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Abstract

This paper considers the estimation of dynamic panel data models when data are

suspected to exhibit cross-sectional dependence. A new estimator is defined that uses

cross-sectional dependence for efficiency while being robust to the misspecification of the

form of the cross-sectional dependence. We show that using cross-sectional dependence

for estimation is important to obtain an estimator that is more efficient than existing

estimators. This new estimator also uses nuisance parameters parsimoniously so that it is

exhibits good small and large sample properties even when the number of time periods is

large. As an empirical application, we estimate the effect of attending private school on

student achievement using a value added model.
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1 Introduction

In some econometric studies of panel data, researchers want to account for the presence of

feedback between the dependent variable and explanatory variables, i.e. for current values

of the dependent variable to affect future values of the explanatory variables or even for

both dependent and independent variables to be jointly determined. The simplest example of

such models is the dynamic panel data model where lagged values of the dependent variable

are used as covariates. In such cases, explanatory variables can not be treated as strictly

exogenous. In virtually all panel data applications, researchers also want to control for un-

observed heterogeneity that affects the dependent variable but might also be correlated with

the covariates.

The presence of both non strictly exogenous covariates and unobserved heterogeneity in

panel data models causes many estimation methods to be invalid (see for instance Wooldridge

(2010)). In the context of cross-sectionally independent data, a valid estimator for dynamic

panel data models that relies on first differencing and instrumental variables has been de-

fined in early work by Anderson and Hsiao (1981). Additionally, an asymptotically efficient

estimator is found in Arellano and Bond (1991)1. In the rest of the paper, we refer to this

estimator as the AB estimator. These estimators often suffer from having a large variance

because the instrumental variables that they use are weak.2 In addition, inference for the AB

estimator is often unsatisfactory when the number of time periods in the data set is relatively

large because of problems due to using many moment conditions, as studied in Alvarez and

Arellano (2003) or Windmeijer (2005) for the case of cross-sectional independence.

In this paper, we consider the estimation of panel data models with covariates that are not

strictly exogenous when data also exhibit cross-sectional dependence. We will define a new

1With cross-sectionally independent data, the Arellano and Bond estimator is asymptotically efficient in
the class of estimators using linear functions of the instruments.

2To address this problem, papers such as Ahn and Schmidt (1995), Arellano and Bover (1995), and Blun-
dell and Bond (1998) considered using for estimation additional assumptions such as homoscedasticity, serial
uncorrelation of the transitory shocks, or restrictions on initial conditions. Another approach to obtain effi-
ciency gains by using additional assumptions can be found in the literature on First Difference Quasi-Maximum
Likelihood estimation, as in Hsiao et al. (2002) or Han et al. (2014) for instance, which rely on assumptions of
homoscedasticity and serial uncorrelation of the transitory shocks. We do not consider these estimators here
since we are interested in estimators that are consistent under the only assumption of mean independence of
the transitory shock, without any other assumption holding.
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estimator that is more efficient than the AB estimator and for which inference is significantly

better in small samples. The main reason why our estimator is more efficient than previous

estimators that were defined for data with cross-sectional independence is that it makes use

of cross-sectional dependence to obtain stronger instruments.

In order to obtain an estimator with not only good properties in terms of point estimation,

but also good properties for inference, we use an auxiliary model for optimal instruments. Op-

timal instruments are instruments that, once interacted with corresponding moment functions,

provide an optimal set of exactly identifying moment conditions so that the resulting esti-

mator achieves the asymptotic efficiency bound for estimating unknown parameters from the

assumption of mean independence of the transitory shocks. Optimal instruments for estimat-

ing dynamic panel data models without cross-sectional dependence are found in Chamberlain

(1992) and they can be generalized to the case of cross-sectional dependence. In this paper, we

propose auxiliary assumptions sufficient to model optimal instruments for panel data models

with covariates that are not strictly exogenous and cross-sectional dependence. The advan-

tage of such an approach is that it provides a systematic way of weighting many moment

conditions while making use of few nuisance parameters. As a result, our estimator exhibits

good small sample properties and inference while being robust to the misspecification of our

model of optimal instruments.

Arellano (2003) and Alvarez and Arellano (2004) have previously considered modeling

optimal instruments for dynamic panel data models in the special case of cross-sectional inde-

pendence. We show that cross-sectional dependence can be particularly useful to obtain more

accurate estimators. Previous work on dynamic panel data models that has considered cross-

sectional dependence has not made use of this dependence to obtain stronger instruments.

Mutl (2006), for instance, studied a GMM estimator based on the same moment conditions

as in Anderson and Hsiao (1981) or Arellano and Bond (1991) and only uses an optimal

weighting matrix based on a specific model of spatial dependence. Elhorst (2005) and Su and

Yang (2013) generalized maximum likelihood estimators as in Hsiao et al. (2002) to the case

of cross-sectional dependence but these estimators are not robust to heteroscedasticity, serial
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correlation of the transitory shocks or misspecification of the cross-sectional dependence.

In Section 2, we present the simplest example of the models we consider, the dynamic panel

data model without covariates for data with cross-sectional dependence, and characterize a

general class of consistent and asymptotically normal estimators for this model under large

n, fixed T asymptotics. In Section 3, we define our estimator and compare it to existing

estimators. We also show that our estimator is consistent and asymptotically normal unbiased

even when large n, large T asymptotics are used, i.e. that it is not subject to the issue of many

instruments. Finally, we show how to generalize the estimator defined for the simple dynamic

model without covariates to models with covariates and sequentially exogenous instruments.

In Section 4, we present Monte-Carlo evidence that the efficiency gains from using cross-

sectional dependence for estimation can be significant and that the estimator we propose has

superior small sample properties compared to existing estimators. In Section 5, we apply our

estimator to the estimation of the effect of attending private school on student achievement

using a value-added model and taking into account the possibility that student achievements

are correlated within schools.

2 Dynamic Panel Data Models with Cross-Sectional Depen-

dence

2.1 The Model

Throughout the paper we will consider large n, fixed T asymptotics, except for Section 3.4,

which derives the large n, large T asymptotic properties of the new estimator we define in the

next section. Consider first the model for any observation i from a sample of n observations

and any time period t from a fixed number T of time periods:

yit = ρ0yit−1 + ci + uit (2.1)

E(uit|Yt−1) = 0 (2.2)

4



where Yt = [Y
′

1t, ..., Y
′

nt]
′

and Yit = [yi0, ..., yit]
′

are random vectors that stack values of yit

across time and observations and ci are unobserved effects constant over time, also called

unobserved heterogeneity. We also assume that ρ0 6= 1 so that ρ0 is identified from differenced

equations as seen in the next subsection.

In the case where there is no cross-sectional dependence, (2.1) and (2.2) correspond to

the linear dynamic model for panel data as presented in Arellano and Bond (1991) for in-

stance. When there is cross-sectional dependence, (2.1) and (2.2) impose the restriction that

cross-sectional dependence does not cause Yt−1 to be endogenous. For instance if contempora-

neous spatial lags were omitted variables in (2.1), then (2.2) would be violated. Some papers

such as Cizek et al. (2011), Elhorst (2005), Su and Yang (2013) and Baltagi et al. (2014)

have considered models with both dynamic effects and contemporaneous spatial lag effects.

Since estimators for such models rely on correct specification of the form of cross-sectional

dependence, we do not consider them here and concentrate on models where cross-sectional

dependence of some unknown form is present in the residuals.3 Lagged values of the depen-

dent variable of neighboring observations could also be included in the model as covariates to

control for dynamic cross-sectional effects. We will discuss models with covariates in Section

3.5.

The objective of the next section is to characterize estimators for ρ0 that are consistent

when (2.1) and (2.2) hold under general conditions on the form of cross-sectional dependence

in ci and uit.

2.2 Consistent Estimation

The presence of unobserved heterogeneity rules out estimation of ρ0 by a regression. Because

(2.1) and (2.2) form a dynamic model, fixed effects estimation is also ruled out because

explanatory variables are not strictly exogenous.

3We can also note that, with cross-sectional dependence, it is not likely for E(uit|Yit−1) = 0 to hold
without (2.2) holding. If (2.2) is not satisfied, it is likely that both estimators for cross-sectionally independent
data such as the Arellano and Bond estimator and the alternative estimator proposed in this paper will be
inconsistent. For instance suppose for simplicity that n = 2 and E(u1t|Yt−1) = α + β1y1t−1 + β2y2t−1 6= 0 so
that β1 6= 0 or β2 6= 0. Then E(u1t|Y1t−1) = α+β1y1t−1+β2E(y2t−1|Y1t−1) and it is likely that E(y2t−1|Y1t−1)
is a function of y10, ..., y1t−2 in addition to y1t−1 so that, in general, α + β1y1t−1 6= −β2E(y2t−1|Y1t−1) and
E(u1t|y1t−1) 6= 0.
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To estimate ρ0, we will consider a forward filtering transformation as in Arellano and

Bover (1995).4 Define:

mit(ρ) = ỹit − ρỹit,−1 ∀ t = 1, ..., T − 1 (2.3)

where ỹit = yit − 1
T−t

∑T
s=t+1 yis and ỹit,−1 = yit−1 − 1

T−t

∑T
s=t+1 yis−1. Therefore, mit(ρ0) =

ũit = uit − 1
T−t

∑T
s=t+1 uis and (2.1) and (2.2) imply:

E(mit(ρ0)|Yt−1) = 0 ∀ t = 1, ..., T − 1 (2.4)

Definemi(ρ) = [mit(ρ)]t=1,...,T−1 to be the column vector withmit(ρ) as its t
th element. We

will also use the notation Ỹi = [ỹit]t=1,...,T−1, Ũi = [ũit]t=1,...,T−1 and Ỹ−1,i = [ỹit,−1]t=1,...,T−1.

Define:

zi = [zi1, ..., ziT−1] (2.5)

to be a row vector of dimension 1× (T − 1) containing instruments for each time period, so

that zit is a function of Yt−1. Therefore we have E(zitmit(ρ0)) = 0 and:5

E(zimi(ρ0)) =

T−1
∑

t=1

E(zitmit(ρ0)) = 0 (2.6)

Define ρ̂ to be the estimator obtained from solving the sample analogue of (2.6):

n
∑

i=1

zimi(ρ̂) = 0 (2.7)

so that:

ρ̂ =

∑n
i=1 ziỸi

∑n
i=1 ziỸ−1,i

(2.8)

= ρ0 +

∑n
i=1 ziŨi

∑n
i=1 ziỸ−1,i

(2.9)

Note that defining ρ̂ in this way is more general than first appears since zi is free to be

defined in any way. For instance, ρ̂ is asymptotically equivalent to the GMM estimator of ρ0

from the moment functions mi(ρ) with overidentifying instruments Zi and weighting matrix

4In this paper, a first difference transformation instead of forward filtering would eventually lead to the
same proposed estimator, but we use forward filtering because it will simplify notation in later sections.

5Note that we need to assume ρ0 6= 1 for E(zimi(ρ)) = 0 to hold for ρ = ρ0 only since if ρ0 = 1 then
E(zimi(ρ)) = 0 ∀ ρ.
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Ξ when zi is chosen to be zi = E(ZiỸ−1,i)
′

ΞZi.

Conditions that are sufficient for ρ̂ to be consistent and asymptotically normal are:

1. The absolute value ofDn = E(n−1
∑n

i=1 ziỸ−1,i) is uniformly positive for n large enough,

i.e. |Dn| > c > 0, ∀n > N for some constants c and N .

2. σ2
n = n−1V ar(

∑n
i=1 ziŨi) > c > 0, ∀n > N .

3. plim(n−1
∑n

i=1 ziỸ−1,i −Dn) = 0 as n → ∞.

4. plim(n−1
∑n

i=1 ziŨi) = 0 as n → ∞.

5. σ−1
n

1√
n

∑n
i=1 ziŨi

d→ N(0, 1) as n → ∞.

Conditions 1 and 2 are commonly imposed regularity conditions. Condition 1 implies that the

instruments zi are useful for predicting the covariates Ỹ−1,i. If D = limn→∞(Dn) exists, then

Condition 1 can be replaced by D 6= 0. Condition 2 guarantees that a particular summand

ziŨi is asymptotically ignorable, i.e. can’t offset the information accumulated from other

summands. If σ2 = limn→∞σ2
n exists, then Condition 2 can be replaced by σ2 > 0.

Since E(ziŨi) = 0 under (2.2), Conditions 3, 4, and 5 state that weak laws of large numbers

and central limit theorems hold. Because we allow for unknown forms of cross-sectional

dependence, additional restrictions have to be imposed on the strength of this dependence for

Conditions 3, 4, and 5 hold. Here we consider two examples of sets of restrictions that are

sufficient for Conditions 3-5 to hold.

The first example is the case of cluster dependence, where the data can be split between

several independent clusters, each with a fixed number of observations. While observations

across clusters are independent, observations in the same cluster can be dependent in an

arbitrary way. In this case, standard results on asymptotic properties with independent

observations, found in White (2001) for instance, imply that weak laws of large numbers and

central limit theorems hold for sample averages.

The second example is the case of spatial dependence. In this case, some measure of

distance is available and cross-sectional dependence decays with distance. Conley (1999),
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Jenish and Prucha (2009), Jenish and Prucha (2012) consider different sets of assumptions

that guarantee that sample averages are consistent and asymptotically normal in the presence

of spatial dependence. We choose the framework of Jenish and Prucha (2012) to apply to our

model since it is the most general out of the three papers cited above.

Appendix A presents the formal assumptions that are sufficient for Conditions 3 to 5 to

hold for either case, and proves that each set of assumptions is indeed sufficient.

As long as the Conditions 1 to 5 listed above hold, as n → ∞, we have:

ρ̂
p→ ρ

Dn

σn

√
n(ρ̂− ρ)

d→ N(0, 1)

In the next section, we consider a model of optimal instruments, so that the resulting esti-

mator is efficient if our model of optimal instruments is correct. It will however be consistent

and asymptotically normal as long as (2.1), (2.2) and Conditions 1-5 hold, independently of

whether the auxiliary model of optimal instruments we specify is true or not.

3 Efficient Estimation under Cluster Dependence

In this section, we consider an auxiliary model for deriving optimal instruments that assumes

that every observation belongs to one of a large number of clusters. Observations are treated as

correlated within clusters but independent across clusters. While clustering only represents

a specific form of cross-sectional dependence, it might be a good approximation for more

general forms of dependence in many applications. This idea is present for instance in Bester

et al. (2011a) which studies the use of clustered standard errors for inference in cases where

cross-sectional dependence of unknown form is present. In addition, the method outlined in

this section for the special case of clustering can easily be extended to other forms of cross-

sectional dependence. Therefore we restrict our attention in this paper to auxiliary models

that make use of the cluster dependence assumption. For simplicity we will consider in this

section the case where each observation belongs to the same cluster across all time periods

but the results in this section can be generalized to clusters changing over time as shown in
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Section 5.

Previous work that estimated dynamic models of panel data with clustered sampling gen-

erally used estimators developed for i.i.d. data such as the ones found in Anderson and Hsiao

(1981), Arellano and Bond (1991), or Ahn and Schmidt (1995), and adjusted inference by

using clustered standard errors. Such an analysis can be found for instance in de Brauw and

Giles (2008) where farming households are treated as clustered by village or Andrabi et al.

(2011) where students are clustered by school. Topalova and Khandelwal (2010) and Bala-

subramanian and Sivadasan (2010) consider the case where firms are clustered by industry.

In this section, we show that there is much to gain in terms of efficiency by using a

different estimator that takes into account correlation within cluster while being robust to the

misspecification of the form of this correlation, or of the form of the cross-sectional dependence

all together. The next subsection shows how to model optimal instruments for estimating (2.1)

and (2.2) and how cross-sectional dependence can be leveraged to obtain stronger instruments.

3.1 Model for the Optimal Instruments

Our model of optimal instruments relies on three auxiliary assumptions. The first assumption

of cluster dependence is:

Auxiliary Assumption 1: The data can be divided in a large number of clusters indexed

by g = 1, ..., G, each with a fixed number of observations denoted ng, where 0 < ng < C for

some constant C. Observations are independent across clusters.

In this section we will index observations by cluster so that for any i, gi denotes the

cluster to which observation i belongs and jg denotes the jth observation of cluster g so

that for any observation i in g, there is j such that jg = i and {{xjg}j=1,...,ng}g=1,...,G =

{xi}i=1,...,n for any sequence of variables {xi}i=1,...,n. Consider stacking all observations by

cluster and define mg
t (ρ) = [m1g ,t(ρ), ...,mngg ,t(ρ)]

′

, mg(ρ) = [mg′

1 (ρ), ...,m
g′

T−1(ρ)]
′

, ũgt =

mg
t (ρ0) and Ũg = mg(ρ0). Similarly, define cg = [c1g , ..., cngg ]

′

, ygt = [y1g,t, ..., yngg ,t]
′

, ỹgt =

[ỹ1g,t, ..., ỹngg ,t]
′

, ỹgt,−1 = [ỹ1g,t,−1, ..., ỹngg ,t,−1]
′

, Ỹ g = [ỹg
′

1 , ..., ỹg
′

T−1]
′

, Ỹ g
−1 = [ỹg

′

1,−1, ..., ỹ
g′

T−1,−1]
′

,
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Y g
t = [yg

′

0 , ..., yg
′

t ], ugt = [u1gt, ..., ungg t], U
g = [ug

′

1 , ..., u
g′

T ]
′

.

With Auxiliary Assumption 1, optimal instruments are a function of Y gi
t−1 only instead of

Yt−1. By generalizing the work on optimal instruments for cross-sectionally independent data

found in Chamberlain (1992) to the case of cluster-sampling, Appendix B.1 shows that the

optimal estimator for ρ0 is defined by:

G
∑

g=1

Zg
optm

g(ρ̂opt) = 0 (3.1)

where Zg
opt = L⋆g′(Φg)−1/2 where Φg = [Cov(ũgt , ũ

g′
s |Y g

max{t,s}−1)]
s=1,...,T−1
t=1,...,T−1 , (Φ

g)−1/2 is the

upper diagonal matrix such that (Φg)−1/2′(Φg)−1/2 = (Φg)−1, L⋆g = [L⋆g′

t ]t=1,...,T−1 and

L⋆g
t = E((Φg

t )
−1/2Ỹ g

−1|Y
g
t−1) where (Φg

t )
−1/2 is the tth ng × ng(T − 1) matrix composing

(Φg)−1/2.

One could estimate these optimal instruments non-parametrically by using series of in-

struments that include lagged values of the dependent variable for an observation but also

lagged values of the dependent variable for neighboring observations. A similar estimator has

been studied for the case of cross-sectionally independent data in Donald et al. (2009) for

static models and Hahn (1997) for dynamic models. However such an approach would not

be practical here since there are too many possible terms to consider as instruments. Also, it

would involve using many nuisance parameters which can cause poor small sample properties

for the estimator, as is discussed later.

Instead, we can use two additional auxiliary assumptions to impose parametric restric-

tions on the model for optimal instruments and drastically reduce the number of nuisance

parameters needed. Auxiliary Assumption 2 is an assumption of conditional homoscedastic-

ity, conditional serial uncorrelation, and conditional equi-correlation within clusters:6

6This Assumption is admittedly strong but presents the advantage of introducing only two nuisance pa-
rameters, which results in a parsimonious estimator. We show in this section that the resulting estimator is
consistent and asymptotically normal as long as (2.1), (2.2) and Conditions 1-5 hold, independently of whether
heteroscedasticity is present or not. In addition, Monte Carlo results in Section 4 show that, for the specific
data generating processes considered, the presence of heteroscedasticity does not result in large losses in effi-
ciency for the estimator we propose. However, with large datasets, one could use an estimator that is efficient
under more general conditions by modeling heteroscedasticity as, for instance: for any i, j ∈ g, t, s = 1, ..., T ,
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Auxiliary Assumption 2: For any i, j ∈ g, t, s = 1, ..., T , t ≥ s:

Cov(uit, ujs|cg, Y g
t−1) = σ2

u if i = j, t = s

= τuσ
2
u if i 6= j, t = s

= 0 if t > s

Under Auxiliary Assumption 2, Appendix B.2 shows that the optimal instrument for

mg
t (ρ), z

g
opt,t, is a linear function of E(ỹgt,−1|Y

g
t−1), i.e. that optimal instruments are a linear

function of the best prediction of the covariates in (2.4), ỹit−1, based on the instruments

available, Y g
t−1.

From (2.1) and (2.2):

E(ỹgt,−1|Y
g
t−1) = ygt−1 −

1

T − t

T
∑

s=t+1

E(ygs−1|Y
g
t−1) (3.2)

= ygt−1 −
1

T − t

T
∑

s=t+1

(ρs−t
0 ygt−1 +

s−t−1
∑

r=0

ρr0E(cg|Y g
t−1)) (3.3)

= ygt−1(1−
1

T − t
ρ0

1− ρT−t
0

1− ρ0
) + E(cg|Y g

t−1)(−
1

1− ρ0
+

1

T − t

ρ0
1− ρ0

1− ρT−t
0

1− ρ0
)

(3.4)

Hence we see that the quality of prediction of ỹgt−1 based on Y g
t−1, and hence the strength

of the instruments and the efficiency of the resulting estimator, will depend on the quality

of the prediction of cg based on Y g
t−1. In many applications, it is very likely that agents

that belong to the same cluster will have levels of unobserved heterogeneity that are related.

For instance, farmers that live in the same village might farm plots with similar soil quality

or develop similar farming practices over time. Firms that operate in the same industry

t ≥ s,

Cov(uit, ujs|cg , Y g
t−1

) = α+ βu
2

it−1 if i = j, t = s

= η + γuit−1ujt−1 if i 6= j, t = s

= 0 if t 6= s

From this model, let wit−1 = yit−1 − ρ0yit−2, we obtain: V ar(uit|Y g
t−1

) = α + βE((yit−1 − ρ0yit−2 −
ci)

2|Y g
t−1

) = α + β((wit−1)
2 − 2wit−1E(cit|Y g

t−1
) + E(c2i |Y g

t−1
) and Cov(uit, ujt|Y g

t−1
) = η + γ(wit−1wjt−1 −

wit−1E(cj |Y g
t−1

) − wjt−1E(ci|Y g
t−1

) + E(cicj |Y g
t−1

). Hence, in order to obtain a model for Φg , models for
E(c2i |Y g

t−1
) and E(cicj |Y g

t−1
) are needed in addition to a model for E(ci|Y g

t−1
). This can result in introduc-

ing many new nuisance parameters and complicates the estimator significantly since it also complicates the
derivation of a model for L⋆g.

11



might also face similar constraints such as for instance regulation or access to skilled labor

force. Similarly, households that live in the same district might have been selected based

on common characteristics such as wealth, income, family status or values. As a result, in

many applications, we can expect that using information from other observations in the same

cluster in addition to one’s own previous outcomes can provide a better predictor for one’s

level of unobserved heterogeneity, and consequently stronger instruments as well as a more

efficient estimator.

Auxiliary Assumption 3 enables us to derive a model for the mean of unobserved hetero-

geneity conditional on lagged values of the dependent variable:

Auxiliary Assumption 3: Suppose that for any cluster g = 1, ..., G:












cg

yg0

ug













∼ N(













µcιng

1
1−ρ0

µcιng

0













,













Σg
c

1
1−ρ0

Σg
c

1
(1−ρ0)2

Σg
c +

1
1−ρ2

0

Σg
u

0 0 IT ⊗ Σg
u













) (3.5)

where Σg
u = σ2

u



















1

τu 1

... ...

τu ... τu 1



















, Σg
c = σ2

c



















1

τc 1

... ...

τc ... τc 1



















, and ιng is a column vector of ones

of dimension ng × 1.

In addition to joint normal distribution of cg and {ugt }t=1,...,T , Auxiliary Assumption 3

assumes that the initial distribution of yit is stationary, i.e.:

yg0 =
cg

1− ρ0
+ u̇g0 (3.6)

where u̇g0 is independent of cg and {ugt }t=1,...,T , follows normal distribution with zero mean,

variance equal to σ2
u/(1− ρ20), and has a within cluster correlation of τu.

7

From Auxiliary Assumption 3, we can derive the distribution of [cg
′

, yg
′

0 , cg
′

+ ug
′

1 , ..., c
g′ +

ug
′

T ]
′

as a multivariate normal with mean 0 and variance V g. Therefore, using the properties

7The auxiliary assumption of stationary initial conditions can easily be generalized, at the expense of

12



of the multivariate normal distribution, under Auxiliary Assumptions 1-3, E(cg|Yt) can be

obtained as a linear function of yg0 , c
g + ug1, ..., c

g + ugt with coefficients given by the elements

of V g (note that cg + ugt = ygt − ρ0y
g
t−1, so that it is a function of observed variables and the

estimable parameter ρ0). The exact form of E(cg |Yt) under Auxiliary Assumptions 1, 2, 3 is

given in Appendix B.3.

3.2 Definition of a New Estimator and Asymptotic Distribution

Only five nuisance parameters compose V g: σ2
u, τu, µc, σ

2
c , τc. Preliminary estimators of ρ0

and of these five nuisance parameters can be estimated from the non-linear regression model

given by (3.4):

E(ỹit,−1|Y g
t−1) = at(ρ0)yit−1 + bt(ρ0)M(ci|Y g

t−1, θ0)

at(ρ) = (1− 1

T − t
ρ
1− ρT−t

1− ρ
)

bt(ρ) = (− 1

1− ρ
+

1

T − t

ρ

1− ρ

1− ρT−t

1− ρ
)

where θ0 = {ρ0, σ2
u, τu, µc, σ

2
c .τc} and M(ci|Y g

t−1, θ0) is the model for E(ci|Y g
t−1) as a function

of Y g
t−1 and the nuisance parameters θ0 obtained in Appendix B.3. A preliminary estimator

θ̂ can be defined from the pooled non-linear least-squares regression:

θ̂ = argminθ

n
∑

i=1

T
∑

t=1

(ỹit,−1 − at(ρ)yit−1 − bt(ρ)M(ci|Y g
t−1, θ))

2 (3.7)

This non-linear regression resembles a pooled “first-stage regression”, where covariates

are regressed on instruments. The difference here is that the parametric model of optimal

instruments developed in the previous section is used to drastically reduce the number of

nuisance parameters present in the first-stage regression. If Auxiliary Assumption 1-3 hold,

θ0 will be estimated consistently from this non-linear regression. In general, Appendix B.4

introducing three additional nuisance parameters, by assuming:

y
g
0
= α+ βc

g + u̇
g
0

u̇
g
0
|cg ∼ N(0, Σ̃0)

V ar(u̇i0) = σ̇0

Corr(u̇i0, u̇j0) = τu if i 6= j but gi = gj

13



shows that θ̂ will converge to θ̈ defined by:

θ̈ = argminθ

T
∑

t=1

E((ỹit,−1 − at(ρ)yit−1 − bt(ρ)M(ci|Y g
t−1, θ))

2) (3.8)

where we have assumed that E((ỹit,−1 − at(ρ)yit−1 − bt(ρ)M(ci|Y g
t−1, θ))

2) is constant across

i for simplicity.

Let Φ̂g be the estimator for the variance-covariance matrix Φg = V ar(Ũg) composed of

σ̂u and τ̂u from the formula derived in Appendix B.2. Let µ̂gc
t = [M(ci|Y g

t−1, θ̂)]i∈g be the

estimator of E(cg|Yt) from the model M(xi|Y g
t , θ) given in Appendix B.3.

A consistent estimator for the optimal instrument for mg(ρ) under (2.1) and (2.2) and

Auxiliary Assumptions 1, 2, 3 is:

Ẑg
opt = [(a1(ρ̂p)y

g
0 + b1(ρ̂p)µ̂

gc
1 )

′

, ..., (aT−1(ρ̂p)y
g
T−2 + bT−1(ρ̂p)µ̂

gc
T−1)

′

](Φ̂g)−1 (3.9)

where ρ̂p is the estimator of ρ0 found as the first element of θ̂. The estimator obtained from

using this instrument is ρ̂⋆ defined by:

G
∑

g=1

Ẑg
optm

g(ρ̂⋆) = 0 (3.10)

So that:

ρ̂⋆ =

∑G
g=1 Ẑ

g
optỸ

g

∑G
g=1 Ẑ

g
optỸ

g
−1

(3.11)

= ρ0 +

∑G
g=1 Ẑ

g
optŨ

g

∑G
g=1 Ẑ

g
optỸ

g
−1

(3.12)

Let Z̈g
opt be the random vector defined as in (3.9) but where θ̂ is replaced by θ̈. Appendix

B.4 shows that ρ̂⋆ is asymptotically equivalent to:

ρ̈⋆ = ρ0 +

∑G
g=1 Z̈

g
optŨ

g

∑G
g=1 Z̈

g
optỸ

g
−1

(3.13)

When (2.1), (2.2) hold and Conditions 1-5 of Section 2.2 hold for [zi]
i∈g = Z̈g

opt, ρ̈⋆, and

14



consequently ρ̂⋆, are consistent for ρ0 and asymptotically normal:

√
G(ρ̂⋆ − ρ0)

d→ N(0, Vρ) (3.14)

Vρ = D−2σ2 (3.15)

D = limG→∞(
1

G

G
∑

g=1

E(Z̈g
optỸ

g
−1)) (3.16)

σ2 = limG→∞(
1

G
V ar(

G
∑

g=1

Z̈g
optŨ

g)) (3.17)

where here we assumed that D and σ2 exist for notational simplicity.8

For inference, if we have cluster sampling (Auxiliary Assumption 1), then:

σ2 = limg→∞(
1

G

G
∑

g=1

V ar(Z̈g
optŨ

g)) (3.18)

In this case, standard errors for ρ̂⋆ that are consistent as long as (2.1), (2.2) and Assump-

tion 1 of cluster dependence hold are given by:

s.e. = ((

G
∑

g=1

Ẑg
optỸ

g
−1)

−2
G
∑

g=1

(Ẑg
optm

g(ρ̂⋆))2)1/2 (3.19)

If the assumption of cluster sampling is violated and instead we have some measure of dis-

tance and can assume that cross-sectional dependence decays with distance as in Assumption

3 of Appendix A, one can use non-parametric estimators for σ2. Statistical tests with general

forms of spatial dependence are available and have been discussed in Conley (1999), Kelejian

and Prucha (2007), Bester et al. (2011b), Kim and Sun (2011) and Bester et al. (2011a).

3.3 Comparison to Existing Estimators

The estimator defined by (3.10) can be rewritten as ρ̂∗ that satisfies the equation:

G
∑

g=1

wg∗(θ̂)Zgmg(ρ̂∗) = 0 (3.20)

8When Auxiliary Assumptions 1, 2, 3 also hold, D = σ2 = E(L⋆g′(Φg)−1L⋆g), so that Avar(
√
G(ρ̂⋆−ρ0)) =

E(L⋆g′(Φg)−1L⋆g)−1, and ρ̂⋆ indeed achieves the efficiency bound for estimating ρ0 from (2.1) and (2.2) derived
in Appendix B.1.
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where Zg is the matrix containing all valid instruments formg, Zg = diag({Ing⊗Y g
t }t=0,...,T−2),

and wg∗(.) is the deterministic row vector function such that wg∗(θ̂)Zg = Ẑg
opt.

The Arellano and Bond estimator9 can also be written as exactly identified from:

G
∑

g=1

ŵg
ABZ

gmg(ρ̂AB) = 0 (3.21)

where:

ŵg
AB =

n
∑

i=1

(Ỹ
′

−1,iZ
′

i)(

n
∑

i=1

Zimi(ρ̃)mi(ρ̃)
′

Z
′

i)
−1Sg (3.22)

where ρ̃ is a preliminary consistent estimator and Sg is the matrix of zeros and ones such that

SgZgmg(ρ) =
∑

i∈g Zimi(ρ) where Zi = diag({Yit}t=0,...,T−2).

In the presence of cross-sectional dependence, it is likely that our estimator will perform

better than the Arellano and Bond estimator even when some of the Auxiliary Assumptions

1, 2, 3 are violated because our estimator gives non-zero weights to moment conditions ob-

tained from using instruments from neighboring observations, E(Zjmi(ρ0)) = 0, i 6= j. As

discussed in the previous section, these instruments may have significant predictive power for

the covariates in the forward filtered equations, so that these additional moment conditions

can be useful to improve the accuracy of the estimator.

In addition, our estimator relies on the estimation of only six nuisance parameters to

compute weights for all n2
g × T × (T − 1)/2 moment conditions available per cluster, whereas

the Arellano and Bond estimator relies on the estimation of T×(T−1)/2 weights. As a result,

Alvarez and Arellano (2003) showed that the Arellano and Bond estimator is asymptotically

biased under large n, large T asymptotics in the context of cross-sectionally independent data.

In addition, Windmeijer (2005) showed that inference for the Arellano and Bond estimator

is very poor when T is relatively large. Because our estimator makes use of few nuisance

parameters, it will have good properties even when T is relatively large. As evidence of

9So-called system GMM estimators presented in Ahn and Schmidt (1995), Arellano and Bover (1995),
and Blundell and Bond (1998) are similar to the Arellano and Bond estimator but use additional moment
conditions based on additional assumptions of homoscedasticity, absence of serial correlation or stationary
initial conditions. Quasi-maximum likelihood estimators such as in Hsiao et al. (2002) or Han et al. (2014)
also rely on these additional assumptions for consistency. Since our estimator is consistent under the only
assumption of mean independence of transitory shocks conditional on past outcomes, it is more robust than
these estimators.
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the superior properties of our estimator when T is relatively large, Section 3.4 shows that

ρ̂⋆ is consistent and asymptotically normal unbiased under large n, large T asymptotics,

independently of the relative rates at which T and n grow. In addition, Monte Carlo simulation

results presented in Section 4 show that our estimator has significantly better small sample

properties than the Arellano and Bond estimator in terms of bias, efficiency and quality of

inference, even when our model of optimal instruments does not correspond to the true data

generating process or when there is no cross-sectional dependence.

3.4 Large n, Large T Asymptotics

The advantage of using a parsimonious model for optimal instruments instead of an unre-

stricted optimal GMM estimation method can be formalized by looking at the asymptotic

distribution of our estimator under large n, large T asymptotics.

Appendix C derives the asymptotic distribution of ρ̂⋆ under asymptotics where n and T

both grow unboundedly. It shows that ρ̂⋆ is consistent and asymptotically normal unbiased

under large n, large T asymptotics, independently of the relative rates at which n and T grow,

i.e. our estimator does not suffer from the problem of many instruments unlike optimal GMM

estimators such as the Arellano and Bond estimator.

When deriving the asymptotic distribution of ρ̂⋆ as n and T grow unboundedly, we need

to impose |ρ0| < 1 instead of ρ0 6= 1, so that explosive time series behaviors are ruled out.

We also strengthen (2.2) to:

E(uit|Yt−1, c) = 0 (3.23)

where c = {ci}i=1,...,n. This assumption implies that uit is mean independent of Ut−1 in

addition to Yt−1 since uit−1 = yit−1 − ρ0yit−2 − ci. We also assume:

Cov(uitujt|Yt−1, c) = σu
ij (3.24)

We also assume that the process has reached its stationary distribution:

yit =
ci

1− ρ0
+

∞
∑

s=0

ρs0uit−s (3.25)

17



These three assumptions simplify derivations significantly and are in line with the assump-

tions made in other papers deriving the large n large T asymptotic properties of estimators of

dynamic panel data models in the context of cross-sectional independence, such as for instance

Hahn and Kuersteiner (2002), Alvarez and Arellano (2003), or Hayakawa (2009).

As n, T , grow to infinity, under (2.1), (3.23), (3.24), (3.25), under restrictions of L2+δ inte-

grability as well as of cross-sectional and serial near epoch dependence shown in Assumptions

2 and 4 of the Appendix, Appendix C shows that we have:

√
nT (ρ̂⋆ − ρ0)

d→ N(0, (D∞)−2σ2
∞)

D∞ = limn,T→∞(
1

nT

n
∑

i=1

T
∑

t=1

E(witẅit))

wit =

∞
∑

s1=0

ρs10 uit−1−s1

ẅit = agi
Σ−1wit + bgi

Σ−1w̄t
g,−i

σ2
∞ = limn,T→∞(

1

nT

∑

t

V ar(
∑

i

wit(a
gi
Σ−1uit + bgi

Σ−1 ūt
g,−i)))

where x̄g,−i = 1
ngi

−1

∑

j∈gi,j 6=i xj for any variable xi, a
g
Σ and bgΣ are scalars defined in Ap-

pendix C by (σ̈2
u



















1

τ̈u 1

... ...

τ̈u ... τ̈u 1



















)−1 =



















ag
Σ−1

1
ng−1b

g
Σ−1 ag

Σ−1

... ...

1
ng−1b

g
Σ−1 ... 1

ng−1b
g
Σ−1 ag

Σ−1



















, σ̈u, τ̈u being

the elements of θ̈ = limn,T→∞argminθ
∑n

i=1

∑T
t=1 E(ỹit,−1−at(ρ)yit−1− bt(ρ)M(ci|Y g

t−1, θ))
2

corresponding to σu and τu in θ0, and where we have assumed thatD∞, σ2
∞ exist for notational

simplicity.

Hence the estimator defined in this paper is indeed asymptotically normal unbiased under

large n, large T asymptotics.

For inference with unknown forms of cross-sectional and serial dependence, one can use a

non-parametric estimator for σ2
∞ and obtain critical values for the resulting tests as in Kim

and Sun (2013).10

10Kim and Sun (2013)consider fixed effects IV estimation so that the estimator they study resembles ours
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3.5 Model with Covariates

The estimator defined in the previous sections can be extended to a more general model with

covariates:

yit = xitβ0 + ci + uit (3.26)

E(uit|Zt) = 0 (3.27)

where Zt = [Z
′

1t, ..., Z
′

nt]
′

, Zit = [z
′

i1, ..., z
′

it]
′

. Zt defined in this way implies that it is a set of

sequentially exogenous instruments, i.e. that the set of instruments increases with time. (2.1)

and (2.2) form a special case of (3.26) and (3.27) with xit = yit−1 and zit = yit−1.

The same operation of forward filtering that was used in the previous sections can be

applied to (3.26) and (3.27). Similarly, Auxiliary Assumptions 1 and 2 can be generalized to

this model with covariates without any modification except that in Auxiliary Assumption 2,

Cov(uit, ujs|cg, Zg
t ) is considered instead of Cov(uit, ujs|cg, Y g

t−1).

In order to model optimal instruments, in addition to Auxiliary Assumption 1 and 2, we

can impose the following structure on the first stage model linking zit to xit:

xit = zitγ + di + vit (3.28)

E(vit|Zt) = 0 (3.29)

Then, as in Appendix B.2, we can show that the optimal instruments for estimating

β0 from the forward filtered moment functions obtained from (3.26) and (3.27) are linear

functions of

E(x̃it|Zt) = E(z̃it|Zt)γ (3.30)

Hence, we see that to obtain a model of optimal instruments in the presence of covari-

ates, one should specify a model for E(z̃it|Zt), i.e. for the dynamics in zit. For the simple

dynamic model without covariates of the previous sections, the model for the dynamics in the

instruments was the same model describing the relationship between dependent variable and

closely but makes use of strictly exogenous instruments. One could work out the details of generalizing their
approach the case of sequentially exogenous instruments but this is left for future work.
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covariates. In the presence of covariates, we need an additional auxiliary model, which we

can specify as:11

zit = zit−1λ+ ei + wit (3.31)

E(wit|zit−1) = 0 (3.32)

With this additional model, we can show as in the previous sections that E(z̃it|Zt) is

a function of zit and E(ei|Zt), and that E(ei|Zt) can be modeled in a parsimonious way

by generalizing Auxiliary Assumptions 1, 2 and 3 to (3.31) and (3.32). Consequently, an

estimator of the nuisance parameters needed to calculate E(z̃it|Zt) can be obtained as in

Section 3.2 from non-linear regressions of z̃it on zit and the model obtained for E(ei|Zt). A

preliminary estimator for γ can be obtained from regressing x̃it on the estimated E(z̃it|Zt).

Under Auxiliary Assumption 2 generalized to (3.26) and (3.27), only two nuisance parameters

compose V ar(ũgt |Zt), σ2
u and τu, which can be estimated from any consistent preliminary

estimator of β0, β̌. Indeed a consistent estimator of ũit can be obtained as ˇ̃uit = ỹit− x̃itβ̌ and

under Auxiliary Assumption 2 generalized to (3.26) and (3.27), we have σ2
u = T−t

T−t+1V ar(ũit),

τuσ
2
u = T−t

T−t+1Cov(ũit, ũjt), gi = gj , i 6= j, which can be estimated consistently from sample

variances and covariances of ũit.

Hence the asymptotically efficient estimator for β0 from (3.26) and (3.27) can be defined in

the same way that an efficient estimator for the simple dynamic model was defined in Section

3.2.12

11Note that this dynamic model for the instruments allows for the presence of strictly exogenous instruments,
i.e. instruments zsit such that zsit = zsis ∀ t, s = 1, ..., T , since in such a case, (3.31) and (3.32) will hold with
λ[s] = I [s], ei[s] = 0, wit[s] = 0, where A[s] denotes the sth vector of matrix A.

12The estimator we propose in this paper leverages cross-sectional dependence to obtain stronger instru-
ments, so that it is less likely to suffer from a weak instruments problem than estimators designed for cross-
sectionally independent data. However, in specific applications, one might still be interested in testing whether
the instruments used are weak. Because the estimator defined in this paper ultimately takes the form of an
exactly identified IV estimator, the weak IV test developed in Olea and Pflueger (2013) can be applied to our
model and estimator. The framework used by Olea and Pflueger (2013) allows for cross-sectional dependence,
serial dependence, and heteroscedasticity. In order to compute their test, one has to estimate consistently
long-run variance covariance matrices of sample averages, which is done easily in the presence of cluster de-
pendence. In the presence of spatial dependence of unknown form, one can use non-parametric estimators of
long-run variances discussed in Section 3.2.
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4 Monte Carlo Simulations

In this section, we present results from Monte Carlo simulations that study the small sample

performance of the new estimator defined in the previous section for data generating processes

where the true form of cross-sectional dependence is cluster dependence (Tables 1 and 2) and

others where it is spatial dependence (Table 3). The first main result is that, when the number

of time periods is large compared to the size of the cross-sectional sample, and for any data

generating process considered here, modeling optimal instruments parsimoniously results in

estimators with virtually no bias compared to an unrestricted optimal GMM estimator. This

corresponds to the formal results in Section 3.4 that shows that our estimator is asymptotically

unbiased under large n, large T asymptotics, i.e. is not subject to the many instruments

problem. The second main result is that, in the presence of cross-sectional dependence,

using the auxiliary assumption of cluster sampling to model optimal instruments results in

significant gains in efficiency when the assumption of cluster sampling is a good approximation

for the true form of cross-sectional dependence. The third main result is that inference for

our estimator is also not subject to the problem of many instruments, i.e. tests have correct

size even when the number of time periods is relatively large, which corresponds to the formal

results in Section 3.4 that show that the asymptotic distribution of our estimator under large

n large T asymptotics is the limit of the asymptotic distribution derived under large n fixed

T asymptotics.

4.1 Results for Data Generating Processes with Cluster Dependence

As in Section 3, we index observations by cluster so that for any i, gi denotes the cluster to

which observation i belongs and jg denotes the jth observation of cluster g, so that for any

observation i in g, there is j such that jg = i and {{xjg}j=1,...,ng}g=1,...,G = {xi}i=1,...,n for any

sequence of variables {xi}i=1,...,n, where ng is the number of observations in cluster g and G is

the number of clusters. We stack all observations by cluster and define: xgt = [x
′

1g,t, ..., x
′

ngg ,t]
′

for any vector of variables xit.

In this section we consider three data generating processes for a model with cluster corre-
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lation and without covariates that can be defined by:

cg ∼ Fc

yg0 =
cg

1− ρ0
+ u̇g0

u̇g0 ∼ Normal(0, Σ̇g
0)

ygt ∼ ρ0y
g
t−1 + cg + ugt ∀ t = 1, ..., T

ugt ∼ Normal(0,Σg
u(u

g
t−1))∀ t = 1, ..., T

We study the small sample properties of estimators in three different scenarios: ideal

conditions where auxiliary assumptions 1-3 are satisfied, cross-sectional independence, and

general within cluster correlation where auxiliary assumptions 2 and 3 are violated.

More precisely, the ideal conditions scenario uses the following parameterization: Fc =

Normal(0,
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The cross-sectional independence scenario uses: Fc = Normal(0,
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The non-ideal conditions scenario uses: Fc = LN(0,
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Σg
u(u

g
t−1) =



















σ2
i1t

σi1i2t σ2
i2t

... ...

σi1ing t ... σing−1ing t σ2
ing t



















, where LN(µ,Σ) is the distribution with mean

µ and variance Σ obtained as a linear function of a vector of independent Lognormal(0, 1)

random variables, σ2
it =

1
2 + 1

2u
2
it−1, and σijt =

1
3 + 1

3uit−1ujt−1.

We compare the properties of three estimators of ρ0: The estimator defined in Arellano

and Bond (1991) which we call the AB estimator, the estimator defined by (3.10), which we

call Estimator 1 and the estimator defined by (3.10) but with the estimated within-cluster

correlations set to zero and the rest of the nuisance parameters estimated with this restriction

holding, which we call Estimator 2.13 As a benchmark for comparison, we also show the results

from using an unfeasible optimal estimator (UO) which is asymptotically optimal in the class

of estimators that use linear functions of the instruments. This estimator weights optimally

all available moment conditions that use linear instruments using the true unobserved optimal

weights so that it is defined by:

ρ̂UO =

∑G
g=1w

gZgỸ g

∑G
g=1w

gZgỸ g
−1

(4.1)

wg = ∆g′(W g)−1 (4.2)

∆g = E(ZgỸ g
−1) (4.3)

W g = E(ZgŨgŨg′Zg′) (4.4)

where Ũg = [ũg
′

1 , ..., ũ
g′

T−1]
′

, Ỹ g = [ỹg
′

1 , ..., ỹg
′

T−1]
′

, Ỹ g
−1 = [ỹg

′

1,−1, ..., ỹ
g′

T−1,−1]
′

, and Zg is the

matrix containing all valid instruments for Ũg defined in Section 3.3.

In the ideal conditions scenario, Auxiliary Assumptions 1-3 hold so that the UO estimator

and Estimator 1 are asymptotically equivalent and efficient whereas the AB estimator and

Estimator 2 are not asymptotically efficient. In the cross-sectional independence scenario,

13In the two first scenarios we simulate, transitory shocks will be homoscedastic, serially uncorrelated and
the dependent variable will be stationary so that additional moment conditions presented in Arellano and
Bover (1995), Ahn and Schmidt (1995) or Blundell and Bond (1998) hold. We do not include estimators that
use these moment conditions however since we are interested in studying the properties of estimators that are
robust to these moment conditions being false.
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Auxiliary Assumptions 1-3 also hold so that the UO estimator, the AB estimator, and Es-

timators 1 and 2 are all asymptotically equivalent and efficient. In the non-ideal conditions

scenario, none of the feasible estimators are asymptotically efficient, but we expect Estima-

tor 1 to perform better than the AB estimator or Estimator 2 since Estimator 1 makes use

of instruments from other observations in a cluster so that it uses a weighted sum of mo-

ment conditions that should be closer to optimal than the ones used by the AB estimator or

Estimator 2.

For inference for the AB estimator, we will consider GMM robust standard errors with

clustered standard errors with and without the finite sample correction proposed by Windmei-

jer (2005). For inference for Estimators 1 and 2, we use the standard errors defined by (3.19)

that only require (2.1), (2.2) and Auxiliary Assumption 1 to hold in order to be consistent.

All Monte Carlo results were obtained using 1,000 replications. We show here results for

ng = 5, G = 100, and T = 5 or T = 15, but results for more values of these parameters

which lead to the same conclusions are presented at the end of the Appendix. Table 1

presents the results for point estimation in terms of bias, standard deviation and root MSE,

Table 2 presents the results for inference in terms of bias in standard errors (captured by

the ratio of the mean of the standard errors over the standard deviations of the estimators),

coverage of the 95% confidence interval and average length of 95% confidence intervals. These

two tables exhibit the main conclusions stated at the beginning of this section, i.e. that

modeling optimal instruments results in estimators with very small bias compared to optimal

GMM estimation methods (AB estimator), that accounting for cross-sectional dependence

when modeling optimal instruments results in significant gains in efficiency in the presence

of cluster dependence, and that modeling optimal instruments results in inference that is

correctly sized compared to optimal GMM estimation methods, independently of whether

cross-sectional dependence is present.
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4.2 Results for Data Generating Processes with Spatial Dependence

In this section, we use data generating processes for which the true form of cross-sectional

dependence is a spatial moving average process. As such, Auxiliary Assumption 1 is violated.

The two data generating processes we consider in this section can be described by first

defining a squared lattice D ⊂ R
2 with 41 × 41 evenly spaced locations. For any i, j ∈ D,

define the distance measure d(i, j) = maxl=1,2(|il − jl) where il is the lth element of i, and

normalize the distance between neighboring locations to one. For each location i ∈ D, each

time period t = 1, ..., T , we have:

ǫit
i.i.d.∼ N(0, 1)

uit =

4
∑

d=1

1

d

∑

j∈D
ǫjt1(d(i, j) = d)

νi
i.i.d.∼ N(0, 1) ∀ t = 1, ..., T

ci =

4
∑

d=1

1

d

∑

j∈D
νi1(d(i, j) = d)

ǫ̇i0
i.i.d.∼ N(0,

1

1− ρ20
)

u̇i0 =

4
∑

d=1

1

d

∑

j∈D
ǫ̇i01(d(i, j) = d)

yi0 =
ci

1− ρ0
+ u̇i0

yit = ρ0yit−1 + ci + uit

where 1(.) is the indicative function. In addition, we define 25 clusters, which are each squares

of length eight. Finally, only 125 observations are observed. The variation in the location

of these observed locations will determine how good of an approximation the assumption of

cluster dependence is. Figure 4.1 shows the exact disposition of the observed locations with the

boundaries of the 25 clusters in the two scenarios we consider in this section. If the observed

locations are spread uniformly across the lattice, the assumption of cluster dependence will

not be a very good approximation for the true form of cross-sectional dependence since the

correlation of an observation at the boundary of a cluster will be stronger with observations
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in the neighboring clusters than with some of the observations within its own clusters. If the

observed locations are more concentrated towards the center of a cluster, the assumption of

cluster dependence will be a decent approximation since the correlation between observations

in the same clusters will be stronger than the correlation with observations in other clusters.

Figure 4.1: Different locations of observations
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Note: Dotted lines show the boundaries of the clusters

Table 3 shows the performance of the AB estimator, Estimator 1 and Estimator 2 from

1,000 replications. The first result is that, as with cluster dependence, Estimators 1 and 2

are virtually unbiased compared to the Arellano and Bond estimator. As seen previously,

this follows from Estimators 1 and 2 making use of few nuisance parameters compared to the

Arellano and Bond estimator, independently of whether the form of cross-sectional dependence

used to model for optimal instruments for Estimators 1 and 2 is correct or not. Secondly,

we see that when the observed locations are distributed uniformly across the lattice D, i.e.

when cluster dependence is not a very good approximation, then the standard deviation

for Estimator 1 is not much smaller than that of Estimator 2. On the other hand, when

observations are concentrated around the center of the cluster, Estimator 1 has a standard

deviation that is significantly lower than Estimator 2. This corresponds to our intuition that

using cluster dependence to model optimal instruments will result in efficiency gain when
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cluster dependence is a good approximation of the true form of the optimal instruments.

The evidence in this section supports the use of the estimator defined in this paper when

researchers suspect that the cross-sectional dependence in their data can be well approximated

by cluster dependence, for instance when observations are distributed across space but tend to

be more concentrated around cities. When cluster dependence is not a good approximation,

for instance for farms uniformly distributed across the countryside, one should model optimal

instruments using a better suited model of cross-sectional dependence, such as a model of

spatial dependence. Studying the properties of an estimator similar to the one defined in

this paper but using spatial dependence instead of cluster dependence to model optimal

instruments is left for future work.

5 Application: Estimation of the Effect of Private School At-

tendance on Student Achievement

In this section we will use the data analyzed in Andrabi et al. (2011) to estimate the effect of

attending private schools on student achievement in three districts of the Punjab province in

Pakistan. The main covariate of interest is private school attendance. The other covariates

included are wealth and variables indicating whether each parent lives with the student.

Let yj⋆it denote the achievement of student i in year t in subject j = English, Urdu,

Mathematics, denoted E, U, M . As in Andrabi et al. (2011), we use the covariates xit =

[pit, wit], where pit indexes whether a student attends private school in year t, and wit is a row

vector containing parents’ wealth and indicators for whether each parents lives under the same

roof as the student. Let djt denote time specific intercepts, with dj1 normalized to zero, and ujit

denote unobserved transitory shocks to achievement. Let yjit = yj⋆it + ǫjit denote the grade of a

student in subject j, where ǫjit is measurement error. Let Yt−1 = {yjis}i=1,...,n,s=0,...,t−1,j=E,U,M,

Pt−1 = {pis}i=1,...,n,s=0,...,t−1, W = {wis}i=1,...,n,s=0,...,T , and Y −j
t = {ylis}i=1,...,n,s=0,...,t,l 6=j.
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We use a value-added model similar to the one found in Andrabi et al. (2011):

yjit = djt + xitβ
j
0 + ρjyjit−1 + cji + ujit + ǫjit − ρjǫjit−1 (5.1)

E(ujit|Yt−1, Pt−1,W ) = 0 (5.2)

E(ǫjit|Y
−j
t , Pt,W ) = 0 (5.3)

This model contains four important features: 1) It includes past achievement as a covariate

in order to control for the effect of past educational inputs on current achievement. 2) It

accounts for unobserved heterogeneity cji that can affect both achievement and private school

attendance. 3) (5.2) requires that only past levels of private school attendance are exogenous

with respect to the shocks to achievement, ujit. This assumption is relatively weak since

it allows for current achievement to affect future school attendance or even for unobserved

shocks to affect achievement and school attendance simultaneously. 4) There is measurement

error in students’ achievement which we assume to be classical in structure (i.e. independent

across subjects and of xit and yj⋆it ), so that past grades in other subjects can be used as an

instrument for past grade in a given subject. A more thorough discussion of value-added

models can be found in Andrabi et al. (2011) and of this particular model in Appendix D.1.

For estimation, one can get rid of cjt by forward filtering as in the previous sections. Since

in the data we use, only three time periods are observed, the only equations available for

estimation are, for j = E,U,M :

∆yji2 = dj2 +∆xi2β
j
0 + ρj∆yji1 +∆uji2 +∆ǫji2 − ρj∆ǫji1 (5.4)

E(∆uji2 +∆ǫji2 − ρj∆ǫji1|P0,W, Y −j
0 ) = 0 (5.5)

In order to estimate βj
0 and ρj from (5.4) and (5.5), one should build instruments for the

covariates ∆xi2 and ∆yji1.

Let φj
0 = [dj2, β

j′

0 , ρ
j ]

′

, mj
i (φ) = ∆yji2−(d+∆xi2β+ρ∆yji1) andmj

i = mj
i (φ

j
0). The Arellano

and Bond estimator for this model is defined by:

φ̂j
AB = argminφj (

n
∑

i=1

ZjAB
i mj

i (φ
j))

′

(

n
∑

i=1

ZjAB
i mj

i (φ̃
j)mj

i (φ̃
j)

′

ZjAB′

i )−1(

n
∑

i=1

ZjAB
i mj

i (φ
j))

(5.6)
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where φ̃j is a preliminary estimator of φj
0 and ZjAB

i = [1, y−j′

i0 , xi0, w
′

i]
′

.

This estimator is inefficient because it ignores cross-sectional dependence14. Indeed in

this application it is likely that transitory shocks are correlated within schools since there are

school or class-level unobserved shocks, such as changes in infrastructure, staff or teachers,

that will affect all students within a school or class. The data-set we use collected data from

between 0 and 25 students per school in each year with most schools being represented by less

than 10 students, which is too small to estimate time-varying school fixed effects accurately.

Instead, we prefer treating uit as cross-sectionally correlated within schools.

It is also likely that unobserved heterogeneity is correlated across students within schools

since students might attend specific schools based on unobserved characteristics, such as

residential location, socio-economic characteristics or past achievements, that relate to their

performance.

As discussed in the previous sections, one can obtain stronger instruments, and hence a

more precise estimator, by using not only ZjAB
i as an instrument for ∆xi2 and ∆yji1, but also

ZjAB
l , l ∈ gi0.

15

Appendix D.2 generalizes the auxiliary assumptions presented in Section 3.2 to the model

defined by (5.1), (5.2), and (5.3), and derives a model and an estimator for optimal instru-

ments. Denote by Ẑj,opt
i the estimated optimal instruments from Appendix D.2. Our proposed

estimator takes the form:
n
∑

i=1

Ẑj,opt
i mj

i (φ̂
j
opt) = 0 (5.9)

14Without measurement error, it would also be possible to use correlation of transitory shocks across out-
comes to obtain an efficient joint estimator of {φj}j=U,E,M . However because of measurement error, the sets of
instruments across subjects are non-overlapping, so that optimal instruments cannot be derived. Since there
is no restriction in the parameters across equations, weighting of optimally weighted moment conditions or
minimum distance methods cannot be used either.

15In this application, clusters (school membership) are not constant over time and, as pointed out previously,
only past school attendance is exogenous. Therefore it is possible that:

E(uit|git, Xt−1, Yt−1,W ) 6= 0 (5.7)

even though:
E(uit|git−1, Xt−1, Yt−1,W ) = 0 (5.8)

Hence we can use as instruments lagged values of achievements of students from schools where an observation
was previously enrolled but not from schools where it is currently enrolled.
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Let M j
i = [∆yj1,∆pi2,∆wi2]. Both the Arellano and Bond estimator and our optimal

estimator can be written as:

φ̂j = (

n
∑

i=1

Zj
iM

j
i )

−1
n
∑

i=1

Zj
i∆yji2 (5.10)

where for the Arellano and Bond estimator, Zj
i = (

∑n
l=1M

j′

l ZjAB′

l )Θ̂jAB−1ZjAB
i with Θ̂jAB =

∑n
i=1 Z

jAB
i mj

i (φ̃
j)mj

i (φ̃
j)

′

ZjAB′

i . For our optimal estimator, Zj
i is simply Ẑj

opt.

Under the assumption that transitory shocks are independent across schools, φ̂j is consis-

tent for φj
0 and asymptotically normal. The asymptotic variance-covariance matrix of both

estimators can be written as16:

AV ar(φ̂) = A
′

BA (5.11)

A = limn→∞(
1

n

n
∑

i=1

E(Zj
i M

j
i ))

−1 (5.12)

B = limn→∞(
1

n
V ar(

n
∑

i=1

Zj
im

j
i )) (5.13)

= limn→∞(
1

n

n
∑

i=1

n
∑

l=1

1[{git = gls}t,s=1,2]E(Zj
i m

j
im

j′

l Z
j′

l )) (5.14)

which can be estimated consistently since there is a small number of observations in each

school.

The students’ achievement in each subject was measured by the results obtained by stu-

dents on a test administered by the authors of Andrabi et al. (2011) and graded using the Item

Response Theory so that scores can be compared across students and years. Table 4 shows the

average and standard deviations of scores by subject, grade, and type of school attended. Ta-

ble 5 reports the estimated degree of persistence and the estimated effect of attending private

schools on performance for the three subjects considered. We also show the associated stan-

dard errors and 95% confidence intervals. Similarly as in Andrabi et al. (2011), we find that

attending private school has a significant positive effect on student achievement in all subjects

but Mathematics. The optimal estimator we defined in this section yields significantly smaller

16Note that clustering standard errors by the first school attended, which is used in Andrabi et al. (2011),
is not justified since transitory shocks should be correlated within a school that a child is currently attending
and not only across students who attended the same school in the first time period.
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standard errors compared to the Arellano and Bond estimator both for estimating persistence

in student achievements and for estimating the effect of attending private school, which cor-

responds to the idea developed in the rest of the paper that cross-sectional dependence can

be used to estimate dynamic panel data models more efficiently.

6 Conclusion

We have presented an estimation method that used cross-sectional dependence to improve

the accuracy with which dynamic models of panel data are estimated while making use of few

nuisance parameters and being robust to the misspecification of the form of the cross-sectional

dependence. This method can be generalized to models with covariates and sequentially

exogenous instruments.

Monte Carlo simulations and an application to the estimation of a value-added model show

that, when there is cross-sectional dependence, this method yields significant improvements

in terms of efficiency and inference.

Extensions of this work that are the subject of ongoing research consider the generalization

of the results in this paper to non-linear panel data models and the use of other forms of cross-

sectional dependence than clustering to model optimal instruments.
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Table 1: Bias and RMSE, Cluster Dependence, ρ = .8, ng = 5, G = 100

Unfeasible
Optimal
Estimator

Arellano
and Bond
Estimator

Estimator 1 Estimator 2

equicorrelation within clusters

T=5 bias 0.012 −0.106 0.003 0.000

sd 0.125 0.180 0.120 0.186

rmse 0.125 0.208 0.120 0.185

T=15 bias −0.001 −0.034 0.000 0.001

sd 0.024 0.036 0.023 0.033

rmse 0.024 0.049 0.023 0.034

no correlation within clusters

T=5 bias 0.012 −0.047 0.002 0.005

sd 0.125 0.120 0.118 0.121

rmse 0.125 0.129 0.118 0.121

T=15 bias −0.001 −0.019 0.000 −0.000

sd 0.024 0.026 0.023 0.024

rmse 0.024 0.032 0.023 0.024

heteroscedasticity and correlation within clusters

T=5 bias 0.020 −0.150 0.002 −0.001

sd 0.191 0.198 0.243 0.318

rmse 0.192 0.249 0.243 0.318

T=15 bias −0.003 −0.050 0.000 −0.000

sd 0.035 0.044 0.043 0.046

rmse 0.036 0.066 0.042 0.046
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Table 2: Inference, Cluster Dependence, ρ = .8, ng = 5, G = 100

Unfeasible
Optimal
Estimator

Arellano
and Bond
Estimator

AB w/
Windmeijer
correction

Estimator 1 Estimator 2

equicorrelation within clusters

T=5 ratio 1.001 0.850 0.973 0.991 0.935

coverage 0.962 0.862 0.924 0.969 0.964

length 0.495 0.606 0.708 0.472 0.689

T=15 ratio 0.997 0.611 1.007 1.005 0.986

coverage 0.950 0.621 0.852 0.948 0.946

length 0.094 0.087 0.130 0.093 0.131

no correlation within clusters

T=5 ratio 1.001 0.954 1.016 0.998 0.994

coverage 0.962 0.928 0.951 0.960 0.966

length 0.495 0.454 0.501 0.469 0.478

T=15 ratio 0.997 0.775 1.027 1.004 1.002

coverage 0.950 0.783 0.902 0.946 0.951

length 0.094 0.079 0.095 0.093 0.094

heteroscedasticity and correlation within clusters

T=5 ratio 0.937 0.781 1.002 0.983 1.015

coverage 0.962 0.764 0.889 0.950 0.955

length 0.712 0.615 0.790 0.948 1.282

T=15 ratio 0.975 0.495 0.963 0.923 0.962

coverage 0.949 0.439 0.794 0.926 0.945

length 0.137 0.086 0.174 0.156 0.177
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Table 3: Bias and RMSE, Spatial Dependence, ρ = .8

Spread out pattern of observed locations Tight pattern of observed locations

Arellano
and Bond
Estimator

Estimator 1 Estimator 2
Arellano
and Bond
Estimator

Estimator 1 Estimator 2

bias −0.133 0.007 0.006 −0.188 0.009 0.008

sd 0.102 0.088 0.100 0.123 0.087 0.130

rmse 0.167 0.088 0.100 0.224 0.088 0.130

Table 4: Averages and standard deviations of scores per subject, per grade and per school type

English Urdu Math

Average s.d. Average s.d. Average s.d.

Public School Grade 3 -0.24 0.95 -0.14 0.98 -0.10 1.02

Grade 4 0.11 0.99 0.21 1.05 0.18 1.09

Grade 5 0.57 0.85 0.78 0.89 0.77 1.03

Private School Grade 3 0.74 0.62 0.53 0.78 0.41 0.80

Grade 4 0.94 0.60 0.89 0.79 0.78 0.81

Grade 5 1.33 0.55 1.38 0.72 0.36 0.76

Table 5: Effects of Attending Private Schools on Student Achievement

Optimal Estimator Arellano and Bond Estimator

English Urdu Math English Urdu Math

Persistence 0.14 0.16 -0.08 0.26 0.36 0.18

(0.11) (0.09) (0.08) (0.14) (0.12) (0.12)

[-0.07,0.35] [-0.01,0.33] [-0.24,0.09] [-0.01,0.53] [0.12,0.59] [-0.06,0.42]

Private School 0.64 0.48 0.26 0.40 0.81 0.26

(0.23) (0.24) (0.23) (0.43) (0.45) (0.45)

[0.19,1.09] [0.01,0.95] [-0.19,0.71] [-0.43,1.24] [-0.06,1.68] [-0.63,1.15]

Numbers in parenthesis are standard errors and intervals are 95% confidence intervals.
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