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Abstract. We study path-independent choice rules applied to a matching context. We use

a classic representation of these choice rules to introduce a powerful technique for matching

theory. Using this technique, we provide a deferred acceptance algorithm for many-to-many

matching markets with contracts and study its properties. Next, we obtain a compelling

comparative static result: If one agent’s choice expands, the remaining agents on her side

of the market are made worse off, while agents on the other side of the market are made

better off. We study the impact of firm mergers using this result.

A choice rule with a capacity that always binds whenever possible is deemed acceptant.

We provide a constructive proof to show that every path-independent choice rule has an

acceptant path-independent expansion with the same maximum cardinality. Finally, we

characterize the class of responsive choice rules using acceptance.

1. Introduction

In this paper, we study path-independent choice rules in the context of many-to-many

matching markets with contracts (Roth, 1984): There are two sides such as firms and workers.

Each firm and worker can be matched with contracts that may include different terms such

as wages, working hours, fringe benefits, and so on. This model incorporates labor markets,

buyer-seller markets with heterogeneous goods as well as multi-unit assignment problems.

There are many specific real-world matching markets that fit in this framework: the staffing

problem in which each worker is assigned multiple shifts and each shift is assigned multiple

workers; the United Kingdom residency matching market in which each medical student is

matched with two residency programs, one medical and one surgical, and each residency

program is matched with multiple students (Konishi and Ünver, 2006a); the consulting

market in which each firm hires a group of consultants and each consultant can work for

multiple firms (Echenique and Oviedo, 2006); couples matching in the National Resident
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Matching Program (Hatfield and Kojima, 2010); and course allocation problem in which

each student is assigned a set of classes and each class is assigned a set of students (Sönmez

and Ünver, 2010).

In our model, each agent has a choice rule. A choice rule selects a subset from a given set

of contracts. Choice rules are one of the most basic tools in microeconomics: see for example

Moulin (1991), or Chapter 2 in Mas-Colell et al. (1995). In our setting, path independence of

choice rules guarantees the existence of stable matchings. A choice rule is path independent

if the choice over a set of contracts does not change if the set is segmented arbitrarily, the

choice applied to each segment and finally the choice applied again to all chosen contracts

from the segments (Plott, 1973).

Taking choice rules as primitives of a matching market has many advantages. First and

most importantly, in many contexts, it is not natural to assume that a choice rule is ratio-

nalizable by a preference. In the environments we have in mind, a single rational decision

maker does not determine the choice rule. A firm has many managers, each of whom makes

separate hiring decisions. A major theme of our work is that path independence, rather

than classical rationality properties based on revealed preference, is more appropriate in

such contexts. Even when there is only one agent making decisions, it is not realistic that

the choice is rationalizable by an underlying preference. Indeed, cyclical choice is persistently

observed in many experiments including very simple settings with binary comparisons over

a few alternatives are made.1

Further, the concept of stability is inherently a choice-theoretic notion. Even for choice

rules that are classically rationalizable, Mart́ınez et al. (2012) show that the set of sta-

ble matchings remains the same when an agent’s preference relation changes as long as

these two preference relations have the same induced choice rule. Moreover, substitutability,

the primary condition guaranteeing the existence of stable matchings when preferences are

primitives, is most naturally described via its choice-theoretic implications. Finally, diver-

sity considerations of schools (Echenique and Yenmez, 2012) or distributional constraints of

regions (Kamada and Kojima, 2014) are expressed using choice rules.

Somewhat surprisingly, the theories of path-independent choice rules and stable matchings

have developed independently. This is unusual, as the classical representation of path-

independent choice rules meshes very well with most matching contexts. We proceed to

describe this representation and describe its utility in matching environments.

1.1. Results. It is well-known in the choice-theoretic literature, though apparently unrec-

ognized in the matching literature, that path-independent choice rules have a very tractable

1See, e.g., Tversky (1969); Loomes et al. (1991) for experimental evidence of cyclical choice behavior
and Manzini and Mariotti (2007); Masatlioglu et al. (2012); De Clippel and Eliaz (2012); Cherepanov et al.
(2013) for theoretical work on non-rationalizable choice.
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representation. Indeed, each path-independent choice rule can be associated with a collec-

tion of preference relations. From any set of contracts, the choice rule chooses the union of

best contracts with respect to each preference relation (Aizerman and Malishevski, 1981).

Thus, not only are path-independent choice rules mathematically convenient, but also they

naturally model a firm with separate positions, each of which has a ranking over contracts,

for example.

This representation turns out to be extremely useful for establishing new results; and in

fact, provides an intimate connection between the one-to-one matching model and its many-

to-many counterpart. To this end, we can view a firm as a collection of positions, and a

worker as a collection of personas, each of whom behave independently of each other. This

allows us to treat each agent in the many-to-many matching market as a collection of agents

with unit demand acting independently of each other. Such a representation, therefore,

allows us to apply standard ideas from the one-to-one case in many-to-many markets.

We illustrate this principle by generalizing some known results and also by establishing new

ones. In particular, we obtain two results on stable matchings. First, we show that there is a

natural generalization of the deferred acceptance algorithm (DA) (Gale and Shapley, 1962)

to many-to-many matching markets with contracts. In one version of the algorithm, firm

positions make offers to the workers. In the other version, worker personas make offers to the

firms. We show that the firm-proposing DA produces the firm-optimal stable matching when

choice rules are path independent (Theorem 1). Second, we establish a useful comparative

static result: Expanding the choice rule of an agent makes every other agent on the same

side worse off and every agent on the other side better off in a revealed preference sense

(Theorem 2). We study the impact of firm mergers on workers and other firms using this

result in Section 5. We show that if firms merge and expand, then workers are better off

and every remaining firm is worse off. However, if firms merge and consolidate, workers are

worse off while other firms are better off.

It should be noted that these results are only a small fraction of what can be established

using the representation of path-independent choice rules. Many other related results can

be proved; and in most cases, a result in the one-to-one model has a natural counterpart in

the many-to-many model via this technique.

Moreover, ideas from matching theory suggest natural research directions for choice theory.

We establish several results motivated by matching theory that we believe are of independent

interest to choice theorists. We proceed to detail these ideas below.

In a perfect world, firms would admit every worker from any given pool (or schools would

admit every student), but they are usually bound by some capacity. Therefore, the capacity

acts as a physical constraint on the set of contracts, so that choices must be feasible for that

capacity. We say that an agent’s choice rule is q−acceptant if it always selects q contracts
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when at least q contracts are available in the pool, and otherwise selects all of them. A

choice rule is acceptant if it is q-acceptant for some q.

Next, we prove several results on path-independent choice rules. We show that every path-

independent choice rule for which all choices have cardinality of at most q can be expanded

to a q-acceptant path-independent choice rule, and we provide an algorithm for doing so

(Theorem 4). Thus, acceptance comes essentially for free. This result is important because

if the deferred acceptance algorithm is used to assign workers to firms, then all of the workers

prefer the outcome with the expanded choices.2

Another desirable property of choice rules is the law of aggregate demand (LAD).3 LAD

states that the number of contracts chosen from a set is not smaller than that of any subset.

Since LAD is a weaker condition than acceptance, Theorem 4 also implies that every path-

independent choice rule can be expanded to satisfy LAD without increasing the maximum

cardinality (Corollary 3).

Aside from these, we offer a characterization of a class of prominent path-independent

choice rules that are used in practice, such as school choice (Abdulkadiroğlu and Sönmez,

2003) and the National Resident Matching Program (Roth and Peranson, 1999), without

directly imposing path independence. The characterization is useful in discussing the nor-

mative content of this widely used choice rule. We say that an agent’s choice rule is responsive

if there exist a preference relation over the contracts and a capacity for which the choice

rule always selects the highest-ranked available contracts according to the preference relation

without going over the capacity (Roth and Sotomayor, 1990). We show that, together with

acceptance, it is enough to impose an axiom of Ehlers and Sprumont (2008), the weakened

weak axiom of revealed preference (WWARP). This axiom states that for any pair of con-

tracts, x, y, if x is chosen when y is available and y is not chosen, then it can never be that

y is chosen when x is available and x is not chosen. We show that a choice rule is responsive

if and only if it is acceptant and satisfies WWARP (Theorem 5). This result is a direct

generalization of the classical result that a single-valued choice rule satisfying the weak ax-

iom of revealed preference is classically rationalizable. We also establish a characterization

of responsive choice rules for capacity q (Theorem 6).

Finally, we establish the computationally useful fact that every path-independent and q-

acceptant choice rule is uniquely determined by the choices made on sets of cardinality q+ 1

(Theorem 7). Therefore, the number of sets whose choices must be reported grows only

polynomially in the number of contracts, not exponentially.

2This follows directly from Theorem 2. DA is used in many such markets; see Roth and Peranson (1999)
and Pathak and Sönmez (2013).

3LAD has been studied in matching markets with contracts (Fleiner, 2003; Hatfield and Milgrom, 2005).
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1.2. Related Literature. There is now a substantial literature on many-to-many matching

markets with contracts that deals with the existence of stable matchings (Roth, 1984; Fleiner,

2003; Klaus and Walzl, 2009; Hatfield and Kominers, 2012). For example, Roth (1984) intro-

duces a deferred acceptance algorithm when choice rules are rationalizable by preferences.

He further assumes that choice rules are Pareto separable, a restrictive assumption that we

do not need, and he arrives at similar conclusions as in Theorem 1. In contrast, our focus

is on the comparative statics of stable matchings and on the theory of path-independent

choice rules. In addition, we introduce a new technique based on Aizerman-Malishevski

decomposition result to study stable matchings that can be adapted in other studies.

Most of these papers take the preferences of agents as primitives of the model. In this

context, Hatfield and Kominers (2012) show that substitutability is not only sufficient but

also necessary for the existence of stable matchings in a maximal domain sense. However,

when choice rules are primitives of the model, substitutability alone is not enough but addi-

tionally imposing consistency results in existence (Aygün and Sönmez, 2013). Consequently,

in our setting, substitutability and consistency are needed for the existence of stable match-

ings. The conjunction of substitutability and consistency is equivalent to path independence

(Aizerman and Malishevski, 1981).

Path-independent choice rules are a heavily studied class of choice rules, and much is

known about the structure of these objects. In-depth studies of these objects include Plott

(1973) and Moulin (1985). These papers have established many important properties of

these choice rules some of which we use to prove our results.

1.3. Organization of the paper. The rest of the paper is as follows. Section 2 introduces

the model and some preliminary results. Section 3 presents the matching results and Sec-

tion 4 has the results on choice. Section 5 studies the welfare consequences of firm mergers

on workers as well as the remaining firms in the market using our framework. Section 6

concludes. Finally, the Appendix has the omitted proofs.

2. Model

2.1. Individual Choice. Suppose A is the set of potential alternatives (or partners, con-

tracts, etc.) and P(A) = 2A is the powerset of A. A choice rule C : P(A)→ P(A) is such

that

• for every A ⊆ A, C(A) ⊆ A and

• for every non-empty A ⊆ A, C(A) 6= ∅.
The interpretation is if A is the set of available alternatives, then C(A) is the set of chosen

ones. We require the chosen set to be non-empty if there is at least one alternative available.4

4The assumption that the choice is not empty valued plays a role only in Theorem 5. For the rest of the
results, it is not needed.
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A preference relation � on A is a binary relation on A that is complete, transitive,

and antisymmetric.5 Choice rule C is responsive if there exist a preference relation � on

A and a positive integer q such that for any A ⊆ A

C(A) =
q⋃
i=1

{a∗i },

where a∗i is defined inductively as a∗1 = max
A
� and, for i ≥ 2, a∗i = max

A\{a∗1,...,a∗i−1}
� (Roth and

Sotomayor, 1990). When q is fixed exogenously, we call such choice rules q-responsive .6

Next we consider two properties of a choice rule that guarantee the existence of stable

matchings in markets.

Definition 1. Choice rule C is substitutable if for every a ∈ A ⊆ B, a ∈ C(B) implies

a ∈ C(A).

Substitutability requires that if an alternative is chosen from a set, then it must also

be chosen from a subset containing it. Kelso and Crawford (1982) were the first to study

substitutability in a matching context. However, it was studied in the choice literature

earlier and known as Sen’s α or Chernoff’s axiom (Moulin, 1985). Hatfield and Kominers

(2012) show that when choice rules are constructed from preferences over sets of contracts,

the class of choice rules satisfying substitutability forms a maximal domain for which stable

matchings exist for many-to-many matching markets with contracts, in the sense that any

larger domain possesses a profile with no stable matching.7

Definition 2. Choice rule C satisfies consistency if C(A) ⊆ B ⊆ A then C(A) = C(B).

Consistency implies that excluding alternatives that are not chosen does not affect the

chosen set. Substitutability alone does not guarantee the existence of stable matchings when

choice rules are primitives; consistency is also needed in addition to substitutability (Fleiner,

2003; Aygün and Sönmez, 2013).8,9

The following axiom has been studied extensively in the choice literature. It was first

introduced informally by Arrow (1951), and formally by Plott (1973). Moulin (1985) provides

an excellent survey related to the topic. It is important in the study of non-rationalizable

choice rules.

5Complete: For all a, b ∈ A, a � b or b � a. Antisymmetric: For all a, b ∈ A, a � b and b � a implies
a = b. Transitive: For all a, b, c ∈ A, a � b and b � c implies a � c.

6Here, we assume that � is over all alternatives excluding an ‘outside option.’ This plays a role in
Theorems 5 and 6.

7For many-to-one matching markets with contracts, somewhat weaker substitutability conditions are
sufficient for the existence stable matchings (Hatfield and Kojima, 2010).

8Aygün and Sönmez (2013) use irrelevance of rejected contracts instead of consistency.
9Blair (1988) was the first to use consistency in a matching market with wages. See also Alkan and Gale

(2003) for the use of consistency in a matching context.
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Definition 3. Choice rule C is path independent if for every A and B, C(A ∪ B) =

C(A ∪ C(B)).

In words, a choice rule is path independent if the choice over a set of contracts does not

change if the set is segmented arbitrarily, the choice applied to each segment and finally the

choice applied again to all chosen contracts from the segments.

The two aforementioned conditions required for the existence of stable matchings are

equivalent to path independence.10

Lemma 1 (Aizerman and Malishevski (1981)). Choice rule C is path independent if and

only if it satisfies substitutability and consistency.

In our analysis below, we only consider choice rules that are path independent.

2.2. Matching Markets. There exist finite sets of workers W , firms F , and contracts X .

Each contract x ∈ X specifies a relationship between a firm and a worker and it may involve

many terms such as wages, working hours, and fringe benefits. For each contract x ∈ X , the

firm and worker associated with the contract are denoted by f(x) and w(x), respectively.

For a set of contracts X ⊆ X , let Xw = {x ∈ X : w = w(x)} be the set of contracts

associated with worker w and let Xf = {x ∈ X : f = f(x)} be the set of contracts

associated with firm f .

Each worker w has a choice rule Cw on P(Xw) and each firm f has a choice rule Cf on

P(Xf ). The domain of each choice rule is extended to all sets of contracts such that for any

X ⊆ X , Cw(X) = Cw(Xw) and Cf (X) = Cf (Xf ). The profile of workers’ choice rules is

denoted by CW and the profile of firms’ choice rules is denoted by CF . A matching market

is a tuple 〈W ,F ,X , CW , CF〉.
For worker w, a set of contracts X ⊆ Xw is revealed preferred to a set of contracts

Y ⊆ Xw if Cw(X ∪ Y ) = X. Symmetrically, for firm f , a set of contracts X ⊆ Xf is

revealed preferred to a set of contracts Y ⊆ Xf if Cf (X ∪Y ) = X. This definition reflects

the idea that preference in this context is over sets of contracts, rather than individual

contracts.

A matching is a set of contracts. If µ is a matching, the set of contracts assigned to

worker w is µw and the set of contracts assigned to firm f is µf .

For two-sided matching markets, stability has proved to be a useful solution concept

(Roth and Sotomayor, 1990). The concept of stability has been extended to matching with

contracts setting as well.11 Matching µ is stable if

10Both Lemma 1 and Lemma 2 appear in Aizerman and Malishevski (1981), which does not include the
proofs. However, Moulin (1985) proves both of these results, which are stated as Lemma 6 and Theorem 5
there.

11Our definition reduces to the one used in Hatfield and Milgrom (2005) for many-to-one markets and is
the same as the one in Hatfield and Kominers (2012). Furthermore, when choice rules are path independent,
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(1) (Individual rationality) For every worker w, Cw(µw) = µw, and for every firm f ,

Cf (µf ) = µf .

(2) (No blocking) There does not exist a nonempty blocking set of contracts X such

that X ∩ µ = ∅, for every worker w, Xw ⊆ Cw(µw ∪ X), and for every firm f ,

Xf ⊆ Cf (µf ∪X).

In other words, a matching µ is individually rational if every agent wants to keep all of

her contracts. The second condition rules out the existence of a blocking set X such that

every agent wants to have all of the contracts in X associated with her. This definition of

stability generalizes the corresponding notion of Hatfield and Milgrom (2005) in the context

of many-to-one matching markets, see Hatfield and Kominers (2012).

A stable matching µ is worker optimal if for every stable matching µ′ and for every

worker w, µw is revealed preferred to µ′w. A stable matching µ is worker pessimal if for

every stable matching µ′ and for every worker w, µ′w is revealed preferred to µw. Firm-

optimal and firm-pessimal stable matchings are defined analogously. A priori optimal or

pessimal stable matchings need not exist. We establish their existence in the following

section assuming that choice rules are path independent.

3. Stable Matchings and Comparative Statics

We start with the following decomposition lemma that every path-independent choice

rule can be written as the union of choices made by preference relations over individual

contracts. Although this result is well known in the choice literature (e.g., Moulin (1985)),

it is unrecognized in the matching context. For what follows, it is going to be crucial in

establishing our results.

Lemma 2 (Aizerman and Malishevski (1981)). Choice rule C on P(X ) is path independent

if and only if there exists a finite sequence of preference relations on X , {�i}i∈I , such that

for every X ⊆ X
C(X) =

⋃
i∈I
{x∗i },

where x∗i is defined as x∗i = max
X
�i.

Note that every contract is considered in the maximization of the preference relations

rather than the set of remaining contracts. If the choice rule can be empty valued, then this

result remains intact when �i is over X ∪ {∅} and x∗i = max
X∪{∅}

�i.

In the next example, we demonstrate the Aizerman-Malishevski decomposition for a simple

choice rule.12

which we assume throughout the paper, all of the various stability notions used in the literature are equivalent
to each other, see Echenique and Oviedo (2006); Klaus and Walzl (2009).

12In general, this decomposition is not unique. A method for finding one such decomposition is as follows.
Start with any element x1 ∈ C(X ). Then choose an element x2 ∈ C(X \{x1}). Continue iteratively, choosing
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Example 1. Let choice rule C on P({1, 2, 3}) be as follows: C(1, 2, 3) = C(1, 2) = C(1, 3) =

{1}, C(2, 3) = {2, 3} and C(X) = X for every X ⊆ {1, 2, 3} with |X| = 1.13 Consider the

following two preference relations on {1, 2, 3}:
• �1: 1 > 2 > 3, and

• �2: 1 > 3 > 2.

We claim that the decomposition for choice rule C holds with these preference relations.

For instance, consider {1, 2}. For this set, we have max
{1,2}
�1= 1, max

{1,2}
�2= 1 and C(1, 2) = 1.

Similarly, for {2, 3} we have max
{2,3}
�1= 2, max

{2,3}
�2= 3 and C(2, 3) = {2, 3}.

To study stable matchings, we provide a new interpretation of the Aizerman-Malishevski

decomposition of path-independent choice rules in the matching context: Each firm can

be viewed as a collection of “positions” such that for each position there is a separate

preference relation over individual contracts. Therefore, each firm’s choice can be constructed

by choosing the best contract for each position. But for each worker, all positions in the

same firm are the same. Analogously, each worker can be thought of as the union of some

“personas” each of which has its own preference relation over individual contracts. But for

each firm all personas of the same worker are the same.

This interpretation allows us to establish some striking new results as well as generalize

known results in the literature. For example, we generalize the deferred acceptance algorithm

(DA) of Gale and Shapley (1962) to many-to-many matching markets with contracts in which

each worker is viewed as a union of personas.14,15

Worker-Proposing Deferred Acceptance Algorithm (DA)

Step 1: Each persona of every worker considers her most preferred contract and applies

to the associated firm with this contract. Each firm f considers the set of contracts

that has been offered to it, say X1
f , tentatively accepts Cf (X

1
f ) and rejects the rest.

If there are no rejections, stop.

Step k: Each persona whose contract was rejected at Step k − 1 considers her next

preferred contract if such a contract exists and applies to the associated firm with

this contract. Otherwise, this persona does not apply to any firm. Each firm f

considers all of the new contracts that have been offered to it and the tentatively

xk ∈ C(X \ {x1, . . . , xk−1}), obtaining a preference x1 > x2 > . . .. By considering all possible sequential
choices, we obtain a collection of preferences, which are an Aizerman-Malishevski decomposition.

13For ease of notation we denote C({x, . . . , y}) by C(x, . . . , y).
14Note that this approach is different from decomposing each agent to multiple copies with unit demand

with the same preferences, which is done in the case of responsive choice rules (Roth and Sotomayor, 1990).
Here, different personas of the same worker are the same for all firms. Echenique (2007) shows that the set
of choice rules that are path independent are exponentially more than the set of responsive choice rules.

15There are other generalizations of DA based on fixed-point algorithms, see Hatfield and Milgrom (2005);
Hatfield and Kojima (2010), for example.
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accepted contracts at Step k − 1, say Xk
f , accepts Cf (X

k
f ) and rejects the rest. If

there are no rejections, stop.

In the worker-proposing DA, each persona of a worker applies to firms with certain con-

tracts. Each firm treats different personas of the same worker the same and makes choices

over the offered contracts only. Since there is a finite number of contracts, the algorithm

ends in finite time. When choice rules can be empty valued, then DA can be defined analo-

gously, where each persona applies to the next firm if the associated contract is better than

being unmatched. Note that we use the Aizerman-Malishevski decomposition to determine

the order in which workers propose. The firm-proposing deferred acceptance algorithm can

be defined analogously by viewing each firm as the union of some positions with different

preferences over contracts.

In the next result, we show that the worker-proposing deferred acceptance algorithm pro-

duces the worker-optimal stable matching. This matching is also the firm-pessimal stable

matching. The proof, which is provided in the Appendix, illustrates how one can trans-

late ideas from one-to-one matching markets to many-to-many matching markets under the

path independence hypothesis. The idea of the proof constitutes a general method: by

decomposing individuals into agents with unit demand in their own right (via the Aizerman-

Malishevski decomposition), ideas and results from the many-to-many case can be adapted

from analogous one-to-one results almost effortlessly.

Theorem 1. Suppose that each agent has a path-independent choice rule. Then the worker-

proposing deferred acceptance algorithm produces the worker-optimal stable matching. This

matching is also the firm-pessimal stable matching.

There are a couple of related results in the literature. In particular, Roth (1984) introduces

a deferred acceptance algorithm when choice rules are constructed from preferences over

sets of contracts. He further assumes that choice rules are Pareto separable, a restrictive

assumption that we do not need, and he arrives at similar conclusions as in Theorem 1.

Another related work is Fleiner (2003) which shows the existence of stable matchings under

path-independent choice rules using fixed-point methods. Unlike Fleiner (2003), we do not

rely on any such method but provide elementary proofs based on Aizerman-Malishevski

decomposition and we further show worker optimality and firm pessimality in addition to

existence. Similarly, other papers in the literature provide existence results when choice rules

are constructed from preferences (Klaus and Walzl, 2009; Hatfield and Kominers, 2012).

Next we establish a striking result on comparative statics. First, a definition is in order.

Definition 4. Choice rule C ′ on P(X ) is an expansion of choice rule C on P(X ) if, for

every X ⊆ X , C ′(X) ⊇ C(X).
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Thus, for an agent, if choice rule C ′ is an expansion of choice rule C, then for any set of

contracts, every contract chosen by C is also chosen by C ′.

Choice rules may be expanded in a variety of situations. For example, in the context of

residency matching, a residency program’s responsive choice rule may be expanded by either

increasing the capacity of the program or by having more acceptable doctors (or contracts);16

in the context of UK residency matching, a doctor’s choice rule may be expanded by including

more medical or surgical residency programs in the doctor’s list; in the context of controlled

school choice, a school’s choice rule may be expanded by reinterpreting the bounds as soft

bounds rather than hard bounds (Hafalir et al., 2013; Ehlers et al., 2014); and in the context

of Japanese residency matching, a region’s choice rule may be expanded by allowing each

hospital to be matched with more than the target capacity of doctors (Kamada and Kojima,

2014). For all of these situations and possibly more, we derive a comparative static result

implied by the expansion of an agent’s choice rule. In the next section, we study when choice

rules can be expanded in such a manner.

Theorem 2. Suppose that each agent has a path-independent choice rule. Fix a firm f̂ .

Suppose that C ′
f̂

is a path-independent expansion of Cf̂ . Then the following hold.

(1) For any (CW , CF)-stable matching µ, there exists a (CW , (C
′
f̂
, C−f̂ ))-stable matching

µ′ such that, every worker revealed prefers µ′ to µ and every firm other than f̂ revealed

prefers µ to µ′.

(2) For any (CW , (C
′
f̂
, C−f̂ ))-stable matching µ′, there exists a (CW , CF)-stable matching

µ such that every worker revealed prefers µ′ to µ and every firm other than f̂ revealed

prefers µ to µ′.

The proof of Theorem 2 is provided in the Appendix and it uses the deferred acceptance

algorithm that we define above.

As an immediate corollary, we get the following.

Corollary 1. Suppose that each agent has a path-independent choice rule. Fix a firm f̂ .

Suppose that C ′
f̂

is a path-independent expansion of Cf̂ . Then the following hold:

(1) Every worker w revealed prefers the worker-proposing deferred acceptance algorithm

under (CW , (C
′
f̂
, C−f̂ )), say µ′, to the outcome under (CW , CF), say µ, and every firm

other than f̂ revealed prefers µ to µ′.

(2) Every worker w revealed prefers the firm-proposing deferred acceptance algorithm

under (CW , (C
′
f̂
, C−f̂ )), say µ′, to the outcome under (CW , CF), say µ, and every

firm other than f̂ revealed prefers µ to µ′.

16Of course, this expansion can be used for any responsive choice rule not necessarily in the context of
residency matching.
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Theorem 2 establishes that when an agent’s choice rule expands, other agents on the same

side are worse off in the revealed preference sense and all agents on the other side are better

off in the revealed preference sense. Therefore, when a residency program lists more doctors,

all doctors are better off and all other residency programs are worse off. Similarly, residency

programs benefit when a doctor in the UK residency matching enlists more programs but the

remaining doctors are hurt. In the school choice context, expanding a school’s choice rule

improves students’ matches but worsens schools’ matches. Finally, when a region’s choice

rule expands in the context of Japanese residency matching program, all doctors get better

programs and other regions get worse doctor distributions.

This result can be applied to other settings as well. For example, when a firm has a new

job opening, then all positions in the other firms are worse off and all workers are better off.

Similarly, we can study the welfare consequences of an agent joining the market, because this

can be modeled as the agent’s choice rule being expanded from the empty choice. Therefore,

we get as corollaries the comparative statics results of Kelso and Crawford (1982); Gale and

Sotomayor (1985); Crawford (1991); Blum et al. (1997); Konishi and Ünver (2006b).17 These

papers consider the situation in which an agent joins the market or leaves the market, or

what happens when a hospital increases its capacity.

Perhaps the most related result to Theorem 2 is Theorem 6 of Echenique and Yenmez

(2012) who also consider expanding choice rules. The result in Echenique and Yenmez

(2012) shows only that expanding schools’ choice rules makes every student better off in

the school choice problem; it does not compare the outcome for schools. In contrast, we

expand the choice rule of only one agent and compare the outcomes for all the remaining

agents including the ones on the same side of the market using the revealed preference and

as a result get a much stronger comparative statics. Second, their model does not have

contracts, so their result is silent for some applications like the job matching of Kelso and

Crawford (1982) whereas our model incorporates all many-to-many matching markets with

contracts that may include wages as well as other contractual terms. Kamada and Kojima

(2014) only consider the doctor-proposing deferred acceptance algorithm for a many-to-one

matching markets with contracts and show that expanding regions choice rules make doctors

better off. As a corollary to our result, we can also say that expanding a region’s choice rule

makes other regions worse off whereas their result is silent about the welfare implications

on regions. In addition, our Corollary 1 also provides comparative statics for the region-

proposing deferred acceptance algorithm.

We also establish the following when all firms’ choice rules expand.

17See Alkan and Gale (2003); Ostrovsky (2008) for similar results in different contexts when an additional
agent is introduced.
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Corollary 2. Suppose that µ is a stable matching with respect to C = (CW , CF) and C ′f is

an expansion of Cf for every firm f . Then there exists a stable matching µ′ with respect to

C ′ = (CW , C
′
F) such that for every worker w, Cw(µ′w ∪ µw) = µ′w.

In the school choice context, when each school is matched with a set of students via

the student-optimal stable mechanism, this corollary establishes that to maximize students’

welfare, schools’ choice rules should be expanded as much as possible.

Remark 1 (Strategyproofness). Say that a worker has unit demand if she does not choose

more than one contract from any set of contracts. Hatfield and Milgrom (2005) show that

the worker-proposing deferred acceptance algorithm is stratetegyproof when workers have

unit demand and firm choice rules are path independent and satisfy another property called

the law of aggregate demand.18 A natural question to ask is whether the generalized worker-

proposing deferred acceptance algorithm that we define is also strategyproof under similar

assumptions. Unfortunately, the answer is no. In a more simple setting, Roth and Sotomayor

(1990) show that there exists no stable and strategyproof mechanism for workers (Theorem

5.14). They provide a simple example in which firms have unit demand and workers have re-

sponsive choice rules and each firm-worker pair defines a unique contract. Consequently, our

generalized worker-proposing deferred acceptance algorithm is not strategyproof for workers.

3.1. When the Modification is not an Expansion. It is clear from the preceding anal-

ysis that expanding the choice rule is a sufficient condition to get the comparative statics.

Here, we show that if the choice rule is modified in a different way, then the comparative

statics result does not hold anymore.

Theorem 3. Fix a firm f̂ . Suppose that both Cf and C ′
f̂

are path-independent choice rules.

Furthermore, C ′
f̂

is not an expansion of Cf̂ . Then there exists path-independent choice rules

for workers (and the remaining firms) such that the comparative static result stated in The-

orem 2 does not hold.

Theorems 2 and 3 provide a complete characterization of when we can get the comparative

statics result by modifying an agent’s choice rule. According to Theorem 2, when a firm’s

choice rule is expanded then workers are better off and the remaining firms are worse off. On

the other hand, according to Theorem 3, when a firm’s choice rule is modified in a different

way than expansion, then we can construct choice rules for the remaining agents such that

the comparative statics result does not hold. This result shows that the expansion property

is not only a sufficient condition to get the comparative statics but, in a sense, it is also

necessary. The proof of Theorem 3 is provided in the Appendix.

18We define the law of aggregate demand formally below.
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4. Acceptant Path-Independent Choice Rules

We say that a choice rule is acceptant if it admits as many contracts as it can without

violating a capacity.

Definition 5. Choice rule C on P(X ) is q-acceptant if for every X ⊆ X , |C(X)| =

min{q, |X|}. Choice rule C is acceptant if it is q-acceptant for some q.

If choice rule C is q-acceptant, then it chooses all contracts from a set with cardinality no

more than q and if the set has more than q contracts, then it chooses exactly q contracts.

Being acceptant can be interpreted as having a capacity constraint but otherwise willing to

choose as many contracts as possible.19

For example, a school may be rejecting some students because of diversity considerations

without filling its seats (Ehlers et al., 2014) and a region may be rejecting some doctors from

a hospital because of a target distribution even though the hospital has a higher capacity

(Kamada and Kojima, 2014). This leads to the following question. Given a path-independent

choice rule, can we always find a path-independent expansion that is also acceptant? We

show that this is always possible using the lattice structure of path-independent choice rules

below.

Theorem 4. Every path-independent choice rule with maximum cardinality q has a q-

acceptant path-independent expansion.

Therefore, any path-independent choice rule can be expanded to be acceptant without

violating path independence. This means that the school can admit as many students as

possible without going over the capacity and the region can admit as many doctors as it can

without going over the target capacity of the region. A corollary of this result is that any

path-independent choice rule can be expanded to satisfy the law of aggregate demand as well

without increasing the maximum cardinality.

Definition 6. Choice rule C on P(X ) satisfies the law of aggregate demand if for every

X ⊆ Y ⊆ X , |C(X)| ≤ |C(Y )|.

The law of aggregate demand is an important property for at least three reasons. First, it

guarantees that the set of stable matchings is a lattice (Fleiner, 2003). Second, the worker-

proposing deferred acceptance algorithm becomes strategyproof for workers if they have unit

demand (Hatfield and Milgrom, 2005).20 Finally, the number of contracts that each agent

signs is fixed in any stable matching (Fleiner, 2003).

19Acceptance has been used in settings without contracts. For example, Kojima and Manea (2010) use
q-acceptant priorities to characterize DA. In an earlier work, Alkan (2001) calls acceptance quota filling and
shows the lattice structure of stable matchings under acceptant substitutable choice rules.

20A worker has unit demand if she does not choose more than one contract from any set of contracts.
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Corollary 3. Every path-independent choice rule with maximum cardinality q has a path-

independent expansion with maximum cardinality q that satisfies the law of aggregate demand.

This corollary follows trivially from Theorem 4. To prove Theorem 4, we use the lattice

structure of path-independent choice rules. First, some definitions are in order.

A partial order is a reflexive, antisymmetric and transitive relation.21 If � is a partial

order on A, we say that the pair (A,�) is a partially ordered set . A partially ordered

set (A,�) is a lattice if, for every a, b ∈ A, the least upper bound and the greatest lower

bound of {a, b} exist in A with respect to the partial order �. We denote the least upper

bound of {a, b} by a ∨ b; and the greatest lower bound of {a, b} by a ∧ b.
The following lemma is important for establishing a lattice structure for a path-

independent choice rule.

Lemma 3 (Koshevoy (1999)). Suppose that choice rule C on P(X ) is path independent.

For any X ⊆ X , let X#
C =

⋃
C(Y )=C(X) Y . Then,

{Y : C(Y ) = C(X)} = {Y : X#
C ⊇ Y ⊇ C(X)}.

Let I(C) = {C(X) : X ∈ X} be the image of a choice rule C on P(X ). Define the

following partial order: for every X, Y ∈ I(C), X ≥ Y if and only if X#
C ⊇ Y #

C .

Lemma 4 (Johnson and Dean (2001)). For any path-independent choice rule C on P(X ),

(I(C),≥) is a lattice where for any X, Y ∈ I(C), X ∨ Y = C(X#
C ∪ Y

#
C ) and X ∧ Y =

C(X#
C ∩ Y

#
C ).

The structure of such lattices has been studied at least since Dilworth (1940). These

lattices are surveyed by Edelman and Jamison (1985).

Let us demonstrate how to construct this lattice for the choice rule in Example 1.

Example 2. Consider the choice rule C in Example 1. Since C(1, 2, 3) = {1}, then {1} ∈ I(C)

with {1}#C = {1, 2, 3}. This is the greatest element of (I(C),≥). Next to each element X ∈
I(C) in the lattice, we write (X#

C ) if it is different from X. Note that since {2, 3}#C ⊇ {2}
#
C ,

{2, 3} ≥ {2} in I(C). Moreover, {2}∨{3} = C(2, 3) = {2, 3} and {2}∧{3} = C({2}∩{3}) =

C(∅) = ∅.
Since C has such a lattice representation it is path independent.

Proof of Theorem 4. The proof is by construction. Consider a path-independent choice rule

C. If X = X#
C holds for every X ∈ I(C) with |X| ≤ q then C is q-acceptant and there is

nothing to prove because a choice rule is trivially an expansion of itself. Otherwise, consider

a minimal such set X (minimality is with respect to set inclusion). Take any x ∈ X#
C \X.

Then there exists a path-independent expansion C ′ of C where there is an additional element

21Reflexive: For all a ∈ A, a � a.
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1 (123)

23

3 2

∅

Figure 1. Lattice representation of the choice function in Example 1

X ∪ {x} in I(C ′), so I(C ′) = I(C) ∪ {X ∪ {x}} (Johnson and Dean, 2001, Theorem 6).

By construction C ′ is a path-independent expansion of C where (X ∪ {x})#C′ = X#
C and

X#
C′ = X#

C \ {x}. If C ′ is q-acceptant, then we are done. Otherwise, repeat this procedure of

expanding the choice rule by adding an element in the lattice. Since |I(C)| grows by one at

each step, the procedure ends in a finite number of steps because the number of contracts is

finite.

�

In the proof, we construct an algorithm for finding a q-acceptant path-independent expan-

sion of any choice rule with maximum cardinality q. Next we provide the following example

to illustrate how this algorithm works.

Example 3. Consider choice rule C in Example 1. The lattice representation of C is shown on

Figure 2 (the leftmost lattice). The maximum cardinality of C is 2 but C is not 2-acceptant

because |C(123)| = 1. According to the algorithm, we pick a minimal set X (with respect

to set inclusion) such that X#
C 6= X and |X| ≤ q. The unique such set for C is {1} with

{1}#C = {1, 2, 3}. We pick any contract x in {1, 2, 3} \ {1} = {2, 3}. Let x = 2. In the

lattice representation, we add the node X ∪ {x} = {1, 2} such that {1, 2}# = {1, 2, 3}.
In other words, we modify the choice rule so that C(1, 2, 3) = {1, 2}. In the new lattice

representation, {1}# = X#
C \ {x} = {1, 3} (the middle lattice on Figure 2). This new path-

independent choice rule, say C ′, is still not 2-acceptant because |C ′(13)| = 1. Thus, we

find a minimal set Y such that Y #
C′ 6= Y and |Y | ≤ q. The unique such set is {1} with

{1}# = {1, 3}. We pick y ∈ {1, 3} \ {1} = {3} and create and additional node in the lattice
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1 (123)

23

3 2

12 (123)

23

3 2

1(13) 231(13)

12 (123)

23

3 2

13

1

∅ ∅ ∅

Figure 2. Expansion of the choice function in Example 1

for {1, 3}. The new choice rule is a 2-acceptant path-independent expansion of C and C ′

(the rightmost lattice on Figure 2).

One particular class of path-independent choice rules used in the literature is the class of

responsive choice rules. They have been used extensively in matching theory including the

seminal work of Gale and Shapley (1962) and real matching markets such as the National

Resident Matching Program (Roth and Peranson, 1999) and the school choice problem (Ab-

dulkadiroğlu and Sönmez, 2003). Here, we provide an axiomatic characterization of these

rules. The characterization is useful because it allows us to discuss the normative content of

this widely used choice rule.

Responsive choice rules satisfy the following rationality axiom.

Definition 7. Choice rule C on P(X ) satisfies the weakened weak axiom of revealed

preference (WWARP) if, for every x, y ∈ X , X ⊆ X , and Y ⊆ X such that x, y ∈ X∩Y ,

x ∈ C(X) and y ∈ C(Y ) \ C(X) imply x ∈ C(Y ).

WWARP rules out cycles of length two if we use the revealed preference ordering over

individual contracts. To be more precise, say that x is chosen over y if there exists a

set containing both such that x is chosen from the set and y is not. Then WWARP states

that whenever x is chosen over y, y is not chosen over x. WWARP alone does not give us

a preference relationship over individual contracts because we need to rule out cycles of any

length not only two. However, WWARP together with acceptance allow us to rule out all

cycles (see Theorem 5).



18 CHAMBERS AND YENMEZ

WWARP was first introduced by Ehlers and Sprumont (2008) in the context of nonra-

tionalizable choice, though it was implicitly discussed in Wilson (1970), who analyzed the

class of choice rules satisfying it (calling them “Q cuts”). We show that a choice rule is re-

sponsive if and only if it satisfies acceptance and WWARP. Since responsive choice rules are

path independent, this result also implies that path independence follows from acceptance

and WWARP.

Theorem 5. Choice rule C is responsive if and only if it satisfies acceptance and WWARP.

Proof. It is obvious that any responsive choice rule satisfies acceptance and WWARP. Con-

versely, suppose that C satisfies acceptance and WWARP. Define �∗ by x �∗ y if there exists

X for which {x, y} ⊆ X, x ∈ C(X) and y 6∈ C(X). WWARP is equivalent to asymmetry of

the relation �∗. We claim that �∗ is transitive.

Suppose that x �∗ y �∗ z. Associated with acceptance is k ∈ N+ such that |C(X)| =

min{k, |X|}. Since x �∗ y, there exists X for which {x, y} ⊆ X, x ∈ C(X) and y 6∈ C(X).

Hence, |C(X)| = k. Consequently, there exists {a1, . . . , ak−1} ⊆ X for which C(X) =

{x, a1, . . . , ak−1}. This implies ai �∗ y for all i. Obviously, ai 6= y for all i. Now, consider

Y = {x, y, z, a1, . . . , ak−1}. Suppose, by means of contradiction, that z ∈ C(Y ). Then

y ∈ C(Y ); otherwise, we have y �∗ z and z �∗ y contradicting asymmetry. Now, since

y ∈ C(Y ), we have x ∈ C(Y ) and ai ∈ C(Y ) for all i; otherwise, we would have either x �∗ y
and y �∗ x or ai �∗ y and y �∗ ai for some i. But |Y | ≥ k + 1, so that |C(Y )| ≥ k + 1,

contradicting the assumption that C is acceptant. Similarly we show that y /∈ C(Y ). Since

C is q-acceptant, this implies that C(Y ) = {x, a1, . . . , ak−1}. So x �∗ z.

The rest is now standard; by the Szpilrajn Theorem (see for example Duggan (1999)),

there is a preference relation � for which x �∗ y implies x � y. Clearly, if x ∈ C(X) and

y � x and y ∈ X, we have y ∈ C(X). Otherwise, we would have x �∗ y, and y � x, a

contradiction. By definition, C is responsive with respect to �. This kind of construction

was first introduced by Aleskerov et al. (2007) and Tyson (2008). �

Responsivity in the case of |C(X)| = 1 is equivalent to the standard notion of rational-

izability by a preference relation. And moreover, when |C(X)| = 1 for all X, WWARP

is equivalent to the classical weak axiom of revealed preference (see, e.g., Uzawa (1956) or

Arrow (1959)).22 Thus, Theorem 5 is a generalization of the well-known result that the weak

axiom of revealed preference characterizes rationalizability when choice is single valued and

all sets of contracts are available.

Theorem 5 provides a characterization of responsive choice rules for any q. Now, we

analyze q-responsive choice rules for a given q. For this characterization, a weaker version

of WWARP is useful.
22 The weak axiom of revealed preference states that if there exists X ⊆ X such that x ∈ C(X) and

y ∈ X \ C(X) then there does not exist any Y ⊆ X such that y ∈ C(Y ) and x ∈ Y .
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Definition 8. Choice rule C satisfies the q-weakened weak axiom of revealed prefer-

ence (q-WWARP) if, for every x, y ∈ X , X ⊆ X , and Y ⊆ X such that x, y ∈ X ∩ Y
and |X| = |Y | = q,

x ∈ C(X) and y ∈ C(Y ) \ C(X) imply x ∈ C(Y ).

This axiom is weaker than WWARP and it is derived by restricting the sets for which

WWARP applies.

Finally, we provide a characterization of q-responsiveness.

Theorem 6. Choice rule C is q-responsive if and only if it satisfies substitutability, q + 1-

WWARP, and q-acceptance.

The proof of Theorem 6 is provided in the Appendix.

An earlier result, due to Eliaz et al. (2011), provides another characterization of q-

responsive rules. While obviously the two characterizations are mathematically equivalent,

there are a few differences. First, our characterization is based on the classical revealed

preference relation, while the result of Eliaz et al. (2011) does not make direct use of the

concept. Our result can also be extended to a case in which the choice function is not defined

on all of P(X ), but rather on a subset. It would be enough to postulate that the revealed

preference relation is acyclic in this case, as will be evident from the proof.

Now, we ask whether a path-independent and acceptant choice rule is uniquely determined

by its behavior on some subclass of sets. Indeed, it turns out that a q-acceptant path-

independent choice rule is characterized completely by its behavior on sets of cardinality

q + 1. While this result is not difficult to prove, it can be very useful computationally.

Reporting the value of a choice rule on every admissible set requires reporting the value of

the choice rule on 2|X | − 1 sets, a quantity that is exponential in the number of contracts.

On the other hand, reporting the value of the choice rule on sets of cardinality q+ 1 requires

a report only for
( |X |
q+1

)
sets; this is polynomial of degree q + 1. In fact, one only needs to

report the rejected contract from sets of cardinality of q + 1.

Theorem 7. Suppose C and C ′ are two q-acceptant and path-independent choice rules on

P(X ) such that for all X ⊆ X with |X| = q + 1, we have C(X) = C ′(X). Then C = C ′.

Proof. For any X for which |X| ≤ q, we know that C(X) = C ′(X) since both of C and C ′

are q-acceptant. Let l > q + 1 and suppose we have shown that for all X such that |X| < l,

C(X) = C ′(X). Let X be a set for which |X| = l. Let x ∈ X. By path independence,

C(X) = C(C(X\{x})∪{x}). Now, we claim that |C(X\{x})∪{x}| < l. Otherwise, we must

have C(X \{x}) = X \{x}. However, this contradicts the assumption that C is q-acceptant,

as |X\{x}| = l−1 > q. Similarly, C ′(X) = C ′(C ′(X\{x})∪{x}) and |C ′(X\{x})∪{x}| < l.
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Since |X \ {x}| < l, by the induction hypothesis, C(X \ {x}) ∪ {x} = C ′(X \ {x}) ∪ {x},
which therefore implies that C(X) = C ′(X). �

For a more general result, including a characterization of the implications of path inde-

pendence on the sets of cardinality q + 1, see Dietrich (1987).

5. Firm Mergers

In this section, we provide a new model of firm mergers for two-sided markets using our

framework and we establish welfare consequences of firm mergers for both workers and the

remaining firms in the market. Our results have important implications beyond economics

such as antitrust, merger litigation, and law.

To study firm mergers, we introduce a new agent to the market who can be thought of

as a ‘representative’ for multiple firms. For simplicity, we consider the merger of two firms,

say f and f ′. Suppose that firms f and f ′ have a phantom representative denoted by r. We

consider a modified matching model where the set of firms is given by

F̂ ≡ (F \ {f, f ′}) ∪ {r}.

In F̂ , we replace firms f and f ′ by representative r. However, we do not modify the set

of workers or the set of contracts. When these two firms are separate, the representative is

just an intermediary handling the offers made or received by these two firms. As a result,

the choice rule of the representative r is given by

Cr(X) ≡ Cf (X) ∪ Cf ′(X).

When the firms merge then firm r may potentially have a different choice rule. We look at

two possible cases in which the unified firm can expand or consolidate.

Merge and Expand: After the two firms merge, they can decide to expand. This can

be done by hiring new employees or by making the unified firm more efficient. In terms of

the Aizerman-Malishevski decomposition, the merged firm has all the positions of firms f

and f ′ and possibly more. This means that the choice rule of the representative expands.

That is the new choice rule, say Ĉr, is an expansion of the old choice rule Cr:

for any set of contracts X, Ĉr(X) ⊇ Cr(X).

Now we can study the welfare implications of this merger for workers as well as firms using

Corollary 1.

Theorem 8. Suppose that all choice rules are path independent and that either version of

the deferred acceptance algorithm is used. Then when firms merge and expand, every worker

is better off and every other firm in the market is worse off.

Therefore, when firms merge and keep all of their contracts, then all workers benefit from

the merger and all the remaining firms are worse off.
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Merge and Consolidate: After the two firms merge, they can decide to consolidate.

This can be achieved by laying off workers. Or, in terms of the Aizerman-Malishevski

decomposition, the merged firm can remove some positions of firms f and f ′. This means

that the choice rule of the representative shrinks. Therefore, the old choice rule, say Cr, is

an expansion of the new choice rule Ĉr:

for any set of contracts X, Ĉr(X) ⊆ Cr(X).

Now we can study the welfare implications of this merger for workers as well as firms using

Corollary 1.

Theorem 9. Suppose that all choice rules are path independent and that either version of

the deferred acceptance algorithm is used. Then when firms merge and consolidate, every

worker is worse off and every remaining firm in the market is better off.

When firms merge and only keep a subset of their contracts, then workers are hurt by the

merger and other firms benefit.

6. Conclusion

We have studied path-independence of choice rules that guarantees the existence of stable

matchings in the context of many-to-many matching markets with contracts. Unlike most

of the earlier matching literature that constructs choice rules from preferences over sets

of contracts, we have taken choice rules as primitives of our model. This new approach

has enabled us to make the connection between path-independent choice rules and stable

matchings.

We have established several results on the theory of path-independent choice rules and

stable matchings. First, we have shown how classical characterizations of path independence

allow a new, simplified proof of a classical existence result for stable matching and a new

result on comparative statics of stable matchings. We have applied these results to a model

of firm mergers. Further, we have developed characterizations of responsive choice rules, as

well as shown how to construct acceptant and path-independent choice rules from ones that

are merely path independent without increasing the maximum cardinality. This implies that

any path-independent choice rule can be expanded to satisfy the law of aggregate demand

without increasing the maximum cardinality of the choice rule. Finally, we have investigated

some of the implications of our results on practical matching markets such as residency

matching and school choice.

We have also brought forth some results from the choice literature to prove our results that

can be useful in matching. In particular, we have used a decomposition result of Aizerman

and Malishevski (1981). This decomposition result can further be used in the matching con-

text and establishes a natural link between many-to-many and one-to-one matching markets.
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Appendix: Omitted Proofs

In this Appendix, we include the omitted proofs.

Proof of Theorem 1. Let µW be the matching produced by the worker-proposing deferred

acceptance algorithm. First, we show that µW is individually rational for all agents. By

construction of the algorithm, each firm f chooses µWf at the last step of the algorithm. By

path independence, we get Cf (µ
W
f ) = µWf , so µ is individually rational for firms. For each

persona of worker w, the contract held at the end of the algorithm is the best among the

set of contracts who have not been rejected by firms yet, so this contract is also the best

among µWw according to this persona’s preference. Therefore, Cw(µWw ) = µWw , so µ is also

individually rational for workers.

Second, we show that there does not exist a nonempty blocking set X. Suppose, for

contradiction, that such a set exists. Since choice rules are path independent, for any x ∈ X,

{x} is also a blocking set. Fix x ∈ X. Let w = w(x) and f = f(x). Since x /∈ µW and at

least one persona of worker w prefers x over the contract that she holds at µW , x must have

been rejected by firm f at some step of the algorithm. At that step, each position of firm f

gets a better contract. Since each position gets a weakly better contract at each step of the

algorithm, each position of firm f must have a better contract at µW than x. A contradiction

to the assumption that {x} is a blocking set because this implies x ∈ Cf (µWf ∪ {x}), i.e., at

least one position of firm f prefers x over the contract that it is holding at µW .

Therefore, µW is a stable matching. Next, we show that µW is the worker-optimal stable

matching. Consider worker w. Suppose that {�i}i∈I is the Aizerman-Malishevski decom-

position of Cw. Let wi be the persona associated with the preference relation �i. Say that

contract x is achievable for worker persona wi if there exists a stable matching µ such

that x = max
y∈µw

�i, i.e., if worker persona wi holds contract x at some stable matching. We

show that no achievable contract is rejected in the worker-proposing deferred acceptance

algorithm.

Lemma 5. No achievable contract is rejected in the worker-proposing deferred acceptance

algorithm.

Proof. Suppose that the claim holds for steps 1 through k. We show that it also holds for

step k+1. Assume, for contradiction, that achievable contract x is rejected by firm f ≡ f(x)

at step k + 1. This means that all positions of firm f have better contracts than x. Let X

denote the set of contracts that firm f is holding at the end of step k + 1.

Now consider the stable matching, say µ, in which worker persona wi holds contract x. Let

f j be the firm position which holds this contract. Let y be the contract that firm position f j

is holding at X. Let w′k be the worker persona holding contract y at the end of step k + 1.

Contract y is preferred over contract x by firm position f j. Since µ is a stable matching, it
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must be that worker persona w′k is holding a contract z that it prefers over contract y at

stable matching µ. But this is a contradiction because achievable contract z must have been

rejected before step k + 1. �

Lemma 5 implies that each worker position is holding the best achievable contract at the

end of the algorithm. As a result, µW is the worker-optimal stable matching. Finally, we

show that µW is the firm-pessimal stable matching. Consider x ∈ µW . Let w ≡ w(x) and

wi be a worker persona associated with this contract. Let y be any other stable matching

contract that wi gets. Worker persona wi prefers contract x over contract y since µW is

the worker-optimal stable matching. As a result, any stable matching outcome is better for

persona of f(x) associated with x in µW . That means each firm position gets the worst

achievable outcome in the worker-proposing deferred acceptance algorithm. Consequently,

µW is the firm-pessimal stable matching. �

Proof of Theorem 2. Since we have two profiles of choice rules, we prefix the choice rule

profiles to stability, individual rationality, and no blocking to avoid confusion. Let C =

(CW , CF) and C ′ = (CW , (C
′
f̂
, C−f̂ )).

Proof of Part 1: Since µ is C-stable, we have Ci(µi) = µi for every i ∈ W ∪ F . In

particular, Cf̂ (µf̂ ) = µ(f̂). Since C ′
f̂

is an expansion of Cf̂ , we have C ′
f̂
(µf̂ ) ⊇ Cf̂ (µf̂ ) = µf̂ .

This implies C ′
f̂
(µf̂ ) = µf̂ because C ′(X) ⊆ X for every set X. Therefore, µ is C ′-individually

rational.

If there are no C ′-blocking sets for µ, then µ is C ′-stable and we can take µ′ = µ to get

the result. Suppose, otherwise, that there are C ′-blocking sets. For each contract in the

blocking set, the associated firm with every contract must be f̂ because Ci = C ′i for every

i 6= f̂ and µ is C-stable.

Consider X = {x|f(x) = f̂ , x ∈ Cw(x)(µw(x) ∪ {x})}, the set of contracts associated with

firm f̂ that workers would like to add. Consequently, firm f̂ can choose from X. Note that

X ⊇ µf̂ because µ is C-individually rational for workers. Let X̂ = C ′
f̂
(X). Because C ′

f̂
is an

expansion of Cf̂ , we have X̂ ⊇ Cf̂ (X). Since µ is a C-stable set, Cf̂ (X) = µf̂ . As a result,

we get X̂ ⊇ µf̂ . The assumption that there exists a C ′-blocking pair implies X̂ ) µf̂ .

Consider the following matching:

µ0 = X̂ ∪
f 6=f̂

µf .

In µ0, firm f̂ gets X̂ while the rest of the firms get their assigned contracts in µ. By

construction, µ0 is individually rational for firms. We show that the firm-proposing DA

starting at µ0 produces a C ′-stable matching.

Step 1: Each position in firm f considers its most preferred contract in µ0 and applies

to the associated worker with this contract. Each worker w considers the set of
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contracts that has been offered to it, say X1
w, tentatively accepts Cw(X1

w) and rejects

the rest. If there are no rejections then stop.

Step k: Each position whose contract was rejected at Step k − 1 considers its next

preferred contract if such a contract exists and applies to the associated worker with

this contract. Otherwise, this position does not apply to any worker. Each worker

w considers all of the new contracts that have been offered to it and the tentatively

accepted contracts at Step k − 1, say Xk
w, accepts Cw(Xk

w) and rejects the rest. If

there are no rejections, stop.

The algorithm ends in finite time since there is a finite number of contracts and at least

one rejection at every step of the algorithm except the last one. Note that at the end of Step

1, each worker persona is weekly better off compared to µ since µ0 ⊇ µ.

Let µ′ be the outcome of this algorithm. Suppose, for contradiction, that µ′ is not C ′-stable.

By construction, µ′ is C ′-individually rational, so there must exist a nonempty blocking set.

Choose any contract x in this blocking set. Since choice rules are path independent, {x} is

also a blocking set. Let f = f(x) and w = w(x).

We consider two cases depending on whether f = f̂ or not.

Case 1 (f = f̂): Since {x} is a blocking set, x ∈ Cw(µ′w ∪ {x}). Because each worker

persona gets a better firm at each step of DA, we must have x ∈ Cw(µw ∪ {x}) and as

a result x ∈ X. Note that worker w must have never received x as an offer in DA. If

x ∈ C ′
f̂
(X) = X̂, then at least one position of firm f̂ offers x to worker w at Step 1, a

contradiction. If x /∈ X̂, then at least one position of firm f must have offered x to worker

w later in the algorithm since x ∈ C ′
f̂
(µ′

f̂
∪ {x}), a contradiction.

Case 2 (f 6= f̂): Since {x} is a blocking set for µ′, x ∈ Cw(µ′w ∪ {x}). Moreover, each

worker persona gets a weakly better contract at each step of DA. Therefore, x ∈ Cw(µw∪{x}).
Since µ is a C-stable matching, we must have x /∈ Cf (µf ∪ {x}). That means, each position

of firm f has a better contract at µ. But since {x} is a blocking set for µ′, x ∈ Cf (µ′f ∪{x}).
In other words, there exists a position of firm f who has a worse contract at µ′ than x. This

implies that this position must have been rejected by worker w for contract x at some step

of the algorithm, which is a contradiction since there exists a worker persona which has a

worse contract at µ′.

Therefore, µ′ is a C ′-stable matching. In addition, each persona of every worker is getting

a weakly better firm at every step of the algorithm, so Cw(µ′w ∪ µw) = µ′w. Similarly, each

position of every firm f 6= f̂ is getting a weakly worse worker at every step of the algorithm,

so Cf (µ
′
f ∪ µf ) = µ′f .

Proof of Part 2: The proof is analogous to the proof of the first part and it works

as follows. Start with C ′-stable matching µ′. Let µ0 ≡ Cf̂ (µ
′
f̂
) ∪
f 6=f̂

µ′f . Note that µ0 is

individually rational for workers since each worker gets a subset of contracts that she gets
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in µ′. Therefore, we can start the worker-proposing deferred acceptance algorithm at µ0 for

C. Let µ be the outcome. We first show that matching µ is C-stable. By construction, it is

individually rational for all agents. Suppose, for contradiction, that there exists a blocking

set. Choose any contract x in this blocking set. Since choice rules are path independent,

{x} is also a blocking set. Let f = f(x) and w = w(x). We consider two cases depending

on whether f = f̂ or not.

Case 1 (f = f̂): Since each firm position gets a weakly better contract at every step of

the algorithm, contract x could not have been offered to firm f̂ in the algorithm. Therefore,

x ∈ Cw(µw ∪ {x}) implies x ∈ Cw(µ′w ∪ {x}). Since µ′ is a C ′ ≡ (CW , (C
′
f̂
, C−f̂ )) stable set,

we get x /∈ C ′
f̂
(µ′

f̂
∪ {x}). Since C ′

f̂
is an expansion of Cf̂ , x /∈ Cf̂ (µ′f̂ ∪ {x}). Furthermore,

each firm position gets weakly better in the algorithm, so x /∈ Cf̂ (µ
′
f̂
∪ {x}) implies x /∈

Cf̂ (µf̂ ∪ {x}), a contradiction.

Case 2 (f 6= f̂): Like the previous case, x ∈ Cw(µw ∪ {x}) implies x ∈ Cw(µ′w ∪ {x}).
In addition, each firm position gets a weakly better contract, so x ∈ Cf (µf ∪ {x}) implies

x ∈ Cf (µ′f ∪ {x}). Therefore, {x} is a blocking set for mu′ when choice rule profile is C ′,

which is a contradiction.

Thus, µ is a stable matching. Consequently, each firm other than f̂ revealed prefers µ to

µ′ and every worker revealed prefers µ′ over µ. �

Proof of Theorem 3. Since C ′
f̂

is not an expansion of Cf̂ , there exists a set of contracts X

such that C ′
f̂
(X) 6⊇ Cf̂ (X).

Say that a choice rule is responsive if there exist a preference relation over the contracts

and a capacity for which the choice rule always selects the highest-ranked available con-

tracts according to the preference relation without going over the capacity. A contract x is

acceptable if it is ranked above the empty contract ∅. Construct workers’ choice rules as

follows.

If there does not exist x ∈ X such that w = w(x), then worker w has the empty choice

rule in which no contract is ever chosen. However, if there exists x ∈ X such that w = w(x),

then worker w has a responsive choice rule in which the capacity is |{x ∈ X : w = w(x)}|
and the preference is any ranking of |{x ∈ X : w = w(x)}| where other contracts are not

acceptable.

Regardless of choice rules for the remaining firms there exists a unique stable matching.

Suppose that the choice rule profile is (CW , CF). Then µ ≡ Cf̂ (X) is the unique stable

matching. The reason is as follows. Any individually rational matching is a subset of

µ. Furthermore, for any strict subset of µ, the set of contracts x ∈ µ not included is a

blocking set. Likewise, there exists a unique stable matching for the choice rule profile

(CW , (C
′
f̂
, C−f̂ )), which is µ ≡ Cf̂ (X).
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Take any x ∈ µ \ µ′. Let w ≡ w(x). Then worker w does not revealed prefer µ′ to µ

because worker w does not fill her capacity in µ′ and there exists at least one contract in

µ \ µ′ associated with her, which implies Cw(µ′ ∪ µ) 6= µ′(w). �

Proof of Theorem 6. First we prove the following lemma.

Lemma 6. If choice rule C satisfies substitutability, q+ 1-WWARP, and q-acceptance, then

it satisfies WWARP.

Proof. Suppose for contradiction that C satisfies substitutability, q + 1-WWARP, q-

acceptance but not WWARP. Therefore, there are X, Y , x, and y for which x, y ∈ X ∩ Y ,

x ∈ C(X), y 6∈ C(X), y ∈ C(Y ), x 6∈ C(Y ). By q-acceptance, it follows that |X| ≥ q + 1

and |Y | ≥ q + 1, and by q + 1-WWARP, at least one of these inequalities is strict.

Now, C(C(X) ∪ {y}) = C(X) by substitutability and q-acceptance; likewise, C(C(Y ) ∪
{x}) = C(Y ). But note that |C(X) ∪ {y}| = |C(Y ) ∪ {x}| = q + 1, and that x ∈ C(C(X) ∪
{y}), y 6∈ C(C(X) ∪ {y}), y ∈ C(C(Y ) ∪ {x}), and x 6∈ C(C(Y ) ∪ {x}), a contradiction to

q + 1-WWARP. �

The proof follows immediately from this lemma and Theorem 5. �
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