
Random Serial Dictatorship:

The One and Only.

Sophie Bade∗

October 31, 2014

Abstract

Fix a Pareto optimal, strategy proof and non-bossy deterministic

matching mechanism and define a random matching mechanism by

assigning agents to the roles in the mechanism via a uniform lottery.

Given a profile of preferences, the lottery over outcomes that arises

under the random matching mechanism is identical to the lottery that

arises under random serial dictatorship, where the order of dictators

is uniformly distributed. This result extends the celebrated equiva-

lence between the core from random endowments and random serial

dictatorship to the grand set of all Pareto optimal, strategy proof and

non-bossy matching mechanisms.

1 Introduction

Matching mechanisms map profiles of preferences over some indivisible ob-

jects, henceforth called houses, to matchings. Under a matching each agent

obtains (at most) one house. A matching mechanism is Pareto optimal if it

maps any profile of preferences to a Pareto optimum; it is strategy proof if

no agent can benefit from the report of a false preference at any profile of
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preferences. A mechanism is non-bossy if no agent can alter someone else’s

match without also altering his own. Call any mechanism that satisfies these

three properties good. No good mechanism treats equals equally: when two

different agents submit the same preference to a good mechanism they end

up with different houses. Randomization fixes this flaw.

Take serial dictatorship as an example. Serial dictatorship is a good

mechanism which gives one agent - the first dictator - the right to choose

a house from the grand set. A next agent - the second dictator - gets to

choose from the remainder, and so forth. Equals are not treated equally: if

the first and second dictator submit the same preferences the first gets the

house ranked highest by both. Under random serial dictatorship (also know

as random priority) agents are randomly assigned to the roles of 1st, 2nd, ...,

nth dictator. Any two agents who submit the same preferences face the same

lottery over houses. So random serial dictatorship treats equals equally. It is

moreover ex post Pareto optimal, ordinally strategy proof and non-bossy.1

The same method can be used to symmetrize any good mechanism. In-

stead of assigning one agent, say Karl, to assume the role of agent 1 a mech-

anism, and assigning Betty to the role of agent 2, and so forth, one could use

a uniform lottery over all possible assignments to generate a random match-

ing mechanism. Since the set of all good mechanisms is diverse, this method

would seem to generate many different random matching mechanisms, viewed

as mappings from profiles of preferences to lotteries over matchings. This is

not the case: Theorem 1 shows that the symmetrization of any good mech-

anism coincides with random serial dictatorship.

The first observations of this sort, by Abdulkadiroglu and Sönmez [1] and

Knuth [7], relate to Gale’s top trading cycle mechanism (GTTC). A GTTC

starts with an initial matching called the endowment and requires that there

are equally many agents and houses. In a first round all agents point to their

1A random matching mechanism is ex post Pareto optimal if it maps any profile of

preferences to a lottery over Pareto optima. It is ordinally strategy proof if there exists no

profile of preferences, house h∗ and agent i such that the agent i’s probability obtaining

a house better than h∗ increases when he reports a false preference. A random matching

mechanism is non-bossy if no agent can alter someone else’s lottery over matches without

altering his own. For a proof that non-bossiness is robust to randomization when the base

mechanism is Pareto optimal and strategy proof, see Bade [3].
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most preferred house and each house points to its owner according to the

endowment. At least one pointing cycle forms and each agent in such a cycle

is matched with the house he points to and exits. The same procedure is

then repeated until all agents exit. The symmetrization of GTTC is called

the core from random endowments.

Abdulkadiroglu and Sönmez [1] and Knuth [7] independently proved the

identity of random serial dictatorship and the core from random endow-

ments. Both their proofs start by fixing an arbitrary profile of preferences.

They then construct a bijection between the set of all orders of agents as

dictators and the set of initial endowments such that the outcome of the

serial dictatorship under a given order equals the outcome of GTTC under

the image of this given order. The bijection ensures that (at the fixed profile

of preferences) the number of orders under which serial dictatorship yields

some fixed matching equals the number of initial endowments under which

GTTC yields the same matching. So the probability of that matching under

serial dictatorship (share of the orders under which serial dictatorship yields

the matching) equals the probability of the matching under the core from

random endowments (share of the initial endowments under which GTTC

yields the matching). This result has been extended to increasingly larger

sets of good mechanisms by Pathak and Sethuraman [10], Caroll [5], and Lee

an Sethuraman [8].

There are three major differences between the present paper and the

preceding results. First, I show the equivalence for all good mechanisms.

Second, my proof directly applies to sets of agents and houses of any sizes;

no additional steps are required to cover the case when there are different

numbers of agents and houses. These two differences are made possible by

the third innovation of this paper: a new simple strategy of proof.

This strategy relies on the construction of a sequence of mechanisms

M0,M1, · · · ,MK from an arbitrary good mechanism M0 to a serial dic-

tatorship MK , such that any two consecutive mechanisms have identical

symmetrizations. To show the identity of the symmetrizations of any two

consecutive mechanisms Mk,Mk+1, I use the bijective strategy pioneered by

Abdulkadiroglu and Sönmez [1] and Knuth [7]. The notable feature of my

approach is that any two mechanisms in the sequence differ only marginally,
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implying that simple bijections show that their symmetrizations are iden-

tical. So, instead of constructing one grand (and complicated) bijection, I

construct many simple bijections, each of which swaps the roles of at most

three agents.

I use the fact that any good mechanism can be represented as a trad-

ing and braiding mechanism following Bade [2]. Like GTTC, trading and

braiding uses rounds of trade in pointing cycles to determine outcomes. In a

round, houses point to their owners and owners point to their most preferred

houses. Trading and braiding generalizes three aspects of GTTC. One agent

might own multiple houses, a feature introduced by Papai [9]. There is a

second form of control called brokerage, introduced by Pycia and Unver [11].

Finally, if there are only three houses left a trading and braiding mechanism

might terminate in a braid. Braids are good mechanisms for exactly three

houses, which sums up all that needs to be known about braids to understand

the upcoming proof.

To calculate the outcome of a trading and braiding mechanism at some

profile of preferences, a brokered house points to its broker - just like an

owned house points to its owner. There is at most one brokered house and

its broker points to the house he most likes among the owned houses. At least

one cycle forms. The houses and agents in a cycle are matched and exit the

mechanism. A new trading round ensues. If there are exactly three houses

left, the process either continues with another round of pointing-cycles or as

a braid. The process terminates once a matching is reached.

For a sketch of the proof, consider the classic case of GTTC. My strategy

is to build a sequence that starts with M0, the GTTC such that each agent

i is endowed with house hi, and ends with MK a serial dictatorship. Each

mechanism in this sequence is derived from its predecessor by consolidating

the ownership of exactly two agents. The sequence terminates with a serial

dictatorship when all ownership has been maximally consolidated. M1 is

identical to GTTC except that agent 1 owns h1 and h2. Once agent 1 exits,

agent 2 inherits the unmatched house in {h1, h2}.
To see that the symmetrizations of M0 (GTTC) and M1 are identical,

fix some profile of preferences. Fix an assignment of agents to roles (initial

endowment). To keep things simple, let this endowment be the original one
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where agent i owns house hi. Suppose that some cycle at the start of M0

involves agent 1 but not agent 2. In this case, agent 1 is part of the same

cycle at the start of M1; the only difference is that agent 1 additionally

owns house h2 under M1. But for the formation of cycles under the given

preferences this difference does not matter. Once the cycle involving agent

1 is matched, M0 and M1 continue identically (given that agent 2 inherits

house h2 under M1). So M0 and M1 yield the same outcome under the given

profile of preferences and assignment of agents to roles.

Now assume that in the first round of M0 there is a single pointing cycle.

Assume that this cycle involves agent 2: 2 → h → i → h∗ · · · → h2 → 2,

but not agent 1: 1 6= i points to h∗. Every agent in the pointing cycle is

matched to the house he points to, in particular agent i is matched with

house h∗. Under M1, 1 owns h2, the cycle 1 → h∗ · · · → h2 → 1 forms in

the first round, and 1 is matched to h∗. A new assignment of agents to roles

under which M1 yields the same matching as does M0 is easily found: switch

the roles of agents 1 and 2. Under this new assignment, 2 owns h1 and h2
at the start of M1. The logic of the preceding paragraph applies: the cycle

2 → h → i → h∗ · · · → h2 → 2 which forms in the first round of M0 also

forms in the first round of M1 under the new assignment. The fact that 2

additionally owns h1 is irrelevant. Once the agents and houses in this cycle

exit, M1 under the new assignment is identical to M0 under the original

assignment (given that agent 1 inherits house h1).

The preceding two paragraphs illustrate the bijections used to prove the

identity of symmetrizations. In the first case M0 and M1 map the given

profile of preferences to the same outcome. The bijection then maps the

original assignment of roles onto itself. In the second case, M0 and M1 map

the profile of preferences to the different outcomes. In this case the original

assignment is mapped to a new assignment in which agents 1 and 2 swap

roles. It turns out that the above reasoning also applies when neither agent

1 or agent 2 is matched in the first round and when both take part in the

same cycle under M0. So there exists a bijection between the assignments of

roles such that M0 under the original assignment and M1 under the image of

that assignment map the given profile of preferences to the same matching.

The existence of such a bijection implies that the symmetrizations of M0 and
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M1 are identical. The remaining mechanisms in the sequence M2, · · · ,MK

are constructed via the further consolidation of ownership. At the start of

M2 agent 1 owns h1, h2 and h3, at the start of M4 he also owns h4. The

process of consolidation terminates when M0 has been transformed into a

serial dictatorship MK .

To apply the same strategy with any good mechanism M0 as the start of

the sequence the above arguments have to be extended to more complicated

cases. The proof needs to address more ownership structures other than the

one in GTTC. A somewhat different approach is needed to absorb brokers

and to replace braids with serial dictatorships. All these cases share one

basic feature with the two cases discussed above: the bijections between

assignments of roles which show that the symmetrization of two consecutive

mechanisms Mk and Mk+1 are identical, either map an assignment onto itself

or they switch the roles of at most three agents.

My paper is concerned with a fully symmetric treatment of all agents. It

does not speak to existing results on random matching mechanisms that treat

different agents differently. Ekici [6], for example, considers two different

matching mechanisms which both respect initial (private) allocations. He

shows that a uniform randomization of any additional social endowment of

houses in the two mechanisms yields the same random matching mechanism.

Similarly Carroll [5] considers the case of matching mechanisms in which

agents are partitioned into groups and provides an equivalence result for the

case in which agents are treated symmetrically only within groups. Lee and

Sethuraman’s [8] equivalence results also cover the case where agents are

partitioned into groups which are treated asymmetrically.

2 Definitions

A housing problem consists of a set of agents N : = {1, · · · , n}, a finite set

of houses H and a profile of preferences R = (Ri)
n
i=1. The option to stay

homeless ∅ is always available: ∅ ∈ H. An agents’ preference Ri is a linear

order2 on H and each agent prefers any house to homelessness, so hRi∅ holds

2So hRih
′ and h′Rih together imply h = h′.
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for all i ∈ N, h ∈ H. The notation hRiH
′ means that agent i prefers h to

each house in H ′. The set of all profiles R is denoted by R. A profile of

preferences R is a restriction of R to some subsets N ′ ⊂ N and H ′ ⊂ H if

hRig ⇔ hRig holds for all h, g ∈ H ′ and all i ∈ N ′.
Submatchings match subsets of agents to at most one house each. A

submatching is a function ν : N → H such that ν(i) = ν(j) and i 6= j

imply ν(i) = ∅. The sets of agents and houses matched under ν are Nν : =

N \ ν−1(∅) and Hν : = ν(Nν). When ν(i) 6= ∅ then i is matched to the

house ν(i); N ν : = N \ Nν and Hν : = H \ Hν are the sets of agents

and houses that remain unmatched under ν. When convenient I interpret a

submatching ν as the set of agent-house pairs {(i, h) : ν(i) = h 6= ∅}. For

two submatchings ν and ν ′ with Nν ∩Nν′ = ∅ = Hν ∩Hν′ the submatching

ν ∪ ν ′ : Nν ∪ Nν′ → Hν ∪ Hν′ is defined by (ν ∪ ν ′)(i) = ν(i) if i ∈ Nν

and (ν ∪ ν ′)(i) = ν ′(i) otherwise. A submatching ν is considered maximal

(minimal) in a set of submatchings if there exists no ν ′ in the set such that

ν ( ν ′ (ν ′ ( ν). Any maximal submatching (in the set of all submatchings)

is a matching. Note that µ is a matching if and only if Hµ = H or Nµ = N

(or both) hold. The sets of all matchings and of all lotteries over matchings

are denoted M and ∆M respectively.

A (deterministic) mechanism is a function M : R → M. The out-

come of M at R, M(R), matches agent i to house M(R)(i). A mecha-

nism M is Pareto optimal if for no R there exists a matching µ′ 6= M(R)

such that µ′(i)RiM(R)(i) for all i.3 A mechanism M is strategy proof if

M(R)(i)RiM(R′i, R−i)(i) holds for all triples R,R′i, i: declaring one’s true

preference is a weakly dominant strategy. A mechanism M is non-bossy if

M(R)(i) = M(R′i, R−i)(i) implies M(R) = M(R′i, R−i) for all triples R,R′i, i,

so an agent can only change someone else’s match if he also changes his own

match. A mechanism M is good if it is Pareto optimal, strategy proof and

non-bossy.

Let P be the set of all permutations on p : N → N . A transposition

(j, j′) is a permutation involving only two agents, formally, (j, j′)(j′) = j and

(j, j′)(i) = i for i 6= j, j′. For any mechanism M and any permutation p

3Since all Ri are linear at least one agent must strictly prefer µ′(i) to M(R)(i) if

µ′ 6= M(R).
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define the permuted mechanism p �M : R → M via (p �M)(R)(i) =

M(Rp(1), · · · , Rp(m))(p
−1(i)). The permutation p assigns each agent in N to

a “role” in the mechanism, such that the agent p(i) under p�M assumes the

role that agent i plays under M . The symbol � is chosen as a reminder that

p �M arises out of a non-standard composition of the permutation p and

the mapping M : � is similar to but different from ◦, the standard operator

for compositions.

Let S : R → M be the serial dictatorship in which agent i is the ith

dictator. So p(i) is the i-th dictator under p�S. To calculate (p�S)(R) we

need to substitute agent p(i)’s preference for agent i’s preference to obtain

the new profile of preferences (Rp(1), · · · , Rp(n)). Under S(Rp(1), · · · , Rp(n))

agent 1 is matched with the most preferred house of agent p(1). Under

(p � S)(R) agent p(1) is matched with this house: (p � S)(R)(p(1)) =

S(Rp(1), · · · , Rp(n))(p
−1(p(1))) = S(Rp(1), · · · , Rp(n))(1).

The symmetrization of a mechanism M : R →M is a random match-

ing mechanism ∆M : R → ∆M that calculates the probability of matching

µ at the profile R as the probability of a permutation p with µ = (p�M)(R)

under the uniform distribution on P . So we have

∆M(R)(µ) : =
|{p : (p�M)(R) = µ}|

n!
.

Abdulkadiroglu and Sönmez [1] call ∆M a random serial dictatorship if

M is a serial dictatorship and the core from random endowments if M

is GTTC.

Definition 1 Two (deterministic) mechanismsM andM ′ are called s-equivalent4

if ∆M = ∆M ′.

3 The Result

Theorem 1 Any good mechanism is s-equivalent to serial dictatorship.

4The letter “s” in s-equivalent is a reminder that we are looking at symmetrizations to

establish this equivalence.
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For my proof I fix an arbitrary good mechanism M0 and construct a

sequence of of mechanisms M1, · · · ,MK such that ∆Mk = ∆Mk+1 holds for

0 ≤ k < K and MK is a serial dictatorship. The s-equivalence of any two

adjacent mechanisms Mk,Mk+1 in this sequence implies the s-equivalence of

M0 and MK , the start and end of this sequence. The crux of my proof is

to let Mk+1 differ from Mk by so little that it is easy to identify a bijection

f : P → P such that (p�Mk)(R) = (f(p)�Mk+1)(R) holds for all p ∈ P .

Such a bijection exists if and only if |{p : (p � Mk)(R) = µ}| = |{p :

(p�Mk+1)(R) = µ}| holds for all R and all matchings µ. The construction

of the sequence M1, · · · ,MK relies on the representation of good mechanisms

as trading and braiding mechanisms following Bade [2].

4 Trading and braiding mechanisms

A control rights function at some submatching ν cν : Hν → Nν × {o, b}
assigns control rights over any unmatched house to some unmatched agent

and specifies a type of control. If cν(h) = (i, x), then agent i controls house

h at ν. If x = o, then i owns h; if x = b he brokers h. Control rights

functions satisfy the following three criteria:

(C1) If more than one house is brokered, then there are exactly three houses

and they are brokered by three different agents.

(C2) If exactly one house is brokered then there are at least two owners.

(C3) No broker owns a house.

A general control rights structure c maps a set of submatchings ν

to control rights functions cν . For now just assume that c is defined for

sufficiently many submatchings to ensure that the following algorithm is well

defined for any fixed R.

Initialize with r = 1, ν1 = ∅

Round r: only consider the remaining houses and agents Hνr and Nνr .

Braiding: If more than one house is brokered under cνr let B be the braid

defined (below) by the avoidance matching ω with cνr(ω(i)) = (i, b). Termi-
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nate the process with M(R) = νr ∪ B(R) where R is the restriction of R to

Hνr and N νr . If not, go on to the next step.

Pointing: Each house points to the agent who controls it, so h ∈ Hνr points

to i ∈ N νr with cνr(h) = (i, ·). Each owner points to his most preferred house,

so owner i ∈ Nνr points to house h ∈ Hνr if hRiHνr . Each broker points

to his most preferred owned house, so broker j ∈ N νr with cνr(hb) = (j, b)

points to house h ∈ Hνr \ {hb} if hRjHνr \ {hb}.

Cycles: Select at least one cycle. Define ν◦ such that ν◦(i) : = h if i points

to h in one of the selected cycles.

Continuation: Define νr+1 : = νr ∪ ν◦. If νr+1 is a matching terminate the

process with M(R) = νr+1. If not, continue with round r + 1.

A submatching ν is reachable under c at R if some round of a trading

and braiding process can start with ν. A submatching ν is c-relevant if

it is reachable under under c at some R.5 A submatching ν ′ is a direct

c-successor of of some c-relevant ν if there exists a profile of preferences R

such that ν is reachable under c(R) and ν ′ arises out of matching a single

cycle at ν. A control rights structure c maps any c-relevant submatching

ν to a control rights function cν and satisfies requirements (C4), (C5), and

(C6).

Fix a c-relevant submatching ν◦ together with a direct c-successor ν.

(C4) If i /∈ Nν owns h at ν◦ then i owns h at ν.

(C5) If at least two owners at ν◦ remain unmatched at ν and if i /∈ Nν brokers

h at ν◦ then i brokers h at ν.

(C6) If i owns h at ν◦ and ν and if i′ /∈ Nν brokers h′ at ν◦ but not at ν,

then i owns h′ at ν and i′ owns h at ν ∪ {(i, h′)}.
5Consider a control rights structure c with three agents {1, 2, 3} and 4 houses

{h, g, k, h′}, where agent 1 starts out owning house h and g and agent 2 starts out owning

the remaining houses. Suppose the profile of preferences R is such that 1 most prefers

h, and 2 most prefers h′. Then the following submatchings involving agents 1 and 2 are

reachable under c(R): {(1, h)}, {(2, h′)} and {(1, h), (2, h′)}. The submatching {(1, g)} is

c-relevant since agent 1 could appropriate house g, but not it is not reachable under c(R)

given that 1 prefers h to g. The submatching {(3, h)} is not c-relevant since 3 does not

own any house at the start of the mechanism.
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The braid B : R →M is a good mechanism for a problem with exactly

three houses and at least as many agents. It is fully defined through an

avoidance matching ω. Matchings B(R) are chosen to avoid matching i

to ω(i) while keeping the set of matched agents equal to the set of agents

matched under ω. For any R let PO(R) be the set of Pareto optima µ with

Nω = Nµ. If minµ∈PO(R) | {i : µ(i) = ω(i)} | is attained at a unique µ∗

then let B(R) = µ∗. If not, at least two agents in Nω must rank some house

h∗ = ω(i∗) at the top and the pair (i∗, h∗) is decisive in the following sense. If

only one agent j 6= i∗ ranks h∗ at the top then B(R) is the unique minimizer

that matches j to h∗. If both agents i 6= i∗ rank h∗ at the top, then B(R) is

the unique minimizer preferred by i∗.

The trading and braiding mechanism defined by the control rights struc-

ture c is also denoted c and c(R) is the outcome of the trading and braiding

mechanism c at the profile of preferences R. Bade [2] has shown that any

good mechanism has a unique representation as a trading and braiding mech-

anism and that any trading and braiding mechanism is good. Trading and

braiding cycles have a long family tree. With GTTC they share the the

iterative process of trade in cycles. Unlike GTTC but like Papai’s [9] hier-

archical exchange mechanisms, agents might own multiple houses in trading

and braiding mechanisms. A trading and braiding mechanism c is a hier-

archical exchange mechanism following Papai [9] if cν(h) = (·, o) holds

for all c-relevant submatchings ν. Trading and braiding mechanisms share

most with their direct predecessor: Pycia and Unver’s [11] trading cycles

mechanisms. Pycia and Unver [11] introduced the notion of brokerage into

the matching literature. They moreover developed the formalism of control

rights structures, which turns out to be very convenient for the upcoming

proof.

Any c-relevant submatching ν defines a submechanism c[ν] that maps

restrictions R (of R ∈ R to N ν and Hν) to submatchings µ′ with the fea-

ture that ν ∪ µ′ is a matching in the original problem. The control rights

structure defining c[ν] is such that ν◦ = ν ∪ ν ′ is c-relevant if and only if ν ′

is c[ν]-relevant. For any such pair ν◦, ν ′ we have c[ν]ν′ = cν◦ . It is easy to

check that c[ν] also defines a trading and braiding mechanism. Fixing any

c, R, and ν that is reachable under c(R), the definition of the trading-cycles
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process implies c(R) = ν ∪ c[ν](R), where R is the restriction of the profile

of preferences R to the set of agents Nν and the houses Hν .

A c-relevant submatching ν is c-dictatorial if a single agent owns all

houses Hν according to cν . The owner of all houses Hν is the dictator

at ν. A c-relevant submatching that is not dictatorial is c-nondictatorial.

A trading and braiding mechanism c is a path dependent serial dicta-

torship if any c-relevant submatching is c-dictatorial. A path dependent

serial dictatorship c is a serial dictatorship if the dictator at any c-dictatorial

submatching ν only depends on the number of agents matched under ν.

4.1 Permuting trading and braiding mechanisms

A submatching ν is (p � c)-relevant if and only if ν ◦ p is c-relevant.6 If ν

is (p � c)-relevant then (p � c)ν(h) = (p(i), o) holds if cν◦p(h) = (i, o) and

(p � c)ν(h) = (p(i), b) holds if cν◦p(h) = (i, b). So if agent i controls house

h at ν ◦ p under c, then agent p(i) controls h at ν under p � c; the type of

control stays the same.

Consider two mechanisms c, c′ that only differ on c-relevant submatchings

ν with ν∗ ⊂ ν. So cν = c′ν holds for any c-relevant ν with ν∗ 6⊂ ν implying

also that any ν with ν∗ 6⊂ ν is c-relevant if and only if it is c′-relevant.

If ν∗ 6⊂ c(R) then c and c′ prescribe the same control rights function for

any reachable ν under c(R) and we obtain c(R) = c′(R). In the context of

permuted mechanisms (p � c′)(R) = (p � c)(R) holds for any p for which

ν∗ ◦ p−1 6⊂ (p� c)(R).

4.2 An auxiliary concept

The consolidation of ownership step in the sequence c0, · · · , cK works as

follows. When a set of houses is owned by two different agents at some ν

under ck the same set of houses is owned by just one of these two agents

6Here and later in the text I abuse notation and let p or p−1 stand for the restriction of

p or p−1 under which the given composition is well-defined. In the present case p stands

for the restriction under which under which ν ◦p is welldefined. The expression ν ◦p could

be replaced by the more precise and cumbersome ν ◦ p where p is the restriction of p that

has Nν as its image.
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under ck+1 at the same ν. Such consolidation is problematic when under

ck at ν there are exactly two owners and a broker. If we define ck+1 at

ν by transferring all ownership to one agent while keeping the brokerage

relation intact, then (C2) is violated at that ν. To circumvent this problem,

I define new structures by weakening (C2) in the definition of control rights

structures to (C2)’ which requires that there is at least one owner if there is

a broker, keeping all other features of the definition intact.

I show next that a mechanism is good if and only if it can be represented

by a new structure. Given Bade’s [2] result that a mechanism is good if

and only if it can be represented as a trading and braiding mechanism (that

satisfies the stronger (C2) instead of the weaker (C2)’), any good mechanism

can be represented as a new structure. To see the converse consider a new

structure c that violates (C2) at exactly one c-relevant submatching ν∗. So

cν∗(hb) = (1, b) holds for some hb ∈ Hν∗ while cν∗(h) = (2, o) holds for all

other h ∈ Hν∗ . Let c coincide with c on all c-relevant submatchings other

than ν∗, let cν∗(h) = (2, o) for all h ∈ Hν∗ and cν′(h) = (1, o) for all h ∈ Hν′

where ν ′ = ν∗ ∪ {(2, hb)}. To see that c is a control rights structure with

c(R) = c(R) for any R, fix some R.

If ν∗ is not reachable under c(R) then c(R) = c(R) since in that case c

and c prescribe the same control rights function at every ν, that is reachable

under either c(R) or c(R). So fix R such that ν∗ is reachable under c at R and

let h∗R1Hν∗ \ {hb}. First consider hbR2Hν∗ , so 2 prefers hb to all remaining

houses at ν∗. Under c(R) agents 1 and 2 form a pointing cycle at ν∗ and the

submatching ν∗ ∪ {(1, h∗), (2, hb)} is reached. Under c(R) agent 2 owns all

houses Hν∗ at ν∗, he appropriates hb and ν∗ ∪ {(2, hb)} is reached. Under

c agent 1 gets to own all remaining houses at ν∗ ∪ {(2, hb)}. Given R he

appropriates house h∗ and ν∗ ∪ {(1, h∗), (2, hb)} is also reached under c(R).

If hbR2Hν∗ does not hold then agent 2 owns his most preferred house at ν∗,

say h∗, under c(R) and c(R) and the submatching ν∗ ∪ {(2, h∗)} is reached

under c(R) and c(R). The submechanisms following ν∗ ∪{(2, hb)(1, h∗)} and

ν∗ ∪ {(2, h∗)} under c and c are identical so c(R) = c(R) holds in the either

case. Since c violates (C2) only at ν∗, c satisfies (C2) at all c-relevant sub-

matchings. So c is a trading and braiding mechanism. For any new structure

c that violates (C2) at multiple c-relevant submatchings, inductively apply
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the above arguments to obtain a trading and braiding mechanism c that

represents the same good mechanism.7

5 The proof

Fix any trading and braiding mechanism c0. In Section 5.1 I construct a

sequence between the fixed mechanism c0 and a serial dictatorship cK . Step α

chooses one out of three types of transformations to derive ck+1 from ck. Step

β consolidates ownership. Step γ replaces a braid with a serial dictatorship.

Step δ reorders dictators in a path dependent serial dictatorship. In Section

5.2 I show that the sequence is well-defined and terminates indeed with a

serial dictatorship. In Section 5.3 I show that any two mechanisms ck, ck+1

s-equivalent.

5.1 Construction of a sequence c = c0, c1, · · · , S
Let c = c0 and go to Step (α, 0).

Step (α, k): If ck is a serial dictatorship let k = K and terminate the process.

If not, go to Step (δ, k) if ck is a path dependent serial dictatorship. If neither

case applies fix a minimal ck-nondictatorial submatching ν∗. If ckν∗(h) = (·, b)
holds for at most one h ∈ Hν∗ go to Step (β, k) if not go Step (γ, k).

Step (β, k): Let ckν = ck+1
ν for any ck-relevant ν with ν∗ 6⊂ ν. Assume w.l.o.g.

that 1 and 2 own houses under ckν∗ . Define a new structure c for Nν∗ and Hν∗ .

For any ck-relevant ν∗∪ν with 1, 2 /∈ Nν let cν(h) = (1, o) if ckν(h) = (2, o) and

cν(h) = ckν(h) for all other h ∈ Hν . For any direct c-successor ν ′ to such a ν

with 1 ∈ Nν′ , let h∗ ∈ Hν′ be such that cν(h
∗) = (1, o). If ckν(h

∗) = (1, o) then

let c[ν ′] = ck[ν∗ ∪ ν ′], if ckν(h
∗) = (2, o) then let c[ν ′] = ((1, 2)� ck)[ν∗ ∪ ν ′].8

Let ck+1[ν∗] be the trading and braiding mechanism that represents the same

mechanism as the new structure c. Go to Step (α, k + 1).

7Bade [2] shows that any good mechanism has a unique representation as a trading and

braiding mechanism c. Multiple new structures may represent the same good mechanism.
8For any ν′ there is a unique house h∗ since agent 1 can trade only one house in a cycle.

Moreover any house h∗ owned by 1 at ν under c must be owned by either 1 or 2 at the

same ν under ck.
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Step (γ, k): Let ckν = ck+1
ν for any ck-relevant ν with ν∗ 6⊂ ν. Let ck+1[ν∗] be

a serial dictatorship. Go to Step (α, k + 1).

Step (δ, k): Since ck is not a serial dictatorship, there exist three ck-relevant

submatchings ν∗ ⊂ ν ′ ⊂ ν ′′, such that ck[ν∗] is a serial dictatorship with i

the dictator at ν ′ and j < i the dictator at ν ′′. Say i = 2 and j = 1. Let

ckν = ck+1
ν for any ck-relevant ν with ν∗ 6⊂ ν and ck+1[ν∗] = (1, 2)� ck[ν∗]. Go

to Step (α, k + 1).

5.2 All transformations from ck to ck+1 are welldefined

First consider only ck-relevant submatchings ν with ν∗ 6⊂ ν. Since ckν = ck+1
ν

holds for any such ν and since ck is a trading and braiding mechanism (C1),

(C2) and (C3) are satisfied by ck+1
ν for any such ν. By the same reasoning

(C4), (C5) and (C6) are satisfied for any ck+1-relevant ν◦ with a direct ck+1-

successor ν if ν∗ 6⊂ ν. Moreover any ν with ν∗ 6⊂ ν is ck-relevant if and only

if it is ck+1-relevant. Now fix ν◦, such that ν∗ is a direct ck-successor of ν◦.

Since ν◦ is ck-dictatorial,9 conditions (C4)-(C6) do not restrict the definition

of ck+1 at ν∗. In sum ck+1 is a trading and braiding mechanisms if ck+1[ν∗]

is a trading and braiding mechanism.

If ck+1 is constructed via Step (γ, k) or (δ, k) then ck+1[ν∗] is a path

dependent serial dictatorship and we are done. To see that ck+1[ν∗] is a

trading and braiding mechanism when ck+1 is derived from ck via Step (β, k)

it suffices to show that c is a new structure.

Let ν∗ ∪ ν◦ be ck-relevant and let ν ′ be a direct c-successor of ν◦ with

1 /∈ Nν′ . For any 1 6= j ∈ Nν′ with cν◦h = (j, ·) we have cν◦(h) = ckν∗∪ν◦(h) =

ckν∗∪ν′(h) = cν′(h), where the first and third equality follow from the definition

of c. The middle equality follows from (C4) and (C5) - given that under ck

agents 1 and 2 both own houses at ν∗ ∪ ν◦ and at ν∗ ∪ ν ′. (C5) and (C6) are

satisfied at ν◦, ν ′, given that under c any agent i ∈ Nν′ who brokers at ν◦

continues to do so at ν ′. To see that (C4) is satisfied we also have to check

9If ck+1 is constructed following Steps (β, k) or (γ, k) then ν∗ is a minimal ck-

nondictatorial submatching and ν◦ is therefore ck-dictatorial. If ck+1 is constructed via

(δ, k) then ck is a path dependent serial dictatorship and any ck-relevant submatching is

dictatorial. Since ν∗ 6⊂ ν◦ we have ckν◦ = ck+1
ν◦ and consequently ν◦ is ck+1-dictatorial.
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that ownership of agent 1 continues from ν◦ to ν ′ under c. If cν◦(h) = (1, o)

then ckν∗∪ν◦(h) = (i, o) holds for i ∈ {1, 2}. Since ck satisfies (C4) ckν∗∪ν◦(h) =

ckν∗∪ν′(h) and by the definition of c: cν′(h) = (1, o). In sum we have that (C4)

is satisfied at ν◦, ν ′.

By the definition of c there is one less owner under cν than under ckν∗∪ν
for any c-relevant ν with 1 /∈ Nν . Since ckν∗∪ν satisfies (C2) (at least two

owners), cν satisfies (C2)’ (at least one owner). Since cν(h) = (i, b) only

holds if ckν∗∪ν(h) = (i, b) holds and since ckν∗∪ν satisfies (C1) and (C3), cν
does too.

Now replace the assumption that 1 /∈ Nν′ with 1 ∈ Nν′ and 1 /∈ Nν◦ . Let

cν◦(h) = (i, b), i /∈ Nν′ and cν′(h) 6= (i, b). So we have ckν∗∪ν◦(h) = (i, b).

First consider the case that c[ν ′] = ck[ν∗ ∪ ν ′]. In that case cν′(h) 6= (i, b)

implies ckν∗∪ν′(h) 6= (i, b). Since 2 is neither matched at ν∗ ∪ ν◦ nor at ν∗ ∪ ν ′
and since 2 is an owner under ck at ν∗ ∪ ν◦, 2 must also be an owner under

ck at ν∗ ∪ ν ′ (given that ck satisfies (C4)). Since ck satisfies (C5) and since

i looses brokerage in the round from ν∗ ∪ ν◦ to ν∗ ∪ ν ′ 2 is the only owner

under ck at both these matchings. The derivation of c from ck implies that

there is no agent who owns houses at ν◦ and ν ′ under c. So c satisfies (C5)

and (C6) at ν◦, ν ′ if c[ν ′] = ck[ν∗ ∪ ν ′]. In the alternative case that c[ν ′] =

((1, 2)�ck)[ν∗∪ν ′] agents 1 and 2 have to be switched in the above arguments

to show that c satisfies (C5) and (C6) at ν◦, ν ′. Now let cν◦(h) = (i, o) and

i /∈ Nν′ . By the definition of c we have ckν∗∪ν◦(h) = (i, o). Since i 6= 1, 210,

and since ck satisfies (C4), ckν∗∪ν′(h) = (i, o) and ck(ν∗∪ν′)◦(1,2)(h) = (i, o) both

hold. Using the definition of c once again we obtain cν′(h) = (i, o) and c

satisfies (C4) at ν◦, ν ′.

Since (β, k) defines c[ν ′] as a trading and braiding mechanism, (C1), (C2)

and (C3) are satisfied at any c-relevant ν with ν ′ ⊂ ν under c. By the same

token (C4), (C5) and (C6) are satisfied in this submechanism. In sum c is

a new structure, and ck+1 is well-defined no whether it was derived from ck

via Step β, γ, or δ.

If ν is ck+1-relevant whereas neither ν nor ν ◦ (1, 2) is ck-relevant then

ck+1 either arises out of the replacement of a braid with a serial dictatorship

10The assumption cν◦(h) = (i, o) implies i 6= 2; the assumption that i /∈ Nν′ together

with 1 ∈ Nν′ imply that i 6= 1.
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via (γ, k) or ck+1 is constructed via (β, k) and ν = ν ′ ∪ {(i, hb)} holds for a

house hb that is brokered at ν ′ under ck but owned by i at ν ′ under ck+1. In

either case one agent owns all houses at ν according to ck+1. It follows that

the number of ck-nondictatorial submatchings does not increase in k. When

there exists at least one ck-nondictatorial submatching, Step (α, k) prescribes

a to follow Step (β, k) or (γ, k). Since (β, k) reduces the number of owners

at at least one ck-relevant submatching and since (γ, k) replaces a braid

with a serial dictatorship, the process of transformations eventually reaches a

trading and braiding mechanism ck
′
such that any ck

′
-relevant submatching is

ck
′
-dictatorial. But such a ck

′
is a path dependent serial dictatorship. Finally

Step (δ, k) is iteratively applied to reorder agents as dictators such that an

earlier dictator i swaps roles with a later dictator j if i > j. Such reordering

occurs until the sequence c0, c1, · · · terminates with a serial dictatorship cK .

5.3 ∆ck = ∆ck+1 holds for all k

Fix two mechanisms ck and ck+1 and a profile of preferences R. The s-

equivalence of ck and ck+1 follows from the existence of a bijection f : P → P

such that (p� ck)(R) = (f(p)� ck+1)(R) holds for all p ∈ P . Since ckν = ck+1
ν

holds for any ck- and ck+1-relevant ν with ν∗ 6⊂ ν, (p�ck)(R) = (p�ck+1)(R)

holds for any p such that ν∗◦p−1 6⊂ (p�ck)(R). For any such p let f(p) : = p.

Since ν∗ is a minimal ck-nondictatorial submatching, ν∗◦p−1 is a minimal

p� ck-nondictatorial submatching. For ν∗ ◦ p−1 ⊂ (p� ck)(R) to hold, each

of the dictators on the path to reach ν∗ ◦p−1 must choose in accordance with

ν∗ ◦ p−1. If ν∗ 6= ∅, the dictator at ∅ under p� ck, say agent i, must choose

ν∗(p−1(i)) for ν∗ ◦ p−1 ⊂ (p � ck)(R) to hold and so forth. So ν∗ ◦ p−1 is

reachable under (p � ck)(R) if and only if ν∗ ◦ p−1 ⊂ (p � ck)(R). In the

following three sections 5.3.1, 5.3.2, and 5.3.3 I define f for permutations p

such that ν∗ ◦ p−1 ⊂ (p� ck)(R).

5.3.1 When Step (β, k) is used to construct ck+1

Fix any p with ν∗ ◦ p−1 ⊂ (p � ck)(R) and let ν be the maximal reachable

submatching under (p� ck)(R) such that p(1), p(2) /∈ Nν . If p(1) is part of a

cycle at ν let f(p) : = p if not let f(p) : = p ◦ (1, 2).
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In the first case let ν ′ be the direct ck-successor of ν with p(1) ∈ Nν′ .

If also p(2) ∈ Nν′ holds then some cycle p(1) → µ(1) → · · · → h2 →
p(2) → µ(2) → · · · → h1 → p(1) forms at ν under (p � ck)(R). Under

(p � c)(R) the cycle p(1) → µ(1) → · · · → h2 → p(1) forms at ν, since

p(1) owns h2 under p � c at ν. Since (p � ck)ν(h2) = (p(2), o) holds for the

house h2 that p(1) trades in the cycle p(1) → µ(1) → · · · → h2 → p(1),

agent p(2) inherits h1 under p � c once this cycle is matched. The cycle

p(2) → µ(2) → · · · → h1 → p(2) forms and ν ′ is also reachable under

(p � ck+1)(R). If p(2) /∈ Nν′ then p(1) is part of the same cycle at ν under

(p�ck)(R) and (p�c)(R), so also in this case ν ′ is reachable under (p�c)(R).

In either case the definition of c implies that the submechanisms of p � ck
and p � c following ν ′ are identical: (p � ck)[ν ′] = (p � c)[ν ′]. In sum we

have (p � ck)(R) = (p� c)(R) = (p � ck+1)(R) = (f(p)� ck+1)(R). We can

conclude that (p � ck)(R) = (f(p) � ck+1)(R) holds when p(1) is part of a

cycle at ν under ck.

In the alternative case when p(1) does not take part in any cycle at

ν under p � c, agent p(2) must be part of the unique such cycle p(2) →
µ(2) → · · · → h2 → p(2).11 Let ν ′ the direct ck-successor of ν that arises

out of matching this cycle. Under (f(p) � c)(R) at ν agent p(2) is the

owner of all houses owned by agents p(1) and p(2) under (p � ck)(R) at

ν which implies that p(2) → µ(2) → · · · → h2 → p(2) also forms under

(f(p)�ck+1)(R) at ν. Once this cycle is eliminated the mechanism continues

under f(p) � c as if agent p(1) had always played the role of agent 1 in ck,

formally (f(p) � c)[ν ′] = (p � ck)[ν ′], since the transposition (1, 2) used to

define c is inverted by the transposition (1, 2) used to transform p under f :

f(p) = p◦ (1, 2). In sum we have that that (p� ck)(R) = (f(p)� c)(R) holds

for all p.

To see that f is a bijection note that there exists a set P 0 such that

f(p) = p holds for all p ∈ P 0 while f(p) = p◦(1, 2) holds for p ∈ P : = P \P 0.

Restricted to P 0 f is a bijection, restricted to P f is one-to-one. To see that

f is a bijection it therefore suffices to show that f(P ) is a subset of P . Note

that p ∈ P if ν∗ ◦ p−1 ⊂ (p � ck)(R) and p(1) is not part of a cycle at ν

11The existence and uniqueness of this cycle follows from ν being maximal in the set of

submatchings ν with p(1), p(2) /∈ Nν that are reachable under (p� ck)(R).
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under (p � ck)(R). Fix any p ∈ P and let p(2) → µ(2) → · · · → h2 → p(2)

be the unique cycle at ν. The uniqueness of this cycle implies that p(1) is

part of some chain p(1) → h∗ → · · · → h′ → i′ under (p � ck)(R) at ν that

terminates with an agent i′ in the cycle p(2) → µ(2) → · · · → h2 → p(2).

Under (f(p)�ck)(R) agent p(1) owns house h2 at ν so the cycle p(1)→ h∗ →
· · · → h′ → i′ → · · · → h2 → p(1) forms at ν under (f(p) � ck)(R). In that

case p(2) is part of the chain p(2)→ µ(2)→ · · · → i′′ that terminates with an

agent i′′ in the cycle p(1)→ h∗ → · · · → h′ → i′ → · · · → h2 → p(1). There

cannot be another cycle at ν under (f(p)�ck)(R) since this cycle would only

involve agents i 6= p(1), p(2) and would therefore also form under (p� ck)(R)

- contradicting the assumption that ν is the maximal reachable submatching

under (p � ck)(R) which neither involves p(1) nor p(2). So there is only

one cycle at ν under (f(p) � ck)(R) and this cycle involves f(p)(2) = p(1)

implying that f(p) ∈ P as required.

5.3.2 When the transformation is constructed using Step (γ, k)

The construction of f for the set of permutations p with ν∗◦p−1 ⊂ (p�ck)(R)

relies on Lemma 1 on random matching mechanisms with just three agents

and three houses which in turn requires some more concepts. For any

random matching mechanism M : R → ∆M let M(R)[i, h] be the prob-

ability that agent i is matched with house h when the agents announce

the profile of preferences R. A random matching mechanism M : R →
∆M is ex post Pareto optimal if any µ in the support of M(R) is

Pareto optimal at R. The mechanism M is ordinally strategy proof if∑
hRih∗

M(R)[i, h] ≥
∑

hRih∗
M(R′i, R−i)[i, h] holds for all R,R′i, i, h

∗. So un-

der an ordinally strategy proof mechanism no agent can misrepresent his

preferences to increase his probability to get a house he prefers to some fixed

h∗. A mechanism M satisfies equal treatment of equals if for any R with

Ri = Rj agents i and j face the same distribution over matches under M(R),

Ri = Rj ⇒ M(R)[i, h] = M(R)[j, h] for all h ∈ H. The symmetrization of

any good mechanism is ex post Pareto optimal, ordinally strategy proof and

satisfies equal treatment of equals.

Lemma 1 Let H = {a, b, c} and N = {1, 2, 3}. Let M : R → ∆M be ex
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post Pareto optimal, ordinally strategy proof and satisfy equal treatment of

equals. Then M is a random serial dictatorship.

Proof Fix an arbitrary profile of preferences R. Let aR∗i bR
∗
i c, aR

◦
i cR

◦
i b,

bR′i{a, c}, and cR′′i {a, b}. For any R I identify a set of 9 linearly indepen-

dent linear equations that uniquely determine the 9 values M(R)[i, h]. These

equations arise out of ex post Pareto optimality, equal treatment of equals,

ordinal strategy proofness, and the fact that M(R) is a probability distri-

bution over matchings. Since random serial dictatorship is ex post Pareto

optimal, ordinally strategy proof and satisfies equal treatment of equals it

equals M.

Case (I) there is a unique Pareto optimal matching at R. Ex post

Pareto optimality requires that M(R) assigns probability 1 to this match-

ing. Case (II) R1 = R2 = R3. Equal treatment of equals requires that

M(R)[i, h] = 1
3

for all i, h. Case (III) (R′′1, R
∗
−1). Ex post Pareto opti-

mality implies M(R′′1, R
∗
−1)[1, c] = 1. Equal treatment of equals implies

M(R′′1, R
∗
−1)[2, ·] = M(R′′1, R

∗
−1)[3, ·], and therefore M(R′′1, R

∗
−1)[i, h] = 1

2
for

i = 2, 3 and h = a, b. Case (IV) (R◦1, R
∗
−1). Ex post Pareto optimality

implies M(R◦1, R
∗
−1)[1, b] = 0; ordinal strategyproofness and (II) imply that

M(R◦1, R
∗
−1)[1, a] = 1

3
. Equal treatment of equals implies M(R◦1, R

∗
−1)[2, ·] =

M(R◦1, R
∗
−1)[3, ·]. This system of linear equations has a unique solution

with M(R◦1, R
∗
−1)[1, c] = 2

3
, M(R◦1, R

∗
−1)[i, a] = 1

3
M(R◦1, R

∗
−1)[i, b] = 1

2
and

M(R◦1, R
∗
−1)[i, c] = 1

6
for i = 2, 3.

Case (V) (R′1, R
∗
−1). Ex post Pareto optimality implies M(R′1, R

∗
−1)[1, a] =

0. Equal treatment of equals implies M(R′1, R
∗
−1)[2, ·] = M(R′1, R

∗
−1)[3, ·].

Ordinal strategy-proofness and (II) imply M(R′1, R
∗
−1)[1, a]+M(R′1, R

∗
−1)[1, b] =

M(R∗)[1, a] + M(R∗)[1, b] = 2
3
. The system of linear equations has a unique

solution with M(R′1, R
∗
−1)[i, a] = 1

2
,MR′1, R

∗
−1)[i, b] = 1

6
,M(R′1, R

∗
−1)[i, c] = 1

3

for i = 2, 3, M(R′1, R
∗
−1)[1, b] = 2

3
and M(R′1, R

∗
−1)[1, c] = 1

3
.

Case (VI) (R′1, R
◦
2, R

∗
3). Ex post Pareto optimality implies M(R′1, R

◦
2, R

∗
3)[1, a] =

M(R′1, R
◦
2, R

∗
3)[2, b] = 0. Ordinal strategyproofness and M(R◦2, R

∗
−1)[1, a] +

M(R◦2, R
∗
−1)[1, b] = 5

6
as implied by Case (III) yield M(R′1, R

◦
2, R

∗
3)[1, a] +

M(R′1, R
◦
2, R

∗
3)[1, b] = 5

6
. Ordinal strategyproofness and M(R′1, R

∗
−1)[2, a] = 1

2

as implied by Case (V) yield M(R′1, R
◦
2, R

∗
3)[2, a] = 1

2
. This system of linear

equations has a unique solution with MR′1, R
◦
2, R

∗
3)[1, b] = 5

6
, M(R′1, R

◦
2, R

∗
3)[1, c] =

20



1
6
, MR′1, R

◦
2, R

∗
3)[2, c] = 1

2
, M(R′1, R

◦
2, R

∗
3)[3, a] = 1

2
, M(R′1, R

◦
2, R

∗
3)[3, b] = 1

6

and M(R′1, R
◦
2, R

∗
3)[3, c] = 1

3
. Mutatis mutandis all profiles of preferences are

covered by Cases (I) through (VI). �

Let I = {I ⊂ N :| I |= 3} be the set of all three agent subsets of

N . Let P I be the set of permutations p such that on the one hand ν∗ ◦
p−1 ⊂ (p � ck)(R) and on the other hand I = {i : (p � ck)ν∗◦p−1(h) =

(i, b) for some h ∈ H}.12 Let QI be the set of permutations p such that on

the one hand ν∗ ◦ p−1 ⊂ (p � ck+1)(R) and on the other hand I is the set

of the first three dictators in the serial dictatorship prescribed by p � ck+1

at ν∗ ◦ p−1. Since ck and ck+1 prescribe the same control rights functions for

any ν with ν∗ 6⊂ ν, ν∗ ◦ p−1 ⊂ (p � ck)(R) holds if ν∗ ◦ p−1 ⊂ (p � ck+1)(R)

holds. So {P I}I∈I and {QI}I∈I both partition the set of all p such that

ν∗ ◦ p−1 ⊂ (p � ck)(R). By Lemma 1 the symmetrization of any braid with

a fixed set of three houses H and a fixed set of three agents I is identical to

random serial dictatorship. So for any I there exists a bijection f I : P I → QI

such that (p� ck)(R) = (f I(p)� ck+1)(R).

Given that {P I}I∈I and {QI}I∈I both partition the set of all p such

that ν∗ ◦ p−1 ⊂ (p � ck)(R) the function f : P → P with f(p) : = p for

ν∗ ◦ p−1 6⊂ (p� ck)(R) and f(p) : = f I(p) for any p ∈ P I is a bijection. By

construction (p� ck)(R) = (f(p)� ck+1)(R) holds for all p.

5.3.3 When the transformation is constructed using Step (δ, k)

Define f(p) = p for any p with ν∗ ◦ p−1 6⊂ (p � ck)(R) and f(p) = p ◦ (1, 2)

otherwise. If f(p) = p then (f(p) � ck+1)[ν∗] = (p � ck)[ν∗] holds by the

arguments given above. If f(p) = p◦(1, 2) then (f(p)�ck+1)[ν∗] = (p�ck)[ν∗]
holds, since the transposition (1, 2) used to define ck+1 is inverted by the

transposition (1, 2) used to transform p under f . Moreover f is a bijection

since ν∗ ◦ p−1 ⊂ (p� ck)(R) holds if and only if ν∗ ◦ f(p)−1 ⊂ (f(p)� ck)(R)

given that f(p)(i) = p(i) holds for all i ∈ Nν∗◦p−1 .

12So I consists of the three agents in the avoidance matching of the braid at ν∗ ◦ p−1
under p� ck.
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6 Conclusion

Two approaches had so far been used to establish the equivalence between

symmetrizations of different good mechanisms: Abdulkadiroglu and Sönmez

[1] as well as Knuth [7] constructed bijections to show the s-equivalence

of GTTC and serial dictatorship. Carroll [5] constructed yet more involved

bijections to show the s-equivalence of serial dictatorship and any top trading

cycles mechanism. Pathak and Sethuraman [10] and Lee and Sethuraman [8]

used an inductive strategy over the number of agents in a mechanism to prove

that any hierarchical exchange mechanism following Papai [9] with equally

many houses and agents is s-equivalent to serial dictatorship.

Could one use either one of these strategies to extend the s-equivalence

result to differently many agents and houses or to good mechanisms that are

not hierarchical exchange mechanisms? Existing equivalence results can eas-

ily be extended to the case of there being more agents than houses. To see this

fix a mechanism M with equally many agents and houses that is s-equivalent

to serial dictatorship. Considering a problem with more agents than houses,

create | N | − | H | dummy houses. For any profile of preferences R on the

original set of houses H define an auxiliary profile of preferences R′ such that

Ri and R′i coincide on H for all i and such that any agent ranks all houses in

H above all dummy-houses. Derive ∆M(R) = ∆S(R) by equating the prob-

ability that an agent obtains a dummy house under ∆M(R′) or ∆S(R′) with

the probability that the agent obtains no house under ∆M(R) and ∆S(R).

This trick does not work when there are more houses than agents. In

this case we would not only have to create dummy agents, these dummy

agents would have to be endowed with “dummy preferences”. When dummy

a agent is matched with a house that some real agent prefers to his match,

the exclusion of the dummy-house match leads to a Pareto inferior match.

To avoid this problem, one could use results on partial symmetrizations by

Carroll [5] and Lee and Sethuraman [8] that treat the agents in some sets

symmetrically while maintaining their relative place with respect to other

sets of agents.

Could we use one of the existing strategies of proof for the case of a

good mechanisms that is not a hierarchical exchange mechanism? The task
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of directly constructing a bijection to prove Theorem 1 seems out of the

question. Carroll’s work [5] probably hits the limit in this dimension. The

inductive strategy or Pathak and Sethuraman [10] and Lee and Sethuraman

[8] relies on mechanisms being representable as trading mechanisms in which

each agent points to their most preferred house. Given that brokers may not

do so and given that braids are not representable as such trading mechanisms,

this strategy of proof does not extend to the grand set of mechanisms.

Since my strategy of proof relies on the construction of sequences of

marginally different good mechanisms, it can only be used on a sufficiently

rich set of mechanisms. To apply the present proof-strategy to show that

GTTC is s-equivalent to serial dictatorship, these two mechanisms need to

be embedded set a rich set of mechanisms. Historically speaking, it would

have been difficult to apply the present strategy of proof in 1996 or 1998,

when Knuth [7] and Abdulkadiroglu and Sönmez [1] respectively published

their proofs, given that Papai’s [9] hierarchial exchange mechanisms came

out in 2000.

The inductive consolidation of ownership works best with hierarchical ex-

change mechanisms. The length of the present paper is owed to the fact that

further arguments are required to deal with brokers and braids. To see this

reconsider this paper without brokers or braids. In other words consider the

set of hierarchical exchange mechanisms. All that remains in Section 4 on

the characterization of mechanisms, are control rights structures c that map

any c-relevant submatching to a control rights function in which all houses

are owned. In this setup (C1), (C2), (C3), (C5) and (C6) are trivially satis-

fied, only (C4) is relevant. Without brokers the definition of new structures

becomes obsolete. Given that there are no braids Step α assigns any ck to

one of two possible transformations: ck+1 is either constructed through the

consolidation of ownership in Step β or through a reordering of dictators in

Step δ. The proof that the sequence is well-defined becomes notably easier,

since we only need to check that (C4) remains valid in the transformations.

The case of hierarchical exchange mechanisms could be dealt with in less

than half the pages necessary to cover the grand set of good mechanisms.

Differently from the predecessors in the literature this proof that any hier-

archical exchange mechanism is s-equivalent to serial dictatorship, does not
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involve any combinatorial arguments.

To deal with braids I showed Lemma 1: random serial dictatorship is the

unique ex post Pareto optimal and ordinally strategy proof random matching

mechanism for three agents and three houses that satisfies equal treatment of

equals. This Lemma yields a vastly more general conjecture than Theorem

1. Could random serial dictatorship be the unique ex post Pareto opti-

mal and ordinally strategy proof random matching mechanism that satisfies

equal treatment of equals? Unfortunately, the method used in my proof of

Lemma 1 becomes cumbersome with more houses and agents. The probabil-

ity distribution M(R) would have to be identified via | H | × | N | linearly

independent linear equations on the probabilities | H | × | N | M(R)[i, h].

One example of these equations is M(R)[i, h] = 0 if there exists no Pareto

optimum at R under which the pair i, h. The problem is that Saban and

Sethuraman [12] have shown that the identification of these equations is an

NP-complete problem. With more houses and agents it becomes increasingly

difficult to find all house-agent pairs that are not matched under any Pareto

optimum. So a proof of the more general conjecture requires a very different

attack.

Some papers, such as Bogomolnaia and Moulin [4] have presented possible

tradeoffs between Pareto optimality and strategy proofness while maintain-

ing equal treatment of equals and non-bossiness. In this context, random

serial dictatorship is typically used as the benchmark of a mechanism that is

best in terms of its incentive properties (ordinally strategy proof) and worst

in terms of its welfare properties (only ex post Pareto optimal). This paper

strengthens the case for using random serial dictatorship as the benchmark.

While initially one could have criticized the choice of a particular good mech-

anism as the base of the symmetrization, I have shown that this choice does

not matter: the symmtrization of any good mechanism leads to random serial

dictatorship.
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