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1 Introduction

A fundamental observation in political economy is that high levels of economic inequality may
lead to political instability. Most famously, Marx predicted that an increase in the concentration
of capital would lead to a revolution, a concern recently revived by Piketty (2014).1 In this
paper, we consider a course of public policy—as well as the resulting economic inequality—to
be politically sustainable if and only if it maintains the support of a coalition of citizens large
enough to block reform at any point in time. We then ask what is the optimal politically
sustainable capital tax policy.

Dynamic tax policy has been intertwined with political coalition formation since the origins
of the modern welfare state in 19th century Germany. Following the Paris Commune of 1871,
the socialist movement gained momentum until it came to be viewed by the conservative elite
as a serious threat (Rimlinger, 1971; Korpi, 1983). According to Esping-Andersen’s (1990) sem-
inal account of welfare capitalism, Bismarck responded to this threat by developing corporatist
policies, which “institutionalized a middle-class loyalty to the preservation of both occupation-
ally segregated social-insurance programs and, ultimately, to the political forces that brought
them into being,” (p. 32). Bismarck “deliberately wished to mold the class structure with [his]
social-policy initiatives” (p. 59), and some of his most important initiatives resembled capital
tax policies. For instance, “early state legislation of pensions was typically undertaken as a
means to arrest the growth of labor movements, and to redirect workers’ loyalties towards the
existing order” (p. 94), and civil servants were granted “extraordinarily lavish welfare provi-
sions” in order to “guarantee proper loyalties and subservience” (p. 59). Thus, to a significant
extent the modern welfare state grew out of capital subsidies for the poor and middle class,
subsidies which were strategically designed to ensure political stability in the face of the threat
of radical redistribution.

This paper studies a simple two-period model that captures these ideas. Individuals consume
in both periods but produce in the first period only. Capital accumulation is therefore needed
to finance period 2 consumption. The government is concerned about inequality in each period
and has access to arbitrary nonlinear labor and capital taxes. The key feature of the model
is that the government is able to reform its original policy in each period if there is sufficient
political support for a reform. Thus, the government’s ability to commit to intertemporal tax
policy is limited and determined by politics.

A first observation is that the reform threat in period 2 involves full redistribution of capital:
the government tolerates inequality only if this provides incentives for production, so it prefers
to fully equalize period 2 consumption once production has occurred. Poor voters therefore

1“. . . there is no ineluctable force standing in the way of a return to extreme concentration of wealth. . . . If
this were to happen, I believe that it would lead to significant political upheaval,” (Piketty 2014, p. 422).
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tend to support reform, rich voters tend to oppose it, and middle-class voters tend to be close
to indifferent. When designing a dynamic tax policy in period 1, the government then takes
into account that the period 2 political support of the middle class is particularly sensitive to
their period 2 consumption. This gives the government a reason to backload consumption for
middle-class voters, that is, to subsidize capital for the middle class: we call this the political
sensitivity effect. On the other hand, the political support of the poor is also sensitive to
their period 2 consumption, simply because they have high marginal utility of consumption,
which gives the government a reason to also subsidize capital for the poor: we call this the
utility sensitivity effect. Finally, the rich are insensitive on both counts, while taxing their
wealth has the advantage of reducing consumption for the poor and middle class under an
equalizing reform. Thus, the optimal politically sustainable tax schedule subsidizes capital for
the poor and/or the middle class, depending on the relative importance of the political and
utility sensitivity effects, and taxes capital for the rich. As we argue in more detail in Section
4.3, the novel prediction that optimal marginal capital taxes can be U-shaped resonates well
with the Bismarck example, as well as with Director’s Law (Stigler, 1970), which observes that
public redistribution tends to benefit the middle class rather than the poor.

We also develop several extensions of our model. Most significantly, we consider a variation
in the timing of the model that allows the government to commit within each period (though
still not across periods) to reforms other than full equalization. For example, in this version
of the model, the relevant reform threat in period 2 might involve expropriating the richest
1% of the population to sweeten the reform for the remaining 99%. Here, we show that the
government’s planning problem may be written as a welfare maximization problem with an
additional “no-reform” constraint, where a marginal increase in a given individual’s period 2
consumption under the status quo relaxes the no-reform constraint if and only if her period 2
consumption is higher under the reform than under the status quo. Furthermore, the reform
is always more egalitarian than the status quo, so it is the poor who have higher period 2
consumption under the reform, and hence the poor face lower capital taxes under the optimal
politically sustainable policy. Thus, with within-period commitment, optimal marginal capital
taxes are always progressive throughout the income distribution. We also offer an interpretation
of the different versions of our model in terms of more direct versus indirect forms of democracy.

This paper lies at the intersection of the public finance literature on dynamic taxation with
limited commitment and the political economy literature on endogenous coalition formation.
Relative to the public finance literature, we introduce a new model of limited commitment
based on political coalition formation: our perspective is that a policy is credible if it re-
tains the support of a coalition large enough to block reform. The most classical branch of
the literature on limited commitment assumes a representative agent (Kydland and Prescott,
1977; Fischer, 1980; Klein, Krusell, and Rios-Rull, 2008), which makes the coalition formation
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problem degenerate. This remains true in models where “reputation” can mitigate the govern-
ment’s time-inconsistency problem (Kotlikoff, Persson, and Svensson, 1988; Chari and Kehoe,
1990; Benhabib and Rustichini, 1997; Phelan and Stacchetti, 2001). Hassler et al. (2005) and
Azzimonti (2011) consider two-type models, which again preclude non-trivial coalitions.2

More closely related are the few papers where the extent of commitment is explicitly deter-
mined by political economy factors. One such paper is due to Acemoglu, Golosov, and Tsyvinski
(2010), who analyze an infinite-horizon Mirrlees model with self-interested politicians and study
whether the resulting distortions eventually vanish. A particularly closely related paper that we
build on is Farhi et al. (2012). Their model is formally nested as the special case of our model
where each individual’s political behavior is equally sensitive to marginal changes in her utility,
so that, for example, poor voters are not “safer” supporters of an equalizing reform than are
middle-class voters. This rules out our political sensitivity effect—and with it the government’s
need to consider coalition formation—which leads to the prediction of progressive rather than
potentially U-shaped capital taxes.

There is also an influential positive political economy literature on redistribution with het-
erogeneous voters and linear taxes (Bertola, 1993; Perotti, 1993; Alesina and Rodrik, 1994;
Persson and Tabellini, 1994). Many papers in this literature incorporate repeated voting with
endogenous political preferences (Krusell, Quadrini, and Rios-Rull, 1997; Krusell and Rios-
Rull, 1999; Benabou, 2000; Hassler et al., 2003; Bassetto and Benhabib, 2006; Benhabib and
Przeworski, 2006; Bassetto, 2008). Restricting to linear taxes leads to a median voter theorem,
which again rules out many of the coalition formation issues that underlie our model.

Relative to the coalition formation literature, we sidestep the indeterminacy inherent in
most such models by viewing coalition formation as a constraint in a planning problem: that
is, we ask what coalition will be formed by a government that needs to maintain a certain level
of political support. In most coalition formation models, competition among political parties
offering nonlinear tax schedules leads to a Colonel Blotto (or “divide-the-dollar”) game, which
typically involves mixed strategy equilibria (cf. Myerson, 1993; Lizzeri and Persico, 2001).
Our approach is more tractable and is flexible enough to capture in a reduced-form way the
outcome of alternative modeling approaches that avoid this feature—such as the probabilistic
voting model of Lindbeck and Weibull (1987) or the cooperative model of Aumann and Kurz
(1977)—while also remaining closer to the public finance literature on limited commitment.

The result in the coalition formation literature that is most closely related to our approach
is Director’s Law (Stigler, 1970). The literature on Director’s law typically considers static

2Similar commitment problems can also arise in moral hazard models (as opposed to the Mirrleesian adverse
selection model considered here). See, for instance, Fudenberg and Tirole (1990) and Netzer and Scheuer (2011)
for two-period models where, ex ante, a principal optimally offers incomplete insurance to a risk-averse agent
in order to provide incentives, but ex post, once effort is sunk, prefers to provide full insurance. Our approach
to modeling limited commitment could also be applied to moral hazard models like these.
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settings (Lindbeck and Weibull, 1987; Dixit and Londregan 1996, 1998). To the best of our
knowledge, our paper is the first to model how such coalition formation concerns affect optimal
dynamic tax policy (though this issue is prominent in the sociology literature on the welfare
state, as in Korpi, 1983, and Esping-Andersen, 1990). Another difference is that Director’s
Law is usually interpreted as predicting a coalition of the poor and middle class against the
rich: for example, in Stigler (1970) this happens because ganging up to rob the rich is more
profitable than ganging up to rob the poor. In contrast, the problem in our model is how to
form a coalition to forestall an equalizing reform, which naturally leads to a coalition of the
middle class and the rich. It should also be emphasized that this coalition exists only in terms
of opposition to reform; the government remains concerned about inequality, and labor taxes
redistribute toward the poor as in standard Mirrlees models.

Finally, our results about the shape of the nonlinear capital tax schedule mirror an exten-
sive literature on the shape of optimal income taxes in static Mirrlees models. In particular,
many authors have found U-shaped marginal labor taxes to be optimal (see e.g. Diamond,
1998, and Saez, 2001). However, whereas this property crucially depends on the shape of the
underlying skill distribution, our results about U-shaped or progressive marginal capital taxes
are completely independent of the form of the skill distribution.

The paper proceeds as follows. Section 2 introduces the model, and Section 3 provides the
main results. Section 4 offers a numerical illustration of our results and relates them to capital
tax policies in practice today and in past historical episodes. In Section 5, we discuss how our
results extend to settings where individuals differ in their savings propensity and to an infinite
horizon framework with overlapping generations. Section 6 considers the version of our model
where the government can commit to policy within a period. Section 7 concludes. Omitted
proofs and further technical details are presented in the appendix.

2 Model

2.1 Preferences and Technology

We consider a standard Mirrlees model with two periods, t = 1, 2. There is a government and
a continuum of individuals indexed by their ability θ ∈ Θ. Assume that Θ is an open subset of
R and that θ has cdf F with positive density f on Θ.

Individuals produce in period 1 only and consume in both periods. A type θ individual has
utility function

v1 (θ) = u (c1 (θ)) + βu (c2 (θ))− h (y (θ) , θ) ,

where c1 (θ) and c2 (θ) are consumption in periods 1 and 2; u is a strictly increasing, strictly
concave, and twice-differentiable consumption utility function satisfying the Inada conditions
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limc→0 u
′ (c) = ∞ and limc→∞ u

′ (c) = 0; β > 0 is the discount factor; y (θ) is production in
period 1; and h is a continuous function that captures disutility from production and is strictly
increasing and convex in y with strictly decreasing differences. We also let

v2 (θ) = u (c2 (θ)) ,

so vt (θ) denotes a type θ individual’s continuation utility at the beginning of period t.
There is a linear saving technology, so the economy faces aggregate resource constraints in

t = 1, 2 given by ˆ
c1 (θ) dF +K ≤

ˆ
y (θ) dF,

ˆ
c2 (θ) dF ≤ RK,

where K is aggregate capital and R > 0 is its gross rate of return. These may be combined to
form a single intertemporal resource constraint

ˆ (
c1 (θ) +

1

R
c2 (θ)

)
dF ≤

ˆ
y (θ) dF. (1)

The government evaluates allocations at the beginning of period t according to
ˆ
ψ (vt (θ)) dF,

where for now ψ is an arbitrary exogenous function satisfying the following assumption:

Assumption 1 ψ ◦ u is strictly increasing and concave.

Assumption 1 ensures that the government has a redistributive motive. In Section 3.4, we
endogenize ψ as the outcome of political competition between two parties in a probabilistic
voting model.

2.2 Full Commitment Benchmark

As in Mirrlees (1971), the government cannot observe ability. Therefore, the revelation principle
implies that the government’s problem when it can fully commit to an intertemporal allocation
is

max
c1,c2,y

ˆ
ψ (u (c1 (θ)) + βu (c2 (θ))− h (y (θ) , θ)) dF

subject to the intertemporal resource constraint (1) and a standard incentive compatibility
constraint
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u (c1 (θ)) + βu (c2 (θ))− h (y (θ) , θ) ≥ u (c1 (θ′)) + βu (c2 (θ′))− h (y (θ′) , θ) for all θ, θ′, (2)

where c1, c2, and y are arbitrary measurable functions from Θ to R+.
Most of our results will concern the implicit marginal capital tax τk, defined by

u′ (c1 (θ)) ≡ βR(1− τk (θ))u′ (c2 (θ)) . (3)

This “wedge” is well-defined in any allocation, and can be interpreted as the actual marginal
capital tax rate faced by agents of type θ in a nonlinear tax implementation of the optimal
allocation, as we discuss in Section 4.2.3 At a solution to the above full-commitment problem,
Atkinson and Stiglitz’s (1976) uniform taxation result implies that τk (θ) = 0 for all θ.4

2.3 Limited Commitment: Threat of Political Reform

We now introduce our main model, where the government can reform its policy in each period
if and only if a large enough coalition of individuals supports reform.

Each period t = 1, 2 begins with a status quo continuation allocation, which takes the form(
cSQ1 , cSQ2 , ySQ

)
in period 1 and c̃SQ2 in period 2. The period 1 status quo is exogenous and will

not play an important role in the results. The timing of the model is as follows:
Period 1:

1. Individuals decide whether to support the period 1 status quo.

2. If at least α individuals support the status quo (where α ∈ [0, 1] is an exogenous param-
eter), then production and period 1 consumption occur and are given by ySQ and cSQ1 ,
and the economy moves to period 2 with period 2 status quo given by c̃SQ2 = cSQ2 .

If fewer than α individuals support the status quo, then the government proposes a reform
continuation allocation (c1, c2, y). Production y and period 1 consumption c1 then occur
and the economy moves to period 2 with period 2 status quo c̃SQ2 = c2.

Period 2:

1. Individuals decide whether to support the period 2 status quo.

2. If at least α individuals support the status quo, then period 2 consumption occurs and is
given by c̃SQ2 .

If fewer than α individuals support the status quo, then the government proposes a reform
continuation allocation ĉ2. Period 2 consumption then occurs and is given by ĉ2.

3For results on the intratemporal labor wedge, see also Section 4.1.
4Throughout, we omit caveats regarding measure-0 sets when stating results. We address this issue in various

proofs where it may cause confusion.
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For t = 1, 2, let vSQt (θ) be the continuation utility of a type θ individual when at least α
individuals support the period t status quo, and let vRt (θ) be the corresponding continuation
utility when fewer than α individuals support the period t status quo. A type θ individual
supports the period t status quo if and only if

vSQt (θ) + εSQ ≥ vRt (θ) + εR,

where εSQ and εR are iid taste shocks that capture an idiosyncratic preference for supporting
the status quo or allowing a reform to it, respectively (such as an individual’s “conservatism”).
Letting H be the cdf of εSQ − εR, we see that in each period t the status quo remains in place
if and only if ˆ

H
(
vSQt (θ)− vRt (θ)

)
dF ≥ α. (4)

A leading example is the case with zero taste shocks, where political behavior is determined
by purely economic considerations. In this case, H is the step function H(x) = I{x ≥ 0},
where I is the indicator function. More generally, if H admits a density H ′, it is natural to
assume that H ′ is single-peaked (or, equivalently, H is “S-shaped”), so that taste shocks can be
non-zero but are concentrated around zero, for instance following a normal distribution. For
most of the analysis, we assume that H is continuously differentiable, but we also separately
consider the important step function case.

The parameter α can result from formal institutional rules (such as super-majority rules
in parliament or in a referendum) according to which the government can reform the status
quo only if a large enough share of voters are in favor. In this case, the taste shocks ε capture
individual voters’ inertia or status quo bias. Alternatively, α can result from an informal
stability requirement, where the government needs to maintain sufficient support for its policies
to prevent political upheaval in the future, as in the Bismarck example. The taste shocks could
then include individuals’ idiosyncratic preferences for supporting or joining a revolutionary
movement.

2.4 Preliminary Observations

We analyze the model by backwards induction. If a share larger than 1− α of the population
favor allowing a reform in period 2, then the government will reform the status quo period 2
consumption schedule c̃SQ2 to the allocation ĉ2 that solves

max
ĉ2

ˆ
ψ (u(ĉ2(θ))) dF s.t.

ˆ
ĉ2(θ)dF ≤

ˆ
c̃SQ2 (θ)dF.
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Under Assumption 1, this is the egalitarian consumption schedule given by

ĉ2 (θ) =

ˆ
c̃SQ2 (θ) dF for all θ.5 (5)

In the case where (4) holds for t = 1, this observation completes the analysis of the model:
the exogenous status quo production and period 1 consumption schedules ySQ and cSQ1 are
implemented in period 1, and in period 2 the status quo period 2 consumption schedule cSQ2
is either implemented or is reformed to an egalitarian schedule. The non-trivial case therefore
occurs when (4) is violated at t = 1, where we must consider the government’s optimal choice
of policy (c1, c2, y). We call this the government’s problem.

In Appendix A, we formulate the model as a formal game between the individuals and the
government. The timing of the game is that the government first sets labor and capital tax
schedules; individuals then choose how much to produce and consume in period 1; and finally
the capital tax schedule may be reformed, and individuals consume their final capital in period
2. We then prove a version of the revelation principle, which says that any implementable
allocation (c1, c2, y) satisfies (1), (2), and

ˆ
H (u (c2 (θ))− u (ĉ2 (θ))) dF ≥ α, (6)

when viewed as a direct mechanism, where ĉ2 (θ) is given by (5) with c̃SQ2 = c2. Thus, it is
without loss of generality to restrict attention to feasible, incentive compatible direct mecha-
nisms that satisfy the “no-reform” constraint (6). The revelation principle proved in Appendix
A does however require the following mild assumption on H, which says that constant period
2 consumption schedules are never reformed:

Assumption 2 H (0) ≥ α.

3 Optimal Capital Taxes

This section presents our main results on optimal capital taxes, compares them with the most
closely related results in the literature, and briefly discusses endogenizing the social welfare
functional ψ.

5As will become clear, the fact that this egalitarian reform threat results from optimization by a government
with social welfare functional ψ is irrelevant for the analysis. It would be equivalent to exogenously require
that the period 2 reform threat is egalitarian. This alternative interpretation, where the reform threat may
come from a political force outside the government, can capture the “specter of communism” in the Bismarck
example.
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3.1 Main Results

Under Assumptions 1 and 2, the revelation principle (proved in Appendix A) implies that the
government’s problem under the threat of political reform is

max
c1,c2,y

ˆ
ψ (u (c1 (θ)) + βu (c2 (θ))− h (y (θ) , θ)) dF

subject to (1), (2), and (6). This section characterizes the resulting optimal capital taxes.
We note at the outset that the government’s problem is typically not convex, because

H (u (c2 (θ))− u (ĉ2 (θ))) is typically not concave in c2 (θ), so the constraint set is not convex;
for example, step functions are not concave. This is not a “technical” problem (although it
will lead to some mathematical complications), but rather a central economic ingredient of
the model. In particular, to design a sustainable policy, the government must in effect select a
coalition of voters that will support this policy against a potential future reform. This coalition-
formation problem is non-convex under the natural assumption that voters who are closer to
indifferent between the status quo and the reform are more sensitive to slight changes in these
policies.

While the government’s problem is not convex, it is still true that it must be solved by any
solution to the dual problem

min
c1,c2,y

ˆ (
c1 (θ) +

1

R
c2 (θ)− y (θ)

)
dF

subject to
ˆ
ψ (u (c1 (θ)) + βu (c2 (θ))− h (y (θ) , θ)) dF ≥ V, (7)

(2), and (6), where V is the value of the primal.6 Note that in the constraints (2) and (7), c1 (θ)

and c2 (θ) only enter through total consumption utility U (θ). Hence, any solution must solve
the subproblem

min
c1,c2,K

ˆ (
c1 (θ) +

1

R
c2 (θ)

)
dF

subject to u (c1 (θ)) + βu (c2 (θ)) = U (θ) , (8)ˆ
H (u (c2 (θ))− u (RK)) dF ≥ α, (9)

and
ˆ
c2 (θ) dF ≤ RK. (10)

We take a Lagrangian approach to this subproblem. This is valid (i.e., constraint quali-
fication is satisfied) for generic values of α, by Theorem 3 of Clarke (1976).7 The resulting

6 If not, then one could take a solution to the dual and vary c1 so as to increase u (c1 (θ)) by ε for all θ. This
variation would increase the objective while leaving (2) and (6) unaffected, and would not violate (1) for small
enough ε.

7Clarke’s generalized Lagrange multiplier theorem (discussed further in Section 6) coincides with classical
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first-order (necessary) conditions deliver the following characterization.

Lemma 1. In any solution to the government’s problem, the intertemporal wedge τk(θ) satisfies

τk (θ)

1− τk (θ)
= −Rη

[
H ′ (u (c2 (θ))− u (RK))u′ (c2 (θ))− H̄K

]
(11)

for some multiplier η ≥ 0 on (9), where

H̄K =

ˆ
H ′ (u (c2 (θ))− u (RK))u′ (RK) dF. (12)

Proof. Substituting out for c1 (θ) using (8) and letting η ≥ 0 and µ ≥ 0 denote multipliers on (9) and (10),
respectively, the Lagrangian is

ˆ (
u−1 (U (θ)− βu (c2 (θ))) +

c2 (θ)

R

)
dF − η

ˆ
H (u (c2 (θ))− u (RK)) dF − µ

(
RK −

ˆ
c2 (θ) dF

)
.

If η = 0, then (9) is slack, and τk (θ) = 0 in any solution as in Atkinson and Stiglitz, so (11) holds. Otherwise,
the first-order condition with respect to K gives

µ

η
= H̄K . (13)

Next, rewrite the Lagrangian as

ˆ (
u−1 (U (θ)− βu (c2 (θ))) +

1

R
c2 (θ)− η

(
H (u (c2 (θ))− u (RK))− µ

η
c2 (θ)

))
dF − µRK,

differentiate under the integral with respect to c2 (θ), and substitute for µ/η using (13) to obtain the necessary
condition

βRu′ (c2 (θ))

u′ (c1 (θ))
= 1−Rη

(
H ′ (u (c2 (θ))− u (RK))u′ (c2 (θ))− H̄K

)
.

Finally, use (3) to rewrite this condition as (11).

The intuition for equation (11) is that, when deciding how much to tax capital for a type
θ individual, the government assesses the impact of a marginal unit of her savings on the no-
reform constraint (6). Saving by any individual has both a positive and negative effect on this
constraint. The negative effect is that saving by a type θ individual uniformly increases every-
one’s consumption under the reform, which tightens the no-reform constraint: this accounts for
the −H̄K term in (11), which does not depend on θ. The positive effect is that saving by a type
θ individual increases her own consumption under the status quo, which relaxes the no-reform
constraint: this accounts for the H ′ (u (c2 (θ))− u (RK))u′ (c2 (θ)) term in (11), which depends
on θ, and in particular equals the product of the sensitivity of her probability of supporting the
reform to her utility (H ′) and the sensitivity of her utility to her consumption (u′).

Our first main result is the following:

results here, as u and H are continuously differentiable.
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Proposition 1. Optimal marginal capital taxes are inversely related to H ′u′. Formally, for
any two types θ and θ′,

τk (θ) ≥ τk (θ′)⇔ H ′ (u (c2 (θ))− u (RK))u′ (c2 (θ)) ≤ H ′ (u (c2 (θ′))− u (RK))u′ (c2 (θ′)) .

Proof. Immediate from (11).

Proposition 1 says that when a proposed policy is politically sustainable only if the period
2 allocation is preferred to full redistribution by a large enough share of the population, the
shape of the capital tax schedule depends on the product of H ′ (“political sensitivity”) and u′

(“utility sensitivity”). Recall that H ′ is naturally H ′ is single-peaked, while u′ is decreasing.
Hence, marginal capital taxes are progressive (in c2 (θ)) for high levels of c2 (θ), but may be
regressive for low levels of c2 (θ) (and hence U-shaped overall). We record this observation as
a corollary. In what follows, a monotone solution to the government’s problem is one in which
c2 (θ) is non-decreasing in θ. We show in Section 3.2 below that such a solution always exists.

Corollary 1. If H ′ is single-peaked at some utility level u∗, then in every monotone solution to
the government’s problem, optimal marginal capital taxes are progressive on the interval (θ∗,∞),
where θ∗ = inf {θ : u (c2 (θ)) ≥ u (RK) + u∗}

Proof. If θ > θ′ and u (c2 (θ′)) ≥ u (RK) + u∗ in a monotone solution, then c2 (θ) ≥ c2 (θ′) and therefore
H ′ (u (c2 (θ))− u (RK))u′ (c2 (θ)) ≤ H ′ (u (c2 (θ′))− u (RK))u′ (c2 (θ′)), as H ′ (u (x)− u (RK)) is decreasing
in x for x ≥ c2 (θ′) + u∗ and u′ (x) is decreasing in x. The claim then follows from Proposition 1.

An important observation is that the ambiguity in the shape of optimal capital tax schedule
below the peak of H ′ goes away in the leading case where H is a step function, so that the
no-reform constraint (6) simply requires that in period 2 mean consumption is below 1 − α

quantile consumption. In this case, optimal marginal capital taxes are U-shaped in θ.

Proposition 2. If H is a step function, then in every monotone solution to the government’s
problem there is an interval of types [θl, θh] such that

1. Types θ < θl and θ > θh face a common non-negative capital tax τ ∗k .

2. Period 2 consumption c2 (θ) equals RK for all θ ∈ [θl, θh]. In addition, marginal capital
taxes on the interval [θl, θh] are non-decreasing in θ and satisfy τk (θ) ≤ τ ∗k for all θ ∈
[θl, θh].

Proof. See Appendix C.1.

Figure 1 illustrates the pattern derived in Proposition 2. To sustain support from a large
enough fraction α of the population, the government raises the consumption of the “middle
class” (types between θl and θh) to RK, making them just indifferent to a reform. To achieve
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Figure 1: Capital taxes when H is a step function

this, the government imposes a flat savings tax on the poor and rich (to depress consumption
under a reform) and an increasing, lower tax (or a subsidy) on the middle class (to raise their
period 2 consumption under the status quo). As in the case where H is smooth but close
enough to a step function, this leads to a U-shaped marginal capital tax schedule.

The intuition for these results is simple. Ex post, poor agents tend to support an equalizing
reform, rich agents tend to oppose it, and middle-class agents tend to be close to indifferent and
thus pivotal; this feature that those in the middle are most sensitive to changes their utility is
captured by the assumption that H ′ is single-peaked. Thus, in order to make the status quo
sustainable, the government ensures that middle-class agents’ period 2 consumption is high
under the status quo and low under the reform. Considering variations in the timing of con-
sumption that leave fixed total consumption utility U (θ) = u (c1 (θ)) + βu (c2 (θ)) (and thus
do not affect incentive compatibility), this may be achieved by subsidizing capital (i.e., back-
loading consumption) for the middle class (which increases middle-class period 2 consumption
under the status quo) and taxing capital (i.e., frontloading consumption) for the poor and rich
(which decreases middle-class period 2 consumption under the reform).

This pattern captures precisely the coalition formation motives underlying the historical
examples in the introduction, where securing political support from the middle class was essen-
tial under the threat of extreme redistribution. It can also interpreted as a dynamic version of
Director’s Law, with the difference that, here, the coalition supporting the status quo comprises
the middle class and the rich rather than the middle class and the poor (see also Section 4.3).

Outside of the step function case, however, there is also an offsetting effect, which is that
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poor agents care more about a marginal dollar (i.e., u′ is decreasing), so that all else equal their
political support is cheaper.8 Thus, in order to make the status quo credible, the government
subsidizes capital for those agents with high H ′u′, who may be either poor or middle class
(depending on whether the H ′ or u′ effect dominates), and taxes capital for the rich (for whom
both H ′ and u′ are low).

It is worth pointing out that none of these results depend on the particular form of the
welfare function ψ, as long as it satisfies Assumption 1. For example—and perhaps somewhat
surprisingly—optimal marginal capital taxes with step function H remain U-shaped even as
ψ approaches the Rawlsian criterion. The shape of labor taxes may change in this case (see
Section 4.1), but the shape of capital taxes does not.

3.2 Existence of a Monotone Solution

Lemma 1 and Proposition 1 describe the shape of optimal marginal capital taxes in terms
of c2 (θ), which is itself endogenous to government policy. The economically more important
issue is the shape of optimal marginal capital taxes in terms of θ. While it is intuitive that
an optimal c2 (θ) schedule should be monotonically non-decreasing in θ—so that the shape of
the tax schedule as a function of θ is the same as its shape as a function of c2 (θ)—this is not
immediate in the current context because the government’s problem is not convex. In Appendix
B, we derive a novel monotone methods result—which we use repeatedly throughout the paper,
and which may be useful more broadly—to establish that there does always exist a monotone
solution to the government’s problem (and that in addition any non-monotonicity in θ can
occur only among types that are pooled in terms of production y (θ) and total consumption
utility U (θ)).9 This existence result underlies Corollary 1 and Proposition 2, which are our
main results on the shape of optimal marginal capital taxes in terms of θ.

3.3 Relation to Farhi et al. (2012)

WhenH is uniform—so thatH ′ is constant—and we allow a resource cost κ ≥ 0 of implementing
a reform in period 2, (11) reduces to the optimal capital tax formula of Farhi et al. (2012),
which prescribes increasing marginal capital taxes. If H ′ is single-peaked, we then obtain a
U-shaped adjustment to their progressive tax schedule, with taxes being U-shaped overall if
and only if H ′u′ is single-peaked over the range of equilibrium c2 (θ) levels.

8This effect is a consequence of the assumption that the taste shocks εSQ and εR are additive (or equivalently
that H depends on the utility difference u (c2 (θ)) − u (ĉ2 (θ))) and thus goes away in the step function case
where the taste shocks always equal zero. See Scheuer and Wolitzky (2014) for how these results extend to
alternative specifications of the taste shocks.

9Briefly, the result establishes monotonicity of solutions to non-convex constrained optimization problems
where the objective has increasing differences in allocation and type and the constraints depend on the allocation
only. Mathematically, it is a generalization of the assortative matching theorem of Becker (1973).
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Indeed, our model formally nests Farhi et al.’s. To see this, let u = infc∈C u (c) and ū =

supc∈C u (c), where C is some set of relevant consumption levels. Suppose that

H (u (c2 (θ))− u (ĉ2 (θ))) =
1

2
+

1

2

u (c2 (θ))− u (ĉ2 (θ))

ū− u
,

so that H is uniform and symmetric around zero, and let α = 1/2. Then (6) becomesˆ
u (c2 (θ)) dF ≥ u (RK − κ) ,

which is precisely the no-reform constraint in Farhi et al. (2012). To understand this coinci-
dence, recall that the no-reform constraint in their model requires that a utilitarian government
does not wish to equalize consumption at resource cost κ, and observe that this is the case if
and only if a simple majority of voters does not wish to equalize consumption at resource cost κ
in a probabilistic voting model with uniform taste shocks. From this perspective, the results of
this section may be viewed as a generalization of Farhi et al.’s analysis to the case where voters’
probabilities of supporting reform are not all equally sensitive to marginal policy changes, or
equivalently where the problems of maximizing social welfare and maximizing political support
do not coincide. This in turn is exactly the case where political coalition formation matters.

3.4 Interpreting and Endogenizing the Social Welfare Functional

We conclude this section by briefly discussing the interpretation of the social welfare functional
ψ. The most direct interpretation of ψ is normative: the goal of the model is to locate the
optimal tax schedule under social welfare functional ψ, subject to the constraint that the tax
schedule must resist future reform. However, an alternative, positive interpretation is that ψ
is the outcome of political competition between two office-motivated parties in a probabilistic
voting model, as follows:

Suppose that in period t = 1, 2 parties i = A,B propose allocations

ait (θ) =

{
(ci1 (θ) , ci2 (θ) , yi (θ)) if t = 1

ĉi2 (θ) if t = 2,

and an individual of type θ votes for party i with probability G
(
vit (θ)− vjt (θ)

)
, where

vit (θ) =

{
u (ci1 (θ)) + βu (ci2 (θ))− h (yi (θ) , θ) if t = 1

u (ĉi2 (θ)) if t = 2,

and G is the cdf of ideological preference shocks for party i over party j, which we assume to
be symmetric about 0. Note that in general there is no reason why G should equal H, which
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captures “conservative” tastes for maintaining the status quo over allowing a reform rather than
ideological preferences for parties.

If a symmetric pure strategy Nash equilibrium in this policy proposal game exists for t = 2,
each party i’s platform must solve

max
ĉi2

ˆ
G
(
u
(
ĉi2 (θ)

)
− u

(
ĉj2 (θ)

))
dF s.t.

ˆ
ĉi2 (θ) dF ≤ RK.

The standard condition for existence of a symmetric pure strategy Nash equilibrium in this
case—due to Lindbeck and Weibull (1987)—is the following:

Assumption 3 G′ (u (x)− y)u′ (x) is non-increasing in x for all y.

Under this assumption, in the unique symmetric pure strategy Nash equilibrium, both
parties propose full equalization of period 2 consumption, as given by (5).

Consequently, if a symmetric pure strategy Nash equilibrium (a∗1, a
∗
1) in the policy proposal

game exists for t = 1, each party i’s platform must solve

max
ai1

ˆ
G
(
vi1 (θ)− v∗1 (θ)

)
dF

subject to (1), (2), and (6), where these constraints must hold with respect to allocation ai1.
Letting

ψ (v1 (θ)) ≡ G (v1 (θ)− v∗1 (θ)) for all θ,

we see that each party’s platform must solve max
´
ψ (v1 (θ)) dF subject to (1), (2), and (6),

which is precisely the government’s problem with social welfare functional ψ considered so far.

4 Model Implications

This section considers empirical implications of our results. Section 4.1 provides a numerical
illustration. Section 4.2 shows how to implement the optimal allocation with taxes. Section 4.3
compares our results with contemporary and historical wealth redistribution policies.

4.1 Labor Wedge and Numerical Illustration

This paper focuses on qualitative properties of the implicit marginal capital tax (3). We con-
sider it a strength of the model that it allows for sharp results on this margin, despite the
complexity of characterizing the entire optimal allocation (which is a standard feature of Mir-
rlees models). Nonetheless, it is interesting to compute the full optimal allocation numerically
in an example. This gives some feel for the quantitative implications of the political economy
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constraints we consider, and also demonstrates that adding these constraints does not make
the model intractable numerically.

We first show how to compute the intratemporal labor wedge in the optimal allocation
offered by the government in period 1, defined as τl(θ) ≡ 1 − hy(y(θ), θ)/u′(c1(θ)), where hy
denotes the partial derivative of the disutility function h with respect to y.10 In particular, and
specializing to h(y, θ) = h(y/θ) and ψ(s) = s for simplicity, it is straightforward to show that
the implicit labor income tax must satisfy

τl(θ)

1− τl(θ)
=

(
1 +

1

ε(θ)

)
u′(c1(θ))

θf(θ)

ˆ ∞
θ

(
1

u′(c1(s))
− 1

λ

)
dF (14)

whenever there is no bunching, where ε(θ) is the Frisch elasticity of labor supply at θ and
λ =

(´
1/u′(c1(s))dF

)−1 is the multiplier on the resource constraint (1).11

The key observation here is that formula (14) is exactly the same as in a static Mirrlees
model (see Mirrlees, 1971, or Saez, 2001, for standard interpretations), as well as in our two-
period model when there is full commitment (since (14) is completely independent of the form
of the political support constraint). In this sense, the labor tax schedule is affected by our
political economy constraint only indirectly through the c1(θ)-schedule on the right-hand side
of (14). This justifies our focus on the intertemporal wedge (3) as the key margin of interest,
and demonstrates that introducing political constraints does not make the model less tractable
along the intratemporal dimension.

Formula (14), together with our characterization of the capital wedge, also allows us to
numerically compute the entire optimal allocation (c1(θ), c2(θ), y(θ)) for a calibrated version
of our model. We consider iso-elastic preferences of the form u(c) = c1−σ/(1 − σ) and h(l) =

γl1+1/ε/(1 + 1/ε) where l = y/θ, so that the Frisch elasticity of labor supply is constant and
given by ε. We set ε = 1, consistent with the evidence in Kimball and Shapiro (2010) and Erosa,
Fuster and Kambourov (2011). We interpret a model period as T = 30 years and accordingly
set β = 0.9530 and R = 1/β (so the optimum under full commitment involves consumption
smoothing with c1(θ) = c2(θ)).

For the skill distribution F , we follow Mankiw, Weinzierl and Yagan (2009) who fit a
lognormal distribution to the empirical wage distribution from the 2007 Current Population
Survey and append a Pareto distribution for the upper tail of wages to obtain asymptotic
marginal tax rates as in Saez (2001). We extend their numerical procedure for a static Mirrlees
model to our dynamic setting in order to compute both τl(θ) and τk(θ) and follow them in

10As before, we focus on the non-trivial case where the initial, exogenous status quo is sufficiently undesirable
that a reform in period 1 has political support.

11Bunching does not occur whenever the (global) incentive constraints (2) can be replaced by the local incentive
constraints v′1(θ) = hθ(y(θ), θ) ∀θ, and the monotonicity constraint—requiring that y(θ) is non-decreasing—is
slack. This can be easily checked numerically as in the example we provide below.
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Figure 2: Marginal labor and capital taxes with and without political constraints

setting σ = 1.5 and γ = 2.55. We assume that the distribution of taste shocks H is normal
with mean 0 and standard deviation 1 (corresponding to just over 10% of mean utility).

The left panel in Figure 2 shows the resulting optimal labor income tax rates (for wages
up to $100/hour) under full commitment (α = 0) and when the political constraint (6) binds
(in which case we assume majority voting with α = 50%). The right panel shows the optimal
annualized marginal capital tax rate τ̃k(θ) on the net return to saving for both cases.12 As can
be seen from the graphs, the labor tax schedules are very similar under full commitment and
limited commitment, confirming that the key effects of the political economy constraint are on
the intertemporal margin. Both schedules exhibit the typical U-shaped pattern emphasized in
Diamond (1998) and Saez (2001), which is driven by the phase-out of the lump-sum transfer
for low wages and by convergence to the asymptotic marginal tax rate due to the Pareto tail
for high wages. The right panel demonstrates the U-shaped pattern for the capital tax rate
emphasized here and predicted in Section 3.1. In particular, capital tax rates are negative for
intermediate wages and positive otherwise (and of sizable absolute amounts).

The underlying consumption and utility schedules are illustrated in Figure 3. The left
panel shows consumption in both periods. While c1 and c2 coincide under full commitment
(as shown by the red line for α = 0), they are distorted when the threat of reform is binding.
In particular, the capital subsidy increases c2 (the green line) for intermediate wages in order
to increase political support for the status quo to 50% of the population (from 42% under the
full commitment solution).13 Of course, this must lead to an aggregate welfare loss, which here
is equivalent to a 2.1% consumption drop for everyone in both periods compared to the full

12Formally, τ̃k(θ) is defined such that 1 + (1− τ̃k(θ))
(
R1/T − 1

)
≡ [R(1− τk(θ))]

1/T
.

13Aggregate consumption in periods 1 and 2 remain roughly equal to each other.
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Figure 3: Consumption and utility with and without political constraints

commitment solution. However, there is considerable heterogeneity in how this welfare loss is
distributed across the population. In fact, as shown in the right panel, types with intermediate
hourly wages benefit from the presence of the political support constraint, whereas all other
types lose. This illustrates how our model can generate a pattern of redistribution where
the middle class actually benefits from political constraints—rather than just having their
consumption backloaded—consistent with Director’s Law.

4.2 Tax Implementation

Our analysis so far has implicitly considered direct mechanisms, where the government allocates
c1(θ), c2(θ) and y(θ) conditional on individual reports about θ, taking into account technological,
incentive compatibility and political sustainability constraints. It is straightforward to show
that these allocations can alternatively—and more realistically—be implemented through a tax
system where each individual is confronted with the same budget set and picks her preferred
allocation within this set. In particular, with a non-linear labor income tax Ty and a non-linear
capital income tax Tk, individuals are faced with the budget constraint c1 + k ≤ y − Ty(y) in
period 1 and c2 ≤ Rk− Tk(Rk) in period 2 and choose c1, c2, y, k to maximize u(c1) + βu(c2)−
h(y, θ) subject to these two constraints.

By Proposition 3 of Farhi et al. (2012), any incentive compatible allocation (c1(θ), c2(θ),

y(θ)) that is non-decreasing in θ can be implemented using such a tax system. Since we show
that c2(θ) is non-decreasing in an optimal allocation and y(θ) is non-decreasing by incentive
compatibility, their result can be applied to our framework.14 Moreover, the first-order condi-

14The statement of Proposition 3 in Farhi et al. (2012) also requires c1(θ) to be non-decreasing, which holds
at the optimum in their model but may or may not hold in ours. However, inspecting their proof reveals that
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tions from the above utility-maximization problem imply

u′(c1(θ)) = βR(1− T ′k(Rk(θ)))u′(c2(θ))

for all θ whenever Tk is differentiable, so the wedge τk(θ) defined in (3) and characterized
throughout this paper coincides with the actual marginal capital income tax rate T ′k(Rk(θ))

faced by individuals of type θ in this implementation.15

4.3 Relation to Wealth Redistribution Policies in Practice

Our results give clear-cut predictions about the shape of marginal wealth taxes and subsidies.
While our model is admittedly stylized, and the level and progressivity of effective capital taxes
in advanced economies are hard to measure, it is worth relating our results both to current policy
patterns and to historical cases that are consistent with the political dynamics we emphasize.

First, as also noted by Farhi et al. (2012), policies such as income, estate, and wealth taxes,
as well as the tax treatment of retirement accounts and subsidies to savings and education by
the poor and middle class, contribute to the progressivity of capital taxation. However, policies
such as subsidies to college education, many retirement savings programs (where the subsidy
is increasing in the marginal income tax rate up to a cap) and the mortgage interest deduction
(which subsidizes the accumulation of housing wealth), are likely targeted more directly at
middle-class voters than at the very poor. Similarly, Doepke and Schneider (2006) show that
the inflation tax effectively redistributes from rich, bond-holding households to middle-class
households with fixed-rate mortgage debt, consistent with our version of Director’s Law.

Moreover, means-tested government transfers can lead to an overall U-shaped pattern of
capital taxes. For example, in the US, only individuals with sufficiently few assets qualify for
Medicaid or Federal Student Aid, and only individuals with sufficiently low investment income
qualify for the Earned Income Tax Credit. These asset tests can lead to positive marginal
savings taxes for the poor. More generally, the contribution to capital tax progressivity of
subsidies to savings and education by the poor are at least partially offset by the phase-out of
these subsidies, unless eligibility is solely determined by labor income.

Of course, we do not claim that these patterns are necessarily driven by concerns for political
stability, especially in the US, where socialist threats have historically been less important than
in Europe.16 However, as alluded to in the introduction, there are important historical cases
where the political forces emphasized in our model do appear to have been decisive. In many

this condition is not actually needed for the result.
15If Tk(Rk(θ)) is not differentiable because there is pooling at consumption level c2(θ) (so Tk has a convex

kink), τk(θ) is still bounded between the (well-defined) left- and right-derivatives of Tk.
16For another explanation of such savings distortions, see e.g. Golosov and Tsyvinsky (2006).
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European countries, the insurrection associated with the Paris Commune in 1871, followed by
the emergence and growth of socialist parties and labor unions, strongly influenced contempo-
rary elites, who tried to counteract the “specter of communism” by introducing redistributive
social insurance programs (Rimlinger, 1971); according to Esping-Andersen (1990), “this was
the clear rationale behind the early German, Danish, and Austrian reforms,” (p. 94). In a
speech to the Reichstag in 1884, Bismarck declared that “had there been no social democracy
and had not so many of you feared it, the moderate progress we have made in social reform
up to now would on the whole not have existed” (Hentschel, 1983). Indeed, these policies were
strongly opposed by social democrats and labor unions at the time, precisely because of the
strategic coalition-building motivations underlying them (Esping-Andersen, 1990).

In the twentieth century, this pattern repeated itself when conservative governments in
post-World War II Germany and Italy reformed and expanded the welfare state to maintain
political support in the face of growing political power of the left. For instance, “Adenauer’s
great pension reform in 1957 was explicitly designed to resurrect middle-class loyalties” to
Germany’s conservative-corporatist welfare state (Esping-Andersen, 1990, p. 32). In particular,
by tying the benefits of future pensioners to overall economic growth, replacement rates (and
hence effective returns to wealth accumulation through the public retirement program) for
middle-income earners surged, while basic old-age income protection elements for the poor
were abolished (Hinrichs, 2003).

5 Extensions

We now consider two extensions of the model that serve as “robustness checks” on our results.
Section 5.1 extends our results to a setting where the full commitment benchmark involves
non-zero capital taxes. Section 5.1 extends our two-period model to overlapping generations.

5.1 Heterogeneity in Savings Propensity

We have derived our results in a dynamic Mirrlees model where, in the absence of political
constraints, optimal capital taxes are zero. It is natural to ask whether and how they extend to
settings where the Atkinson-Stiglitz theorem does not apply to the full commitment benchmark.
For example, this is the case when individuals differ in their propensity to save rather than their
ability, as emphasized recently by Farhi and Werning (2013) and Piketty and Saez (2013). We
briefly demonstrate that, in this case, our results extend in the sense that the pattern of capital
taxes found in Section 3.1 can be interpreted as the optimal addition to whatever the full
commitment capital tax benchmark is.

To this purpose, we consider a modification of our basic two-period model without labor
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supply, where individuals simply consume in both periods and all start out with the same initial
wealth K1. Private heterogeneity exclusively enters in the form of savings propensity, so that
wealthy individuals in period 2 will be those who are more patient. Formally, preferences are
u(c1) + βu(c2) and β is distributed according to cdf F with support contained in (0, 1). An
allocation (c1(β), c2(β)) is resource feasible if

ˆ
c1(β)dF +K2 ≤ RK1 and

ˆ
c2(β)dF ≤ RK2 (15)

for some K2 ≥ 0 and incentive compatible if

u(c1(β)) + βu(c2(β)) ≥ u(c1(β
′)) + βu(c2(β

′)) ∀β, β′. (16)

Considering again the case with ψ(s) = s for simplicity,17 the government solves in period 1

max
c1,c2,K2

ˆ
[u(c1(β)) + βu(c2(β))] dF

s.t. (15), (16), and
ˆ
H (u(c2(β))− u(RK2)) dF ≥ α. (17)

It is obvious that implicit capital taxes τk(β) (defined as in (3)) are no longer necessarily zero
even without the political constraint (17), because these wedges are the only way to achieve
redistribution across individuals with different savings propensities β in period 1. However,
the following useful decomposition of overall marginal capital taxes in any solution without
bunching can be established using standard steps:

τk(β)

1− τk(β)
= χ(β)− Rη

λ

[
H ′(u(c2(β))− u(RK2))− H̄K

]
, (18)

where H̄K is defined as in (12) and

χ(β) ≡ Ru′(c2(β))

f(β)

ˆ 1

β

(
1

u′(c1(β))
− 1

λ

)
dF

is the formula for the optimal τk/(1−τk) under full commitment, with λ =
(´ 1

0
1/u′(c1(β))dF

)−1
.

As can be seen from (18), exactly the same formula for the optimal marginal capital tax as
in Lemma 1 appears, with the only difference that it gets added to the (no longer necessar-
ily zero) benchmark marginal capital tax χ(β) that is present even in the absence of political
constraints.18 In this sense, our results extend in a transparent way to situations where the

17It is straightforward to extend the following analysis to general welfare functions or to trace out the set of
constrained Pareto efficient allocations in this model.

18Of course, this interpretation of an additive adjustment to the capital tax under full commitment holds only
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Atkinson-Stiglitz conditions are not met under full commitment.

5.2 Overlapping Generations

There is also a straightforward extension of our two-period model to an infinite-horizon over-
lapping generations (OLG) setting. In particular, consider the model from Section 2, except
that in every period t = 1, 2, . . . a new generation is born. As before, individuals live for two
periods, produce only when young, and consume in both periods. Each period begins with a
capital stock RKt and a status quo consumption schedule for the old c̃Ot . The timing in each
period t is as follows:

1. Old individuals decide whether to support the status quo.

2. The government chooses a vector
(
yt, c

Y
t , c̃

O
t+1

)
corresponding to production and consump-

tion for the period t young and status quo consumption for the period t+ 1 old, subject
to the resource constraints

ˆ
cYt (θt)dF +Kt+1 =

ˆ
yt(θt)dF and

ˆ
c̃Ot+1(θt)dF = RKt+1. (19)

If fewer than α old individuals support the status quo, the government can also choose a
reform consumption schedule ĉOt for the period t old, subject to the resource constraint

ˆ
ĉOt (θt−1) dF = RKt. (20)

Otherwise, consumption for the period t old is given by the status quo c̃Ot .

The interpretation is that, in each period t, the government sets policies for the currently
living generations, i.e. a labor income tax for the young in t and a capital tax for when they
will be old in t + 1, which will become the status quo for the next period. If there is enough
support among the currently old, it can also reform their status quo capital tax (which was set
in the preceding period) by redistributing their wealth. Note that the resource constraints (19)
and (20) rule out intergenerational transfers; we briefly comment on this below.

A Markov equilibrium of this model is one where individuals born in period t condition their
behavior when young (i.e., production and consumption) only on

(
yt, c

Y
t

)
and Kt and, when

old, condition their support for the status quo only on c̃Ot+1 and Kt+1. All of our results for the
two-period model of Section 2 immediately extend to the Markov equilibria of this OLG model.

in terms of the formula (18), since both c1 and c2 change when we introduce political constraints.
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The model becomes more complicated when intergenerational transfers and non-Markov
equilibria are allowed. In non-Markov equilibria, the government could be “punished” for im-
plementing a reform, or for setting particular allocations for the young, which provides an
additional source of commitment power. Such history-dependence could also arise with inter-
generational transfers, as in this case the period t young would also have to condition their
behavior on the status quo c̃Ot , which was set by the government in period t− 1. In particular,
it is not clear that a suitable definition of Markov equilibrium exists in this case.

6 Within-Period Commitment

In this section, we consider an alternative version of the model where in each period the gov-
ernment proposes a reform before individuals decide whether to support the status quo. This
change in timing effectively lets the government commit to a policy within each period, though
still not across periods. For this section only, we also specialize to the case of a utilitarian
government—where ψ is the identity mapping—and also assume that the skill distribution has
lower and upper bounds, respectively denoted by θ and θ̄. We establish the unexpected result
that in this version of the model optimal capital taxes are progressive throughout the skill
distribution, regardless of the shape of H.19

Relative to the main model of Section 2, the two versions of the model can be tentatively
mapped to more representative and more direct versions of democratic government: in repre-
sentative democracies, politicians retain the final say on fiscal policy, and are thus unlikely to
be able to commit to reforms that they have a strong incentive to modify ex post (as in Section
2); while in direct democracies, politicians may have the “agenda-setting” power to propose a
specific policy, while being unable to modify it after it is approved by the voters (as in this
section). With this interpretation, our model predicts that capital taxes are more likely to be
U-shaped when fiscal policy is ultimately determined by representatives, and more likely to be
progressive when determined by direct referendum.20

Formally, the timing of the model in this section is as follows:
Period 1:

1. The government proposes a reform continuation allocation (c1, c2, y).

2. Individuals decide whether to support the period 1 status quo. If at least α individuals
support the status quo, then production and period 1 consumption occur and are given

19We conjecture that this result continues to hold for arbitrary concave ψ.
20An alternative interpretation is that the two versions of the model differ in the government’s degree of

sophistication. In the within-period commitment version, the government is able to design sophisticated vote-
buying strategies at the reform stage. In the no within-period commitment version, the government simply
pursues its most-preferred (fully equalizing) reform. This can capture naïvety on the part of the government,
as well as an inability to commit.
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by ySQ and cSQ1 , and the economy moves to period 2 with period 2 status quo given by
c̃SQ2 = cSQ2 . If fewer than α individuals support the status quo, then production and
period 1 consumption occur and are given by y and c1, and the economy moves to period
2 with period 2 status quo given by c̃SQ2 = c2.

Period 2:

1. The government proposes a reform continuation allocation ĉ2.

2. Individuals decide whether to support the period 2 status quo. If at least α individuals
support the status quo, then period 2 consumption occurs and is given by c̃SQ2 . If fewer
than α individuals support the status quo, then period 2 consumption ĉ2 occurs.

The model is otherwise the same as in Section 2.
The key implication of this change in timing is that now the no-reform constraint in the

resulting period 1 government’s planning problem is no longer given by (9), but rather by the
condition that there does not exist a reform consumption schedule ĉ2 : Θ→ R such that

ˆ
u (ĉ2 (θ)) dF >

ˆ
u (c2 (θ)) dF,

ˆ
ĉ2 (θ) dF ≤

ˆ
c2 (θ) dF − κ,

ˆ
H (u (c2 (θ))− u (ĉ2 (θ))) dF ≤ α,

where κ is an exogenous resource cost of implementing a reform, discussed below. In words,
this requires that there is no reform that the government prefers to the status quo, is re-
source feasible, and would defeat the status quo in terms of popular support. Letting x (θ) ≡
u (ĉ2 (θ)) − u (c2 (θ)), Φ ≡ u−1, and ut(θ) ≡ u(ct(θ)), note that this constraint is equivalent to
the value of the following dual deviation program (DP), which we denote by RD (u2), being
greater than

´
Φ (u2 (θ)) dF − κ:21

min
x

ˆ
Φ (u2 (θ) + x (θ)) dF (21)

subject to
ˆ
x (θ) dF ≥ 0, (22)

ˆ
H (−x (θ)) dF ≤ α. (23)

The advantage of this formulation—which we exploit below—is that the status quo utility
schedule u2 enters only through the objective and not through the constraints.

21The same variation as in footnote 6 shows that a solution to the primal must also solve the dual, both in
the deviation program and in the subsequent government’s problem.
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The dual formulation of the period 1 government’s planning problem is therefore

min
U,u2,y

ˆ (
Φ (U (θ)− βu2 (θ)) +

1

R
Φ (u2 (θ))− y (θ)

)
dF

subject to (2), (7),
ˆ

Φ (u2 (θ)) dF − κ ≤ RD (u2) , (24)

and
ˆ
H
(
vSQ1 (θ)− v1 (θ)

)
dF ≤ α, (25)

where (25) requires that the allocation (c1, c2, y) corresponding to (U, u2, y) receives enough
support against the exogenous status quo allocation

(
cSQ1 , cSQ2 , ySQ

)
. In Scheuer and Wolitzky

(2014), we set up this version of the model as a game between individuals and the government
and established a revelation principle that justifies this formulation, as we now do for the main
model in Appendix A. We omit this argument here due to space constraints, but note that
it relies on the following assumption, which says that the government would rather implement
the optimal policy that forestalls reform in period 2 than pay the resource cost κ to implement
the full-commitment solution. This is why we allow here for a resource cost of reform.22

Assumption 3 The value of the government’s dual program is less than the value of the
government’s full-commitment dual program plus κ.

As with the government’s problem in Section 2, non-convexity is an unavoidable feature of
the deviation program (DP) under natural specifications of H, and hence its solution x (θ) may
not be unique. Let

X(θ;u2) ≡ {x (θ) : x is a right-continuous solution to (DP) at u2} ,

x̄ (θ;u2) ≡ supX (θ;u2) , and x (θ;u2) ≡ inf X (θ;u2) ,

where we will omit the argument u2 when its value is unambiguous.23 Using our general
monotone methods lemma, Lemma 5 in Appendix B, we can collect the following results about
solutions to (DP):

Lemma 2. (i) A right-continuous solution to (DP) exists for generic values of α.
(ii) If u2 (θ) < u2 (θ′) then x (θ) ≥ x̄(θ′).

22The resulting asymmetry with the main model is unimportant: one could easily include the resource cost κ
in the main model (as we did to facilitate the comparison with Farhi et al. (2012) in Section 3.3), and one could
also analyze the current model without the resource cost by restricting attention to equilibria where a reform
does not occur in period 2.

23Strictly speaking, if u2 is not monotone, the right-continuity in this definition must be read as being with
respect to the following order % on Θ:

θ % θ′ if either [u2 (θ) > u2 (θ′)] or [u2 (θ) = u2 (θ′) and θ ≥ θ′] .
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(iii) RD (u2) is locally Lipschitz continuous in u2 (with the sup metric).

Proof. See Appendix C.2.

The most important part of the lemma is part (ii), which shows that any solution x must
be non-increasing in u2. This formalizes the intuition that, even though reforms are no longer
necessarily fully equalizing in this version of the model, they still reduce the inequality implied
by the status quo u2 (since reform utility is u2 + x).

Returning now to the government’s period 1 problem, note that only constraint (24) depends
on u2. Hence, at any solution u2 must solve the subproblem

min
u2

ˆ (
Φ (U (θ)− βu2 (θ)) +

1

R
Φ (u2 (θ))

)
dF subject to (24).

We begin by again applying Lemma 5, this time to establish the existence of a monotone
solution to the government’s problem (as in Section 3.2). We restrict attention to these solutions
in what follows.

Lemma 3. There exists a solution to the government’s problem in which u2 (θ) is non-
decreasing.

Proof. See Appendix C.3.

As in Section 3.1, we take a Lagrangian approach to the subproblem. Constraint qualifi-
cation is satisfied for generic values of κ, again by Theorem 3 of Clarke (1976). The resulting
generalized first order condition characterizes optimal marginal capital taxes, and is the basis of
our main results on the progressivity of optimal capital taxes with within-period commitment.

Lemma 4. In any monotone solution to the government’s problem,

τk (θ)

1− τk(θ)
∈
[
Rη

(
1− Φ′(u2(θ) + x̄(θ))

Φ′(u2(θ))

)
, Rη

(
1− Φ′(u2(θ) + x(θ))

Φ′(u2(θ))

)]
. (26)

for some multiplier η ≥ 0 on (24).

Proof. By Theorem 1 of Clarke (1976), there exists a multiplier η ≥ 0 on (24) such that the zero vector is an
element of the generalized gradient of

ˆ (
Φ (U (θ)− βu2 (θ)) +

1

R
Φ (u2 (θ))

)
dF − η

(
RD (u2)−

ˆ
Φ (u2 (θ)) dF + κ

)
(27)

(we review the definition of the generalized gradient below; see Clarke (1976) for details). Fix such a multi-
plier, and suppose toward a contradiction that (26) fails on a positive measure set of types for some optimal
consumption schedule u2. Then there exists either a positive measure set Θ′ on which τk(θ)/(1 − τk (θ)) ex-
ceeds Rη (1− Φ′(u2(θ) + x(θ))/Φ′(u2(θ))), or a positive measure set Θ′′ on which τk (θ) /(1 − τk (θ)) is less
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than Rη (1− Φ′(u2(θ) + x̄(θ))/Φ′(u2(θ))). Assume the first case applies; the argument for the second case is
symmetric.

Define the vector 1Θ′ : Θ→ R by

1Θ′ =

{
1 if θ ∈ Θ′

0 if θ /∈ Θ′.

By definition, the generalized directional derivative of −RD (u2) in direction 1Θ′ equals

lim sup
ũ2→u2,t↓0

−RD (ũ2 + t1Θ′)−RD (ũ2)

t
,

where the sup is taken over utility schedules ũ2 that are monotone on both Θ′ and Θ\Θ′.24 We claim that this
generalized directional derivative is upper-bounded by −

´
Θ′

Φ′ (u2 (θ) + x (θ)) dF . To see this, let x (θ; ũ2) be
an arbitrary selection from X (θ; ũ2), let |·| denote the sup norm, and note that

lim sup
ũ2→u2,t↓0

−RD (ũ2 + t1Θ′)−RD (ũ2)

t

≤ lim sup
ũ2→u2,t↓0

ˆ
Θ

−Φ (ũ2 (θ) + x (θ; ũ2 + t1Θ′) + t1Θ′)− Φ (ũ2 (θ) + x (θ; ũ2 + t1Θ′))

t
dF

= lim sup
ũ2→u2,t↓0

ˆ
Θ′
−Φ (ũ2 (θ) + x (θ; ũ2 + t1Θ′) + t)− Φ (ũ2 (θ) + x (θ; ũ2 + t1Θ′))

t
dF

≤ lim
ε→0

ˆ
Θ′

sup
|ũ2−u2|<ε,t<ε

−Φ′ (ũ2 (θ) + x (θ; ũ2 + t1Θ′)) dF

=

ˆ
Θ′

lim
ε→0

sup
|ũ2−u2|<ε,t<ε

−Φ′ (ũ2 (θ) + x (θ; ũ2 + t1Θ′)) dF

= −
ˆ

Θ′
Φ′ (u2 (θ) + x (θ)) dF.

where the first step follows because x (·; ũ2 + t1Θ′) is feasible in (DP) at ũ2; the second step is immediate; the
third step follows by convexity of Φ and subadditivity of sup; the fourth step follows by the bounded convergence
theorem, as by convexity of Φ and monotonicity of the ũ2’s on Θ′ and Θ\Θ′ the integrand is bounded by

sup
|ũ2−u2|<ε,t<ε,θ∈{θ̄,θ̄′}

−Φ′ (ũ2 (θ) + x (θ; ũ2 + t1Θ′)) <∞,

where θ̄′ = sup Θ′; and the last step follows by upper hemi-continuity of X (θ; ũ2) in ũ2.
By definition, the generalized gradient is the set of vectors ζ such that the generalized directional derivative

in any direction v exceeds ζ (v). Hence, if the zero vector is an element of the generalized gradient of (27),
then the generalized directional derivative of (27) in direction 1Θ′ is non-negative. As Φ is continuously
differentiable, the generalized directional derivatives of all of the terms in (27) except for RD (u2) reduce to
ordinary (Gâteaux) derivatives, so applying our bound on the generalized directional derivative of RD (u2) gives
the necessary condition

ˆ
Θ′

(
− β

u′ (c1 (θ))
+

1

Ru′ (c2 (θ))
− η (Φ′ (u2 (θ) + x (θ))− Φ′ (u2 (θ)))

)
dF ≥ 0.

24This allows ũ2 (θ′) > ũ2 (θ) for θ′ ∈ Θ′ and θ ∈ Θ\Θ′ such that θ′ < θ, so as to include schedules of the
form ũ2 + t1Θ′ for monotone ũ2.
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Using the definition (3), this implies

ˆ
Θ′

1

Ru′ (c2 (θ))

(
− 1

1− τk(θ)
+ 1 +Rη

(
1− Φ′ (u2 (θ) + x (θ))

Φ′ (u2 (θ))

))
dF ≥ 0.

But, together with the fact that Θ′ has positive measure, this contradicts the hypothesis that τk(θ)/(1− τk (θ))

exceeds Rη (1− Φ′(u2(θ) + x(θ))/Φ′(u2(θ))) on Θ′.

Lemma 4 implies that all monotone solutions to the government’s problem feature progres-
sive marginal capital taxation, in the following sense.

Proposition 3. In any monotone solution, there exists a threshold type θ∗ such that capital is
subsidized for types θ < θ∗ and taxed for types θ > θ∗.

Proof. See Appendix C.4.

The intuition for Proposition 3 is that the capital tax, given by equation (26), is designed to
make individuals of each type θ internalize the marginal effect of their saving (i.e., backloading
their utility) on the no-reform constraint. This involves comparing the effect on required period
2 resources under the most tempting reform, given by Φ′(u2(θ)+x(θ)), with the effect on required
resources under the status quo, Φ′ (u2 (θ)).25 Since by Lemma 2 a reform will equalize period 2
consumption relative to the status quo (i.e., x (θ) is decreasing), low θ types face x(θ) > 0, so
their saving relaxes the no-reform constraint (as Φ′(u2(θ) + x(θ)) > Φ′ (u2 (θ)) when x (θ) > 0),
motivating the capital subsidy. In contrast, high θ types face x (θ) < 0, so their saving tightens
the no-reform constraint, which makes it optimal for them to face a capital tax.

This logic is independent of the shape of the function H; notably, it does not depend on
whether H ′ is single-peaked or not. This is in contrast to our results in Section 3, where the
shape of H is crucial for the U-shaped pattern of the intertemporal wedge. The reason for this
difference is that, in Section 3, the key comparison for determining the capital tax is between
u(c2 (θ)) and u(RK), which implies that agents with intermediate u(c2 (θ)) are “pivotal” when
H ′ is single-peaked, and are therefore subsidized. In contrast, in the current section the key
comparison is between Φ′ (u2 (θ)) and Φ′(u2(θ) + x(θ)), so that agents with x (θ) > 0 are more
sensitive to their period 2 consumption under the status quo than under the reform, which
leads them to be subsidized (and x (θ) is decreasing regardless of the shape of H).

Finally, note that Proposition 3 only shows that capital is subsidized for types below a
threshold and taxed for types above it, and not that marginal capital taxes are increasing
throughout the entire wealth distribution. We can however establish this stronger result under
some additional assumptions.

25This is for the case where X (θ) = {x (θ)}. When X (θ) is not a singleton, all that can be said in general
about the effect of an additional unit of savings on required period 2 resources under the most tempting reform
is that it lies in between Φ′ (u2 (θ) + x (θ)) and Φ′ (u2 (θ) + x̄ (θ)).
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Figure 4: Capital taxes when H is a step function with within-period commitment

Proposition 4. In any monotone solution, there exists a threshold u∗2 such that
(i) If H ′ is single-peaked at 0, then τk (θ) is non-decreasing on {θ : u2(θ) > u∗2}.
(ii) If −u′′ (c) /u′ (c)2 is non-increasing, then τk (θ) is non-decreasing on {θ : u2(θ) < u∗2}.

Proof. See Appendix C.5.

The results of this section can again be particularly easily illustrated for the case where H
is a step function. In this case, it can be shown that X (θ) is single-valued almost everywhere,
and in particular that it is flat at x (θ) = 0 for all θ in an interval [θl, θh] (corresponding to types
that are indifferent between the status quo and the reform), and is decreasing on the intervals
(θ, θl) and

(
θh, θ

)
(in order to fully equalize reform consumption for types in those intervals).

Figure 4 depicts the resulting shape of û2 compared to u2 as well as the intertemporal wedge
τk, which is weakly increasing in θ.

7 Conclusion

This paper has studied dynamic non-linear taxation under the assumption that a policy is
sustainable if it maintains the support of a large enough political coalition over time. Optimal
taxes differ starkly from those in settings where the government is free of political constraints.
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Rather than predicting zero capital taxes as in the full commitment case, our model predicts
progressive or U-shaped capital taxes, so that saving is subsidized for the poor and/or the
middle class but taxed for the rich, recalling Director’s law of public redistribution (Stigler,
1970). More generally, our analysis suggests that the nature of potential political reforms is
an important determinant of the progressivity and middle-class bias of capital taxes, and of
redistribution more broadly.
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A Appendix: Revelation Principle

This section formulates the model as a game between the individuals and the government, and establishes the
relevant version of the revelation principle. Individuals’ and the government’s preferences are as in the text.
The game will involve tax schedules (Ty, Tk), which importantly are required to satisfy the resource constraint
whatever production decisions individuals make. Formally, let G be the set of probability distributions on R+,
corresponding to possible distributions of output or capital. A labor tax schedule Ty is a map from R+×G →R
such that

´
y∈R+

Ty (y,G) dG ≥ 0 for all G ∈ G. A capital tax schedule Tk is a map from R+ ×G →R such that´
k∈R+

Tk (Rk,G) dG ≥ 0 for all G ∈ G. The game is as follows:
Period 1:

1. There is an exogenous status quo tax schedule
(
TSQy , TSQk

)
. Individuals decide whether to support the

period 1 status quo.

2. If at least α individuals support the status quo, then the labor tax schedule TSQy is implemented (see
below), and the period 2 status quo is set to TSQk . If fewer than α individuals support the status quo,
then the government proposes a reform tax schedule (Ty, Tk), the labor tax schedule Ty is implemented
and the period 2 status quo is set to Tk.
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3. Taking as given the implemented labor tax schedule T̃y (which may equal either TSQy or Ty), individuals
produce, pay labor taxes, and consume in period 1, as follows:

(a) Individuals simultaneously choose production y.

(b) Given the resulting distribution of output Gy, an individual who produced y pays labor tax
T̃y (y,Gy).

(c) An individual with after-tax income y − Ty (y,Gy) chooses period 1 consumption c1 ∈ [0, y−
Ty (y,Gy)]. This leaves her with capital k = y − Ty (y,Gy) − c1 ≥ 0. Denote the resulting
distribution of capital by Gk.

Period 2:

1. Individuals decide whether to support the period 2 status quo T̃k (which may equal either TSQk or Tk).

2. If at least α individuals support the status quo, then the capital tax schedule T̃k is implemented, meaning
that an individual with capital k consumes Rk − T̃k

(
RK,Gk

)
. If fewer than α individuals support the

status quo, then the government implements an expropriative reform capital tax schedule, which leads
to the period 2 consumption schedule c2 (θ) = RK for all θ.

Under Assumption 1, it would be equivalent to let the government choose a reform capital tax schedule in
the final stage, rather than hard-wiring the choice of an equalizing reform into the definition of the game. The
only reason for the current approach is that it simplifies notation in the following solution concept.

A (symmetric, pure strategy, subgame perfect) equilibrium consists of a period 1 reform tax schedule (Ty, Tk),
and production, consumption, and political support strategies Y : Ty × Tk × Θ → y, C : Ty × Tk × Θ → c1,

S1 : Ty ×Tk ×Θ→ {0, 1}, S2 : Tk ×R+ → {0, 1} (where Ty and Tk are the sets of possible tax schedules T̃y and
T̃k, and S1 and S2 denote political support strategies in period 1 and 2), such that:

1. (Ty, Tk) maximizes the government’s payoff given (Y,C).

2. (Y,C) maximizes the utility of each type θ given
(
T̃y, T̃k

)
and given that other individuals follow

(Y,C, S1, S2).

3. S1 and S2 are “sincere,” in that a type θ individual supports the period t status quo if and only if
vSQt (θ) + εSQ ≥ vRt (θ) + εR.

4. C
(
T̃y, T̃k, θ

)
≤ Y

(
T̃y, T̃k, θ

)
− T̃y

(
Y
(
T̃y, T̃k, θ

)
, GY (T̃y,T̃k,·)

)
for all T̃y ∈ Ty, T̃k ∈ Tk, θ ∈ Θ (i.e.,

individuals do not consume more than their after-tax incomes in period 1).

An allocation (c1 : Θ→ R+, c2 : Θ→ R+, y : Θ→ R+) is a mapping from types to period 1 consumption,
period 2 consumption, and production. An allocation is feasible if it satisfies the intertemporal resource
constraint

´
(c1 (θ) + c2 (θ) /R) dF ≤

´
y (θ) dF. An allocation is implementable if there exists an equilibrium

(Ty, Tk, Y, C, S1, S2) such that Y
(
T̃y, T̃k, θ

)
= y (θ)∀θ ∈ Θ, C

(
T̃y, T̃k, θ

)
= c1 (θ)∀θ ∈ Θ andD

(
T̃y, T̃k, Y, C, θ

)
= c2 (θ)∀θ ∈ Θ, where D

(
T̃y, T̃k, Y, C, θ

)
is the period 2 consumption of a type θ individual in equilibrium

(Ty, Tk, Y, C, S1, S2).
In the text, attention is restricted to feasible, incentive-compatible direct mechanisms that satisfy the no-

reform constraint
´
H (c2 (θ) , RK) dF ≥ α. This approach is justified by the following result.

Proposition 5 (Revelation Principle). Under Assumption 2, every implementable allocation is feasible, incentive-
compatible, and satisfies the no-reform constraint.
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The converse also holds for monotone allocations, as shown in Section 4.2 (building on Proposition 3 of
Farhi et al., 2012).

Proof. Showing that any implementable allocation is feasible is a simple accounting exercise. Any implementable
allocation is incentive-compatible as a direct mechanism, by the usual revelation principle argument (whether
or not it is implemented in an equilibrium in which a reform occurs): a unilateral deviation does not affect
the implemented tax schedules or the resulting distributions Gy or Gk, so if y (θ) and c1 (θ) are the optimal
production and period 1 consumption choices of a type θ individual given others’ behavior, then in particular
she prefers (c1 (θ) , c2 (θ) , y (θ)) to (c1 (θ′) , c2 (θ′) , y (θ′)) for all θ′ ∈ Θ. Thus, it suffices to show that every
implementable allocation satisfies the no-reform constraint (6) when viewed as a direct mechanism.

To see this, note that if an allocation is implemented in an equilibrium in which no period 2 reform occurs,
then it satisfies the no-reform constraint when viewed as a direct mechanism, as the condition for no period
2 reform to occur in equilibrium is precisely the no-reform constraint for the corresponding direct mechanism.
In addition, if an allocation (c1, c2, y) is implemented in an equilibrium in which a period 2 reform does occur,
then c2 is constant. In this case, Assumption 2 implies that (c1, c2, y) satisfies the no-reform constraint when
viewed as a direct mechanism.

B Appendix: Monotone Solution to Government Problem
We begin with a novel monotone methods lemma. We will make use of this lemma repeatedly in different
contexts throughout the paper, so we state it in general language. Note that the lemma concerns randomized
consumption schedules, while the model allows only deterministic consumption schedules. The strategy is
thus to show that monotone, deterministic consumption schedules are optimal in the class of all deterministic
schedules by showing that they are optimal in the larger class of all randomized schedules.26 A side benefit
of this approach is that it shows that our results would not change if we allowed randomized schedules in the
model, as such schedules would not be optimal.

Lemma 5. Let P be drawn from the set of right-continuous functions from an open set Θ ⊆ R to ∆ (R), the
set of Borel distributions over real-valued allocations a.27 Let X be an arbitrary index set, let F be a cdf on Θ

with positive density f , and consider the program

W = sup
P

ˆ ˆ
w (a, t (θ)) dPdF

subject to one of the following constraints
ˆ ˆ

yx (a,A (P )) dPdF ≤ 0 for all x ∈ X, where A (P ) =

ˆ ˆ
adPdF, (C)

or
ˆ ˆ

yx (a) dPdF ≤ 0 for all x ∈ X.28 (C’)

26Technically, Lemma 5 only implies that monotone schedules are optimal in the class of right-continuous
schedules, rather than measurable ones. But it is straightforward to use (11) to show that there do exist
right-continuous solutions to the government’s problems; the argument is as in the proof of Lemma 2.

27Continuity here is with respect to the weak topology. That is, we require that if θ′ ↓ θ then P (θ′) converges
in distribution to P (θ).

28That is, constraint C is a more general version of constraint C’ that allows the functions yx to de-
pend on the aggregate allocation A (P ). Note also that constraint C may equivalently be written as
supx∈X

´ ´
yx (a,A (P )) dPdF ≤ 0, and similarly for constraint C’.
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Assume that w is continuous and has strictly increasing differences in a and t, yx is continuous for all x ∈ X,
and t is right-continuous. Then
(i) In any solution P , if t (θ′) < t (θ′′) then a (θ′) ≤ a (θ′′) for all a (θ′) ∈ suppP (θ′) and a (θ′′) ∈ suppP (θ′′).
(i’) If the constraint takes the more restrictive form of constraint C’, then for any solutions P ′ and P ′′, if
t (θ′) < t (θ′′) then a (θ′) ≤ a (θ′′) for all a (θ′) ∈ suppP ′ (θ′) and a (θ′′) ∈ suppP ′′ (θ′′).
(ii) If a solution exists and t is non-decreasing, then there exists a deterministic solution in which a is non-
decreasing.

Proof. Part (i). To obtain a contradiction, suppose that there exist θ′, θ′′ ∈ Θ such that t (θ′) < t (θ′′) and
yet a (θ′) > a (θ′′) for some a (θ′) ∈ suppP (θ′) , a (θ′′) ∈ suppP (θ′′). Since t and P are right-continuous
and Θ is open, there exist disjoint closed intervals of positive length Θ′ ⊆ Θ and Θ′′ ⊆ Θ such that t (θ′) <

t (θ′′) and a (θ′) > a (θ′′) for some a (θ′) ∈ suppP (θ′) , a (θ′′) ∈ suppP (θ′′) for all θ′ ∈ Θ′, θ′′ ∈ Θ′′. Let
ā (θ) = sup {suppP (θ′)}, a (θ) = inf {suppP (θ′)}, and ν ≡ infθ′∈Θ′,θ′′∈Θ′′ ā (θ′) − a (θ′′) > 0. Without loss of
generality, let the lengths of Θ′ and Θ′′ be equal. Define φ : Θ′ → Θ′′ by φ (θ) = θ+θ′′−θ′, so that in particular
φ is an invertible bijection. Given a distribution P (θ), let P̄ (θ) and P (θ) denote the truncation of P (θ) on
[ā (θ)− ν/4, ā (θ)] and [a (θ) , a (θ) + ν/4], respectively. Define a new randomized schedule P̂ by

P̂ (θ) ≡


P (θ) + ε

f(θ)

(
γ(θ)P (φ (θ))− γ(φ(θ))P̄ (θ)

)
if θ ∈ Θ′

P (θ) + ε
f(θ)

(
γ(θ)P̄

(
φ−1 (θ)

)
− γ(φ−1(θ))P (θ)

)
if θ ∈ Θ′′

P (θ) if θ /∈ Θ′ ∪Θ′′,

where the factors γ(θ) ≡
´
dP (θ) and γ(θ) ≡

´
dP (θ) ensure that P̂ (θ) integrates to one for each θ, and we fix

some ε > 0 such that ε < infθ∈Θ′∪Θ′′ f (θ), which (together with γ(θ), γ(θ) ≤ 1 for all θ) ensures that P̂ (θ) is a
well-defined probability distribution for all θ.

The variation P̂ is constructed such that, for any x ∈ X, we have
´ ´

yx(a)dP̂dF =
´ ´

yx(a)dPdF because

ˆ ˆ
yx(a)dP̂dF −

ˆ ˆ
yx(a)dPdF

= ε

ˆ
Θ′

ˆ
yx(a)

(
γ(θ)dP (φ(θ))− γ(φ(θ))dP (θ)

)
dθ + ε

ˆ
Θ′′

ˆ
yx(a)

(
γ(θ)dP (φ−1(θ))− γ(φ−1(θ))dP (θ)

)
dθ

= ε

ˆ
Θ′

ˆ
yx(a)

(
γ(θ)dP (φ(θ))− γ(φ(θ))dP (θ) + γ(φ(θ))dP (θ)− γ(θ)dP (φ(θ))

)
dθ = 0.

In particular, this implies that A(P̂ ) = A(P ) and therefore

ˆ ˆ
yx

(
a,A(P̂ )

)
dP̂dF =

ˆ ˆ
yx (a,A(P )) dPdF

for all x ∈ X; that is, if P satisfies constraint C or C’, then so does P̂ . In addition,
ˆ ˆ

w(a, t(θ))dP̂dF −
ˆ ˆ

w(a, t(θ))dPdF

= ε

ˆ
Θ′

[ˆ
w(a, t(θ))γ(θ)dP (φ (θ))−

ˆ
w(a, t(θ))γ(φ(θ))dP̄ (θ)

]
dθ

+ε

ˆ
Θ′′

[ˆ
w(a, t(θ))γ(θ)dP̄

(
φ−1 (θ)

)
−
ˆ
w(a, t(θ))γ(φ−1(θ))dP (θ)

]
dθ

= ε

ˆ
Θ′

[ˆ
[w(a, t(θ))− w(a, t(φ(θ)))] γ(θ)dP (φ (θ))−

ˆ
[w(a, t(θ))− w(a, t(φ(θ)))] γ(φ(θ))dP̄ (θ)

]
dθ.
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For each θ ∈ Θ′, t(θ) < t(φ(θ)), and because w(a, t) has increasing differences, w(a, t(θ)) − w(a, t(φ(θ))) is
decreasing in a. Therefore,
ˆ

[w(a, t(θ))− w(a, t(φ(θ)))] γ(θ)dP (φ (θ)) > [w (a (φ(θ)) + ν/4, t(θ))− w (a (φ(θ)) + ν/4, t(φ(θ)))] γ(θ)γ(φ(θ)),

where we used
´
dP (φ(θ)) = γ(φ(θ)). Similarly, for each θ ∈ Θ′,

ˆ
[w (a, t(θ))− w (a, t(φ(θ)))] γ(φ(θ))dP̄ (θ) < [w (a (θ)− ν/4, t(θ))− w (a (θ)− ν/4, t(φ(θ)))] γ(φ(θ))γ(θ).

Hence,

ε

ˆ
Θ′

[ˆ
[w(a, t(θ))− w(a, t(φ(θ)))] γ(θ)dP (φ (θ))−

ˆ
[w(a, t(θ))− w(a, t(φ(θ)))] γ(φ(θ))dP̄ (θ)

]
dθ

> ε

ˆ
Θ′

[
w (a (φ (θ)) + ν/4, t (θ))− w (a (φ (θ)) + ν/4, t (φ (θ)))

− [w (ā (θ)− ν/4, t (θ))− w (ā (θ)− ν/4, t (φ (θ)))]

]
γ (φ (θ)) γ̄ (θ) dθ

> 0,

where the last inequality follows because a (φ (θ))+ν/4 < a (θ)−ν/4 for all θ ∈ Θ′ and w(a, t(θ))−w(a, t(φ(θ)))

is decreasing in a (as w (a, t) has increasing differences). Therefore, P̂ achieves a strictly higher value of the
objective than P , so P cannot be a solution.

Part (i’). Under Constraint C’, if P ′ and P ′′ are both solutions then so is the function 1
2P
′ + 1

2P
′′ given

by
(

1
2P
′ + 1

2P
′′) (θ) = 1

2P
′ (θ) + 1

2P
′′ (θ) for all θ. Noting that suppP ′ (θ′) ⊆ supp

(
1
2P
′ + 1

2P
′′) (θ′) and

suppP ′′ (θ′′) ⊆ supp
(

1
2P
′ + 1

2P
′′) (θ′′), the result follows from applying (i) to 1

2P
′ + 1

2P
′′.

Part (ii). Let P be a solution. Taking θ′′ ↓ θ′ and recalling that P (θ) is right-continuous, (i) implies
that P is already deterministic and monotone over every interval Θ′ ⊆ Θ on which t is strictly increasing.
It remains only to show that P may be replaced by a deterministic and monotone allocation on those in-
tervals Θ′ on which t is constant. To see that this is possible, fix such an interval Θ′ =

[
θ′, θ̄′

]
, and let

a = inf {a0 : a0 ∈ suppP (θ) , θ ∈ Θ′}. Now define the deterministic and monotone allocation a : Θ′ → R by

a (θ) = inf

{
a0 :

ˆ
Θ′

I {a ∈ [a, a0]} dPdF ≥ F (θ)− F
(
θ′
)}

.

It follows that for every interval of allocations A = [a, a0],

ˆ
Θ′

I {a (θ) ∈ A} dF =

ˆ
Θ′

I {a ∈ A} dPdF,

and therefore that the same holds for every measurable set of allocations A ⊆ R. Since t is constant on Θ′,
this implies that replacing P with a on Θ′ does not affect the objective or the constraints of the program.
Thus, performing this replacement on all intervals on which t is constant yields a deterministic and monotone
solution.

It is straightforward to use Lemma 5 to establish existence of a monotone solution.

Lemma 6. There exists a solution to the government’s problem in which c2 (θ) is non-decreasing.

Proof. We relax the government’s problem by allowing randomized consumption schedules, and show that there
exists a deterministic solution to the relaxed problem with c2 (θ) non-decreasing. This implies that there exists
a solution to the original problem with c2 (θ) non-decreasing.
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Formally, allow the government to choose, for each θ ∈ Θ, a distribution P (θ) over consumption levels
(c1 (θ) , c2 (θ)) such that P (θ) is right-continuous in the weak topology and U (θ) = u (c1 (θ)) + βu (c2 (θ)) is
constant for all (c1 (θ) , c2 (θ)) ∈ suppP (θ). Rewrite the dual problem as

min
U,P,y

ˆ ˆ (
u−1 (U (θ)− βu (c2)) +

1

R
c2 − y (θ)

)
dPdF

subject to U (θ)− h (y (θ) , θ) ≥ U (θ′)− h (y (θ′) , θ) for all θ, θ′,ˆ
(U (θ)− h (y (θ) , θ)) dF ≥ V,

ˆ ˆ
H

(
c2,

ˆ ˆ
c2dPdF

)
dPdF ≥ α.

Our assumptions ensure that a solution to this problem exists because the objective is continuous and the
constraint set is closed and can be bounded using the Inada conditions on u. Moreover, observe that at any
solution, P must solve the subproblem

min
P

ˆ ˆ (
u−1 (U (θ)− βu (c2)) +

1

R
c2

)
dPdF

subject to ˆ ˆ
H

(
c2,

ˆ ˆ
c2dPdF

)
dPdF ≥ α.

Note that u−1 (U (θ)− βu (c2 (θ))) has strictly decreasing differences in U (θ) and c2 (θ) by strict concavity of
u, and that U (θ) is right-continuous and is non-decreasing by the incentive-compatibility constraint (2). The
result then follows from Lemma 5 (ii).

C Appendix: Omitted Proofs

C.1 Proof of Proposition 2
When H is a step function, the government’s dual problem is

min
c1,c2,y

ˆ (
c1 (θ) +

1

R
c2 (θ)− y (θ)

)
dF

subject to (2), (10), (7), and the no-reform constraint

ˆ
I {c2 (θ) ≥ RK} dF ≥ α. (28)

As in the case where H is differentiable, any solution must solve the subproblem

min
c2,K

ˆ (
u−1 (U (θ)− βu (c2 (θ))) +

1

R
c2 (θ)

)
dF

subject to (10) and (28).
In any monotone solution, the set {θ : c2 (θ) = RK} is an interval, which we take to be a closed interval

[θl, θh] without loss of generality (up to consumption at the endpoints).
Claim 1: τk (θ) = τk (θ′) for almost all θ, θ′ /∈ [θl, θh].
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Proof: If not, then there exist a constant δ > 0 and sets of types Θ and Θ′ of equal measure such that
τk (θ) > τk (θ′) for all θ ∈ Θ, θ′ ∈ Θ′ and |c2 (θ)−RK| > δ for all θ ∈ Θ ∪ Θ′. Vary the solution to the
subproblem by increasing c2 (θ) by ε > 0 for all θ ∈ Θ and decreasing c2 (θ) by ε for all θ ∈ Θ′. This variation
does not affect (10) and (28) if ε < δ , and its first-order effect on the objective is

ˆ
Θ

(
−β u

′ (c2 (θ))

u′ (c1 (θ))
+

1

R

)
dF −

ˆ
Θ′

(
−β u

′ (c2 (θ))

u′ (c1 (θ))
+

1

R

)
dF

=
1

R

(
−
ˆ

Θ

τk (θ)

1− τk (θ)
dF +

ˆ
Θ′

τk (θ)

1− τk (θ)
dF

)
< 0.

Therefore, the variation is a strict improvement for sufficiently small ε.
Let τ∗k denote the common capital tax for types θ /∈ [θl, θh].
Claim 2: τ∗k ≥ 0.
Proof: If not, vary the solution to the subproblem by decreasing c2 (θ) by min {ε, c2 (θ)−RK} for all

θ /∈ [θl, θh]. This variation relaxes (10) and does not affect (28), and its first-order effect on the objective is

ˆ
θ/∈[θl,θh]

τ∗k
1− τ∗k

dF < 0.

The variation is a strict improvement for sufficiently small ε.
Claim 3: τk (θ) is non-decreasing on [θl, θh].
Proof: Follows from the fact that U (θ) is non-decreasing in [θl, θh] (which is a consequence of incentive

compatibility) and (3).
Claim 4: τk (θ) ≤ τ∗k for almost all θ ∈ [θl, θh].
Proof: If not, then there exist a constant δ > 0 and sets of types Θ ⊆ [θl, θh] and Θ′ of equal measure such

that τk (θ) > τk (θ′) = τ∗k for all θ ∈ Θ, θ′ ∈ Θ′ and |c2 (θ′)−RK| > δ for all θ ∈ Θ′. Vary the solution to the
subproblem by increasing c2 (θ) by ε > 0 for all θ ∈ Θ and decreasing c2 (θ) by ε for all θ ∈ Θ′. This variation
does not affect (10) and relaxes (28) if ε < δ, and its first-order effect on the objective is

1

R

(
−
ˆ

Θ

τk (θ)

1− τk (θ)
dF +

ˆ
Θ′

τ∗k
1− τ∗k

dF

)
< 0.

The variation is a strict improvement for sufficiently small ε.

C.2 Proof of Lemma 2
(i) A solution to (DP) exists because the objective (21) is continuous and the constraint set defined by (22) and
(23) is closed (by continuity of H and F ) and can be bounded by the Inada conditions on u. For generic values
of α, any solution satisfies the following Lagrange multiplier equation (Clarke, 1976, Theorem 3), where λ is a
multiplier on (22) and µ is a multiplier on (23):

Φ′ (u2 (θ) + x (θ)) + µH ′ (−x (θ)) = λ

The set of values of x (θ) that satisfy this equation is upper hemi-continuous in u2 (θ), as Φ and H are continu-
ously differentiable. For values ū2 such that {θ : u2 (θ) = ū2} is a singleton, the corresponding value of x (θ) may
thus be taken to equal its right-hand limit. For the remaining values ū2, the solution is unaffected by ordering
the corresponding values of x (θ) monotonically in θ, as in the proof of Lemma 5. The resulting allocation is a
right-continuous solution.
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(ii) Follows from Lemma 5 (i’) because Φ (u2 (θ) + x (θ)) has strictly increasing differences in u2 (θ) and
x (θ), as Φ is convex.

(iii) Lipschitz continuity: For any consumption schedule ũ2, let X (ũ2) be the corresponding set of solutions
to (DP). Fix a consumption schedule u2, and for any ε > 0 let

X∗ (ε) =
⋃

ũ2:|u2−ũ2|<ε

X (ũ2) ,

where |·| is the sup norm. Then

RD (ũ2) = min
x∈X∗(ε)

ˆ
Φ (ũ2 (θ) + x (θ)) dF

for all ũ2 such that |u2 − ũ2| < ε. Hence, for all such ũ2,

|RD (u2)−RD (ũ2)| ≤ max
x∈X∗(ε)

ˆ
|Φ (u2 (θ) + x (θ))− Φ (ũ2 (θ) + x (θ))| dF

≤ |u2 − ũ2| sup
θ∈Θ,x∈X∗(ε),
u′2:|u2−u′2|<ε

Φ′ (u′2 (θ) + x (θ)) ,

and so
|RD (u2)−RD (ũ2)|

|u2 − ũ2|
≤ sup
θ∈Θ,x∈X∗(ε),
u′2:|u2−u′2|<ε

Φ′ (u′2 (θ) + x (θ)) ≤ sup
θ∈Θ,x∈X∗(ε)

Φ′ (u2 (θ) + ε+ x̄ (θ)) ,

where the second inequality follows from part (ii). The right-hand side of this inequality converges to supθ Φ′ (u2 (θ)

+x̄ (θ)) <∞ as ε→ 0, so RD (u2) is locally Lipschitz continuous.

C.3 Proof of Lemma 3
Constraint

´
Φ (u2 (θ)) dF − κ ≤ RD (u2) can be written as

´
Φ (u2 (θ)) dF − κ ≤

´
Φ (u2 (θ) + x (θ)) dF for all

x ∈ X, where X is the set of all x-schedules that satisfy (22) and (23). The constraint set therefore takes the
same form as (C’) in Lemma 5, so the result follows from Lemma 5 (ii) by the same argument as in Lemma 6.

C.4 Proof of Proposition 3
Let u∗2 = inf {u2 : ∃θ such that u2 (θ) = u2 and x (θ) ≤ 0}. Then u2 (θ) < u∗2 =⇒ x (θ) > 0 by definition,
and u2 (θ) > u∗2 =⇒ x̄ (θ) ≤ 0 by Lemma 2 (ii). Hence, by (26), u2 (θ) < u∗2 =⇒ τk (θ) ≤ 0 and
u2 (θ) > u∗2 =⇒ τk (θ) ≥ 0.

The proposition follows immediately if there is no type θ with u2 (θ) = u∗2, or if those types θ with
u2 (θ) = u∗2 either all face positive taxes or all face negative taxes. In the remaining case, let θ∗ = inf {θ :

u2 (θ) = u∗2, τk (θ) ≥ 0}. Note that τk is non-decreasing on {θ : u2 (θ) = u∗2} by monotonicity of U (θ) (an impli-
cation of (2)) and (3). Therefore, θ < θ∗ implies that either u2 (θ) < u∗2 (and hence τk (θ) ≤ 0) or u2 (θ) = u∗2
and τk < 0. Similarly, θ > θ∗ implies that either u2 (θ) > u∗2 (and hence τk (θ) ≥ 0) or u2 (θ) = u∗2 and τk > 0.
In any case, θ < θ∗ =⇒ τk (θ) ≤ 0 and θ > θ∗ =⇒ τk (θ) ≥ 0.

C.5 Proof of Proposition 4
Let u∗2 be as in the proof of Proposition 3.
(i) We first claim that if θ < θ′ and u2 (θ) , u2 (θ′) > u∗2, then u2 (θ) + x (θ) ≥ u2 (θ′) + x̄ (θ′). To see this, write
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(DP) as

min
û2

ˆ
H (u2 (θ)− û2 (θ)) dF

subject to
ˆ

Φ (û2 (θ)) dF ≤ RK − κ and
ˆ
û2 (θ) dF ≥

ˆ
u2 (θ) dF.29

Fix a solution û∗2 : Θ → R. Let Θ′ = {θ : u2 (θ) > u∗2}, V̄ =
´

Θ\Θ′ û
∗
2 (θ) dF , and K̄ =

´
Θ\Θ′ Φ (û∗2 (θ)) dF .

Then a necessary condition for optimality is that the restriction of û∗2 to Θ′ solves the subproblem

min
û2:Θ′→R

ˆ
Θ′
H (u2 (θ)− û2 (θ)) dF

subject to K̄ +

ˆ
Θ′

Φ (û2 (θ)) dF + κ ≤ RK and V̄ +

ˆ
Θ′
û2dF ≥

ˆ
u2dF.

If u2 (θ) > u∗2 then u2 (θ) ≥ û∗2 (θ) for every solution to (DP), by the definition of u∗2 and Lemma 2 (ii). Hence,
a necessary condition for optimality is that û∗2 still solves the above subproblem when û2 is restricted to satisfy
u2 (θ) ≥ û2 (θ) for all θ ∈ Θ′. Now, since H ′ is single-peaked at 0, the objective in this subproblem has strictly
increasing differences in u2 (θ) and û2 (θ) over this range, while u2 (θ) does not enter in the constraints except
through the constant

´
u2dF , so Lemma 5 (i) implies that at every solution û2 (θ) is non-increasing in u2 (θ),

and hence in θ.
We now have u2 (θ) ≤ u2 (θ′) (by definition of monotone solution) and u2 (θ) + x (θ) ≥ u2 (θ′) + x̄ (θ′). So

in particular
Φ′ (u2 (θ) + x (θ))

Φ′ (u2 (θ))
≥ Φ′ (u2 (θ′) + x̄ (θ′))

Φ′ (u2 (θ′))
. (29)

By Lemma 4, this implies that τk (θ) ≤ τk (θ′).
(ii) Note that −u′′ (c) /u′ (c)2 is non-increasing ⇔ Φ′′ (u2) /Φ′ (u2) is non-increasing ⇒ Φ′ (u2 + x) /Φ′ (u2)

is non-increasing in u2 ∀x ≥ 0. Now if θ < θ′ and u2 (θ) , u2 (θ′) < u∗2, then u2 (θ) ≤ u2 (θ′) by definition of a
monotone solution, x (θ) ≥ x̄ (θ′) by Lemma 2 (ii), and x (θ) ≥ 0 by Proposition 3. Therefore, (29) holds by
convexity of Φ and the fact that Φ′ (u2 + x (θ)) /Φ′ (u2) is non-increasing in u2. By Lemma 4, this implies that
τk (θ) ≤ τk (θ′).

29This dual approach to (DP) is valid whenever the no-reform constraint in the government’s problem is
binding: if the value of this dual program is less than α, then varying û2 toward more equal consumption will
decrease

´
Φ (û2 (θ)) dF without violating the welfare constraint and will still receive enough support relative

to the status quo.
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