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This paper discusses experimental design for the case that (i) we are given a dis-

tribution of covariates from a pre-selected random sample, and (ii) we are interested

in the average treatment effect (ATE) of some binary treatment. We show that in

general there is a unique optimal non-random treatment assignment if there are con-

tinuous covariates. We argue that experimenters should choose this assignment. The

optimal assignment minimizes the risk (e.g., expected squared error) of treatment ef-

fects estimators. We provide explicit expressions for the risk, and discuss algorithms

which minimize it.

The objective of controlled trials is to have treatment groups which are similar

a priori (balanced), so we can “compare apples with apples.” The expressions for

risk derived in this paper provide an operationalization of the notion of balance.

The intuition for our non-randomization result is similar to the reasons for not using

randomized estimators - adding noise can never decrease risk.

The formal setup we consider is decision-theoretic and nonparametric. In simula-

tions and an application to project STAR we find that optimal designs have mean

squared errors of up to 20% less than randomized designs and up to 14% less than

stratified designs.
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1. INTRODUCTION

Economists conducting field experiments are often confronted with variants of

the following situation (cf. Duflo, Glennerster and Kremer, 2007; List and Rasul,

2011). They have selected a random sample from some population and have

conducted a baseline survey for the individuals in this sample. Then a discrete

treatment is assigned to the individuals in this sample, usually based on some

randomization scheme. Finally, outcomes are realized, and the data are used to

perform inference on some average treatment effect.

A key question that experimenters have to decide on is how to use covariates

from the baseline survey in the assignment of treatments. Intuition and the lit-

erature suggest to us stratified randomization conditional on covariates.1 We

analyze this situation as a decision problem. The experimenting economist has

to choose a treatment assignment vector and an estimator, given knowledge of

the covariate distribution in the sample. Her objective is to minimize risk based

on a loss function such as the mean squared error of a point estimator. The de-

cision criteria considered are Bayesian average risk and conditional minimax risk.

We show, first, that experimenters should not randomize in general. While sur-

prising at first, the basic intuition for this result is simple. The conditional ex-

pected loss of an estimator is a function of the matrix of covariates and of the

treatment assignment vector. The treatment assignment vector that minimizes

conditional expected loss is generically unique if there are continuous covariates,

so that a deterministic assignment strictly dominates all randomized assign-

ments.2

The recommendation not to randomize raises the question of identification. We

show that conditional independence of treatment and potential outcomes given

covariates still holds for the deterministic assignments considered, under the

usual assumptions of independent sampling and stable unit treatment values.

1Duflo, Glennerster and Kremer (2007, section 4.5) state, for instance, “if several binary
variables are available for stratification, it is a good idea to use all of them. [...] When one or
several of the possible stratification variables are continuous [...] it will be necessary to make
choices about which variables to use for stratification [...] taking into consideration the extent
to which the candidate stratification variables are likely to explain the outcome variable.”

2If experimenters have a preference for randomization for reasons outside the decision prob-
lem considered in the present paper, a reasonable variant of the procedure suggested here would
be to randomize among a set of assignments which are “near-minimizers” of risk. If we are wor-
ried about manipulation of covariates, in particular, a final coin-flip which possibly switches
treatment and control groups might be helpful. I thank Michael Kremer for this suggestion.
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Conditional independence only requires a controlled trial (CT), not a randomized

controlled trial (RCT).

We next propose a general class of nonparametric priors for the conditional ex-

pectation of potential outcomes given covariates. If our objective is to minimize

the expected squared error between our estimator and the average treatment

effect (ATE), and if we restrict attention to linear estimators, then the optimal

estimator is given by the posterior best linear predictor for the ATE. This esti-

mator only uses the first two moments of the prior, and expected loss is given by

the posterior variance. We also consider the case where the experimenter is com-

mitted to using simple comparison-of-means estimators when analyzing the data,

yet is willing to use prior information for assigning treatment to minimize the

mean squared error of such estimators. When covariates are discrete, stratified

randomization emerges as a special case of the proposed optimal designs.

In an appendix, we discuss how to pick the prior moments, and how to make the

prior non-informative about treatment effects, while imposing the smoothness

required to extrapolate to counterfactual outcomes. Based on this discussion, we

suggest a particular prior that leaves few free parameters to be chosen by the

experimenter, and which allows for an automated procedure to choose a treat-

ment assignment minimizing expected loss. MATLAB code which implements

the derived risk functions, as well as discrete optimization algorithms to find

optimal designs, is available from the author’s homepage. Given specification of

some prior parameters, this code takes a matrix of covariates as its input and

provides a treatment assignment as output.

To gain some intuition for our non-randomization result, note that in the absence

of covariates the purpose of randomization is to pick treatment- and control-

groups which are similar before they are exposed to different treatments. For-

mally, we would like to pick groups which have the same (sample) distribution

of potential outcomes. Even with covariates observed prior to treatment assign-

ment, it is not possible to make these groups identical in terms of potential out-

comes. We can, however, make them as similar as possible in terms of covariates.

Allowing for randomness in the treatment assignment to generate imbalanced

distributions of covariates can only hurt the balance of the distribution of po-

tential outcomes. The analogy to estimation might also be useful to understand

our non-randomization result. Adding random (mean 0) noise to an estimator
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does not introduce any bias. But it is never going to reduce the mean squared

error of the estimator.

The purpose of discussing tractable non-parametric priors - and one of the main

contributions of this paper - is to operationalize the notion of “balance.” In gen-

eral, it will not be possible to obtain exactly identical distributions of covariates

in the treatment- and control-group. When picking an assignment, we have to

trade off balance across various dimensions of the joint distribution of covari-

ates. Picking a prior distribution for the conditional expectation of potential

outcomes, as well as a loss function, allows to calculate an objective function

(Bayesian risk) which performs this trade-off in a coherent and principled way.

There is a large and old literature on experimental design in statistics, going

back at least to Smith (1918), and receiving broader attention since Kiefer and

Wolfowitz (1959) and related contributions. A good general introduction to the

theory of experimental design can be found in Cox and Reid (2000); a formal

treatment of the theory of optimal design is given by Shah and Sinha (1989).

The fact that deterministic designs might be optimal in the presence of covari-

ates was noted by Atkinson (1982) in the context of a parametric model and

sequential experimental design. Bruhn and McKenzie (2009) have studied the

relative variance of estimators under various designs using simulations. Some

general discussions on the role of randomization in experiments took place a few

decades ago, see in particular Rubin (1978). We will discuss the relationship of

their arguments to our results in section 4.1.

In contrast to most of the literature on optimal design, the perspective taken in

this paper is nonparametric, while allowing for continuous covariates. Here we

draw on the extensive literature on inference on average treatment effects under

unconfoundedness, as reviewed in Imbens (2004).

Part of this paper takes a nonparametric Bayesian perspective, considering (Gaus-

sian) process priors for conditional expectations of potential outcomes. This fol-

lows a long tradition in the literatures on spline estimation (cf. Wahba, 1990),

on “Kriging” in Geostatistics (cf. Matheron, 1973; Yakowitz and Szidarovszky,

1985), and in the more recent machine learning literature (cf. Williams and Ras-

mussen, 2006). For a general introduction to Bayesian methods with a focus on

their decision theoretic motivation, see Robert (2007). O’Hagan and Kingman

(1978) considered Gaussian process priors in the context of experimental design,
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taking an approach similar to ours but without allowing for covariates. A forceful

argument for a Bayesian perspective on experimental design has been made by

Berry (2006).

The rest of this paper is structured as follows. Section 2 discusses some motivat-

ing examples. Section 3 formally introduces the general setup we consider. Sec-

tion 4 proves that generically optimal designs are non-random given the matrix of

covariates, and that the non-random designs considered still satisfy unconfound-

edness. Section 5 introduces a general class of nonparametric Bayesian priors

and derives the corresponding estimators and expected loss functions. Section

6 briefly discusses frequentist inference based on the nonparametric Bayesian

estimator. Section 7 presents simulation results, including an examination of

the robustness of optimal designs to the choice of prior, and an application to

project STAR. Appendix A discusses how to choose the moments of the priors

considered, maintaining non-informativeness on key features of the data gener-

ating process. Appendix B discusses discrete optimization algorithms. Appendix

C reviews very briefly the literature on optimal experimental design.

We will use the following notation throughout. We denote covariates by X,

the binary treatment by D, potential outcomes by Y d for d ∈ 0, 1, and re-

alized outcomes by Y . Individual draws of these variables have a subscript i,

whereas capital letters without subscripts denote the matrices and vectors of

these objects for observations i = 1, . . . , n. Lowercase letters (d and x) denote

values of the corresponding variables (Di, Xi); bold face lower case d denotes

a vector of values di. We use θ to denote the family of conditional distributions

θ := {P (Y 1
i , Y

0
i |Xi = x) : x ∈ supp(X)}. We condition on θ in “frequentist”

probabilities and expectations, while “Bayesian” probabilities and expectations

are unconditional and average over a prior distribution for θ.

2. MOTIVATING EXAMPLES

Before we present the general setup analysed in this paper which allows for

continuous covariates, let us consider the variance of an estimator for the average

treatment effect in two simple cases, (i) if no covariates are available, and (ii) if

a discrete covariate with finite support is available.

If no covariates are available, and nd :=
∑

1(Di = d) units are assigned (ran-

domly) to treatment d, then the natural estimator for the average treatment
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effect is given by the difference in means,

β̂ :=
∑
i

[
Di

n1
Yi −

1−Di

n− n1
Yi

]
.

Consider the following two procedures for assigning treatments: (1) randomiza-

tion conditional on the number of units assigned to treatment 1, n1, and (2)

independent assignment of treatment 1 to each unit with probability p. Denote

the variance of potential outcome Y d by σ2
d = Var(Y di |θ). Then the variance of

β̂ under the first procedure is given by

σ2
1

n1
+

σ2
0

n− n1
.

The variance under the second procedure is given by

En1

[
σ2
1

n1
+

σ2
0

n− n1

]
,

where the expectation is taken over n1 ∼ Bin(n, p). In this setting it is obvious

that choosing n1 ≈ n· σ1

σ0+σ1
yields a smaller variance than any other deterministic

or random assignment procedure - and indeed nobody would propose procedure

(2). Randomness that puts a positive probability on values of n1 other than the

deterministic optimum strictly increases the variance. This suggests that exper-

imenters should not randomize n1. In this case, the variance does not depend on

which observationally equivalent unit is assigned to treatment d = 1. Formally,

the risk (variance) is flat over permutations of d which leave n1 invariant, so

randomization given n1 does not hurt.

Consider next the setting in which a discrete covariateXi ∈ {0, . . . , k} is available

when assigning treatment, and denote nx :=
∑
i 1(Xi = x), as well as nd,x :=∑

i 1(Xi = x,Di = d). In this case the natural unbiased estimator for the average

treatment effect is given by

β̂ :=
∑
x

nx
n

∑
i

1(Xi = x)

[
Di

n1,x
Yi −

1−Di

nx − n1,x
Yi

]
.

In this setting we can again consider (1) randomization conditional on nd =



EXPERIMENTAL DESIGN 7∑
1(Di = d) and (2) complete randomization as before. We can additionally

consider a third possibility, (3) stratified randomization conditional on nd,x. De-

noting σ2
d,x = Var(Y di |Xi = x, θ), we get that the variance of β̂ under stratified

randomization (where nd,x is non-random) is given by

V ({nd,x}) :=
∑
x

nx
n

[
σ2
1,x

n1,x
+

σ2
1,x

nx − n1,x

]
.

Assignment procedures (1) and (2) yield a variance which averages this ex-

pression over some distribution of nd,x. Again it is immediate that choosing

nd,x ≈ nx · σ1,x

σ0,x+σ1,x
yields a smaller variance than any other deterministic or

random choice of n1,x. This suggests that experimenters should not randomize

n1,x for any x. In this case, permutations of d which leave n1,x invariant for

all x leave the variance constant, so it does not hurt to randomize over these

permutations. We will return to this example as a special case of the proposed

optimal designs at the end of section 5.

Consider now finally the case where a continuously distributed covariate Xi ∈ R
is available. In this case with probability 1 no two observations will have the

same Xi. A series of alternative designs can be considered in this case, including

complete randomization, randomization conditional on nd, and various forms of

discretizing Xi into bins [xj , xj+1] and stratifying based on these bins. A special

case of this is pairwise randomization. “Full stratification” clearly is not possible

in this case, since each stratum only contains one observation. What to do in

this case is the topic of the present paper.

3. THE SETUP

Throughout we will consider the following setup.

Assumption 1 (Setup)

The steps of an experiment take place in the following order.

1. Sampling from a population: We randomly sample n units i = 1, . . . , n

from some population. Units of observation are characterized by a vector

of covariates Xi as well as potential outcomes (Y 0
i , Y

1
i ). Only the covariate

vector Xi is observed.

2. Treatment assignment: We assign treatment Di to unit i as a function of
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the matrix of covariates X = (X ′1, . . . , X
′
n)′, as well as (possibly) some

randomization device U independent of all other variables, so that Di =

di(X,U).

3. Realization of outcomes: For every unit of observation i, we observe the

outcome Yi = DiY
1
i + (1−Di)Y

0
i .

4. Estimation: We calculate an estimator β̂ of the (conditional) average treat-

ment effect β = 1
n

∑
iE[Y 1

i − Y 0
i |Xi, θ] as a function of the observed data,

(Xi, Di, Yi)
n
i=1.

Definition 1 (Risk function, Bayesian and minimax risk)

1. The risk function of a treatment assignment function d(X,U) and an es-

timator β̂ is given by

(1) R(d, β̂|X,U, θ) := E[L(β̂, β)|X,U, θ],

where L is a loss function. The expectation in equation (1) averages over

the conditional distributions of Y 1
i , Y

0
i given Xi.

2. The conditional Bayesian risk is given by the average of the risk function

over a prior distribution P (θ),3

(2) RB(d, β̂|X,U) :=

∫
R(d, β̂|X,U, θ)dP (θ),

where we assume that the prior distribution for θ does not depend on X.

Averaging additionally over the distribution of U yields the Bayesian con-

ditional average risk, and averaging over both X and U yields the Bayesian

average risk;

RB(d, β̂|X) :=

∫
RB(d, β̂|X,U)dP (U)

RB(d, β̂) :=

∫
RB(d, β̂|X,U)dP (X)dP (U).

3. The conditional minimax risk is given by the supremum of the risk function

over θ,

(3) Rmm(d, β̂|X,U) := sup
θ
R(d, β̂|X,U, θ).

3We could equivalently write P (θ|X), since we condition on X throughout.
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Assumption 2 (Decision problem)

The experimenter’s objective is to minimize the risk R(d, β̂|X,U), where R is

either equal to Bayesian or to minimax risk, through choice of the estimator

β̂(Y,X,D) and through choice of the treatment assignment function d(X,U).

Discussion

In this subsection we discuss some of the more subtle features of assumptions 1

and 2. The reader may safely skip to section 4 upon first reading.

Average treatment effect, conditional average treatment effect, and sample

average treatment effect

In the setting of assumption 1, there are four sources of randomness, coming from

(i) treatment assignment, (ii) sampling of covariates, (iii) sampling of potential

outcomes given covariates, and possibly (if we take a Bayesian perspective) (iv)

prior uncertainty.

Corresponding to these sources of randomness are different possible estimands of

interest, as discussed in Imbens (2004). First, there is the (population) average

treatment effect

(4) ATE = E[Y 1
i − Y 0

i |θ].

This effect is defined by averaging over (ii) and (iii). It is a function of the

population distribution of Xi and of θ. Second there is the conditional average

treatment effect,

(5) CATE = β =
1

n

∑
i

E[Y 1
i − Y 0

i |Xi, θ].

This effect is defined by averaging over (iii) while conditioning on (ii). It is a

function of X and of θ. And third there is the sample average treatment effect,

(6) SATE =
1

n

∑
i

(Y 1
i − Y 0

i ).

This effect is defined by conditioning on both (ii) and (iii). We have that E[SATE|X, θ] =

CATE and E[CATE|θ] = ATE. This implies that any estimator that is unbi-

ased for the SATE is also unbiased for the CATE and the ATE, and any
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estimator that is unbiased for the CATE is also unbiased for the ATE. We

focus on the CATE as an estimand because we are interested in experimental

design, which only affects what we can learn about the distribution of potential

outcomes (iii), conditional on covariates. This stands in contrast to questions of

sampling which also affects what we can learn about the population distribution

of covariates (ii). Any estimator for the CATE can be rationalized as an esti-

mator of the ATE if we take the sample distribution of Xi as an estimator of its

population distribution. This is justified from a Bayesian perspective if we adopt

a “non-informative” Dirichlet prior (α ≡ 0), as we will briefly discuss in section

5.

The randomness in any estimator β̂, conditional on population parameters, is

driven by (i), (ii), and (iii). Given the conditioning arguments of the three es-

timands just defined, this implies that any estimation error for the SATE is

driven purely by (i), any estimation error for the CATE is driven by (i) and

(iii), and any estimation error for the ATE is driven by (i), (ii), and (iii). If we

take a Bayesian perspective in setting up the decision problem we are going to

discuss, then expected loss averages over (i), (iii), and (iv).

The standard argument for identification in randomized experiments relies on the

randomness (i) of treatment assignment, which ensures independence of treat-

ment assignment and potential outcomes on average. Under certain conditions,

identification via conditional independence can also be justified using only ran-

domness (iii) in sampling of potential outcomes. We will discuss this in more

detail in the next section.

Bayesian and frequentist perspective, and the role of conditioning

We have defined our objective as minimizing Bayesian or minimax risk condi-

tional on covariates X and the randomization device U . It turns out that in

the Bayesian paradigm this conditioning does not matter, as demonstrated by

theorem 1 below. In the frequentist paradigm it is crucial, however, since the

frequentist risk function is defined as average loss over replications of the same

decision problem, where “same” here is understood as the same values of X,U

and θ. Understanding minimax risk as the outcome of a “game” against an ad-

versarial nature which moves second, this means that we allow nature to choose

θ as a function of U (in addition to X, β̂, and d). In this case, there is no ad-

vantage in conditioning actions (treatment assignment) on this randomization
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device, as shown in theorem 1. If, in contrast, θ could depend on d but not on

U , then it might be optimal to play a mixed strategy involving randomization.

Infinite minimax risk

Minimax risk will in general only be finite if model restrictions are imposed

on the set of possible θ. To see this, consider squared loss L(β̂, β) = (β̂ − β)2.

Consider a sequence of θj such that P (Yi|Xi, Di = di, θj) does not change along

this sequence, but the counterfactual mean E[Yi|Xi, Di = (1−di), θj ] goes to +∞
if di = 0 and to −∞ if di = 1. For such a sequence P (β̂|θj) does not depend on j,

while β → ∞, and thus R(d, β̂|X,U, θ) → ∞, which implies Rmm(d, β̂|X,U) =

∞. In contrast, Bayesian average risk RB(d, β̂) is finite for squared loss and

linear estimators β̂ as long as the prior expectation E[β], as well as the prior

variance Var(Y ) are finite.

4. OPTIMALITY OF NON-RANDOMIZED DESIGNS

We will now formally state our first result, which implies that optimal exper-

imental designs, given knowledge of covariates, generically do not involve ran-

domization. The following argument applies to any estimator β̂ and to any loss

function, including (but not limited to) estimators of the average treatment effect

and squared loss.

The intuition for this result is simple. The risk for a randomized design is equal

to the average risk of the treatment assignments that the randomized design

averages over. Randomized designs can therefore not improve upon the risk at-

tainable by deterministic assignments, and if the optimal deterministic design is

unique, then randomized designs perform strictly worse.

Let D be the set of all treatment assignment procedures that we consider,

D := {d : (X,U)→ D}.

Let Ddet be the subset of deterministic treatment assignment procedures, pro-

cedures which do not depend on U ,

Ddet := {d : X → D}.
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Theorem 1 (Optimality of deterministic designs)

Consider the setup of assumption 1 and the decision problem of assumption 2.

Take the estimator β̂(Y,X,D) as given. Then:

1. Bayesian average risk is minimized by an element of the set of deterministic

treatment assignment procedures,

(7) min
d∈Ddet

RB(d, β̂) = min
d∈D

RB(d, β̂).

2. Assume additionally that RB(d1, β̂|X)−RB(d2, β̂|X) is continuously dis-

tributed4 for any pair of treatment assignment vectors d1 6= d2.

Then, for almost all realizations of X

(8) d∗ = argmin
d∈D

RB(d, β̂)

is unique, and d∗ ∈ Ddet.

3. Similarly, there exists a deterministic treatment assignment that minimizes

conditional minimax risk Rmm(d, β̂|X,U). Furthermore, if Rmm(d1, β̂|X,U)−
Rmm(d2, β̂|X,U) is continuously distributed for any pair of treatment as-

signment vectors d1 6= d2, then for almost all realizations of X there is a

unique optimal assignment d∗ ∈ Ddet which dominates all other d ∈ D .

Proof: Let d∗(X) ∈ argmin d(X)∈{0,1}n R
B(d, β̂|X,U). d∗(X) is well defined

(does not depend on U) since RB(d, β̂|X,U) does not depend on U for deter-

ministic assignments: RB(d, β̂|X,U) = RB(d, β̂|X) .

For any randomized treatment assignment function d(X,U), we have that

(9) RB(d, β̂|X,U) = RB(d(X,U), β̂|X,U) ≥ R(d∗, β̂|X,U)

where the inequality holds by definition of d∗. Integration over P (X) and P (U)

yields

RB(d, β̂) ≥ RB(d∗, β̂).

This shows that d∗ minimizes the Bayes risk among all treatment assignment

rules.

4This requires that X has a continuously distributed component.
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To show the second claim, note that there are no more than 22n possible pairs

of treatment assignment vectors d1,d2. Therefore

P (∃d1,d2 : RB(d1, β̂|X) = RB(d2, β̂|X)) ≤

22n max
d1,d2

P (RB(d1, β̂|X) = RB(d2, β̂|X)) = 22n · 0.

This implies immediately that argmin dR
B(d, β̂|X) is unique, and that the in-

equality in (9) is strict for any treatment assignment function d 6= d∗.

The third claim is immediate once we note that Rmm(d, β̂|X,U) does not de-

pend on U , given d(X,U). This holds because neither does the risk function

R(d, β̂|X,U, θ), nor the risk maximizing θ. �

Remark: The first claim of theorem 1 is analogous to the fact that estimators

that do not involve randomization are optimal with respect to Bayes risk, (cf.

Robert, 2007, p66).

Remark: If the decision problem is exactly symmetric in the two values of

treatment (flipping d = 1 and d = 0 leaves loss and prior unchanged) then

risk is symmetric, RB(d, β̂|X,U) = RB(1 − d, β̂|X,U). In this case the generic

uniqueness of the optimal treatment assignment will only hold up to symmetry

in d, 1 − d. As a consequence one can randomly assign which group gets the

treatment and which the control without increasing risk. This might in particu-

lar be desirable if there is concern that X could be manipulable by agents aware

of the treatment assignment procedure.

Theorem 1 shows that a deterministic treatment assignment is optimal in min-

imizing either Bayes risk or conditional minimax risk. But what about identifi-

cation without random assignment? The main appeal of randomization lies in

ensuring that the independence condition

P (Yi|Di = d, θ) = P (Y di |θ)
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holds, and more generally, under stratified randomization, that conditional in-

dependence holds,

(10) P (Yi|Xi, Di = d, θ) = P (Y di |Xi, θ).

These conditions enable nonparametric identification of average structural func-

tions, quantile structural functions, average treatment effects, etc. The following

argument shows that conditional independence (10) holds even without random-

ization in the treatment assignment. Conditional independence only requires that

treatment assignment takes place in a controlled trial (CT), not necessarily in a

randomized controlled trial (RCT).5 Note that in this setting Di is still random

given Xi, since it might depend on Xj for all j 6= i, even if it is a deterministic

function of the matrix X of covariates for all observations.

To make the foundations of this claim explicit, we restate the following two

assumptions which are implicit in the setup of assumption 1.

Assumption 3 (i.i.d. sampling)

P (Y 0, Y 1, X|θ) =
∏
i

P (Y 0
i , Y

1
i , Xi|θ)

The assumption of i.i.d. sampling implies in particular that P (Y di |X, θ) = P (Y di |Xi, θ)

for d = 0, 1. In words, the potential outcomes of unit i are independent of the

covariates of other units, conditional on her own covariates.6

Assumption 4 (SUTVA) The potential outcome Yi(D) depends only on Di,

so that Yi = Y di if Di = d.

This “stable unit treatment value assumption” (following the terminology of

Angrist, Imbens and Rubin 1996) states that there is no causal effect of the

treatments of other units on the outcome of a given unit of observation. This

assumption excludes social interaction effects.

Theorem 2 (Conditional independence)

If assumptions 1, 3, and 4 hold, and if D = d(X,U) for some U ⊥ (Y 0, Y 1, X)|θ,

5Note that at no point we allow for self-selection into treatment!
6This assumption is weaker than it might seem, as discussed in (Rubin, 1978, section 3.1).

In a nutshell: If there is concern about its validity, the data can be randomly permuted to
ensure exchangeability; a version of de Finetti’s theorem implies then that they are i.i.d. as
members of an appropriately defined population. If the position in the dataset is informative, it
should furthermore be recorded as an additional covariate. Our optimal design is permutation-
equivariant, so that we can actually skip the step of shuffling lines for the purpose of finding
the optimal design.
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then conditional independence holds, P (Yi|Xi, Di = d, θ) = P (Y di |Xi, θ). This is

true in particular for deterministic treatment assignment rules D ∈ Ddet.

Proof: By randomness of U and i.i.d. sampling,

P (Y di |X,U, θ) = P (Y di |X, θ) = P (Y di |Xi, θ)

for d = 0, 1. By the law of iterated expectations, this last equation, and the

randomness of U again, and recalling that Di = d(X,U),

P (Y di |Xi, Di, θ) = E[P (Y di |X,U, θ)|Xi, Di, θ] =

E[P (Y di |Xi, θ)|Xi, Di, θ] = P (Y di |Xi, θ),

where the expectations are taken over the distribution of X and U given Xi and

Di. This concludes the proof. �

Theorem 2 immediately implies the following corollary.

Corollary 1 (Average partial effect and average treatment effect)

If assumptions 3 and 4 hold, and if D = d(X,U) for some U ⊥ (Y 0, Y 1, X),

then the average partial effect is equal to the average treatment effect,

E[E[Yi|Xi, Di = 1, θ]− E[Yi|Xi, Di = 0, θ]] = E[Y 1
i − Y 0

i |θ].

Similarly, the conditional average partial effect is equal to the conditional average

treatment effect,

1

n

∑
i

[E[Yi|Xi, Di = 1, θ]− E[Yi|Xi, Di = 0, θ]] =
1

n

∑
i

E[Y 1
i −Y 0

i |Xi, θ] = β.

These statements are true in particular for deterministic treatment assignment

rules D = d(X).

Proof: This is immediate by the conditional independence shown in theorem

2, which implies E[Yi|Xi, Di = d, θ] = E[Y di |Xi, θ], and the law of iterated ex-

pectations. �

Remark: These results show that there is no specific role of randomization

to ensure conditional independence and its implications. The important point
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is that we are not giving up control over treatment assignment by abandoning

randomization in favor of a deterministic design; in particular we do not allow

for any self-selection.

4.1. Discussion in the context of the literature

Discussions about the purpose of randomization have taken place repeatedly

in the history of experimental design. In this section we discuss a number of

defenses of randomization which have been put forward, and argue that they do

not contradict our results.

Stone (1969) defended randomization by arguing that randomization provides

a safeguard against manipulation of experimental results through experimen-

tal design. Stone’s argument is interesting, but it requires a few qualifications.

(i) This is an argument against any form of stratification. (ii) Manipulation is

only possible if the researcher analyzing the data ignores the covariates used for

stratification. (iii) Randomization is only manipulation-proof if it is verified by

a third party - otherwise the experimenter can simply re-randomize until the

outcome seems suitable for the desired manipulation. (iv) The optimal designs

which we propose can be made manipulation-proof by switching treatment and

control group according to a final coin-flip if the decision problem is symmetric.

Rubin (1978) provided a defense of randomization in a Bayesian framework sim-

ilar to ours, based on the role of randomization for valid causal inference, and

practical simplicity. Rubin’s argument is essentially threefold: Randomization (i)

ensures ignorability (conditional independence), (ii) leads to balance of covari-

ates, and (iii) leads to designs and estimators which are easy to calculate. If

(i) is violated, Bayesian estimators are sensitive to the prior for the treatment

assignment mechanism. If (ii) is violated, Bayesian estimators are sensitive to

the prior for counterfactual outcomes because of lack of overlapping support.

The argument underlying claim (iii) is that under simple randomization we do

not need to model the relationship between covariates and potential outcomes,

and we do not need to bother searching for balanced assignments. How does this

relate to our argument? As regards (i), theorem 2 implies that the assignments

we consider are ignorable. As regards (ii), by the very construction of our op-

timal designs they lead to more balanced assignments, so we are doing better

than randomization on that count. As regards (iii), this paper disagrees regard-

ing the practical difficulties of implementing optimal design. Part of the reason



EXPERIMENTAL DESIGN 17

is the availability of vastly superior computers than at the time of writing of

Rubin (1978), so that the code provided by Kasy (2013) finds optimal design in

between a few minutes and a couple of hours. Furthermore, we argue below that

researchers at the estimation stage do not need to explicitly model the relation-

ship of potential outcomes to covariates. We provide optimal designs for the case

that researchers are committed to a simple difference-in-means estimator of the

average treatment effect.

Kempthorne (1977), finally, argued in favor of randomization against optimal

experimental design, claiming that optimal design requires a strong belief in the

correctness of a parametric model. Our discussion in the next section shows that

this is not true in general, as we develop optimal designs in a nonparametric

Bayesian setting.

5. NONPARAMETRIC BAYESIAN OPTIMAL DESIGN AND ESTIMATION

The previous section has discussed the experimental design problem in fairly

abstract terms. In this section we will derive explicit and simple expressions

for risk R. These expressions provide objective functions for experimental design

which can be computationally minimized in order to pick a treatment assignment.

These expressions for risk also serve as an operationalization of the notion of

balance of treatment groups, as will become evident in the subsection where we

consider symmetric priors.

We do not discuss discrete optimization (over d to minimize R) in detail here,

appendix B provides a brief review of some algorithms. Even simple algorithms,

such as repeated draws of random assignments and picking the one which has

the lowest risk, lead to good results and take only a few minutes to run. Matlab

code which implements calculation of risk and discrete optimization is available

from the author’s homepage at Kasy (2013).

One possibility to aggregate risk functions to risk is by considering the worst-

case scenario, i.e., minimax risk. The problem with this approach in our context

is that this yields infinite risk unless we impose functional form restrictions. If

we were to impose a linear model, minimax risk is equal to the OLS variance;

see the discussion of linear models in appendix A below.

For the rest of the paper we will take a Bayesian perspective, while remaining

fully nonparametric. We specialize our setup by assuming that the experimenter’s
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objective is to minimize squared loss, by restricting attention to linear estimators,

and by imposing a prior. Under these conditions, only the first two moments of

the prior enter the decision problem. Given the treatment assignment D, the

best estimator for β is then given by the best linear predictor with respect to

the posterior distribution.

Since we are considering Bayesian probabilities now, many of the following ex-

pressions will not condition on θ, but rather average over the prior distribution

for θ, and in particular over the conditional expectation function f defined in

the following assumption. Recall also that we assumed θ to be independent of

X and U . This implies in particular that observing X does not lead to updated

beliefs on P (Y di |Xi).

Assumption 5 (Prior moments) The experimenter has a prior over the con-

ditional expectation f , where f(Xi, Di) = E[Yi|Xi, Di, θ], which satisfies

E[f(x, d)] = µ(x, d)

and

Cov(f(x1, d1), f(x2, d2)) = C((x1, d1), (x2, d2))

for a covariance kernel C.

The experimenter has a prior over the conditional variance of Yi which satisfies

E[Var(Yi|Xi, Di, θ)|Xi, Di] = σ2(Xi, Di).

Assumption 6 (Mean squared error objective) Loss is given by L(β̂, β) =

(β̂ − β)2, and the experimenter has the objective to minimize expected loss. The

experimenter’s objective function is thus given by the mean squared difference

RB(d, β̂|X) = E[(β̂ − β)2|X]

between an estimator β̂ and the conditional average treatment effect β = 1
n

∑
iE[Y 1

i −
Y 0
i |Xi, θ].

Assumption 7 (Linear estimators) β̂ is restricted to lie in the class of linear
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estimators, so that

β̂ = w0 +
∑
i

wiYi,

where wi might depend on X and on D, but not on Y .

Remark:

Assumption 5 is fairly unrestrictive, since it only assumes existence of the first

two moments of the prior distribution. Assumption 6 specifies that we are in-

terested in minimizing the mean squared error of an estimator of the ATE.

Assumption 7 is restrictive in terms of the class of estimators considered. This

class contains most common estimators of the average partial effect, however,

including estimators based on linear regression, inverse probability weighting,

kernel regression, splines, and various forms of matching.

Assumption 5 can be made more specific by assuming a Gaussian process prior

for f . This is not necessary in our context, however, since only the first two

moments enter the decision problem under assumptions 6 and 7.

We use the following notation for the prior moments of Y and β given X and D.

µi = E[Yi|X,D] = µ(Xi, Di),

µβ = E[β|X,D] =
1

n

∑
i

[µ(Xi, 1)− µ(Xi, 0)],

Σ = E[Var(Y |X,D, θ)|X,D] = diag(σ2(Xi, Di)),

Ci,j = Cov(f(Xi, Di), f(Xj , Dj)|X,D) = C((Xi, Di), (Xj , Dj)), and

Ci = Cov(Yi, β|X,D) =
1

n

∑
j

[C((Xi, Di), (Xj , 1))− C((Xi, Di), (Xj , 0))]

With this notation, Var(Y |X,D) = C + Σ.

Now we can formally state the form of the best estimator and Bayesian risk.

Theorem 3 (Best linear predictor, expected loss, and unique optimal design)

Under assumptions 1 through 7, the best estimator for the conditional average
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treatment effect is given by

β̂ = E[β|X,D] + Cov(β, Y |X,D) ·Var(Y |X,D)−1 · (Y − E[Y |X,D])

= µβ + C
′ · (C + Σ)−1 · (Y − µ),(11)

and the corresponding expected loss (risk) equals

(12) RB(d, β̂|X) = E[(β̂ − β)2|X,D] = Var(β|X,D)−Var(β̂|X,D)

= Var(β|X) − C ′ · (C + Σ)−1 · C.

Furthermore, if in addition one of the components of Xi is continuously dis-

tributed and C is not constant in this component with probability 1, the risk

function of equation (12) has a unique minimizer with probability 1 conditional

on D1.

Proof: Under assumptions 6 and 7, the weights of the best estimator solve

w∗ = argmin
w

E[(w0 +
∑
i

wiYi − β)2|X,D].

The first order conditions for this problem are

E(w0 +
∑
i

wiYi − β)|X,D] = E[β̂|X,D]− E[β|X,D] = 0

and

E[Yi · (w0 +
∑
i

wiYi−β)|X,D] = Cov(Yi, β̂|X,D)−Cov(Yi, β|X,D) = 0

for i = 1 . . . n. This implies

w0 +
∑
i

wiµi = β

and ∑
wj Cov(Yi, Yj |X,D) = Cov(Yi, β|X,D),

from which equation (11) is immediate.
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These first order conditions also immediately imply Cov(β̂, β − β̂|X,D) = 0, so

that

Var(β|X,D) = Var(β̂|X,D) + Var(β − β̂|X,D),

which yields equation (12).

To show uniqueness of the minimizer with probability 1, by theorem 1 it is

sufficient to show that

∆R := RB(d1, β̂|X)−RB(d2, β̂|X) = C
2′ ·(C2+Σ)−1 ·C2−C1′ ·(C1+Σ)−1 ·C1

is continuously distributed for all d1 6= d2. Under the given assumptions, con-

tinuous distribution holds by continuity of the distribution of C1, C2, as long as

no symmetry in the setup implies C1 = C2 and C
1

= C
2
. The two sources of

symmetry we have to worry about are (i) symmetry between d and 1 − d, and

(ii) symmetry by permutation of d between observations with identical covari-

ate values Xi. Symmetry (i) is taken care of by conditioning on D1, symmetry

(ii) plays no role here since Xi 6= Xj for i 6= j with probability 1 if there is a

continuous covariate. �

Remark: The estimator β̂ of theorem 3 minimizes the mean squared error of

all linear estimators of β. If we were to impose joint normality of the Y di and

f(Xi, d) for all i and d, we could drop the a priori requirement of linear esti-

mation and obtain the same estimator. In that case β̂ would be equal to the

posterior expectation of β.

Remark: If we were to impose a Dirichlet process prior with α ≡ 0 for the

population distribution of Xi, we would obtain the sample distribution of Xi as

expected posterior probability distribution. In this case, all the estimators and

risk functions derived here for estimation of the conditional average treatment

effect CATE would be estimators and risk functions for estimation of the ATE.

To see this, note that the only components of the best linear predictor in theorem

3 that would be affected by the ATE as our object of interest are the covariances
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Ci. These covariances have to be replaced by

Cov(Yi, ATE|X,D) =

∫
Cov(Yi, f(x, 1)− f(x, 0))dP (x|X,D),

where P is the posterior distribution of x. For a Dirichlet process prior with

α ≡ 0, P (x|X,D) is equal to the empirical distribution of Xi.

Imposing symmetry

If we impose some additional structure on the problem, more explicit formulas

for the estimator and for the expected loss can be derived.

Assumption 8 (Prior homoskedasticity) The expected variance of Y di given

θ and Xi is constant in Xi and d, E[Var(Y di |Xi, θ)|Xi] = σ2.

Assumption 9 (Restricting prior moments)

1. The prior expectation of f is E[f ] = 0.

2. The functions f(., 0) and f(., 1) are uncorrelated.

3. The prior distributions of f(., 0) and f(., 1) are the same.

Under these additional assumptions we can denote Cov(f(x1, d), f(x2, d)) =

C(x1, x2) independent of d, and get

µi = E[Yi|X,D] = 0,

µβ = E[β|X,D] = 0,

Σ = E[Var(Y |X,D, θ)|X,D] = σ2 · I,

Ci,j = Cov(f(Xi, Di), f(Xj , Dj)|X,D) = 0 for Di 6= Dj ,

Ci,j = Cov(f(Xi, Di), f(Xj , Dj)|X,D) = C(Xi, Xj) for Di = Dj , and

C
d

i = Cov(Y di , β|X,D) = (−1)1−d · 1

n

∑
j

C(Xi, Xj).

We use the following superscript notation for subvectors and submatrices defined

by treatment values d.

Y d = (Yi : Di = d)

V d = Var(Y d|X,D) = (Ci,j : Di = d,Dj = d) + diag(σ2 : Di = d)

C
d

= Cov(Y d, β|X,D) = (C
d

i : Di = d)
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Remark: Note that the covariance Ci,j does not depend on treatment assign-

ment D. The variance matrix V d does, but only through selection of a submatrix

by the treatment assignment D. Similar statements hold for the vectors Y d, and

C
d
.

Theorem 4 (Explicit estimator and risk function) Under assumptions 1

through 9, the best estimator for the conditional average treatment effect is given

by

(13) β̂ = C
1′ · (V 1)−1 · Y 1 + C

0′ · (V 0)−1 · Y 0.

and the corresponding expected loss (risk) equals

(14) RB(d, β̂|X) = E[(β̂ − β)2|X,D] = Var(β|X,D)−Var(β̂|X,D)

= Var(β|X)− C1′ · (V 1)−1 · C1 − C0′ · (V 0)−1 · C0
.

Proof: This is immediate from theorem 3, once we note that V is block diagonal,

after sorting observations by their value of Di. �

Insisting on the difference-in-means estimator

One of the main appeals of randomized experiments is their simplicity. Suppose

we want to preserve this simplicity of estimation, for reasons outside the formal

decision problem. Theorem 5 provides the risk function for treatment assign-

ments under this constraint on estimation.

Assumption 10 (Simple estimator) The estimator β̂ is given by

β̂ =
1

n1

∑
i

DiYi −
1

n0

∑
i

(1−Di)Yi,

where nd =
∑
i 1(Di = d).

This is the estimator we would use when ignoring any information about covari-

ates at the estimation stage.

Theorem 5 (Risk function for designs using the simple estimator) Under

assumptions 1 through 10, the expected loss (risk) of treatment assignment d
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equals

RB(d, β̂|X) = σ2 ·
[

1

n1
+

1

n0

]
+

[
1 +

(
n1
n0

)2
]
· v′ · C̃ · v,

where

vi =
1

n
·
(
−n0
n1

)Di

and C̃ij = C(Xi, Xj). In particular, if n1 = n0 = n/2, then

RB(d, β̂|X) = σ2 · 4

n
+

1

n2
· (2D − 1)′ · C̃ · (2D − 1).

Proof: Let w1 = 1
n1
D − 1

ne, w
0 = 1

n0
(e−D)− 1

ne, and w = w1 − w0, so that

β̂ = w′ · Y . Under the given assumptions

β̂ − β = w′ · (Y − f) + w1′ · f1 − w0′ · f0,

where we use f to denote the n vector with entries f(Xi, Di), and fd to denote

the n vector with entries f(Xi, d). The three terms of this decomposition have

prior mean 0 and are uncorrelated. This implies

RB(d, β̂|X) = w′ · Σ · w + w1′ · C̃ · w1′ + w0′ · C̃ · w0′.

The claims of the theorem then follow, once we note that the first term equals

σ2 ·w′ ·w = σ2 ·
[

1
n1

+ 1
n0

]
, that w1

i = − 1
n ·
(
−n0

n1

)Di

, and that w0
i =

(
n1

n0

)
·w1

i . �

Remark: The expression for risk in theorem 5 has an easily interpretable struc-

ture. It decomposes the mean squared error into a variance term σ2 ·
[

1
n1

+ 1
n0

]
and an expected squared bias term. The optimal design for this risk minimizes

the variance by choosing n1 ≈ n0, and then balancing the distribution of covari-

ates to minimize the expected squared bias of the difference in means estimator.

Discrete covariates

It is instructive to consider the special case of discrete covariates,Xi ∈ {0, 1 . . . , k},
which we already discussed in section 2. We continue to maintain the symme-
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try assumptions 8 and 9. In this case, theorem 6 below shows that stratified

randomization is indeed a special case of the optimal designs implied by our

decision problem, where strata are defined by X. By observational equivalence

of treatment assignments permuted within strata, randomization within strata

does not increase risk relative to deterministic assignments. Recall the notation

introduced in section 2, nx :=
∑
i 1(Xi = x), and nd,x :=

∑
i 1(Xi = x,Di = d).

Theorem 6 (Discrete covariates and stratified randomization) Suppose

assumptions 1 through 9 hold. Assume additionally that Xi ∈ {0, 1 . . . , k} and

that f(x, d) and f(x′, d) are independent for x′ 6= x. Let β̂ be the Bayes esti-

mator for the average treatment effect. Then any randomized or deterministic

treatment assignment function d(X,U) minimizes Bayes risk,

(15) d ∈ argmin
d∈D

RB(d, β̂),

if and only if it satisfies

(16) P (nd,x ∈ {bnx/2c, dnx/2e} ∀d, x) = 1.

Proof: Specializing the result of theorem 4, it is easy to see that under our

assumptions for any deterministic assignment d risk is given by

RB(d, β̂|X) = Var(β|X)−
k∑
x=0

nx
n

(
C(x, x)2

C(x, x) + σ2

n1,x

+
C(x, x)2

C(x, x) + σ2

nx−n1,x

)
.

Considered as a function of n1,x, RB is symmetric around n1,x = nx/2. Dif-

ferentiating twice allows to verify that RB is convex in n1,x, so that it is min-

imized among discrete values by exactly the deterministic assignments which

satisfy n1,x ∈ {bnx/2c, dnx/2e}. As the risk of randomized assignments is a con-

vex combination of the risk for deterministic assignments randomized over, the

claim follows. �

6. FREQUENTIST INFERENCE

This paper focuses on a decision theoretic, Bayesian foundation for experimental

design. We are not bound to analyze the resulting experimental data within the
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Bayesian paradigm, however.

One approach to inference in experiments uses permutation tests as proposed

by R.A. Fisher. The null hypothesis that outcome distributions are unaffected

by treatment can be tested in randomized experiments with such tests. They

control size exactly in finite samples, conditional on the given draw of poten-

tial outcomes. Such tests are valid on average across treatment assignments,

but not conditional on the realized treatment assignment nor conditional on ob-

served continuous covariates. The possibility of randomization tests is sometimes

quoted as an argument in favor of randomization; they are not possible given a

deterministic treatment assignment as advocated in this paper.

An alternative approach to inference in the tradition of J. Neyman, and the

one which is most common in econometrics, is conditioning on covariates and

treatment assignment, and controls coverage or rejection probabilities asymp-

totically. In order to perform such conventional, frequentist inference on average

treatment effects, we need a (consistent) estimator for the variance of β̂ given

X,D and the data generating process θ. For linear estimators as in assumption

7 (β̂ = w0 +
∑
i wiYi), this variance is given by

(17) V := Var(β̂|X,D, θ) =
∑

w2
i σ

2
i ,

where σ2
i = Var(Yi|Xi, Di). As in any method for inference on average partial

effects we thus have to find an estimator of the conditional variance σ2
i ; see for

instance the discussion in Imbens (2004).

A natural proposal in our setting would be to first estimate εi = Yi − fi by the

regression residual ε̂i = Yi− f̂i, where f̂ = C · (C+Σ)−1 ·Y is the nonparametric

Bayes estimator of f . We can then estimate V by

(18) V̂ :=
∑

w2
i ε̂

2
i .

This estimator of the variance V has a form similar to the standard heteroskedas-

ticity robust estimators of the variance of linear OLS coefficients.

The following proposition gives an asymptotic justification of equation (18) by

providing sufficient conditions for consistency of this variance estimator, i.e., for

V̂ /V →p 1.

Proposition 1 Assume that

1. 1/M < E[ε2i ] < M < ∞ and E[ε4i ] ≤ M < ∞ for all i and for some
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constant M .

2. Yi ⊥ Yj |X,D, θ (this follows from i.i.d. sampling)

3. Wn :=
maxi w

2
i∑

i w
2
i

= op(n
−1/2)

4. ‖f̂−f‖n = op
(
n−1 ·W−1n

)
, where ‖.‖n is the L2 norm w.r.t. Pn(x), ‖g‖2n =∫

g2(x)dPn(x).

Then V̂ /V →p 1.

Proof: We can decompose

V̂

V
= 1 +

∑
w2
i [ε

2
i − σ2

i ]∑
w2
i σ

2
i

+

∑
w2
i [ε̂

2
i − ε2i ]∑

w2
i σ

2
i

= 1 +R1 +R2.

We have to show R1 →p 0 and R2 →p 0.

Note that E[R1|X,D] = 0 and, under the assumption of bounded 2nd and 4th

moments,

Var(R1|X,D) =

∑
w4
i Var(ε2i )

(
∑
w2
i σ

2
i )

2 ≤M2 ·
∑(

w2
i∑
w2
i

)2

≤M2 · n ·W 2
n

and thus Var(R1|X,D) → 0 under the assumption on the large n behavior of

Wn, which implies R1 →p 0.

For the second term, note that ε̂i = εi + fi − f̂i, therefore ε̂2i − ε2i = (fi − f̂i)2 +

2εi(fi − f̂i), and thus

R2 =

∑
w2
i (fi − f̂i)2∑
w2
i σ

2
i

+

∑
w2
i 2εi(fi − f̂i)∑
w2
i σ

2
i

≤M · n ·Wn ·
[
‖f̂ − f‖2n + 2‖ε‖n · ‖f̂ − f‖n

]
.

It is easy to see that ‖ε‖n = Op(1). We get that R2 = Op(n ·Wn · ‖f̂ − f‖n), and

thus R2 → 0 under our assumption on the rate of convergence of f̂ . �

Remark: Conditions 1 and 2 of proposition 1 are standard regularity conditions.

Condition 3 regards the large sample behavior of the maximum of the squared

weights w2
i , relative to their average. This ratio should not grow at a rate faster

than
√
n. To show this is the case under various conditions, we can refer to

the approximation of these weights by the so called “equivalent kernel;” (cf.
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Silverman, 1984; Sollich and Williams, 2005; Williams and Rasmussen, 2006).

Condition 4 regards the consistency and rate of convergence of f̂ . Primitive

conditions for condition 4 to hold follow from theorem 3.3 of van der Vaart and

van Zanten (2008a). In general, the rate of convergence of f̂ to the true f depends

on (i) the position of f relative to the reproducing kernel Hilbert space of the

Gaussian process corresponding to the covariance kernel C, and (ii) the so called

“small ball probabilities” of this same process. For details, the interested reader

is referred to van der Vaart and van Zanten (2008b) and van der Vaart and van

Zanten (2008a).

7. MONTE CARLO SIMULATIONS AND APPLICATION

In this section we provide evidence on the potential gains achievable by using

the optimal experimental design, rather than a randomized design.

Monte Carlo simulations

Let us first discuss a series of simulation results. We consider covariate vectors

X drawn from a (multivariate) standard normal distribution, where X is of

dimension 1 or 5, and sample sizes range from 50 to 800. The prior expected

residual variance σ2 equals 4 or 1, which corresponds to an expected R2 of

around .2 or .5 for the squared exponential kernel prior. The priors considered

are those of appendix A; the linear model prior (with a prior variance of slope and

intercept of 1000), the squared exponential prior, and the squared exponential

prior made uninformative about intercepts, both with a length scale l = 1.

Table I shows the average risk (expected mean squared error) RB(d, β̂|X) of

randomized designs, relative to the risk of optimal designs which are chosen

to minimize RB . As can be seen from this table, the gains of optimal designs

decrease in sample size, increase in the dimension of covariates, and increase in

the expected R2 (where the latter is decreasing in σ2 for a given prior variance

of f). Furthermore, the gains from optimization are rather modest for some

parameter configurations, while going up to 20% for some of the parameter values

considered, equivalent to a 20% increase in sample size. Table II shows a similar

comparison of the risk of designs based on stratified randomization relative to

the risk of optimal designs. We stratify based on the sign of all components of

X, so that for 1 covariate there are 2 strata, while in the case of 5 covariates
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there are 25 = 32 strata. The gains of optimal designs relative to stratified

randomization vary as before and are still about 3/4 of the size of gains relative

to pure randomization.

A possible concern in applied work might be the sensitivity of the optimal design

to the choice of prior. To provide some evidence on sensitivity to the prior, table

III compares the mean squared error under pairs of priors A and B as follows.

The entries of table III shows the average of (i) the ratio of the posterior mean

squared error under prior A for the design which is optimal under prior B to the

mean squared error under prior A for the design which is optimal under prior A,

and (ii) the same ratio, with the role of A and B reversed. The data generating

processes considered are the same as in table I. The pairs of priors considered are

A the same as the priors in table I and B the corresponding priors which result

from a rescaling of the variable X1 by a factor of 2. Such a rescaling increases

the importance of balancing the distribution of X1 relative to the importance of

balancing other components of X. As can be seen from this table, the choice of

prior does matter for the choice of an optimal treatment assignment – it makes a

difference whether we aim to balance variable X1 or variable X2, say. That said,

the designs which are optimal under prior B still perform significantly better

than random assignments when evaluated under prior A, as can be seen when

comparing the relative mean squared errors in table III to those in table I.

Figure 3 illustrates an optimal design for a two-dimensional covariate vector Xi,

where the Xi are drawn from a sample of size 50 of i.i.d. standard normals.

The picture illustrates how the optimal design aims for covariate balance, where

balance is defined in terms of minimizing RB(d, β̂|X). In comparison, random

designs, like the one shown on the right hand side, can be locally imbalanced,

leading to imprecise estimates of conditional average treatment effects in the

imbalanced regions. This matters in particular in regions of higher covariate

density.

Project STAR

To illustrate the quantitative relevance of optimal design in real experiments,

we evaluate the efficiency gains that would have been feasible in the well-known

“Project STAR” experiment. Data from this experiment have been used by many

contributions to the economics of education literature, such as Krueger (1999)

and Graham (2008).
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The project STAR experiment (“Student/Teacher Achievement Ratio”) was con-

ducted in Tennessee beginning in 1985. In this experiment kindergarten students

and teachers were randomly assigned to one of three groups beginning in the

1985-1986 school year: small classes (13-17 students per teacher), regular-size

classes (22-25 students), and regular-size classes with a full-time teacher aide.

Students were supposed to remain in the same class type for 4 years. The dataset

covers students from 80 schools. Each participating school was required to have

at least one of each class type, and random assignment took place within schools.

Kindergarten attendance was not mandatory in Tennessee during this time; Stu-

dents entering a participating school in grade one or later were randomly assigned

to a class upon entry.

We use all data on students for whom demographic covariates as well as class

type are observed for kindergarten or first grade in a project STAR school, which

leaves 8590 students in the sample. Table IV shows the means of some covariates

for this sample. Here “free lunch” equals 1 for students receiving a free lunch

in the first year they are observed in the sample (which is a proxy for coming

from a poor family), and “birth date” equals year plus 0.25 times quarter of

birth. We pool classes with and without aide, and only consider the assignment

of class-size.7 Assigned treatment D equals 1 for students assigned to a small

class upon first entering a project STAR school. For the purposes of this paper

we ignore issues of compliance (i.e., students switching class type over time), and

consider designs which minimize the mean squared error of estimated intention

to treat (ITT) effects.

The risk of a treatment assignment (expected mean squared error), and the

corresponding optimal treatment assignment, are calculated as follows. We use

the covariates sex, race, year and quarter of birth, free lunch received, and school

ID. This stands in contrast to the original design, which stratified only based on

school ID. We use a squared exponential prior, made non-informative about the

level of treatment effects, as discussed in appendix A. More specifically, we use

the covariance kernel K(x1, x2) = exp
(
− 1

2‖x1 − x2‖
2
)

where ‖.‖ is the Euclidian

norm, x = 4 · (sex, race,birth date, 2 · poor, 2 · school), and school is a vector of

school dummies. The optimal treatment assignment is chosen to (approximately)

minimize the risk RB corresponding to this prior and squared loss. We compare

7This is done for ease of exposition. All of our arguments would go through if we allow
for more than 2 treatment values, and consider minimizing a weighted average of the MSE of
several treatment effects.
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RB for the actual assignment to RB for the optimal assignment. To allow for a

fair comparison of optimal and actual treatment assignment, we have to make

sure that our counterfactual assignment respects the same budget constraint as

the actual assignment, i.e., assigning at most 2274 out of the 8590 students to

small classes. Without this constraint, we would find that improvements of mean

squared error of more than 35% would have been possible, assigning around 50%

of students to treatment in a balanced way.

Respecting the budget constraint, we still find that improvements of around 19%

would have been feasible. This would be equivalent to an increase of sample size

of about 19%, or 1632 students.

Table V shows covariate means for some selected schools. For these schools, ran-

domization did not lead to a balanced distribution of covariates across large and

small classes. In “school 16,” students in small classes were 12% more female and

about four months older than students in large classes. In “school 38,” students

in small classes were 15% more female, 2 months older, and much less likely to

be poor (53% less students receiving free lunch) than students in large classes.

In contrast to such imbalances, which are a consequence of randomization, the

optimal design aims to equalize the entire distribution of covariates, and thus

leads to similar means.

8. CONCLUSION

In this paper we discuss the question how information from baseline covariates

should be used when assigning treatment in an experimental trial. In order to give

a well grounded answer to this question we adopt a decision theoretic and non-

parametric framework. The non-parametric perspective and the consideration of

continuous covariates distinguish this paper from much of the previous experi-

mental design literature. For solving the decision problem, we suggest adopting

non-parametric Bayesian priors which are non-informative about the key feature

of interest, the (conditional) average treatment effect.

A number of conclusions emerge from our analysis. First, randomization is in

general not optimal. Rather, we should pick a risk-minimizing treatment as-

signment, which is generically unique in the presence of continuous covariates.

Second, conditional independence between potential outcomes and treatments

given covariates does not require random assignment. It is ensured by conduct-

ing controlled trials, and does not rely on randomized controlled trials. Third,
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there is a class of non-parametric priors - Gaussian Process priors for the con-

ditional expectation of potential outcomes given covariates - which lead to very

tractable estimators and Bayesian risk (mean squared error). The general form

of risk for such priors, and squared error loss, is Var(β|X)− C ′ · (C + Σ)−1 · C,

where C and C are the appropriate covariance vector and matrix from the prior

distribution, cf. section 5. We suggest to pick the treatment assignment which

minimizes this prior risk. In applying this method in Monte Carlo simulations

and to the project STAR data, we find gains in mean squared error, relative to

random assignment, which range from moderate to sizable, where the gains are

decreasing in sample size, increasing in the dimension of covariates, and increas-

ing in the explanatory power of covariates. Gains of 20% seem realistic in many

cases, corresponding to the expected gains if we were to increase sample size by

20%.

A possible objection to the practical feasibility of optimal designs might be a po-

litical perception that randomized assignments are fair, while assignment based

on covariates such as sex or race is not fair, in a similar way that “tagging” in

taxation is considered unfair.8 Note however, that optimal designs seek to bal-

ance the covariate distribution across treatments, leading to a more equitable

distribution of treatment across demographic or other groups, relative to random

assignments.

8I thank Larry Katz for pointing this out.
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APPENDIX A: HOW TO CHOOSE A PRIOR (FOR ONLINE PUBLICATION)

In this section we will discuss some common approaches to choosing prior moments for f . Fur-

ther background can be found in Williams and Rasmussen (2006, chapters 2 and 4), as well as

Wahba (1990, chapter 1). Throughout, we will maintain assumptions 1 through 9. We discuss

in particular how to make priors non-informative about key features of the data generating

process, and give a general characterization in theorem 7 below.

The next subsection briefly discusses the relationship between Gaussian process regression and

penalized regression. We then discuss three classes of priors: (i) Linear models, (ii) priors with

a squared exponential covariance kernel, and (iii) priors which combine a general covariance

kernel with a linear model where the prior is non-informative about the coefficients of the linear

model. Our recommended prior will be a combination of these three, for reasons discussed

below. We finally discuss how to choose E[σ2] given a prior for f , based on the expected share

of variation in potential outcomes explained by the observed covariates.

Gaussian process regression and penalization

It is useful to note that the best linear predictor f̂d for fd given X,D, Y can be recast as the

solution to a penalized regression. Let9

fd(Xi) = E[Y di |Xi, θ] = f(Xi, d)

fd = (fd(Xi) : i = 1, . . . , n).

9Note that fd is not a subvector defined by d, in contrast to Y d.
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Under assumptions 1 through 9,

(19) f̂d = argmin
fd

1

σ2

∑
i:Di=d

(Y i − fd(Xi))
2 + ‖fd‖2d,

with

‖fd‖2d := fd′ ·Var−1(fd) · fd = fd′ · C−1 · fd

As far as estimation of f is concerned, the choice of a prior thus amounts to the choice of a

penalty functional (seminorm) ‖fd‖2d. The corresponding estimator of the conditional average

treatment effect is then given by

β̂ =
1

n

∑
i

[f̂1(Xi)− f̂0(Xi)].

Linear models

For an appropriate definition of Xi which might include interactions, powers, transformations

etc., assume that

Y di = Xiβ
d + εdi

E[βd|X] = 0

Var(βd|X) = Σβ

Var(εd|X,βd) = σ2I.

In our previous notation, we have f(Xi, d) = Xiβ
d. This implies C(x1, x2) = x′1 ·Σβ · x2, and

thus

C = XΣβX
′.

In this setup, the posterior expectation of βd is given by the solution to the penalized regression

β̂d = argmin
βd

1

σ2

∑
i:Di=d

(Y i −X′iβd)2 + ‖βd‖2d,

where ‖βd‖2d = βd′ · Σ−1
β · β

d. The solution to this penalized regression10 is given by

β̂d =
(
Xd′Xd + σ2Σ−1

β

)−1
Xd′Y d,

where as before Xd and Y d denote the appropriate submatrix and vector. This implies

Var(β̂d − βd|X,D) =

(
1

σ2
Xd′Xd + Σ−1

β

)−1

.

We get, finally, that the posterior expectation of the conditional average treatment effect is

10This type of regression is also known as “ridge regression,” and the method of penalization
is called “Tikhonov regularization” in some contexts (cf. Carrasco, Florens and Renault, 2007).
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given by

β̂ = X
(
β̂1 − β̂0

)
,

where X = 1
n

∑
iXi, implying

(20) R(d, β̂|X) = E
[
(β̂ − β)2|X,D

]
= X ·

(
Var(β̂1 − β1|X,D) + Var(β̂0 − βd|X,D)

)
·X′

= σ2 ·X ·
((

X1′X1 + σ2Σ−1
β

)−1
+
(
X0′X0 + σ2Σ−1

β

)−1
)
·X′.

This is the objective function we want to minimize through choice of the design D, which

enters this expression through the matrices

Xd′Xd =
∑
i

1(Di = d)XiX
′
i.

Note also that the “non-informative” limit Σ−1
β → 0 has a particularly nice interpretation here:

it implies that the β̂d and thus β̂ are given by simple OLS regression. The risk in this case is

equal to the standard OLS variance of β̂.

Squared exponential covariance function

A common choice of prior in the machine learning literature (cf. Williams and Rasmussen,

2006) is defined by the covariance kernel

(21) C(x1, x2) = exp

(
−

1

2l2
‖x1 − x2‖2

)
,

where ‖.‖ is some appropriately defined norm measuring the distance between covariate vectors.

The parameter l determines the length scale of the process. Figure 1 shows draws from such a

process for x ∈ [−1, 1] and various length scales l.

This prior does not restrict functional form and can accommodate any shape of fd. In this

sense it is a nonparametric prior. One attractive feature of the squared exponential covariance

kernel is that is puts all its mass on smooth functions, in the sense that fd is infinitely mean-

square differentiable. A function is mean-square differentiable if the normalized differences of

f converge in L2 to some function ∂f(x)/∂x,

f(x+ ε)− f(x)

‖ε‖
→L2 ∂f(x)

∂x

as ‖ε‖ → 0 , cf. Williams and Rasmussen (2006, p81). Infinite mean square differentiability

holds for all processes that have a covariance kernel C which is infinitely differentiable around

points where x1 = x2.

The length scale l, and more generally the norm ‖x1 − x2‖, determines the smoothness of

the process, where larger length scales correspond to smoother processes. One measure of

smoothness are the expected number of “upcrossings” at 0, i.e., the expected number of times

the process crosses 0 from below in the interval [0, 1]. For a one-dimensional process with
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squared exponential kernel, this number equals 1/(2πl), cf. again Williams and Rasmussen

(2006, p81).

Noninformativeness

Researchers might rightly be concerned if experimental estimates for parameters such as aver-

age treatment effects are driven by prior information. This suggests to consider priors which

are “non-informative” about the parameters of interest, while at the same time using our prior

assumptions about smoothness of the underlying functions fd.11 One way to formalize such

non-informativeness is to consider limit cases where the prior variance for the parameter of

interest goes to infinity, and to use the corresponding limit estimators and implied objective

functions for experimental design.

In particular, given a covariance kernel Kd for a stochastic process gd as well as a subset of

regressors x1, consider the process

Y di = gd(Xi) +X1,iβ
d + εdi

E[g] = 0

E[βd|X] = 0

E[ε] = 0

Cov(gd(x1), gd(x2)) = K(x1, x2)

Var(βd|X) = λΣβ

Var(εd|X,βd) = σ2I

βd ⊥ gd ⊥ ε.

For this process we get

Cd = Kd + λXd
1ΣβX

d′
1 ,

where the superscript d again denotes the appropriate submatrices. We will be interested in

particular in the case λ → ∞, where the prior over βd becomes non-informative. Let gd =
1
n

∑
i g(Xi), f

d
= gd +Xβd, Kd

y = Kd + σ2I, and K
d

= Cov(Y d, gd|X,D).12

Theorem 7 (BLP and MSE for partially non-informative priors)

For this model, the best linear predictor β̂ is equal to β̂∞ = f̂
1

∞ − f̂
0

∞ up to a remainder of

order O(1/λ) as λ→∞, given X,D and Y , where

(22) f̂
d

∞ = X1β̂
d
∞ +K

d
Kd,−1
y (Y d −Xd

1 β̂
d
∞)

and

(23) β̂d∞ =
(
Xd′Kd,−1

y Xd
)−1

Xd′Kd,−1
y Y d.

11And note that any nonparametric estimation method has to use assumptions about
smoothness!

12Results somewhat similar to the following theorem have been shown by O’Hagan and
Kingman (1978), as well as by Wahba (1990, p19).
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For any λ, we have

f
d − f̂

d

∞ = gd −Kd
Kd,−1
y (g + ε)

− (X −Kd
Kd,−1
y X) ·

(
Xd′Kd,−1

y Xd
)−1

Xd′Kd,−1
y (g + ε)

and

(24) R(d, β̂∞|X) = Var(f
1 − f̂

1

∞|X) + Var(f
0 − f̂

0

∞|X)

where

Var(f
d − f̂

d

∞|X) = Var(gd)−Kd
Kd,−1
y K

d

+ (X −Kd
Kd,−1
y X) ·

(
Xd′Kd,−1

y Xd
)−1

(X −Kd
Kd,−1
y X)′.(25)

Proof: All moments in this proof implicitly condition on X and D. To show the first claim,

let hd = Xdβd, so that Y d = gd + hd + εd and Var(Y d) = Var(gd) + Var(hd) + Var(εd). The

best linear predictor for f
d

is given by

f̂
d

= Cov(f
d
, Y d) Var(Y d)−1Y d

= Cov(h
d
, Y d) Var(Y d)−1Y + Cov(gd, Y d) Var(Y d)−1Y d

Straightforward algebra shows that

Var(Y d)−1 =
(

Var(gd) + Var(εd)
)−1 (

I −Var(hd) Var(Y d)−1
)

so that

Cov(gd, Y d) Var(Y d)−1Y =

Cov(gd, Y d)
(

Var(gd) + Var(εd)
)−1 (

Y d − Cov(hd, Y d) Var(Y d)−1Y d
)
.

This proves the decomposition

f̂
d

= Xβ̂d +K
d
Kd,−1
y (Y d −Xd

1 β̂
d),

where ĥd = Xd
1 β̂

d is given by

β̂d =

(
Xd′Kd,−1

y Xd +
1

λ
Σd−1
β

)−1

Xd′Kd,−1
y Y.

This is the penalized GLS estimator. To see this latter equality, note that after pre-multiplying

X and Y by K
d,−1/2
y , this model satisfies the assumptions of the linear model considered above.

The limiting estimators f̂
d

∞ and β̂d∞, as well as the form of f
d − f̂

d

∞ now follow immediately.

It remains to derive R(d, β̂∞|X). From the model where we had Y d = gd + εd we know that

Var(gd −Kd
Kd,−1
y (g + ε)) = Var(gd)−Kd

Kd,−1
y K

d
.
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We furthermore know, by the properties of best linear predictors, that

Cov(gd −Kd
Kd,−1
y (g + ε), (g + ε)) = 0.

These considerations and some algebra immediately yield Var(f
1 − f̂

d

∞). �

Remark: Note that the limiting estimator of theorem 7 can be understood as penalized

regression, where the penalization corresponds to the seminorm

(26) ‖fd‖2 = min
β̂

(fd −Xdβ̂)′ ·Kd,−1
y · (fd −Xdβ̂).

This is the squared Kd,−1
y norm of the projection of fd onto the orthocomplement of Xd with

respect to the Kd,−1
y inner product.

Remark: Note also that the risk function R(d, β̂∞|X) is given by the risk function for the

model without the term Xβd, plus a “correction term” of the form

(X −Kd
Kd,−1
y X) ·

(
Xd′Kd,−1

y Xd
)−1

(X −Kd
Kd,−1
y X)′

for d = 1, 2.

Choice of σ2

For all models considered above, we have to choose σ2. A tractable way of doing so is through

picking the expected share of variation in the outcome data which is explained by the covariates

given θ, for a given treatment level. Under assumptions 1 through 9, this share is given by

R2 =
1

1 + σ2/Var(fd(Xi)|X, θ)
,

so that

σ2 =
1−R2

R2
Var(fd(Xi)|X, θ).

Here Var(fd(Xi)|X, θ) = fd′Mfd/n is the sample variance of fd, with M defined as the

projection matrix M = I − ee′/n and e = (1, . . . , 1)′. This implies

E[Var(fd(Xi)|X, θ)|X] = E[tr(fd′Mfd/n)|X] = tr(M · E[fdfd′|X])/n

= tr(M · C)/n = (trC − e′C/n)/n.

This suggests picking σ2 corresponding to the prior beliefs regarding R2, i.e.,

σ2 = E

[
1−R2

R2

]
· (trC − e′C/n)/n.

For the case of stationary covariance functions this simplifies further, since in that case tr(C)/n =

Cii for all i. Note also that this formula remains unchanged if we make the prior non-informative

about f
d
.



40 MAXIMILIAN KASY

We conclude this section by summarizing our suggested prior.

Suggested prior

1. Normalize the variance of all covariates to 1.

2. Let K(x1, x2) = exp
(
− 1

2
‖x1 − x2‖2

)
where ‖.‖ is the Euclidian norm.

3. Take σ2 = 1−R2

R2 · (trK − e′K/n)/n, based on your best guess for R2.

4. Consider the non-informative limit, w.r.t. Var(βd), of the model

Y di = βd + gd(Xi) + εdi ,

where gd is distributed according to the covariance kernel K.

According to theorem 7, this prior implies a best linear predictor for β of

(27) β̂1
∞ − β̂0

∞ +K
1
K1,−1
y (Y 1 − eβ̂1

∞)−K0
K0,−1
y (Y 0 − eβ̂0

∞)

where

(28) β̂d∞ =
(
e′Kd,−1

y e
)−1

e′Kd,−1
y Y d.

is a weighted average of the observations for treatment d. The expected mean squared

error equals

Var(β|X,D, Y ) = Var(g1|X) + Var(g0|X)−K1
K1,−1
y K

1 −K0
K0,−1
y K

0

+ (1−K1
K1,−1
y e) ·

(
e′Kd,−1

y e
)−1

(1−K1
K1,−1
y e)′

+ (1−K0
K0,−1
y e) ·

(
e′K0,−1

y e
)−1

(1−K0
K0,−1
y e)′.(29)

Possible modifications:

1. Change the length scale for variables that are expected to have a more

nonlinear impact by multiplying these variables by 2.

2. Make the prior non-informative about the slopes of some or all covari-

ates; cf. theorem 7.
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APPENDIX B: DISCRETE OPTIMIZATION ALGORITHMS (FOR ONLINE

PUBLICATION)

The main computational challenge in implementing the approach proposed in this paper lies

in solving the discrete optimization problem

d∗ ∈ argmin
d∈{0,1}n

RB(d, β̂|X).

For the setting considered in section 5, the risk RB(d, β̂|X) involves inverting matrices of size

of order n×n since RB(d, β̂|X) = Var(β|X)−C′ · (C+ Σ)−1 ·C. This is in itself not too hard,

but it takes long enough to render infeasible brute-force enumeration and evaluation at all 2n

possible designs d ∈ {0, 1}n.

There is a growing literature in applied mathematics and computer science which studies

algorithms for discrete optimization problems such as this one. An overview of this literature

is beyond the scope of the present paper. In our Matlab implementation (available at Kasy

2013) we use a combination of the following three algorithms.

(1) Random search: Draw m vectors d uniformly at random from the set {0, 1}n (or an

appropriately budget-constrained set), and take d̂∗ to be the risk minimizing among these m

vectors. If we choose m =
log(1−p)
log(1−q) , then d̂∗ will be among the best 2n · q of possible treatment

assignments with probability p.

(2) Greedy algorithm: Pick a starting point d1. Find the vector d in a neighborhood of d1

which minimizes RB(d, β̂|X). Here we understand “neighborhood” to mean the set of vectors

which differ in at most k components. Take the minimizer from this neighborhood as your

new starting point, and iterate. Keep iterating until either a local minimum is found, or a pre-

specified number of iterations is reached. In our applications, the greedy algorithm performed

very well in terms of finding actual minima, but it also was quite slow.

(3) Simulated annealing: This is one of the most popular algorithms for discrete optimization

and was introduced by Kirkpatrick, Vecchi et al. (1983). The intuition and name for this

method came from a method in metallurgy where a metal is made to crystalize in a controlled

manner by heating and controlled cooling. The algorithm uses noisy perturbations to a greedy

search, to avoid getting stuck in a local minimum. The noise is reduced in later iterations so

the algorithm converges. The algorithm, as we implemented it, is based on the following steps:

1. Pick a starting point d1.

2. Pick a random d in a neighborhood of d1, and evaluate RB(d, β̂|X) at d.

3. Take d as your new starting point with a probability which is decreasing in RB(d, β̂|X),

increasing in RB(d1, β̂|X), and decreasing in the number of iterations already made

relative to the total number of iterations which are going to be made.13 If d is not taken

as new starting point, stay at d1.

4. Iterate for a prespecified total number of iterations.

13The probability of switching which we use is given by min(exp(−(RB(d)−RB(d1))/T ), 1),
where T = .5 · RB(d0) · (m − i)/m, with m the total number of iterations and i the current
iteration.
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APPENDIX C: A BRIEF REVIEW OF THE OPTIMAL EXPERIMENTAL DESIGN

LITERATURE (FOR ONLINE PUBLICATION)

To put the results of this paper into context, we briefly review the approach taken in the

literature on optimal experimental design. A general introduction can be found in Cox and

Reid (2000, chapter 7); a concise overview is given in Dawid and Sebastiani (1999).14

Consider the linear regression model Y = Xβ + ε, where the residuals are uncorrelated and

homoskedastic, Var(ε) = σ2I. The variance of the standard OLS estimator of β is given by

Var(β̂) = σ2(X′X)−1 =
σ2

n
M(ξ)−1

where

M(ξ) =

∫
xx′dξ(x)

is the “design second moment,” which is proportional to the Fisher information, and

ξ(x) =
1

n

∑
i

δxi (x)

is the design measure. Optimal experimental design is concerned with minimizing various

functionals of M(ξ)−1 through choice of the design measure ξ, subject possibly to constraints

on the support X and other features of feasible design measures. Optimal design theory usually

neglects the constraint that, in finite samples, ξ has to be a measure consisting of n point masses

of size 1/n. The optimal design measures obtained can thus be considered as an asymptotic

approximation.

Two important optimality criteria are “D-optimality,” which is concerned with maximizing

det(M(ξ)), and “G-optimality,” which is concerned with minimizing the worst case variance of

prediction,

d(ξ) := sup
x∈X

x′M(ξ)−1x.

The General Equivalence Theorem of experimental design states that those two criteria are

in fact optimized by the same design measure ξ∗, and that d(ξ∗) = dim(β). The General

Equivalence Theorem was first shown by Kiefer and Wolfowitz (1959). Other optimality criteria

discussed in the literature include “DA optimality,” which is concerned with minimizing the

determinant of the variance of a linear combination of parameters Aβ, and “A-optimality,”

which is concerned with minimizing tr(M(ξ)−1).

The literature discusses many generalizations of the basic setting reviewed here. In particular,

there is a literature on optimal nonlinear design, which considers optimization of functionals

of the information matrix in more general, nonlinear, parametric models.

14It should be emphasized that most of this literature focuses on a different type of setting
than the present paper, considering parametric models, without covariates or at most discrete
covariates, taking a frequentist approach, and minimizing functionals of the variance matrix
of some parameter vector of interest. In contrast the present paper considers nonparametric
models, allows for continuous covariates, takes an explicitly decision theoretic perspective, and
minimizes the risk of estimating the average treatment effect.



EXPERIMENTAL DESIGN 43

APPENDIX D: FIGURES AND TABLES

Figure 1.— Draws from Gaussian processes with squared exponential covari-
ance function
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Notes: This figure shows draws from Gaussian processes with covariance kernel
C(x1, x2) = exp

(
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2l2 |x1 − x2|
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)
, with the length scale l ranging from 0.25 to 2.
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Figure 2.— Draw from a Gaussian process with squared exponential covari-
ance function
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Notes: This figure shows a draw from a Gaussian process with covariance
kernel C(x1, x2) = exp

(
− 1

2l2 ‖x1 − x2‖
2
)
, where l = 0.5 and X ∈ R2.

Figure 3.— Example of optimal design and random design
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Notes: This figure shows designs for a sample of size 50 of two standard normal
covariates. Dots which are ∗-shaped correspond to units receiving treatment
(Di = 1), o-shaped dots are controls (Di = 0). The left hand figure shows an
optimal design for σ2 = 4 and the squared exponential kernel prior discussed in
appendix A. The right hand figure shows a random design for the same data.
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TABLE I

The expected mean squared error of randomized relative to optimal designs

data parameters prior
n σ2 dim(X) linear model squared exponential non-informative
50 4.0 1 1.05 1.03 1.05
50 4.0 5 1.19 1.02 1.07
50 1.0 1 1.05 1.07 1.09
50 1.0 5 1.18 1.13 1.20
200 4.0 1 1.01 1.01 1.02
200 4.0 5 1.03 1.04 1.07
200 1.0 1 1.01 1.02 1.03
200 1.0 5 1.03 1.15 1.20
800 4.0 1 1.00 1.01 1.01
800 4.0 5 1.01 1.05 1.06
800 1.0 1 1.00 1.01 1.01
800 1.0 5 1.01 1.13 1.16

Notes: This table shows the average ratio of the expected mean squared error
conditional on X, as given by equation (14), of random designs relative to
optimal designs, for covariate distributions with i.i.d. standard normal
components of X. The average is taken over random designs. The values 4 and
1 for σ2 correspond to an expected R2 of around .2 and .5 for the squared
exponential kernel prior. The priors considered are those discussed and
recommended in appendix A.
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TABLE II

The expected mean squared error of stratified relative to optimal designs

data parameters prior
n σ2 dim(X) linear model squared exponential non-informative
50 4.0 1 1.01 1.01 1.02
50 4.0 5 1.07 1.01 1.04
50 1.0 1 1.01 1.03 1.04
50 1.0 5 1.08 1.09 1.12
200 4.0 1 1.00 1.01 1.01
200 4.0 5 1.01 1.03 1.05
200 1.0 1 1.00 1.01 1.02
200 1.0 5 1.01 1.12 1.14
800 4.0 1 1.00 1.00 1.00
800 4.0 5 1.00 1.04 1.05
800 1.0 1 1.00 1.01 1.01
800 1.0 5 1.00 1.11 1.14

Notes: This table, analogously to table I, shows the average ratio of the
expected mean squared error conditional on X of stratified designs, stratifying
on the signs of all components of X, relative to optimal designs. Covariate are
distributed i.i.d. standard normal. The average is taken over stratified designs.

TABLE III

Robustness to the choice of prior

data parameters prior
n σ2 dim(X) linear model squared exponential non-informative
50 4.0 1 1.00 1.00 1.01
50 4.0 5 1.00 1.01 1.02
50 1.0 1 1.00 1.01 1.00
50 1.0 5 1.00 1.04 1.05
200 4.0 1 1.00 1.00 1.00
200 4.0 5 1.00 1.02 1.03
200 1.0 1 1.00 1.01 1.00
200 1.0 5 1.00 1.09 1.11
800 4.0 1 1.00 1.00 1.00
800 4.0 5 1.00 1.03 1.04
800 1.0 1 1.00 1.00 1.00
800 1.0 5 1.00 1.09 1.12

Notes: This table shows ratios of the expected mean squared error conditional
on X, as given by equation (14), for the same data generating processes as
table I. The ratios are taken between the posterior mean squared error under
prior A for the design which is optimal under prior B, relative to the design
which is optimal under prior A, where the priors A and B are distinguished by
the length scale for X1, see section 7 for details.
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TABLE IV

Covariate means for students assigned to small and regular classes

D = 0 D = 1
girl 0.47 0.49
black 0.37 0.35
birth date 1980.23 1980.30
free lunch 0.46 0.45
n 6316 2274

Notes: This table shows the means of various characteristics for students assigned to small
and regular classes. Note that the means are not expected to be equal, since randomization
took place on the school level, not in the entire sample. The variable “free lunch” is a proxy
for coming from a poor family, “birth date” equals year plus 0.25 × quarter of birth.

TABLE V

Covariate means for selected schools - actual versus optimal treatment
assignment

School 16
D = 0 D = 1 D∗ = 0 D∗ = 1

girl 0.42 0.54 0.46 0.41
black 1.00 1.00 1.00 1.00
birth date 1980.18 1980.48 1980.24 1980.27
free lunch 0.98 1.00 0.98 1.00
n 123 37 123 37

School 38
D = 0 D = 1 D∗ = 0 D∗ = 1

girl 0.45 0.60 0.49 0.47
black 0.00 0.00 0.00 0.00
birth date 1980.15 1980.30 1980.19 1980.17
free lunch 0.86 0.33 0.73 0.73
n 49 15 49 15

Notes: This table shows the means of some student characteristics for the actual treatment
assignment D, as well as the (close to) optimal treatment assignment D∗. Note that, as a
consequence of randomization, some covariate means are not balanced for the actual
assignment, while the optimal assignment aims for a similar distribution of covariates
between different treatment arms.
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