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Abstract

We study the estimation of static games where players are allowed to have ordered actions,
such as the number of stores to enter into a market. Assuming that payoff functions satisfy general
shape restrictions, we show that equilibrium of the game implies a covariance restriction between
each player’s action and a component of the player’s payoff function that we call the “strategic
index”. The strategic index captures the direction of strategic interaction (i.e, patterns of sub-
stitutability/complementarity) as well as the relative effects of opponents’ decisions on players’
payoffs. The covariance restriction we derive is robust to the presence of multiple equilibria, and
provides a basis for identification and estimation of the strategic index. We introduce an econo-
metric method for inference in our model that exploits the information in moment inequalities in
a computationally simple way. We apply our approach to study entry behavior by chain stores
where there is both an intensive margin of entry (how many stores to open in a market) as well
as the usual extensive margin of entry (whether to enter a market or not). Using data from re-
tail pharmacies we find evidence of asymmetries in strategic effects among firms in the industry,
which has implications for merger policy. We also find that business stealing effects are less pro-
nounced in larger markets, which helps explain the large positive correlation in entry behavior
observed in the data.

Keywords: Static games, multiple equilibria, partial identification, conditional moment inequal-
ities, entry decisions.

1 Introduction

The econometric analysis and applications of static games has been an increasingly active area

of research in the recent past. A partial list of papers would include Bjorn and Vuong (1984),

Bresnahan and Reiss (1991b), Bresnahan and Reiss (1991a), Berry (1992), Tamer (2003), Seim

(2006), Davis (2006), Berry and Tamer (2006), Pesendorfer and Schmidt-Dengler (2008), Sweeting
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(2009), Aradillas-Lopez (2010), Galichon and Henry (2011), Beresteanu, Molchanov, and Molinari

(2011), Bajari, Hong, Kreiner, and Nekipelov (2009), Bajari, Hong, and Ryan (2005), Ciliberto

and Tamer (2009), Kline and Tamer (2010), Gowrisankaran and Krainer (2011), Aradillas-Lopez

(2011), De Paula and Tang (2012), Lewbel and Tang (2012) and Grieco (2012). Most of the existing

econometric work on static games has been characterized by at least one of two features: (i) a

full parametrization of payoff functions with fairly limited forms of strategic effects (e.g., constant

strategic effects), and (ii) a limited strategy space, with binary choice games being the most common

example. One of the major difficulties with using richer models of strategic interaction in empirical

work is that the multiplicity of equilibria can complicate the use of methods which require computing

the equilibria in the game. Furthermore, even inferential approaches that rely solely on necessary

conditions in equilibrium could also become impractical because characterizing such conditions can

be difficult if the game has a rich strategy space.

In this paper we study static games with a rich, possibly unbounded strategy space that is only

required to be ordered in nature (and can be discrete or continuous). Players’ payoffs are left non-

parametrically specified except for a component that summarizes the strategic interaction effect.

This “strategic index” captures the direction of strategic interaction (i.e, patterns of substitutabil-

ity/complementarity) as well as the relative effects of opponents’ strategies on players’ payoffs as

well as the potentially continuous variation in these effects with observable covariates (i.e., market

size, demographics, etc) in an empirically flexible way. Instead of fully parameterizing payoff func-

tions we only impose weak shape restrictions on payoffs that are motivated by economic theory. Our

main result is showing that these shape restrictions alone are sufficient for doing inference on the

strategic index in a way that is fully robust to the presence of multiple equilibria.

The key idea in the paper is that we exploit the multiplicity of equilibria as a source of identifying

power for estimating strategic interactions. We treat multiple equilibria as a source of unobserved

heterogeneity in the model- the equilibrium being played in a market is ex-ante unknown to the

econometrician. We show that regardless of the distribution of this unobservable (which is not iden-

tified), the model predicts a conditional covariance between each player’s action and the strategic

index she faces. We use this moment inequality as a basis for estimating the the parameters underly-

ing each player’s strategic index. We are the first to exploit multiplicity of equilibria for the purposes

of inference of parameters that govern strategic interactions.

Our identification strategy is most closely related to De Paula and Tang (2012), who also exploit

the identifying power of multiple equilibria in a static game context. De Paula and Tang (2012) focus
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on binary choice games under a symmetry assumption whereby each player places equal weight on

the individual strategies of each of his opponents. Their goal is to identify the direction (i.e, the sign)

of strategic interaction conditional on observable (to the econometrician) payoff shifters, which must

be treated as categorical in their econometric implementation. Instead of only predicting the sign

of strategic interaction in a binary choice game for a known strategic index, we are interested in

estimating the parameters of the strategic index itself. We can thus address the empirical question of

estimating the magnitude of the relative effects of opponents’ decisions on each player’s payoff and

the variation of these effects with market observables within a rich action space. The model we study

is thus considerably more general. First, we go beyond binary choice games to a much richer strategy

space where actions sets are only ordered but can be quite large (possibly unbounded). Second,

rather than assume symmetry in the strategic interaction effects in payoff functions, we allow players

to be affected differently by the individual strategies of each opponent. Indeed, such richness of

strategy spaces and strategic interactions causes a major growth in the multiplicity of equilibria,

which adds to the identifying power of the model in a way that can be quite substantial for applied

work (see more below). Third, we allow for these strategic interactions to vary with continuously

distributed observed payoff shifters, such as market size, which reveals important information about

the nature of competition and further enhances the identifying power of the model.

Our model’s testable implications takes the form of a sign restriction on a conditional covari-

ance. By the definition of a covariance, this restriction can be expressed as an inequality involving a

nonlinear transformation of conditional moments. Among existing methods for inference with con-

ditional moment inequalities, those that avoid the use of nonparametrically estimated conditional

moments and rely instead on spaces of “instrument functions” (Andrews and Shi (2011a, 2011b),

Armstrong (2011a, 2011b)) are not directly applicable to our case since they are not designed to

handle in general nonlinear transformations of a collection of conditional moments. In general a

problem like ours requires the use of plug-in nonparametric estimators for the conditional moments

involved. Along these lines, the methodology proposed in Chernozhukov, Lee, and Rosen (2011)

could potentially be adapted and applied to our problem. Its implementation would require the com-

putation of a supremum of a particular test statistic over the a target testing range of the conditioning

variables. However, when these include a large number of elements with rich support, approximat-

ing this supremum with a reasonable degree of precision would pose a computational challenge.

This is the case of our empirical application, where the vector of conditioning covariates includes

eight continuously distributed elements. To be able to conduct inference in a setting like ours we
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propose an inferential approach based on a particular type of one-sided expectation whose construc-

tion uses plug-in nonparametric estimators. Unlike existing methods which also rely on one-sided

Lp functionals in related problems (Lee, Song, and Whang (2013)), our approach is not based on a

least-favorable configuration and is therefore less conservative when used to construct confidence

sets. By design, our method is computationally easy to implement even in the presence of a rich

model with multiple conditioning covariates with continuous support. We describe our approach in

the main body of the paper and we establish its asymptotic properties in the econometric appendix.

We apply our approach to study the pattern of entry by the three major national drug store

chains (CVS, Walgreens, and Rite-Aid) competing in local geographic markets. Our model allows

us to study both the extensive-margin decision of whether to enter a market or not, as well as the

intensive-margin decision of how many establishments to open in a market. Most papers (see e.g.,

Bresnahan and Reiss (1991b), Berry (1992), Seim (2006), Ciliberto and Tamer (2009)) have mod-

eled entry exclusively as an extensive margin binary decision and have therefore have abstracted

away from the intensive margin. Some exceptions to this include Davis (2006) and Gowrisankaran

and Krainer (2011) but these papers rely on very strong parametric assumptions and equilibrium

selection restrictions.1 Our application shows that this intensive margin reveals many important fea-

tures of competition that is obscured by the extensive margin alone. In particular, we find important

evidence of asymmetries in the competition among these players which suggest that the least anti-

competitive takeover of Rite-Aid by one of the competitors (a policy currently under consideration)

would be CVS rather than Walgreens. We also find that evidence that the strength of strategic in-

teractions diminishes with market size, which plays a central role in explaining the large positive

correlation of entry behavior found in the data.

The rest of the paper proceeds as follows. Section 2 describes our general assumptions along

with the resulting properties of our model. The observable implications that result from our model

are studied in Section 3. Section 4 describes our econometric inferential procedure in semipara-

metric models and characterizes its asymptotic properties. Section 5 applies our approach to entry

decisions in the U.S drug store industry, modeling entry strategies as involving not only a binary

choice of entry but also a capacity (number of stores) choice. Section 6 concludes. All proofs are

included in the appendix.

1Aradillas-Lopez (2011) also focuses on rich strategy spaces but the goal there is to answer a different question than the
one posed here.
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2 A static game with a rich strategy space

We now present a nonparametric game with incomplete information and derive its testable implica-

tions. Our model non-parametrically generalizes three main features of existing models. First, we

allow for a rich action space which includes binary choice games as a special case. This expands

the scope of real world problems that can be studied through our approach. Second, we place no

restrictions on the dimension and the “magnitude” of private information nor the manner in which

private information shifts the payoff function. Third, we isolate a fundamental feature of the game

which aggregates the effect that rivals’ strategies have on a player’s own payoff. However, instead

of imposing a full functional form on payoffs we only place general restrictions regarding the way

this index enters a player’s payoffs. These restrictions formalize the idea that a larger value of the

strategic index, by definition, decreases a player’s marginal payoff from increasing its own action.

Our main questions would then include how the strategic index changes with the actions of players’

rivals (which would determine patterns of strategic substitutability or complementarity as well as

the relative impact of rivals’ strategies on a given player), as well as how these features depend on

observable characteristics of the environment. In the context of entry models the strategic index

would capture the competition effect, summarizing how a firm’s marginal payoff from increasing its

presence in a market is affected by the entry decisions of others. It can also help us learn how these

features change from one market to another given the observable market characteristics available to

the researcher.

2.1 Players and actions

We have p = 1, . . . , P players (−p denotes the collection of all players except p), each p has a

real-valued decision variable Y p, which is either binary (i.e, Y p ∈ {0, 1}) or (if it can take on more

than two values), it is ordinal in nature, with Y p ∈ Ap. The strategy space Ap can be unbounded,

it can be discrete or continuous (or it can consist of the union of discrete and continuous sets in R),

and its ordered elements do not have to be evenly spaced. In fact, our identification results do not

require that the econometrician know the exact structure of Ap. The only restriction is that it must

possess a natural order. We let A−p =
∏q 6=pAq denote the action space of p’s opponents. We use

lower case yp to denote a potential action (in Ap) for p and y−p ≡ (yq)q 6=p to denote a potential

action profile (in A−p) for p’s opponents. We use upper case letters (Y p and Y −p ≡ (Y q)q 6=p) to

denote the actions (profiles of actions) actually chosen by players. The game is simultaneous.
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2.2 Payoff functions

Each player p has a payoff function that indicates the (von Neumann-Morgenstern) utility associated

with their choices. The payoff for p if Y p = yp and Y −p = y−p is given by

νp(yp, y−p; ξp), (1)

ξp denotes p’s payoff shifters (other than opponents’ choices). We will add more assumptions to

the structure of ξp below. For convenience and in accordance with the boundaries of Ap, for any

y−p ∈ A−p we decree νp(yp, ·; ·) = −∞ for any yp /∈ Ap. We will partition p’s payoff shifters as

ξp = (X, εp) ,

where X is observed by the econometrician and εp is not. The dimension of εp is left unspecified

and we allow εp and X to be correlated in an arbitrary way. We will not make assumptions here

about the direction in which payoffs shift in response to particular elements of X . Furthermore

we will not assume the existence of player-specific observable payoff shifters. Throughout, X will

denote the collection of all covariates observable to the researcher.

2.2.1 Basic restrictions on payoff functions

We will assume that payoff functions can be expressed in the following way.

Assumption 1. (Generic expression of payoff functions)

νp can be expressed as follows,

νp(yp, y−p; ξp) = νp,a(yp; ξp)− νp,b(yp; ξp) · ηp(y−p;X), (2)

where νp,b and ηp are real-valued functions or “indices” whose product captures the entire strategic

effect of p’s opponents on his payoff function.

The key feature about ηp is that it depends on ξp solely through X . While strategic interaction

effects are allowed to depend on unobservable components of payoff shifters, this dependence must

be fully captured by νp,b.
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Expected payoff functions and Assumption 1

We will assume Bayesian Nash equilibrium (BNE) behavior here. As a result, we can focus on

beliefs for p that can be expressed as probability functions defined over A−p. For any set of beliefs

σ−p : A−p −→ [0, 1], the associated expected utility for p of choosing Y p = yp is

νpσ(yp; ξp) =
∑

y−p∈A−p
σ−p(y−p) · νp(yp, y−p; ξp)

= νp,a(yp; ξp)− νp,b(yp; ξp) · ηpσ(X), where

ηpσ(X) =
∑

y−p∈A−p
σ−p(y−p) · ηp(y−p;X).

(3)

A key feature of p’s beliefs is that they do not depend on p’s own action. This independence is the

defining feature of Nash equilibrium as opposed, e.g., to correlated equilibrium.

Our model will normalize the “strategic meaning” of the index ηp(y−p;X) by assuming that νp,b(·; ξp)

is nondecreasing w.p.1. This in turn will imply that the marginal gain for p of increasing his own

strategy is nonincreasing in the expected value of the strategic index ηp.

Assumption 2. (Marginal benefit of Y p is nonincreasing in ηpηpηp) With probability one in ξp, the

function νp,b(·; ξp) is nondecreasing over Ap. That is, for any v > u in Ap we have νp,b(v; ξp) ≥

νp,b(u; ξp) w.p.1.

Take any pair of actions v > u in Ap. Take any pair of beliefs σ−p and σ−p
′
. Then,

[νpσ(v; ξp)− νpσ(u; ξp)]−[νpσ′(v; ξp)− νpσ′(u; ξp)] = [ηpσ′(X)− ηpσ(X)]·
[
νp,b(v; ξp)− νp,b(u; ξp)

]
.

Therefore by Assumption 2,

ηpσ(X) ≥ η′pσ(X) =⇒ νpσ(v; ξp)− νpσ(u; ξp) ≤ νpσ′(v; ξp)− νpσ′(u; ξp) ∀ u < v ∈ Ap (4)

The “shape” restriction described in Assumption 2 will be the key to our identification results. It is

reminiscent of conditions found in the supermodular game literature (more precisely, it amounts to

a supermodularity property for −νp,b; see Topkis (1998) and Vives (1999)). In this paper we will

not make any assumptions2 regarding how payoffs shift with specific elements in ξp.

2If economic theory provides ex-ante information about how payoffs should shift with some specific elements in ξp, this
information could potentially be used in order to refine the results that follow.
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Observe that given Assumption 2, Y q is a strategic substitute (complement) for Y p if ηp(y−p; ξp)

is increasing (decreasing) in yq . Cournot competition (where firms compete in quantities with each

other) is a classic case of a game of strategic substitutes. In that case ηp(y−p;X) would be increasing

in each element of y−p. Conversely, if an increase in player q’s action Y q lowers ηp, then by

Assumption 2 it increases the marginal gain to player p from increasing its actions and thus Y q

would be a strategic complement for Y p. Bertrand competition (where firms compete in prices with

each other) is a classic case of a game of strategic complements. Note that Assumption 2 allows

for any pattern of pairwise complementarity or substitutability between players’ strategies. Whether

player q’s strategy is a complement or a substitute for player p’s will be determined by whether the

index ηp is decreasing or increasing in yq .

2.3 Example: A structural model of imperfect competition

It is useful to contextualize our setup within a well-known structural economic model. Consider a

model of Cournot competition between P firms with differentiated products. To avoid confusion

with our notation (where we have used ‘p’ to denote each player and P as the total number of

players) let us use script typeface letters to denote prices P and quantities Q. Suppose the model is

described by a linear demand system where

Qp =

P∑
q=1

dp,q(ξp) · Pq + fp(ξp), for p = 1, . . . , P .

Suppose
∑P
q=1 d

p,q(ξp) 6= 0 w.p.1 (an assumption grounded on economic theory). Define ζp(ξp) ≡

fp(ξp)
/∑P

q=1 d
p,q(ξp). Our assumptions will imply restrictions on the structure of the coefficients

dp,q(ξp). Specifically, suppose we can express dp,q(ξp) = φp(εp) · ap,q(X). The demand system

can be expressed as

Qp = φp(εp) ·
P∑
q=1

ap,q(X) ·
(
Pq + ζp(ξp)

)
, for p = 1, . . . , P .

Let A(X) denote a P × P matrix where [A(X)]p,q = ap,q(X) and let D (φ(ε)) denote a P × P

diagonal matrix where [D (φ(ε))]p,p = φp(εp). By our above assumption the last matrix is invertible

w.p.1. Suppose this is also true for A(X) and denote
[
A(X)−1

]
p,q
≡ bp,q(X). Then inverse
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demands are of the form

Pp =
1

φp(εp)

P∑
q=1

bp,q(X) · Qq − ζp(ξp), for p = 1, . . . , P .

Denote firm p’s cost function as Cp(Qp; ξp), which can be entirely unrestricted (e.g, it can include

a fixed cost and it need not have to display increasing marginal costs). Profit functions are of the

form,

πp
(
Qp,Q−p; ξ

)
=

(
1

φp(εp)

P∑
q=1

bp,q(X) · Qq − ζp(ξp)

)
· Qp − Cp(Qp; ξp).

In a Cournot model firms compete in quantities, so Y p = Qp. This model fits our representation of

payoffs (profits) in (2). We have νp(yp, y−p; ξ) = νp,a(yp; ξ)− νp,b(yp; ξ) · ηp(y−p;X), where

νp,a(yp; ξ) =

(
1

φp(εp)
bp,p(X) · yp − ζp(ξp)

)
· yp − Cp(yp; ξp),

νp,b(yp; ξ) =
yp

φp(εp)
.

In order to satisfy Assumption 2 it suffices that the function φp(εp) be of constant sign. Given our

structural model, it is natural to assume that φp(εp) ≥ 0 w.p.1. (φp(εp) > 0 w.p.1. given our

invertibility assumptions). In this case the strategic index would be

ηp(y−p; ξ) = −
∑
q 6=p

bp,q(X) · yq

the qth good will be a substitute for the pth good if bp,q(X) ≤ 0. Otherwise it will be a complement.

Note that, since
[
A(X)−1

]
p,q

= bp,q(X), the strategic indices ηp allows us to recover A(X), a key

structural component of the model..

Suppose instead that we have a log-linear system of demand,

log (Qp) =

P∑
q=1

dp,q(ξp) · log (Pq) + fp(ξp), for p = 1, . . . , P .

Now the coefficients dp,q(ξp) directly measure elasticities of demand. In this case our assump-

tions imply a different set of restrictions. We now need dp,q(ξp) = dp,q(X) (privately observed

shocks εp should now be excluded from these elasticities). Suppose
∑P
q=1 d

p,q(X) 6= 0 w.p.1 for
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each p (a reasonable assumption given the homogeneity properties of demand). Define λp(ξp) =

fp(ξp)
/∑P

q=1 d
p,q(X). Then the demand system can be re-written as

log (Qp) =

P∑
q=1

dp,q(X) ·
(

log (Pq) + λp(ξp)
)
, for p = 1, . . . , P .

Let us maintain that the P × P matrix D(X) where [D(X)]p,q = dp,q(X) is invertible w.p.1 and

denote
[
D(X)−1

]
p,q
≡ rp,q(X). Inverting the demand system we obtain the following inverse

demands,

Pp = e−λ
p(ξp) ·

P∏
q=1

(Qq)r
p,q(X)

, for p = 1, . . . , P .

Profit functions are now of the form

πp
(
Qp,Q−p; ξp

)
= e−λ

p(ξp) · (Qp)r
p,p(X)+1 ·

∏
q 6=p

(Qq)r
p,q(X) − Cp (Qp; ξp) .

Define νp,a(yp; ξp) = −Cp(yp; ξp). For νp,b and ηp we can proceed as follows. Satisfying the

condition in Assumption 2 depends on the sign of rp,p(X) + 1. It is easy to see that our payoff

representation in (2) and the condition in Assumption 2 will be satisfied if we define

νp,b(yp; ξp) = e−λ
p(ξp) ·

(
1 {rp,p(X) ≥ −1} − 1 {rp,p(X) < −1}

)
· (yp)r

p,p(X)
,

ηp(y−p;X) =
(
1 {rp,p(X) ≥ −1} − 1 {rp,p(X) < −1}

)
·
∏
q 6=p

(yq)
rp,q(X)

Suppose rp,p(X) ≥ −1. Then the qth good is a substitute for the pth good if rp,q(X) > 0 and

it is a complement otherwise. If rp,p(X) < −1 then this holds with the reverse the inequalities.

Once again the index ηp(y−p;X) has a structural interpretation as it contains information about the

relative price elasticities in the demand system.

Using the demand systems described above we could also study competition in prices instead

of quantities. In that case our assumptions would place restrictions on firms’ cost functions while

allowing more flexibility in the specification of demand functions compared to the Cournot case

(which in placed no restrictions on firms’ cost functions as we showed above).
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2.4 Strategic interaction features captured by the index ηpηpηp

Given our payoff representation, the overall scale of the strategic effect would be absorbed into the

term νp,b. While the index ηp would not capture the overall scale of strategic interaction it would

nevertheless summarize the following key features of strategic interaction in the model,

(i) The directional patterns of strategic interaction between any subset of players: This is captured

by the direction in which the strategic indices move in response to rivals’ actions.

(ii) The relative magnitude of the effects of strategic interaction between one player and each one

of his opponents: This is captured by the relative magnitude in which the strategic indices

shift in response to each rival’s action.

As we illustrated in the previous section, different conjectures involving these strategic features can

be incorporated directly into the structure of ηp.

2.5 Information and behavior

We now introduce a key assumption on the information set of the players. Before introducing our

assumption it is useful to take a step back and ask why we are adopting an incomplete information

perspective. We adopt an incomplete information perspective because it generically will allow us

to focus on pure strategy equilibria in which players strictly best respond to each other in equilib-

rium. Such an equilibrium restriction is natural for empirical work because equilibria can then be

interpreted as a steady state outcome, which mixed strategy equilibria does not allow.3 The empir-

ical appeal of pure strategy equilibria is the key motivation for Harsanyi’s well known purification

theorem (Harsanyi (1973)). His result showed that when there exist (potentially small) private in-

formation about own payoffs in a normal form game, then this ensures that all equilibria generically

take this pure strategy form.4 He modeled private information shocks to be idiosyncratic and hence

independent across players. We follow in this approach and assume that the private payoff shocks

to firms are independent conditional on publicly observable payoff shifters.

Assumption 3. (Independent private shocks)

X is perfectly observed by all players, but εp is only privately observed by p. We assume that each εp

3Mixed strategies force one to question why it is the case that when a player is indifferent among several strategies, he
or she mixes over these strategies in exactly such a way that makes the other player indifferent. For a further discussion see
Morris (2008).

4The second part of his result, the so called “approachability” party, showed that the set of pure strategy equilibria in
the perturbed private information game is arbitrarily close to the set of all mixed strategy equilibria of the corresponding
unperturbed complete information game.
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is independent of ε−p conditional onX . The true distribution of (X, (εp)Pp=1) is common knowledge

among the players, as are the functional forms of payoff functions (νp)Pp=1. Thus, the only source of

incomplete information for p is the realization of ε−p.

The dimension of εp is left unspecified and we allow εp and X to be correlated in an arbitrary way.

A special case of Assumption 3 is one where some player p possesses no private information and

ξp ⊆ X . Thus, a game of complete information would be a special case of our setting as long

as ξp ⊆ X for each p. In this case the only source of unobserved heterogeneity would be the

equilibrium selection mechanism.

2.5.1 Bayesian Nash equilibrium (BNE) behavior

We will maintain that the outcome observed is the result of a BNE of the underlying game. Given

the independent-private shock restriction in Assumption 3, any BNE can be characterized as a col-

lection of conditional (on X) probability functions {σp∗(·|X) : Ap −→ [0, 1]}Pp=1 ≡ σ∗(X) with

corresponding expected utility functions

νpσ∗( · ; ξ
p) =

∑
y−p∈A−p

σ−p∗ (y−p|X) · νp( · , y−p; ξp),

where, for each y−p ≡ (yq)
q 6=p ∈ A−p and yp ∈ Ap,

σ−p∗ (y−p|X) =
∏
q 6=p

σp∗(y
q|X) and σp∗(y

p|X) > 0 only if yp ∈ argmax
y∈Ap

νpσ∗(y; ξp).

Assumption 4. The outcome observed is the realization of a BNE. That is,

Y p ∈ argmax
y∈Ap

νpσ∗(y; ξp) for some BNE σ∗(X).

For a given realization of payoff shifters, multiple BNE may exist and we leave the underlying

selection mechanism S unspecified except for the assumption that it always picks a BNE σ∗(X)

such that the resulting expected payoff function νpσ∗( · ; ξ
p) has a unique optimal choice.

Assuming pure-strategy play in games of incomplete information is not a very restrictive assump-

tion. Recall the above discussion that Harsanyi’s purification theorem ensures that the restriction

to pure strategy equilibria with unique best responses is generically without loss of generality in

(finite) incomplete information games. In more general games of incomplete information where
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player types are conditionally independent —the type of setting we assume here— Milgrom and

Weber (1985) show that every mixed strategy equilibrium has a nearby “purification” pure strategy

such that the distribution of players’ observed behavior and expected payoffs are identical.5

3 Implications of Assumptions 1-4

3.1 Properties of players’ best-responses

As we stated above, we will focus on equilibrium beliefs that yield a unique optimal choice to

players. For any such set of beliefs our payoff shape restrictions imply a monotonicity property

between optimal actions and the expected value of the strategic index induced by each player’s

beliefs. We describe this next.

Result 1. Let σ−p and σ−p
′

denote any pair of beliefs that produce unique expected-payoff maxi-

mizing choices for p given the realization of ξp, and let ypσ(ξp) and ypσ′(ξ
p) denote the corresponding

optimal choices. If Assumptions 1-2 hold, then w.p.1 we have,

If ηpσ(X) ≥ ηpσ′(X), then 1
{
ypσ(ξp) ≤ yp

}
≥ 1

{
ypσ′(ξ

p) ≤ yp
}
∀ yp ∈ Ap.

Proof: In Appendix A.

3.2 Main result

Let σ∗j and σ∗k denote any pair of existing BNE that the selection mechanism S could choose with

positive probability. By Result 1, w.p.1 we must have,

If ηpσ∗j (X) ≥ ηpσ∗k(X), then 1
{
ypσ∗j (ξ

p) ≤ yp
}
≥ 1

{
ypσ∗k(ξp) ≤ yp

}
∀ yp ∈ Ap.

Our main result will follow from here and the independence condition in Assumption 3.

Theorem 1. Let yp be given. If Assumptions 1-4 hold, then w.p.1 in X we have

E
[
1{Y p ≤ yp} · ηp(Y −p;X)

∣∣X] ≥ E[1{Y p ≤ yp}∣∣X] · E[ηp(Y −p;X)
∣∣X] ∀ yp. (5)

5Note that Assumption (4) implicitly imposes an additional restriction on payoff functions. Namely, the existence of
equilibria where each player has a unique best-response. Sufficient conditions can be made precise in the context of specific
structural models (see our examples in Section 2.3).
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Proof: In Appendix A.

If the underlying game has a unique equilibrium w.p.1 –or more generally if it has a degenerate equi-

librium selection mechanism– we would have Y p⊥Y −p|X and therefore any measurable function

g(Y −p;X) should satisfy Theorem 1 as an equality. Therefore Theorem 1 provides identification

power for ηp only if the underlying game has multiple equilibria for at least a subset of realizations

of payoff shifters and if players randomize across such equilibria.

Remark 1. The identification power of multiple equilibria has been used before in econometric

work. A notable recent example is De Paula and Tang (2012), which is also the existing paper

more closely related to ours. De Paula and Tang (2012) consider binary choice games and focus on

identifying the direction (the sign) of strategic interaction under the symmetry assumption that each

player cares equally about the decisions of each opponent. We will focus on a more general object

–the strategic interaction index ηp– which not only captures the direction of strategic interaction, but

also the relative effects of opponents’ actions on p’s payoff. Instead of maintaining symmetry, we

will ultimately test for it by estimating the relevant primitive of the game.

Remark 2. Two important results follow from Theorem 1.

(i) Rejecting unique equilibria.- As we pointed out above, if the underlying game has a unique

equilibrium w.p.1 –or more generally if it has a degenerate equilibrium selection mechanism–

then any measurable function g(Y −p;X) should satisfy Theorem 1 as an equality. Therefore,

if we maintain the assumptions in our model, the existence of some function g(Y −p;X)

that violates the result in Theorem 1 would immediately reject the notion that the game has a

unique equilibrium w.p.1. In particular, this would reject the assertion that there is no strategic

interaction in the model.

(ii) Rejecting our model.- Under the assumptions of our model there must exist a function

ηp(Y −p;X) that satisfies the result in Theorem 1. Thus, ruling out the existence of such

a function would immediately reject our model. Thus, our set of assumptions is falsifiable

and could be tested nonparametrically.

The rest of our paper will be devoted to using Theorem 1 to do inference on the strategic index ηp

in a context where this index is assumed to belong to a parametric family of functions while leaving

every other aspect of the model nonparametric.
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4 Inference of Strategic Interactions in a Semiparametric Model

Suppose the strategic interaction index ηp belongs to a parametric family of functions of the form

ηp(Y −p;X|θp),

with all other elements of the model left nonparametrically specified. In the examples of Section

2.3, this could be done by specifying a parametrization for the matrix A(X) in the case of linear

demands, and for the matrix D(X) in the log-linear case. All other components of the structural

models would be left unspecified in both cases. Let θ =
P
∪
p=1

θp and let Θ denote the parameter

space. The true value of θ will be denoted by θ0. For given yp, x and θp define

FY p(yp|x) = EY p|X
[
1 {Y p ≤ yp}

∣∣X = x
]
,

λp(x; θp) = EY −p|X
[
ηp(Y −p;x|θp)

∣∣X = x
]
,

µp(yp|x; θp) = EY |X
[
1 {Y p ≤ yp} · ηp(Y −p;x|θp)

∣∣X = x
]
,

τp(yp|x; θp) =FY p(yp|x) · λp(x; θp)− µp(yp|x; θp).

Theorem 1 predicts that for each p,

τp(yp|X; θp0) ≤ 0 w.p.1 in X ∀ yp ∈ Ap.

The econometrician is not required to know the exact structure of Ap. Since Supp(Y p) ⊆ Ap, it is

natural to focus on testing the above inequality over yp ∈ Supp(Y p). For this reason, we choose to

test whether the inequality holds over Supp(Y p, X). Therefore, our inferential approach is based

on the fact that our model predicts,

Pr (τp(Y p|X; θp0) ≤ 0) = 1. (6)

We will propose an inferential method based on the restriction in (6) and we will refer to the identi-

fied set ΘI as the collection of parameter values that satisfy (6). That is,

ΘI =
{
θ ∈ Θ : Pr (τp(Y p|X; θp) ≤ 0) = 1 ∀ p = 1, . . . , P

}
. (7)
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Note that the restriction in (6) involves inequalities of nonlinear transformations of conditional mo-

ments (the conditional covariance involves the product of two conditional expectations). Developing

methods for inference with conditional moment inequalities has been an area of active research in

the recent past. There are generically speaking two types of methods. The first type avoids having to

estimate the conditional expectations involved and relies instead on instrument functions. Examples

of this approach include Armstrong (2011a, 2011b) and . Suppose m(W ; θ) is a vector of known

functions such that E
[
m(W ; θ0)

∣∣X] ≤ 0 w.p.1. Let G be a space of measurable, nonnegative func-

tions of X . Then the previous inequality implies that we must have E [m(W ; θ0) · g(X)] ≤ 0 for

all g ∈ G. Thus, for a given choice of G the conditional moment inequality implies unconditional

moment inequality restrictions everywhere on G. Cramer von Mises or Kolmogorov-Smirnov test-

statistics can be constructed from here. This approach has the great advantage of not having to rely

on smoothness assumptions about the conditional moments. However, it is not applicable here since

our problem involves a nonlinear transformation of conditional moments and therefore it cannot be

written as E
[
m(W ; θ0)

∣∣X] ≤ 0 for a known function m(·).

The second type of approach relies on plug-in estimators of the conditional moments involved.

Most of the existing work in this area has been devoted to testing nonparametric restrictions rather

than doing inference on a finite dimensional parameter. One notable exception is Chernozhukov,

Lee, and Rosen (2011). Based on their approach, we would test whether θp satisfies our restric-

tions for player p over a range (yp, x) ∈ W by using at a test-statistic of the form ν̂pα(θp) =

inf
(yp,x)∈W

[
(−τ̂p(yp|x; θp)) + k̂(α) · σ̂p(yp|x; θp)

]
, where σ̂p is an estimator of the standard error

of τ̂p and k̂(α) is a critical value based on the αth quantile of a particular process. We would reject

the inequalities for θp if ν̂pα(θp) < 0 and fail to reject them otherwise.

While this method works in principle, in practice being able to compute the statistic with pre-

cision can be a computational challenge when X includes a large number of covariates with rich

support. This will be the case in our empirical application where X includes 8 such covariates. In

this case it is not clear how to do a grid search in eight dimensions in order to compute the test-

statistic (and approximate the critical value) with a reasonable degree of precision, especially if the

parametrization of our strategic index ηp is such that τp(y|x; θp) is nonseparable in θp. In such cases

the critical value k̂(α) would also depend on θp further complicating its use for the construction of

a confidence set.

Since the instrument-function approach does not apply to our setting and since procedures that

rely on computing the supremum over X of a semiparametric test-statistic can pose significant
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computational challenges when X is large (as in our empirical example), we propose a different

approach. Our method will be based on an unconditional mean-zero restriction implied by our in-

equalities. We describe it next.

4.1 Expressing our inequalities using unconditional mean-zero restrictions

For a given θp consider the following one-sided expectation,

T p(θp) = EY p,X
[
max

{
τp(Y p|X; θp), 0

}]
Note that T p(θp) ≥ 0 for any θp. For a given θ = (θp)

P
p=1 let

T (θ) =

P∑
p=1

T p(θp).

Note that T (θ) ≥ 0 ∀ θ and T (θ) = 0 if and only if θ ∈ ΘI . Therefore we can re-express the

identified set as

ΘI = {θ ∈ Θ : T (θ) = 0}

Our method will rely on nonparametric plug-in estimators and we will focus on the expectations

defined above, taken over an inference range where our estimators satisfy uniform asymptotic prop-

erties. Let X ⊂ Supp(X) denote a prespecified set such that

X ∩ Supp(Xc) ⊂ int (Supp(Xc)) .

We will maintain the assumption that fX(x) ≥ f > 0 for all x ∈ X . Let IX (x) denote a “trimming”

function such that IX (x) = 0 if x /∈ X and IX (x) > 0 otherwise. Let

T pX (θp) = EY p,X

[
max

{
τp(Y p|X; θp), 0

}
· IX (X)

]
, TX (θ) =

P∑
p=1

T pX (θp). (8)

The inference range X will be assumed to be such that the nonparametric estimators involved in our

construction have appropriate asymptotic properties uniformly over it. Given our choice of X , we

focus attention of the following superset of the identified set ΘI ,

ΘI
X = {θ ∈ Θ : T pX (θp) = 0 for p = 1, . . . , P} .
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Note that ΘI ⊆ ΘI
X . Under some conditions (e.g, compactness and density uniformly bounded

away from zero) we could allow for the inference range X to correspond to the entire support of X .

4.2 Summary of econometric methodology

The details of our econometric methodology are in the econometric appendix B but we provide a

summary here. Our basic setting is one where the researcher observes an iid sample
(
(Y pi )Pp=1, Xi

)n
i=1

produced by a model satisfying our assumptions. We replace the objects in (B-1) with estimators of

the form

T̂ pX (θp) =
1

n

n∑
i=1

τ̂p(Y pi |Xi; θ
p) · 1 {τ̂p(Y pi |Xi; θ

p) ≥ −bn} · IX (Xi), T̂X (θ) =

P∑
p=1

T̂ pX (θp)

where bn −→ 0 is a nonnegative sequence going to zero at an appropriate rate. The use of bn will

allow us to deal with the “kink” of the max{0, z} function at z = 0 while producing asymptotically

pivotal properties. To construct τ̂p we use kernel-based estimators.

In the econometric appendix we describe conditions under which

T̂X (θ) = TX (θ) +
1

n

n∑
i=1

ψ(Yi, Xi; θ) + εn(θ),

where sup
θ∈Θ

∣∣εn(θ)
∣∣ = Op

(
n−1/2−ε

)
for some ε > 0.

The “influence function” ψ can be expressed as

ψ(Yi, Xi; θ) =

P∑
p=1

(
max {τp(Y pi |Xi; θp), 0} · IX (Xi)− TX (θp)

)
+

P∑
p=1

ψpU (Yi, Xi; θ
p).

ψpU is the leading term in the Hoeffding decomposition of a U-statistic and it is a function of condi-

tional expectations (projections) and is therefore identified. The function ψ(Yi, Xi; θ) is identified

and has two key properties:

(i) E [ψ(Yi, Xi; θ)] = 0 ∀ θ ∈ Θ.

(ii) Let

Θ
I

X = {θ ∈ Θ : τp(Y p|X; θp) < 0 w.p.1. ∀ p = 1, . . . , P.}

Then ψ(Yi, Xi; θ) = 0 w.p.1 ∀ θ ∈ Θ
I

X .
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Θ
I

X is the collection of parameter values that satisfy our inequalities as strict inequalities w.p.1 over

our inference range. Let σ2(θ) = V ar (ψ(Yi, Xi; θ)). Based on the properties outlined above, we

will have
√
nT̂X (θ) =

√
nTX (θ) + Vn(θ) + ξn(θ),

where Vn(θ)
d−→ N

(
0, σ2(θ)

)
and sup

θ∈Θ

∣∣ξn(θ)
∣∣ = op (n−ε) for some ε > 0. Given these features,

our statistic will be of the form

t̂n(θ) =

√
nT̂X (θ)

max {κn, σ̂(θ)}
,

where σ̂2(θ) is an estimator of σ2(θ) and κn is a sequence converging to zero at a sufficiently

slow rate (it must satisfy κn · nε −→ ∞ for any ε > 0). Recall from our results described above

that sup
θ∈Θ

I
X

∣∣T̂X (θ)
∣∣ = Op

(
n−1/2−ε) for some ε > 0. The use of κn allows our statistic to satisfy

sup
θ∈Θ

I
X

∣∣√n · t̂n(θ)
∣∣ = op(1).

For a desired coverage probability 1− α, our CS for θ0 is of the form

CSn (1− α) =
{
θ ∈ Θ: t̂n(θ) ≤ c1−α

}
,

where c1−α is the Standard Normal critical value for 1− α. By the features outlined above our CS

will have correct pointwise coverage properties. Namely,

inf
θ∈Θ:θ=θ0

lim inf
n→∞

P (θ ∈ CSn(1− α)) ≥ 1− α

Suppose we generalize our basic setting and assume that
{(

(Y pi )Pp=1, Xi

)
: 1 ≤ i ≤ n

}
is a trian-

gular array which is row-wise iid with distribution Fn ∈ F . In order for our CS to possess correct

coverage properties uniformly over (F ,Θ) we need to equip F with integrability conditions such

that:

(i) A Central Limit Theorem for triangular arrays holds for

1√
n

n∑
i=1

ψ(Yi, Xi; θn, Fn)

σ(θn, Fn)

for any sequence Fn ∈ F and θn ∈ Θ \Θ
I

X (Fn).

(ii) The necessary Laws of Large Numbers for triangular arrays hold to ensure that
∣∣σ̂2(θn) −
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σ2(θn, Fn)
∣∣ = op(1) over any sequence Fn ∈ F and θn ∈ Θ.

We describe such conditions in the appendix. If they hold, then

lim inf
n→∞

inf
θ∈Θ:θ=θ0
F∈F

PF (θ ∈ CSn(1− α)) ≥ 1− α

In the econometric appendix we also study the power properties of our approach. Unlike methods

which rely on one-sided Lp−functionals (e.g, Lee, Song, and Whang (2011)) our approach is not

guided by a least favorable configuration. In such settings test-statistics are normalized by looking

at the largest possible variance that would still be consistent with the inequalities. In our context this

would amount to using a test-statistic of the form

t̃n(θ) =

√
nT̂X (θ)

Ω̂(θ)
,

where Ω̂(θ) is the estimator of σ̂(θ) that would result if the inequalities were binding a.s. To con-

struct it we would replace each indicator function 1 {τp(Y p|X; θp) ≥ 0} with 1. By breaking away

from least-favorable configurations our procedure is, by construction, less conservative. The cost is

having to introduce the tuning parameter κn. By design, our methodology is computationally simple

to implement even in the presence of a rich parametrization and a large collection of conditioning

covariates X . This computational simplicity also enables us to study the sensitivity of our results to

various choices of the tuning (bandwidth) parameters involved. Computing the confidence set for

different values of these parameters is a computationally costless exercise.

5 Application: Entry in the U.S drug store industry

One of the most important econometric applications of games has been the study of entry deci-

sions by competing firms. Our model allows us to approach this problem by combining the usual

extensive-margin enter/not enter dimension with an intensive-margin decision regarding the inten-

sity of entry. In our application, this intensive margin is captured by the number of stores that a

chain-store decides to open in a market. The key advantage of taking the intensive margin into ac-

count is that it will give us a structural interpretation of the strategic index in terms of an underlying

model of supply and demand (see Section 2.3). This stands in contrast to the “reduced form” profit

function that dominates applied work on the binary entry margin. As we show below, the intensive
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margin provides new insights into nature of competition in the market we study. It is important

to note that our assumptions are compatible with the existence of fixed costs of entry and thus our

model strictly nests the binary entry case (see Section 2.3).

Our application focuses on the U.S retail drug store industry, which we study because of three

different considerations. First, it is an industry with three clearly identifiable main competitors:

Walgreen’s, CVS and Rite Aid. According to IBISWorld, their market shares in 2011 were ap-

proximately 31%, 26% and 12% respectively6. Second, there has been a recent discussion among

industry watchers of a takeover of Rite-Aid by one of its competitors. This issue provides a natural

policy application of our results that we will explore. Third, we believe it is a case of an industry

without an obvious, compelling demand side unobservable at the market level (i.e., an unexplained

taste for health) that cannot be conditioned out with observables (such as the number of doctors in

the market).

Naturally, entry takes place at different points in time. Our justification for modelling this as

a static game is the commonly made assumption that the choices observed are the realization of a

long-run equilibrium whereby firms pre-committed to their strategies before observing the strategies

of others. According to this view, the fact that entry decisions take place in different points in time

is incidental.

Throughout our exercise we identify these three players as:

player 1: CVS, player 2: Rite Aid, player 3: Walgreens.

We will use p to refer generically to any one of the three players in the model and we will use q, r

to denote his opponents. Let Y p denote the number of stores opened by p in a market.

5.1 Data overview

5.1.1 Units of observation

The decision variable Y pi denotes the total number of stores by p in market i in the year 2011. We

define a market as a CBSA (core based statistical area) in the continental United States. Metropoli-

tan7 CBSAs were split into the divisions determined by Office of Budget and Management and each

6Source: http://clients.ibisworld.com/industryus/ataglance.aspx?indid=1054
7The Office of Budget and Management defines a CBSA as an area that consists of one or more counties and includes

the counties containing the core urban area, as well as any adjacent counties that have a high degree of social and economic
integration (as measured by commuting to work) with the urban core. Metropolitan CBSAs are those with a population of
50, 000 or more. Under certain conditions, metropolitan CBSAs with 2.5 million people or more are split into divisions.
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division was considered a market. We exclude CBSAs with more than 5 million people because

such large markets will likely consist of smaller sub-markets. Our final sample consists of N = 954

observations.

5.1.2 Choices and outcomes observed in the data

Table 1 summarizes some descriptive features of choices observed. It highlights the richness of the

action space in this application. Table 2 shows the correlations observed across Y 1, Y 2 and Y 3. As

we see there, a persistently positive association was observed across markets in the number of stores

opened by each competitor. What is remarkable is that this pattern of positive correlation remain

the same order of magnitude even after we condition on market observables such as market size, etc

(we describe the market covariates in further depth in the next subsection).

Table 1: Summary statistics for Y p

Y 1 Y 2 Y 3

Total 7, 004 4, 318 7, 283
Mean 7.34 4.52 7.63
Stdev 21.95 15.57 23.88

25th percentile 0 0 1
Median 1 0 1

75th percentile 4 3 4
90th percentile 16 10 17
95th percentile 39 21 41
99th percentile 112 71 106

Table 2: Correlations observed for Y 1, Y 2 and Y 3

Y 1 Y 2 Y 3 Y 2 + Y 3 Y 1 + Y 3 Y 1 + Y 2

Y 1 – 0.70 0.79 0.86 – –
Y 2 0.70 – 0.49 – 0.62 –
Y 3 0.79 0.49 – – – 0.72

By their nature, the drugstores of each of these competitors provide the same type of services and

can be rightly deemed, in general, as demand substitutes of each other. Given this observation and

recalling the underlying Cournot model discussed in Example 2.3, basic economic theory would

predict that, all else equal, more aggressive entry by a competitor affects would reduce a firm’s

marginal benefit to entry, leading us ex-ante to consider entry decisions as strategic substitutes.

Strategic substitution is assumed numerous empirical applications of entry games (e.g, Bresnahan

and Reiss (1991b), Bresnahan and Reiss (1991a), Berry (1992), Tamer (2003), Davis (2006)). Even
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though strategic substitutability is justified as the prediction of economic theory in our setting, the

correlation pattern in Table 2 seems to fly in the face of it. This is especially true if we believe that

there is no obvious, compelling demand side unobservable at the market level (i.e., an unexplained

taste for medical drugs). One empirical question we will use our model explore is whether a model

of strategic substitutes can explain this pattern of positive correlation in entry behavior.

Ignoring the intensive-margin dimension of entry and focusing only on the binary choice deci-

sion of entry immediately obscures key features of the data. For example as Table 3 shows, it wipes

out much of the positive association observed in the data.

Table 3: Correlations if game is reduced to binary choice
1{Y 1 > 0} 1{Y 2 > 0} 1{Y 3 > 0}

1{Y 1 > 0} – 0.23 0.07
1{Y 2 > 0} 0.23 – 0.04
1{Y 3 > 0} 0.07 0.04 –

By eliminating much of the positive association observed in the intensive margin, reconciling the

data with an underlying game of strategic substitutes should be easier in a binary choice repre-

sentation of the game compared to one that explicitly considers the intensive margin decisions. A

consequence of this would be that the inferential results for ηp in the latter case would be more

precise. We will see below that our results confirm this.

5.1.3 Covariates included inXXX

Markets are defined as CBSAs with less than 5 million people. We included in our analysis the

following market and player characteristics,

POP=population, INC=average income per household, DENS=population density,

AGE=median age in the population, BUS=total number of business establishments,

DIST p=distance to the nearest distribution center of p.

And we used

X =
(
POP , INC, DENS, AGE, BUS, DIST 1, DIST 2, DIST 3

)
.
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Population density was computed as the ratio of population/land area. X was treated as jointly

continuously distributed.

Most of these covariates are fairly standard in empirical work. We do note that our inclusion of

the number of business establishments (which we could empirically refine to be the number of retail

establishments) is designed to control for supply side unobservables in a market. If it is just costly

to locate a store in a market (because of say zoning restrictions), then this should affect the entry of

stores in all industries, not just pharmacies.

5.2 Specifications for the strategic index ηpηpηp

We will refer generically to the three players as p, q, r and we will consider specifications for the

index of the form

ηp(y−p;X|θp) = (X ′θp,q) · yq + (X ′θp,r) · yr,

As we discussed above, we will maintain that actions are strategic substitutes. To this end we will

choose the Θ such that strategic substitutability is ensured. That is,

X ′iθ
p,q ≥ 0, X ′iθ

p,r ≥ 0 ∀ i = 1, . . . , n ∀ θ ∈ Θ.

We want to focus on simple specifications for the indices X ′iθ
p,q and X ′iθ

p,r. Since θ can only

be (partially) identified up to scale and location normalizations, these are also introduced in the

parameter space in ways that will be described below.

Specification 1.−1.−1.− Symmetry of opponents’ strategic interaction effects

First we study the special case where each p weighs the actions of his two opponents equally (a

maintained, key assumption in De Paula and Tang (2012)) in every market. Given our assumptions

this is observationally equivalent to a strategic index of the form

ηp(y−p;X|θp) = θp · (yq + yr) , where θp = 1.

In this case our inferential problem simply reduces to a specification test where we evaluate whether

E
[
1{Y p ≤ yp} · (Y q + Y r)

∣∣X = x
]
≥ E

[
1{Y p ≤ yp}

∣∣X = x
]
· E
[
(Y q + Y r)

∣∣X = x
]

(9)
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for almost every (x, yp) in our inferential range (which we will describe below).

Specification 2.−2.−2.− Constant, possibly asymmetric relative strategic interaction effects

Next we focus on the case where p may assign different weights to each opponent, but the relative

effects remain constant across all markets. Letting θp = (θp,q, θp,r), the strategic index is now of

the form

ηp(y−p;X|θp) = θp,q · yq + θp,r · yr, where θ ≥ 0 ∀ θ ∈ Θ. (10)

We normalize Θ so that ‖θp‖ = 1 for each p since our identified set is closed under nonnegative

re-scaling of θp (if θ satisfies (5), then so will c · θ for any c ≥ 0). This specification is of particular

interest because strategic interaction effects have been typically modeled through constant coeffi-

cients in existing work that uses “reduced form” profit functions. (e.g, Berry (1992), Tamer (2003)

and many others).

Specification 3.−3.−3.− A more flexible parametrization

Here we allow for asymmetry and for covariate-dependent relative interaction effects. In our spec-

ification we express ηp solely as a function of market size (POP ) and its distance to the nearest

distribution center of each player (DIST 1, DIST 2, DIST 3). We wish to explore two conjectures

through our parametrization:

(i) The difference in distance to the market (DIST p −DIST q) is a determinant of the strategic

interaction effect of q on p. The basis for this effect is that if firm q’s distribution center is

located much closer than p’s, then this will give q a cost side advantage relative to p in the

market and thus make competition more intense with firm q’s entry into the market.

(ii) Strategic interaction effects change with market size. One strand of the entry literature has

modeled firm profits using “per capita” variable profits (see e.g, Bresnahan and Reiss (1991b),

Bresnahan and Reiss (1991a)) , which would imply that the sensitivity of a firm’s profits

to another firm’s entry is increasing with market size all else equal. However one can also

imagine that larger markets offer more “room” for entry not just because there exist more

people but also because opportunities for market expansion relative to business stealing are

larger, which would decrease the sensitivity of profit to a rival firm’s entry in larger markets.
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To explore both conjectures simultaneously we use the following parametrization of ηp. Denote

θp = (θp1 , θ
p
2 , θ

p
3 , θ

p
4)
′ and Dp,q ≡ DIST p −DIST q for every p 6= q. Define

φp,q (X|θp) =(
θp1 + θp2 ·

1

POP
+ θp3 · (Dp,q − 200) · 1 {Dp,q ≥ 200}+ θp4 ·

(Dp,q − 200) · 1 {Dp,q ≥ 200}
POP

)
,

(11)

Population is measured in units of 500K inhabitants in (11). The strategic index for p is specified as

ηp(y−p;X|θp) = φp,q (X|θp) · yq + φp,r (X|θp) · yr. (12)

Strategic substitutability is imposed by forcing the parameter space Θ to satisfy φp,q (Xi|θp) ≥ 0

for each p, q and every market i = 1, . . . , n. The individual signs of each coefficient were otherwise

unrestricted. For the same reason given above we normalize ‖θp‖ = 1 for p = 1, 2, 3 in our

parameter space.

5.3 Results

Our target coverage probability is 95% throughout. Our parameter space Θ consisted of 1 million

grid points with the scale-normalization described above. An empty confidence set (CS) amounts to

a rejection of the specification in question. The kernels and bandwidths used are described in detail

in Appendix B.7. The kernel employed was bias-reducing of order 18, similar to the one used in

Aradillas-López, Gandhi, and Quint (2013). Our bandwidths were of the form hn = c · σ̂(X) ·n−αh

(we used individual bandwidths for each X , each proportional to σ̂(X)), bn = cb · Ω · n−αb and

κn = cκ · Ω · log(n)−1, where Ω = max
θ∈Θ

∣∣σ̂(θ)
∣∣. We chose these tuning parameters proportional

to Ω to ensure our procedure has a scale-invariant property. The choice of the constants c, cb, cκ,

αh and αb are described in Appendix B.7. For our sample size n = 954 the values of these tuning

parameters were hn ≈ 0.16 · σ̂(X), bn ≈ 10−5 and κn ≈ 10−7. The inference range used was

X =
{
x : f̂X(x) ≥ f̂ (0.15)

X , POP < 5 Million
}
,

where f̂ (0.15)
X denotes the estimated 15th percentile of the density f̂X . All of our main findings were

robust to moderate changes in the tuning parameters used.
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5.3.1 Rejection of symmetry and of constant strategic interaction effects

Symmetry in the effects of opponents’ actions on payoffs was rejected by our results. The value of

our test-statistic for testing (9) was 10.44, well above the critical value (1.645) for a 95% significance

level. We conclude that if strategic substitutability is maintained across all markets, at least one

player must assign different weights to the actions of his opponents in a subset of markets. Our

results also rejected Specification 2 which assumed constant strategic effects. The smallest value

of the test-statistic across our parameter space Θ was 8.38, leading to an empty confidence set.

Rejection of constant strategic effects is a relevant empirical finding because this is the type of

specification used in the vast majority of existing parametric models. By Remark 2 rejecting any

specification leads us to reject the assertion that the underlying game has a unique equilibrium w.p.1.

In particular we reject the notion that there is no strategic interaction effect between the firms.

5.3.2 Results for Specification 3

Our third specification produced a nonempty CS. Our first finding was a rejection of the assertion

that θp = θq for each p 6= q (symmetry in parameters for all players). When we imposed this

restriction we obtained an empty CS, with the smallest value of the test-statistic being 2.01. Thus

there is evidence of structural differences in payoff functions across these three players. We describe

the main features of the CS obtained next.

5.3.3 Evidence of asymmetric weights to opponents’ strategies

Asymmetry of opponents’ interaction effects is captured by the parameters θp3 and θp4 . Symmetry

would hold for p in every market only if these parameters are jointly equal to zero. Figure 1 depicts

the 95% joint CS for these parameters for each of the three players. As we can see, our results

showed evidence of asymmetry for player 2 (Rite Aid).

We can study the asymmetry of strategic effects for specific markets. For example, figure 2 depicts

our confidence region for φ2,1(Xi|θ2) (the effect of CVS on Rite Aid) and φ2,3(Xi|θ2) (the effect

of Walgreens on Rite Aid) corresponding to CBSA 29404 (Lake County-Kenosha County, IL-WI),

where POP = 820K, DIST 1 = 191, DIST 2 = 226 and DIST 3 = 21. Our results show

that, from the perspective of Rite Aid, the competition effect from Walgreens is stronger than the

competition effect from CVS in that market.
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Figure 1: Asymmetry of strategic interaction effects. 95% joint CS for θp3 and θp4

Player 1 (CVS) Player 2 (Rite Aid)

Player 3 (Walgreens)

We wanted to learn more about what the data revealed regarding the closeness of competition be-

tween rival firms. Since symmetry could only be rejected for Rite Aid we focused only on this

firm. We say that the competition effect from CVS is stronger than that of Walgreens in market

i if min
θ2∈CSn(1−α)

(
φ2,1(Xi|θ2)

)
> max

θ2∈CSn(1−α)

(
φ2,3(Xi|θ2)

)
. The opposite would be true if the

inequality holds with the superscripts 1 and 3 interchanged. We found that, while the competition

effect from CVS was stronger than that of Walgreens only in 9 markets, the opposite was true in 160

markets. Overall, our results provide evidence that Walgreens is a closer competitor to Rite Aid than

CVS is. For policy purposes this closeness in competition could suggest that a merger between Rite

Aid and Walgreens could potentially have a more significant anticompetitive effect than a merger

between Rite Aid and CVS.8

5.3.4 Market size and strategic interaction

One of the goals of specification 3 was to study the relationship between strategic interaction and

market size. Positive signs for θp2 and θp4 would be consistent with interaction effects that decrease

8Rite Aid shares jumped sharply on March 14, 2012 following speculation from a Credit Suisse analyst about a potential
merger with Walgreens (source: New York Times).
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Figure 2: CS for φ2,1(Xi|θ2) and φ2,3(Xi|θ2), for market i =CBSA 29404 (Lake County-Kenosha
County, IL-WI)

with the size of the market. Figure 3 depicts the 95% joint CS for these parameters for each firm. As

we see there most of the values included in our CS for both coefficients are positive. Some negative

values (except for θ4
2) are included, but these are relatively small in absolute value.

Let us focus on cases where relative distance is not significant (i.e, less than 200 miles) and the only

determinant of strategic interaction is market size. In any such market the strategic coefficients are

φp,q(X|θp) = θp1 +θp2 · 1
POP . Figure 4 shows how these strategic coefficients change with the size of

the market. As we can see there, our results suggest that the strategic effect of opponents’ strategies

is less significant in larger markets.

5.4 Results from modeling entry as a binary decision

As Table 3 showed, much of the positive correlation in the intensive margin goes away when we

look only at extensive margin decisions. This led us to conjecture that the range of models that

would be consistent with strategic substitutes and with the choices observed would be larger if we

limited attention to a binary choice representation of entry decisions. This intuition was confirmed

by our methodology. While symmetry of weights to opponents (specification 1) and constant relative

interaction effects (specification 2) were still rejected, modelling entry as a binary choice decision

resulted in larger confidence sets in specification 3. Furthermore, the closeness in competition be-

tween Rite Aid and Walgreens that our results uncovered was no longer evident. Specifically, as
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Figure 3: Market size and strategic interaction. 95% joint CS for θp2 and θp4

Player 1 (CVS) Player 2 (Rite Aid)

Player 3 (Walgreens)

Figure 5 shows we now failed to reject that θp3 = θp4 = 0 for Rite Aid. Thus, we failed to reject that

Rite Aid gives equal weights to both opponents across all markets. Hence, we conclude that key

features of strategic interaction that are captured by intensive margin strategies are obscured if we

focus attention solely on binary entry/no entry decisions.

5.5 Explaining the data with strategic substitutes

Our identification results are not based on the unconditional covariance9 between Y p and ηp(Y −p;X|θp).

However, given the assumption of strategic substitutes it is interesting to see if this covariance re-

verses the persistent positive relationship between Y 1, Y 2 and Y 3 summarized in Table 2. Consider

in particular the correlation lower bound

min
θp∈CSn(1−α)

{
ρ (Y p, ηp (Y q, Y r;X|θp))

}
.

9Note that the Law of Total Covariance predicts that Cov
(
Y p, ηp(Y −p;X|θp)

)
=

E
[
Cov

(
Y p, ηp(Y −p;X|θp)

) ∣∣X]
+ Cov

(
E[Y p|X], E[ηp(Y −p;X|θp)|X]

)
. While our identification results

are related to the sign of the first component, they do not in general predict anything about the sign of the second component.
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Figure 4: θp1 + θp2 · 1
POP for a range of POP values (measured in 500K). Solid black line depicts

the results for the largest value of θp2 in our CS. Solid red line depicts the results for the smallest
value of θp2 in our CS. Dotted lines correspond to five randomly drawn parameter values within our
CS.

Player 1 (CVS) Player 2 (Rite Aid)

Player 3 (Walgreens)

This lower bound was −0.06, −0.14 and −0.03 for CVS, Rite Aid and Walgreens, respectively.

Thus our strategic index, which is a weighted average of opponents’ actions (whose weights de-

pended on X), is negatively associated with the strategies of each firm. This is true despite the

fact that the raw actions of the firms are strongly positively correlated. This sheds light on a key

lesson that we believe is generally applicable to the empirical modeling games of entry: functional

form matters. By allowing for a rich model of the strategic index where opponent actions interact

with market observables, our approach reveals that the the standard model of strategic substitutes is

consistent with the positive correlation of entry in the data even without market level unobservables.

6 Concluding remarks

We studied static games with very general strategy spaces. Making some general shape restriction

assumptions on the underlying payoff functions we were able to characterize observable implications

that allow us to do inference on the strategic interaction component that captures economically
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Figure 5: Comparing our previous results (shown in clear gray) with the CS from a binary choice
entry model (shown in dark gray). Player 2 (Rite Aid).

relevant features of strategic interaction. We showed how our assumptions can arise naturally in

well-known structural economic models. Our testable implications involve inequalities of nonlinear

transformations of conditional moments. We introduced an econometric approach to do inference

in this setting which is computationally easy to implement even in richly parameterized models

with a large collection of conditioning covariates with a rich support. We described the asymptotic

properties of our approach and we applied it to a model of entry in the pharmacy store industry where

entry decisions are not merely binary choices but rather strategies about the number of stores that

firms will open in a market. Our results uncovered economically relevant features of the underlying

structural model such as a closeness in competition between two rivals: Rite Aid and Walgreens.

While our econometric theory and application were based on a parametrization of the strategic index

(leaving everything else about the model nonparametrically specified), our identification results can

allow us to treat the index as a nonparametric function. In that case a fully nonparametric inferential

approach such as sieves estimation could be employed. In addition to our conditional moment
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inequality restrictions, specific conjectures about the model (e.g, substitutability, symmetry, etc.)

could be incorporated into the nonparametric estimator for the index.
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A Appendix– Proofs of our identification results

A.1 Proof of Result 1

Recall from (4) that

ηpσ(X) ≥ η′pσ(X) =⇒ νpσ(v; ξp)− νpσ(u; ξp) ≤ νpσ′(v; ξp)− νpσ′(u; ξp) ∀ u < v ∈ Ap

Fix any yp ∈ Ap and define the following indicator function,

I
p
σ (yp; ξp) = max

u≤yp

(
min

v≥yp+1

(
1 {νpσ (v; ξp)− νpσ (u; ξp) ≤ 0}

))
.

By (4), we have

ηpσ(X) ≥ ηpσ′(X) =⇒ I
p
σ (yp; ξp) ≥ I

p
σ′ (y

p; ξp) .

Now suppose σ−p and σ−p
′

are any pair of beliefs that produce unique expected-payoff maximizing

choices for p given the realization of ξp, and let ypσ(ξp) and ypσ′(ξ
p) denote the corresponding optimal

choices. Then for any yp ∈ Ap,

1 {ypσ(ξp) ≤ yp} = I
p
σ (yp; ξp) and 1 {ypσ′(ξ

p) ≤ yp} = I
p
σ′ (y

p; ξp) .

Therefore, for any such pair of beliefs, if ηpσ(X) ≥ ηpσ′(X) then 1 {ypσ(ξp) ≤ yp} ≥ 1 {ypσ′(ξp) ≤ yp}

which proves the statement in Result 1.

A.2 Appendix– Proof of Theorem 1

Denote ξ ≡
P
∪
p=1

ξp and ξ−p ≡ ∪
q 6=p

ξq . Given X , let J denote the number of BNE {σ∗j(X)}j
that the selection mechanism S can choose with positive probability, and let PSj (X) denote the

probability that S selects the jth BNE (σ∗j(X)), conditional on X . Our assumptions maintain that

S concentrates on BNE tat have a unique optimal choice. Denote it as ypσ∗j (ξ
p) for the jth BNE.

First, consider

Eξ−p|X

[
ηp(y−pσ∗j (ξ

−p);X)
∣∣ X] .
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This is the expected value of ηp, conditional on X , in the jth BNE. By definition, this is equal to

ηpσ∗j (X), which was defined previously as

ηpσ∗j (X) =
∑

y−p∈A−p
σ−p∗j (y−p|X) · ηp(y−p;X).

Now fix any yp ∈ Ap. By iterated expectations we have

E
[
1 {Y p ≤ yp} · ηp(Y −p;X)

∣∣X] =

J∑
j=1

PSj (X)·Eξ|X
[
1

{
ypσ∗j (ξ

p) ≤ yp
}
· ηp(y−pσ∗j (ξ

−p);X)
∣∣ X]

Assumption 3 (independent private shocks, i.e ξp⊥ξ−p|X) yields

E
[
1 {Y p ≤ yp} · ηp(Y −p;X)

∣∣X]
=

J∑
j=1

PSj (X) · Eξp|X
[
1

{
ypσ∗j (ξ

p) ≤ yp
} ∣∣ X] · Eξ−p|X [ηp(y−pσ∗j (ξ−p);X)

∣∣ X] ,
=

J∑
j=1

PSj (X) · Eξp|X
[
1

{
ypσ∗j (ξ

p) ≤ yp
} ∣∣ X] · ηpσ∗j (X).

Therefore, by Assumption 3 we can express

E
[
1 {Y p ≤ yp} · ηp(Y −p;X)

∣∣X] = Eξp|X

 J∑
j=1

PSj (X) · 1
{
ypσ∗j (ξ

p) ≤ yp
}
· ηpσ∗j (X)

∣∣∣∣∣ X


(A-1)

Next note that

E [1 {Y p ≤ yp} |X] · E
[
ηp(Y −p;X)|X

]
=

J∑
j=1

PSj (X) · Eξp|X
[
1

{
ypσ∗j (ξ

p) ≤ yp
} ∣∣X]× J∑

j=1

PSj (X) · Eξ−p|X
[
ηp(y−pσ∗j (ξ

−p);X)
∣∣∣ X]

=

J∑
j=1

PSj (X) · Eξp|X
[
1

{
ypσ∗j (ξ

p) ≤ yp
} ∣∣X]× J∑

j=1

PSj (X) · ηpσ∗j (X)

(A-2)
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Combining (A-1)-(A-2) we then have

E
[
1 {Y p ≤ yp} · ηp(Y −p;X)

∣∣X]− E [1 {Y p ≤ yp} |X] · E
[
ηp(Y −p;X)|X

]
=

Eξp|X

[
J∑
j=1

PSj (X) · 1
{
ypσ∗j (ξ

p) ≤ yp
}
· ηpσ∗j (X)−

 J∑
j=1

PSj (X) · 1
{
ypσ∗j (ξ

p) ≤ yp
}

×

 J∑
j=1

PSj (X) · ηpσ∗j (X)

∣∣∣∣∣X
]

(A-3)

By Result 1, w.p.1 in (ξp) we have

J∑
j=1

PSj (X) · 1
{
ypσ∗j (ξ

p) ≤ yp
}
· ηpσ∗j (X)

−

 J∑
j=1

PSj (X) · 1
{
ypσ∗j (ξ

p) ≤ yp
}×

 J∑
j=1

PSj (X) · ηpσ∗j (X)

 ≥ 0 ∀ yp ∈ Ap.

(A-4)

To see why, simple algebra can be used to show that

J∑
j=1

PSj (X) · 1
{
ypσ∗j (ξ

p) ≤ yp
}
· ηpσ∗j (X)

−

 J∑
j=1

PSj (X) · 1
{
ypσ∗j (ξ

p) ≤ yp
}×

 J∑
j=1

PSj (X) · ηpσ∗j (X)


=

J∑
`=1

J∑
j=1

PS` (X)PSj (X) · 1
{
ypσ∗j (ξ

p) ≤ yp
}
·
(
1− 1

{
ypσ∗`(ξ

p) ≤ yp
})
·
(
ηpσ∗j (X)− ηp∗`(X)

)
≥ 0,

where the last inequality follows from Result 1 which implies that, w.p.1 in ξp and ∀ yp,

ηpσ∗j (X) < ηp∗`(X) =⇒ 1
{
ypσ∗j (ξ

p) ≤ yp
}
≤ 1

{
ypσ∗`(ξ

p) ≤ yp
}
.

From (A-3) and (A-4) it follows that, w.p.1 in X we must have

E
[
1{Y p ≤ yp} · ηp(Y −p;X)

∣∣X] ≥ E[1{Y p ≤ yp}∣∣X] · E[ηp(Y −p;X)
∣∣X] ∀ yp.

This concludes the proof.
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B Econometric appendix

We focus on settings where the researcher observes an iid sample
(
(Y pi )Pp=1, Xi

)n
i=1

, with10
(
(Y pi )Pp=1, Xi

)
∼

F . We assume that X can be split as X =
(
Xc, Xd

)
, where Xc have absolutely continuous dis-

tribution with respect to Lebesgue measure and Xd have a discrete distribution. We will denote the

dimension of Xc by q. We begin by describing the preliminary conditions needed for our construc-

tion.

B.1 Specifying an “inference range”

Let X ⊂ Supp(X) denote a prespecified set such that

X ∩ Supp(Xc) ⊂ int (Supp(Xc)) .

We will maintain the assumption that fX(x) ≥ f > 0 for all x ∈ X . Let11
IX (x) = 1 {x ∈ X}.

Let

T pX (θp) = EY p,X [max {τp(Y p|X; θp), 0} · IX (X)] . (B-1)

By construction, T pX (θp) ≥ 0, and T pX (θp) = 0 if and only if Pr
(
τp(Y p|X; θp) ≤ 0

∣∣X ∈ X ) = 1.

We aggregate these one-sided expectations as

TX (θ) =

P∑
p=1

T pX (θp).

Note that TX (θ) ≥ 0, and TX (θ) = 0 if and only if Pr
(
τp(Y p|X; θp) ≤ 0

∣∣X ∈ X ) = 1 for

p = 1, . . . , P . The inference range X will be assumed to be such that the nonparametric estimators

involved in our construction have appropriate asymptotic properties uniformly over it. Given our

choice of X , we focus attention of the following superset of the identified set ΘI ,

ΘI
X = {θ ∈ Θ : T pX (θp) = 0 for p = 1, . . . , P} .

Note that ΘI ⊆ ΘI
X , where ΘI = {θ ∈ Θ : Pr (τp(Y p|X; θp) ≤ 0) = 1 for p = 1, . . . , P}.

10We will generalize our assumptions to a setting where
(
(Y p

i )Pp=1, Xi

)n

i=1
is a triangular array in Section B.6, below.

11The indicator function IX could be replaced with a smooth “trimming” function.
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B.2 Estimators involved in our construction

We will employ kernel-based nonparametric estimators. K : Rq → R will denote our kernel

function. For a given x ≡
(
xc, xd

)
and h > 0 we will define

H (Xi − x;h) = K

(
Xc
i − xc

h

)
· 1
{
Xd
i − xd = 0

}
.

Let hn −→ 0 be a nonnegative bandwidth sequence. For a given x ≡
(
xc, xd

)
, yp and θp our

estimators are of the form

f̂X(x) = (nhqn)
−1

n∑
i=1

H (Xi − x;hn) ,

F̂Y p(yp|x) =
(
nhqn · f̂X(x)

)−1 n∑
i=1

1 {Y pi ≤ y
p} · H (Xi − x;hn) ,

λ̂p(x; θp) =
(
nhqn · f̂X(x)

)−1 n∑
i=1

ηp
(
Y −pi ;x|θp

)
· H (Xi − x;hn) ,

µ̂p(yp|x; θp) =
(
nhqn · f̂X(x)

)−1 n∑
i=1

1 {Y pi ≤ y
p} · ηp

(
Y −pi ;x|θp

)
· H (Xi − x;hn) ,

τ̂p(yp|x; θp) =F̂Y p(yp|x) · λ̂p(x; θp)− µ̂p(x; θp).

Our estimators for T pX (θp) and TX (θ) are

T̂ pX (θp) =
1

n

n∑
i=1

τ̂p(Y pi |Xi; θ
p) · 1 {τ̂p(Y pi |Xi; θ

p) ≥ −bn} · IX (Xi),

T̂X (θ) =

P∑
p=1

T̂ pX (θp).

(B-2)

where bn −→ 0 is a nonnegative sequence whose properties will be described below.

B.3 Basic Assumptions

Assumption B1. (Smoothness)

As before, express any x ∈ Supp(X) generically as x ≡
(
xc, xd

)
with xc corresponding to the

continuously distributed elements in X . Denote

W = {(x, y) ∈ Supp(X,Y ): x ∈ X} .
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Recall that we defined before

FY p(yp|x) = EY p|X
[
1 {Y p ≤ yp}

∣∣X = x
]
,

λp(x; θp) = EY −p|X
[
ηp(Y −p;x|θp)

∣∣X = x
]
,

µp(yp|x; θp) = EY |X
[
1 {Y p ≤ yp} · ηp(Y −p;x|θp)

∣∣X = x
]
,

τp(yp|x; θp) =FY p(yp|x) · λp(x; θp)− µp(yp|x; θp).

For almost every (x, yp) ∈ W , x′ ∈ X and every θp ∈ Θ, the following objects are M times

differentiable with respect to xc with bounded derivatives,

FY p
(
yp
∣∣x) , fX(x), EY −p|X

[
ηp
(
Y −p;x′

∣∣θp) ∣∣X = x
]
,

EY |X
[
1 {Y p ≤ yp} · ηp

(
Y −p;x′

∣∣θp) ∣∣X = x
]
.

Now let
γIp(yp, x; θp) = EY p|X

[
1 {yp ≤ Y p} · 1 {τp(Y p|x; θp) ≥ 0}

∣∣X = x
]
,

γIIp (x; θp) = EY p|X
[
FY p(Y p|x) · 1 {τp(Y p|x; θp) ≥ 0}

∣∣X = x
]
,

γIIIp (x; θp) = EY p|X
[
µp(Y p|x; θp) · 1 {τp(Y p|x; θp) ≥ 0}

∣∣X = x
]
,

For almost every (x, yp) ∈ W and every θp ∈ Θ, the three objects defined above areM times

differentiable with respect to xc with bounded derivatives, and this is also satisfied by the trimming

function I(x). Finally, for some Q <∞,

sup
(x,yp)∈W

∣∣QFY p (yp|x)
∣∣ ≤ Q, sup

x∈X ,θp∈Θ

∣∣Qλp(x; θp)
∣∣ ≤ Q,

sup
(x,yp)∈W,θp∈Θ

∣∣Qµp(yp|x; θp)
∣∣ ≤ Q.

Assumption B2. (Kernels and bandwidths) Let M be as described in Assumption B1. We use a

bias-reducing kernel K of order M with bounded support. The kernel is a function of bounded

variation, symmetric around zero and satisfies sup
v∈Rq

∣∣K(v)
∣∣ ≤ K < ∞. The bandwidth sequences

bn and hn are such that, for a small enough ε1 > 0,

n1/2−ε1 · hqn · bn −→∞, n1/2+ε1 · b2n −→ 0, n1/2+ε1 · hMn −→ 0.
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Focus on bandwidths of the type hn ∝ n−αh and bn ∝ n−αb . Let ε > 0 be an arbitrarily small, but

strictly positive constant and let αh = 1
2M + ε and αb = 1

4 + ε. The conditions in Assumption B2

will be satisfied if

M ≥

⌈
2 · q

1− 4 · ε(2 + q)

⌉
.

For example, suppose q = 8 (as in our empirical application). Then we need M ≥ 17. Recall that

M is the number of derivatives assumed to exist in Assumption B1 and it also corresponds to the

order of the kernel employed.

Our framework must allow for the existence of parameter values θp ∈ Θ such that τp(Y p|X; θp) has

a point mass at zero. While we allow for that, the following assumption restricts the way in which

the distribution of τp(Y p|X; θp) approaches zero from the left. In essence the condition assumes

that the density of τp(Y p|X; θp) is bounded in a neighborhood of the type [−b, 0) where b > 0.

Assumption B3. (A regularity condition)

There exist constants b > 0 and A > 0 such that, for each p and each θp ∈ Θ,

Pr
(
−b ≤ τp(Y p|X; θp) < 0

∣∣∣X ∈ X) ≤ b ·A ∀ 0 < b ≤ b.

Note that Assumption B3 allows for τp(Y p|X; θp) to have a point mass at zero. It merely assumes

the existence of a neighborhood [−b, 0) such that the density of τp(Y p|X; θp) is bounded, uniformly

over θp ∈ Θ in that neighborhood.

Assumption B4. (Empirical process and manageability conditions)

For each p the following conditions are satisfied. Let

ηp(y−p) = sup
x∈X ,θp∈Θ

∣∣ηp(y−p;x|θp)∣∣ .
Then E

[
exp

{
(ηp(Y −p))

2 · ε
}]
≤ C < ∞ for some ε > 0. That is, (ηp(Y −p))

2 possesses a

moment generating function.
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(i) The classes of functions

F =
{
f : f(y−p) = ηp

(
y−p;x|θp

)
for some (x, θp) ∈ X ×Θ

}
,

F ′ =
{
f : f(x) = λp(x; θp) for some θp ∈ Θ

}
,

F ′′ =
{
f : f(yp, x) = µp(yp|x; θp) for some θp ∈ Θ

}
,

are Euclidean (see Definition 2.7 in Pakes and Pollard (1989)) with respect to envelopes ηp(·), F
′
(·)

and F
′′
(·) respectively, where ηp(Y −p) satisfies the existence-of-moments conditions described

above, and F
′
(·) and F

′′
(·) satisfy E

[
F
′
(X)2

]
<∞ and E

[
F
′′
(Y p, X)2

]
<∞.

(ii) Let b > 0 be as described in Assumption B3. The class of functions

G =
{
g: g(x, y) = 1 {−b ≤ τp (x, y; θp) < 0} · IX (x) for some θp ∈ Θ, 0 < b ≤ b

}
,

is Euclidean with respect to envelope 1.

Sufficient conditions for a class of functions to be Euclidean can be found, e.g, in Nolan and Pollard

(1987) and Pakes and Pollard (1989). Once a parametric family is chosen for ηp, those conditions

can be used to verify part (i) of Assumption B4. In particular, ηp does not have to be smooth (or

even continuous) to satisfy the Euclidean property. For part (ii) fix b ∈ R and let N (x, y; b) denote

the number of points in Θ where τ(x, y; θp) − b changes sign. Suppose sup
(x,y)∈X×A

N (x, y; b) ≤

N < ∞ for all 0 < b ≤ b. By Lemma 1 in Asparouhova, Golanski, Kasprzyk, Sherman, and

Asparouhov (2002) this ensures that the class of sets indexed by the indicator functions in part (ii) of

our assumption is a VC class of sets (see Definition 2.2 in Pakes and Pollard (1989)). The Euclidean

property for said class of functions follows from here by the results in Pakes and Pollard (1989).

B.4 Asymptotic properties of T̂ pX (θp)T̂ pX (θ
p)T̂ pX (θ
p)

The following theorem summarizes the key asymptotic properties of T̂ pX (θp) under our assumptions.
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Theorem 2. Let

ψpU (Y,X; θp) =[(
γIp(Y p, X; θp)− γIIp (X; θp)

)
· λp(X; θp) +

(
ηp(Y −p;X|θp)− λp(X; θp)

)
· γIIp (X; θp)

+
(
γIp(Y p, X; θp) · ηp(Y −p;X|θp)− γIIIp (X; θp)

)]
· IX (X),

and

ψp(Yi, Xi; θ
p) = (max {τp(Y pi |Xi; θ

p), 0} · IX (Xi)− T pX (θp)) + ψpU (Yi, Xi; θ
p).

If Assumptions B1-B4 hold, then

T̂ pX (θp) = T pX (θp) +
1

n

n∑
i=1

ψp(Yi, Xi; θ
p) + εp,n(θp),

where ψp(Yi, Xi; θ
p) = (max {τp(Y pi |Xi; θ

p), 0} · IX (Xi)− T pX (θp)) + ψpU (Yi, Xi; θ
p),

and sup
θp∈Θ

∣∣εp,n(θp)
∣∣ = Op

(
n−1/2−ε

)
for some ε > 0.

The “influence function” ψp has two key properties:

(i) E [ψp(Yi, Xi; θ
p)] = 0 ∀ θp ∈ Θ.

(ii) ψp(Yi, Xi; θ
p) = 0 ∀ θp : τp(Y p|X; θp) < 0 w.p.1.

Property (ii) can be verified immediately by inspection. Property (i) can be verified using iterated

expectations and we prove it in Appendix B.4.2, below. Let ψ(Yi, Xi; θ) =
∑P
p=1 ψ

p(Yi, Xi; θ
p).

By Theorem 2,

T̂X (θ) = TX (θ) +
1

n

n∑
i=1

ψ(Yi, Xi; θ) + εn(θ),

where sup
θ∈Θ

∣∣εn(θ)
∣∣ = Op

(
n−1/2−ε

)
for some ε > 0.

(B-3)

And ψ(Yi, Xi; θ) is identified and has two key properties:

(i) E [ψ(Yi, Xi; θ)] = 0 ∀ θ ∈ Θ.
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(ii) Let

Θ
I

X = {θ ∈ Θ : τp(Y p|X; θp) < 0 w.p.1. ∀ p = 1, . . . , P.}

Then ψ(Yi, Xi; θ) = 0 w.p.1 ∀ θ ∈ Θ
I

X .

We now proceed to prove Theorem 2.

B.4.1 Proof of Theorem 2

In Assumption B1 we describedW as

W =
{

(x, y) ∈ Supp(X,Y ): x ∈ X
}
,

where X ⊂ Supp(X) is a prespecified set such that X ∩ Supp(Xc) ⊂ int (Supp(Xc)). We maintain

the assumption that fX(x) ≥ f > 0 for all x ∈ X . We will split the proof in three steps.

Step 1

Our first step is to show that under our assumptions, there exist D1 > 0, D2 > 0 and D3 > 0 such

that

Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣τ̂p(yp|x; θp)− τp(yp|x; θp)
∣∣∣ ≥ bn)

≤ D1 exp
{
−
√
nhqn

(
D2 · bn −D3 · hMn

)}
.

For given yp, x and θp define

QpFY p (yp|x) = FY p(yp|x) · fX(x), Qλp(x; θp) = λp(x; θp) · fX(x),

Qµp(yp|x; θp) = µp(yp|x; θp) · fX(x).

and let

Q̂FY p (yp|x) = (nhqn)
−1

n∑
i=1

1 {Y pi ≤ y
p} · H (Xi − x;hn) ,

Q̂λp(x; θp) = (nhqn)
−1

n∑
i=1

ηp
(
Y −pi ;x|θp

)
· H (Xi − x;hn) ,

Q̂µp(yp|x; θp) = (nhqn)
−1

n∑
i=1

1 {Y pi ≤ y
p} · ηp

(
Y −pi ;x|θp

)
· H (Xi − x;hn) .

43



Using an M th order approximation, our smoothness restrictions in Assumption B1 imply the exis-

tence of a finite constant M such that,

sup
x∈X

∣∣∣E [f̂X(x)
]
− fX(x)

∣∣∣ ≤M · hMn ,
sup

(x,yp)∈W

∣∣∣E [Q̂pF (yp|x)
]
−QFY p (yp|x)

∣∣∣ ≤M · hMn ,
sup

x∈X ,θp∈Θ

∣∣∣E [Q̂λp(x; θp)
]
−Qλp(x; θp)

∣∣∣ ≤M · hMn ,
sup

(x,yp)∈W
θp∈Θ

∣∣∣E [Q̂µp(yp|x; θp)
]
−Qµp(yp|x; θp)

∣∣∣ ≤M · hMn .
(B-4)

Invoking Lemma 22 in Nolan and Pollard (1987) and Lemmas 2.4 and 2.14 in Pakes and Pollard

(1989), having a kernel of bounded variation implies that the class of functions

G =
{
g : g(x) = H (x− v;h) for some v ∈ Rdim(X) and some h > 0

}
is Euclidean12 with respect to the constant envelopeK. Lemma 2.4 in Pakes and Pollard (1989) also

implies that the class of functions

G = {g : g(yp) = 1 {yp ≤ v} for some v ∈ R}

is Euclidean with respect to the envelope 1. Combined with Assumption B4(i) and Lemma 2.14 in

Pakes and Pollard (1989) we have that the classes of functions

F1 =
{
f : f(y−p, x) = ηp(y−p;u|θp) · H (x− u;h) for some u ∈ X and θp ∈ Θ

}
,

F2 =
{
f : f(y, x) = 1 {yp ≤ v} · ηp(y−p;u|θp) · H (x− u;h) for some v ∈ R, u ∈ X and θp ∈ Θ

}
are Euclidean with respect to the envelope K · ηp(·). Since this envelope has a moment generating

function by Assumption B4(i), the maximal inequality results in Chapter 7 of Pollard (1990) com-

bined with the bias conditions in B-4 imply that there exist positive constants A1, A2 and A3 such

12See Definition 2.7 in Pakes and Pollard (1989).
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that for any δ > 0,

Pr

(
sup
x∈X

∣∣∣f̂X(x)− fX(x)
∣∣∣ ≥ δ) ≤ A1 · exp

{
−
(√
n · hqn

(
A2 · δ −A3 · hMn

))2}
,

P r

(
sup

(x,yp)∈W

∣∣∣Q̂FY p (yp|x)−QFY p (yp|x)
∣∣∣ ≥ δ) ≤ A1 · exp

{
−
√
n · hqn

(
A2 · δ −A3 · hMn

)}
,

P r

(
sup

x∈X ,θp∈Θ

∣∣∣Q̂λp(x; θp)−Qλp(x; θp)
∣∣∣ ≥ δ) ≤ A1 · exp

{
−
√
n · hqn

(
A2 · δ −A3 · hMn

)}
,

P r

 sup
(x,yp)∈W
θp∈Θ

∣∣∣Q̂µp(yp|x; θp)−Qµp(yp|x; θp)
∣∣∣ ≥ δ

 ≤ A1 · exp
{
−
√
n · hqn

(
A2 · δ −A3 · hMn

)}
.

(B-5)

For any x such that fX(x) > 0 define

ψFY p (Y pi , Xi, y
p, x;h) =

(1 {Y pi ≤ yp} − FY p(yp|x))

fX(x)
· H (Xi − x;h) ,

ψλp
(
Y −pi , Xi, x, θ

p;h
)

=

(
ηp
(
Y −pi ;x

∣∣θp)− λp(x; θp)
)

fX(x)
· H (Xi − x;h) ,

ψµp (Yi, Xi, y
p, x, θp;h) =

(
1 {Y pi ≤ yp} · ηp

(
Y −pi ;x

∣∣θp)− µp (yp∣∣x; θp
))

fX(x)
· H (Xi − x;h) .

(B-6)

And let

ζ̂FY p (yp, x) =
([
Q̂FY p (yp|x)−QFY p (yp|x)

] [
f̂X(x)− fX(x)

])′
,

ζ̂λp(x, θp) =
([
Q̂λp(x; θp)−Qλp(x; θp)

] [
f̂X(x)− fX(x)

])′
,

ζ̂µp(yp, x, θp) =
([
Q̂µp(yp|x; θp)−Qµp(yp|x; θp)

] [
f̂X(x)− fX(x)

])′
.

Note that (B-5) implies that for any δ > 0,

Pr

(
sup

(x,yp)∈W

∣∣∣ζ̂FY p (yp, x)
∣∣∣ ≥ δ) ≤ Pr( sup

(x,yp)∈W

∣∣∣Q̂FY p (yp|x)−QFY p (yp|x)
∣∣∣ ≥ δ√

2

)

+ Pr

(
sup
x∈X

∣∣∣f̂X(x)− fX(x)
∣∣∣ ≥ δ√

2

)
≤ A1 · exp

{
−
(√

n · hqn
(
A2 ·

δ√
2
−A3 · hMn

))2
}

+A1 · exp

{
−
√
n · hqn

(
A2 ·

δ√
2
−A3 · hMn

)}
≤ 2 ·A1 · exp

{
−
√
n · hqn

(
A2 ·

δ√
2
−A3 · hMn

)}
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Similarly (B-5) yields

Pr

(
sup

x∈X ,θp∈Θ

∣∣∣ζ̂λp(x, θp)
∣∣∣ ≥ δ) ≤ 2 ·A1 · exp

{
−
√
n · hqn

(
A2 ·

δ√
2
−A3 · hMn

)}
,

P r

 sup
(x,yp)∈W
θp∈Θ

∣∣∣ζ̂µp(yp, x, θp)
∣∣∣ ≥ δ

 ≤ 2 ·A1 · exp

{
−
√
n · hqn

(
A2 ·

δ√
2
−A3 · hMn

)}
.

Whenever f̂X(x) > 0 and fX(x) > 0, a second order approximation yields the following results:

F̂Y p(yp|x)− FY p(yp|x) =
1

nhqn

n∑
i=1

ψFY p (Y pi , Xi, y
p, x;hn) + ξFY pn (yp, x),

where ξFY pn (yp, x) =
1

2
ζ̂FY p (yp, x)′

 0 − 1

f̃2
X(x)

− 1

f̃2
X(x)

2Q̃FY p (yp|x)

f̃3
X(x)

 ζ̂FY p (yp, x)

where
(
f̃X(x), Q̃FY p (yp|x)

)
belongs in the line segment connecting

(
f̂X(x), Q̂FY p (yp|x)

)
and(

fX(x), QFY p (yp|x)
)

.

λ̂p(x; θp)− λp(x; θp) =
1

nhqn

n∑
i=1

ψλp
(
Y −pi , Xi, x, θ

p;hn
)

+ ξλ
p

n (x, θp),

where ξλ
p

n (x, θp) =
1

2
ζ̂λp(x, θp)′

 0 − 1
f̆2
X(x)

− 1
f̆2
X(x)

2Q̆λp (x;θp)

f̆3
X(x)

 ζ̂λp(x, θp)

where
(
f̆X(x), Q̆λp(x; θp)

)
belongs in the line segment connecting

(
f̂X(x), Q̂λp(x; θp)

)
and

(
fX(x), Qλp(x; θp)

)
.

µ̂p(yp|x; θp)− µp(yp|x; θp) =
1

nhqn

n∑
i=1

ψµp (Yi, Xi, y
p, x, θp;hn) + ξµ

p

n (yp, x, θp),

where ξµ
p

n (yp, x, θp) =
1

2
ζ̂µp(yp, x, θp)′

 0 − 1
f̈2
X(x)

− 1
f̈2
X(x)

2Q̈µp (yp|x;θp)

f̈3
X(x)

 ζ̂µp(yp, x, θp)

where
(
f̈X(x), Q̈µp(yp|x; θp)

)
belongs in the line segment connecting

(
f̂X(x), Q̂µp(yp|x; θp)

)
and

(
fX(x), Qµp(yp|x; θp)

)
. Let Q be as described in Assumption B1. For any 0 < f∗ < f ,
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define

D(f∗) =

∥∥∥∥∥∥∥
0 − 1

(f∗)
2

− 1

(f∗)
2

3Q

(f∗)
3

∥∥∥∥∥∥∥ . (B-7)

Let 0 < f∗ < f andD(f∗) be as described in (B-7). Combining our previous results, for any δ > 0,

Pr

(
sup

(x,yp)∈W

∣∣ξFY pn (yp, x)
∣∣ ≥ δ) ≤ Pr( sup

(x,yp)∈W

∣∣∣Q̂FY p (yp|x)−QFY p (yp|x)
∣∣∣ ≥ Q)

+ Pr

(
sup
x∈X

∣∣∣f̂X(x)− fX(x)
∣∣∣ ≥ f − f∗)+ Pr

(
sup

(x,yp)∈W

∣∣∣ζ̂FY p (yp, x)
∣∣∣ ≥√ 2δ

D(f∗)

)

≤ 4A1 · exp

{
−
√
n · hqn

(
A2 ·min

{√
δ

D(f∗)
, Q, f − f∗

}
−A3 · hMn

)}
.

And the same bound holds for

Pr

(
sup

x∈X ,θp∈Θ

∣∣∣ξλpn (x, θp)
∣∣∣ ≥ δ) and Pr

 sup
(x,yp)∈W
θp∈Θ

∣∣∣ξµpn (yp, x, θp)
∣∣∣ ≥ δ

 .

Assumption B4 and Lemma 2.14 in Pakes and Pollard (1989) we have that the classes of functions

G1 = {g: g(yp, x) = ψFY p (yp, x, vp, u;h) : (vp, u) ∈ W , h > 0} ,

G2 =
{
g: g(y−p, x) = ψλp

(
y−p, x, u, θp

)
: u ∈ X , θp ∈ Θ, h > 0

}
,

G3 = {g: g(y, x) = ψµp (y, x, vp, u, θp;h) : (vp, u) ∈ W , θp ∈ Θ, h > 0}

are Euclidean with respect to envelopes 2K
f , 2Kηp(·)

f and 2Kηp(·)
f , respectively. The existence of

moments feature of ηp(·) in Assumption B4 and the results in Chapter 7 of Pollard (1990) combined

with the bias conditions in B-4 imply that there exist positive constants A′1, A′2 and A′3 such that for

any δ > 0, the probabilities

Pr

(
sup

(x,yp)∈W

∣∣∣∣∣ 1

nhqn

n∑
i=1

ψFY p (Y pi , Xi, y
p, x;hn)

∣∣∣∣∣ ≥ δ
)
,

P r

(
sup

x∈X ,θp∈Θ

∣∣∣∣∣ 1

nhqn

n∑
i=1

ψλp
(
Y −pi , Xi, x, θ

p;hn
)∣∣∣∣∣ ≥ δ

)
,

P r

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣∣∣ 1

nhqn

n∑
i=1

ψµp (Yi, Xi, y
p, x, θp;hn)

∣∣∣∣∣ ≥ δ
)
,
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are bounded above by

A′1 · exp
{
−
√
n · hqn

(
A′2 · δ −A′3 · hMn

)}
.

Let 0 < f∗ < f and D(f∗) be as described in (B-7). Combining our results, for any δ > 0 we have

Pr

(
sup

(x,yp)∈W

∣∣∣F̂Y p (yp|x)− FY p (yp|x)
∣∣∣ ≥ δ) ≤ Pr(sup

x∈X

∣∣∣f̂X(x)− fX(x)
∣∣∣ ≥ f − f∗)

+ Pr

(
sup

(x,yp)∈W

∣∣∣∣∣ 1

nhqn

n∑
i=1

ψFY p (Y pi , Xi, y
p, x;hn)

∣∣∣∣∣ ≥ δ

2

)

+ Pr

(
sup

(x,yp)∈W

∣∣ξFY pn (yp, x)
∣∣ ≥ δ

2

)
≤ A1 · exp

{
−
(√
n · hqn

(
A2 · (f − f∗)−A3 · hMn

))2}
+A′1 · exp

{
−
√
n · hqn

(
A′2 ·

δ

2
−A′3 · hMn

)}
+ 4A1 · exp

{
−
√
n · hqn

(
A2 ·min

{√
δ

2D
, Q, f − f∗

}
−A3 · hMn

)}

≤ B1 · exp

{
−
√
n · hqn

(
B2 ·min

{
δ

2
,

√
δ

2D
, Q, f − f∗

}
−B3 · hMn

)}

where B1 = 6 · max {A1, A
′
1}, B2 = min {A2, A

′
2} and B3 = max {A3, A

′
3}. The same type of

bound is valid for

Pr

(
sup

x∈X ,θp∈Θ

∣∣∣λ̂p(x; θp)− λp(x; θp)
∣∣∣ ≥ δ) ,

P r

(
sup

(x,yp)∈W,θp∈Θ

|µ̂p(yp|x; θp)− µp(yp|x; θp)| ≥ δ

)
.

The previous results allow us now to turn our attention to τ̂p (yp|x; θp). For h > 0 let

ψτp (Yi, Xi, y
p, x, θp;h)

= λp(x; θp) · ψFY p (Y pi , Xi, y
p, x;h) + FY p(yp|x) · ψλp

(
Y −pi , Xi, x, θ

p;h
)
− ψµp (Yi, Xi, y

p, x, θp;h)

=

[
λp(x; θp) · (1 {Y pi ≤ y

p} − FY p(yp|x)) + FY p(yp|x) · (ηp(Y pi ;x|θp)− λp(x; θp))

− (1 {Y pi ≤ y
p} · ηp(Y pi ;x|θp)− µp(yp|x; θp))

]
· H(Xi − x;h)

fX(x)

(B-8)
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From our previous results we have

τ̂p (yp|x; θp)− τp (yp|x; θp) =
1

nhqn

n∑
i=1

ψτp (Yi, Xi, y
p, x, θp;hn) + ξτ

p

n (yp, x, θp), (B-9)

where

ξτ
p

n (yp, x, θp) = λp(x; θp) · ξFY p (yp, x) + FY p(yp|x) · ξλ
p

(x, θp)− ξµ
p

n (yp, x, θp)

+
(
F̂Y p(yp|x)− FY p(yp|x)

)
·
(
λ̂p(x; θp)− λp(x; θp)

)
.

Let

sup
x∈X ,θp∈Θ

|λp(x; θp)| = λ
p
.

For any δ > 0,

Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣ξτpn (yp, x, θp)
∣∣∣ ≥ δ) ≤ Pr( sup

(x,yp)∈W

∣∣ξFY pn (yp, x)
∣∣ ≥ δ

4λ
p

)

+ Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣ξλpn (x, θp)
∣∣∣ ≥ δ

4

)
+ Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣ξµpn (yp, x, θp)
∣∣∣ ≥ δ

4

)

+ Pr

(
sup

(x,yp)∈W

∣∣∣F̂Y p(yp|x)− FY p(yp|x)
∣∣∣ ≥ √δ

2

)

+ Pr

(
sup

x∈X ,θp∈Θ

∣∣∣λ̂p(x; θp)− λp(x; θp)
∣∣∣ ≥ √δ

2

)

Let 0 < f∗ < f and D(f∗) be as described in (B-7), the previous expression is bounded above by

4A1 exp

{
−
√
nhqn

(
A2 min

{
1

2

√
δ

D(f∗)λ
p , Q, f − f∗

}
−A3 · hMn

)}

+8A1 exp

{
−
√
nhqn

(
A2 min

{
1

2

√
δ

D(f∗)
, Q, f − f∗

}
−A3 · hMn

)}

+2B1 exp

−√nhqn
B2 min

1

2

√
δ,

1

2

δ1/4√
D(f∗)

, Q, f − f∗
−B3h

M
n


Let B = 1

2 ·min

{
1√
Dλ

p
, 1√

D
, 1, 2Q, 2(f − f∗)

}
and define C1 ≡ 4 ·B1, C2 ≡ B2 ·B, C3 ≡ B3.
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We have

Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣ξτpn (yp, x, θp)
∣∣∣ ≥ δ)

≤ C1 exp
{
−
√
nhqn

(
C2 ·min

{
δ1/2, δ1/4, 1

}
− C3 · hMn

)}
By Assumption B4 and Lemma 2.14 in Pakes and Pollard (1989), the class of functions

G4 = {g: g(y, x) = ψτp (y, x, vp, u, θp;h) : (vp, u) ∈ W , θp ∈ Θ, h > 0}

is Euclidean with respect to the envelope 2λ
p
K
f + 4Kηp(·)

f . The existence of moments feature of ηp(·)

in Assumption B4 and the results in Chapter 7 of Pollard (1990) combined with the bias conditions

in B-4 imply that there exist positive constants C ′1, C ′2 and C ′3 such that for any δ > 0,

Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣∣∣ 1

nhqn

n∑
i=1

ψτp (Yi, Xi, y
p, x, θp;hn)

∣∣∣∣∣ ≥ δ
)

≤ C ′1 · exp
{
−
√
n · hqn

(
C ′2 · δ − C ′3 · hMn

)}
.

As before, if we let 0 < f∗ < f be as described in (B-7)

Pr

(
sup

(x,yp)∈W,θp∈Θ

|τ̂p(yp|x; θp)− τp(yp|x; θp)| ≥ δ

)

≤ Pr
(
sup
x∈X

∣∣∣f̂X(x)− fX(x)
∣∣∣ ≥ f − f∗)

+ Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣∣∣ 1

nhqn

n∑
i=1

ψτp (Yi, Xi, y
p, x, θp;hn)

∣∣∣∣∣ ≥ δ

2

)

+ Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣ξτpn (yp, x, θp)
∣∣∣ ≥ δ

2

)
.

From here, putting our results together we have that for any δ > 0,

Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣τ̂p(yp|x; θp)− τp(yp|x; θp)
∣∣∣ ≥ δ)

≤ D1 exp
{
−
√
nhqn

(
D2 ·min

{
δ, δ1/2, δ1/4, 1

}
−D3 · hMn

)}
,

(B-10)

whereD1 = 3·max {A1, C
′
1, C1},D2 = 1

2 ·min
{
C ′2, C2, 2A2(f − f∗)

}
,D3 = max {A3, C3, C

′
3}.
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Our results also imply

τ̂p (yp|x; θp)− τp (yp|x; θp) =
1

nhqn

n∑
i=1

ψτp (Yi, Xi, y
p, x, θp;hn) + ξτ

p

n (yp, x, θp),

where sup
(x,yp)∈W,θp∈Θ

∣∣ξτpn (yp, x, θp)
∣∣ = Op

(
log(n)2

nhqn

)
,

and sup
(x,yp)∈W,θp∈Θ

∣∣∣τ̂p(yp|x; θp)− τp(yp|x; θp)
∣∣∣ = Op

(
log(n)√
nhqn

)
.

(B-11)

Let bn be the sequence used in our construction. For n large enough we have min
{
bn, b

1/2
n , b

1/4
n , 1

}
=

bn and therefore (B-10) yields

Pr

(
sup

(x,yp)∈W,θp∈Θ

∣∣∣τ̂p(yp|x; θp)− τp(yp|x; θp)
∣∣∣ ≥ bn)

≤ D1 exp
{
−
√
nhqn

(
D2 · bn −D3 · hMn

)}
,

(B-12)

This concludes Step 1 of our proof.

Step 2

Here we use the results from Step 1 to show that

T̂ pX (θp) =
1

n

n∑
i=1

τ̂p(Y pi |Xi; θ
p) · 1 {τp(Y pi |Xi; θ

p) ≥ 0} · IX (Xi) + ϕpn(θp),

where sup
θp∈Θ

∣∣ϕpn(θp)
∣∣ = Op

(
n−1/2−ε

)
for some ε > 0.

We begin by noting that we can express

T̂ pX (θp) =
1

n

n∑
i=1

τ̂p(Y pi |Xi; θ
p) · 1 {τp(Y pi |Xi; θ

p) ≥ 0} · IX (Xi) + ϕpn(θp),
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where

|ϕpn(θp)| ≤

∣∣∣∣∣ 1n
n∑
i=1

τ̂p(Y pi |Xi; θ
p) · 1 {−2bn ≤ τp(Y pi |Xi; θ

p) < 0} IX (Xi)

∣∣∣∣∣︸ ︷︷ ︸
≡|ϕp,1n (θp)|

+

∣∣∣∣∣ 2n
n∑
i=1

τ̂p(Y pi |Xi; θ
p) · 1 {|τ̂p(Y pi |Xi; θ

p)− τp(Y pi |Xi; θ
p)| ≥ bn} · IX (Xi)

∣∣∣∣∣︸ ︷︷ ︸
≡|ϕp,2n (θp)|

.

We begin by examining ϕp,2n . Using (B-11), sup
(x,yp)∈W,θp∈Θ

τ̂p(yp|x; θp) = Op(1). Therefore,

sup
θp∈Θ

∣∣ϕp,2n (θp)
∣∣ ≤ Op(1) · sup

θp∈Θ

∣∣∣∣∣ 1n
n∑
i=1

1 {|τ̂p(Y pi |Xi; θ
p)− τp(Y pi |Xi; θ

p)| ≥ bn} · IX (Xi)

∣∣∣∣∣
Take any α > 0 and any ε > 0. Then,

Pr

(
nα · sup

θp∈Θ

∣∣∣∣∣ 1n
n∑
i=1

1 {|τ̂p(Y pi |Xi; θ
p)− τp(Y pi |Xi; θ

p)| ≥ bn} · IX (Xi)

∣∣∣∣∣ > ε

)

≤ Pr
(
1

{
sup
θp∈Θ

|τ̂p(Y pi |Xi; θ
p)− τp(Y pi |Xi; θ

p)| ≥ bn
}
· IX (Xi) 6= 0 for some i = 1, . . . , n

)
≤

n∑
i=1

Pr

(
1

{
sup
θp∈Θ

|τ̂p(Y pi |Xi; θ
p)− τp(Y pi |Xi; θ

p)| ≥ bn
}
· IX (Xi) 6= 0

)

≤ n · Pr

(
sup

(x,yp)∈W,θp∈Θ

|τ̂p(yp|x; θp)− τp(yp|x; θp)| ≥ bn

)

≤ n ·D1 exp

{
−1

2

√
nhqn

(
D2 · bn −D3 · hMn

)}
= D1 exp

{
−1

2

√
nhqn

(
D2 · bn −D3 · hMn

)
+ log(n)

}
−→ 0

Therefore, sup
θp∈Θ

∣∣ϕp,2n (θp)
∣∣ = op (n−α). In particular, the following much weaker (but useful for our

purposes) result holds,

sup
θp∈Θ

∣∣ϕp,2n (θp)
∣∣ = Op

(
n−1/2−ε

)
for some ε > 0.

We move on to ϕp,1n (θp). Note that

τ̂p(Y pi |Xi; θ
p) =

1∑
j=0

(
τp(Y pi |Xi; θ

p)
)1−j · (τ̂p(Y pi |Xi; θ

p)− τp(Y pi |Xi; θ
p)
)j
.
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Therefore,

∣∣ϕp,1
n (θp)

∣∣
≤ 1

n

n∑
i=1

[
1∑

j=0

∣∣τp(Y p
i |Xi; θ

p)
∣∣1−j ·

∣∣τ̂p(Y p
i |Xi; θ

p)− τp(Y p
i |Xi; θ

p)
∣∣j] · 1 {−2bn ≤ τp(Y p

i |Xi; θ
p) < 0} IX (Xi)

≤ 1

n

n∑
i=1

[
1∑

j=0

∣∣2bn∣∣1−j ·
∣∣τ̂p(Y p

i |Xi; θ
p)− τp(Y p

i |Xi; θ
p)
∣∣j] · 1 {−2bn ≤ τp(Y p

i |Xi; θ
p) < 0} IX (Xi).

Using (B-11) we have

sup
(x,yp)∈W,θp∈Θ

∣∣∣∣∣∣
1∑
j=0

∣∣2bn∣∣1−j · ∣∣τ̂p(yp|x; θp)− τp(yp|x; θp)
∣∣j∣∣∣∣∣∣ =

1∑
j=0

O
(
b1−jn

)
·Op

((
log(n)√
nhqn

)j)

= Op (bn) ,

where the last equality follows from the bandwidth convergence restrictions in Assumption B2 since

they imply that log(n)√
n·hqn·bn

−→ 0. Therefore,

sup
θp∈Θ

∣∣ϕp,1n (θp)
∣∣ ≤ Op (bn) · 1

n

n∑
i=1

1 {−2bn ≤ τp(Y pi |Xi; θ
p) < 0} IX (Xi)

For a given b > 0 denote

gp,1i (θp, b) = 1 {−b ≤ τp(Y pi |Xi; θ
p) < 0} · IX (Xi).

And let

νp,1n (θp) =
1

n

n∑
i=1

(
gp,1i (θp, 2bn)− E

[
gp,1i (θp, 2bn)

])
.

Let A and b be the constants described in Assumption B3. For large enough n we have 2bn ≤ b and

therefore we can express

1

n

n∑
i=1

1 {−2bn ≤ τp(Y pi |Xi; θ
p) < 0} · IX (Xi) = νp,1n (θp) + ξp,1n (θp),

where

sup
θp∈Θ

∣∣ξp,1n (θp)
∣∣ = 2Abn = O (bn) and sup

θp∈Θ
V ar (1 {−2bn ≤ τp(Y pi |Xi; θ

p) < 0} · IX (Xi)) = O(bn).
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by Assumption B3. Using part (ii) of Assumption B4(ii),

sup
θp∈Θ

∣∣νp,1n (θp)
∣∣ = Op

(√
bn
n

)
= Op (bn) .

Combining these results, we have

sup
θp∈Θ

∣∣∣∣∣ 1n
n∑
i=1

1 {−2bn ≤ τp(Y pi |Xi; θ
p) < 0} · IX (Xi)

∣∣∣∣∣ = Op (bn) .

And therefore

sup
θp∈Θ

∣∣ϕp,1n (θp)
∣∣ ≤ O(bn)×Op (bn) = Op

(
b2n
)

= Op

(
n−1/2−ε

)
for some ε > 0.

Where the last line follows from the bandwidth convergence restrictions in Assumption B2. Com-

bining the results for ϕp,1n and ϕp,2n ,

T̂ pX (θp) =
1

n

n∑
i=1

τ̂p(Y pi |Xi; θ
p) · 1 {τp(Y pi |Xi; θ

p) ≥ 0} · IX (Xi) + ϕpn(θp),

where sup
θp∈Θ

∣∣ϕpn(θp)
∣∣ = Op

(
n−1/2−ε

)
for some ε > 0.

(B-13)

Step 3

This is the last step in the proof. We take the results from Step 2 to show that

1

n

n∑
i=1

(τ̂p(Y pi |Xi; θ
p)− τp(Y pi |Xi; θ

p)) · 1 {τp(Y pi |Xi; θ
p) ≥ 0} · IX (Xi)

=
1

n2

∑
j 6=i

n∑
i=1

gτp (Xi, Yi, Xj , Yj ; θ
p, hn) + %p,1n (θp),

where sup
θp∈Θ

∣∣%p,1n (θp)
∣∣ = Op

(
n−1/2−ε

)
for some ε > 0.
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We then examine the Hoeffding decomposition of the U-statistic described above and, using our

assumptions, we obtain the result in Theorem 2. We have

1

n

n∑
i=1

τ̂p(Y pi |Xi; θ
p) · 1 {τp(Y pi |Xi; θ

p) ≥ 0} · IX (Xi) =

1

n

n∑
i=1

max {τp(Y pi |Xi; θ
p), 0} · IX (Xi)

+
1

n

n∑
i=1

(τ̂p(Y pi |Xi; θ
p)− τp(Y pi |Xi; θ

p)) · 1 {τp(Y pi |Xi; θ
p) ≥ 0} · IX (Xi)

(B-14)

Let ψτp be as defined in (B-8). For any pair of observations i, j in 1, . . . , n and h > 0 let

gτp (Xi, Yi, Xj , Yj ; θ
p, h) =

1

hq
· ψτp (Yj , Xj , Y

p
i , Xi, θ

p;h) · 1 {τp(Y pi |Xi; θ
p) ≥ 0} · IX (Xi).

(B-15)

Note that

sup
θp∈Θ

∣∣∣∣∣ 1

n2

n∑
i=1

gτp (Xi, Yi, Xi, Yi; θ
p, hn)

∣∣∣∣∣ = Op

(
1

nhqn

)
= Op

(
n−1/2−ε

)
for some ε > 0.

Combined with (B-11), this yields

1

n

n∑
i=1

(τ̂p(Y pi |Xi; θ
p)− τp(Y pi |Xi; θ

p)) · 1 {τp(Y pi |Xi; θ
p) ≥ 0} · IX (Xi)

=
1

n2

∑
j 6=i

n∑
i=1

gτp (Xi, Yi, Xj , Yj ; θ
p, hn) + %p,1n (θp),

where sup
θp∈Θ

∣∣%p,1n (θp)
∣∣ = Op

(
log(n)2

nhqn

)
+Op

(
1

nhqn

)
= Op

(
n−1/2−ε

)
for some ε > 0.

(B-16)

We will examine the U-statistic in (B-16). Using (B-8) we can express

gτp (Xi, Yi, Xj , Yj ; θ
p, h) = gaτp (Xi, Yi, Xj , Yj ; θ

p, h)+gbτp (Xi, Yi, Xj , Yj ; θ
p, h)+gcτp (Xi, Yi, Xj , Yj ; θ

p, h) ,
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where

gaτp (Xi, Yi, Xj , Yj ; θ
p, h) =

1

hq
· λp(Xi; θ

p) ·
(
1
{
Y pj ≤ Y

p
i

}
− FY p(Y pi |Xi)

)
· 1 {τp(Y pi |Xi; θ

p) ≥ 0} · IX (Xi) ·
H(Xj −Xi;h)

fX(Xi)
,

gbτp (Xi, Yi, Xj , Yj ; θ
p, h) =

1

hq
· FY p(Y pi |Xi) ·

(
ηp(Y −pj ;Xi|θp)− λp(Xi; θ

p)
)
· 1 {τp(Y pi |Xi; θ

p) ≥ 0} · IX (Xi) ·
H(Xj −Xi;h)

fX(Xi)
,

gcτp (Xi, Yi, Xj , Yj ; θ
p, h) =

1

hq
·
(
1
{
Y pj ≤ Y

p
i

}
· ηp(Y −pj ;Xi|θp)− µp(Y pi |Xi; θ

p)
)
· 1 {τp(Y pi |Xi; θ

p) ≥ 0} · IX (Xi) ·
H(Xj −Xi;h)

fX(Xi)
,

Let γIp , γIIp and γIIIp be as defined in Assumption B1. By the smoothness conditions in Assumption

B1, there exists a C <∞ such that

sup
(x,y)∈W,θp∈Θ

|E [gaτp (x, y,X, Y ; θp, h)]| ≤ C · hM ,

sup
(x,y)∈W,θp∈Θ

∣∣E [gbτp (x, y,X, Y ; θp, h)
]∣∣ ≤ C · hM ,

sup
(x,y)∈W,θp∈Θ

|E [gcτp (x, y,X, Y ; θp, h)]| ≤ C · hM .

And

E [gaτp (X,Y, x, y; θp, h)] =
(
γIp(yp, x; θp)− γIIp (x; θp)

)
· IX (x) + ςap (y, x; θp, h),

E
[
gbτp (X,Y, x, y; θp, h)

]
=
(
ηp(y−p;x|θp)− λp(x; θp)

)
· γIIp (x; θp) · IX (x) + ςbp(y, x; θp, h),

E [gcτp (X,Y, x, y; θp, h)] =
(
γIp(yp, x; θp) · ηp(y−p;x|θp)− γIIIp (x; θp)

)
· IX (x) + ςcp(y, x; θp, h),

where
sup

(x,y)∈W,θp∈Θ

∣∣ςap (y, x; θp, h)
∣∣ ≤ C · hM ,

sup
(x,y)∈W,θp∈Θ

∣∣ςbp(y, x; θp, h)
∣∣ ≤ C · hM ,

sup
(x,y)∈W,θp∈Θ

∣∣ςcp(y, x; θp, h)
∣∣ ≤ C · hM ,

In particular, this implies that

sup
θp∈Θ

∣∣∣E [gτp (Xi, Yi, Xj , Yj ; θ
p, hn)

∣∣Xi, Yi
]∣∣∣ ≤ C · hMn ,
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and if we define

ψpU (Y,X; θp) =[(
γIp(Y p, X; θp)− γIIp (X; θp)

)
· λp(X; θp) +

(
ηp(Y −p;X|θp)− λp(X; θp)

)
· γIIp (X; θp)

+
(
γIp(Y p, X; θp) · ηp(Y −p;X|θp)− γIIIp (X; θp)

)]
· IX (X),

(B-17)

then

E
[
gτp (Xi, Yi, Xj , Yj ; θ

p, hn)
∣∣Xj , Yj

]
= ψpU (Yj , Xj ; θ

p) + ςp,n(θp), where sup
θp∈Θ

∣∣ςp,n(θp)
∣∣ = Op

(
hMn
)

Combining Assumptions B1, B2 and B4 we can show that the class of functions

F = {f :W ×W → R : f(x1, y1, x2, y2) = gτp(x1, y1, x2, y2; θp, h) for some θp ∈ Θ and some h > 0}

is Euclidean with respect to an envelope with finite second moment. Combining this with our previ-

ous results, a Hoeffding decomposition (Serfling (1980)) and Corollary 4 in Sherman (1994) imply

that (B-16) can be expressed as

1

n

n∑
i=1

(τ̂p(Y pi |Xi; θ
p)− τp(Y pi |Xi; θ

p)) · 1 {τp(Y pi |Xi; θ
p) ≥ 0} · IX (Xi) =

1

n

n∑
i=1

ψpU (Yi, Xi; θ
p) + ϑp,n(θp),

where

sup
θp∈Θ

∣∣ϑp,n(θp)
∣∣ = Op

(
log(n)2

nhqn

)
+Op

(
1

nhqn

)
+Op

(
hMn
)

= Op

(
n−1/2−ε

)
for some ε > 0,

where the last line follows from our bandwidth convergence conditions. Going back to (B-13) and

(B-14) we obtain

T̂ pX (θp) = T pX (θp) +
1

n

n∑
i=1

ψp(Yi, Xi; θ
p) + εp,n(θp),

where ψp(Yi, Xi; θ
p) = (max {τp(Y pi |Xi; θ

p), 0} · IX (Xi)− T pX (θp)) + ψpU (Yi, Xi; θ
p),

and sup
θp∈Θ

∣∣εp,n(θp)
∣∣ = Op

(
n−1/2−ε

)
for some ε > 0.

(B-18)

This concludes Step 3 and finishes the proof of Theorem 2.
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B.4.2 Two key properties of ψpψpψp

The “influence function” ψp has two key properties:

(i) E [ψp(Yi, Xi; θ
p)] = 0 ∀ θp ∈ Θ.

(ii) ψp(Yi, Xi; θ
p) = 0 ∀ θp : τp(Y p|X; θp) < 0 w.p.1.

Part (ii) is obvious by inspection. To see why (i) is true we can show how it holds for each one of

the summands that comprise ψp. Note first that by definition,

E [max {τp(Y pi |Xi; θ
p), 0} · IX (X)− T pX (θp)] = 0.

We will show how each of the three summands that comprise ψpU has mean zero. We begin with the

first term. Exchanging the order of integration, we have

E
[(
γI
p(Y

p
i , Xi; θ

p)− γII
p (Xi; θ

p)
)
· λp(Xi; θ

p) · IX (Xi)
]

= EXi

[
EYj |Xj

[
EYi|Xi

[(
1
{
Y p
i ≤ Y

p
j

}
− FY p(Y

p
j |Xi)

) ∣∣Xi, Yj , Xj

]
· 1
{
τp(Y p

j |Xi; θ
p) ≥ 0

} ∣∣Xj = Xi, Xi

]
× λp(Xi; θ

p) · IX (Xi)

]
= EXi

[
EYj |Xj

[
EYi|Xi

[(
FY p(Y

p
j |Xi)− FY p(Y

p
j |Xi)

) ∣∣Xi, Yj , Xj

]
· 1
{
τp(Y p

j |Xi; θ
p) ≥ 0

} ∣∣Xj = Xi, Xi

]
× λp(Xi; θ

p) · IX (Xi)

]
= 0

For the second term we have

E
[(
ηp(Y −pi ;Xi|θp)− λp(Xi; θ

p)
)
· γIIp (Xi; θ

p) · IX (Xi)
]

= EXi
[
(λp(Xi; θ

p)− λp(Xi; θ
p)) · γIIp (Xi; θ

p) · IX (Xi)
]

= 0,

where we simply used the fact that λp(Xi; θ
p) = EY −p|X

[
ηp(Y −pi ;Xi|θp)

∣∣Xi

]
. For the third term,

exchanging the order of integration we have

E
[(
γI
p(Y

p
i , Xi; θ

p) · ηp(Y −p
i ;Xi|θp)− γIII

p (Xi; θ
p)
)
· IX (Xi)

]
= EXi

[
EYj |Xj

[
EYi|Xi

[(
1
{
Y p
i ≤ Y

p
j

}
· ηp(Y −p

i ;Xi|θp)− µp(Yj |Xi; θ
p)
) ∣∣Xi, Yj , Xj

]
× 1

{
τp(Y p

j |Xi; θ
p) ≥ 0

} ∣∣∣Xj = Xi, Xi

]
× IX (Xi)

]
= EXi

[
EYj |Xj

[
(µp(Yj |Xi; θ

p)− µp(Yj |Xi; θ
p))× 1

{
τp(Y p

j |Xi; θ
p) ≥ 0

} ∣∣∣Xj = Xi, Xi

]
× IX (Xi)

]
= 0
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Combining these results we have E [ψp(Yi, Xi; θ
p)] = 0 ∀ θp ∈ Θ, as claimed.

B.5 Constructing a confidence set

Let κn denote any sequence of positive numbers such that κn → 0 and nεκn → ∞ for any ε > 0.

For each θ ∈ Θ define tn(θ) =
√
n·T̂X (θ)

max{κn,σ(θ)} . By Theorem 2 and (B-3),

tn(θ) =

√
n · TX (θ)

max {κn, σ(θ)}
+

1√
n

n∑
i=1

ψ(Yi, Xi; θ)

max {κn, σ(θ)}
+ ςn(θ).

By Theorem 2 and (B-3), sup
θ∈Θ
|ςn(θ)| = op(1) since

sup
θ∈Θ
|ςn(θ)| = sup

θ∈Θ

∣∣∣∣ √
n · εn(θ)

max {κn, σ(θ)}

∣∣∣∣ = Op

(
1

nε · κn

)
for some ε > 0,

and nεκn →∞ for any ε > 0. Let

Θ
I

X = {θ ∈ Θ : τp(Y p|X; θp) < 0 w.p.1. ∀ p = 1, . . . , P.}

Θ
I

X is the collection of parameter values that satisfy our inequalities as strict inequalities w.p.1 over

our inference range. Inspecting the terms that comprise ψ(Yi, Xi; θ), we can see that ψ(Yi, Xi; θ) =

0 w.p.1 ∀ θ ∈ Θ
I

X . On the other hand, inspecting the terms that comprise ψpU (Y,X; θp) we can

verify that P (ψpU (Y,X; θp) 6= 0) > 0 for any θ ∈ ΘI
X \Θ

I

X and therefore σ2(θ) > 0 for any such

θ. Therefore,

(i) If θ ∈ Θ \ΘI
X , then TX (θ) > 0 and therefore tn(θ)→ +∞ w.p.1.

(ii) If θ ∈ Θ
I

X , then tn(θ) = op(1).

(iii) If θ ∈ ΘI
X \Θ

I

X , then tn(θ)
d−→ N (0, 1).
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tn(θ) is unfeasible because σ2(θ) is unknown. However it can be estimated, we use t̂n(θ) =
√
nT̂X (θ)

max{κn,σ̂(θ)} , where

ψ̂pU (Yi, Xi; θ
p) =

1

(n− 1)

∑
j 6=i

ĝτp (Xj , Yj , Xi, Yi; θ
p, hn) ,

ψ̂p(Yi, Xi; θ
p) = τ̂p (Y pi |Xi; θ

p) · 1 {τ̂p (Y pi |Xi; θ
p) ≥ −bn} · IX (Xi)− T̂ pX (θp) + ψ̂pU (Yi, Xi; θ

p) ,

σ̂2(θ) =
1

n

n∑
i=1

ψ̂(Yi, Xi; θ)
2.

(B-19)

gτp is as described in (B-15). Under our assumptions we have σ̂2(θ)
p−→ σ2(θ) for each θ ∈ Θ.

Confidence set and pointwise asymptotic properties

For a desired coverage probability 1− α, our confidence set (CS) for θ0 is of the form

CSn (1− α) =
{
θ ∈ Θ: t̂n(θ) ≤ c1−α

}
, (B-20)

where c1−α is the Standard Normal critical value for 1− α. By the features outlined above our CS

will have correct pointwise coverage properties. Namely,

inf
θ∈Θ:θ=θ0

lim inf
n→∞

P (θ ∈ CSn(1− α)) ≥ 1− α

And if ΘI
X \Θ

I

X 6= ∅, then

inf
θ∈Θ:θ=θ0

lim inf
n→∞

P (θ ∈ CSn(1− α)) = 1− α

Our CS will also satisfy

lim
n→∞

P (θ ∈ CSn(1− α)) = 0 ∀ θ ∈ Θ \ΘI
X .

By the design of our CS, its pointwise properties have the potential to hold uniformly (i.e, over

sequences of parameter values and distributions) under appropriate assumptions about the underly-

ing space of distributions. We describe those assumptions next and we characterize the asymptotic

properties that would follow from them.
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B.6 Analysis of uniform properties of our CS

Let us generalize our basic setup and assume that
{(

(Y pi )
P
p=1 , Xi

)
: 1 ≤ i ≤ n, n ≥ 1

}
is a tri-

angular array, row-wise iid with distribution Fn ∈ F . For a given F ∈ F we will now index all

the objects that depend on the distribution of the data by F . Thus, we will denote ψ(Y,X; θ, F ),

σ2(θ, F ), ΘI
X (F ), Θ

I

X (F ), and so on. We assume the following conditions about F .

Assumption B5. The space of distributions F has common support and satisfies PF (X ∈ X ) ≥

p > 0 for all F ∈ F . In addition:

(i) The conditions in Assumptions B1, B3 and B4 are satisfied by every F ∈ F .

(ii) For some δ > 0 and b ≤ ∞,

sup
θ∈Θ\ΘIX (F )

F∈F

EF

[∣∣ψ(Y,X; θ, F )
∣∣2+δ

σ2+δ(θ, F )

]
≤ b

B.6.1 Coverage properties

Part (i) of Assumption B5 is meant to ensure that the linear representation in (B-3) holds uniformly

over F . Part (ii) is sufficient to ensure the Lindeberg condition,

lim
λ→∞

sup
θ∈Θ\ΘIX (F )

F∈F

EF

[∣∣ψ(Y,X; θ, F )
∣∣2

σ2(θ, F )
· 1

{∣∣ψ(Y,X; θ, F )
∣∣

σ(θ, F )
> λ

}]
= 0.

To see why, note that for any λ̃ > 0 and δ > 0, λ̃δ · ψ(Y,X; θ, F )2 · 1
{∣∣ψ(Y,X; θ, F )

∣∣ > λ̃
}
≤

∣∣ψ(Y,X; θ, F )
∣∣2+δ

. ThereforeE
[
ψ(Y,X; θ, F )2 · 1

{∣∣ψ(Y,X; θ, F )
∣∣ > λ̃

}]
≤

E

[∣∣ψ(Y,X;θ,F )
∣∣2+δ

]
λ̃δ

.

The Lindeberg condition follows by using the δ described in Assumption B5, letting λ̃ = σ(θ, F )

and dividing both sides of the inequality by σ2(θ, F ). Combined with the kernel and bandwidth con-

ditions in Assumption B2, part (i) and the Lindeberg condition implied by part (ii) of Assumption

B5 imply that for any sequence (Fn, θn) such that Fn ∈ F and θn ∈ ΘI
X (Fn) \Θ

I

X (Fn),

√
n · T̂X (θn)

σ(θn, Fn)

d−→ N (0, 1).
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And for any sequence (Fn, θn) such that Fn ∈ F and θn ∈ Θ
I

X (Fn),

√
n · T̂X (θn)

max {κn, σ(θn, Fn)}
p−→ 0.

Let tn(θ) =
√
nT̂X (θ)

max{κn,σ(θ,Fn)} denote the unfeasible test-statistic that uses σ(θ, Fn) instead of σ̂(θ).

Combined, parts (i) and (ii) of Assumption B5 would yield

lim inf
n→∞

inf
θ∈Θ:θ=θ0
F∈F

PF (tn(θ) ≤ c1−α) ≥ 1− α, (B-21)

with

lim inf
n→∞

inf
θ∈Θ:θ=θ0
F∈F

PF (tn(θ) ≤ c1−α) = 1− α if ΘI
X (F ) \Θ

I

X (F ) 6= ∅ for some F ∈ F .

Of course, our CS is based on t̂n(θ) =
√
nT̂X (θ)

max{κn,σ̂(θ)} , where σ̂2(θ) is estimated as described in

(B-19). We need to endow F with conditions that ensure that the necessary Laws of Large Numbers

for triangular arrays hold in a way that ensures that
∣∣σ̂2(θn) − σ2(θn, Fn)

∣∣ p−→ 0 over sequences

(Fn, θn) ∈ F ×Θ. For this we can look at the type of sufficient conditions found in Romano (2004,

Lemma 2). To this end we impose the following conditions.

Assumption B6. Let ψFY p , ψλp , ψµp and ψτp and gτp be as described in (B-6), (B-8) and (B-15).
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Then, for some δ > 0 and b <∞ the following holds for each p = 1, . . . , P ,

sup
F∈F

(yp,x)∈W
h>0

EF

[∣∣∣∣ 1

hq
ψFY p (Y pi , Xi, y

p, x;h, F )− E
[

1

hq
ψFY p (Y pi , Xi, y

p, x;h, F )

]∣∣∣∣1+δ
]
≤ b,

sup
F∈F
x∈X
θp∈Θ
h>0

EF

[∣∣∣∣ 1

hq
ψλp

(
Y −pi , Xi, x, θ

p;h
)
− E

[
1

hq
ψλp

(
Y −pi , Xi, x, θ

p;h
)]∣∣∣∣1+δ

]
≤ b,

sup
F∈F

(yp,x)∈W
θp∈Θ
h>0

EF

[∣∣∣∣ 1

hq
ψµp (Yi, Xi, y

p, x, θp;h)− E
[

1

hq
ψµp (Yi, Xi, y

p, x, θp;h)

]∣∣∣∣1+δ
]
≤ b,

sup
F∈F

(yp,x)∈W
θp∈Θ
h>0

EF

[∣∣∣∣ 1

hq
ψτp(Y,X, yp, x, θp;h, F )− E

[
1

hq
ψτp(Y,X, yp, x, θp;h, F )

]∣∣∣∣1+δ
]
≤ b,

sup
F∈F

(y,x)∈W
θp∈Θ
h>0

EF

[∣∣∣gτp(Y,X, x, y; θp, h, F )− E [gτp(Y,X, x, y; θp, h, F )]
∣∣∣1+δ

]
≤ b,

Assumption B6 is sufficient to satisfy the conditions for the Law of Large Numbers for triangular

arrays in Romano (2004, Lemma 2). Combined with Assumption B5, the smoothness conditions in

Assumption B1 and the linear representation in (B-9), Assumption B6 and Romano (2004, Lemma

2) can be used to show that for any sequence (Fn, θn) ∈ F ×Θ,

∣∣σ̂2(θn)− σ2(θn, Fn)
∣∣ p−→ 0.

Combining Assumptions B5 and B6, our confidence sets would inherit the coverage properties in

(B-21). Namely,

lim inf
n→∞

inf
θ∈Θ:θ=θ0
F∈F

PF (θ ∈ CSn(1− α)) ≥ 1− α,

with

lim inf
n→∞

inf
θ∈Θ:θ=θ0
F∈F

PF (θ ∈ CSn(1− α)) = 1− α if ΘI
X (F ) \Θ

I

X (F ) 6= ∅ for some F ∈ F .
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B.6.2 Power properties

The linear representation in (B-3) facilitates the study of the power features of our procedure. Take

a sequence (Fn, θn) such that Fn ∈ F and θn ∈ Θ \ΘI
X (Fn). By Assumption B5(ii), for any c we

have

lim
n→∞

PFn

(
1√
n

n∑
i=1

ψ(Yi, Xi; θn, Fn)

σ(θn, Fn)
> c

)
= 1− Φ(c).

The key to the power properties of our test over such a sequence is the behavior of σ2(θn, Fn) =

V arFn (ψ(Y,X; θn, Fn)). Recall that TX (θn, Fn) =
∑P
p=1E [max {τp(Y p|X; θpn, Fn), 0} · IX (X)].

By Assumption B5, limn→∞ PFn(X ∈ X ) ≥ p > 0 for any sequence Fn ∈ F . Therefore we

will have TX (θn, Fn) −→ 0 if and only if PFn (τp(Y p|X; θn, Fn) > 0|X ∈ X ) −→ 0 for each

p = 1, . . . , P . If we inspect the structure of ψ(Y,X; θn, Fn) we will see that the key will be the

behavior of the sequence

PFn
(
τp(Y p|X; θn, Fn) = 0 for some p = 1, . . . , P

∣∣X ∈ X ) ≡ ∆X (θn, Fn).

∆X (θn, Fn) is the probability that the inequalities are binding for some p over our inference range.

We have the following:

(i) If TX (θn, Fn)→ 0 and ∆X (θn, Fn)→ 0, then σ(θn, Fn)→ 0.

(ii) If TX (θn, Fn)→ 0 but ∆X (θn, Fn) 9 0, then σ(θn, Fn) 9 0.

(iii) If TX (θn, Fn) 9 0, then σ(θn, Fn) 9 0.

The asymptotic power of our approach will be determined by the behavior of the following two

sequences,

s1,n(θn, Fn) =
max {κn, σ(θn, Fn)}

σ(θn, Fn)
, and s2,n(θn, Fn) =

√
n · TX (θn, Fn)

max {κn, σ(θn, Fn)}

Suppose s1,n(θn, Fn)→ s1 and s2,n(θn, Fn)→ s2. Note that s1 ≥ 1 by construction. If Assump-

tions B5 and B6 hold, the conditions in Romano (2004, Theorem 5) are satisfied and we can use this

to show that

lim
n→∞

PFn
(
t̂(θn) > c1−α

)
= 1− Φ (s1 · (c1−α − s2)) .

From here we conclude that our procedure will have asymptotic power of 1 if either:
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(a) s2 = ∞: This includes as a special case any sequence such that TX (θn, Fn) = O (n−α)

for some α < 1/2. In this case we would have s2,n(θn, Fn) = O
(
n1/2−α

κn

)
→ ∞ by the

convergence restrictions of κn.

(b) s1 = ∞ and s2 > c1−α: Firstly, our discussion above implies that s1 = ∞ can occur only

if ∆X (θn, Fn) → 0 and TX (θn, Fn) → 0. The additional condition s2 > c1−α forbids

TX (θn, Fn) from converging to zero “too fast”.

Part (a) shows that our procedure will have asymptotic power of 1 whenever TX (θn, Fn) = O (n−α)

for some α < 1/2. Suppose TX (θn, Fn) = O (n−α) for some α > 1/2. Then we will have s2 = 0

by the bandwidth convergence restrictions of κn. In this case our approach will have asymptotic

power of zero if s1 = ∞ (i.e, if σ(θn, Fn)/κn → 0). On the other hand if σ(θn, Fn)/κn → ∞

then the asymptotic power will be α. This will be the case, for example, for any sequence such that

TX (θn, Fn) = O (n−α) for some α > 1/2 but limn→∞∆X (θn, Fn) > 0. On the other hand, our

asymptotic power would be zero if limn→∞∆X (θn, Fn) = 0. If σ(θn, Fn) ∝ κn, the power will be

bounded between zero and α. Finally, suppose TX (θn, Fn) = O
(
n−1/2

)
. Our procedure will have

asymptotic power of 1 for any such sequence as long as limn→∞∆X (θn, Fn) = 0, as this would

yield s2 = ∞. If limn→∞∆X (θn, Fn) 6= 0, then s2 < ∞. In this case our asymptotic power will

be 1 if s2 > c1−α but it will be zero if s2 < c1−α. Thus, our asymptotic power for any sequence

TX (θn, Fn) = O
(
n−1/2

)
will be determined by the limit of the sequence ∆X (θn, Fn). Note that

–as one should expect– choosing the maximum rate of convergence for κn that is consistent with

our assumptions is beneficial for power. Given our bandwidth convergence restrictions, this rate

is κn ∝ log(n). Our analysis shows the power advantages of our approach vis-a-vis using a test-

statistic based on a least-favorable configuration, as this would be based on normalizing our test

statistic by a standard deviation that does not converge to zero when TX (θn, Fn)→ 0.

B.7 Kernels and bandwidths used in our empirical application

Our covariate vector X includes q = 8 continuous random variables. The smallest kernel order M

compatible with Assumption B2 is M = 2 · q + 1 = 17. We employed a multiplicative kernel

K (ψ1, . . . , ψ8) = k(ψ1) · k(ψ2) · · · k(ψ8), where each k(·) is a bias-reducing Biweight-type kernel

of order M = 18 of the form,

k(u) =

9∑
j=1

cj ·
(
1− u2

)2j · 1{|u| ≤ s},
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where c1, . . . , c5 were chosen to satisfy the restriction of a bias-reducing kernel of order 18. As in

Aradillas-López, Gandhi, and Quint (2013) we set s = 30. Following the guidelines in Assumption

B2 we employed a bandwidth of the form hn = c · σ̂(X) · n−αh (note that each X has its own

bandwidth), where αh = 1
2M + ε and ε = 10−5. As a guidance to select the constant ‘c’ we

used the “rule of thumb” formula (Silverman (1986)), using the Normal distribution as the reference

distribution. We set

c = 2 ·

(
π1/2 (M !)

3 ·Rk
(2M) · (2M)! ·

(
k2
M

)) 1
2M+1

, where Rk =

∫ 1

−1

k2(u)du, k
M

=

∫ 1

−1

uMk(u)du.

This yielded c ≈ 0.2 and therefore hn ≈ 0.16 · σ̂(X) (for our sample size n = 954). Let Ω =

max
θ∈Θ

∣∣σ̂(θ)
∣∣. We used bn = cb · Ω · n−αb where αb = 1

4 + ε and κn = cκ · Ω · log(n)−1 with

cb = 10−6 and cκ = 10−8. We chose these tuning parameters proportional to Ω to ensure our

procedure is scale-invariant. These bandwidth choices satisfy Assumption B2. For our sample size

n = 954 this resulted in bn ≈ 10−5 and κn ≈ 10−7. The inference range used was

X =
{
x : f̂X(x) ≥ f̂ (0.15)

X , POP < 5 Million
}
,

where f̂ (0.15)
X denotes the estimated 15th percentile of the density f̂X . Our main findings were

qualitatively robust to moderate changes in these tuning parameters. Our results were qualitatively

robust to moderate changes in the constants c, cb, cκ, αh and αb used to construct our bandwidths.
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