamental contributions
are in Kyle (1985) and Glosten and Milgrom (1985). In these models, risk neutral market makers extract private
information from the aggregate order flow and set the price so as to break even on average. This pricing rule does not
account for the endogenous interactions between risk, price appreciation and price level. The absence of diversification
benefits implies that trading is purely informational. Moreover, the price evolution is typically determined by the
exogenous noise trading behavior and is locally orthogonal to fundamental risk.
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(resp. uninformed) investors behave as trend chasers (resp. contrarian).

The model developed in this article builds on both Wang (1993, 1994) and Albuquerque and

Miao (2014). It differs in several respects. The first difference is that the analysis is not restricted

to stationary equilibria. Both competitive and monopolistic non-stationary equilibria are derived

and studied. The second is that equilibria are obtained in closed form. All coefficients are explicit

functions of time, reflecting the time left to the next dividend payment date. Strong timing effects

are identified. The third difference is that a new solution method is introduced. The approach relies

on the construction of the private information price of risk (PIPR) in the equilibrium under consid-

eration.4 The PIPR isolates the effects of private information. Its properties hint at the structure of

equilibrium and can be used to formulate natural conjectures about the informational content of the

stock price. The fourth difference is the nature of private information that pertains to the dividend

level at the future payment date and is therefore long-lived. More precisely, information has value

throughout a dividend cycle and will be used continuously for trading. The value of information,

reflected in the PIPR, nevertheless changes in light of fundamental news that accumulate.

Another difference with the literature is that noise trading takes a more elaborate form in our

setting. Noise traders are utility maximizing agents with bounded rationality. They hold correct

beliefs conditional on the realization of the signal, but evaluate these beliefs based on unfounded

rumors as opposed to factual private information. They can be viewed as unskilled active traders.

Ultimately, their optimal demand behavior mimics the demand behavior of the informed, but based

on conditional beliefs evaluated at irrelevant noise. The behavioral noise trading model postulated

enables us to endogeneize the noise trading demand function and conduct a meaningful welfare

analysis. The dynamic welfare results obtained extend the static analysis in Leland (1992).

The following insights emerge from the analysis. First, weak form efficiency fails. That is,

the stock price alone is not a sufficient statistic for the endogenous noisy signal embedded in the

aggregate demand function. The pair composed of the price and the fundamental is needed to

recover public information. Second, private information trading is found to stabilize the market.

Private information reduces the volatility of the stock price, in both the competitive and monopolistic

models. The reduction is more significant in the competitive setting. Third, the volatility of the

4The notion of PIPR is introduced in Detemple and Rindisbacher (2013) in the context of a portfolio selection
problem with private information.
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stock price increases through the dividend cycle and converges to the volatility of the fundamental

as the next dividend date approaches. Paradoxically, fundamental information, which accumulates

through the dividend cycle and eventually announces the dividend payment, is the source of this risk

increase. Fourth, the Sharpe ratio varies stochastically through the dividend cycle. Its volatility

also increases over time. Hence, the covariance between the change in the stock price and the

change in the Sharpe ratio increases within a dividend cycle. Last, conditions for Pareto dominance

of equilibria where regulation permits private information trades, are identified. Low or high risk

tolerances are conducive to welfare improvements across agents. With multiple dividend cycles,

informational efficiency gains can be reinforced. The stock price can become substantially less

sensitive to fundamental shocks, relative to the economy where private information trades are not

permitted. Enhanced price stabilization and welfare gains follow.

Section 2 describes the model. Section 3 derives and studies the noisy rational expectations

equilibrium with competitive informed behavior. Section 4 studies the case of monopolistic informed

behavior. An extension of the model to multiple dividend cycles is in Section 5. Conclusions follow.

Appendix A provides welfare results for the multi-cycle model. Proofs are collected in Appendix B.

2 The Economy

This section describes the structure of the model. The financial market is presented in Section 2.1,

agents and their information sets in Section 2.2 and candidate stock price processes in Section 2.3.

Preferences and optimal stock demands are in Sections 2.4 and 2.5. Equilibrium is defined in Section

2.6.

2.1 Assets and Markets

There are two types of assets in the economy, a riskless asset and a risky stock. The riskless asset is

a money market account paying interest at the instantaneous rate r. In the absence of intertemporal

consumption, which will be assumed, the interest rate can be set at zero (r = 0). The risky stock

pays a liquidating dividend DT at the terminal date T . The dividend payment is the terminal value

of the process,

dDt = µDdt+ σDdWD
t , t ∈ [0, T ]
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where µD is a constant drift coefficient and σD is a constant and positive volatility coefficient. WD

is a Brownian motion process with filtration FD
(·), defined on a probability space

(

Ω,FD, P
)

. The

process D can be viewed as a fundamental factor that eventually determines the terminal dividend.

The stock trades at an endogenously determined price S. Trading takes place in continuous

time. There are no restrictions on stock holdings or borrowing.

2.2 Agents, Noise and Information Signal

Three groups of investors operate in the financial market, informed, uninformed and noise traders.

The respective fractions of the three groups in the population are ωi, ωu and ωn, with ωi+ωu+ωn =

1. Each group is treated as a homogeneous entity with a representative individual.

The (representative) informed investor is a skilled individual, able to extract information about

the future stock payoff DT . Information extraction is carried out at the initial date t = 0 and

generates the noisy signal G = DT+ ζ, where ζ ∼ N
(

0,
(

σζ
)2
)

. Skill is measured by the precision

vζ =
(

σζ
)−2

of the signal. When
(

σζ
)2

increases, precision falls and the informational content of

the signal decreases. Thus, skill decreases. In the limit, when
(

σζ
)2 → ∞, the signal becomes pure

noise and skill vanishes. The “informed” investor effectively becomes unskilled (uninformed).

The uninformed investor does not have extraction ability. He/she observes prices and other

quantities that are in the public information set. Let Fm
(·) be the public information filtration.

The noise trader is a mimicking agent. He/she tries to emulate the demand behavior of the

informed agent, but on the basis of irrelevant noise as opposed to factual private information. The

noise trader’s demand depends on an independent random variable φ. A precise description is

provided below.

2.3 Stock Price and Information Sets

The opportunity set of investors depends on the stock price structure. In this environment, there are

two sources of uncertainty, WD associated with fundamental information and φ with noise trading

behavior. Standard arguments can be invoked to write any candidate price process as,

dSt = µS
t dt+ σS

t dW
S
t , ST = DT . (1)
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In this structure W S is a Brownian motion relative to the public information filtration Fm
(·). It is

endogenous and, ultimately, relates to the underlying source of fundamental uncertainty WD. The

coefficients
(

µS, σS
)

of the price process are also endogenous and adapted to Fm
(·). The uninformed

observes the stock price, hence can retrieve the volatility coefficient from its quadratic variation.

The Brownian motion dW S
t =

(

σS
t

)−1 (
dSt − µS

t dt
)

is an innovation process in their filtration. The

information filtration FS
(·) generated by S is in the public information flow Fm

(·). That is, FS
(·) ⊆ Fm

(·).

The information set of the informed is augmented by the private signal G. Private information is

carried by the enlarged filtration FG
(·) ≡ Fm

(·)∨σ (G). As private information modifies the perception

of the risk-reward trade-off, the fundamental source of riskWD is no longer Brownian motion relative

to the enlarged filtration. Instead, the translated process,

dWG
t = dW S

t − θ
G|m
t (G) dt where θ

G|m
t (G) dt ≡ E

[

dW S
t

∣

∣FG
t

]

becomes a Brownian motion. The translation factor θ
G|m
t (G) is the private information price of

risk (PIPR), which is a function of the private signal G.5 Relative to private information, the stock

price evolution is dSt =
(

µS
t + σS

t θ
G|m
t (G)

)

dt+ σS
t dW

G
t . The superior information is reflected in

the private information premium σS
t θ

G|m
t (G). Given that public information Fm

(·) is endogenous, the

private information premium is endogenous as well.

2.4 Informed and Uninformed Preferences and Optimal Stock Demands

Throughout the paper, superscripts i and u are used to distinguish the informed (i) from the

uninformed (u) investor. Let Xj
t denote the wealth of investor j at time t, j ∈ {i, u}. Conditional

preferences have the mean-variance structure,

U j
(

F j
0

)

=











E
[

Xi
T − 1

2Γ

∫ T

0 d
[

Xi
]

s

∣

∣

∣
FG
0

]

for j = i

E
[

Xu
T − 1

2Γ

∫ T

0 d [Xu]s

∣

∣

∣
Fm
0

]

for j = u
(2)

5The PIPR is invariant with respect to strictly monotonic transformations of G. Indeed, the private information
generated by G coincides with the information generated by G∗ = h (G), if h (·) is strictly monotone. The PIPR

for G∗ is θ
G|m
t

(
h−1 (G∗)

)
= θ

G|m
t (G). As any signal with a strictly monotonic continuous distribution is a strictly

monotonic transformation of a Gaussian signal, the equilibrium analysis in this paper applies for signals of this type.
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where [X] denotes the quadratic variation (realized variance) of X and Γ (resp. 1/Γ) is a common

absolute risk tolerance (resp. risk aversion) parameter. Preferences of the informed (resp. unin-

formed) are conditional on private (resp. public) information. The conditional utility functional

(2) shows that investors care about terminal wealth XT , but also dislike the risk [X]T =
∫ T

0 d [X]s,

i.e., the realized variance, associated with it. The utility function depends on these two attributes.6

Foundations for multiattribute preferences are in Keeney and Raiffa (1976). The ex-ante utility is

U j = E
[

U j
(

F j
0

)]

where the expectation is taken relative to the information signals in the sets

F j
0 , j ∈ {i, u}.

Investors maximize utility (2) subject to the dynamics of wealth,

dXj
t =











N i
t

((

µS
t + σS

t θ
G|m
t (G)

)

dt+ σS
t dW

G
t

)

for j = i

Nu
t

(

µS
t dt+ σS

t dW
S
t

)

for j = u
(3)

and the informational constraint mandating that N j be adapted to F j

(·) for j ∈ {i, u}. The policy

N j represents the number of shares held. Proposition 1 describes the optimal demands.

Proposition 1 The optimal number of shares held by the informed and uninformed investors are,

Nu
t = Γ

µS
t

(

σS
t

)2 = Γ
σS
t θ

m
t

(

σS
t

)2 and N i
t = Γ

µS
t + σS

t θ
G|m
t (G)

(

σS
t

)2 = Γ
σS
t

(

θmt + θ
G|m
t (G)

)

(

σS
t

)2

for t ∈ [0, T ], where θm is the price of risk for the uninformed. The informed holds more (resp. less)

shares than the uninformed if and only if the private information premium σS
t θ

G|m
t (G) is positive

(resp. negative).

Optimal stock demands have a mean-variance structure. The difference between the two investors

resides in their evaluation of the expected stock return. The informed evaluates the return on the

basis of private information as well as public information. The resulting expected return has two

components. The first one, µS
t = σS,D

t θmt , is the expected return based on public information. The

second one, σS
t θ

G|m
t (G), is the additional premium calculated on the basis of private information.

This premium is affine in the PIPR θ
G|m
t (G), i.e., the private information price of risk (see Detemple

and Rindisbacher (2013)). The PIPR is the incremental price of risk assessed in light of information

6The preferences in (2) are linear in probabilities, hence time-consistent.
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that is not revealed by public information sources. It represents the private information price of risk

conditional on public information. Thus, the informed has an allocational demand, Γθmt /σS
t , and an

informational demand, Γθ
G|m
t (G) /σS

t . The uninformed has a pure allocational demand, Γθmt /σS
t .

2.5 Mimicking Noise Trading, Bounded Rationality and Optimal Stock Demand

The noise trader is an agent with bounded rationality, who ultimately replicates the demand of the

informed, but without the benefit of observing the private signal. Instead, this investor believes in ru-

mors, blogs and other reports that are unrelated to fundamentals underlying the stock price. Specif-

ically, conditional beliefs are dPn = anT (φ) dP ≡ exp
(

∫ T

0 θ
G|m
t (φ) dW S

t − 1
2

∫ T

0 θ
G|m
t (φ)2 dt

)

dP

where φ is the realization of an independent, normally distributed random variable with mean

µφ and variance
(

σφ
)2
. The function anT (φ) is a beliefs distortion capturing the departure from

rationality, conditional on the realization φ. It corresponds to the density of the private signal,

anT (φ) =
P (G∈dx|Fm

T )

P (G∈dx|Fm
0 ) |x=φ

, but evaluated at the noise φ. The informed has the same beliefs distor-

tion, but evaluated at the private signal G. The noise trader’s information is the public information

filtration Fm
(·).

The noise trader conditional preferences are Un (φ) = En
[

Xn
T − 1

2Γ

∫ T

0 d [Xn]s

∣

∣

∣
Fm
0

]

where the

expectation is under the beliefs Pn, Γ is an absolute risk tolerance parameter and wealth satisfies

dXn
t = Nn

t

(

µS
t dt+ σS

t dW
S
t

)

. Equivalently, conditional preferences can be written as Un (φ) =

E
[

Xn
T − 1

2Γ

∫ T

0 d [Xn]s

∣

∣

∣
FG
0

]

|G=φ
where the expectation is under P and information is FG

0 = Fm
0 ∨

σ (G) evaluated at G = φ. In the beliefs Pn (resp. information FG
0 evaluated at φ) the stock price

evolves according to dSt =
(

µS
t + σS

t θ
G|m
t (φ)

)

dt + σS
t dW

φ
t where W φ is a Pn-Brownian motion

(resp. FG|G=φ
0 -Brownian motion). The stock price of risk is believed to be θφt ≡ θmt + θ

G|m
t (φ).

Ex-ante utility is Un = E [Un (φ)] where the expectation is over the random variable φ.

Proposition 2 The optimal number of shares held by the noise trader is,

Nn
t = Γ

σS
t

(

θmt + θ
G|m
t (φ)

)

(

σS
t

)2 (4)

for t ∈ [0, T ], where θm is the uninformed price of risk and θ
G|m
t (φ) is a speculative premium/discount

reflecting the departure from rationality. The noise trader holds more (resp. less) shares than the
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uninformed if and only if the speculative premium σS
t θ

G|m
t (φ) is positive (resp. negative).

The optimal noise trading demand has two parts. The first part, Γθmt /σS
t , is the usual mean-

variance demand of an uninformed rational agent. This part reflects an allocational trading motive.

The second part, Γθ
G|m
t (φ) /σS

t , is a speculative demand associated with an informational signal

consisting of pure noise. In the end, the noise trader demand mimics the demand of the informed.

It effectively corresponds to the demand of an investor with randomized beliefs, i.e., an unskilled

active investor.

Remark 3 The combined demand of the informed and the noise trader, called the complementary

demand, is,

Nt ≡ ωiN i
t + ωnNn

t = Γ
ωµS

t + σS
t

(

ωiθ
G|m
t (G) + ωnθ

G|m
t (φ)

)

(

σS
t

)2

where ω = ωi + ωn. The complementary demand is an affine function of the weighted average

price of risk (WAPR) Θt

(

G,φ;ωi, ωn
)

≡ ωiθ
G|m
t (G)+ ωnθ

G|m
t (φ). If the PIPR is also an affine

function, the complementary demand depends on Θt

(

G,φ;ωi, ωn
)

= Θt (Z;ω), which is a function

of the signal Z ≡ ωiG+ ωnφ and is parametrized by the combined population weight ω = ωi + ωn.

2.6 Equilibrium

A rational expectations equilibrium (REE) for the economy under consideration is a triplet of

demands
(

Nu, N i, Nn
)

and a price process dSt = µS
t dt +σS

t dW
S
t , ST = DT , such that (i) Individual

rationality: N j is optimal for agent j ∈ {u, i, n}, and (ii) Market clearing: ωuNu+ωiN i+ωnNn = 1.

The REE is noisy (NREE) if the informed and uninformed filtrations differ, Fu
(·) ⊂ F i

(·). The

equilibrium is a competitive NREE if all agents take the price process as given when expressing

their optimal demands. It is a monopolistic NREE if the informed agent takes the price impact of

his/her trades into account when calculating the optimal demand function.

3 Competitive Noisy Rational Expectations Equilibrium

The competitive NREE is described in Section 3.1. Properties of the PIPR and the WAPR are

examined in Section 3.2. Price and return properties are discussed in Section 3.3. Properties of
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the market depth measure and stock holdings are outlined in Section 3.4. A welfare analysis is

performed in Section 3.5.

3.1 Competitive Equilibrium Structure

In order to present the main result, define the combined share of the informed and the noise trader

ω = ωi + ωn and the functions of time,

α (t) =
1− κtω

H (t)
σD, β (t) = −ω

1− κtω
i

H (t)
σD, κt =

ωiH (t)

M (t)
(5)

γ (t) = −ω

(

1− κtω
i
)

µD (T − t)− ωnκtµ
φ

H (t)
σD, λ (t, s) =

ωi
(

σD
)2

(s− t)

M (t)
, s ∈ [t, T ] (6)

H (t) =
(

σD
)2

(T − t) +
(

σζ
)2

, M (t) =
(

ωi
)2

H (t) + (ωn)2
(

σφ
)2

. (7)

The function H (t) = V ar
(

G|FD
t

)

is the conditional variance of the private signal G given fun-

damental information at time t. The function M (t) = V ar
(

Z|FD
t

)

is the conditional variance of

an endogenous signal Z ≡ ωiG + ωnφ given fundamental information at time t. The coefficients

κt =
COV (G,Z|FD

t )

V AR(Z|FD
t )

and λ (t, s) =
COV (Ds,Z|FD

t )

V AR(Z|FD
t )

are regression coefficients. The next proposition

presents the NREE.

Proposition 4 A competitive NREE exists. The equilibrium stock price is,

St = A(t)Dt +B(t)Z + F (t) where Z = ωiG+ ωnφ (8)

and,

A (t) =

(

H (T )

H (t)

)ω (M (T )

M (t)

)1−ω

(9)

B(t) = λ (t, T ) + σD

(
∫ T

t

A (s) (α (s) + β(s)λ(t, s)) ds

)

(10)

F (t) = A (t)µD (T − t)−
(

σD
)2

Γ

∫ T

t

A (s)2 ds + σD

∫ T

t

A (s) γ (s) ds− ωnI (t)µφ (11)

I (t) = λ (t, T ) + σD

∫ T

t

A (s)β (s)λ (t, s) ds (12)
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with (α, β, γ, λ) as defined in (5)-(7). The coefficients of the equilibrium stock price process (1) are,

µS
t =

(

σS
t

)2

Γ
− σS

t Θt (Z;ω) , σS
t = A (t)σD (13)

Θt (Z;ω) = α (t)Z + β (t)Dt + γ (t) (14)

where Θt (Z;ω) ≡ ωiθ
G|m
t (G)+ωnθ

G|m
t (φ) is the endogenous WAPR. Innovations in the uninformed

filtration are dW S
t = dWD

t − θ
D|m
t dt with,

θ
D|m
t =

E
[

dWD
t |Fm

t

]

dt
=

ωiσD

M (t)

(

Z − ωi
(

Dt + µD (T − t)
)

− ωnµφ
)

. (15)

The evolution of the stock price in the public information is given by (1) where W S is an Fm
(·) =

FD,Z
(·) -Brownian motion.

The competitive equilibrium price in (8) is an affine function of the fundamental D and of the

random variable Z. This random variable is a noisy translation of the private information signal G.

It provides anticipative information about the terminal dividend, but is less informative than the

private signal. Both the price S and the fundamental D are in the public information set Fm
(·). It

follows that Z is publicly observed as well. Thus, Z ∈ Fm
(·) and FD,Z

(·) ⊆ FD,S
(·) ⊆ Fm

(·). Conversely,

the pair (D,Z) reveals the price S, i.e., FS
(·) ⊆ FD,Z

(·) . Thus, FD,S
(·) = FD,Z

(·) ⊆ Fm
(·).

In equilibrium, the uninformed extracts the noisy signal Z from the pair (D,S). The uninformed

also observes the complementary aggregate demand function ωiN i
t + ωnNn

t , described in Remark

3. At equilibrium, the complementary demand is also affine in D and Z. If therefore fails to

reveal any information beyond what is already contained in (D,S). In the end, the equilibrium

public information set consists of the pair (D,Z). That is, FD,S
(·) = FD,Z

(·) = Fm
(·). The equilibrium

uninformed filtration is Fu
(·) = Fm

(·) = FD,S
(·) = FD,Z

(·) . The equilibrium informed filtration is strictly

more informative, F i
(·) = FG

(·) = Fm
(·) ∨ σ (G) ⊃ Fm

(·) = Fu
(·). The equilibrium is a noisy rational

expectations equilibrium.

In this competitive NREE, the stock price St is not a sufficient statistic for public information.

In fact, σ (St) ⊂ Fm
t = FD,Z

t , where the inclusion is strict. Weak form efficiency therefore fails.

The pairs (D,Z) or (D,S) are needed to summarize the public information set. Fundamental

information plays a crucial role for the evaluation of future opportunities and the determination of
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optimal demands.

Remark 5 (Limit economy with small informed) Consider the limit economy with an infinitesimal

informed population (ωi → 0 and ωu → 1− ωn). The limit equilibrium is,

Ssi
t = Asi(t)Dt +Bsi(t)Zsi + F si(t), Zsi = ωnφ

µS,si
t =

(

σS,si
t

)2

Γ
− σS,si

t Θsi
t

(

Zsi;ωn
)

, σS,si
t = Asi (t)σD

Θsi
t

(

Zsi;ωn
)

= αsi (t)Zsi + βsi (t)Dt + γsi (t)

where
(

Asi, Bsi, F si, αsi, βsi, γsi
)

are defined in (68)-(70). The limit WAPR is Θsi
t

(

Zsi;ωn
)

=

ωnθ
G|m,si
t (φ). Innovations in the uninformed filtration vanish dW S

t = dWD
t because θ

D|m
t → 0 when

ωi → 0. The limit equilibrium fails to reveal any private information. If, in addition, there is no

mimicking investor (ωi, ωn → 0), the equilibrium collapses to a no-trade equilibrium where,

Ssi,0
t = Dt + µD (T − t)−

(

σD
)2

Γ
(T − t) , σS,si,0

t = σD, µS,si,0
t =

(

σD
)2

Γ
.

Stock price volatilities in the economy of Proposition 4 and the two limit economies rank as σS
t <

σS,si
t < σS,si,0

t = σD for t < T . As the payment date approaches the volatilities converge, limt→Tσ
S
t =

limt→Tσ
S,si
t = limt→Tσ

S,si,0
t = σD. Informed trading increases the informational efficiency of the

market. It also stabilizes the market by reducing the stock’s exposure to fundamental shocks and the

associated price volatility.

Remark 6 (Limit economy with small uninformed) Consider the limit economy with an infinitesi-

mal uninformed population (ωi → 1− ωn and ωu → 0). The limit equilibrium is,

Ssu
t = Asu (t)Dt +Bsu (t)Zsu + F su (t) , Zsu = (1− ωn)G+ ωnφ

µS,su
t =

(

σS,su
t

)2

Γ
− σS,su

t Θsu
t (Zsu; 1) , σS,su

t = Asu (t)σD

Θsu
t (Zsu; 1) = αsu (t)Zsu + βsu (t)Dt + γsu (t)

13



where the functions (Asu, Bsu, F su, αsu, βsu, γsu) are defined in (71)-(75). If, in addition, there is

no mimicking investor (ωi → 1, (ωu, ωn) → 0), the equilibrium collapses to a no-trade equilibrium

where

Ssu,0
t = Asu (t)Dt +Bsu,0 (t)G+ F su,0 (t) , Zsu = G

µS,su,0
t =

(

σS,su,0
t

)2

Γ
, σS,su,0

t = σS,su
t = Asu (t)σD, Θsu

t (Zsu; 1) = 0

with
(

Asu, Bsu,0, F su,0
)

as defined in (76)-(77). The pair
(

D,Ssu,0
)

, in the limit economy, is fully

revealing. Stock price volatilities in the three equilibria rank as σS,su
t = σS,su,0

t < σS
t < σD for

t < T . As the payment date approaches, limt→Tσ
S,su
t = limt→Tσ

S,su,0
t = limt→Tσ

S
t = σD. Equilib-

rium prices in economies with small uninformed (large informed) populations are less sensitive to

fundamental shocks and have lower volatility.

3.2 PIPR and WAPR Properties

To provide further insights about the structure of equilibrium, it is instructive to start with the

PIPR. The PIPR is the (negative of the) instantaneous volatility of the growth rate of the conditional

density of the private information signal given public information. In equilibrium, with Fm
t = FD,Z

t ,

θ
G|m
t (G) = vol

(

dpGt (G)

pGt (x)

)

=
G− µ

G|D,Z
t

(

σ
G|D,Z
t

)2 vol
(

µ
G|D,Z
t

)

=
G− µ

G|D,Z
t

(

σ
G|D,Z
t

)2

(

1− κtω
i
)

σD.

In the model under consideration, given the linearity of the endogenous signal Z revealed, the

conditional density is normal. The conditional mean alone depends on the dividend. The conditional

variance is a function of time. The PIPR therefore reduces to the volatility of the conditional mean

suitably normalized. It is affine in the private signal. As noted in Remark 3, it follows that the

WAPR becomes Θt (G,φ;ω) ≡ Θt (Z;ω) and that the complementary demand is an affine function

of Θt (Z;ω). The equilibrium risk premium inherits this affine structure. Moreover, the equilibrium

complementary demand, being affine in Θt (Z;ω), also reveals the signal Z = ωiG+ ωnφ.

The next corollary describes the behavior of the endogenous PIPR.
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Corollary 7 The equilibrium PIPR is,

θ
G|m
t (G) =

G− µ
G|D,Z
t

(

σ
G|D,Z
t

)2

(

1− κtω
i
)

σD = α1 (t)G+ α2 (t)Z + β0 (t)Dt + γ0 (t)

α1 (t) ≡
σD

H (t)
, α2 (t) ≡ −κtσ

D

H (t)
= −ωiσD

M (t)
, β0 (t) =

β (t)

ω
, γ0 (t) =

γ (t)

ω

where ω = ωi + ωn and β (t) , γ (t) are defined in (5)-(7). The coefficients α1 (t) , α2 (t) and β (t)

are the sensitivities with respect to the private signal G, the endogenous public signal Z and the

fundamental Dt. The coefficient γ (t) is a translation factor. The following properties hold,

(i) Sensitivity to information: α1 (t) > 0, α2 (t) < 0, β (t) < 0.

(ii) Dynamic behavior:

(ii-1) ∂α1(t)
∂t

> 0, ∂α2(t)
∂t

< 0, ∂β(t)
∂t

< 0

(ii-2) ∂γ(t)
∂t

> 0 if and only if H (t) < H+ with H+ as defined in (78)-(80).

(iii) Population effects (informed to noise trader ratio): Fix ω and let s = ωi/ωn vary. Then,

(iii-1) ∂α1(t)
∂s

= 0, ∂β(t)
∂s

> 0

(iii-2) ∂α2(t)
∂s

> 0 if and only if H (t) > 2s+1
s2

(

σφ
)2

(iii-3) ∂γ(t)
∂s

> 0 if and only if 2s
(

σφ
)2

µD (T − t) >
(

−s2H (t) +
(

σφ
)2
)

µφ.

(iv) Bias effects: ∂α1(t)
∂µφ = ∂α2(t)

∂µφ = ∂β(t)
∂µφ = 0, ∂γ(t)

∂µφ < 0.

The reaction of the equilibrium PIPR to news is intuitive. Indeed, a larger private signal indicates

a greater terminal dividend, thus provides more valuable information. In contrast public information,

be it endogenous or exogenous, reduces the local value of private information.

The evolution of these sensitivities over time is also intuitive. The reaction to private information

α1 (t) is tamed by the unconditional variance of the signal H (t) in the denominator. Over time, the

informed observes the fundamental and updates the content of the private signal. Effectively, the

residual private information is G−Dt. This residual signal becomes more informative over time, as

uncertainty resolves, thereby enhancing the value of information. For the same reason, the precision

of the endogenous public signal increases. This reduces the (negative) sensitivity of the PIPR to the

endogenous signal, which decreases the value of private information. The reaction to fundamental

information reflects the same effect. Its decrease contributes to a further reduction in the value of
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information.

Population effects can be traced to the informational content of the endogenous public signal

which depends on the relative fraction s of informed to noise trader. When s increases, endogenous

information becomes more precise. This decreases both sensitivities,

α2 (t) ≡ − κt
H (t)

σD = − ωi

M (t)
σD = − 1

ω

1 + 1
s

H (t) + 1
s2

(σφ)
2σ

D

β0 (t) ≡ −1− κtω
i

H (t)
σD = −

1
s2

(

σφ
)2

H (t)
(

H (t) + 1
s2

(σφ)
2
)σD

(denominator effects), which become more negative. At the same time, the covariance between

the endogenous signal and private information decreases (numerator effect), which increases the

sensitivities. In the case of α2 (t), the second effect dominates under the condition stated. For

β0 (t), it always dominates.

The impact of the bias is through the conditional mean of the private signal. A higher bias

increases the conditional mean, leading to a reduction in the PIPR.

The WAPR is closely related to the PIPR and inherits most of its properties.

Corollary 8 The equilibrium WAPR is given by (14). The coefficients α (t) and β (t) are the

sensitivities with respect to the endogenous public signal and the fundamental information. The

coefficient γ (t) is a translation factor. The properties of (β (t) , γ (t)) are the same as those of

(β0 (t) , γ0 (t)) in Corollary 7. The behavior of α (t) differs in the following respects,

(i) Sensitivity to information: α (t) > 0 if and only if
(

σφ
)2

> sH (t).

(ii) Dynamic behavior: α (t) increases with time if and only if κ2t < 1/ωiω.

(iii) Population effects: α (t) increases with s if and only if H (t) > 2s+1
s2

(

σφ
)2
.

The behavior of α (t) = α1 (t) + α2 (t)ω is more intricate because α1 (t) , α2 (t) have different,

sometimes opposite properties. The evolution of α (t) over time is especially noteworthy. If ωiωκ20 <

1, the coefficient increases over time. If ωiωκ20 > 1 and ωiωκ2T < 1, it initially decreases, then

increases. If ωiωκ20 > 1 and ωiωκ2T > 1, it decreases throughout. The possibility of a U -shaped

pattern reflects conflicting effects on α1 (t) and α2 (t). Under the conditions stated, the decrease in

α2 (t) dominates early on, then is overtaken by the increase in α1 (t). An illustration is in Figure 1.
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3.3 Price and Return Properties

Fundamental information accumulates with the passage of time, providing more precise estimates

of the next dividend payment. Information accumulation affects the properties of equilibrium. The

next corollary describes the dynamic behavior of the price and the return components.

Corollary 9 The stock price sensitivity to the fundamental (resp. the endogenous public signal)

increases (resp. decreases) over time. The volatility of the stock price, σS
t = A (t)σD, increases

over time. The minimal and maximal volatility values are obtained at the initial and terminal dates,

σS
0 = A (0) σD =

(

H (T )

H (0)

)ω (M (T )

M (0)

)1−ω

σD, lim
t→T

σS
t = A (T )σD = σD.

The stock’s price of risk µS
t /σ

S
t = A (t) σD/Γ− (α (t)Z + β (t)Dt + γ (t)) becomes more sensitive to

the fundamental over time (i.e., −β (t) > 0 increases for all t ∈ [0, T ]). Its sensitivity with respect

to the endogenous public signal increases at date t if and only if ωiωκ2t < 1 (i.e., −α (t) increases if

ωiωκ2t < 1).

At the initial date, the uninformed extracts the noisy signal Z from the price. This information is

most valuable when there is no other source of information, i.e., at the initial date. In the early stages

of the economy, the price is heavily influenced by this initial information and, for this reason, does not

react significantly to fundamental information. Over time, fundamental information accumulates,

reducing the usefulness of the initial piece of information extracted. The impact of fundamental

information (resp. the endogenous noisy signal) on the stock price grows (resp. decreases), thereby

increasing the stock’s volatility.

The behavior of the price of risk is more intricate. As for the stock price, the sensitivity to

fundamental information increases. The volatility of the price of risk therefore increases over time.

The sensitivity with respect to the endogenous public signal can exhibit three types of patterns. If

ωiωκ20 < 1, it decreases over time. If ωiωκ20 > 1 and ωiωκ2T < 1, it initially increases, then decreases.

If ωiωκ20 > 1 and ωiωκ2T > 1, it increases throughout. The possibility of an ∩-shaped pattern reflects

the U -shaped behavior of the WAPR. Figure 2 illustrates the price of risk and volatility behaviors.

The impact of risk attitudes is outlined next.
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Corollary 10 The stock price is a increasing function of risk tolerance, but its sensitivity coeffi-

cients with respect to fundamental information and to the noisy signal do not depend on it. Likewise,

the volatility of the stock price is not affected by risk tolerance. The stock’s risk premium is a de-

creasing function of risk tolerance.

An increase in risk tolerance promotes an increase in the demand for the stock, which increases

value. As shown by expression (11) for F (t), risk tolerance effectively acts on the risk discount

embedded in the stock price. When risk tolerance increases, the willingness to bear risk increases,

reducing the price discount required to hold the asset. The absence of an impact on the coefficients

(A(t), B(t)) capturing the price sensitivity to the information sources (Dt, Z), follows from the

mean-variance structure of the demand functions and the assumption of common risk attitudes

across investors. Under these circumstances, the aggregate demand function is an affine function of

the WAPR, that carries information and is unrelated to risk attitudes. The stock price inherits this

behavior. It depends on information through the WAPR, unaffected by risk attitudes. Moreover,

the absence of an impact on the sensitivity A (t) with respect to the fundamental implies that the

volatility of the stock price is not affected by risk attitudes either.

Because aggregate demand has a mean-variance form, the risk premium is also linear in the

PIPR. The risk premium is determined by the return variance per unit risk tolerance adjusted by

a discount related to the WAPR. Given that the variance of the stock price and the WAPR do not

depend on risk attitudes the result stated follows.

The last corollary in this section reports the effects of variations in the population of investors

and in the noise trading bias.

Corollary 11 Suppose that the ratio of informed to noise trader, s ≡ ωi/ωn, increases, but that

their combined fraction in the population, ω = ωi + ωn, stays the same. Under this scenario, the

sensitivity of the stock price with respect to fundamental information and its volatility both decrease.

The stock’s risk premium can increase or decrease. If the noise trading bias µφ − E [G] (i.e., µφ)

increases, the stock price decreases. The stock volatility is not affected. The stock’s risk premium

increases.

When the fraction of informed to noise trader s increases, the information extracted from the

price becomes more precise. This tames the response to other sources of information such as the
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fundamental. The volatility of the stock price, which is entirely driven by the volatility of the

fundamental, inherits this behavior. In contrast, the stock risk premium can increase or decrease

because of the conflicting effects on the coefficients of the WARP. The effects of noise trading bias

are straightforward and follow from the behavior of the non-stochastic component of the WARP.

3.4 Market Depth and Investor Strategies

3.4.1 Market Depth Properties

Market depth seeks to capture the impact of trading on the price. It is typically measured by the

inverse of the coefficient of the regression of the stock price on the complementary demand function

(Kyle (1985)). Properties of market depth are described next,

Corollary 12 Market depth m is given by,

m (t) ≡
(

d [St, Nt]

d [Nt, Nt]

)−1

=

ωuΓ
σD

β(t)
A(t)σD × ωuΓ

σD

β(t)
A(t)σD

ωuΓ
σD

β(t)
A(t)σD ×A (t) σD

=
ωuΓβ (t)

A2 (t)σD
. (16)

Market depth is negative, and increases over time if and only if ω > 1/2. Under this condition, its

minimal and maximal values are reached at the initial and terminal dates,

m (0) = −ωuΓω (ωn)2
(

σφ
)2

H (0)M (0)

(

H (0)

H (T )

)2ω (M (0)

M (T )

)2(1−ω)

, m (T ) = −ωuΓω (ωn)2
(

σφ
)2

H (T )M (T )
.

It also decreases with risk tolerance Γ and increases with the fraction s of informed. Market depth

is not related to the bias component µφ.

Market depth is negative because the covariance between the price change and the change in

the combined demand of the informed and the noise trader is negative. The passage of time has

two effects on depth. On the one hand, it increases the volatility of the stock price, which increases

the covariance between the stock price change and the demand change. On the other hand, it

has a negative effect on the volatility of the complementary demand through the coefficient β (t),

which becomes more negative. The trade-off between these two opposite effects is determined by

the fraction of informed and noise trader in the total population. When this fraction is greater than

half, the first effect dominates, leading to an increasing market depth over time, i.e., a market depth
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that becomes less negative. When the informed and noise trader are a majority, the price effect

is dominated by the demand effect. When the informed and the noise trader form a minority, the

price impact is sufficiently important to offset the demand effect.

The behavior with respect to the other quantities such as risk tolerance and the informed-to-noise

trader ratio is monotone. The latter increases, because the volatility of the stock price decreases

while the volatility of the complementary demand increases. Both effects contribute to an increase

in market depth.

Remark 13 Collin-Dufresne and Fos (2013) generate time-varying market depth by extending Kyle

(1985) to more general processes for exogenous noise trading. Their time-varying measures of liq-

uidity are supported by their empirical findings (Collin-Dufresne and Fos (2014)) that, in contrast

to the predictions of standard microstructure models, market depth can increase with more informed

trading. Market depth in the present model is tied to the underlying fundamental. It is time-varying

and can also increase with informed trading.

3.4.2 Momentum and Reversal Strategies

The next corollary describes the investment strategies of the three groups of agents.

Corollary 14 Let N i,G
t = Γθ

G|m
t (G) /σS

t be the private information component of the informed

demand. The optimal portfolio policy of the informed (resp. uninformed) is a contrarian (resp.

momentum) strategy,

d [Nu, S]t
dt

=
Γ

σD

d [θm,D]t
dt

= − Γ

σD

d [Θt (Z;ω) ,D]t
dt

= −Γβ (t) > 0

d
[

N i,G, S
]

t

dt
=

Γ

σD

d
[

θG|m (G) ,D
]

t

dt
= − ΓσD

H (t)

d
[

µG|D,Z,WD
]

t

dt
=

Γ

ω
β (t) < 0

d
[

N i, S
]

t

dt
=

d
[

Nu +N i,G, S
]

t

dt
= Γ

(

−1 +
1

ω

)

β (t) < 0.

The mimicking noise trader pursues a contrarian strategy, d [Nm, S] = −d
[

ωiN i + ωuNu, S
]

t
=

ωn

ω
(1− ω) ΓA (t)β (t) < 0. Momentum, for the uninformed strategy, is a decreasing function of

the conditional variance H (t) and the weight ωn of mimicking noise traders. It increases over

the dividend cycle. The informed strategy is contrarian because the contrarian private information
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component N i,G
t dominates the overall portfolio behavior. Reversal decreases (i.e., becomes more

pronounced) with respect to H (t) and t. The contrarian strategy of the mimicking noise trader is

the counterpart of the informed and uninformed strategies.

The uninformed behaves as a trend-chaser because the endogenous market price of risk is posi-

tively related to the fundamental. A positive shock to the fundamental induces an increase in the

market price of risk, prompting an increase in the uninformed portfolio demand. The behavior of

the informed is the opposite. The reason is because the local value of private information, the PIPR,

is negatively correlated with the fundamental. The informed acts as a contrarian. Market clearing

ensures that the noise trader adopts a contrarian strategy.

Over time, these strategies grow. Contrarians (resp. trend-chasers) become more intense con-

trarian (resp. trend-chasers). This follows from the fact that fundamental information becomes

more important as the dividend date approaches. The market price of risk and the PIPR both be-

come more sensitive to fundamental news over time, prompting investors to amplify their reactions

to fundamental news. See Figure 3 for illustration.

Remark 15 These findings differ from those in Albuquerque and Miao (2013) and Wang (1993).

In Wang’s model, the uninformed can be a trend chaser or a contrarian. The informed is a contrar-

ian. The uninformed is a momentum trader if the positive covariance associated with fundamental

information dominates the covariance related to the endogenous signal. In Albuquerque and Miao,

the uninformed (resp. informed) is a contrarian (resp. trend chaser). This pattern is attributable

to the agents’ information structures and the properties of the private investment opportunity avail-

able to the informed. In this model, the informed invests in the private opportunity and hedges the

associated exposure to risk with the stock. The hedging component of the stock demand creates the

condition for trend chasing behavior.

3.5 Welfare Analysis

3.5.1 Welfare of Informed and Uninformed Agents

The ex-ante value of private information is an important component of the welfare of the informed.

It captures the ex-ante utility gains associated with the use of private information for trading.
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The local value of private information is the PIPR θ
G|m
t (G). Mean-variance trades based on the

PIPR generate the local trading gain Γθ
G|m
t (G)2. The expected gains from trade over the cycle are

ΓE
[

∫ T

0 θ
G|m
t (G)2 dt

]

. The ex-ante value of information combines this trading gain with the loss

associated with aversion to realized variance. It equals,

I i =
Γ

2
E

[
∫ T

0
θ
G|m
t (G)2 dt

]

. (17)

When risk tolerance is Γ = 1, the ex-ante value of private information corresponds to the relative

entropy of the private signal. In the NREE, the value of private information quantifies the difference

between the welfare or the informed and that of the uninformed investor.

In order to compare welfare across economies with and without private information, the equilib-

rium public information structure matters. In the economy without private information, information

is homogeneous and generated by the fundamental. In the NREE, the uninformed extracts the en-

dogenous signal Z from equilibrium. The ex-ante value of this signal to the uninformed consists of

associated trading gains and realized variance losses. It is a quadratic function of the WAPR,

Iu =
Γ

2
E

[
∫ T

0
Θt (Z;ω)2 dt

]

=
(

ωi
)2 I i (G) + (ωn)2

Γ

2
E

[
∫ T

0
θ
G|m
t (φ)2 dt

]

. (18)

The weighted average structure of the WAPR implies that it can also be written as a linear function

of the ex-ante value of private information for the informed. Moreover, both (17) and (18) are linear

increasing functions of risk tolerance.

Proposition 16 Let E
[

U j
]

be the ex-ante utility of investor j ∈ {u, i}. In the NREE, ex-ante

utilities differ by the ex-ante value of private information, E
[

U i
]

= E [Uu] + I i, where I i is given

by (17) and,

E [Uu] = E [Nu
0 S0] +

1

2Γ

∫ T

0

(

σS
t

)2
dt− ωn

∫ T

0
σS
t θ

G|m
t

(

µφ
∣

∣

∣
E [Dt] , E [Z]

)

+ Iu (19)

E [Nu
0 S0] = (1− Γδ0)E [S0]− ΓK0, δ0 ≡

β (0)D0 + γ (0)

A (0) σD
, K0 ≡

α (0)

σS
0

E [ZS0] (20)

E [ZS0] = (A (0)D0 + F (0))E [Z] +B (0)E
[

Z2
]

(21)
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E [S0] = A (0)D0 +B (0)E [Z] + F (0) , σS
t = A (t)σD (22)

θ
G|m
t (x| d, z) ≡ x− E [G|Dt = d, Z = z]

H (t)
σD. (23)

In this expression θ
G|m
t (x| d, z) is the PIPR evaluated at the constants (Dt, Z) = (d, z). In the

equilibrium without private information, all agents are uninformed. The ex-ante utilities are equal,

E
[

U j,ni
]

= E
[

Sni
0

]

+
1

2Γ

∫ T

0

(

σS,ni
t

)2
dt, j ∈ {u, i} (24)

E
[

Sni
0

]

= D0 + µDT −
(

σD
)2

Γ
T , σS,ni

t = σD. (25)

Initial share allocations are also equal, N i
0 = Nu

0 = Nn
0 = 1.7

Ex-ante utilities, in the NREE, can be decomposed as,

E
[

U j
]

= E
[

N j
0S0

]

+
Γ

2

∫ T

0
E

[

(

θms + 1{j=i}θ
G|m
s (G)

)2
]

ds, for j = {i, u} .

The first term, in each decomposition, is the ex-ante value of the initial stock holdings. These

ex-ante values are the same, E
[

N i
0S0

]

= E [Nu
0 S0], because the informed demand differs from the

uninformed demand by a mean-preserving spread (E
[

N i
0|Fm

0

]

= Nu
0 ). In effect, the uninformed

demand is an unbiased estimate of the informed demand. At the root of this property is the fact

that the expectation of the PIPR given public information is null (E
[

θ
G|m
s (G) |Fm

0

]

= 0). In the

public information, the PIPR is a mean-preserving perturbation of the market price of risk. The

second term, which is proportional to the expected gains from trade, captures all the benefits of

trading and the costs associated with aversion to realized variance. The expected gains from trade

for the informed,

Γ

∫ T

0
E

[

(

θms + θG|m
s (G)

)2
]

ds = Γ

∫ T

0
E
[

(θms )2
]

ds+ I i

differ from those for the uninformed by the value of private information. The underlying reason

is again the mean-preserving property of the PIPR (E
[

θ
G|m
s (G) |Fm

0

]

= 0). Combining these

7In each equilibrium, the initial endowments of shares across agents are assumed to be equal to the optimal holdings
at date 0. See Remark 22 for further discussion.
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two properties, shows that the ex-ante utility difference reduces to the ex-ante value of private

information. The positive value of the latter implies that the informed is always better off than the

uninformed.

It is also instructive to examine the constituents of the gains from trade for the uninformed. As

shown by (19), the normalized gains from trade can be split in three parts,

Γ

2

∫ T

0
E
[

(θmt )2
]

dt =
1

2Γ

∫ T

0

(

σS
t

)2
dt− ωn

∫ T

0
σS
t θ

G|m
t

(

µφ
∣

∣

∣
E [Dt] , E [Z]

)

dt+ Iu.

To shed light on this expression, note that (θmt )2 =
(

σS
t /Γ

)2 − 2
(

σS
t /Γ

)

Θt (Z;ω)2 + Θt (Z;ω)2.

The first term, 1
2Γ

∫ T

0

(

σS
t

)2
dt, therefore reflects the variance impact on the endogenous mar-

ket price of risk. This term is positive because a greater riskiness induces an increased equi-

librium price of risk. The last term, Iu = Γ
2

∫ T

0 E
[

Θt (Z;ω)2
]

dt, is the value of the endoge-

nous information signal extracted from equilibrium. It is also positive, because information im-

proves the efficiency of the pricing of risk and the resulting gains from trade. The middle term,

−ωn
∫ T

0 σS
t θ

G|m
t

(

µφ
∣

∣E [Dt] , E [Z]
)

dt, captures the interaction between the risk and information

components of the price of risk. This specific form, which represents a risk premium, emerges

because the unconditional expectation of the PIPR is null and the stock volatility is determinis-

tic. The expected WAPR therefore reduces to the expected noise trading part, E [Θt (Z;ω)] =

E
[

ωnθ
G|m
t (φ)

]

= ωnθ
G|m
t

(

µφ
∣

∣E [Dt] , E [Z]
)

. It is null if the noise trader has unbiased beliefs,

µφ = E [G]. In the equilibrium without private information, investors are symmetric in all respects.

The market price of risk is then entirely determined by the riskiness of the stock. The expected

gains from trade are completely driven by the stock’s variance.

The relation between informed and uninformed utilities in the NREE simplifies welfare compar-

isons across equilibria. Both agents are better off if the welfare of the uninformed improves.

Proposition 17 The uninformed is better off in the NREE if and only if ∆u ≡ E [Uu]−E
[

Uu,ni
]

=

∆P u+ ∆Nu + ∆T u > 0, where ∆P u = E
[

S0 − Sni
0

]

is the gain/loss from the valuation of initial

holdings (price impact), ∆Nu = E [(Nu
0 − 1)S0] is the gain/loss from the change in the initial

allocation of shares across equilibria (allocation impact) and ∆T u is the gain/loss from dynamic

trading (trading impact). The allocation impact is ∆Nu = −Γ (δ0E [S0] +K0). The price and
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trading impacts are,

∆P u = (A (0)− 1)E [DT ] +B (0)E [Z]− ∆V

Γ
+ σD

∫ T

0
A (s) γ (s) ds− ωnI (0)µφ (26)

∆T u =
∆V

2Γ
− ωnσD

∫ T

0
A (t) θ

G|m
t

(

µφ;E [Dt] , E [Z]
)

dt+ Iu (27)

where ∆V =
(

σD
)2 ∫ T

0

(

A (t)2 − 1
)

dt is the change in the realized variance of the price. The welfare

of the uninformed improves, in particular, if risk tolerance is sufficiently small (limΓ→0∆
u = +∞).

For sufficiently large risk tolerance, it improves (limΓ→+∞∆u = +∞) if and only if,

1

2
E

[
∫ T

0

(

(

ωi
)2

θ
G|m
t (G)2 + (ωn)2 θ

G|m
t (φ)2

)

dt

]

≥ lim
Γ→∞

(δ0E [S0] +K0) . (28)

A sufficient condition is δ0 limΓ→∞E [S0] + limΓ→∞K0 ≤ 0.

Proposition 17 identifies the sources of welfare gains and losses for the uninformed when pri-

vate information trades are allowed. The first effect, ∆P u, captures the price impact on the initial

stock holdings of the uninformed. This price impact can be positive or negative depending on

parameter values. It is positive if the risk reduction associated with the partial dissemination

of private information in the NREE is sufficiently important. The second effect, ∆Nu, captures

the impact of the change in initial holdings. This term can also take either sign. It depends

in particular on the covariance between the signal extracted and the initial stock price. The

last effect, ∆T u, captures the change in the gains from trade. This component splits into three

parts, a riskiness effect (∆V/2Γ), an informational efficiency effect (Iu) and a noise trading ef-

fect (−ωnσD
∫ T

0 A (t) θ
G|m
t

(

µφ;E [Dt] , E [Z]
)

dt). Allowing private information trading reduces the

volatility of the stock, hence the market price of risk, which decreases welfare. The first part is there-

fore negative. It also disseminates private information and increases the informational efficiency of

the market. Better information improves investment allocations and leads to welfare gains. The

second part is positive. Finally, permitting the use of private information will prompt the emer-

gence of mimicking noise traders, whose activity limits efficiency gains. The bias induced by their

activities can be a source of welfare gains or losses. The third part can be positive or negative. It is

null when noise trading beliefs are unbiased, i.e., µφ = E [G]. Overall, when risk tolerance is large,
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the positive informational efficiency effect dominates if initial holdings per unit risk tolerance don’t

grow too fast. The welfare of the uninformed improves. When risk tolerance is small, the riskiness

effect dominates. It increases the stock price, implying a positive price impact. It also reduces the

price of risk, generating a negative trading impact. The price impact dominates leading to an overall

welfare gain.

The next corollary provides further insights. To simplify notation, define the relative entropy of

the private signal Eu ≡ Iu/Γ and the coefficients,

C ≡ CP + CT , CT ≡ −ωnσD

∫ T

0
A (t) θ

G|m
t

(

µφ;E [Dt] , E [Z]
)

dt

CP ≡ (A (0)− 1)E [DT ] +B (0)E [Z] + σD

∫ T

0
A (s) γ (s) ds− ωnI (0)µφ

J0 ≡ δ0E [S0] +K0, J ≡ C2 + 2 (Eu − J0)∆V, Γ± ≡ −C ±
√
J

2 (Eu − J0)
.

With this notation,

Corollary 18 The uninformed is as well off in the NREE as in the equilibrium without private

information under the following conditions,

(i) uniformly in Γ if J < 0 or if J ≥ 0 and Γ+ ≤ 0

(ii) for Γ ∈ [0,Γ+], if J ≥ 0, Γ− < 0 and Γ+ > 0

(iii) for Γ ∈ [0,Γ−]
⋃

[Γ+,+∞), if J > 0 and Γ− ≥ 0.

The corollary identifies parameter regions for which banning the use of private information

reduces the welfare of the uninformed. Figure 4 illustrates the various configurations.

3.5.2 Welfare of Mimicking Noise Trader

Let fφ|Z (x|Z) (resp. fG|Z (x|Z) be the Gaussian density of φ (resp. G) conditional on Z. The

likelihood ratio Lφ,G (x|Z) ≡ fφ|Z (x|Z) /fG|Z (x|Z) captures the beliefs divergence between the

noise trader and the informed. Explicit formulas are in the proof of Corollary 20 in Appendix B.

Corollary 19 The ex-ante utility of the mimicking noise trader is E [Un (φ)] = E [Uu (Z)]+ In +
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∆T n+ ∆Nn where,

In ≡ Γ

2

∫ T

0
E
[

θG|m
v (G)2 Lφ,G (G|Z)

]

dv (29)

∆T n ≡ Γ

∫ T

0

(

E
[

θG|m
v (G) θmv Lφ,G (G|Z)

]

+
1

2
E
[

COV
(

Lφ,G (G|Z) , (θmv )2
∣

∣

∣
Z
)]

)

dv (30)

∆Nn ≡ Γ
σD

H (0) σS
0

(

(

µφ − E [G]
)

E [S0] +B (0)

(

ωn
(

σφ
)2

− ωiH (0)

))

. (31)

The term ∆Nn is the differential allocation impact. The sum In +∆T n is the differential trading

impact. The noise trader is as well off as the uninformed if and only if the combined differential

allocation and trading impacts are nonnegative, In +∆T n +∆Nn ≥ 0.

The corollary expresses the welfare of the noise trader relative to the welfare of the unin-

formed. The ex-ante utility differential stems from the difference in the value of initial holdings

(∆Nn) and in the grains from trade (In + ∆T n). The differential allocation impact, ∆Nn =

E [(a0 (φ)N
n
0 −Nu

0 )S0], is the cross-moment between the difference in initial allocations and the

stock price. It depends, in particular, on the beliefs bias µφ−E [G]. The differential trading impact,

In + ∆T n = 1
2Γ

∫ T

0 E
[

av (φ)
(

Nn
v σ

S
v

)2 −
(

Nu
v σ

S
v

)2
]

dv, reflects the difference in expected portfolio

variances, where expectations are taken under the relevant beliefs. It has three constituents because

av (φ)
(

Nn
v σ

S
v

)2 −
(

Nu
v σ

S
v

)2
= av (φ) θ

G|m
v (G)2+2av (φ) θ

G|m
v (G) θmv +(av (φ)− 1) (θmv )2. These con-

stituents lead to the three terms in In and ∆T n. They depend on the likelihood ratio Lφ,G (x|Z)

due to the beliefs distortion av (φ). The constituent of In is the perceived value of information

under the distorted beliefs.

It the noise trader happens to have the same conditional beliefs as the informed, i.e., if the condi-

tional distributions of φ and G given public information coincide, then Lφ,G (G|Z) = 1. In this case,

the conditional covariance vanishes and ∆T n ≡ Γ
∫ T

0 E
[

E
[

θ
G|m
v (G) |Fm

v

]

θmv

]

dv = 0 (the PIPR is

a mean-preserving spread in the public information filtration). Moreover, Lφ,G (G|Z) = 1 implies

that beliefs are unbiased (µφ = E [G]) and that the noise trader and informed have the same weight

(ωn = ωi). It follows that the differential allocation impact ∆Nn = Γ
(

σD/σS
0

)

B (0)
(

ωn − ωi
)

= 0.
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3.5.3 Pareto Optimal NREE

The relations between ex-ante utilities in the NREE simplify welfare comparisons across equilibria.

Pareto dominance of the NREE over an equilibrium where investors are symmetric is ensured if the

welfare of the uninformed and the noise trader improves.

Corollary 20 The NREE is (weakly) Pareto optimal if and only if 0 ≤ ∆u and 0 ≤ ∆u +In +

∆Nn + ∆T n. Suppose that the noise trader has unbiased beliefs µφ = E [G]. Then, limΓ↓0 E [Un (φ)]

= E [Uu (Z)] and the NREE is Pareto optimal for sufficiently small levels of risk tolerance. If, in

addition, ωi = ωn and V AR [φ] = V AR [G], then the ex-ante utility of the mimicking noise trader

and the informed are identical, E [Un (φ)] = E
[

U i (G)
]

. In this case, the NREE is (weakly) Pareto

optimal under the conditions of Corollary 18.

The conditions for weak Pareto optimality ensure that all agents are as well off. When risk

tolerance converges to zero, the uninformed utility eventually becomes at least as large in the

NREE because of the price impact (Proposition 17). At the same time, if beliefs are unbiased, the

differential allocation and trading impacts vanish, ensuring that the noise trader attains the same

ex-ante utility as the uninformed. The NREE becomes Pareto optimal. If the noise trader happens

to have the same beliefs as the informed, he/she reaches the same ex-ante utility. The NREE is

then Pareto optimal under the conditions ensuring that the uninformed agent is as well off.

Corollary 20 has ramifications for market regulation. Permitting private information trades is

Pareto efficient when risk tolerance is sufficiently low or sufficiently large if conditions (28) and

0 ≤ ∆u +In + ∆Nn + ∆T n hold. In those cases, either the informational efficiency gains or the

decrease in the riskiness of the stock market dominate, leading to a welfare improvement. Scope for

regulation exists in intermediate cases. In these cases, factors such as the behavior of mimicking

investors, the properties of dividends and the weights of the various investor populations matter,

and have to be evaluated to determine the relevance of regulatory constraints.

Corollary 21 Suppose that conditions (i), (ii) or (iii) of Corollary 18 hold. If ∆u +In + ∆Nn +

∆T n ≥ 0, then the NREE is (weakly) Pareto optimal.

Under the conditions of the corollary, regulation banning the use of private information is welfare

reducing. Figure 4 illustrates the various configurations.

28



Remark 22 If initial share endowments are the same across equilibria (i.e., N j
0 = 1 for j = i, u, n),

the allocation impact components vanish, ∆Nu = ∆Nn = 0. The characterization of uninformed

welfare improvements in Corollary 18 continues to hold with J0 = 0. Likewise, the welfare compar-

ison in Corollary 19 holds if and only if In + ∆T n ≥ 0. Finally, the conditions for weak Pareto

optimality in Corollary 20 become 0 ≤ ∆u = ∆P u+ ∆T u and 0 ≤ ∆u + In +∆T n.

Remark 23 The results above extend Leland’s (1992) analysis to a dynamic competitive setting. In

a static framework, the dynamic trading components (∆T n,∆T u) are absent. So are intertemporal

aspects of the price impacts (∆Pn,∆P u), such as volatility (∆V ). As conjectured by Leland, some

dynamic effects, e.g., trading effects, can dampen the price impacts.8 However, for sufficiently low

risk tolerance, the price impacts continue to dominate. As will become clear from Section 4, similar

insights apply with monopolistic informed behavior.

4 Monopolistic Noisy Rational Expectations Equilibrium

Informed investors have market power and will therefore seek to exploit their informational advan-

tage by behaving non-competitively (Hellwig (1980)). This section derives equilibrium and examines

its properties under monopolistic informed trading. The monopolistic demand function is described

in Section 4.1. Equilibrium is presented in Section 4.2. Properties of equilibrium are examined in

Section 4.3.

4.1 Monopolistic Demand

The optimal monopolistic demand is described next,

Proposition 24 The optimal number of shares held by the monopolistic informed investor is,

N i
t =

1

1 + ωi

(

1− ωnΓ
θ
G|m
t (φ)

σS
t

)

+
ωu + ωn

1 + ωi
Γ
θ
G|m
t (G)

σS
t

=
(

1− ωi
)

Γ
θmt + θ

G|m
t (G)

σS
t

for t ∈ [0, T ]. The monopolistic informed investor reduces his/her overall demand for the stock by a

fraction ωi.

8“Insider trading “moves up” the resolution of uncertainty. This one time benefit may be relatively more important
in a two-period model than in a multiperiod model. If so, my results may overestimate the benefits from insider trading.
But we must await the development of multiperiod rational expectations models to answer this question definitively.”
(Leland (1992), p. 885).

29



The monopolistic investor takes account of the endogenous price impact when formulating

his/her optimal stock demand. Given the demands of the uninformed and the mimicking noise

trader, the market clearing price of risk,

θmt =
σS
t

Γ (ωu + ωn)

(

1− ωiN i
t − ωnΓ

θ
G|m
t (φ)

σS
t

)

is a decreasing, affine function of the informed demand. A greater informed demand therefore reduces

the reward for risk-taking. The monopolistic investor responds by optimally reducing his/her stock

demand. For a given price of risk, demand is reduced by the weight of the informed in the population,

ωi.

Remark 25 Recall that ω = ωi + ωn. The complementary demand function,

Nt ≡ ωiN i
t + ωnNn

t = Γ

(

ω −
(

ωi
)2
)

µS
t + σS

t

(

ωi
(

1− ωi
)

θ
G|m
t (G) + ωnθ

G|m
t (φ)

)

(

σS
t

)2

is an affine function of the WARP Θse
t

(

G,φ;ωi
(

1− ωi
)

, ωn
)

= ωi
(

1− ωi
)

θ
G|m
t (G) +ωnθ

G|m
t (φ).

If the PIPR is also affine, the complementary demand depends on Θse
t

(

G,φ;ωi
(

1− ωi
)

, ωn
)

=

Θse
t (Zse;ωse), which is a function of the signal Zse ≡ ωi

(

1− ωi
)

G+ ωnφ, calculated with weights

ωi
(

1− ωi
)

, ωn and parametrized by ωse = ωi
(

1− ωi
)

+ ωn.

4.2 Monopolistic Equilibrium Structure

The monopolistic noisy rational expectations equilibrium is as follows,

Proposition 26 Define the adjusted population weights ωi,se = ωi
(

1− ωi
)

and ωse = ωi,se + ωn.

Also define the functions (αse, βse, γse, λse,M se) as in (5)-(7), but with
(

ωi,se, ωse
)

in place of
(

ωi, ω
)

and the functions (Ase, Bse, F se, Ise) as in (9)-(12) but with
(

αse, βse, γse, λse,M se, ωi,se, ωse
)

in

place of
(

α, β, γ, λ,M,ωi, ω
)

. A monopolistic NREE exists. The equilibrium stock price and the

coefficients of the price process are,

Sse
t = Ase(t)Dt +Bse(t)Zse + F se(t), Zse ≡ ωi,seG+ ωnφ. (32)
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µS
t =

1

1− (ωi)2

(

(

σS
t

)2

Γ
− σS

t Θ
se
t (Zse;ωse)

)

, σS
t = Ase (t)σD (33)

Θse
t (Zse;ωse) = αse (t)Zse + βse (t)Dt + γse (t) (34)

where Θse
t (Zse;ωse) ≡ ωi,seθ

G|m
t (G) + ωnθ

G|m
t (φ) is the endogenous monopolistic WAPR. Innova-

tions in the uninformed filtration are dW S
t = dWD

t − θ
D|m
t dt with,

θ
D|m
t =

E
[

dWD
t |Fm

t

]

dt
= −ωi,seσD

M se (t)

(

Zse − ωi,se
(

Dt + µD (T − t)
)

− ωnµφ
)

. (35)

The evolution of the stock price in the public information is given by (1) where W S is an Fm
(·) =

FZse,D
(·) -Brownian motion.

The monopolistic equilibrium price (32) has the same structure as the competitive equilibrium

price. Differences appear within this structure, as the relevant endogenous weights become ωi,se =

ωi
(

1− ωi
)

and ωse = ωi,se + ωn instead of ωi and ω. These differences reflect the behavior of the

monopolistic investor. As shown by Proposition 24, the monopolistic stock demand is reduced by a

fraction ωi relative to the competitive demand. The aggregate demand function and the equilibrium

stock price inherit this adjustment. So does the information revealed by the stock price.

The endogenous signal conveyed by the pair composed of the equilibrium price and the fun-

damental can be written as Zse ≡ ωi,se
(

G+ ωn

ωi,seφ
)

. The informational content of this signal is

reduced (i.e., information is less precise) relative to the competitive signal. By reducing demand,

the monopolistic investor controls the leakage taking place through the price, hence protects his/her

privileged information. Equilibrium public information in the presence of a monopolistic informed

is more diffuse than in the presence of a competitive informed.

4.3 Monopolistic Equilibrium Properties

The equilibrium with monopolistic informed behavior has the same structural form as the compet-

itive equilibrium with the substitution of the adjusted weights
(

ωi,se, ωse
)

in place of
(

ωi, ω
)

. The

properties described in Corollaries 7-12 therefore apply, with appropriate weight adjustments in the

relevant conditions. The remainder of this section compares the monopolistic equilibrium to the

competitive equilibrium.
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Corollary 27 The PIPR in the monopolistic equilibrium is θ
G|m
t (G) = α1 (t)G +αse

2 (t)Zse +

βse
0 (t)Dt + γse0 (t) where,

α1 (t) ≡
σD

H (t)
, αse

2 (t) = −ωi,seσD

M se (t)
, βse

0 (t) =
βse (t)

ωse
, γse0 (t) =

γse (t)

ωse
.

The relations between the PIPR coefficients in the monopolistic and competitive equilibria are,

(i) αse
2 (t) < α2 (t) ⇐⇒ ωi,seωiH (t) > (ωn)2

(

σφ
)2

(ii) βse
0 (t) < β0 (t)

(iii) γse0 (t) > γ0 (t) ⇐⇒ µφωiωi,seH (t) > ωn
(

σφ
)2 (

ωiµD (T − t)
(

2− ωi
)

+ ωnµφ
)

The reduction in the stock demand by a fraction ωi reduces the informational content of the

price, which affects the conditional distribution of the private signal given public information. The

conditional mean becomes,

µ
G|D,Z
t =

(

1− κset ωi,se
) (

Dt + µD (T − t)
)

+ κset Zse − κset ωnµφ

where κset = ωi,seH (t) /M se (t) captures the sensitivity to public information. The smaller weight

ωi,se has two effects. It reduces the conditional covariance between the private signal and the endoge-

nous public signal given fundamental information, ωi,seH (t) = Cov
(

G,ωi,seG+ ωnφ|FD
t

)

. It also

reduces the conditional variance given fundamental information, M se (t) = V ar
(

ωi,seG+ ωnφ|FD
t

)

.

The sensitivity coefficient κset experiences conflicting effects. When ωi,seωiH (t) > (ωn)2
(

σφ
)2
, the

second effect dominates, leading to an increase in κset . The negative relation between the PIPR and

the conditional mean, implies that the sensitivity αse
2 (t) of the PIPR with respect to the endogenous

signal Z will then decrease.

Several patterns emerge when time is factored in. When ωi,seωiH (t) > (ωn)2
(

σφ
)2

for all t ∈

[0, T ], the sensitivity of the PIPR to Z is systematically lower in the monopolistic equilibrium. When

ωi,seωiH (t) < (ωn)2
(

σφ
)2

for all t ∈ [0, T ], it is systematically higher. Finally, when ωi,seωiH (0) >

(ωn)2
(

σφ
)2

and ωi,seωiH (T ) < (ωn)2
(

σφ
)2
, the sensitivity coefficient αse

2 (t) is initially lower, then

greater in the monopolistic equilibrium.

The effect on the sensitivity coefficient βse
0 (t) is uniform through time. The decrease in the

equilibrium weight ωi,se of the monopolistic insider reduces the (negative) response of the PIPR to
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fundamental information. In effect, the reduced weight ωi,se increases the sensitivity 1 − κset ωi,se

of the conditional mean µ
G|D,Z
t to fundamental information. The PIPR’s response follows from its

negative relation to the conditional mean.

The translation factor is driven by the component
(

1− κset ωi,se
)

µD (T − t) − κset ωnµφ in the

conditional mean µ
G|D,Z
t . It decreases because of the positive impact of monopolistic behavior on

1 − κset ωi,se. But it also experiences the conflicting effects on κset in the bias term −κset ωnµφ. The

overall impact is positive under the condition indicated. Over time, the translation factor can be

greater or smaller than in the competitive equilibrium depending on the prevailing condition.

Corollary 28 The WAPR in the monopolistic equilibrium is given by (34). The relations between

the WAPR coefficients in the monopolistic and competitive equilibria are,

(i) αse (t) < α (t) ⇐⇒ ωi,seωiH (t) > (ωn)2
(

σφ
)2

(ii) βse (t) < β (t) ⇐⇒ ωi
(

ωi (1− ω) + 2ωn
)

H (t) > (ωn)2
(

σφ
)2

(iii) γse (t) > γ (t) ⇐⇒ H (t) > h+ (t) where h+ (t) is defined in the Appendix.

The impact of imperfect competition on the coefficients of the WAPR reflects the impact on the

weighted average of PIPRs. As αse (t) = α1 (t) +αse
2 (t) where α1 (t) is the same as the competitive

equilibrium, the change in αse (t) is driven by the change in αse
2 (t), described in Corollary 27(i). For

βse (t) = ωseβse
0 (t), the negative impact of monopolistic behavior on βse

0 (t) in Corollary 27(ii) is

counter-balanced by the reduced weight ωse. The first effect dominates under the condition stated.

Likewise, the impact on γse (t) = ωseγse0 (t) reflects the combination of effects on γse0 (t) and ωse.

The overall effect is positive under the condition indicated.

The presence of multiple effects on the components of the WAPR creates conditions for intricate

dynamic relations between these component in the two equilibria. Figure 5 illustrates some of the

patterns that can materialize.

Corollary 29 The volatility of the stock price is greater in the monopolistic equilibrium than in the

competitive equilibrium. monopolistic behavior destabilizes the market.

Paradoxically, even though the demand function of the informed is tamer, monopolistic behavior

increases the sensitivity of the stock price with respect to fundamental information, which leads

to an increase in volatility. Underlying this phenomenon is the fact that monopolistic behavior
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reduces the information content of the price, which provides an incentive for increased reliance on

publicly available information sources such as fundamental information. The stock price inherits this

increased sensitivity to the fundamental. monopolistic behavior reduces the informational efficiency

of the market. It also destabilizes the market.

5 Multiple Dividend Cycles

This section develops a framework with multiple dividend cycles. Section 5.1 presents the model.

Section 5.2 describes the structure of equilibria. Section 5.3 examines their properties.

5.1 Economic Model

Consider a setting where the previous model is replicated over N consecutive periods (cycles). The

economy has finite horizon [0, T ]. Dividends are paid at the discrete dates T1, . . . , TN where TN = T .

The payment at Tn, denoted by DTn , is the terminal value of the process dDt = µD
n dt + σD

n dWD
t

where µD
n is a constant expected growth rate and σD

n is a constant and positive volatility coefficient.

WD is a Brownian motion process with filtration FD
(·). The process D is the fundamental factor

underlying the payments. Note that the characteristics
(

µD
n , σ

D
n

)

of the fundamental can change

from cycle to cycle.

The economy is populated by informed and uniformed investors as well as mimicking noise

traders. Population weights vary across cycles. The distribution is
(

ωi
n, ω

u
n, ω

n
n

)

during the nth

cycle [Tn−1, Tn), where ωi
n + ωu

n + ωn
n = 1 for n = 1, ..., N . Each population group is treated as a

representative individual.

The informed investor receives a new private signal at the beginning of each cycle. The signal

received at Tn−1 is Gn ≡ DTn + ζn where ζn ∼ N
(

0,
(

σζ
n

)2
)

. It conveys noisy information about

the dividend DTn paid at Tn. The sequence of private signals constitutes a stochastic process

G ≡ {Gn : n = 1, ..., N}. The associated filtration is FG
(·). The informed filtration F i

(·) ≡ FG,m
(·) is

generated by private and public information FG
(·) ∨ Fm

(·). The informed maximizes U i in (2) with

respect to the number of shares N i. The optimal demand function is described in Proposition 1

where G = Gn in period n = 1, ..., N .

The noise trader is a mimicking agent who duplicates the demand of the informed, but on the
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basis of pure noise. Let φ ≡ {φn : n = 1, ..., N} be the noise process where φn applies to cycle n.

The random variable φn is normally distributed with mean µφ
n and variance

(

σφ
n

)2
. There is no

serial dependence in φ (i.e., φn independent of φj for n 6= j). Moreover, φ, ζ,D are independent,

where ζ ≡ {ζn : n = 1, ..., N}. The noise trading demand is (4) evaluated at φ = φn in cycle n.

The uninformed investor observes public information Fm
(·) and maximizes Uu in (2). The optimal

uninformed demand function is given in Proposition 1.

5.2 Equilibria Structures

The functions arising in equilibrium are, for n = 1, . . . , N , amended as follows,

αn (t) =
1− κn (t)ωn

Hn (t)
σD
n , βn (t) = −ωn

1− κn (t)ω
i
n

Hn (t)
σD
n (36)

γn (t) = −ωn

(

1− κn (t)ω
i
n

)

µD
n (Tn − t)− ωn

nκn (t)µ
φ
n

Hn (t)
σD
n , κn (t) =

ωi
nHn (t)

Mn (t)
(37)

λn (t, s) =
ωi
n

(

σD
n

)2
(s− t)

Mn (t)
, A1

n (t, s) ≡
(

Hn (s)

Hn (t)

)ωn
(

Mn (s)

Mn (t)

)1−ωn

, s ∈ [t, Tn] (38)

Hn (t) =
(

σD
n

)2
(Tn − t) +

(

σζ
n

)2
, Mn (t) =

(

ωi
n

)2
Hn (t) + (ωn

n)
2
(

σφ
n

)2
(39)

BD
n (t) ≡ λn (t, Tn) , AD

n (t) ≡ 1− ωi
nB

D
n (t) , FD

n (t) ≡ AD
n (t)µD

n (Tn − t)− ωn
nB

D
n (t)µφ

n (40)

with ωn = ωi
n + ωn

n. The function A1
n (t, s) is the stock price response to dividend shocks in a

one-cycle model with parameters σD
n , σζ

n, σ
φ
n, µD

n , µ
φ
n, ωi

n, ω
n
n. Equilibria are described next.

Proposition 30 A competitive and monopolistic NREE exist. The stock price in the competitive

equilibrium with N dividend cycles is a right continuous left limit process given by,

St = AN
n (t)Dt +BN

n (t)Zn + FN
n (t) where Zn = ωi

nGn + ωn
nφn (41)
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for t ∈ [Tn−1, Tn) and n = 1, . . . , N , with,













AN
n (t)

BN
n (t)

FN
n (t)













=













An (t)

Bn (t)

Fn (t)













+













AS
n (t)

BS
n (t)

FS
n (t)













1n≤N−1,













AS
n (t)

BS
n (t)

FS
n (t)













= LN
n













AD
n (t)

BD
n (t)

FD
n (t)













+













0

0

KN
n













(42)

LN
n ≡ AN

n+1 (Tn) + ωi
n+1B

N
n+1 (Tn) (43)

KN
n ≡ FN

n+1 (Tn) +BN
n+1 (Tn)

(

ωi
n+1µ

D (Tn+1 − Tn) + ωn
n+1µ

φ
n+1

)

(44)

An (t) = A1
n (t, Tn) + σD

n

(
∫ Tn

t

A1
n (t, s)A

S
n (s)βn (s) ds

)

1n≤N−1 (45)

Bn(t) = λn (t, Tn) + σD
n

(
∫ Tn

t

AN
n (v) (αn (v) + βn(v)λn(t, v)) dv

)

(46)

Fn(t) = An (t)µ
D
n (Tn − t)−

(

σD
n

)2

Γ

∫ Tn

t

AN
n (v)2 dv + σD

n

∫ Tn

t

AN
n (v) γn (v) dv − ωn

nIn (t)µ
φ
n (47)

In (t) = λn (t, Tn) + σD
n

∫ Tn

t

AN
n (v) βn (v)λn (t, v) dv (48)

and αn, βn, γn, κn, λn, A
1
n,Hn,Mn, A

D
n , B

D
n , FD

n as defined in (36)-(40). The equilibrium stock price

coefficients are, for t ∈ [Tn−1, Tn),

µS
t =

(

σS
t

)2

Γ
− σS,N

t Θt (Zn;ωn) , σS
t = AN

n (t) σD
n (49)

Θt (Zn;ωn) = αn (t)Zn + βn (t)Dt + γn (t) (50)

where Θt (Zn;ωn) ≡ ωi
nθ

G|m
t (Gn) + ωn

nθ
G|m
t (φn) is the endogenous WAPR. Innovations in the un-

informed filtration are dW S
t = dWD

t − θ
D|m
t dt with,

θ
D|m
t =

E
[

dWD
t |Fm

t

]

dt
=

ωi
nσ

D

Mn (t)

(

Zn − ωi
n

(

Dt + µD
n (T − t)

)

− ωn
nµ

φ
n

)

. (51)

The evolution of the stock price in the public information is given by (1) where W S is an Fm
(·) = FZ,D

(·) -

Brownian motion with FZ,D
t =

{

FZn,D
t : t ∈ [Tn−1, Tn), n = 1, . . . , N

}

. The monopolistic NREE is

obtained by replacing ωi
n by ωi,se

n ≡ ωi
n

(

1− ωi
n

)

in the functions above.
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The overall structures of equilibria remain the same. The stock price has two parts,

St = E

[

DTn −
∫ Tn

t

µS
v dv

∣

∣

∣

∣

Fm
t

]

+ E [STn | Fm
t ] .

The first component captures the value at t of the dividend payment at the end of the current cycle

net of the mean price appreciation. This component is the same, structurally, as in a one-cycle

model. The second component represents the value at t of the stock at the beginning of the next

dividend cycle. The equilibrium coefficients also have two parts reflecting these two components,

AN
n (t) = An (t) + AS

n (t), BN
n (t) = Bn (t) + BS

n (t) and FN
n (t) = Fn (t)+ FS

n (t), for n ≤ N − 1.

In the competitive equilibrium, the informational content of the stock price, given fundamental

information, is Zn = ωi
nGn+ωn

nφn in period n. It depends on the prevailing distribution of investors

and the relevant private signal and noise. At the beginning of each dividend cycle, a new signal

materializes. The information structure then jumps, leading to a jump in the stock price and in the

endogenous signal conveyed. Within each cycle, the sensitivity of the stock price to fundamental

information AN
n (t) and the associated stock price volatility σS

t = AN
n (t) σD

n reflect the impact of

the future stock prices.

5.3 Equilibria Properties

The PIPR and WAPR capture local properties of returns and are therefore not sensitive to the

horizon. Their values and behavior are determined by the specifics of the information-uncertainty

structure within each cycle, i.e., the coefficients σD
n , σζ

n, σ
φ
n, µD

n , µ
φ
n, ωi

n, ω
n
n. The stock price and its

coefficients, in contrast, display intricate intra-cycle and horizon effects. This section provides an

analysis of their behavior and numerical illustrations.

5.3.1 Stock Price Sensitivity to Fundamental and Volatility

As indicated above, the price sensitivity to the fundamental has two parts, respectively related to

the expected net dividend and to the expected future price, AN
n (t) = An (t) +AS

n (t).

The expected net dividend sensitivity, An (t), further decomposes in two pieces, as shown by

(45). The first (resp. second) is a myopic (resp. dynamic) component attributable to the current

cycle (resp. future cycles). The myopic part, A1
n (t, Tn), is the same as in a one-cycle model
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with coefficients σD
n , σζ

n, σ
φ
n, ωi

n, ω
n
n. It has the monotonicity property outlined in Corollary 9. The

dynamic part, Aσ
n (t, Tn) ≡ σD

n

(

∫ Tn

t
A1

n (t, s)A
S
n (s)βn (s) ds

)

1n≤N−1, stems from the dependence

of the stock volatility, in the mean price appreciation, on future cycles. It vanishes throughout the

last cycle n = N . Prior to that, it exhibits intricate behavior. During cycle n < N , it is continuous

with respect to time and can increase, decrease or exhibit hump-shaped behavior. It converges to

zero at the end of cycle n. It then jumps to a new value at the beginning of cycle n+ 1 as long as

n+ 1 < N .

The expected future price sensitivity, AS
n (t), also represents a dynamic component. It vanishes

throughout the last dividend cycle n = N . In prior cycles, it is continuously increasing or decreasing.

It can be positive or negative at the end of each cycle, and jumps at the beginning of the next cycle.

The overall behavior of AN
n exhibits rich patterns. Within a cycle, it can have zero, one or

multiple humps and display concave or convex structure. It can be positive or negative at the end of

each cycle. It can also jump up or down at the beginning of the next cycle. The top row of Figure 6

displays a possible pattern for AN
n and its components AS

n , An. In this numerical illustration, AN
n and

AS
n increase during each cycle, then jump down at the onset of the next cycle. The coefficient An has

the opposite (resp. same) behavior in the competitive (resp. monopolistic) equilibrium. The general

pattern is one where the price becomes progressively more sensitive to the fundamental over the

initial cycles, reaches a peak sensitivity during an intermediate cycle, then becomes less responsive

during later cycles. This general pattern is more pronounced in the monopolistic equilibrium. The

top row of Figure 7 (left panel) shows that the volatility σS
t = AN

n (t)σD
n displays the same pattern.

Further inspection of the structure of AN
n reveals that the sensitivity to the fundamental is the

combination of a low frequency and high frequency components. The low frequency component

becomes prominent at the end of each cycle. It corresponds to LN
n = AN

n+1 (Tn) +ωi
n+1B

N
n+1 (Tn) in

the limit limt↑Tn A
N
n (t) = limt↑Tn An (t) + limt↑Tn A

S
n (t) = 1+LN

n . The process
{

LN
n : n = 1, ..., N

}

determines the behavior at cycle ends {tn : n = 1, ..., N}. It encapsulates the feedback effect from

the future: if LN
n = 0, the sensitivity collapses to the myopic term An (t) = A1

n (t, Tn). During the

nth cycle, LN
n pegs the level of the sensitivity to the fundamental. Indeed, the dynamic component

AS
n (t) = LN

n AD
n (t) converges to LN

n as t → Tn. It also determines the size of the (high frequency)

component Aσ
n (t, Tn), through

{

AS (s) : s ∈ [t, Tn]
}

. The high frequency components correspond to

A1
n (t, Tn), A

σ
n (t, Tn) and AD (t). Each of these measures a specific aspect of the price responsiveness
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to the fundamental within cycle n. The low frequency component determines the overall shape of

AN
n (t) and σS

t over the period [0, T ], i.e. across cycles. The high frequency components pin down

the intra-cycle behavior.

5.3.2 Stock Price Sensitivity to Endogenous Information

The stock price sensitivity with respect to the endogenous signal also decomposes into an expected

net signal response Bn (t) and an expected future price response BS
n (t). Both vanish at the payment

dates Tn, so that limt↑Tn B
N
n (t) = 0. The structure of Bn (t) is the same as in the one-cycle

model except for A (t), which is replaced by AN
n (t) and is no longer a monotone function of time.

The coefficient BS
n (t) captures the feedback from future cycles, namely the fact that endogenous

information revealed at the beginning of cycle n helps to assess the fundamental, hence the stock

price, at the beginning of cycle n + 1. The level of BS
n (t) is determined by the low frequency

component LN
n . It vanishes at Tn because DTn becomes publicly known.

Both components of BN
n (t) can take positive or negative values. Both can be increasing or

decreasing in time. Possible patterns are shown in the middle row of Figure 6. In this illustration,

the intra-cycle peak sensitivity decreases over the first few dividend cycles, increases mildly over a

couple of intermediate cycles, then decreases over the remaining cycles. At the end of each cycle,

the sensitivity vanishes. Intra-cycle peaks are larger in the monopolistic NREE due to the reduced

informational leakage.

5.3.3 Dynamic Stock Price Behavior

The stock price path is right continuous with left limits. It jumps at times Tn when dividends are

paid and new information signals are received. Straightforward calculations show that the jump

size,

∆STn = −DTn +BN
n+1 (Tn)

(

Zn+1 −
(

ωi
n+1DTn + ωi

n+1µ
D (Tn+1 − Tn) + ωn

n+1µ
φ
n+1

))

is determined by the dividend payment −DTn and the surprise in the endogenous signal, Zn+1 −

E
[

Zn+1| Fm
Tn−

]

. The coefficient BN
n+1 (Tn) accounts for the sensitivity of the price to the endogenous

signal. Within each cycle the price behavior is determined by the evolution of the fundamental and
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of the high frequency coefficients. The behavior across cycles reflects the properties of the low

frequency coefficients KN
n and LN

n .

The inter-cycle trend in the stock price can be positive or negative because of the non-monotonicity

of the coefficients with respect to time. Intra-cycle patterns can also vary across cycles. An illus-

tration is provided in the bottom row of Figure 7. In this example, the stock price shows a mild

positive (resp. strong negative) inter-cycle trend during the initial (resp. later) cycles. This pattern

is influenced by the behavior of FS
n (t), and more specifically its low frequency component KN

n , as

seen in the bottom row of Figure 6. The intra-cycle trends are mostly negative.

5.3.4 Expected Price Change and Optimal Portfolios

The expected change in the stock price (the stock premium) depends on the volatility and the

WAPR. The WAPR is determined locally and is therefore not subject to feedback effects across

dividend cycles. As discussed above, the stock volatility has myopic and dynamic components. It

increases within each cycle and can increase or decrease across cycles. These patterns are inherited

by the Sharpe ratio of the stock, θmt = σS
t /Γ− Θt (Zn;ωn). They are also amplified (resp. dampened)

in the stock premium if the WAPR is positive (resp. negative) and varies in the opposite (resp.

same) direction. The top row of Figure 7 (middle and right panels) illustrates the behavior of the

premium and the Sharpe ratio. It shows that anticipative information can be the source of a sizeable

positive or negative premium.

Equilibrium holdings reflect similar considerations. The optimal portfolio of the uninformed, a

mean-variance portfolio, is proportional to the Sharpe ratio of the stock normalized by its volatility.

It is therefore related to the inverse of the stock volatility. If the WAPR is negative (resp. positive),

the behavior of the uninformed portfolio is the opposite of (resp. same as) the stock volatility

behavior. Given that the WAPR changes stochastically over time, the uninformed portfolio can

amplify, dampen or even reverse the inverse volatility patterns depending on economic conditions.

The optimal portfolio of the informed has similar properties. But the response to the inverse

volatility is now driven by the WAPR net of the PIPR.9 The resulting positions are more extreme

when the PIPR and WAPR have opposite signs. The middle row of Figure 7 shows the optimal

9The informed portfolio can be written as N i
t = 1 −Γ

(
Θt (Zn;ωn)− θ

G|m
t (Gn)

)
/σS

t
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portfolios of the public (left panel), the informed (middle panel) and the noise trader (right panel)

in the numerical example displayed. The overall pattern of the uninformed holdings portfolio is

similar to the behavior of the market price of risk. Volatility scaling implies that the market

price of risk levels and variations are amplified toward the beginning and end of the period [0, T ],

relative to the middle of the period. The intra-cycle holdings display more aggressive behavior

at the beginning of each cycle when volatility is lower. Informed stock holdings display similar

patterns, but modulated by the PIPR. Jump sizes at private information arrival dates are generally

greater than for uninformed holdings, due to the jumps in the PIPR. Overall, the informed portfolio

experiences smaller variations intra-cycle, but greater variations at jump times.

5.3.5 Information, Stabilization and Welfare

Should trading based on private information be permitted? The one-cycle model of the previous

sections shows that the private information leakage through the price reduces volatility, thereby

stabilizing the financial market. It also shows that private information trades can be Pareto optimal

under certain circumstances. A relevant question is whether these conclusions are artifacts of the

myopic nature of the model or whether they have deeper roots.

In order to assess the volatility impact of private information in the multi-cycle model, consider

the equilibria in the economies without and with private information. The volatility differential,

∆σS
t ≡ σS,ni

t − σS
t , can be decomposed as,

∆σS
t

σD
n

= 1−A1
n (t, Tn) +LN,ni

n 1n≤N−1 −LN
n

(

AD
n (t) + σD

n

(
∫ Tn

t

A1
n (t, s)A

D
n (s)βn (s) ds

)

1n≤N−1

)

where LN,ni
n ≡ AN,ni

n+1 (Tn) and LN
n ≡ AN

n+1 (Tn) + ωi
n+1B

N
n+1 (Tn). The term 1 − A1

n (t, Tn) ≥ 0

captures the positive myopic effect associated with the on-going dividend cycle. The remaining terms

reflect the feedback effects of future cycles through the end-of-cycle stock price. These effects can

be positive or negative, depending on parameter values. In the absence of private information, the

feedback term LN,ni
n captures the volatility of expected future dividends. With private information,

the feedback terms reflect the volatility associated with expected future dividends as well as the

volatility related to expected future endogenous signals. The size of the latter can be substantial

leading to an overall increase in volatility relative to the economy without private information.
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At the end of each cycle, the volatility differential becomes,

∆σS
t

σD
n

=
(

LN,ni
n − LN

n

)

1n≤N−1, where LN,ni
n = 1 + LN,ni

n+1 , LN
n = ̺0,n+1 + ̺1,n+1L

N
n+1

and the coefficients ̺0,n+1, ̺1,n+1 are convolutions of parameters defined in (93)-(96). A sufficient

condition for a positive volatility differential at cycle ends is 1 ≥ ̺0,n+1, ̺1,n+1 ≥ 0 for n = 1, ..., N−1.

Under this condition, the information leakage through the price system is sufficiently strong to ensure

that investors, and ultimately prices, are less responsive to fundamental shocks, at cycle ends, in

the NREE.

Figure 8 illustrates possible volatility configurations for the two economies, when G and φ are

identically distributed. The plots are for different levels of skills. In these numerical examples,

volatility is initially lower in the NREE, then eventually exceeds volatility in the economy with-

out private information. The effect of skill is notable. When skill increases, the NREE volatility

decreases throughout [0, T ] and falls significantly below the no-information volatility. When skill

reaches a sufficiently high level, the NREE volatility falls below the no-information volatility except

during the next-to last cycle. The intuition is straightforward. As skill increases, the quality of

the endogenous information revealed in equilibrium increases, prompting investors to tame their

responses to shocks. The equilibrium price also becomes more resilient to fundamental fluctuations.

The reduction in price volatility in the NREE, has important ramifications for welfare. As

shown in Appendix A, the welfare gain for the uninformed ∆u ≡ E [Uu]− E
[

Uu,ni
]

, relative to the

benchmark economy without private information, has the decomposition ∆u = ∆P u+ ∆Nu+∆T u.

The terms involved correspond to the price impact (∆P u), the allocation impact (∆Nu) and the

trading impact (∆T u). The reduced volatility implies that the trading impact is negative for low risk

tolerance and increases with the tolerance level. The trading impact eventually becomes positive

due to the positive value of the endogenous signal. A reduced volatility also implies that the

price impact is positive for low risk tolerance and decreases hyperbolically with the tolerance level.

Lastly, it has an ambiguous effect on the linear relation between the allocation impact and the risk

tolerance parameter. The overall impact on the uninformed welfare is the sum of these effects.

When initial volatility falls significantly below the volatility in the benchmark economy, the welfare

gains for the uninformed are substantial. Figure 8 shows the uninformed welfare gains for three
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levels of skill. In this example, the beliefs of the noise trader and the informed coincide, implying

that Pareto optimality is determined by the welfare of the uninformed. When skill is high, the

information revealed through the price is more reliable, leading to tame portfolio adjustments in

response to fundamental shocks and to low price fluctuations. Welfare gains are substantial at

low risk tolerance levels. The lower threshold risk tolerance for indifference between allowing or

prohibiting trades based on private information increases. Moreover, in this particular example, the

trading (informational efficiency) impact, which dominates the overall welfare comparison when risk

tolerance becomes sufficiently large, is positive and significant. The upper threshold for indifference

decreases. Overall, the region of risk tolerance values over which the NREE Pareto dominates the

benchmark equilibrium expands to the whole space. This striking conclusion is also valid for the

lower skill levels examined. The underlying reason is the behavior of the allocation and price impacts

as risk tolerance increases. The allocation impact is immaterial because δN0 , α1 (0) are very small.

The price impact remains positive because the adverse drop in the sensitivity to the fundamental is

not strong enough to offset the positive effect of endogenous information on the price level. Thus,

in all three cases the NREE is Pareto optimal, for all possible values of risk tolerance.

6 Conclusion

This paper examines the structure and properties of non-stationary noisy rational expectations

equilibria in models with continuous trading and discrete dividend payment dates. Equilibrium

prices fail to be weak-form efficient. Public information is carried by the price-fundamental pair.

Informed trading has a stabilizing effect, as it reduces the volatility of the stock price, and it can

be Pareto optimal. Over the dividend cycle, the stock price volatility, the price of risk and the

covariance between the stock price and the price of risk all increase. Monopolistic behavior leads to

a tamer optimal demand function. The resulting information available to the public is more diffuse

and the equilibrium stock price volatility increases relative to the competitive setting. Potential

welfare gains are weakened.

The dynamic model developed in this paper is tractable and produces closed form solutions, in

the competitive as well as the monopolistic case. It therefore offers a useful platform to examine

complex issues related to information asymmetry in financial markets. For instance, it provides a
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natural setting to study policy questions. Should trades based on private information be banned?

The results in this paper suggest that an outright ban may not be best for society. Should they be

restricted in less stringent ways? If so, what are appropriate regulations? What are the efficiency

and liquidity effects of various types of restrictions? These questions are of fundamental importance

for the smooth functioning of financial markets and the welfare of market participants. Their

analysis requires extensions of the model incorporating the relevant regulatory constraints under

consideration and is therefore beyond the scope of the present study. Issues such as these could be

interesting avenues for future research.
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7 Appendix

7.1 Appendix A: Welfare in the Multi-cycle Model

Let G = (G1, . . . , GN ), Z = (Z1, . . . , ZN ) and Φ = (φ1, . . . , φN ). The components of welfare are,

I i =

N
∑

n=1

Γ

2
E

[

∫ Tn

Tn−1

θ
Gn|m
t (Gn)

2 dt

]

(52)

Iu =
Γ

2

N
∑

n=1

(

(

ωi
n

)2
E

[

∫ Tn

Tn−1

θ
Gn|m
t (Gn)

2 dt

]

+ (ωn
n)

2 E

[
∫ T

0
θ
G|m
t (φn)

2 dt

]

)

. (53)

In ≡ Γ

2

N
∑

n=1

∫ Tn

Tn−1

E
[

θGn|m
v (Gn)

2 Lφn,Gn (Gn|Zn)
]

dv (54)

∆T n ≡ Γ
N
∑

n=1

∫ Tn

Tn−1

(

E
[

θGn|m
v (Gn) θ

m
v Lφn,Gn (Gn|Zn)

]

+
1

2
E
[

COV
(

Lφn,Gn (Gn|Zn) , (θ
m
v )2
∣

∣

∣
Zn

)]

)

dv

(55)

∆Nn ≡ Γ
σD
1

H1 (0) σS
0

(

(

µφ
1 − E [G1]

)

E
[

SN
0

]

+BN
1 (0)

(

ωn
1

(

σφ
1

)2
− ωi

1H1 (0)

))

. (56)

Ex-ante expected utilities are, respectively, E
[

U i (G)
]

, E [Uu (Z)] and E [Un (Φ)].

Proposition 31 In the NREE, ex-ante utilities satisfy the relations, E
[

U i (G)
]

= E [Uu (Z)]+ I i

and E [Un (Φ)] = E [Uu (Z)] + In+ ∆T n+ ∆Nn where the components are defined in (52)-(56)

and,

E [Uu (Z)] = E [Nu
0 S0] +

1

2Γ

N
∑

n=1

(

∫ Tn

Tn−1

(

σS
t

)2
dt− ωn

n

∫ Tn

Tn−1

σS
t f

n
t dt

)

+ Iu (57)

E [Nu
0 S0] =

(

1− ΓδN0
)

E [S0]− ΓKN
0 , δN0 ≡ β1 (0)D0 + γ1 (0)

AN
1 (0) σD

1

(58)

KN
0 ≡ α1 (0)

σN,S
0

E [Z1S0] =
α1 (0)

AN
1 (0) σD

1

((

AN
1 (0)D0 + FN

1 (0)
)

E [Z1] +BN
1 (0)E

[

Z2
1

])

(59)

E [S0] = AN
1 (0)D0 +BN

1 (0)E [Z1] + FN
1 (0) , σS

t = AN
n (t) σD

n 1t∈[Tn−1,Tn) (60)

fn
t = θ

Gn|m
t

(

µφ
n

∣

∣

∣
E [Dt] , E [Zn]

)

, θ
G|m
t (x| d, z) ≡ x− E [Gn|Dt = d, Zn = z]

Hn (t)
σD
n 1t∈[Tn−1,Tn]. (61)

The function θ
G|m
t (x| d, z) is the PIPR evaluated at (Dt, Zn) = (d, z) for t ∈ [Tn−1, Tn). In the
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equilibrium without private information, all agents are uninformed. The ex-ante utilities,

E
[

U j,ni
]

= E
[

Sni
0

]

+
1

2Γ

N
∑

n=1

∫ Tn

Tn−1

(

σni
t

)2
dt, j ∈ {u, i} (62)

E
[

Sni
0

]

= Sni
0 = AN,ni

1 (0)D0 + FN,ni
1 (0) , σni

t = AN,ni
n (t)σD

n 1t∈[Tn−1,Tn) (63)

are equal. Initial share allocations are also equal, N i,ni
0 = Nu,ni

0 = Nn,ni
0 = 1.

Proposition 32 The NREE Pareto dominates the equilibrium without private information if and

only if ∆u ≡ E [Uu (Z)] − E
[

Uu,ni
]

= ∆P u +∆Nu + ∆T u > max {0,−In −∆T n −∆Nn}, where

∆P u = E
[

S0 − Sni
0

]

is the price impact, ∆Nu = E [(Nu
0 − 1)S0] the allocation impact and ∆T u

the trading impact. The three components are ∆Nu = −Γ
(

δN0 E [S0] +KN
0

)

and,

∆P u =
(

AN
1 (0)−AN,ni

1 (0)
)

D0 +BN
1 (0)E [Z1]−

∆V

Γ
+R (64)

∆T u =
∆V

2Γ
−

N
∑

n=1

ωn
nσ

D
n

∫ Tn

Tn−1

AN
n (t) θ

G|m
t

(

µφ
n;E [Dt] , E [Zn]

)

dt+ Iu (65)

where ∆V =
∑N

n=1

(

σD
n

)2 ∫ Tn

Tn−1

(

AN
n (t)2 −AN,ni

n (t)2
)

dt is the change in the realized variance of

the price and where R ≡ FN
0 (0)− FN,ni

0 (0)−∆V/Γ denotes the terms of FN
0 (0)− FN,ni

0 (0) inde-

pendent of the tolerance Γ. If ∆V < 0, the NREE Pareto dominates the equilibrium without private

information if risk tolerance is sufficiently small (limΓ→0 ∆
u = +∞). If ∆V > 0, there is no vari-

ance stabilization and the symmetric REE without private information Pareto dominates the NREE

for small risk tolerance(limΓ→0∆
u = +∞). For large risk tolerance, the NREE Pareto dominates

(limΓ→+∞∆u = +∞) if and only if,

1

2

N
∑

n=1

(

E

[

∫ Tn

Tn−1

(

(

ωi
n

)2
θ
G|m
t (Gn)

2 + (ωn
n)

2 θ
G|m
t (φn)

2
)

dt

])

≥ lim
Γ→∞

(

δN0 E
[

SN
0

]

+KN
0

)

. (66)

A sufficient condition is δN0 limΓ→∞E
[

SN
0

]

+ limΓ→∞KN
0 ≤ 0.
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The next result provides further insights on the scope for regulation. Define the relative entropy

Eu ≡ Iu/Γ and the coefficients,

C ≡ CP + CT , CT ≡ −
N
∑

n=1

ωn
nσ

D
n

∫ Tn

Tn−1

AN
n (t) θ

G|m
t

(

µφ
n;E [Dt] , E [Zn]

)

dt

CP ≡
(

AN
1 (0)−AN,ni

1 (0)
)

D0 +BN
1 (0)E [Z1] +R

J0 ≡ δN0 E
[

SN
0

]

+KN
0 , J ≡ C2 + 2 (Eu − J0)∆V, Γ± ≡ −C ±

√
J

2 (Eu − J0)
.

With this notation, the following multi-cycle version of Corollary (18) holds.

Corollary 33 The uninformed is as well off in the NREE under the following alternative conditions,

(i) uniformly in Γ if J < 0 or if J ≥ 0 and Γ+ ≤ 0, or (ii) for Γ ∈ [0,Γ+], if J ≥ 0, Γ− < 0 and

Γ+ > 0, or (iii) for Γ ∈ [0,Γ−]
⋃

[Γ+,+∞), if J > 0 and Γ− ≥ 0. Suppose that (i), (ii) or (iii)

holds. If, in addition, In +∆T n +∆Nn ≥ 0, the NREE Pareto dominates (weakly) the equilibrium

without private information.

If In + ∆T n + ∆Nn ≥ 0, the mimicking noise trader is as well off as the uninformed. Under

this condition, banning the use of private information is welfare reducing (case (i)), or justified for

risk tolerance above Γ+ (case (ii)), or justified for the risk tolerance range (Γ−,Γ+) (case (iii)). The

sufficient condition In + ∆T n + ∆Nn ≥ 0 is satisfied in symmetric equilibria where ωi
n = ωn

n and

φn ∼ Gn (identically distributed) for all n = 1, . . . , N . It also holds if Γ → 0.

7.2 Appendix B: Proofs

Proof of Proposition 4. The aggregate demand function Na
t ≡ ωuNu

t + ωiN i
t + ωnNn

t is,

Na
t = ωuΓ

σS
t θ

m
t

(σS
t )

2 + ωiΓ
σS
t

(
θmt + θ

G|m
t (G)

)

(σS
t )

2 + ωnΓ
σS
t

(
θmt + θ

G|m
t (φ)

)

(σS
t )

2

where the function θ
G|m
t (x) is endogenous. Conjecture that θ

G|m
t (x) is an affine function of x and let Θt (z;ω) ≡

ωiθ
G|m
t (x1) + ωnθ

G|m
t (x2) where z = ωix1+ ωnx2 and ω = ωi + ωn. Under this conjecture the aggregate demand

function becomes Na
t = Γ (θmt +Θt (Z;ω)) /σS

t and, at equilibrium, Na
t = 1, σS

t θ
m
t =

(
σS
t

)2
/Γ− σS

t Θt (Z;ω). Infor-

mation revealed in equilibrium includes the noisy translation of the private signal Z = ωiG+ωnφ. Thus, Fm
(·) ⊇ FD,Z

(·) .
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Suppose that Fm
(·) = FD,Z

(·)
. Given that,

G = DT + ζ = Dt + µD (T − t) +

∫ T

t

σDdWD
s + ζ

Z = ωiG+ ωnφ = ωi
(
Dt + µD (T − t)

)
+ ωi

(∫ T

t

σDdWD
s + ζ

)
+ ωnφ

the conditional density at time t of the signal is pGt (x) = 1

σ
G|D,Z
t

n

(
x−µ

G|D,Z
t

σ
G|D,Z
t

)
where,

µ
G|D,Z
t = Dt + µD (T − t) + κt

[
Z − ωi

(
Dt + µD (T − t)

)
− ωnµφ

]

(
σ
G|D,Z
t

)2
=

((
σD
)2

(T − t) +
(
σζ
)2)(

1− κtω
i
)
≡ H (t)

(
1− κtω

i
)

κt =
ωi
((

σD
)2

(T − t) +
(
σζ
)2)

M (t)
=

ωiH (t)

M (t)

M (t) =
(
ωi
)2 ((

σD
)2

(T − t) +
(
σζ
)2)

+ (ωn)2
(
σφ
)2

=
(
ωi
)2

H (t) + (ωn)2
(
σφ
)2

(M (t) is the variance of Z − ωi
(
Dt + µD (T − t)

)
= ωi

(∫ T

t
σDdWD

s + ζ
)
+ ωnφ). Ito’s lemma gives the PIPR,

θ
G|m
t (x) =

x− µ
G|D,Z
t(

σ
G|D,Z
t

)2
(
1− κtω

i
)
σD =

x− µ
G|D,Z
t

H (t)
σD.

The PIPR for dividend risk, θ
G|m
t (x), is affine in x, as conjectured.

The information revealed in equilibrium is contained in,

Θt (Z;ω) ≡ ωiθ
G|m
t (G) + ωnθ

G|m
t (φ) =

Z −
(
ωi + ωn

)
µ
G|D,Z
t

H (t)
σD ≡ Z − ωµ

G|D,Z
t

H (t)
σD

=
Z − ω

((
1− κtω

i
) (

Dt + µD (T − t)
)
+ κt

(
Z − ωnµφ

))

H (t)
σD

=

(
1− κtω

H (t)
Z − ω

1− κtω
i

H (t)
Dt − ω

(
1− κtω

i
)
µD (T − t)− ωnκtµ

φ

H (t)

)
σD

≡ α (t)Z + β (t)Dt + γ (t)

where ω = ωi + ωn, and is indeed equivalent to Z provided α (t) 6= 0, i.e., 1 − κtω 6= 0 for t in a neighborhood of

0. At t = 0, the condition is equivalent to, 1 − κ0ω 6= 0 ⇐⇒ ωn
(
σφ
)
− ωi

((
σD
)2

T +
(
σζ
)2) 6= 0. If the condition

fails at t = 0, it holds at t = 0+, so Z is immediately revealed in this case as well. Moreover, the pair (Z,D) is a

sufficient statistic, in equilibrium, for the PIPR and the conditional density of the signal. This suggests that the pair

is a sufficient statistic for the rest of the equilibrium as well. This still needs to be verified.

Suppose that uninformed agents use FD,Z

(·)
to forecast the future dividend and assess the price of risk θm. In

equilibrium, µS
t = σS

t θ
m
t =

(
σS
t

)2
/Γ − σS

t Θt (Z;ω), which is affine with respect to the pair (Z,D). The volatility
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structure remains to be identified. Assuming volatility coefficients are functions of time and simplifying yields,

St = E

[
DT −

∫ T

t

µS
s ds

∣∣∣∣F
m
t

]
= Dt + µD(T − t) + σD

E

[
WD

T −WD
t

∣∣∣FZ,D
t

]

− 1

Γ

∫ T

t

(
σS
s

)2
ds+

∫ T

t

E

[
σS
s (α(s)Z + β(s)Ds + γ(s))

∣∣∣FZ,D
t

]

= Dt + µD(T − t)− 1

Γ

∫ T

t

(
σS
s

)2
ds+

∫ T

t

σS
s γ(s)ds+

(∫ T

t

σS
s α(s)ds

)
Z

+σD
E

[
WD

T −WD
t

∣∣∣FZ,D
t

]
+

∫ T

t

σS
s β(s)E

[
Ds| FZ,D

t

]
ds

≡ Dt +G0 (t, T )Z + F̂
(
σS , t

)
+ σD

E

[
WD

T −WD
t

∣∣∣FZ,D
t

]
+

∫ T

t

σS
s β (s)E

[
Ds|FZ,D

t

]
ds

where G0 (t, T ) =
∫ T

t
σS
s α (s) ds and F̂

(
σS, t

)
= µD (T − t)− (1/Γ)

∫ T

t

(
σS
s

)2
ds+

∫ T

t
σS
s γ (s) ds. Moreover,

E

[∫ T

t

σDdWD
s

∣∣∣∣F
Z,D
t

]
= λ (t, T )

(
Z − ωi

(
Dt + µD (T − t)

)
− ωnµφ

)

= λ (t, T )Z − ωiλ (t, T )Dt − λ (t, T )
(
ωiµD (T − t) + ωnµφ

)

E

[
Ds|FZ,D

t

]
= Dt + µD (T − t) + λ (t, s)

(
Z − ωi

(
Dt + µD (T − t)

)
− ωnµφ

)

=
(
Dt + µD (T − t)

)(
1− ωiλ (t, s)

)
+ λ (t, s)Z − ωnλ (t, s)µφ

where λ (t, s) =
ωi(σD)2(s−t)

M(t)
, so that,

∫ T

t

σS
s β(s)E

[
Ds|FZ,D

t

]
ds = G1 (t, T )

(
Dt + µD (T − t)

)
+G2 (t, T )

(
Z − ωnµφ

)

G1 (t, T ) =

∫ T

t

σS
s β(s)

(
1− ωiλ(t, s)

)
ds, G2 (t, T ) =

∫ T

t

σS
s β(s)λ(t, s)ds.

Hence,

St = Dt +G0 (t, T )Z + F̂
(
σS , t

)
+ λ (t, T )Z − ωiλ (t, T )Dt

−λ (t, T )
(
ωiµD (T − t) + ωnµφ

)
+G1 (t, T )

(
Dt + µD (T − t)

)
+G2 (t, T )

(
Z − ωnµφ

)

=
(
1− ωiλ (t, T ) +G1 (t, T )

)
Dt + (G0 (t, T ) + λ (t, T ) +G2 (t, T ))Z + F̂

(
σS, t

)

+
(
−ωiλ (t, T ) +G1 (t, T )

)
µD (T − t)− (λ (t, T ) +G2 (t, T ))ω

nµφ

≡ A(t)Dt +B(t)Z + F (t)

where,

A(t) = 1− ωiλ (t, T ) +G1 (t, T ) = 1− ωiλ (t, T ) +

∫ T

t

σS
s β(s)

(
1− ωiλ(t, s)

)
ds

B(t) = G0 (t, T ) + λ (t, T ) +G2 (t, T ) = λ (t, T ) +

∫ T

t

σS
s (α (s) + β(s)λ(t, s)) ds

F (t) = F̂
(
σS, t

)
+ (A (t)− 1)µD (T − t)−

(
B (t)−

∫ T

t

σS
s α (s) ds

)
ωnµφ.
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An application of Ito’s lemma shows that σS
t = A (t)σD. The volatility coefficient is deterministic as conjectured.

This validates the construction of the equilibrium stock price to this stage. Substituting in the coefficients above gives,

A(t) = 1− ωiλ (t, T ) + σD

(∫ T

t

A (s)β(s)
(
1− ωiλ(t, s)

)
ds

)

B(t) = λ (t, T ) + σD

(∫ T

t

A (s) (α (s) + β(s)λ(t, s)) ds

)

F (t) = F̂
(
A (t)σD, t

)
+ (A (t)− 1)µD (T − t)− I (t)ωnµφ

I (t) = B (t)− σD

∫ T

t

A (s)α (s) ds.

Inserting F̂
(
A (t) σD, t

)
= µD (T − t)− 1

Γ

(
σD
)2 ∫ T

t
A (s)2 ds+σD

∫ T

t
A (s) γ (s) ds in the last coefficient and collecting

terms leads to,

F (t) = A (t)µD (T − t)−
(
σD
)2

Γ

∫ T

t

A (s)2 ds+ σD

∫ T

t

A (s) γ (s) ds− I (t)ωnµφ

I (t) = λ (t, T ) + σD

∫ T

t

A (s) β (s)λ (t, s) ds.

In these expressions, with ω = ωi + ωn,

α (t) =
1− κtω

H (t)
σD, β (t) = −ω

1− κtω
i

H (t)
σD

γ (t) = −ω

(
1− κtω

i
)
µD (T − t)− ωnκtµ

φ

H (t)
σD, λ (t, s) =

ωi
(
σD
)2

(s− t)

M (t)
.

Equilibrium exists if the backward Volterra equation,

A(t) = 1− ωiλ (t, T ) + σD

(∫ T

t

A (s) β(s)
(
1− ωiλ (t, s)

)
ds

)
, A (T ) = 1 (67)

for the coefficient A (·) has a solution. This issue is addressed in the next lemma.

Lemma 34 The unique solution of the backward Volterra equation is A (t) =
(

H(T )
H(t)

)ω (
M(T )
M(t)

)1−ω

with M (t) =

(
ωi
)2

H (t) + (ωn)2
(
σφ
)2

and ω = ωi + ωn. Moreover, A (t) > 0 for t ∈ [0, T ].

Proof of Lemma 34. With M (t) =
(
ωi
)2

H (t)+ (ωn)2
(
σφ
)2
, note that,

1− ωiλ (t, T ) = 1−
(
ωi
)2 (

σD
)2

(T − t)

M (t)
=

(
ωi
)2 (

σζ
)2

+ (ωn)2
(
σφ
)2

M (t)
≡ M (T )

M (t)

1− ωiλ(t, s) =

(
ωi
)2 ((

σD
)2

(T − s) +
(
σζ
)2)

+ (ωn)2
(
σφ
)2

M (t)
=

M (s)

M (t)
.
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Substituting in (67) and using the change of variables C(t) = A(t)M (t) leads to,

A(t) = 1− ωiλ (t, T ) + σD

(∫ T

t

A (s) β(s)
(
1− ωiλ(t, s)

)
ds

)

=
M (T )

M (t)
+ σD

(∫ T

t

A (s)β(s)
M (s)

M (t)
ds

)

⇐⇒ A(t)M (t) = M (T ) + σD

(∫ T

t

A (s)β(s)M (s) ds

)

⇐⇒ C(t) = M (T ) + σD

(∫ T

t

C (s) β(s)ds

)

subject to the boundary condition C(T )M (T ). Equivalently, dC (t) = −σDC (t)β(t)dt. The solution is C (t) =

M (T ) exp
(
σD
∫ T

t
β(s)ds

)
. Substituting,

β (t) = − ω

H (t)

(
1− κtω

i
)
σD = − ω

H (t)

(
1−

(
ωi
)2

H (t)

M (t)

)
σD = −ωσD

(
1

H (t)
−
(
ωi
)2

M (t)

)

and performing the integration,

C (t) = M (T ) exp

(
ω

(
log

(
H (T )

H (t)

)
− log

(
M (T )

M (t)

)))
= M (T )

(
H (T )

H (t)

)ω (
M (T )

M (t)

)−ω

.

Substituting C(t) = A(t)M (t) and rearranging leads to the formula stated.

Proof of Remark 5. Fix ωn and let ωi → 0 and ωu → 1 − ωn. This yields κsi
t = λsi (t, s) = 0, Msi (t) =

(ωn)2
(
σφ
)2

and,

Asi (t) =

(
H (T )

H (t)

)ωn

, Bsi(t) = σD

(∫ T

t

Asi (s)αsi (s) ds

)
(68)

F si(t) = Asi (t)µD (T − t)−
(
σD
)2

Γ

∫ T

t

Asi (s)2 ds+ σD

∫ T

t

Asi (s) γsi (s) ds (69)

αsi (t) =
σD

H (t)
, βsi (t) = −ωn σD

H (t)
, γsi (t) = −ωnµ

D (T − t)

H (t)
σD. (70)

The formulas stated follow. If, in addition, ωn → 0, then βsi (t) = γsi (t) = Msi (t) = Zsi = 0 and Asi (t) = 1. The

stock price and return components announced follow. Note that A (t) < Asi (t) < 1 for t < T and A (T ) = Asi (T ) = 1.

Therefore, σS
t < σS,si

t < σS,si,0
t = σD for t < T . In the limit, limt→Tσ

S
t = limt→Tσ

S,si
t = limt→Tσ

S,si,0
t = σD.

Proof of Remark 6. Fix ωn and let ωi → 1− ωn and ωu → 0. This yields

Asu (t) =
H (T )

H (t)
, Bsu (t) = λsu (t, T ) + σD

(∫ T

t

Asu (s) (αsu (s) + βsu(s)λsu(t, s)) ds

)
(71)

F su(t) = Asu (t)µD (T − t)−
(
σD
)2

Γ

∫ T

t

Asu (s)2 ds+ σD

∫ T

t

Asu (s) γsu (s) ds− ωnIsu (t)µφ (72)

Isu (t) = λsu (t, T ) + σD

∫ T

t

Asu (s)βsu (s)λsu (t, s) ds (73)

αsu (t) =
1− κsu

t

H (t)
σD, βsu (t) = −1− κsu

t (1− ωn)

H (t)
σD, κsu

t =
(1− ωn)H (t)

Msu (t)
(74)
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γsu (t) = − (1− κsu
t (1− ωn))µD (T − t)− ωnκsu

t µφ

H (t)
σD, λsu (t, s) =

(1− ωn)
(
σD
)2

(s− t)

Msu (t)
(75)

and Msu (t) = (1− ωn)2 H (t) + (ωn)2
(
σφ
)2
. The formulas stated follow. If, in addition, ωn → 0, then αsu (t) =

βsu (t) = γsu (t) = 0, κsu
t = 1 and,

Asu,0 (t) = Asu (t) =
H (T )

H (t)
, Bsu,0 (t) = Isu,0 (t) = λsu,0 (t, T ) =

(
σD
)2

(s− t)

H (t)
(76)

F su,0(t) = Asu (t)µD (T − t)−
(
σD
)2

Γ

∫ T

t

Asu (s)2 ds (77)

and Msu,0 (t) = H (t). This gives the formulas announced. Volatility rankings follows from Asu,0 (t) = Asu (t) < A (t)

for all t < T and A (T ) = Asu (T ) = Asu,0 (T ) = 1.

Proof of Corollary 7. The proof follows from Lemmas 35 and 36.

Proof of Corollary 8. The proof follows from Corollary 7 and Lemmas 35 and 36.

Proof of Corollary 9. The proof follows from Corollary 8 and Lemma 35.

Proof of Corollary 10. Differentiating with respect to the risk tolerance parameter gives the results.

Proof of Corollary 11. The results regarding the impact of s follows from Corollary 8 and Lemma 36. The

results about µφ follow from the structure of the coefficient γ (t).

The next auxiliary lemmas are used to derive comparative statics results. Proofs are straightforward, but long

and tedious. They are in a companion Technical Appendix.

Lemma 35 The following holds,

∂H (t)

∂t
= −

(
σD
)2

< 0,
∂M (t)

∂t
=
(
ωi
)2 ∂H (t)

∂t
< 0

∂κt

∂t
=

ωi (ωn)2
(
σφ
)2

M (t)2
∂H (t)

∂t
< 0,

∂λ (t, s)

∂t
= −ωi

(
σD
)2 M (s)

M (t)2
< 0

∂A (t)

∂t
= −A (t)

(
ω

H (t)
+

(1− ω)
(
ωi
)2

M (t)

)
∂H (t)

∂t
> 0

∂α (t)

∂t
= − (ωn)2

(
σφ
)2

ωκt + (1− κtω)M (t)

M (t)H (t)2
∂H (t)

∂t
σD

≷ 0 ⇐⇒ κ2
t ≶

1

ωiω

∂β (t)

∂t
= ω

(ωn)4
(
σφ
)4

+ 2
(
ωi
)2

H (t) (ωn)2
(
σφ
)2

M (t)2 H (t)2
∂H (t)

∂t
σD < 0

∂γ (t) =
ωσD

H (t)2

(
∂κt

∂t

(
ωiµD (T − t)− ωnµφ

)
H (t)− ωnκtµ

φ
(
σD
)2

+
(
1− κtω

i
)
µD
(
σζ
)2)





∂γ (t) > 0 ⇐⇒ 0 ≤ H (t) < H (t)+

∂γ (t) < 0 ⇐⇒ H+ < H (t)
, H+ =

−b+
√
b2 − 4ac

2a
(78)
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a = s2
(
s
(
σD
)2

µφ +
(
σφ
)2

µD

)
, b = −2s2

(
σφ
)2

µD
(
σζ
)2

(79)

c = −
(
σφ
)2 (

σφ
)2

µD
(
σζ
)2

, s =
ωi

ωn
(80)

∂B (t)

∂t
= −

(
ωi
(
σD
)2

M (t)
+ σDα (t)

)
A(t) < 0.

Lemma 36 Let s = ωi/ωn and E (t) = s2H (t) +
(
σφ
)2
. The following holds,

∂A (t)

∂s
= − (1− ω)

(
H (T )

H (t)

)ω (
E (T )

E (t)

)−ω 2s
(
σφ
)2 (

σD
)2

(T − t)

E (t)2
< 0

∂α (t)

∂s
= −−s2H (t) + (2s+ 1)

(
σφ
)2

E (t)2
σD

≷ 0 ⇐⇒ H (t) ≷
2s+ 1

s2

(
σφ
)2

∂β (t)

∂s
= ω

2s
(
σφ
)2

E (t)2
σD > 0

∂γ (t)

∂s
= ω

2s
(
σφ
)2

µD (T − t)−
(
−s2H (t) +

(
σφ
)2)

µφ

E (t)2
σD

≷ 0

⇐⇒ 2s
(
σφ
)2

µD (T − t) ≷

(
−s2H (t) +

(
σφ
)2)

µφ.

∂A (t)

∂µφ
=

∂B (t)

∂µφ
=

∂α (t)

∂µφ
=

∂β (t)

∂µφ
= 0,

∂γ (t)

∂µφ
= −ω

ωnκt

H (t)
σD

∂F (t)

∂µφ
= −ω

(
σD
)2 ∫ T

t

s
A (s)

E (s)
ds− ωnI (t) .

Proof of Corollary 12. Straightforward, but lengthy derivations lead to,

∂m (t)

∂t
=

2A (t) ∂A (t)β (t)−A (t)2 ∂β (t)

β (t)2
σD

ωuΓ
=

A (t)2

β (t)

(
2
∂tA (t)

A (t)
− ∂β (t)

β (t)

)
σD

ωuΓ

∂m (t)

∂s
=

A (t)2

β (t)

(
2
∂sA (t)

A (t)
− ∂sβ (t)

β (t)

)
σD

ωuΓ

2
∂tA (t)

A (t)
− ∂β (t)

β (t)
= −2

(
ω − 1

2

)
(ωn)2

(
σφ
)2

M (t)H (t)

∂H (t)

∂t

2
∂sA (t)

A (t)
− ∂sβ (t)

β (t)
= 2s

(
σφ
)2 M (t)

E (t)2
(ωn)2

(
σφ
)2

Π(t) +
(
ωi
)2 (

σζ
)2

H (t)

M (T ) (ωn)2 (σφ)2
> 0

where Π (t) =
(
σζ
)2

+ ω
(
σD
)2

(T − t).

Proof of Proposition 16. Substituting the optimal strategy in the ex-ante utility gives,

E [Uu] = E [Nu
0 S0] +

Γ

2

∫ T

0

E
[
(θms )2

]
ds

E
[
U i
]
= E

[
N i

0S0

]
+

Γ

2

∫ T

0

E

[(
θms + θG|m

s (G)
)2]

ds = E [Uu] +
Γ

2

∫ T

0

E

[(
θG|m
s (G)

)2]
ds.
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The final expression for E
[
U i
]
uses E

[
θ
G|m
t (G)

∣∣∣Fm
t

]
= 0 and E

[
θ
G|m
t (G) θmt

]
= E

[
E
[
θ
G|m
t (G)

∣∣∣Fm
t

]
θmt

]
= 0.

It also uses E [Nu
0 S0] = E

[
N i

0S0

]
, which follows by substituting optimal demands and using E

[
θ
G|m
0 (G)S0

]
=

E
[
E
[
θ
G|m
0 (G)

∣∣∣Fm
0

]
S0

]
= 0. This shows E

[
U i
]
= E [Uu] + Ii where Ii = (Γ/2)

∫ T

0
E

[(
θ
G|m
s (G)

)2]
ds is the ex-

ante value of private information. The informed agent is always better off than the uninformed agent. In the economy

without private information, the ex-ante utility is,

E
[
Uj,ni

]
= N i

0E
[
Sni
0

]
+

Γ

2

∫ T

0

(
σS,ni
t

)2
dt, j ∈ {u, i}

where N i
0 = Nu

0 = Γ
σD

σD

Γ
= 1, Sni

0 = E [DT |Fm
0 ] = E [DT ] and σS,ni

t = σD.

Proof of Proposition 17. Recall that Nu
0 = Γ

A(0)σD

(
A(0)σD

Γ
− (α (0)Z + β (0)D0 + γ (0))

)
in the NREE.

For j = u, the utility gain/loss across equilibria is E [Uu]− E
[
Uu,ni

]
= (1− Γδ0)∆Pu − ΓK0 +∆T u where,

∆Pu = E [S0]− E
[
Sni
0

]
, ∆T u =

Γ

2

∫ T

0

(
E
[
(θmt )2

]
−
(
σS,ni
t

)2)
dt

∆Pu = (A (0)− 1)E [DT ] +B (0)E [Z]− ∆V

Γ
+ σD

∫ T

0

A (s) γ (s) ds− ωnI (0)µφ

with ∆V =
(
σD
)2 ∫ T

t

(
A (s)2 − 1

)
ds. As θmt = σS

t /Γ −Θt (Z;ω) and E
[
θ
G|m
t (G)

∣∣∣Fm
t

]
= 0, it follows that,

E [Θt (Z;ω)] = ωiE
[
θ
G|m
t (G)

]
+ ωnE

[
θ
G|m
t (φ)

]
= ωnE

[
θ
G|m
t (φ)

]

E
[
(θmt )2

]
= E

[(
σS
t

Γ

)2

− 2
σS
t

Γ
Θt (Z;ω) + Θt (Z;ω)2

]

=

(
A (t) σD

Γ

)2

− 2
A (t) σD

Γ
ωnE

[
θ
G|m
t (φ)

]
+ E

[
Θt (Z;ω)2

]

where E
[
θ
G|m
t (φ)

]
= E

[
θ
G|m
t

(
µφ
)]

= θ
G|m
t

(
µφ;E [Dt] , E [Z]

)
with θG|m (x; d, z) = σD

(
x− µ

G|Dt=d,Z=z
t

)
/H (t),

because E
[
µ
G|Dt,Z
t

]
= µ

G|E[Dt],E[Z]
t . Thus,

E
[
(θmt )2

]
−
(
σS,ni
t

)2
=

(
σD

Γ

)2 (
A (t)2 − 1

)
− 2

A (t)σD

Γ
ωnE

[
θ
G|m
t (φ)

]
+ E

[
Θt (Z;ω)2

]

∆T u =

(
σD
)2

2Γ

∫ T

0

(
A (t)2 − 1

)
dt− ωnσD

∫ T

0

A (t) θ
G|m
t

(
µφ;E [Dt] , E [Z]

)
dt+ Iu

where Iu ≡ (Γ/2)
∫ T

0
E
[
Θt (Z;ω)2

]
dt.

If Γ → ∞, then ∆T u → ∞ and, under condition (28), E [Uu] − E
[
Uu,ni

]
→ ∞. If Γ → 0, then ∆T u ≈

(σD)2

2Γ

∫ T

0

(
A (t)2 − 1

)
dt and ∆Pu ≈ − (σD)2

Γ

∫ T

0

(
A (s)2 − 1

)
ds, so thatE [Uu]−E

[
Uu,ni

]
≈ − (σD)2

2Γ

∫ T

0

(
A (s)2 − 1

)
ds →

∞. This completes the proof.
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Proof of Corollary 18. Note that ∆Nu = −Γ (δ0E [S0] +K0) ≡ −ΓJ0,

∆Pu = CP − ∆V

Γ
, ∆T u = CT +

∆V

2Γ
+ ΓEu, Iu ≡ ΓEu.

Thus, ∆u = CP + CT − ∆V
2Γ

+ Γ (Eu − J0). The equation ∆u = 0 in Γ has either zero roots (case (i)), or one positive

root Γ+ (case (ii)), or two positive roots Γ± (case (iii)).

Proof of Corollary 19. Let Bφ
v ≡ E [φ−G|Fm

v ] = E [φ−G|Dv , Z] be the conditional forecast bias and note

that, because φ−G,Z conditional on Dv is bivariate Gaussian,

Bφ
v = E [φ−G|Dv] +

COV (φ−G,Z|Dv)

V AR [Z|Dv ]
(Z − E [Z|Dv ])

= µφ − E [G|Dv] +
ωn
(
σφ
)2 − ωiH (v)

M (v)
(Z −E [Z|Dv])

= E
[
Bφ

v

]
− (Dv −E [Dv ]) + δφ (v) (Z −E [Z|Dv])

where δφ (v) ≡
(
ωn
(
σφ
)2 − ωiH (v)

)
/M (v). Thus, E

[
Bφ

vZ
]
= E

[
Bφ

v

]
E [Z] − COV (Dv, Z) + δφ (v)M (v). Hence,

as S0 = A (0)Z + B (0)D0 + F (0), E
[
Bφ

0 S0

]
= B (0)E

[
Bφ

0Z
]
+ (A (0)D0 + F (0))E

[
Bφ

0

]
= E

[
Bφ

0

]
E [S0] +

B (0) δφ (0)M (0).

Under the noise trader beliefs, for φ = x, dSv =
(
θmv + θ

G|m
v (x)

)
dv+dW x

v and Nn
v (x) ≡ Γ

(
θmv + θ

G|m
v (x)

)
/σS

v .

It follows that,

Un (φ) = E [Nn
v (x)S0| Fm

0 , G = x]|x=φ + E

[∫ T

0

Nn
v (x) dSv

∣∣∣∣F
m
0 , G = x

]

|x=φ

− 1

2Γ
E

[∫ T

0

(
Nn

v (x)σS
v

)2
dv

∣∣∣∣F
m
0 , G = x

]

|x=φ

where,

E [Nn
v (x)S0| Fm

0 , G = x]|x=φ = Γ

(
θ0 + θ

G|m
0 (φ)

)
S0

σS
0

E

[
Nn

v (x) dSv −
(
Nn

v (x) σS
v

)2

2Γ

∣∣∣∣∣F
m
0 , G = x

]

|x=φ

=
Γ

2
E

[(
θmv + θG|m

v (x)
)2∣∣∣∣F

m
0 , G = x

]

|x=φ

=
Γ

2

∫ T

0

E

[
av (x)

(
θmv + θG|m

v (x)
)2∣∣∣∣F

m
0

]

|x=φ

.

Thus,

Un (φ) = Uu (Z) + Γ

(
θ
G|m
0 (φ)

)
S0

σS
0

+
Γ

2

∫ T

0

E
[
(av (x)− 1) (θmv )2

∣∣∣Fm
0

]

|x=φ
dv

+Γ

∫ T

0

E
[
av (x) θ

m
v θG|m

v (x)
∣∣∣Fm

0

]

|x=φ
dv +

Γ

2

∫ T

0

E
[
av (x) θ

G|m
v (x)2

∣∣∣Fm
0

]

|x=φ
dv.
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Ex ante utility is then E [Un (φ)] = E [Uu (Z)] + ∆Nn + In +∆Tn where,

∆Nn ≡ Γ
E
[
θ
G|m
0 (φ)S0

]

σS
0

=
ΓσD

H (0) σS
0

E
[
Bφ

0 S0

]
, In ≡ Γ

2

∫ T

0

Iφ
1 (v) dv

∆Tn ≡ Γ

∫ T

0

∆Tn
1 (v) dv +

Γ

2

∫ T

0

∆Tn
2 (v) dv

with E
[
Bφ

0 S0

]
= E

[
Bφ

0

]
E [S0] +B (0) δφ (0)M (0) and,

In
1 (v) ≡ E

[
E
[
av (x) θ

G|m
v (x)2

∣∣∣Fm
0

]

|x=φ

]
= E

[∫

R

av (x) θ
G|m
v (x)2 fφ|Z (x|Z) dx

]

= E

[∫

R

θG|m
v (x)2

fG|Z,Dv
(x|Z,Dv)

fG|Z (x|Z)
fφ|Z (x|Z) dx

]

=

(
σD
)2

H (v)2
E

[∫

R

(x− E [G|Z,Dv])
2 fG|Z,Dv

(x|Z,Dv)Lφ,G (x|Z) dx

]

=

(
σD
)2

H (v)2

(
V AR [G|Z,Dv ] + E

[∫

R

(x− E [G|Z,Dv])
2 (Lφ,G (x|Z) − 1) fG|Z,Dv

(x|Z,Dv) dx

])

=

(
σDωnσφ

)2

M (v)H (v)
+

(
σD
)2

H (v)2
E

[∫

R

(x− E [G|Z,Dv])
2 (Lφ,G (x|Z)− 1) fG|Z,Dv

(x|Z,Dv) dx

]

∆Tn
1 (v) ≡ E

[
E
[
av (x) θ

m
v θG|m

v (x)
∣∣∣Fm

0

]

|x=φ

]
= E

[∫

R

θG|m
v (x) av (x) fφ|Z (x|Z) dxθmv

]

= E

[∫

R

θG|m
v (x)

fG|Z,Dv
(x|Z,Dv)

fG|Z (x|Z)
fφ|Z (x|Z) dxθmv

]

=
σD

H (v)
E

[∫

R

(x−E [G|Z,Dv]) fG|Z,Dv
(x|Z,Dv)Lφ,G (x|Z) dxθmv

]

∆Tn
2 (v) ≡ E

[
E
[
(av (x)− 1) (θmv )2

∣∣∣Fm
0

]

|x=φ

]
= E

[∫

R

(av (x)− 1) fφ|Z (x|Z) dx (θmv )2
]

= E

[∫

R

(
fG|Z,Dv

(x|Z,Dv)

fG|Z (x|Z)
− 1

)
fφ|Z (x|Z) dx (θmv )2

]

= E

[(∫

R

Lφ,G (x|Z) fG|Z,Dv
(x|Z,Dv) dx− 1

)
(θmv )2

]
.

These derivations use V AR [G|Z,Dv] =
(
ωnσφ

)2
H (v) /M (v) and the relation P (G ∈ dx| Fm

v ) = P (G ∈ dx| Fm
0 )+

∫ v

0
P (G ∈ dx| Fm

t ) θ
G|m
t (x) dW S

t , so that fG|Z,Dv
(x|Z,Dv) /fG|Z (x|Z) = P (G ∈ dx| Fm

v ) /P (G ∈ x| Fm
0 ) = av (x).

Proof of Corollary 20. The first statement follows directly from Corollary 19.

To prove the second statement assume µφ = E [G] and note that limΓ→0 Γθ
m
v = σS

v = A (v) σD. Then,

lim
Γ→0

∆Nn = lim
Γ→0

Γ
σD

H (0) σS
0

B (0)

(
ωn
(
σφ
)2

− ωiH (0)

)
= 0

lim
Γ→0

In = lim
Γ→0

Γ

2

∫ T

0

E
[
θG|m
v (G)2 Lφ,G (G|Z)

]
dv = 0

56



lim
Γ→0

∆Tn =

∫ T

0

σS
v E
[
θG|m
v (G)Lφ,G (G|Z)

]
dv −

∫ T

0

σS
v E [COV (Lφ,G (G|Z) ,Θ(Z;ω)|Z)] dv

where COV
(
Lφ,G (G|Z) , (θmv )2

∣∣Z
)
= −2

(
σS
v /Γ

)
COV (Lφ,G (G|Z) ,Θ(Z;ω)|Z)+ COV

(
Lφ,G (G|Z) ,Θ(Z;ω)2

∣∣Z
)

is used in the last limit. Straightforward computations show,

E
[
θG|m
v (G)Lφ,G (G|Z)

∣∣∣Z
]

=
σD

H (v)
E [Lφ,G (G|Z) (G− E [G|Z,Dv ])|Z]

=
σD

H (v)
E [Lφ,G (G|Z) (G− E [E [G|Z,Dv ]|G,Z])|Z] .

As E [Lφ,G (G|Z)G|Z] = E [φ|Z] and (G,Z) is bivariate Gaussian, it follows that E [E [G|Z,Dv]|G,Z] = E [G|Z] +

k (v) (G −E [G|Z]) where k (v) ≡ COV (E [G|Z,Dv] , G|Z) /V AR [G|Z] is deterministic. Thus,

E [Lφ,G (G|Z) (G− E [E [G|Z,Dv]|G,Z])|Z] = E [φ|Z]−E [G|Z]− k (v) (E [φ|Z]− E [G|Z])

and E [Lφ,G (G|Z) (G −E [E [G|Z,Dv]|G,Z])] = (1− k (v)) (E [φ]− E [G]). Unbiasedness implies that the right

hand side is null, so that E
[
θ
G|m
v (G)Lφ,G (G|Z)

]
= 0. To show E [COV (Lφ,G (G|Z) ,Θ(Z;ω)|Z)] = 0, note that,

COV (Lφ,G (G|Z) ,Θ(Z;ω)|Z) = E [Lφ,G (G|Z) (Θ (Z;ω)− E [Θ (Z;ω)|Z])|Z]

= E [Lφ,G (G|Z) (E [Θ (Z;ω)|G,Z]− E [Θ (Z;ω)|Z])|Z]

= β (v)E [Lφ,G (G|Z) (E [Dv|G,Z]− E [Dv|Z])|Z]

= ρ (v) (E [Lφ,G (G|Z)G|Z]− E [G|Z]) = ρ (v) (E [φ|Z]− E [G|Z])

where ρ (v) ≡ β (v)COV (Dv , G|Z) /V AR [G|Z] is deterministic. Thus, E [COV (Lφ,G (G|Z) ,Θ(Z;ω)|Z)] = ρ (v)

(E [φ]− E [G]) = 0 if E [φ] = E [G].

To prove the last statement, note that Lφ,G (x| z) = h1 exp (−h2) where h1 = ωn/ωi and,

h2 =






1
2

(ωi)2(ωn)2H(0)(σφ)2

M(0)
(

(ωn)2−(ωi)2
)



x− (ωn)2µφ−(ωi)2E[G]+
(ωn)3(σφ)2−(ωi)3H(0)

M(0)
(z−E[Z])

(ωn)2−(ωi)2




2

if ωi 6= ωn

M(0)






µφ−E[G]+

ω̄

(

(σφ)2−H(0)

)

M(0)
(z−E[Z])












µφ+E[G]+

ω̄

(

(σφ)2+H(0)

)

M(0)
(z−E[Z])−2x







2(ω̄σφ)2H(0)
if ωi = ωn ≡ ω̄.

If ωi = ωn, µφ = E [G] and
(
σφ
)2

= V AR [G], then Lφ,G (x| z) = 1 and ωn
(
σφ
)2

= ωiH (0). Thus ∆Nφ = 0 and,

In
1 (v) =

(
σDωnσφ

)2

M (v)H (v)
, In =

Γ

2

∫ T

0

In
1 (v) dv =

Γ

2

∫ T

0

(
σDωnσφ

)2

M (v)H (v)
dv

∆Tn
1 (v) =

σD

H (v)
E

[∫

R

(x−E [G|Z,Dv]) fG|Z,Dv
(x|Z,Dv) dxθ

m
v

]
= 0

∆Tn
2 (v) = E

[(∫

R

Lφ,G (x|Z) fG|Z,Dv
(x|Z,Dv) dx− 1

)
(θmv )2

]
= 0.
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It follows that ∆Tn ≡ Γ
∫ T

0
∆Tn

1 (v) dv + Γ
2

∫ T

0
∆Tn

2 (v) dv = 0 and E [Un (φ)] = E
[
U i (G)

]
. In this case, the ex-ante

utilities of the mimicking noise trader and of the informed are identical and the NREE is a Pareto improvement under

the conditions of Corollary 18.

Proof of Proposition 24. The preferences of the informed are,

U i = E

[
Xi

T − 1

2Γ

∫ T

0

d
[
Xi
]

s

∣∣∣∣F
G
0

]
= E

[∫ T

0

N i
v

(
µS
v + σS

v θ
G|m
v (G)

)
dv − 1

2Γ

∫ T

0

(
N i

vσ
S
v

)2
dv

∣∣∣∣F
G
0

]

= E

[∫ T

0

(
N i

vσ
S
v

(
θmv + θG|m

v (G)
)
− 1

2Γ

(
N i

vσ
S
v

)2)
dv

∣∣∣∣F
G
0

]
≡ E

[∫ T

0

fv
(
N i

v

)
dv

∣∣∣∣F
G
0

]
.

The market clearing condition gives,

1 = ωiN i + ωuΓ
θmt
σS
t

+ ωnΓ
θmt + θ

G|m
t (φ)

σS
t

⇐⇒ θmt =
σS
t

Γ (ωu + ωn)

(

1− ωiN i
t − ωnΓ

θ
G|m
t (φ)

σS
t

)

.

Substituting in the integrand and rearranging leads to,

fv
(
N i

v

)
= N i

vσ
S
v

(

− ωiN i
vσ

S
v

Γ (ωu + ωn)
+

σS
v

Γ (ωu + ωn)

(

1− ωnΓ
θ
G|m
v (φ)

σS
v

)

+ θG|m
v (G)

)

−
(
N i

vσ
S
v

)2

2Γ

Maximizing U i with respect to N i is equivalent to maximizing fv
(
N i

v

)
for each v ∈ [0, T ]. The first order condition

for this optimization problem is,

0 = −2
ωiN i

vσ
S
v

Γ (ωu + ωn)
+

σS
v

Γ (ωu + ωn)

(

1− ωnΓ
θ
G|m
v (φ)

σS
v

)

+ θG|m
v (G)− 1

Γ
N i

vσ
S
v

⇐⇒ N i
vσ

S
v =

σS
v

1 + ωi

(
1− ωnΓ

θ
G|m
v (φ)

σS
v

)
+

(ωu + ωn)

1 + ωi
ΓθG|m

v (G) .

As fv
(
N i

v

)
is concave in N i

v, this condition is necessary and sufficient for a maximum. Substituting,

θmv =
σS
v

Γ (ωu + ωn)

(

1− ωiN i
v − ωnΓ

θ
G|m
v (φ)

σS
v

)

⇐⇒ Γ (ωu + ωn)

σS
v

θmv + ωiN i
v = 1− ωnΓ

θ
G|m
v (φ)

σS
v

back in the demand function, gives N i
v = (ωu + ωn) Γ

(
θmv + θ

G|m
v (G)

)
/σS

v .

Proof of Proposition 26. The aggregate demand function with the monopolistic informed trader Na
t ≡

ωuNu
t + ωiN i

t + ωnNn
t is,

Na
t = Γ

ωuσS
t θ

m
t

(σS
t )

2
+ Γ

(
ω −

(
ωi
)2)

σS
t θ

m
t + σS

t

(
ωi
(
1− ωi

)
θ
G|m
t (G) + ωnθ

G|m
t (φ)

)

(σS
t )

2
.

Its structure is the same as in the competitive model, except that ωi is replaced by ωi,se = ωi
(
1− ωi

)
. Proceeding

as in the competitive case leads to the formulas stated.
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Proof of Corollary 27. As αse
2 (t) = −ωi,seσD/Mse (t) and α2 (t) = −ωiσD/M (t),

αse
2 (t) < α2 (t) ⇐⇒ ωi,se

ωi
M (t) > Mse (t)

⇐⇒
(
1− ωi

)((
ωi
)2

H (t) + (ωn)2
(
σφ
)2)

>
(
ωi,se

)2
H (t) + (ωn)2

(
σφ
)2

⇐⇒ ωi,se
(
ωi
)2

H (t)− ωi (ωn)2
(
σφ
)2

> 0 ⇐⇒ ωi,seωiH (t) > (ωn)2
(
σφ
)2

.

This proves Property (i). To show (ii), use βse
0 (t) = βse (t) /ωse, β0 (t) = β (t) /ω and,

βse
0 (t) ≡ −1− κse

t ωi,se

H (t)
σD = −

(
σφ
)2

H (t)
(
s2H (t) + (σφ)2

)σD, s =
ωi,se

ωn

to establish,

βse
0 (t) < β0 (t) ⇐⇒ −

(
σφ
)2

H (t)
(
(sse)2 H (t) + (σφ)2

)σD < −
(
σφ
)2

H (t)
(
s2H (t) + (σφ)2

)σD

⇐⇒ s2H (t) +
(
σφ
)2

> (sse)2 H (t) +
(
σφ
)2

⇐⇒ s2 > (sse)2 .

The result follows because s > sse.

For Property (iii), use γse
0 (t) = γse (t) /ωse and γ0 (t) = γ (t) /ω to obtain,

γse
0 (t) = −

(
1− κse

t ωi,se
)
µD (T − t)− ωnκse

t µφ

H (t)
σD = − (ωn)2

(
σφ
)2

µD (T − t)− ωnωi,seH (t)µφ

H (t)Mse (t)
σD

γse
0 (t) > γ0 (t) ⇐⇒ − (ωn)2

(
σφ
)2

µD (T − t)− ωnωi,seH (t)µφ

H (t)Mse (t)
σD

> − (ωn)2
(
σφ
)2

µD (T − t)− ωnωiH (t)µφ

H (t)M (t)
σD

⇐⇒
(
(ωn)2

(
σφ
)2

µD (T − t)− ωnωi,seH (t)µφ

)
M (t)

<

(
(ωn)2

(
σφ
)2

µD (T − t)− ωnωiH (t)µφ

)
Mse (t)

⇐⇒ (ωn)2
(
σφ
)2

µD (T − t) (M (t)−Mse (t)) < ωnH (t)µφ
(
ωi,seM (t)− ωiMse (t)

)
.

Substituting (81)-(82) from Lemma 37 leads to,

γse
0 (t) > γ0 (t) ⇐⇒ ωn

(
σφ
)2

µD (T − t)
(
ωi
)3 (

2− ωi
)
H (t)

< H (t)µφ
(
ωi
)2 (

ωiωi,seH (t)− (ωn)2
(
σφ
)2)

⇐⇒ ωiωn
(
σφ
)2

µD (T − t)
(
2− ωi

)
< µφ

(
ωiωi,seH (t)− (ωn)2

(
σφ
)2)

⇐⇒
(
ωiµD (T − t)

(
2− ωi

)
+ ωnµφ

)
ωn
(
σφ
)2

< µφωiωi,seH (t) .

This completes the proof.

59



Proof of Corollary 28. Using αse (t) = α1 (t) + αse
2 (t) and α (t) = α1 (t) + α2 (t) where α1 (t) is the same in

the two equilibria, leads to αse (t) > α (t) ⇐⇒ αse
2 (t) > α2 (t). The first statement then follows from Corollary 27.

To obtain the second result, recall that βse (t) = ωseβse
0 (t) and β (t) = ωβ0 (t). Then,

βse (t) < β (t) ⇐⇒ − ωse
(
σφ
)2

H (t)
(
(sse)2 H (t) + (σφ)2

)σD < − ω
(
σφ
)2

H (t)
(
s2H (t) + (σφ)2

)σD

⇐⇒ ωse

(
s2H (t) +

(
σφ
)2)

> ω

(
(sse)2 H (t) +

(
σφ
)2)

⇐⇒
(
ωses2 − ω (sse)2

)
H (t) + (ωse − ω)

(
σφ
)2

> 0

⇐⇒
(

ωse

(
ωi

ωn

)2

− ω

(
ωi,se

ωn

)2
)

H (t)−
(
ωi
)2 (

σφ
)2

> 0

⇐⇒
(
ωi

ωn

)2(
ωse − ω

(
1− ωi

)2)
H (t)−

(
ωi
)2 (

σφ
)2

> 0.

Eq. (83) in Lemma 37 shows ωse − ω
(
1− ωi

)2
= ωi

(
ωi (1− ω) + 2ωn

)
. Substituting in the formula above and

rearranging gives ωi
(
ωi (1− ω) + 2ωn

)
H (t) > (ωn)2

(
σφ
)2

> 0.

To show Property (iii), note that,

γse (t) > γ (t) ⇐⇒ −ωse (ω
n)2
(
σφ
)2

µD (T − t)− ωnωi,seH (t)µφ

H (t)Mse (t)
σD

> −ω
(ωn)2

(
σφ
)2

µD (T − t)− ωnωiH (t)µφ

H (t)M (t)
σD

⇐⇒ ωse

(
(ωn)2

(
σφ
)2

µD (T − t)− ωnωi,seH (t)µφ

)
M (t)

< ω

(
(ωn)2

(
σφ
)2

µD (T − t)− ωnωiH (t)µφ

)
Mse (t)

⇐⇒ (ωn)2
(
σφ
)2

µD (T − t) (ωseM (t)− ωMse (t))

< ωnH (t)µφ
(
ωseωi,seM (t)− ωωiMse (t)

)
.

Substituting (84)-87) from Lemma 37 shows γse (t) > γ (t) if and only if,

(ωn)2
(
σφ
)2

µD (T − t)
(
ωi
)2 (

ωi
(
ωi
(
1− ωi − ωn

)
+ 2ωn

)
H (t)− (ωn)2

(
σφ
)2)

< ωnH (t)µφ
(
ωi
)2 [

ωi,seωiωnH (t)−
(
ωi + ω −

(
ωi
)2)

(ωn)2
(
σφ
)2]

⇐⇒
(
σφ
)2

µD (T − t)

(
ωi
(
ωi
(
1− ωi − ωn

)
+ 2ωn

)
H (t)− (ωn)2

(
σφ
)2)

< H (t)µφ

[
ωi,seωiH (t)−

(
ωi + ω −

(
ωi
)2)

ωn
(
σφ
)2]

⇐⇒ 0 < H (t)2 µφωi,seωi −H (t)
(
σφ
)2

Φ (t) + µD (T − t) (ωn)2
(
σφ
)4
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where,

Φ (t) = µφ

(
ωi + ω −

(
ωi
)2)

ωn + µD (T − t)ωi
(
ωi
(
1− ωi − ωn

)
+ 2ωn

)

= µφ
(
ωse + ωi

)
ωn + µD (T − t)ωi

(
ωi,se − ωiωn + 2ωn

)
.

Hence, γse (t) > γ (t) ⇐⇒ H (t) > h+ (t) where h+ (t) is the positive root of the quadratic equation above.

The next auxiliary lemma provides useful relations. Proofs are in the Technical Appendix.

Lemma 37 The following relations hold,

M (t)−Mse (t) =
(
ωi
)3 (

2− ωi
)
H (t) (81)

ωi,seM (t)− ωiMse (t) =
(
ωi
)2(

ωiωi,seH (t)− (ωn)2
(
σφ
)2)

(82)

ωse − ω
(
1− ωi

)2
= ωi

(
ωi (1− ω) + 2ωn

)
(83)

ωseM (t)− ωMse (t) =
(
ωi
)2(

ωi
(
ωi (1− ω) + 2ωn

)
H (t)− (ωn)2

(
σφ
)2)

(84)

ωi,seωse
(
ωi
)2

− ωiω
(
ωi,se

)2
=
(
ωi
)2

ωi,seωiωn (85)

ωi,seωse − ωiω = −
(
ωi
)2 (

ωi + ω −
(
ωi
)2)

(86)

ωseωi,seM (t)− ωωiMse (t) =
(
ωi
)2

ωn

(
ωi,seωiH (t)−

(
ωi + ω −

(
ωi
)2)

ωn
(
σφ
)2)

. (87)

Proof of Corollary 29. The monopolistic equilibrium stock price volatility is greater if and only if Ase (t) σD >

A (t) σD, i.e., Ase (t) > A (t). Simple transformations show,

Ase (t) > A (t) ⇐⇒
(
H (T )

H (t)

)ωse (
Mse (T )

Mse (t)

)1−ωse

>

(
H (T )

H (t)

)ω (
M (T )

M (t)

)1−ω

⇐⇒
(
H (T )

H (t)

)ωse−ω (
Mse (T )

Mse (t)

)1−ωse

>

(
M (T )

M (t)

)1−ω

⇐⇒
(
H (T )

H (t)

)−(ωi)2 (Mse (T )

Mse (t)

)1−ωse

>

(
M (T )

M (t)

)1−ω

⇐⇒
(
H (T )

H (t)

)−(ωi)2 (Mse (T )

Mse (t)

)1−ω−(ωi)2

>

(
M (T )

M (t)

)1−ω

⇐⇒
(
Mse (T ) /Mse (t)

M (T ) /M (t)

)1−ω (
Mse (T )

Mse (t)

H (T )

H (t)

)−(ωi)2

> 1.
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The result follows because each term on the left hand side is greater than 1. Indeed,

Mse (T ) /Mse (t)

M (T ) /M (t)
> 1 ⇐⇒

H (T ) + 1
(sse)2

(
σφ
)2

H (t) + 1
(sse)2

(σφ)2
>

H (T ) + 1
s2

(
σφ
)2

H (t) + 1
s2

(σφ)2

⇐⇒
(
H (T ) +

1

(sse)2

(
σφ
)2)(

H (t) +
1

s2

(
σφ
)2)

>

(
H (t) +

1

(sse)2

(
σφ
)2)(

H (T ) +
1

s2

(
σφ
)2)

⇐⇒
(
σφ
)2

H (t)

(sse)2
+

(
σφ
)2

H (T )

s2
>

(
σφ
)2

H (T )

(sse)2
+

(
σφ
)2

H (t)

s2

⇐⇒ H (t)−H (T )

(sse)2
>

H (t)−H (T )

s2
⇐⇒ s2 > (sse)2

Mse (T )

Mse (t)

H (T )

H (t)
=

H (T ) +
(

σφ

sse

)2

H (t) +
(

σφ

sse

)2
H (T )

H (t)
< 1,

(
Mse (T )

Mse (t)

H (T )

H (t)

)−(ωi)2

> 1.

This completes the proof.

Proof of Proposition 30. In order to preclude arbitrage opportunities, admissible strategies must be left-

continuous and equilibrium price processes right continuous with left limits. It follows that investors can not control

the jumps at the dividend payment dates. Preferences can then be redefined over the controllable part of wealth.

That is, Uj = E
[
Xc,j

T − 1
2Γ

∫ T

0
d
[
Xc,j

]
t

]
, where Xc,j

t is the continuous component of the wealth process for agent

j ∈ {i, u, n}.

The aggregate demand function Na
t ≡ ωu

nN
u
t + ωi

nN
i
t + ωn

nN
n
t is,

Na
t = ωu

nΓ
σS
t θ

m
t

(σS
t )

2
+ ωi

nΓ
σS
t

(
θmt + θ

G|m
t (G)

)

(σS
t )

2
+ ωn

nΓ
σS
t

(
θmt + θ

G|m
t (φ)

)

(σS
t )

2

for t ∈ [Tn−1, Tn) and n = 1, ...N . Proceeding as in the model with a single dividend payment date, shows that the

equilibrium PIPR and WAPR have the same structural forms with the appropriate coefficient adjustments.

The remainder of the proof is by induction. The stock price in the last period is, for t ∈ [TN−1, TN), as in

the one-dividend-cycle model St = AN
N (t)Dt + BN

N (t)ZN +FN
N (t) where AN

N (t) = AN (t), BN
N (t) = BN (t) and

FN
N (t) = FN (t). Given the equilibrium stock price in [Tn, Tn+1) and assuming deterministic stock volatility σS

t for

t ∈ [Tn−1, Tn) the equilibrium stock price for t ∈ [Tn−1, Tn) is,

St = E

[
STn +DTn −

∫ Tn

t

µS
v dv

∣∣∣∣F
m
t

]
= E

[
STn | FZn,D

t

]
+An (t)Dt +Bn (t)Zn + Fn (t)

where the coefficients,

An (t) =
Mn (Tn)

Mn (t)
+

∫ Tn

t

σS
s βn (s)

Mn (s)

Mn (t)
ds

Bn (t) and Fn (t) are the same as the formulas in the one-cycle model, but evaluated at the equilibrium volatility σS
t in

the multi-cycle model. This volatility, as shown next, is determined by a backward Volterra integral equation adjusted
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by the feedback effect of the expected future stock price E
[
STn | FZn,D

t

]
. Straightforward computations show that,

E
[
STn | FZn,D

t

]
= AN

n+1 (Tn)E
[
DTn | FZn,D

t

]
+BN

n+1 (Tn)E
[
Zn+1| FZn,D

t

]
+ FN

n+1 (Tn)

E
[
DTn | FZn,D

t

]
= E [DTn |Dt] +

COV [DTn , Zn|Dt]

V AR [Zn|Dt]
(Zn − E [Zn|Dt])

= Dt + µD (Tn − t) + λn (t, Tn)
(
Zn − ωi

(
Dt + µD (Tn − t)

)
− ωn

nµ
φ
n

)

≡ AD
n (t)Dt +BD

n (t)Zn + FD
n (t)

E
[
Gn+1| FZn,D

t

]
= E

[
DTn+1 + ζn+1

∣∣FZn,D
t

]
= µD (Tn+1 − Tn) + E

[
DTn | FZn,D

t

]

= µD (Tn+1 − Tn) +AD
n (t)Dt +BD

n (t)Zn + FD
n (t)

E
[
Zn+1| FZn,D

t

]
= ωi

n+1E
[
Gn+1| FZn,D

t

]
+ ωn

n+1E
[
φn+1| FZn,D

t

]

= ωi
n+1

(
µD (Tn+1 − Tn) + AD

n (t)Dt +BD
n (t)Zn + FD

n (t)
)
+ ωn

n+1µ
φ
n+1

with BD
n (t) ≡ λn (t, Tn) , AD

n (t) ≡ 1 − ωi
nB

D
n (t) , FD

n (t) ≡ AD
n (t)µD (Tn − t) − ωn

nB
D
n (t)µφ

n. Substituting and

collecting terms,

E
[
STn | FZn,D

t

]
=

(
AN

n+1 (Tn) +BN
n+1 (Tn)ω

i
n+1

)(
AD

n (t)Dt +BD
n (t)Zn + FD

n (t)
)

+BN
n+1 (Tn)

(
ωi
n+1µ

D (Tn+1 − Tn) + ωn
n+1µ

φ
n+1

)
+ FN

n+1 (Tn)

≡ AS
n (t)Dt +BS

n (t)Zn + FS
n (t)

with,

AS
n (t) ≡ LN

n AD
n (t) , BS

n (t) ≡ LN
n BD

n (t) , LN
n ≡ AN

n+1 (Tn) + ωi
n+1B

N
n+1 (Tn)

FS
n (t) ≡ LN

n FD
n (t) +KN

n , KN
n ≡ BN

n+1 (Tn)
(
ωi
n+1µ

D (Tn+1 − Tn) + ωn
n+1µ

φ
n+1

)
+ FN

n+1 (Tn) .

The stock price becomes St = AN
n (t)Dt+BN

n (t)Zn+FN
n (t) with AN

n (t) = AS
n (t)+An (t) , BN

n (t) = BS
n (t)+Bn (t) ,

FN
n (t) = FS

n (t) + Fn (t). The stock price volatility is σS
t = AN

n (t) σD. The coefficient An (t) therefore solves the

backward Volterra integral equation,

An (t) =
Mn (Tn)

Mn (t)
+ σD

∫ Tn

t

An (s) βn (s)
Mn (s)

Mn (t)
ds+ σD

∫ Tn

t

AS
n (s) βn (s)

Mn (s)

Mn (t)
ds. (88)

Lemma A-2 shows An (t) = A1
n (t, Tn)+σD

∫ Tn

t
A1

n (t, s)AS
n (s) βn (s) ds with A1

n (t, s) as defined. Formulas for Bn (t),

Fn (t) follow by substituting σS
t = σS

n (t) ≡ AN
n (t)σD.
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Lemma 38 The solution of the backward Volterra equation (88) is,

An (t) = A1
n (t, Tn) + σD

∫ Tn

t

βn (s)AS
n (s)A1

n (t, s) ds, A1
n (t, s) ≡

(
Hn (s)

Hn (t)

)ωn
(
Mn (s)

Mn (t)

)1−ωn

.

Proof of Lemma 38. Let Cn (t) = An (t)Mn (t) and CS
n (t) = AS

n (t)Mn (t). (88) becomes,

Cn (t) = Mn (Tn) + σD

∫ Tn

t

βn (s)Cn (s) ds+ σD

∫ Tn

t

βn (s)CS
n (s) ds

or, dCn (t) = −σDβn (t)Cn (t) dt− σDβn (t)CS
n (t) dt, with boundary condition Cn (Tn) = Mn (Tn). The solution is,

Cn (T ) = Cn (t) e−σD
∫ Tn
t βn(s)ds − σD

∫ Tn

t

βn (s)CS
n (s) e−σD

∫

Tn
s

βn(v)dvds.

Solving for Cn (t) gives,

Cn (t) = Cn (Tn) e
σD

∫ Tn
t βn(s)ds + σD

∫ Tn

t

βn (s)CS
n (s) eσ

D
∫

s
t

βn(v)dvds

= Mn (Tn) e
σD

∫ Tn
t βn(s)ds + σD

∫ Tn

t

βn (s)CS
n (s) eσ

D
∫

s
t

βn(v)dvds

where,

eσ
D

∫

s
t

βn(s)ds =

(
Hn (s)

Hn (t)

)ωn
(
Mn (s)

Mn (t)

)−ωn

A1
n (t, s) ≡ Mn (s)

Mn (t)
eσ

D
∫

s
t

βn(s)ds =

(
Hn (s)

Hn (t)

)ωn
(
Mn (s)

Mn (t)

)1−ωn

.

Substituting and simplifying gives An (t) = A1
n (t, Tn) + σD

∫ Tn

t
βn (s)AS

n (s)A1
n (t, s) ds.

Proposition 39 Consider the model without private information and with N dividend cycles. The competitive

equilibrium exists. The equilibrium stock price is piecewise continuous and given by Sni
t = AN,ni

n (t)Dt + FN,ni
n (t) for

t ∈ [Tn−1, Tn) and n = 1, . . . , N , where,



 AN,ni
n (t)

FN,ni
n (t)



 =



 1

Fni
n (t)



+



 AS,ni
n (t)

FS,ni
n (t)



 1n≤N−1 (89)



 AS,ni
n (t)

FS,ni
n (t)



 = LN,ni
n



 1

FD,ni
n (t)



+



 0

KN,ni
n



 , n ≤ N − 1 (90)

LN,ni
n ≡ AN,ni

n+1 (Tn) , KN,ni
n ≡ FN,ni

n+1 (Tn) , FD,ni
n (t) ≡ µD

n (Tn − t) (91)

Fni
n (t) = µD

n (Tn − t)−
(
σD
n

)2

Γ

∫ Tn

t

AN,ni
n (v)2 dv. (92)

The equilibrium stock price coefficients are, for t ∈ [Tn−1, Tn), µ
S,ni
t = 1

Γ

(
σS,ni
t

)2
and σS,ni

t = AN,ni
n (t)σD

n . Innova-

tions in the public filtration Fm
(·) = FD

(·) are dW S
t = dWD

t .
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Proof of Proposition 39. In the absence of private information, the aggregate demand function Na
t ≡

ωu
nN

u
t + ωi

nN
i
t + ωn

nN
n
t is,

Na,ni
t = ωu

nΓ
θm,ni
t

σS,ni
t

+ ωi
nΓ

θm,ni
t

σS,ni
t

+ ωn
nΓ

θm,ni
t

σS,ni
t

= Γ
θm,ni
t

σS,ni
t

for t ∈ [Tn−1, Tn) and n = 1, ...N . It follows that θm,ni
t = σS,ni

t /Γ.

The equilibrium stock price in the last cycle is Sni
t = Dt + Fni

N (t) where Fni
N (t) = µD

N (TN − t). Given the

stock price in [Tn, Tn+1) and assuming deterministic volatility for t ∈ [Tn−1, Tn), the equilibrium stock price for

t ∈ [Tn−1, Tn) is,

Sni
t = E

[
Sni
Tn

+DTn −
∫ Tn

t

µS,ni
v dv

∣∣∣∣F
m
t

]
= E

[
Sni
Tn

∣∣∣FD
t

]
+Dt + Fni

n (t)

where Fni
n (t) = µD

n (Tn − t)− Γ−1
∫ Tn

t

(
σS,ni
v

)2
dv. Straightforward computations give,

E
[
Sni
Tn

∣∣∣FD
t

]
= AN,ni

n+1 (Tn)E
[
DTn | FZn,D

t

]
+ FN,ni

n+1 (Tn)

= AN,ni
n+1 (Tn)

(
Dt + µD

n (Tn − t)
)
+ FN,ni

n+1 (Tn)

= AN,ni
n+1 (Tn)

(
Dt + FD,ni

n (t)
)
+ FN,ni

n+1 (Tn) ≡ AS,ni
n (t)Dt + FS,ni

n (t)

where FD,ni
n (t) = µD,ni

n (Tn − t), AS,ni
n (t) = AN,ni

n+1 (Tn) and FS,ni
n (t) = AN,ni

n+1 (Tn)F
D.ni
n (t)+FN,ni

n+1 (Tn). Substituting

in the previous expression gives Sni
t =

(
1 + AS,ni

n (t)
)
Dt+Fni

n (t)+FS,ni
n (t) ≡ AN,ni

n (t)Dt+FN,ni
n (t) where AN,ni

n (t) =

1 + AS,ni
n (t) and FN,ni

n (t) = Fni
n (t) + FS,ni

n (t). The stock price volatility σS,ni
t = AN,ni

n (t) σD is deterministic as

conjectured.

Corollary 40 LN
n satisfies the recursion LN

n = ̺0,n+1 + ̺1,n+1L
N
n+1, for n ≤ N − 1, subject to LN

N = 0, where,

̺0,n+1 ≡ A1
n+1 (Tn, Tn+1) + ωi

n+1B
1
n+1 (Tn, Tn+1) (93)

B1
n+1 (Tn, Tn+1) ≡ λn+1 (Tn, Tn+1) + σD

n+1

∫ Tn+1

Tn

A1
n+1 (v, Tn+1) δn+1 (Tn, v) dv (94)

̺1,n+1 ≡ 1 + σD
n+1

∫ Tn+1

Tn

(
AD

n+1 (s)A
1
n+1 (Tn, s)βn+1 (s) + ωi

n+1Jn+1 (s)
)
ds (95)

Jn+1 (s) ≡ δn+1 (Tn, s)

(
AD

n+1 (s) + σD
n+1

∫ Tn+1

s

A1
n+1 (s, v)A

D
n+1 (v) βn+1 (v) dv

)
(96)

and δn+1 (Tn, v) ≡ αn+1 (v) + βn+1 (v)λn+1 (Tn, v). The solution is,

LN
n = ̺0,n+1 +

N−n∑

i=2

((
i−1∏

j=1

̺1,n+j

)
̺0,n+i

)
1n<N−1.

In the model without private information LN,ni
n = 1 + LN,ni

n+1 , for n ≤ N − 1, subject to LN,ni
N = 0, leading to

LN,ni
n = N − n.
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Proof of Corollary 40. Substituting the expressions for AN
n+1 (Tn) , B

N
n+1 (Tn) in LN

n ≡ AN
n+1 (Tn) +

ωi
n+1B

N
n+1 (Tn), using AD

n+1 (t) + ωi
n+1B

D
n+1 (t) = 1 and collecting terms leads to the recursive equation stated. For

the model without private information LN,ni
n ≡ AN,ni

n+1 (Tn). Substituting the expression for AN,ni
n+1 (Tn) in Proposition

39 gives the result stated.
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Figure 1: Sensitivity of WAPR to private information: The figure presents the dynamic
behavior of α (t) for t ∈ [0, T ]. Parameter values are T = 1, σD = 0.1, σφ = STD [G], σζ = 0.32.
The weight of informed is ωi = 1

2 . The weight of mimicking noise traders varies between ωn = 0.05
(left panel), ωn = 0.22 (middle panel) and ωn = 0.25 right panel.
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Figure 2: Stock volatility and sensitivity of WAPR to fundamental information: The
figure presents the dynamic behavior of σS

t and β (t) for t ∈ [0, T ]. Parameter values are T = 1,
σD = 0.1, σφ = STD [G], σζ = 0.5. The weight of informed and mimicking noise traders are
ωi = ωn = 1

3 .
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Figure 3: Optimal portfolio holdings: The figure shows the optimal portfolio holdings (z-axis)
of the public (top panels) and the public (middle panels) in the competitive (left column) and the
strategic (right column) equilibrium as a function of time t (x-axis) and dividends Dt (y-axis). The
covariation of portfolio holdings with prices (y-axis) as a function of time t (x-axis) is shown in the
bottom panels. Parameter values are T = 1, Γ = 1/8, σD = 0.1, µD = 0.05, D0 = 1, µφ = E [G],
σφ = STD [G], σζ = 0.1, G = D0 + µDT , φ = 0.9 × G. The weights of the informed and the
mimicking noise traders are ωi = ωn = 1

3 .
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Figure 4: Pareto ranking of competitive and strategic equilibria: This figure presents the
different components of the utility differential as a function of risk tolerance Γ. The top row presents
results for the competitive equilibrium and the bottom row results for the strategic equilibrium.
Parameter values are T = 1, D0 = 1, ωi = ωn = 1

3 , σ
D = 0.1, µD = 0.05, µφ = E [G], σφ = STD [G].

The precision of private information varies between σζ = 5 (left panels), σζ = 0.5, (middle panels)
and σζ = 0.05 (right panels)
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Figure 5: Sensitivity of WAPR to private information: The figure presents the dynamic behavior
of α (t) for t ∈ [0, T ] in the competitive (top row) and strategic (bottom row) equilbria. Parameter
values are T = 1, σD = 0.1, σφ = STD [G], σζ = 0.32. The weight of informed is ωi = 1

2 . The
weight of mimicking noise traders varies between ωn = 0.1 (left panel), ωn = 0.22 (middle panel)
and ωn = 0.25 (right panel).
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Figure 6: Equilibrium price coefficients over multiple dividend cycles: The figure presents the
dynamic behavior of AN

n (t) (top row, left), AS
n (t) (top row, middle), An (t) (top row, right), BN

n (t)
(middle row, left), BS

n (t) (middle row, middle), Bn (t) (middle row, right) and FN
n (t) (bottom row,

left), FS
n (t) (bottom row, middle), Fn (t) (bottom row, right) for t ∈ [0, TN ] and Tn = 0.25×n with

n = 1, . . . , 40. Parameter values are D0 = 1, σD
n = 0.1, µD

n = 0.05, σζ
n = 0.05 × Tn, µ

φ
n = E [Gn],

σφ
n = STD [Gn]. Population weights are ωi

n = ωn
n = 1

3 . The risk tolerance is Γ = 1/2.
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Figure 7: Volatility, stock premium, portfolio holdings and stock price over multiple dividend cycles:
The figure presents the dynamic behavior of σS,N

t (top row, left), µS,N
t (top row, middle) θmt (top

row, right), Nu
t (middle row, left), N i

t (middle row, middle), Nn
t (middle row, right), SN

t (bottom

row, left), θ
G|m
t

(

Zn;ω
i
n, ω

n
n

)

(bottom row, middle), Dt, Gn, φn, Zn (bottom row, right) for t ∈ [0, TN ]
and Tn = 0.25×n with n = 1, . . . , 20 in the competitive and strategic equilibrium. Parameter values
are D0 = 1, σD

n = 0.1, µD
n = 0.05, σζ

n = 0.05×Tn, µ
φ
n = E [Gn], σ

φ
n = STD [Gn]. Population weights

are ωi
n = ωn

n = 1
3 . The risk tolerance is Γ = 1/2.
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Figure 8: Variance stabilizing effects of information and Pareto ranking: The figure presents the
dynamic behavior of the volatilities σS,N

t , σS,N,s
t and σS,N,ni

t for t ∈ [0, TN ] and Tn = 0.25 × n with
n = 1, . . . , 20 in the competitive, strategic and no-information equilibrium for different levels of
skill. The skill parameter values are σζ

n = 0.05 × Tn (left panel), σζ
n = 0.15 × Tn (middle panel),

σζ
n = 0.25×Tn (right panel). Ex ante utility gains for the corresponding levels of the skill parameter

in the competitive (strategic) NREE are shown in the middle (bottom) row. Parameter values are

D0 = 1, σD
n = 0.1, µD

n = 0.05, µφ
n = E [Gn], σ

φ
n = STD [Gn]. Population weights are ωi

n = ωn
n = 1

3 .
The risk tolerance is Γ = 1/2.
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