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Abstract

This paper develops a nonparametric approach to identification and estima-
tion of treatment effects on censored outcomes when treatment may be endoge-
nous and have arbitrarily heterogeneous effects. Identification is based on an
instrumental variable that satisfies the exclusion and monotonicity conditions
standard in the local average treatment effects framework. The paper proposes
a censored quantile treatment effects estimator, derives its asymptotic distri-
bution, and illustrates its performance using Monte Carlo simulations. Even
in the exogenous case, the estimator performs better in finite samples than
existing censored quantile regression estimators, and performs nearly as well
as maximum likelihood estimators in cases where their distributional assump-
tions hold. An empirical application to a subsidized job training program finds
that participation significantly and dramatically reduced the duration of jobless
spells, especially at the right tail of the distribution.

keywords: quantile regression, survival analysis, duration data, instrumental
variables, local average treatment effects

1 Introduction

Censored outcomes and endogenous treatments occur together often in many impor-

tant empirical settings. The response of survival times to a therapy, the effect of a

job training program on unemployment durations, the effect of unionization on es-

tablishment survival, and the effect of relief programs on time to mortgage default

are just a few of many examples where the observed outcome of interest is censored

and the treatment variable is likely to be endogenous.

1



Despite the prevalence of censored outcomes and endogenous treatments, iden-

tifying and estimating treatment effects in this setting without relying on strong

distributional assumptions has remained an unsolved problem. This paper remedies

this, developing an instrumental variables quantile treatment effects approach to iden-

tification and estimation of the effects of a binary endogenous regressor on a censored

outcome variable. The approach makes no distributional assumptions on the latent

uncensored outcome and allows for arbitrarily heterogeneous effects of treatment.

Identification is based on an instrumental variable that satisfies the familiar exclu-

sion and monotonicity conditions. The estimation procedure is based on standard

two-stage least squares (2SLS) estimates, is computationally attractive, and leads to

consistent and asymptotically normal estimates.

The procedure contributes to a large body of work dealing with censoring, with and

without endogeneity. It generalizes Tobin’s (1958) original framework, and Smith and

Blundell’s (1986) and Newey’s (1987) extensions allowing for endogeneity by relaxing

the strong parametric and distributional assumptions in the classical approach. It

extends the censored quantile regression methods of Powell (1986), Buchinsky and

Hahn (1998) and Chernozhukov and Hong (2002) by allowing for endogeneity, and

it complements the IV quantile approaches of Hong and Tamer (2003), Blundell and

Powell (2007), and Chernozhukov et al. (2011), which require a continuous regressor,

by covering the important binary treatment effects setting.

Even in a setting with an exogenous treatment, or in a linear simultaneous equa-

tions model where a simple Wald-like ratio of reduced form estimates identifies the

treatment effect, the proposed estimation procedure improves upon existing censored

quantile regression methods. The procedure sidesteps the computational burden and

finite-sample noise stemming from conditioning on estimated censoring probabilities

in Buchinsky and Hahn (1998) and Chernozhukov and Hong (2002), while still avoid-
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ing the well-known computational issues from the nonconvex objective function in

Powell’s (1986) estimator. The advantage stems from inverting straightforward 2SLS

estimates of conditional cdfs, rather than minimizing censored “check functions” to

obtain quantiles. The estimation is therefore simple, computationally attractive, and

based on standard estimation procedures.

This paper also contributes to the body of work on quantile treatment effects. It

extends the quantile treatment effects framework of Abadie et al. (2002) and Frölich

and Melly (2013) to account for censoring, and also takes a different approach to

estimation. Inverting cdf estimates obviates first stage nonparametric estimation and

issues with negative weights dealt with in those papers, in addition to efficiently

accounting for censoring, as described above. In obtaining quantiles by inverting cdf

estimates, this paper is similar to Frandsen et al. (2012), who proposed a quantile

treatment effects estimator for the regression discontinuity design. Their estimator

combines several intermediate nonparametric kernel-weighted local linear estimators

to estimate conditional quantiles at a boundary, and therefore converges at a slower,

nonparametric rate and is inconsistent under censoring. The estimator proposed in

this paper, by contrast, in addition to accounting for censoring, converges at the

parametric root-n rate, and requires no choice of kernel or bandwidth.

Finally, this paper contributes to the literature on treatment effects in duration

or survival models. Many compelling applications of censored methods involve du-

ration or survival times, since typically not all spells or lifetimes are completed at

the time of observation or follow up. Quantile methods are especially attractive for

duration models because they allow regressors’ impact on different features of the

duration distribution to be completely flexible, unlike accelerated failure time models

or proportional hazards models, which impose that regressors have a location shift

effect on a particular transformation of the duration distribution, a point made by
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Koenker and Geling (2001). More recent work on nonparametric identification of

mixed proportional hazard duration models has allowed more flexible specification of

treatment effects, at the cost of imposing separability or proportionality restrictions

on how unobserved heterogeneity impacts outcomes (Abbring and Van Den Berg,

2003). The methodology proposed in this paper builds on this research and offers an

alternative method of identification and estimation.

2 Statistical Framework

Consider a setting where a binary treatment, D, potentially affects a continuously

distributed outcome Y ∗ with support Y ⊆ R. Let Y ∗ (1) and Y ∗ (0) be poten-

tial outcomes with and without treatment. The realized outcome is Y ∗ = Y ∗ (D),

which, however, is not always observed. Let T be a (possibly random) censoring

point, beyond which the outcome is not observed. For example, T may be the time

elapsed between treatment assignment and follow-up. The observed outcome is then

Y := min {Y ∗, T}. Of interest is the effect of treatment on the distribution of latent

outcomes, that is, the comparison between the distributions of Y ∗ (0) and Y ∗ (1).

3 Identification

Two aspects of the treatment effects setting here pose challenges for identification:

endogeneity and censoring. Endogenous treatment status means D may be correlated

with potential outcomes Y ∗ (0) and Y ∗ (1), confounding comparisons conditional on

D. Suppose, however, that a binary instrumental variable Z is available that partially

determines treatment status. For example, Z could correspond to a financial incentive

to participate in a job training program that was offered to a random subset of
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individuals. Let D (0) and D (1) be treatment status when the instrument is zero or

one. The instrument is suitable if it is independent of latent potential outcomes and

if it induces individuals to receive treatment with some positive probability, but never

induces individuals not to receive treatment. These requirements are stated formally

in the following.

Condition 1 (a) (exclusion) Conditional on T , the quadruple (Y ∗ (0) , Y ∗ (1) , D (0) , D (1))

is jointly independent of Z; and

(b) (monotonicity) D (0) ≤ D (1) a.s. and Pr {D (0) < D (1) |T} > 0.

This condition corresponds to the standard requirement for a valid instrument in

the local average treatment effect (LATE) framework (Angrist et al., 1996), with the

only modification of conditioning on the censoring point T . The first part implies that

the instrument does not depend on potential outcomes and has no effect on outcomes

other than perhaps through the treatment. The second part says the instrument

induces some individuals to take the treatment, referred to here as compliers, denoted

by C := {D (0) < D (1)}, but induces no individual not to take the treatment.

The parameters of interest are the local quantile treatment effects, or the difference

between the quantiles of the treated and untreated potential outcomes for compliers:

LQTE (τ) := QY ∗(1)|C (τ)−QY ∗(0)|C (τ) .

The local quantile treatment effects summarize the effects of treatment on the dis-

tribution of latent outcomes among those whose treatment status is affected by the

instrument. They correspond to effects on the distribution of outcomes, not the dis-

tribution of treatment effects. In settings where welfare comparisons under different
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alternatives are of interest, the quantile treatment effects, or comparisons of marginal

outcome distributions, are precisely what is relevant Atkinson (1970).

In the absence of censoring, Condition 1 would be sufficient to identify the quantile

treatment effects, as in Frölich and Melly (2013). Censoring introduces an additional

identification challenge, however, because the probability of censoring is related to

potential outcomes. This challenge to identification can be overcome if the censoring

point, T , is not related to latent potential outcomes, or, formally:

Condition 2 Among compliers (that is, conditional on C), latent potential outcomes

(Y ∗ (0) , Y ∗ (1)) are jointly independent of T .

This condition is standard in censoring models: it is equivalent to Tobin’s (1958)

condition on censoring points, and includes the fixed-censoring settings of Powell

(1986), Hong and Tamer (2003), and Blundell and Powell (2007) as a special case.

This condition is also assumed in Chernozhukov and Hong (2002) and Chernozhukov

et al. (2011). In the examples given at the beginning of the introduction, where the

outcome is a duration, it is satisfied if the elapsed time between the intervention

or treatment and the survey or follow-up time were chosen without knowledge of

the latent outcome. It would be violated if the research design involved follow-up

times that were chosen in a way that depended on latent outcomes directly, or on

information unavailable to the analyst that was related to latent outcomes. For

example, the condition would likely be violated if patients who were deemed likely

(on the basis of information unobserved by the analyst) to have longer survival times

were followed up with later.

Given a suitable instrument Z and independent censoring points, the local quantile

treatment effects are identified, as the theorem below establishes.
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Theorem 3 Suppose Conditions 1 and 2 hold. Then the distribution of latent poten-

tial outcomes Y ∗ (0) and Y ∗ (1) among compliers are identified as

FY ∗(0)|C (y) =

E [1 (Y ≤ y) (1−D) |Z = 1, T > y]− E [1 (Y ≤ y) (1−D) |Z = 0, T > y]

E [1−D|Z = 1, T > y]− E [1−D|Z = 0, T > y]
, (1)

FY ∗(1)|C (y) =

E [1 (Y ≤ y)D|Z = 1, T > y]− E [1 (Y ≤ y)D|Z = 0, T > y]

E [D|Z = 1, T > y]− E [D|Z = 0, T > y]
(2)

for y < ȳ := sup {supp (T )}, where 1 (·) is the indicator function. The local quantile

treatment effect is therefore identified for τ < τ̄ := min
d

{
FY ∗(d)|C (ȳ)

}
as

LQTE (τ) = F−1Y ∗(1)|C (τ)− F−1Y ∗(0)|C (τ) .

Proof. Define Ỹ = 1 (Y ≤ y)D so that Ỹ (1) = 1 (Y (1) ≤ y) and Ỹ (0) = 0. Then

the right-hand side of the identification result (2) can be written

E
[
Ỹ |Z = 1, T > y

]
− E

[
Ỹ |Z = 0, T > y

]
E [D|Z = 1, T > y]− E [D|Z = 0, T > y]

,

which, by Imbens and Angrist (1994) Theorem 1, is equal to E
[
Ỹ (1)− Ỹ (0) |C, T > y

]
,

since Condition 1 (a) and (b) satisfy their Conditions 1 and 2, conditional on T > y.

But since Ỹ (0) = 0, this is equal to

E
[
Ỹ (1) |C, T > y

]
= E [1 (Y (1) ≤ y) |C, T > y]

= E [1 (Y ∗ (1) ≤ y) |C, T > y]

= E [1 (Y ∗ (1) ≤ y) |C] ,
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where the second line follows because conditional on T > y the event {Y (1) ≤ y} is

equivalent to {Y ∗ (1) ≤ y}, and the third line follows from the censoring point inde-

pendence in Condition 2. This establishes result (2). A parallel argument, exchanging

D for 1−D, establishes (1), completing the proof.

The result shows that not only are the local quantile treatment effects identified,

but so are the marginal distributions of compliers’ potential outcomes, evaluated up

through the support of the censoring points, T . Thus distributional treatment effects

(Chernozhukov et al., 2013; Belloni et al., 2014), measures of stochastic dominance,

and other functionals of the marginal distributions of potential outcomes are also

identified. The quantile treatment effects are identified for quantile indices in the set

(0, τ̄). The upper limit τ̄ is identified by the data, and therefore can be determined

during the estimation process described below.

4 Estimation and Inference

The proposed estimation procedure consists of inverting two-stage least squares (2SLS)

estimates of FY ∗(d)|C (y) to obtain quantiles, and to form the estimated quantile treat-

ment effect as the difference in the quantiles. Given a sample of n observations on

{Yi, Ti, Di, Zi}ni=1, the cdf FY ∗(1)|C (y) is estimated via 2SLS with dependent variable

1 (Yi ≤ y)Di, endogenous regressor Di, and instrument Zi, restricting to the subsam-

ple where Ti > y. Defining the n × n selection matrix with ones along the diagonal

corresponding to observations where Ti > y and zeros elsewhere as Ω (y), letting Z be

an n×2 matrix with a columns of ones and observations of Zi, letting XD be similar,

but with observations of Di in the second column, and letting 1y,D be an n-vector of
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observations of 1 (Yi ≤ y)Di, the estimator can be expressed formally as:

 â1 (y)

F̂Y ∗(1)|C (y)

 = (Z′Ω (y) XD)
−1

Z′Ω (y) 1y,D. (3)

The proposed estimator for FY ∗(0)|C (y) is also in 2SLS form. Defining X1−D and

1y,1−D similarly to the above, but substituting 1 − Di for Di, the estimator can be

written  â0 (y)

F̂Y ∗(0)|C (y)

 = (Z′Ω (y) X1−D)
−1

Z′Ω (y) 1y,1−D. (4)

The estimated quantiles are then obtained by inverting the 2SLS cdf estimates:

Q̂Y ∗(d)|C (τ) = inf
{
y : F̂Y ∗(d)|C (y) ≥ τ

}
, (5)

and finally the estimated local quantile treatment effects are obtained as the differ-

ence:

L̂QTE (τ) = Q̂Y ∗(1)|C (τ)− Q̂Y ∗(0)|C (τ) . (6)

As just-identified instrumental variables estimators with a binary instrument, the

2SLS estimates (3) and (4) are equivalent to Wald estimators corresponding to the

sample analogs of (2) and (1), and thus under regularity conditions are consistent

and asymptotically normal pointwise in y (Imbens and Angrist, 1994). The following

theorem establishes that the estimators regarded as functions of y also converge in

distribution uniformly in y.

Theorem 4 (CDF Estimator Process Convergence) Suppose Conditions 1 and
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2 hold. Then the vector of potential outcome cdf estimator processes

 √n
(
F̂Y ∗(0)|C (y)− FY ∗(0)|C (y)

)
√
n
(
F̂Y ∗(1)|C (y)− FY ∗(1)|C (y)

)


weakly converges jointly to tight Gaussian elements in `∞ (Y ∩ (−∞, ȳ)) with zero

mean functions and covariance functions vd,d̃ (y, ỹ) := Jd (y) Σ (y, ỹ) Jd̃ (ỹ)′, where the

Jacobians Jd (y) are defined as

J1 (y) =
1

∆p (y)

(
1 0 −FY ∗(1)|C (y) −1 0 FY ∗(1)|C (y)

)
J0 (y) =

1

∆p (y)

(
0 −1 FY ∗(0)|C (y) 0 1 −FY ∗(0)|C (y)

)

for ∆p (y) = E [D|Z = 1, T > y]−E [D|Z = 0, T > y], and the inner covariance func-

tion Σ (y, ỹ) is block diagonal with upper block

Pr (T ≥ y ∧ ỹ)−1 Pr (Z = 1)−1Cov (W (y) ,W (ỹ) |Z = 1, T > y ∨ ỹ)

and lower block

Pr (T ≥ y ∧ ỹ)−1 Pr (Z = 0)−1Cov (W (y) ,W (ỹ) |Z = 0, T > y ∨ ỹ) ,

and W (y) =

(
1 (Y ≤ y)D 1 (Y ≤ y) (1−D) D

)′
.

Proof. See the Appendix.

This result along with the following regularity condition sets the stage for estab-

lishing the limiting distribution of the quantile treatment effects estimator (6).

A1 For d ∈ {0, 1}, potential outcomes Y ∗ (d) have continuous densities fY ∗(d)|C (y)

that are bounded away from zero at QY ∗(d)|C (τ) uniformly in τ ∈ (0, τ̄).
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This condition ensures that quantiles are uniquely defined over the identified set

of quantile indices, and implies that a functional delta method can be applied to the

cdf estimators to establish the limiting distribution of the quantile treatment effects

estimator process, as the following result shows:

Corollary 5 (LQTE Estimator Process Convergence) Suppose Conditions 1 and

2 and assumption A1 hold. Then the local quantile treatment effects estimator pro-

cess
√
n
(
L̂QTE (τ)− LQTE (τ)

)
weakly converges to a tight Gaussian element in

`∞ ((0, τ̄)) with zero mean function and a covariance function given by c′Λ (τ, τ̃) c for

c =

(
1 −1

)′
, where Λ (τ, τ̃) =

 vq1,1 (τ, τ̃) vq1,0 (τ, τ̃)

vq1,0 (τ, τ̃) vq0,0 (τ, τ̃)

 , and

vq
d,d̃

(τ, τ̃) : =

fY ∗(d)|C
(
QY ∗(d)|C (τ)

)−1
fY ∗(d̃)|C

(
QY ∗(d̃)|C (τ̃)

)−1
vd,d̃

(
QY ∗(d)|C (τ) , QY ∗(d̃)|C (τ̃)

)
.

Proof. See the Appendix.

One method of inference is to consistently estimate the elements of the variance-

covariance function in this result. The elements that need to be estimated are the

covariance matrices of W (y) =

(
1 (Y ≤ y)D 1 (Y ≤ y) (1−D) D

)′
conditional

on Z and T ≥ y, the cdfs of potential outcomes, FY ∗(d)|C (y), and the densities of

potential outcomes fY ∗(d)|C (y). The conditional covariance matrices of W (y) can be

simply estimated using observed sample conditional covariances. The cdfs of potential

outcomes are estimated as an intermediate step of the quantile treatment effects esti-

mation. The densities of potential outcomes can be estimated via 2SLS analogously
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to the cdfs:  â1 (y)

f̂Y ∗(1)|C (y)

 = (Z′Ω (y) XD)
−1

Z′Ω (y) Kh,y,D,

 â0 (y)

f̂Y ∗(0)|C (y)

 = (Z′Ω (y) X1−D)
−1

Z′Ω (y) Kh,y,1−D,

where Kh,y,D is a vector containing observations on 1
h
K
(
y−Yi

h

)
Di for a kernel density

function K and suitable bandwidth h, and Kh,y,1−D is defined similarly, or, alterna-

tively, using the procedure in Imbens and Rubin (1997). Combining these elements

provides a consistent estimator of the limiting variance-covariance function, and hy-

pothesis tests and confidence intervals can be constructed invoking the Normal ap-

proximation.

The bootstrap provides an alternative inference method. The validity of the boot-

strap in this setting follows from the fact that the quantile treatment effect estima-

tor (6) is a Hadamard differentiable function of estimators whose processes jointly

converge in distribution (as Theorem 4 establishes) and therefore a bootstrap delta

method applies (van der Vaart and Wellner, 1996, Theorem 3.9.11).

The estimation can be refined in several straightforward ways that may improve

performance in finite samples. First, the quantile estimates (5) or the cdf estimates

(3) and (4) can be rearranged to ensure they are monotone (Chernozhukov et al.,

2010). Doing so does not change the limiting distribution, but may improve finite

sample properties and facilitate inverting the cdf estimates. Second, covariates can be

incorporated for identification or precision in the estimation of the cdfs via propensity

score matching, similar to Frölich and Melly’s (2013) procedure for weighted quantile

regression.
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5 Simulations

This section illustrates through Monte Carlo simulations the finite-sample properties

of the proposed censored quantile treatment effects estimator (CQTE) and compares

it to ordinary least squares (OLS), two-stage least squares (2SLS), tobit, IV tobit

(Newey, 1987), and Powell’s (1986) censored quantile regression estimator.

The simulations use the following data generating process. The untreated po-

tential outcome is distributed as Y ∗ (0) ∼ N (0, σ2
0) and the treated potential out-

come is constructed as Y ∗ (1) = Y ∗ (0) + δ + ε, where ε ∼ N (0, σ2
ε) independently

of Y ∗ (0) and δ is a constant. This includes homoskedasticity and constant treat-

ment effects as a special case when σ2
ε = 0. The instrument Z is distributed as

a Bernoulli random variable with parameter one-half, independent of Y ∗ (0) and ε.

Treatment status exhibits negative selection: potential treatment status for Z = z

is D (z) = 1 (ρY ∗ (0) + εD ≤ γ (z − 1/2)), where εD ∼ N (0, σ2
D) independently of

(Y ∗ (0) , ε, Z), γ is a constant that governs the strength of the instrument, and

ρ ∈ [0, 1]. The special case of ρ = 0 corresponds to an exogenous treatment. In

this setup, the local average treatment effect (LATE) is equal to δ, the average treat-

ment effect (ATE). Finally, outcomes are right-censored above T which is set to be a

constant in the simulations to accomodate comparisons with Powell’s (1986) estima-

tor, which assumes fixed censoring.

The estimators’ performance will be compared under several scenarios with dif-

fering degrees of heteroskedasticity, endogeneity, and censoring. The scenarios are

described in Table 1. All parameters other than those defined in the table are set

to (σ2
0 = 1, δ = 1, σ2

D = 1, γ = 3) with a sample size of n = 1, 000 across all scenarios.

In all cases the quantile estimators will estimate .5-quantile treatment effect, which

for the simulated data generating process is equal to LATE. The simulations were
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carried out using Stata. Software implementing the estimation procedure is available

from the author upon request.

Table 1: Monte Carlo Simulation Scenarios
Scenario Heteroskedasticity? Endogeneity? Parameters
1. no no σ2

ε = 0, ρ = 0, T = 2
2. no yes σ2

ε = 0, ρ = 1, T = 2
3. yes yes σ2

ε = 1, ρ = 1, T = 2
4. yes yes σ2

ε = 1, ρ = 1, T = 1

The simulations show that the censored quantile treatment effects (CQTE) proce-

dure has minimal bias and good mean squared error across all scenarios, and substan-

tially outperforms all other methods in terms of both bias and mean squared error

when there is heteroskedasticity, endogeneity, and censoring. This is not surprising,

since none of the other methods are consistent in a treatment effects setting with het-

eroskedasticity, endogeneity, and censoring. Even when the treatment is exogenous

and latent outcomes are normally distributed, however, the estimator performs better

in terms of bias and mean square error than other distribution-free methods, such as

Powell’s (1986) censored least absolute deviations (CLAD) and performs nearly as

well as Tobit, the maximum likelihood estimator in this case. These results can be

seen in Table 2, which reports the simulated bias and mean squared error across all

scenarios and for all estimators based on 500 iterations. The results for Scenario 1,

in the first two rows of the table, show that under exogeneity and homoskedasticity,

where Tobit is the MLE, CQTE performs nearly as well in terms of bias and MSE as

Tobit, and substantially better than CLAD. When endogeneity is introduced, in Sce-

nario 2, IV Tobit is asymptotically efficient, but CQTE performs nearly identically,

while all other estimators are, of course, severely biased. In the third scenario the

outcome variable is heteroskedastic, violating the Tobit assumptions, and only CQTE

remains unbiased. The final scenario pushes the limits of identification, introducing
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severe censoring, so the estimated median treatment effect is at the boundary of the

identified set. Even in this extreme case, CQTE has a bias of only around 5 percent

of the magnitude of the true effect, and small MSE.

Table 2: Simulated Bias and Mean Squared Error

Scenario
Endo-
geneity

Het-
erosk. CQTE OLS 2SLS Tobit IV Tobit CLAD

1 N N Bias -0.0007 -0.0737 - 0.0016 - 0.0025
MSE 0.0062 0.0089 - 0.0042 - 0.0129

2 Y N Bias 0.0028 -0.6583 -0.0380 -0.6396 0.0099 -0.6016
MSE 0.0079 0.4363 0.0084 0.4125 0.0078 0.3741

3 Y Y Bias -0.0058 -0.7500 -0.1616 -0.6749 -0.0361 -0.6180
MSE 0.0143 0.5669 0.0353 0.4607 0.0123 0.3993

4 Y Y Bias -0.0443 -0.9110 -0.4758 -0.7615 -0.1150 -0.6216

MSE 0.0099 0.8333 0.2321 0.5855 0.0239 0.4044

Estimation procedure

Notes: The table reports average bias and mean squared error from Monte Carlo simulations with 
500 repetitions and a sample size of n=1,000. The numbered simulation scenarios in the first 
column correspond to the descriptions of the scenarios in the text. CQTE refers to the censored 
quantile treatment effect procedure proposed in this paper. IV Tobit refers to the estimation 
procedure proposed by Newey (1987) and implemented as the Stata command ivtobit. CLAD refers 
to Powell's (1986) censored quantile regression estimator, which at the .5-quantile corresonds to 
least absolute deviations.

6 Example: Job training and unemployment spells

This section applies the proposed methodology to estimating the effect of publicly

subsidized job training programs on unemployment durations. The data come from

a large-scale randomized experiment designed to evaluate programs funded by the

Job Training Partnership Act of 1982 (JTPA), known as the National JTPA Study,

originally analyzed by Bloom et al. (1997). The experiment, begun in 1987, randomly

assigned about 21,000 economically disadvantaged individuals to either a treatment

group, which was allowed to enroll in a JTPA-funded training program, or a control
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group, which was not allowed to enroll for 18 months.

This application focuses on a subset of 12,842 individuals from the experimental

sample who reported having no job at the time of randomization and were surveyed

in a follow-up interview held between one and three years following the random as-

signment.1 The outcome of interest for this application is the elapsed time in days

between treatment assignment and finding employment. The outcome is measured

completely for individuals who had found a job by the time of the follow-up survey,

but is censored for individuals who still had not found work by the time of the sur-

vey. The censoring point is the number of days between the initial randomization

and the follow-up interview, and varies across individuals. The treatment variable is

an indicator for participation in a JTPA-funded program, and the instrument is the

randomly assigned indicator for eligibility. The instrument’s validity in this setting

depends on its random assignment, on the assumption that being assigned to treat-

ment or control had no impact on jobless durations other than through participation

in a program, and on the assumption that treatment assignment did not induce any

individuals not to enroll who otherwise would have participated, and vice versa for

those assigned to control.

Summary statistics for the analysis sample are reported in Table 3. The top row

shows that about 30 percent (3,965 out of 12,842) of the sample was assigned to con-

trol and 70 percent to treatment. Of those assigned to control, only 99 out of 3,965

still managed to enroll in a JTPA program. Of those assigned to treatment, about 65

percent (5,787 out of 8,877) actually enrolled in a JTPA program. Rows 3 through

6 show the distribution of individual characteristics across assignment and partici-

1Since censoring points are determined by the elapsed time between randomization and follow-up,
differences in characteristics by order of entering the pool are potential confounders. However, since
follow-up surveys were scheduled relative to the treatment assignment date, and not around a fixed
calendar date, no mechanical selection is induced.
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Table 3: Summary Statistics

All All Control Non-enrollees Enrollees All Treatment Non-enrollees Enrollees
N 12,842 3,965 3,866 99 8,877 3,090 5,787

Assigned to treatment 0.69 0.00 0.00 0.00 1.00 1.00 1.00

Age 29.2 29.4 29.4 29.2 29.2 29.4 29.0
Female 0.59 0.59 0.59 0.63 0.59 0.58 0.60
Married 0.27 0.26 0.26 0.21 0.27 0.24 0.28
Non-white 0.46 0.46 0.45 0.63 0.46 0.50 0.44

Enrolled 0.46 0.02 0.00 1.00 0.65 0.00 1.00
Time to follow-up (days) 633 633 634 612 633 631 633
Jobless duration (days) 269 288 288 284 260 291 243
Found job 0.79 0.77 0.77 0.86 0.80 0.76 0.83

Treatment

Notes: sample sizes and means for selected variables. Data are from the National JTPA Study. Sample consists of individuals 
who were surveyed in the follow-up interview and reported having no job at the time of randomization.

Control

pation status. All characteristics are closely balanced across treatment and control,

as one would expect from a random assignment. The final four rows show means of

post-randomization variables, and preview the direction of the some of the effects of

treatment. Time to the follow-up interview, however, is very similar over assignment

and treatment status. This suggests the independent censoring assumption is plau-

sible here, a hypothesis that will be formally tested below. Finally, those assigned

to treatment had about 28 days shorter observed jobless durations on average than

those in control, and were about 3 percentage points more likely to have found a job

by the time of the followup interview than control.

The distribution of observed jobless durations in the sample shows a large num-

ber of individuals find jobs relatively quickly, but a substantial fraction remain un-

employed for hundreds of days. Figure 1 plots a histogram of observed durations,

including censored observations where the observed duration is the follow-up period.

Darker shading in the plot indicates the fraction of observations that were censored.

The modal jobless duration is one day, and the median is 191 days. There are a

substantial number of observations at about 600 days, around which time the bulk

of the follow-up interviews took place, and beyond which nearly all observations are
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Including Censored Observations

Figure 1: Histogram of observed lengths of jobless spells following randomized as-
signment. Sample includes individuals with no reported job spell prior to treatment
assignment. Spell length is the elapsed time from treatment assignment to first re-
ported job, if a post-assignment job was reported, or elapsed time from treatment
assignment to followup interview if no post-assignment job was reported. Data are
from the JTPA study.
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censored.

Table 4: Estimated Effects of JTPA Programs

Dep. Var.
Followup 

time
Followup 

time
Found job Found job

Method OLS OLS OLS 2SLS
0.1 0.25 0.5 0.65

Indep. Var. (1) (2) (3) (4) (5) (6) (7) (8)

Offered -0.875 0.036
(2.146) (0.008)

Enrolled 0.461 0.057 -2 -13 -57 -104
(1.979) (0.013) (1.69) (5.39) (23.97) (40.84)

CQTE

Notes: Point estimates and standard errors for the effect of assignment to treatment or enrolling in a 
JTPA-funded training program on the the indicated outcome variables. Followup time and duration are 
measured in days. Sample consists of individuals who reported having no job at the time of treatment 
assignment. 2SLS and CQTE specifications use a binary indicator for treatment assignment as an 
instrument for the enrollment indicator. The quantile indices for the CQTE specifications are indicated 
in the column headers. CQTE standard errors are based the analytical formulas from the asymptotic 
distribution given in the text.

Jobless Duration

Censored quantile treatment effects (CQTE) estimates show that participating in a

job training program signficantly, though modestly, increases the probability of finding

a job, but dramatically reduces the time to finding a job, especially at the right tail

of the distribution. Table 4 reports estimates of the effects of treatment assignment

and treatment participation on post-randomization outcomes. The first two columns

constitute a partial test of Condition 2, and show very little relationship between

follow-up time (the censoring point) and treatment assignment or enrollment status.

The remaining columns report estimates of effects on joblessness outcomes. Columns

(3) and (4) show that the intent-to-treat effects of treatment assignment and the local

average treatment effects of participation are modest, but highly significant. These

modest effects on the likelihood of finding a job mask significant and dramatic effects

on the time to finding a job, especially on the upper quantiles. The remaining columns

in Table 4 report censored quantile treatment effects estimates for selected quantiles of
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jobless duration, and Figure 2 plots estimates and 95-percent confidence intervals for

the 1st to the 65th percentiles. Censoring above that point in the distribution started

to compromise identification. The table and the figure show precisely estimated effects

close to zero at the lower end of the distribution, but the effect steadily increases in

magnitude farther up the distribution, and reaches as large as 57 days (standard error

= 5.39) at the median and 104 days (s.e. = 40.84) at the 65th percentile.

-2
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50
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00

-5
0

0
da

ys

0 .2 .4 .6
quantile

95 percent CI point estimates

Effects of Job Training on Quantiles of Jobless Durations

Figure 2: Estimated quantile treatment effects and pointwise 95-percent confidence
intervals for the effect of job training on jobless duration in days following treatment
assignment. Sample includes individuals with no reported job spell prior to treat-
ment assignment. Spell length is the elapsed time from treatment assignment to first
reported job, if a post-assignment job was reported, or elapsed time from treatment
assignment to followup interview if no post-assignment job was reported. Data are
from the JTPA study.
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7 Conclusion

This paper proposed an estimation procedure for the effects of a binary endogenous

treatment on a censored outcome, an important empirical setting in which existing

methodologies are inconsistent. Identification requires no parametric distributional

assumptions, and relies on the relatively weak conditions in the local average treat-

ment effects framework. The estimator is consistent and asymptotically normally

distributed, and is based on standard two-stage least squares regression techniques.

Applying the methodology to data from the National JTPA Study revealed im-

portant effects of job training on unemployment durations. The empirical results

showed that participating in job training reduced the median time to finding a job

by an estimated 57 days, and reduced jobless spells by up to 100 days at the upper

end of the distribution.

The proposed methodology should prove useful in numerous empirical settings.

Clinical applications to survival or relapse times, or social policy evaluations of effects

on recidivism, unemployment durations, or loan default times are just a few of many

examples where the methodology may be used.

Appendix: Asymptotic Distribution Theory

Proof of Theorem 4. The estimators for the cdfs of potential outcomes (3) and

(4) can be written as a function of conditional sample averages of the following vector

of random variables:

W (y) =


1 (Y ≤ y)D

1 (Y ≤ y) (1−D)

D

 .
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Let M (y) =

(
M1 (y) M0 (y)

)′
be the vector of conditional expectations of W (y),

where Md (y) = E [W (y) |Z = d, T ≥ y]. The corresponding sample analog of M (y)

is

M̂ (y) =


∑

i Zi1(Ti≥y)Wi(y)∑
i Zi1(Ti≥y)∑

i(1−Zi)1(Ti≥y)Wi(y)∑
i(1−Zi)1(Ti≥y)

 .

Standard empirical process theory (van der Vaart and Wellner, 1996) establishes the

weak convergence of
√
n
(
M̂ (y)−M (y)

)
jointly to a tight Gaussian element with

mean zero and covariance function Σ (y, ỹ) where Σ (y, ỹ) is block diagonal with upper

block

Pr (T ≥ y ∧ ỹ)−1 Pr (Z = 1)−1E
[
(W (y)−M1 (y)) (W (ỹ)−M1 (ỹ))′ |Z = 1, T > y ∨ ỹ

]
and lower block

Pr (T ≥ y ∧ ỹ)−1 Pr (Z = 0)−1E
[
(W (y)−M1 (y)) (W (ỹ)−M1 (ỹ))′ |Z = 0

]
.

The complier cdf estimates (3) and (4) are Hadamard differentiable functions of M̂ (y)

with Jacobians

J1 (y) =
1

∆p (y)

(
1 0 −FY ∗(1)|C (y) −1 0 FY ∗(1)|C (y)

)
J0 (y) =

1

∆p (y)

(
0 −1 FY ∗(0)|C (y) 0 1 −FY ∗(0)|C (y)

)
,

so by the functional delta method (van der Vaart and Wellner, 1996, Theorem 3.9.4)

the processes  √n
(
F̂Y ∗(0)|C (y)− FY ∗(0)|C (y)

)
√
n
(
F̂Y ∗(1)|C (y)− FY ∗(1)|C (y)

)

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converge jointly to a tight Gaussian element with zero mean functions and covariance

functions vd,d̃ (y, ỹ) := Jd (y) Σ (y, ỹ) Jd̃ (ỹ)′.

Proof of Corollary 5. The complier quantile estimators (5), being inverses,

are Hadamard differentiable functions of the complier cdf estimators with Jaco-

bians −fY ∗(d)|C (y)−1 , d ∈ {0, 1}, and so by a functional delta method the process

√
n
(
Q̂Y ∗(d)|C (τ)−QY ∗(d)|C (τ)

)
converges jointly to a tight Gaussian element with

zero mean function and covariance function

vq
d,d̃

(τ, τ̃) : =

fY ∗(d)|C
(
QY ∗(d)|C (τ)

)−1
fY ∗(d̃)|C

(
QY ∗(d)|C (τ̃)

)−1
vd,d̃

(
QY ∗(d)|C (τ) , QY ∗(d)|C (τ̃)

)
.

Finally, the local quantile treatment effects estimator process,
√
n
(
L̂QTE (τ)− LQTE (τ)

)
,

where L̂QTE (τ) is given by (6), as a simple difference, is a Hadamard differentiable

function of the quantile estimators with Jacobian c =

(
1 −1

)′
, and so by the func-

tional delta method converges weakly to a tight Gaussian element with zero mean

function and covariance function given by c′

 vq1,1 (τ, τ̃) vq1,0 (τ, τ̃)

vq1,0 (τ, τ̃) vq0,0 (τ, τ̃)

 c.
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