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Abstract

When a researcher estimates the parameters of a regression function using information
on all 50 states in the United States, or information on all visits to a website, what is
the interpretation of the standard errors? Researchers typically report standard errors
that are designed to capture sampling variation, based on viewing the data as a random
sample drawn from a large population of interest, even in applications where it is difficult
to articulate what that population of interest is and how it differs from the sample. In this
paper we explore alternative interpretations for the uncertainty associated with regression
estimates. As a leading example we focus on the case where some parameters of the
regression function are intended to capture causal effects. We derive standard errors for
causal effects using a generalization of randomization inference. Intuitively, these standard
errors capture the fact that even if we observe outcomes for all units in the population of
interest, there are for each unit missing potential outcomes for the treatment levels the
unit was not exposed to. We show that our randomization-based standard errors in general
are smaller than the conventional robust standard errors, and provide conditions under
which they agree with them. More generally, correct statistical inference requires precise
characterizations of the population of interest, the parameters that we aim to estimate
within such population, and the sampling process. Estimation of causal parameters is one
example where appropriate inferential methods may differ from conventional practice, but
there are others.
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1 Introduction

In many empirical studies in economics, researchers specify a parametric relation between ob-
servable variables in a population of interest. They then proceed to estimate and do inference
for the parameters of this relation. Point estimates are based on matching the relation between
the variables in the population to the relation observed in the sample, following what Gold-
berger (1968) and Manski (1988) call the “analogy principle.” In the simplest setting with an
observed outcome and no covariates the parameter of interest might simply be the population
mean, estimated by the sample average. Given a single covariate, the parameters of interest
might consist of the slope and intercept of the best linear predictor for the relationship between
the outcome and the covariate. The estimated value of a slope parameter might be used to
answer an economics question such as, what is the average impact of a change in the minimum
wage on employment? Or, what will be the average (over markets) of the increase in demand if
a firm lowers its posted price? A common hypothesis to test is that the population value of the
slope parameter of the best linear predictor is equal to zero.

The textbook approach to conducting inference in such contexts relies on the assumptions
that (i) the observed units are a random sample from a large population, and (#7) the parameters
in this population are the objects of interest. Uncertainty regarding the parameters of interest
arises from sampling variation, due to the difference between the sample and the population. A
95% confidence interval has the interpretation that if one repeatedly draws new random samples
from this population and construct new confidence intervals for each sample, the estimand should
be contained in the confidence interval 95% of the time. In many cases this random sampling
perspective is attractive. If one analyzes individual-level data from the Current Population
Survey, the Panel Study of Income Dynamics, the 1% public use sample from the Census, or
other public use surveys, it is clear that the sample analyzed is only a small subset of the
population of interest. However, in this paper we argue that there are other settings where
there is no population such that the sample can be viewed as small relative to that population,
randomly drawn from it, and when the estimand is the population value of that parameter. For
example, suppose that the units are all fifty states of the United States, all the countries in the
world, or all visits to a website. If we observe a cross-section of outcomes at a single point in time
and ask how the average outcome varies with attributes of the units, the answer is a quantity

that is known with certainty. For example, the difference in average outcome between coastal
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and inland states for the observed year is known: the sample average difference is equal to the
population average difference. Thus the standard error on the estimate of the difference should
be zero. However, without exception researchers report positive standard errors in such settings.
More precisely, researchers typically report standard errors using formulas that are formally
justified by the assumption that the sample is drawn randomly from an infinite population.
The theme in this paper is that this random-sampling-from-a-large-population assumption is
often not the natural one for the problem at hand, and that there are other, more natural
interpretations of the uncertainty in the estimates.

The general perspective we take is that statistics is fundamentally about drawing inferences
with incomplete data. If the researcher sees all relevant data, there is no need for inference, since
any question can be answered by simply doing calculations on the data. Outside of this polar
case, it is important to be precise in what sense the data are incomplete. Often we can consider
a population of units and a set of possible states of the world. There is a set of variables that
takes on different values for each unit depending on the state of the world. The sampling scheme
tells us how units and states of the world are chosen to form a sample, and what variables are
observed, and what repeated sampling perspective may be reasonable.

Although there are many settings to consider, in the current paper we focus on the specific
case where the state of the world corresponds to the level of a causal variable for each unit,
e.g., a government regulation or a price set by a firm. The question of interest concerns the
average causal effect of the variable: for example, the difference between the average outcome
if (counterfactually) all units in the population are treated, and the average outcome if (coun-
terfactually) all units in the population are not. Note that we will never observe the values for
all variables of interest, because by definition we observe each physical unit at most once, either
in the state where it is treated or the state where it is not, with the value of the outcome in
the other state missing. Questions about causal effects can be contrasted with descriptive or
predictive questions. An example of a descriptive estimand is the difference between the average
outcome for countries with one set of institutions and the average outcome for countries with
a different set of institutions. Although researchers often focus on causal effects in discussions
about the interpretation of findings, standard practice does not distinguish between descriptive
and causal estimands when conducting estimation and inference. In this paper, we show that
this distinction matters. Although the distinction between descriptive estimands and causal

estimands is typically not important for estimation under exogeneity assumptions, and is also
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immaterial for inference if population size is large relative to the sample size, the distinction
between causal and descriptive estimands matters for inference if the sample size is more than a
negligible fraction of the population size. As a result the researcher should explicitly distinguish
between regressors that are potential causes and those that are fixed attributes.

Although this focus on causal estimands is rarely made explicit in regression settings, it
does have a long tradition in randomized experiments. In that case the natural estimator for
the average causal effect is the difference in average outcomes by treatment status. In the
setting where the sample and population coincide, Neyman (1923) derived the variance for this
estimator and proposed a conservative estimator for this variance. The results in the current
paper can be thought of as extending Neyman’s analysis to general regression estimators in
observational studies. Our formal analysis allows for discrete or continuous treatments and
for the presence of attributes that are potentially correlated with the treatments. Thus, our
analysis applies to a wide range of regression models that might be used to answer questions
about the impact of government programs or about counterfactual effects of business policy
changes, such as changes in prices, quality, or advertising about a product. We make four
formal contributions. First, the main contribution of the study is to generalize the results for
the approximate variance for multiple linear regression estimators associated with the work by
Eicker (1967), Huber (1967), and White (1980ab, 1982), EHW from hereon, in two directions.
We allow the population to be finite, and we allow the regressors to be potential causes or
attributes, or a combination of both. We take account of both the uncertainty arising from
random sampling and the uncertainty arising from conditional randomization of the potential
causes. This contribution can also be viewed as generalizing results from Neyman (1923) to
settings with multiple linear regression estimators with both treatments and attributes that are
possibly correlated. In the second contribution, we show that in general, as in the special, single-
binary-covariate case that Neyman considers, the conventional EHW robust standard errors are
conservative for the standard errors for the estimators for the causal parameters. Third, we
show that in the case with attributes that are correlated with the treatments one can generally
improve on the EHW variance estimator if the population is finite, and we propose estimators
for the standard errors that are generally smaller than the EHW standard errors. Fourth, we
show that in a few special cases the EHW standard errors are consistent for the true standard
deviation of the least squares estimator.

By using a randomization inference approach the current paper builds on a large litera-
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ture going back to Fisher (1935) and Neyman (1923). The early literature focused on settings
with randomized assignment without additional covariates. See Rosenbaum (1995) and Imbens
and Rubin (2014) for textbook discussions. More recent studies analyze regression methods
with additional covariates under the randomization distribution in randomized experiments,
e.g., Freedman (2008ab), Lin (2013), Samii and Aronow (2012), and Schochet (2010). For ap-
plications of randomization inference in observational studies see Rosenbaum (2002), Abadie,
Diamond and Hainmueller (2010), Imbens and Rosenbaum (2005), Frandsen (2012), Bertrand,
Duflo, and Mullainathan (2004) and Barrios, Diamond, Imbens and Kolesar (2012). In most
of these studies, the assignment of the covariates is assumed to be completely random, as in
a randomized experiment. Rosenbaum (2002) allows for dependence between the assignment
mechanism and the attributes by assuming a logit model for the conditional probability of as-
signment to a binary treatment. He estimates the effects of interest by minimizing test statistics
based on conditional randomization. In the current paper, we allow explicitly for general depen-
dendence of the assignment mechanism of potential causes (discrete or continuous) on the fixed
attributes (discrete or continuous) of the units, thus making the methods applicable to general
regression settings.

Beyond questions of causality in a given cross-section, there are other kinds of questions
one could ask where the definition of the population and the sampling scheme look different;
for example, we might consider the population as consisting of units in a variety of potential
states of the world, where the state of the world affects outcomes through an unobservable
variable. For example, we could think of a population where a member consists of a country
with different realizations of weather, where weather is not in the observed data, and we wish
to draw inferences about what the impact of regulation on country-level outcomes would be in
a future year with different realizations of weather outcomes. We present some thoughts on this

type of question in Section 6.

2 Three Examples

In this section we set the stage for the problems discussed in the current paper by introducing
three simple examples for which the results are well known from either the finite population
survey literature (e.g., Cochran, 1977; Kish, 1995), or the causal literature (e.g., Neyman,
1923; Rubin, 1974; Holland, 1986; Imbens and Wooldridge, 2008; Imbens and Rubin, 2014).
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Juxtaposing these examples will provide the motivation for, and insight into, the problems we

study in the current paper.

2.1 Inference for a Finite Population Mean with Random Sampling

Suppose we have a population of size M, where M may be small, large, or infinite. In the first
example we focus on the simplest setting where the regression model includes only an intercept.
Associated with each unit ¢ is a non-stochastic variable Y;, with Y}, denoting the M —vector

with i*" element Y;. The target, or estimand, is the population mean of Y;,

M
-V - LY
/"LM— M M 1
=1

We index pys by the population size M because for some of the formal results we consider
sequences of experiments with populations of increasing size. In that case we make assumptions
that ensure that the sequence {uy : M = 1,2...} converges to a finite constant pu, but allow
for the possibility that the population mean varies over the sequence. The dual notation for the
same object, py and 75)\?), captures the dual aspects of this quantity: on the one hand it is a
population quantity, for which it is common to use Greek symbols. On the other hand, because
the population is finite, it is a simple average, and the 75)\?) notation shows the connection to
averages. To make the example specific, one can think of the units being the 50 states (M = 50),
and Y; being state-level average earnings.

We do not necessarily observe all units in this population. Let W, be a binary variable
indicating whether we observe Y; (if W; = 1) or not (if W; = 0), with W}, the M-vector with
ith element equal to W;, and N = Zf\il W; the sample size. We let {par}m=12... be a sequence
of sampling probabilities, one for each population size M, where py; € (0,1). If the sequence
{prm}ri=12. . has a limit, we denote it s limit by p. We make the following assumption about

the sampling process.

Assumption 1. (RANDOM SAMPLING WITHOUT REPLACEMENT) Given the sequence of sam-

pling probabilities {par}rr=12....,
M Wi -y M w;
pr (Wi =w) = piz =" - (1= pay) ™ 51

for all w with i-th element w; € {0,1}, and all M.
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This sampling scheme makes the sample size N random. An alternative is to draw a random
sample of fixed size. Here we focus on the case with a random sample size in order to allow for
the generalizations we consider later. Often the sample is much smaller than the population but
it may be that the sample coincides with the population.

The natural estimator for the population average s is the sample average:

1 1 <
N ysample v
s =Yy —N;WZ Y;.

To be formal, let us define fip; = 0 if N = 0, so iy is always defined. Conditional on N > 0
this estimator is unbiased for the population average fiy:

—sample

Ew [jinr| N > 0] = Ew [YM

The subscript W for the expectations operator (and later for the variance operator) indicates
that this expectation is over the distribution generated by the randomness in the vector of
sampling indicators Wy, the M-vector Y), is fixed. We are interested in the variance of the

estimator jiy; conditional on NV:
N A —sample —Ppo 2
o (el N) = B [ = | ] = o | (73 = 75| ).

Because we condition on N this variance is itself a random variable. It is also useful to define

the normalized variance, that is, the variance normalized by the sample size N:
VR (i) = N - Vw (fune| N)

which again is a random variable. Also define

2 1 M ~spop\ 2
7= 22 YT

i=1

which we refer to as the population variance (note that, in contrast to some definitions, we
divide by M — 1 rather than M).

Here we state a slight modification of a well-known result from the survey sampling literature.
The case with a fixed sample size can be found in various places in the survey sampling literature,
such as Cochran (1977) and Kish (1995). Deaton (1997) also covers the result. We provide a
proof because of the slight modification and because the basic argument is used in subsequent

results.
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Lemma 1. (EXACT VARIANCE UNDER RANDOM SAMPLING) Suppose Assumption 1 holds.
Then

Vi (it N, N > 0) = % (1—%) |
All proofs are in the appendix.

If the sample is close in size to the population, then the variance of the sample average as an
estimator of the population average will be close to zero. The adjustment factor for the finite
population, 1 — N/M, is proportional to one minus the ratio of the sample and population size.
It is rare to see this adjustment factor used in empirical studies in economics.

For the next result we rely on assumptions about sequences of populations with increasing
size, indexed by the population size M. These sequences are not stochastic. We assume that
the first and second moments of the population outcomes converge as the population size grows.

Let pxas be the k™ population moment of Y;, pux s = Zf\il YE/M.
Assumption 2. (SEQUENCE OF POPULATIONS) For k = 1,2, and some constants jiy, ji2,
A}i_fgo Wk M = -
Define 02 = pp — p?. We will also rely on the following assumptions on the sampling rate.
Assumption 3. (SAMPLING RATE) The sequence of sampling rates py satisfies
M - pp — o0, and py — p € [0,1].

The first part of the assumption guarantees that as the population size diverges, the (random)
sample size also diverges. The second part of the assumption allows for the possibility that

asymptotically the sample size is a neglible fraction of the population size.

Lemma 2. (VARIANCE IN LARGE POPULATIONS) Suppose Assumptions 1-3 hold. Then: (i)

0.2

Vw (| N) — = Op((par - M)71),

(where 0? /N is oo if N =0), and (ii), as M — oo,

VIR (fia) = 0 (1= p).

In particular, if p = 0, the normalized variance converges to o2, corresponding to the con-

ventional result for the normalized variance.
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2.2 Inference for the Difference of Two Means with Random Sam-
pling from a Finite Population

Now suppose we are interested in the difference between two population means, say the difference
in state-level average earnings for coastal and landlocked states for the 50 states in the United
States. We have to be careful, because if we draw a relatively small, completely random, sample
there may be no coastal or landlocked states in the sample, but the result is essentially still the
same: as N approaches M, the variance of the standard estimator for the difference in average
earnings goes to zero, even after normalizing by the sample size.

Let X; € {coast,land} denote the geographical status of state i. Define, for x = coast, land,

the population size M, = Zf\il 1x,—., and the population averages and variances

(0] 1 PO
fat = Vo0 — M S v, and ey — S -V

X, =x X, =x
The estimand is the difference in the two population means,

__ 37pop 7Pop

QM - Ycoast M Yland M>

and the natural estimator for 0, is the difference in sample averages by state type,

N —samplo —sample

9 = Yland )

Coast

where the averages of observed outcomes and sample sizes by type are

<>sample 1

Y, :FZWZ"Y;', and Nm:ZWi’
TiX=a X =z

for x = coast,land. The estimator 0y can also be thought of as the least squares estimator for

f based on minimizing

M

arg min Wi (Yi—~vy—0- ]-Xizcoast)z .

6
v =1

The extension of part (i) of Lemma 1 to this case is fairly immediate. Again the outcomes
Y; are viewed as fixed quantities. So are the attributes X;, with the only stochastic component

the vector Wy, We condition on Ngast and Njang being positive.



Lemma 3. (RANDOM SAMPLING AND REGRESSION) Suppose Assumption 1 holds. Then

VW <é‘ Nland> Ncoast> Nland > 07 Ncoast > 0) =

Ugoast,M . (1 o Ncoast) + Ulzand,M . (1 o Nland)

Neoast Meoast Mand Mana
Again, as in Lemma 1, as the sample size approaches the population size, for a fixed popula-
tion, the variance converges to zero. In the special case where the two sampled fractions are the
same, Neoastal/ Meoastal = Nand/Miana = p, the adjustment relative to the conventional variance

is again simply the factor 1 — p, one minus the sample size over the population size.

2.3 Inference for the Difference in Means given Random Assignment

This is the most of important of the three examples, and the one where many (but not all) of the
issues that are central in the paper are present. Again it is a case with a single binary regressor.
However, the nature of the regressor is conceptually different. To make the discussion specific,
suppose the binary indicator or regressor is an indicator for the state having a minimum wage
higher than the federal minimum wage, so X; € {low, high}. One possibility is to view this
example as isomorphic to the previous example. This would imply that for a fixed population
size the variance would go to zero as the sample size approaches the population size. However,
we take a different approach to this problem that leads to a variance that remains positive even
if the sample is identical to the population. The key to this approach is the view that this
regressor is not a fixed attribute or characteristic of each state, but instead is a potential cause.
The regressor takes on a particular value for each state in our sample, but its value could have
been different. For example, in the real world Massachusetts has a state minimum wage that
exceeds the federal one. We are interested in the comparison of the outcome, say state-level
earnings, that was observed, and the counterfactual outcome that would have been observed had
Massachusetts not had a state minimum wage that exceeded the federal one. Formally, using
the Rubin causal model or potential outcome framework (Neyman, 1923; Rubin, 1974; Holland,
1986; Imbens and Rubin, 2014), we postulate the existence of two potential outcomes for each
state, denoted by Y;(low) and Y;(high), for earnings without and with a state minimum wage,
with Y; the outcome corresponding to the actual or prevailing minimum wage:

Y; (high) if X; = high,
Yi(low) otherwise.

[9]

Y; = Yi(X)) Z{



It is important that these potential outcomes (Y;(low), Y;(high)) are well defined for each unit

(the 50 states in our example), irrespective of whether that state has a minimum wage higher

than the federal one or not. Let Yy, and X, be the M-vectors with ith element equal to Y;,
and X; respectively.

We now define two distinct estimands. The first is the population average causal effect of

the state minimum wage, defined as

M

ot = > <Yi(high) - Yi(low)). (2.1)

i=1
We disinguish this causal estimand from the descriptive or predictive difference in population

averages by minimum wage,

e(j;scr — Miigh Z Y, — j\zow Z Y. (22)

i: X;=high i: X;=low

It is the difference between the two estimands, #%58! and §9°*, that is at the core of our paper.
First, we argue that although researchers are often interested in causal rather than descriptive
estimands, this distinction is not often made explicit. However, many textbook discussions
formally define estimands in a way that corresponds to descriptive estimands.! Second, we show
that in settings where the sample size is of the same order of magnitude as the population
size, the distinction between the causal and descriptive estimands matters. In such settings the
researcher therefore needs to be explicit about the causal or descriptive nature of the estimand.

Let us start with the first point, the relative interest in the two estimands, 6$3"% and 65T
Consider a setting where a key regressor is a state regulation. The descriptive estimand is
the average difference in outcomes between states with and states without the regulation. The
causal estimand is the average difference, over all states, of the outcome with and without that
regulation for that state. We would argue that in such settings the causal estimand is of more

interest than the descriptive estimand.

For example, Goldberger (1968) writes “Regression analysis is essentially concerned with estimation of such
a population regression function on the basis of a sample of observations drawn from the joint probability
distribution of Y;, X;.” (Goldberger, 1968, p. 3). Wooldridge (2002) writes: “More precisely, we assume that
(1) a population model has been specified and (2) an independent identically distributed (i.i.d.) sample can
be drawn from the population.” (Wooldridge, 2002 p. 5). Angrist and Pischke (2008) write: “We therefore
use samples to make inferences about populations” (Angrist and Pishke, 2008, p. 30). Gelman and Hill (2007)
write: “Statistical inference is used to learn from incomplete or imperfect data. ... In the sampling model we are
interested in learning some characteristic of a population ... which we must estimate from a sample, or subset,
of the population. (Gelman and Hill, 2007).

[10]



Now let us study the statistical properties of the difference between the two estimands. We

assume random assignment of the binary covariate X;:

Assumption 4. (RANDOM ASSIGNMENT) For some sequence {qn : M = 1,2,...}, with qu €
(0,1),

M )
pr (X — w) — qAX/[:i:1 1z,=high . (1 _ qM)M—Zfil 1o;=low :
for all M-vectors & with x; € {low,high}, and all M.

In the context of the example with the state minimum wage, the assumption requires that
whether a state has a state minimum wage exceeding the federal wage is unrelated to the poten-
tial outcomes. This assumption, and similar ones in other cases, is arguably unrealistic, outside
of randomized experiments. Often such an assumption is more plausible within homogenous
subpopulations defined by observable attributes of the units. This is the motivation for in-
cluding additional covariates in the specification of the regression function, and we consider
such settings in the next section. For expositional purposes we proceed in this section with the
simpler setting.

To formalize the relation between 055" and 653"2! we introduce notation for the means of the

two potential outcomes, for x = low, high, over the entire population and by treatment status:
o o 1
Yl (x) ZY and Yooy = — Z Yi(z),
X, =x

where, as before, M, = Zf‘il 1x,—, is the population size by treatment group. Note that because
X; is a random variable, My and M, are random variables too. Now we can write the two

estimands as
gsausal — Y1 P (high) — Yoy (low), and 0 = Vo0 v — Yowar
Define the population variances of the two potential outcomes Y;(low) and Y;(high),

1
M—-1

(Vi(z) — 7?;1)(:5))2 , for x = low, high,

oy (x) =

i[M=

and the population variance of the unit-level causal effect Y;(high) — Y;(low):

o2, (low, high) = Yi(high) — Y;(low) — (V" (high) — V""" (low)))".
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The following lemma describes the relation between the two population quantities. Note
that 6532l is a fixed quantity given the population, whereas 55 is a random variable because
it depends on X,;, which is random by Assumption 4. To stress where the randomness in
09" stems from, and in particular to distinguish this from the sampling variation, we use the
subscript X on the expectations and variance operators here. Note that at this stage there is

no sampling yet: the statements are about quantities in the population.

Lemma 4. (CAUSAL VERSUS DESCRIPTIVE ESTIMANDS) Suppose Assumption 4 holds. Then

(1) the descriptive estimand is unbiased for the causal estimand,
E x [055° | Migh, Miow > 0, Mpign > 0] = 657",

and (1),
Vx (057 | Muigh, Miow > 0, Myign > 0)

— EX [(e(j;scr _ 95)\3115211)2

Mhigh> Mlow > 07 Mhigh >0

_ o2, (low) N o2, (high) o2, (low, high) -

Moy Miign M -

These results are well-known from the causality literature, starting with Neyman (1923). See
for a recent discussion and details Imbens and Rubin (2014).

Now let us generalize these results to the case where we only observe values for X; and Y; for
a subset of the units in the population. As before in Assumption 1, we assume this is a random

subset, but we strengthen Assumption 1 by assuming the sampling is random, conditional on
X.

Assumption 5. (RANDOM SAMPLING WITHOUT REPLACEMENT) Given the sequence of sam-
pling probabilities {py : M = 1,2,...}, and conditional on Xy,

M w M-M

pr(Wy = w|X) = pa= " - (L= pu) " =210,

for all M -vectors w with i-th element w; € {0,1}, and all M.

We focus on the properties of the same estimator as in the second example in Section 2.2,
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where, for x € {low, high},

* TN,

T .
X, =x

M
yor L S Wiy, and N, = Wi 1x .
=1

The following results are closely related to results in the causal literature. Some of the results
rely on uncertainty from random sampling, some on uncertainty from random assignment, and

some rely on both sources of uncertainty: the superscripts W and X clarify these distinctions.

Lemma 5. (EXPECTATIONS AND VARIANCES FOR CAUSAL AND DESCRIPTIVE ESTIMANDS)

Suppose that Assumptions 4 and 5 hold. Then:
(7)
EW7X [é‘ N10W7 Nhigh7 NIOW > 0, Nhigh > 0:| = eﬁusal’
(i7)

VW,X <é _ eﬁusal

Now, Nnigh; Niow > 0, Npign > 0)

_ o2, (low) N o2, (high) o2, (low, high)
Niow Nhigh M ’

(#34)
Eyw [9‘ X, Migws Niw > 0, Nygns > 0] = geser,
(iv)
Vv x (é _ e(j;scr

o2 (low) s Nigw N o2, (high) - Nhigh
Mo Nhigh ’

Miow, Now; Nhighs Now > 0, Nhigh > 0)

VW,X (é _ eﬁusal

Niow, Nhighs Niow > 0, Nhign > 0)

—VW,X (é - Qﬁgscr

d 1
= Vw.x (057 — 05" | Niow, Nuigh: Niow > 0, Nhign > 0)

Now, Nnighs Niow > 0, Nhign > 0)

_ o2 (low) N oir(high)  of(low, high) =0
Mow Mhign M =
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Part (i) of Lemma 5 is a re-statement of results in Neyman (1923). Part (iv) is essentially
the same result as in Lemma 2. Parts (i7) and (iv) of the lemma, in combination with Lemma
4, imply part (v). Although part (i7) and (iv) of Lemma 5 are both known in their respective
literatures, the juxtaposition of the two variances has not received much attention.

Next, we study what happens in large populations. In order to do so we need to modify

Assumption 2 for the current context. First, define

M
1 ,
Hheym,M = i ;:1 Y}(low) - Y;"(high).
We assume that all (cross-)moments up to second order converge to finite limits.

Assumption 6. (SEQUENCE OF POPULATIONS) For nonnegative integers k,m such that k +

m < 2, and some constants Mkm

Bm g m,vr = fli,m-
M —co

Then define o®(low) = poo — i ¢ and o?(high) = po2 — pg;, so that under Assumption
6 limy oo 02,(low) = o?(low) and limps . 03,(high) = o?(high). Also define, again under
Assumption 6, limys_... 02,(low, high) = o?(low, high).

Define the normalized variances for the causal and descriptive estimands,

causal —

norm _ Ar VW,X <é o eﬁusal

Nhign, Nlow) ,

and

descr

norm _ A VW,X <é o e(j;scr

Nhign, Nlow) ;

where the variances are zero if Nypjgn or Nigy are zero.

Assumption 7. (LIMITING ASSIGNMENT RATE) The sequence of assignment rates qy; satisfies
A}Enm qu =q € (0,1).

Lemma 6. (VARIANCES FOR CAUSAL AND DESCRIPTIVE ESTIMANDS IN LARGE POPULA-

TIONS) Suppose that Assumptions 3-7 hold. Then, as M — oo, (i),

2(] 2(high
norm 0 (ow) | o7(high) o pign) (2.3)
1—gq q
and (1),
211 2(high
viem (“1(_‘”;) L )) (1= p). (2.4)
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Lemma 6 contains some key insights. It shows that we do not need to be concerned about
the difference between the two estimands 053! and 69" in settings where the population is
large relative to the sample (p close to zero). In that case both normalized variances are equal

to
2(1 2(high
_ Jim yiom :a(ow)_l_a(lg).
M—o0 =0 l—gq q

norm
causal
p=0

lim V
M —co

It is only in settings with the ratio of the sample size to the population size non-neglible, and in
particular if the sample size is equal to the population size, that there are substantial differences

between the two variances.

3 The Variance of Regression Estimators when the Re-
gression includes Attributes and Causes

In this section and the next we turn to the setting that is the main focus of the current paper.
We allow for the presence of covariates of the potential cause type (say a state institution or a
regulation such as the state minimum wage), which can be discrete or continuous, and vector-
valued. We also allow for the presence of covariates of the attribute or characteristic type, say
an indicator whether a state is landlocked or coastal, which again can be discrete or continuous
or discrete, and vector-valued. We allow the potential causes and attributes to be systematically

correlated in the sample, because the distribution of the potential causes differs between units.

3.1 Set Up

We denote the potential causes for unit ¢ in population M by X;/, and the attributes for unit
1 in population M by Z;y;. The vector of attributes Z;, typically includes an intercept. We
assume there exists a set of potential outcomes Y;y/(x), with the realized outcome for unit 7 in
population M equal to Y;y = Y (Xin). We sample units from this population, with W;,, the
binary indicator for the event that unit ¢ in population M is sampled. We view the potential
outcome functions Y;j/(z) and the attributes Z;, as deterministic, and the potential causes X
and the sampling indicator W;,; as stochastic. However, unlike in a randomized experiment,
the potential cause X, is in general not identically distributed.

For general regression we have no finite sample results for the properties of the least squares

estimator. Instead we rely on large sample arguments. We formulate assumptions on the
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sequence of populations, characterized by sets of covariates or attributes Z,; and potential
outcomes Y),(x), as well as on the sequence of assignment mechanisms. To be technically
precise we use a double index on all variables, whether deterministic or stochastic, to reflect
the fact that the distributions general depend on the population. For the asymptotics we let
the size of the population M go to infinity. We allow the sampling rate, pys, to be a function
of the population, allowing for py; = 1 (the sample is the population) as well as py; — 0
(random sampling from a large population). In the latter case case our results agree with the
standard robust Eicker-Huber-White variance results based on random sampling from an infinite
population. The only stochastic component is the matrix (X, Wys). The randomness in X,
generates randomness in the realized outcomes Y;y; = Y;n(Xin) even though the potential
outcome functions Y;y/(x) are non-stochastic.

For a given population, indexed by M, define the population moments

/

LMY Y,
pop __ , ,

Qy = M Z Zi Zi '
i=1 \ X; X;

and the expected population moments, where the expectation is taken over the assignment X,

/!

1M (Y Yi
O =Ex (07 =Ex | ;> | Zae || Z
i=1 )(Z Xz
Also define the sample moments,
LM Y; Yir \'

sample S ) )

A =+ Z Wit - | Z: Z;

i=1 )(Z Xz

where NV is the random sample size.

The partitioned versions of these three matrices will be written as

Qyy Qyz Qyxr
Q=1 Qzv Qzz Qzx
Qxy Qxz Qxx

for Q = QP QPP and Q™ Below we state formal assumptions that ensure that these
quantities are well-defined and finite, at least in large populations.

For a population of size M, we estimate a linear regression model
Yivr = Xin0 + Zingy + cina,
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by ordinary least squares, with the estimated least squares coefficients equal to
M

(éolsa ’A}/ols) = arg Ilg{/n Z WZM . (Y;M - XZ/MQ - ZZ/M’Y)z )
=1
where W;y, simply selects the sample that we use in estimation. The unique solution, assuming

no perfect collinearity in the sample, is

-1
A sample sample sample
( Oois ) _ QXX,le QXZ’,ZIM QXY,Z\{[
N sample sample sample .
Yols QZX’,M QZZ’,M QZY,M

We are interested in the properties of the least squares estimator for descriptive and causal

estimands.

3.2 Descriptive and Causal Estimands

We now define the descriptive and causal estimands that generalize 653" and 9" from Section
2.3. For the descriptive estimand the generalization is obvious: we are interested in the value of
the least squares estimator if all units in the population are observed:
(%) = (S 2 ) ()

Vfcfscr a Q%(;?’,M Q%OZP’,M Q%?M '
This estimand, even though a population quantity, is stochastic because it is a function of
Xy = (Xuar, Xoar, .., Xasnr)'. For the causal estimand we look at the same expression, with
expectations taken over X in both components:

e ) ~\agh, e, ) ey )
These causal parameters are non-stochastic.

To build some insight for the definition of the causal parameters, consider the special case

with the attributes consisting of an intercept only, Z;5; = 1, and a single randomly assigned

binary cause, X;y € {0, 1}, the case considered in Section 2.3. In that case, let, as before,
qu = E[>M X;/M]. Then:

*,PO! *,PO! -1 *,PO!
() - (o o) (&8)
T QéX’,M QéZ’,M QéY,M
_ (qM qu )‘1( e )
qu 1 gu Yy (1) + (1 —qu) - Yy (0)
_ (TR0
Y (0)

Thus 653" = Y °(1) — Y3, (0), identical to the causal estimand considered in Section 2.3.
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3.3 Population Residuals

We define the population residuals, denoted by €;,/, to be the residual relative to the population

causal estimands,

vt = Yinr — X!, 0500 _ 71 ~causal,

The definitions of these residuals mirrors that in conventional regression analyses, but their
properties are conceptually different. For example, the residuals need not be stochastic. Consider
the special case where Y;)/(x) = Y;p(0) + 2/, the potential causes Xy, are randomly assigned,
and there are no attributes beyond the intercept. Then €,y = Yipn(0) — Z;\il Y (0)/M, which
is non-stochastic. In other cases the residuals may be stochastic. (To be clear, the residuals are
generally non-zero even though they are non-stochastic.)

Under the assumptions we make, in particular the assumption that the X;), are jointly in-
dependent (but not necessarily identically distributed), the products X,y - €;0 and Zips - €5,
are jointly independent but not identically distributed. Most importantly, in general the expec-
tations Ex [Xin - civ] and Ex [Z;nr - €,m]) may vary across 4, although under the assumptions
stated below and the definition of the residuals, the averages of these expectations over the

population are guaranteed to be zero.

3.4 Assumptions

A key feature is that we now allow for more complicated assignment mechanisms. In particular,
we maintain the assumption that the X;;, for « = 1,..., M, are independent but we relax the
assumption that the distributions of the Xj;;; are identical. For stating general results, where
the parameters are simply defined by the limits of the expected moment matrices, we do not
need to restrict the distributions of the X;y,. However, in the case where the regression function
is correctly specified, for some purposes we restrict the distribution of X;j; so that it depends
on the Z;); and not generally on the potential outcomes Y; (). We also assume independence

between X;j; and the sampling indicators, Wjj,.

Assumption 8. (ASSIGNMENT MECHANISM) The assignments Xinr, ..., Xym are indepen-

dent, but not (necessarily) identically distributed, or inid.

Because of the independence assumption we can apply laws of large numbers and central
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limit theorems for inid (independent but not identically distributed) sequences. For the latter
we rely on sufficient conditions for the Liapunov Central Limit Theorem.

To facilitate the asymptotic analysis we assume that the fourth moments of the triple
(Yinr, Zing, Xinr) are finite and uniformly bounded. We could relax this assumption at the cost of
complicating the proofs. If we assume the sampling frequency py; is bounded below by p > 0 we
can get by with something less than uniformly bounded fourth moments, but here we want to

include py; — 0 as a special case (leading to the EHW results) and keep the proofs transparent.

Assumption 9. (MOMENTS) For all M the expected value pigimn = Ex[Yi, - XY, - Zm,] is

bounded by a common constant C for all nonnegative integers k,l,m such that k+1+m < 4.

For convenience, we assume that the population moment matrices converge to fixed values.
This is a technical simplification that could be relaxed, but relaxing it offers little in terms of

substance. We also make a full rank assumption.

Assumption 10. (CONVERGENCE OF MOMENTS) The sequences Yy, Zy and Xy satisfy

/!

M Yin Yin Qvy Qyvz Qyx
1
PP = By MZ Zim Z; — Q= Qv Qzz Qzx |,
=1 \ Xy X, Qxy Qxz Qxx

with Q0 full rank.

For future reference define
r— Oxx Qxz
Qzxr Qzz )
Given Assumption 10 we can define the limiting population estimands
-1

O\ _ lim gsausal _( Oxx Qxz Oxy \ _ -1 Qxy

Yoo M —co ,}/X?usal QZX’ QZZ’ QZY QZY '
We maintain the random sampling assumption, Assumption 5. This implies that

EW [Q?\z}mplo

NN > 0} — PP,

In the proofs of the main results, we combine Assumptions 5 and 8, and use the fact that for all
population sizes M, {(X;n, Win) 14 = 1,..., M} is an inid sequence where Wy, and X;, are

independent for all i = 1, ..., M, and all populations. We also maintain Assumption 3 concerning
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the sampling rate, which guarantees that as the population size increases, the sample size N
also tends to infinity. Allowing pys to converge to zero allows for the possibility that the sample
size is a neglible fraction of the population size: py = E[N]/M — 0, so the EHW results are
included as a special case of our general results. Technically we should write N, as the sample

size but we drop the M subscript for notational convenience.

3.5 The General Case

First we state a result regarding the common limiting values of the least squares estimators and

the causal and descriptive estimands:

Lemma 7. Suppose Assumptions 3, 5 and 8-10 hold. Then (i)
( ?ols - 900 ) i) 0’
Yols — Yoo

edoscr -0
M 00 p
( descr 07

(i)

Tv — Voo
and (i)
ecausal -0
é\gusal OO — 0.
Y — Yoo

This result follows fairly directly from the assumptions about the moments and the sequence
of populations, although allowing for the limiting case py; — 0 requires a little care in showing
consistency of the least squares estimators. Note that part (ii7) is about deterministic conver-
gence and follows directly from Assumption 10 and the definition of the causal parameters.

Next we study the limiting distribution of the least squares estimator. The key component
is the stochastic behavior of the normalized sample average of the product of the residuals and

the covariates,
M
1 Xim - €im
— Win - . 3.1
\/N; M (Zz'M'&'M) (31)
In our approach this normalized sum of independent but non-identically distributed terms has

expectation zero — something we verify below — even though each of the separate terms X;p; -0/

and Z;y - €, may have non-zero expectations. To conclude that (3.1) has a limiting normal
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distribution we must apply a central limit theorem for independent double arrays. Here we use
the Liapunov central limit theorem as stated in Davidson (1994, Theorem 23.11).

Define the limits of the population quantities

1 L/ Xyy-e
L M EiM
Bv = i Vx <m 2 ( Zont - e )) ’ (3:2)

M /
o1 Xim - €im Xim - €im
et = A}E%OM;EX K Zis - €im ) ( Zi - €im (33)
and their difference
1 X Xy - € Xy - € ’
. B T iM * EiM iM * EiM
ae=aa—av=m 5y Sl (00 )| e (TS )] e

Lemma 8. Suppose Assumptions 3, 5, and 8-10 hold. Then:

M
=X W () N Ay (1) B (3.5
=1

ZiM - EiM

The first part of the asymptotic variance, p - Ay, captures the variation due to random
assignment of the treatment. This component vanishes if the sample is small relative to the
population. The second part, (1 — p) - Aenyw, captures the variation due to random sampling.
This is equal to zero if we observe the entire population.

Now we present the first of the two main results of the paper, describing the properties of the
least squares estimator viewed as an estimator of the causal estimand and, separately, viewed

as an estimator of the descriptive estimand:

Theorem 1. Suppose Assumptions 3, 5 and 8-10 hold. Then (i)

2 causal
VN ( bots = 051" ) LN (( 8 ) T (At — p- Ap) F‘l) :

’?ols —Ym
(i)
n  _ pdescr
\/N( 9015 9](\140501" ) i) N (( 8 ) ’(1 - p) . F_leth_l) 5

’AYOIS —TM
and (i)
descr __ pcausal
\/N( 9%501‘ egusal ) L)N (( 0 ) P F_IAVF_I) .
M — Tm 0
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Proof: See Appendix.

The standard EHW case is the special case in this theorem corresponding to p = 0. For
both the causal and the descriptive estimand the asymptotic variance in the case with p = 0
reduces to I' ' AgwI' ™. Moreover, the difference between the two estimands, 93}“&1 and 95\1}3“,
normalized by the sample size, vanishes in this case. If the sample size is non-neglible as a
fraction of the population sizes, p > 0, the difference between the EHW variance and the finite
population causal variance is positive semi-definite, with the difference equal to p - "!AgDl~t.

Lis appropriate if either

This shows that the conventional robust sampling variance I' ! Aqpy '™
the sample size is small relative to population size, or if the expected values of X, - €;0s and

Zim - €im are close to zero for all i (and thus Ag vanishes).

3.6 The Variance when the Regression Function is Correctly Speci-
fied

In general the difference between the causal variance and the conventional robust EHW variance,
normalized by the sample size, is p- T ' AgI'~!. Here we investigate when the component of this
difference corresponding to the causal effect 653" is equal to zero. The difference in variances
obviously vanishes if the sample size is small relative to the population size, p ~ 0, but there is
another interesting case where only the difference between the two variances that corresponds
to the estimator for #5358 vanishes, without Ar being equal to zero. This case arises when
the regression function, as a function of the potential cause X;js, is correctly specified. It is
important to be explicit here about what we mean by “correctly specified.” In the conventional
approach, with random sampling from a large population, the notion of a correct specification
is defined by reference to this large population. In that setting the linear specification is correct
if the population average of the outcome for each value of the covariates lies on a straight
line. Here we define the notion in the finite population where it need not be the case that
there are multiple units with the same values for the covariates X;y; and Z;,; so that the large
population definition does not apply. We make two specific assumptions. First, and this takes
account of the potential causes part of the specification, we restrict the values of the potential
outcomes. Second, and this takes account of the attributes part of the specification, we restrict

the distribution of the assignments X;,,.
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Assumption 11. (LINEARITY OF POTENTIAL OUTCOMES) The potential outcomes satisfy
Yin (z) = Yinr(0) + 2'6.

Assumption 11 is not enough to conclude that the least squares estimator consistently esti-
mates the causal parameters . We must also restrict the way in which the causes, Xy, depend
on {(Zin,Yine(0) 12 =1,2,..., M}, in an exogeneity or unconfoundedness-type assumption. To
this end, define the vector of slope coefficients from the population regression Y;;/(0) on Z;yy,

1=1,2,.... M, as

v = <% > ZZ-MZ{M> <% > ZZ-MYZ-M(O)> . (3.6)

i=1 i=1

This vector 7, is non-stochastic because it depends only on attributes and potential outcomes.

Assumption 12. (ORTHGONALITY OF ASSIGNMENT) For all M,

Z (Yine (0) — ZZ{M'YM) -Ex [XZM} = 0.

i=1

This assumption requires the mean of X;,; to be orthogonal to the population residuals
Yin (0) — Z!,, v, which measure the part of Y;),(0) not explained by Z;ps. A special case is that
where the X;), are independent and identically distributed (as, for example, in a completely
randomized experiment), so that E[X;y] = px, in which case Assumption 12 holds as long as
there is an intercept in Z;); because by the definition of v, it follows that Zi]\il(YlM(O) -
Ziyym) = 0. More interesting is another special case where Ex|[X;y] is a linear function of
Zim, say Ex|[Xim| = A Zin, @ = 1, ..., M, for some matrix Ays. It is easily seen that in that

case Assumption 12 holds because, by definition of 7/,

M
> Zint (Yo (0) = Zipgymr) = 0.
=1

In general, Assumption 12 allows X;; to be systematically related to Z;,;, and even related to
Yin(0), provided the expected value of X, is uncorrelated in the population with the residual
from regressing Y (0) on Z!,,. Notice that only the first moments of the X;y, are restricted;

the rest of the distributions are unrestricted.
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Definition 1. The regression function
Yine = X{y0 + Zjpy + €ina,
1s correctly specified if Assumptions 11 and 12 hold.

Now we can establish the relationship between the population estimand #53*53! and the slope

of the potential outcome function.

Theorem 2. Suppose Assumptions 8, 9, 11, and 12 hold. Then for all M,

(52)-(4)
,y?\;usal Yar

Given Assumptions 11 and 12 we can immediately apply the result from Theorem 1 with 6

instead of 65321 and we also have a simple interpretation for ~§3usal,

An implication of Assumptions 11 and 12 is that the population residual €;,; is no longer
stochastic:
Er = Yil0) Xy — Xy 055 — 70y g
= Yi(0) — Ziyyu,
which does not involve the stochastic components X, or W),. This leads to simplifications

in the variance components. The I' component of the variance remains unchanged, but under

Assumptions 11 and 12, Ay simplifies, with only the top-left block different from zero:

- 1M 2 .
Ay = ( hmM*""MZﬁégiM Vax (Xo) 8) (3.7)

In order to simplify the asymptotic variance of v N <éols — 9) we add the linearity assumption

mentioned above.

Assumption 13. (LINEARITY OF THE TREATMENT IN ATTRIBUTES) For some K x J matrix
Ay, and forv=1,..., M,

Ex[Xim] = Ay Zin.

Recall that this assumption implies Assumption 12, and so we know least squares consistently

estimates 6, and it has a limiting normal distribution when scaled by v/ V. But with Assumption
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13 we can say more. Namely, the usual EHW variance is asymptotically valid for B — O52usal

(but remains conservative for o5 — vf\}usal) Define
Xon = Xint — A Zin
Because under Assumptions 11 and 12 the residual ¢;,; is non-stochastic it follows that
Ex [XiM . 81'1\4 =Ex |:XZM:| ceim = (Ex [Xim) — A Zing) - €i = 0,
by Assumption 13.
Now define

Iy = lim —ZEX[ X! }

M—oo M

and

Ay = lim —ZEX [ 2 XXl } .

M—oco M

Theorem 3. Suppose Assumptions §-13 hold. Then

VN (éols . 9) N (0,?;.(% -r—.l) .

ehw, X" x

The key insight in this theorem is that the asymptotic variance of éols does not depend on
the ratio of the sample to the population size, p. We also know from Theorem 1 that if p is close
to zero the proposed variance agrees with the EHW variance. Therefore it follows that the usual
EHW variance matrix is correct for éols under these assumptions, and it can be obtained, as in
standard asymptotic theory for least squares, by partially out Z;5; from X;; in the population.
For this result it is not sufficient that the regression function is correctly specified (Assumptions
11 and 12); we have also assumed linearity of the potential cause in the attributes (Assumption
13). Nevertheless, no other features of the distribution of X, are restricted.

For the case with X;); binary and no attributes beyond the intercept this result can be
inferred directly from Neyman’s results for randomized experiments. In that case the focus is on
the constant treatment assumption, which is extended to the linearity in Assumption 11. In that
binary-treatment randomized-experiment case without attributes Assumptions 12 and 13 hold
trivially. Generally, if linearity holds and Xj;); is completely randomized then the conclusions of

Theorem 3 hold.
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The asymptotic variance of 4., the least squares estimates of the coefficients on the at-
tributes, still depends on the ratio of sample to population size, and the the conventional robust

EHW variance estimates over-estimates the uncertainty in these estimates.

4 Estimating the Variance

Now let us turn to the problem of estimating the variance for our descriptive and causal esti-
mands. This is a complicated issue. The variance in the conventional setting is easy to estimate.

One can consistently estimate I' as the average of the matrix of outer products over the sample:
M I
~ 1 Zim Zim
=— Win - .
N ; M ( Xim ) ( Xim )
Also Agpy is easy to estimate. First we estimate the residuals
et = Yirr — XiarOots — ZiprAos,

and then we estimate Agphyw as:

M A~ ~ -~ ~ B e /
AL — 1 W Xiv - € — Xinm - Eim Xinv - € — Xinm - Eimr 11
ehw — 77 iM 7 A ZiA 7 A ZiA 5 ( . )
N — iM - EiM — Zim - Eim iM €M — ZiM - Eim
where
Xing - Ein = E Win - Xinr - €imr, and  Ziy - Eiv = E Wint - Zint - Eimr-

In this case we do not need to subtract the averages, which in fact will be equal to zero, but

this form is useful for subsequent variance estimators. The variance is then estimated as

Verw = I A T (4.2)
Alternatively one can use resampling methods such as the bootstrap (e.g., Efron, 1987).

If we are interested in the descriptive estimand it is straightforward to modify the variance
estimator. We simply multiply the ’ehww variance estimator by one minus the ratio of the
sample size over the population size.

It is more challenging to estimate the variance of éols — 9%}“&1. The difficult is in estimating

Ay (or, equivalently, Ap = Agnw — Ay ). The reason is the same that makes it impossible to
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obtain unbiased estimates of the variance of the estimator for the average treatment effect in the

norm

norm | presented

example in Section 2.3. In that case there are three terms in the expression for V
n (2.3). The first two are straightforward to estimate, but the third one, o(low, high) cannot
be estimated consistently because we do not observe both potential outcomes for the same units.

In that case researchers often use the conservative estimator based on ignoring that term. Here

ii XiM - €im XiMm - €im '
M 4 ZiM - EiM ZiM - EiM ’

we can do the same. Because

1 N X -
% iM *EiM <E
X(\/M;( ZiM - Eim )) =X

=1
M /
) 1 Xim - €im Xim - €im
< - pr—
i Ex M ;( ZiM - Eim ) ( Zim - €im Ao,

and we can use the estimator in (4.2) as the basis for a conservative estimator for the variance,
D AL However, we can do better. Instead of using the average of the outer product,
thw, as an upwardly biased estimator for Ay, we can remove part of the expected value.

Suppose we split the population into S strata, on the basis of the values of the non-stochastic
variables Yy (x) and Z;. Let Sjpy € {1,...,8}, fori = 1,...,M, M = 1,2,..., be the
indicator for the subpopulations, and let M, be the stratum-specific population size. Then, by
independence of the X5, (and thus independence of the £;;/), it follows that

(s i) S5 (a2 ()

Z.SiM—S

Now we can obtain a conservative estimator of Ay by averaging within-stratum estimates after

taking out with within-stratum averages:

S
strat g

ohw,s>
where
A o 1 Xin - €im
Ao w,s — \Y N =
b X<\/Msi:§:s( ZiM - EiM ))
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1 Z Xint - €t — Xt - Eina Xint - éint — Xt - 2ants \
M, ’

Zinv - Eim — ZiM * EiMs Zinm - Eim — ZiM * EiMs

i:5;=s
with
Xinr - € ! > Xy £ d Ziy - ¢ ! Y Ziy-¢
iM " EiMs = iM " EiM iM " EiMs = iM " EiM -
M &M M, M &M an M *EiM M, M " EiM
Z:SiM:s ZZSiM:S
Assumption 14. Fors=1,...,S, M;/M — 65 > 0.
Lemma 9. Suppose Assumptions 8-14 hold. Then
AV S Astrat S thw,
where
Astrat - plim(Astrat)-
The proposed estimator for the normalized variance is then
vvstrat - f‘_lAstrautf‘_l- (43)

A natural way to define the strata is in terms of values of the attributes Z;);. If the attributes
are discrete we can simply stratify by their exact values. If the Z;; take on many values we can
partition the attribute space into a finite number of subspaces.

If one is willing to make the additional assumption that the potential outcome function is
correctly specified, then we can make additional progress in estimating Ay . In that case only
the top-left block of the Ay matrix differs from zero, as we discussed in Section 3.6. In addition,
this assumption implies that the residuals €;); are non-stochastic, and so they can be used in

partitioning the population.

5 Simulations

Here we present some evidence on the difference between the conventional ehw variance and the
variance for causal effects. We focus on the case with a single binary cause X; € {—1,1} and a

single binary attribute Z; € {—1,1}. The potential outcome function has the form
Yi(z) =Yi(0) + (o + 7 - Zi + 72 - ) - ,
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where 7 and 75 are parameters we vary across simulations. The 7; € {—1, 1} is an unobserved
source of heterogeneity in the treatment effect. If m = 7 = 0, the regression function is correctly
specified and because the attribute is binary the linearity condition is also satisfied, and thus
the conventional ehw variance will be valid. If either 7, or 7» differs from zero, the conventional
variance estimator will be over-estimating the variance. If 7y is different from zero the variance
estimator based on partitioning the sample by values of Z; will be an improvement over the
conventional variance estimator.

In the population the Z; and n; are uncorrelated, and satisfy

M ; Ly=—1 = M ; 1,-1=1/2, and Vi ; 1z=1 = 7 ; 1z, =1/2.
Moreover,

1« LM

M2V =0 ) YO =1,

M =1 M i=1

1 — 1 —
z"Yz’(O)ZMZZME(O)ZMZZMWZO,
=1

i=1

Sy
e

and
pr(X; =1)=pr(X;, =—-1)=1/2.

The Y;(0) were generated by first drawing v; from a normal distribution with mean zero and
variance equal to one, and then calculating Y;(0) as the residual from regressing v; on n;, Z;
and n; - Zz

We estimate a linear regression model using least squares:
Yi=vw+mn-Zi+0-X;+e;.

We focus on the properties of the least squares estimator for 6.

We consider nine designs. In these designs we consider three sets of values for the pair
(11, 72), namely (1, = 0,72 = 0), (1 = 0,72 = 10), and (7 = 10,75 = 0). In all cases 7p = 0.
The expected sample size p- M is in all cases equal to 1,000, but the value of p takes on different
values, p € {0.01,0.5, 1}, so the population size is M = 100,000, M = 2,000, or M = 1,000 in

the three different designs. In each of the nine designs we start by constructing a population,
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as described above. Given the population we then repeatedly draw samples in the following
two steps. We first randomly assign the covariates according to the binomial distribution with
probability 1/2 for the two values x = —1,1. Finally, we randomly sample units from this
population, where each unit is sampled with probability p. For each unit in the sample we

observe the triple (Y;, X;, Z;).

Table 1: SiMmuLATION RESULTS, M - p = 1000

’7'1:0, ’7'2:0 ’7'1:0, ’7'2:10 ’7'1:10, ’7'2:0
p=01 p=5 p=1 p=.01 p=5 p=1 p=.01 p=.>5 p=1

std(@eausal)  0.032  0.032 0.030  0.32 0.23 0.037  0.32 0.23  0.035

std(gdes) 0.031  0.023 0.000  0.32 0.23  0.000  0.32 0.22  0.000

SCehw 0.032 0.032 0.032  0.32 0.32 0318  0.32 0.32 0.318
S€causal 0.032 0.032 0.032 0.32 023 0.032 0.32 0.23  0.032
S€desc 0.032 0.022 0.000  0.32 0.22  0.000  0.32 0.22  0.000
SCstrat 0.032 0.032 0.030 0.32 0.23 0.041 0.32 0.32 0.318

The results from the simulations are presented in Table 1. In the first two rows we present
for each of the nine designs the standard deviation of the least squares estimator fo1s as an
estimator for %3 and as an estimator for #4°¢. If p = 0.01 the two standard deviations are

very similar, irrespective of the values of 7y and 7. If p = 1, the standard deviation of Bo1s — s

— g°avsal yemains positive. If p = 0.5, the ratio

is zero, whereas the standard deviation of G
of the variances depends on the other parameters of the design. The next three rows present
the results of analytic calculations for the three variances, first the conventional ehw variance,
then the variance for the causal estimand and finally the variance for the descriptive estimand.
The latter two closely match the standard deviation of the estimator over the repeated samples,

confirming that the theoretical calculations provide guidance for the sample sizes considered
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here. Finally, in the last row we partition the sample by the values of Z;, and use the variance
estimator in (4.3). We see that in the case with 7, = 7 = 0 the properties of the proposed
variance estimator are very similar to those of the conventional ehw estimator. If 74 > 0 and
79 = 0, so the variation in the coefficient on X; is associated with the observed attribute Z;,
then the proposed variance estimator outperforms the conventional EHW estimator. If 74 = 0
and 75 > 0, so the variation in the coefficient on X is associated with the unobserved attributes,
then the performance of the proposed variance estimator is similar to that of the conventional

EHW estimator.

6 Inference for Alternative Questions

This paper has focused on inference for descriptive and causal estimands in a single cross-section.
For example, we might have a sample that includes outcomes from all countries in a particular
year, say the year 2013. In words, we analyze inference for estimands of parameters that answer
the following question: “What is the difference between what the average outcome would have
been in those countries in the year 2013 if all had been treated, and what the average outcome
would have been if all had not been treated?” We also analyze inference for estimands of
parameters that can be used to answer descriptive questions, such as “What was the difference
in outcomes between Northern and Southern countries in the year 20137

These are not the only questions a researcher could focus on. An alternative question might
be, “what is the expected difference in average outcomes between Northern and Southern coun-
tries in a future year, say the year 20157” Arguably in most empirical analyses that are intended
to inform policy the object of interest depends on future, not just past, outcomes. This creates
substantial problems for inference. Here we discuss some of the complications, but our main
point is that the conventional robust standard errors were not designed to solve these problems,
and do not do so without strong, typically implausible assumptions. Formally questions that
involve future values of outcomes for countries could be formulated in terms of a population of
interest that includes each country in a variety of different states of the world that might be
realized in future years. This population is large if there are many possible realizations of states
of the world (e.g., rainfall, local political conditions, natural resource discoveries, etc.) Given
such a population the researcher may wish to estimate, say the difference in average 2015 out-

comes for two sets of countries, and calculate standard errors based on values for the outcomes
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for the same set of countries in an earlier year, say 2013. A natural estimator for the differ-
ence in average values for Northern and Southern countries in 2015 would be the corresponding
difference in average values in 2013. However, even though such data would allow us to infer
without uncertainty the difference in average outcomes for Northern and Southern countries in
2013, there would be uncertainty regarding the true value of that difference in the year 2015.
In order to construct confidence intervals for the difference in 2015, the researcher must
make some assumptions about how country outcomes will vary from year to year. An extreme
assumption is that outcomes in 2015 and 2013 for the same country are independent conditional
on attributes, which would justify the conventional EHW variance estimator. However, assuming
that there is no correlation between outcomes for the same country in successive years appears
highly implausible. In fact any assumption about the magnitude of this correlation in the absence
of direct information about it in the form of panel data would appear to be controversial. Such
assumptions would also depend heavily on the future year for which we would wish to estimate
the difference in averages, again highlighting the importance of being precise about the estimand.
Although in this case there is uncertainty regarding the difference in average outcomes in
2015 despite the fact that the researchers observes (some) information on all countries in the
population of interest, we emphasize that the assumptions required to validate the application of
EHW standard errors in this setting are strong and arguably implausible. Moreoever, researchers
rarely formally state the population of interest, let alone state and justify the assumptions that
justify inference. Generally, if future predictions are truly the primary question of interest, it
seems prudent to explicitly state the assumptions that justify particular calculations for standard
errors. In the absence of panel data the results are likely to be sensitive to such assumptions.

We leave this direction for future work.

7 Conclusion

In this paper we study the interpretation of standard errors in regression analysis when the
assumption that the sample is a random sample from a large population of interest is not at-
tractive. The conventional robust standard errors justified by this assumption do not necessarily
apply in this case. We show that by viewing covariates as potential causes in a Rubin Causal
Model or potential outcome framework we can provide a coherent interpretation for standard

errors that allows for uncertainty coming from both random sampling and from conditional
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random assignment. The proposed standard errors may be different from the conventional ones
under this approach.

In the current paper we focus exclusively on regression models, and we provide a full analysis
of inference for only a certain class of regression models with some of the covariates causal and
some attributes. Thus, this paper is only a first step in a broader research program. The concerns
we have raised in this paper arise in many other settings and for other kinds of hypotheses, and
the implications would need to be worked out for those settings. Section 6 suggests some

directions we think are particularly natural to consider.
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APPENDIX A: PROOFS
Proof of Lemma 1: Conditional on N = Zf\il W; the vector W has a multinomial distribution with

M\~ a
pr(W =w|N) = <N> , for all w with ij:N

J=1
= 0, otherwise.

The expected value, variance and covariance of individual elements of W are given by

EW;IN] = o
vy = (4 ) (1——>= T
(C(W]?Wh|N) = M2 (M )

Now consider the sample average

1 M
s =5 D WY,
j=1

For notational simplicity we leave conditioning on N > 0 implicit. Then

M LM
E[fin |N] = ZEWW Z<M>'Yj:MZYquM
j=1

7=1

The sampling variance of jiys is can be obtained by writing fipy = W'Y /N so that
R 1
V(| N) = 1Y VW N)Y

From the conditional second moments of W it follows that

M -1 —1 —1 —1
—1 M -1 —1 —1
N-(M—-N
Y'V(W|N)Y = [Mz ( 7 1)] Y’ -1 Y
(M- 1) -1 M-1 -1
—1 —1 —1 M -1
Straightforward algebra shows that
M -1 —1 —1 —1
-1 M-1 —1 ~1 M Mo\’ M
Y| -1 V=M Y7 || =MD (¥~ um),
1 M-1 -1 =1 i=1 i=1
—1 —1 —1 M -1



so that

M
N-(M—N) 1 N(M — N)
! N)Y = Y. _ 2| _ 2
Y'V(W|N) 7 M_lj;(y ) T oh
Therefore,
(i — 1 N(M_N) 2 _012\4 N
U

Note that this result generalizes to any set of constants {c;};—1,.. a, so that,

M
V(W'¢|N) = dV(W|N)e = % S e — )2,
j=1

where ¢y = Zf‘il ci/M.

Before proving Lemma 2, we state a useful result.

Lemma A.1. Suppose Assumptions 1 and 8 hold. Then:

N
M- pm

M-pym p

2.1 and —1 as M — oo.

Proof: Under Assumption 1, for any positive integer M, N ~ Binomial(M, pyr), which implies
Ew[N]= M - ppr and Vi (N) = M - par - (1 — par). Therefore,

Ew[ N ]:1 and VW( N >:M'pM'(1—PM):(1—pM)
M pum M- pum M2 - p3, M-py’

which converges to zero by Assumption 3. Therefore convergence in probability follows from conver-
gence in mean square. The second part follows from Slutsky’s Theorem because the reciprocal function
is continuous at all nonzero values. [

Proof of Lemma 2: From Lemma 1,

2 N
Vow (g N, N > 0) = 2L . (1 - —) ,

N M
and so
o2 o3 —0? o2 o2, — o o? o2, —o? om - M
Vi (iuyINN>Q) - — =M ~* _“M_ =M ~ “M_ =M ~ (1_ .
w i [N, N> 0) = N M~ oy M M pyM N

Given Assumption 2, 03, — 02 as M — oo, and therefore {03,} is bounded. It follows that

Vw (fins|N, N > 0) — 02/N = O,((ppsM)™1), finishing the proof of part (7).
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The normalized variance is

N R N
T ) = N Vo ) = o (1 37

By Assumption 2, 02, — o%. By Assumption 1, N ~ Binomial(M, pps) and so E(N/M) = pps and

NN\ pu(1—pum)
V(M) == "

which means that N/M — pp; = 0. Along with Assumption 3 (py; — p) we get Vi ™ (| N) 2
2
o’ (1—p).

Proof of Lemma 3: Assumption 1 ensures that the vector of sampling indicators over the two
subpopulations, of size Moast and M, are independent. Further, conditional on Nggast and N, they
have the multinomial distribution described in the proof of Lemma 1. The result follows immediately
because the covariance between the two sample means, conditional on (N¢oast; Na) and Neoast > 0 and
Np >0, is zero. I

Proof of Lemma 4: Conditional on Moy, Mpign > 0, write H‘jjscr as

1
Q%SCY _ . Z 1X1~:high : Y;(hlgh

—low * Yi(low)

Conditional on Mygn (and therefore conditional on both Myjgh and Miow ), E[1x,—nigh| Mhign] = pr(X; =
high|Mhign) = Mhign/M, and so

M M
1 Mhien - ¥;(high) — 1 Mow
Myigh &~ M

E [Q%SCthigha MIOW} = Y;(IOW)

M Z( (high) — i(low)) — gGausal,

To compute the variance of #3595

M .
Y-(hlgh) Y (low)
edoscr — Ty —piop - < i >
M 2_: Xi=high Mhigh Mlow Z Mlow

Conditional on Moy, Mhigh > 0, the calculation is very similar to that in Lemma 1. In fact, take

, Write

Yi(high) | Yi(low)
Cp = )
Mhien Mow

and then Lemma 1 implies

(S0 (508 - () s



MowM i . 1
_ high [ 2(h1gh) + Ve az(low)]

M M}igh low
9 M
Y IGI=D ; (Y;(hlgh) - Y(hlgh)) : (y;-(low) - Y(low)).
Now
M
o?(low, high) = Y;(high) — Y (high)) — (Y;(low) — Y (low))]?
M
= 0”(high) + o*(low) — 2(M —1)~" ) "[V;(high) — ¥ (high)][Y;(low) — ¥ (low)].
=1
or
M
-1 Z (high) — Y (high)][Y;(low) — Y (low)] = ¢%(high) + o*(low) — o*(low, high).
i=1
Substituting gives
Mow Mhign 1 . 1 [02(high) + o?(low) — o?(low, high)]
V(09557 | Mo, Mii = & o2 (high) + o2(low) + ’
(655571 M, Mg = [Mﬁgh (high) + 5 —o%(ow) T
MowM i 2 i
1 high M i o2(high) + M i 2(low) — o*(low, high)
M Mlothlgh MhighM10W Mlothigh
_ o?(high) n o2 (low) B o?(low, high)
Mg Mow M '

O

Proof of Lemma 5: We prove parts (i) and (ii), as the other parts are similar (and (v) follows
immediately). First, because X and W are independent, we have

]D(X|W7 Nhigh7 Nlow) = ]D(X|Nhigh7 Nlow)

and the distribution is multinomial with

E[1x,=high| Vhigh, Mow] = E[1x,=nigh|Vhigh: V) = Nnigh/N
NhighNow
V(1x,=nhigh| Nhigh, N) = %
Nhigh Niow
C(1x,=nighs 1x;,=high|Vhign, N) = —m
Nhigh(Nnigh — 1
E[1x,=nhigh - 1x,=high| Vhigh, V] = 1]gV§Nf 1 )
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Note that
Nuigh  Nnigh(Nnigh — 1) (V= 1) Nhjgn — N}%igh + Nhigh

E[1x,=high - 1x,=tow|Vhigh, N] =

N  NWN-1) N(N —1)
_ NNnigh — Ny high _ Nnigh(N — Naigh) _ NhighNiow
N(N —-1) N(N —-1) ~ N(N-1)
Now
Oy = Npigh Z Wil x,—nighY; (high) — Z Wil — X; = lowY;(low)
=1
E(001|W, Nuigh, Niow) = Nh . Z Wipr(X; = high|Nhigh, Now)Yi(high)
ig
N Z W;pr(X; = low|Nuigh, Now)]Yi(low)
lowi 1
M
= Niggn D_ WilNuign/N)Yi(high) — Ny, Z Wi(Niow /N)Yi(low)
i=1
= Nt Z W;[Y;(high) — Y;(low)]
and so
M
E(Ors| Nuigh, Niow) = N E(W;| Nuigh, Niow)[Yi(high) — Yi(low)] = N~* Z(N/M)[y;-(high) — Y; (low)]
i=1

causal
= [LMhigh — UMlow = 0

Y

which proves part (i).
For part (ii) we find

V(Oar| Nighs Niow) = V(Vaigh| Nuighs Now) + V(Yiow| Nighs Now) — 2C(Vhigh, Yiow| Nhigh Now)-

If we define Z; = W;-1x,—nignh and R; = W;-1x,-1ow then we can apply Lemma 4 to obtain the variances
because

(Zla sy ZM)|(N10W7 Nhigh)

has a multinomial distribution with pr(Z; = 1|Now, Nnigh) = Nnigh/M and (Ry, ..., Rar)|(Niow, Nhigh)
has the distribution with P(R; = 1|Niow, Nhigh) = Now/IN. Therefore,

- o2 (high) Nhigh o?(high)  o?(high)
Yhigh| NVnigh, Now) = 1- = -
V (Yhign| Naigh, Now) Nhigh M Nhigh M
- o?(low)  o?(low)
V(Yiow|Nhigha Nlow) - Nlow - M

and so
o2 (high) n o?(low) B o?(high) + o%(low)
Nhigh Niow M

V(é|Nhigh7 Nlow) = - 2(C(Yhigha Eow|Nhigha Nlow)

[41]



We showed in 4 that
5 M
o?(high) + o?(low) = ojy pign + =1 > " [¥i(high) — nign][Vi(low) — piow]
=1

~

2
= Olow,high T 27low,high

where 7iow high is the population covariance of Yj(low) and Y;(high). So

2(h: 2 2

~ o“(high o(low Olow,high

V(0] Nhigh, Now) = ]Srh.gh : + ]\(71 - OMlg 2 [
ig ow

Tllow,high
M

+ (C(Yhigha Eow|Nhigha Nlow)

The proof is complete if we show

TNow,high

(C(Yhigha Eow|Nhigha Nlow) - M

The usual algebra of covariances gives

M
Mow,high 1 . MhighMlow
- Y; (high)Y; (low) — LhighHlow
M M(M—l); (high)Y;(low) — 77—

and so it suffices to show

M
- Hhigh Hlow 1 .
E(Yilighyiow|Nhigha Nlow) — HhighMlow = (]\? — (1)) - M(M — 1) § Yz(hlgh)YZ(IOW)

1=
or

M pinighpiow — M~' 321 Vi(high)Yi (low)

Il'—_1:'(?Vhigh?iow | Nhigh7 Nlow) —

(M —1)
(z.M Y-(high)> (z.M Y-(low)) - (z.M Y-(high)Y-(low))
. =11 =1 "1 =1 "1 ?
B M(M —1)
S S hLisy Yi(high) Yy, (low)
M(M —1)
To show this equivalance, write
1 M M
YhignViow = F—%— (Z Wilxizhigth(high)> (Z Wthizloth(IOW)>
high<{Vlow i—1 h—1
1 M M
_ Nhigthow Z Z WilXi:highY;(high) Wh 1Xh:10th (IOW)



First condition on the sampling indicators W as well as (Nhigh, Niow):

E(Yhighﬁow| W, Nhigh7 Nlow)

Finally, use iterated expectations:

E(Yhighﬁow | Nhigh7 Nlow)

1

NhighNow

1

NhighNow

1

NhighNow

1

NN 1)

=
2
|

=
2|
|

—

—

which is what we needed to show. [J

Proof of Lemma 6:

norm __

o2;(low) o3,(high) N

=
=
|
=
M=

s
I
—
>
e
&

=

=

|
M=
M=

s
Il
—
>
e
&

causal — Nlow / N Nhigh / N - M

WiWhpr(Xi = high, Xh = 10W|W, Nhigha NlOW)YZ-(high)Yh(low)

-
I
—
>
e
by

M= I[M=
M= 1=

WiWhpr(Xi = high, Xh = 10W|Nhigha Nlow)n(high)yh (IOW)

s
I
—
>
e
&

WiWh[Nhigthow/N(N — 1)]Y2(high)Yh(10W) =

M=
M=

s
I
—
>
e
&

M M

D> Wi, Yi(high) Y (low).
i=1 h#i

E(W;Wh|Nhigh, Now)Y; (high) Yy, (low)

-
M=

s
I
—
>
e
iy

-
M=

-
I
—
>
e
iy

[N(N = 1)/M(M — 1)]Y;(high) Yy (low)
[N(N = 1)/M(M — 1)]Y;(high) Yy (low)

Y (high)Y}, (low),

o3, (low, high).

By Assumption 3 N/M — p. By Assumptions 3 and 7 Nigw/N — (1 — ¢q) and Npijgn/N — ¢ By

Assumption 6

o2, (low) — o (low),

o3(high) — o®(high),  o%;(low, high) — o*(low, high).

Together these imply the two results in the lemma. [

It is useful to state a lemma that we use repeatedly in the asymptotic theory.

Lemma A.2. For a sequence of random variables {Uijpr : @ = 1,..., M} assume that {(Winr, Uing) :
i =1,..., M} is independent but not (necessarily) identically distributed. Further, Wiy and U;pp are

[43]



independent for all i=1,...,M. Assume that E(U?,) < oo fori=1,...,M and
M
]\4_1 ZE(UZM) — Uy

M
M"Y E(UR) — D
i=1
Finally, assume that Assumptions 1 and 3 hold. Then
M M
N WinUing = M) "E(Uing) 5 0.
i=1 i=1

Proof: Write the first average as

N iWiMUiM = (M”M> M Z (

i=1

)

As argued in the text, because N ~ Binomial(M, pas) and M ppr — oo by Assumption 3, (Mpyr) /N 2,
1. Because we assume M ! Zf\il E(U;pr) converges, it is bounded, and so it suffices to show that

12( > v — MllE;IE i) 20

Now because W;s is indepenent of Ujy,

Mo
E [M—l > (—M> Uin

— M
=1

and so the expected value of

a3 (3 v - 71 S
=1
is zero. Further, its variance exists by the second moment assumption, and by independence across 1,

W,
M > UZM
M

M
M1 (

M
o Z E(Win) ' I Z '
- i=1 ( PM > E(UZM) M i E(UZM)’

= -2 Z p_V WzMUzM 22 {—E ZMUZM) ] — [E(WZMUZM)]z}
i=1 "M

_ 22{ PMEWUR) — 4 E U >]}<M2p12E
- M—pM[ le

By assumption, the term in brackets converges and by Assumption 3 Mpys — oco. We have shown
mean square convergence and so convergence in probability follows. [J
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We can apply the previous lemma to the second moment matrix of the data. Define

. 1 & Vi YXh  YiuZ
Oy = N Z Win - | XimYine Xom Xy XamZiy,
i=1 ZimYin  ZimXiy  ZimZiy

Lemma A.3. Suppose Assumptions 8-10 hold. Then:
Qur — Qur 2 0.

Proof: This follows from the previous lemma by letting U, be an element of the above matrix in the
summand. The moment conditions are satisfied by Assumption 9 because fourth moments are assumed
to be finite. [J

Note that in combination with the assumption that limp; ..o Q3 = 2, Lemma A.3 implies that

On -2 Q. (A1)

Proof of Lemma 7: The first claim follows in a straightforward manner from the assumptions and
Lemma A.3 because the OLS estimators can be written as

N A~ —1 A
~ sample sample sample
( Bols > _ QXX,le QXZ’,ZIM QXY,Z\{
Iy - Aysample Aysample Aysample .
Yols Qyxiv gz Qyym

We know each element in the {23, converges, and we assume its probability limit is positive definite.
The result follows. The other claims are even easier to verify because they do not involve the sampling
indicators Wy, O

Next we prove a lemma that is useful for establishing asympotic normality.

Lemma A.4. For a sequence of random variables {Uijpr : @ = 1,..., M} assume that {(Winr, Uins) :
i =1,..., M} is independent but not (necessarily) identically distributed. Further, Wins and U;pp are
independent for all i=1,....M. Assume that for some 8§ > 0 and D < oo, E(|Uin|*™) < D and
E(|Uim|) < D, fori=1,...., M and all M. Also,

M
M= "E[Uin] =0
i=1
and

o = MY V(Uim) — ofr >0

M-

s
I
—

[E(Uin)]* — w1

M=

Ko = M
1

<.
I

Finally, assume that Assumptions 1 and 8 hold. Then

M
NN WinUni & N (0, [07 + (1 p)r3]) .
=1
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Proof: First, write

/ f: Mpu \'? f: Winm
N7YEN Wi Uing = <—> M2 ( . > Uim
i=1 N i—1 \VPM

and, by Lemma A.2, note that \/(Mpys)/N - 1. Therefore, it suffices to show that

M
Ry =M"12%" (VVPM> Uit 5 N (0, [of + (1= p) - 53]) -
=1 M

Now

M M
_ Ar-1/2 E (Win) Y -1/2 N
E(RM) M ;( \/p_M >E(UZM) \/pMM ;E(UZM) 0

and

M ay
V(Ry) =M1 V[( : >UZM].
The variance of each term can be computed as

V()] = = [(Te)en] - (= () o]}
= E(Uir) — pm[E(Uinr)]?

= V(Uin) + (1 = par) [E(Uinr)]*.

Therefore,

M M

V(Ry) = M~ V(Uing) + (1= pa) MY [EUi))* = oy + (1= p)rir.
i=1 =1

The final step is to show that the double array

—172 [( W o ,
O — MY |:<\/p%> Uim \/pMOézM} _ 1 (WintUsns — parceing)
' 02 1 (1— par)i VMprt o2 (1~ pag)i,
UM PM )Ry, M UM PM )Ry, M

where a;pr = E(U;py), satisfies the Lindeberg condition, as in Davidson (1994, Theorem 23.6). Sufficient
is the Liapunov condition

M

> E(IQin[*T?) — 0 as M — oo,
=1
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Now the term \/ 012] ut+@=p M)IizU s 1s bounded below by a strictly positive constant because 012]7 M

012] > 0. Further,by the triangle inequality,

1/(2+9)
[E (Wing) E(|[Usng [P0 40 4 piy i

[p}\é(zw) + pm | D1

{E |:|WiMUiM - pMOZiM|2+5} }

IN

where D; is constant. Because pys € [0, 1], p}\é(%é) > pu, and so

E |:|WiMUiM — pruraint Pt < puDs.

Therefore, the Liapunov condition is met if

M
Z M _ Mpwm — (Mpar)~%/% 0,
— ( /—MpM)2+5 (MpM)1+(5/2)

which is true because § > 0 and Mpy; — co. We have shown that

\/U%,M+(1_PM)“2U,M ’

M
L Z
i=1

and so, with \/U%M + (1= pm)Kd p — \/012] + (1= p)K¥,

M*ﬁi [(%) Uint — \/maiM] LN (0, [0F+ (1= p)rd]). O

Proof of Lemma 8: This follows directly from Lemma A.4. [J

Proof of Theorem 1: We prove part (i), as it is the most important. The other two parts follow
similar arguments. To show (i), it suffices to prove two claims. First,

M /
1 Zim Z; P
NZ;WZM<XZ-M><XZ- > N AN (A.2)
holds by Lemma A.3 and the comment following it. The second claim is
L f: Winm Xivein 4, N 0 Ay +(1—p)Ag ). (A.3)
VN = ‘ ZiMEiM 0 )’

If both claims hold then

[47]



1
) _ pcausal 1 M 7. 7. ! 1 M Xorres
/N< ?OIS OM > _ = W, < iM > ( iM > W < iMEIM >
Aols — Y5u52l N EZ: M\ X Xim VN ; M\ Zinvreinr

and then we can apply the continuous convergence theorem and Lemma A.4. The first claim follows
from Lemma A.3 and the comment following. For the second claim, we use Lemma A.4 along with the
Cramér-Wold device. For a nonzero vector A, define the scalar

Ximeim
U' — A/ (2 7 > ¢
M ( ZiMEiM

Given Assumptions 8-10, all of the conditions of Lemma A.4 are met for {Uips : ¢ =1, ..., M }. There-
fore,

M
1
i Z WintUint 5 N (0,0 + (1 — p)rg])
=1

where
M 1 M Xime€
. . 1 . L iMEiM —
of = lim M ;V(UZM)—/\ {A}TOOM;V< Zens >}/\ NAy A
M /
v 1 Xig; Xig; Y
b - e AR B (5 Preve
and so

By assumption this variance is strictly postive for all A # 0, and so the Cramér-Wold Theorem proves
the second claim. The theorem now follows. [J

Proof of Theorem 2: For simplicity, let 63, denote 95@“"“1 and similarly for 43;. Then 037 and s
solve the set of equations

E(X'X)0y+E(X'Z)3y = EX'Y)
E(Z' X))y + Z'Z3y = E(Z'Y),

where we drop the M subscript on the matrices for simplicity. Note that Z is nonrandom and that all
moments are well defined by Assumption 9. Multiply the second set of equations by E(X'Z)(Z'Z)~!
to get

E(X'Z)(Z'Z) 'R(Z'X)0y + E(X'Z)3y = E(X'Z)(Z2'Z) 'E(Z'Y)
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and subtract from the first set of equations to get
[E(X'X)-E(X'Z)(Z'Z)'E(Z'X))0y =E(X'Y) -E(X'Z)(Z2'Z)"'E(Z'Y)
Now, under Assumption 11,
Y =Y (0) + X0
and so
E(X'Y) = E[X'Y(0)]+E(X'X)6
E(Z'Y) = Z'Y(0)+E(Z'X)0
It follows that
E(X'Y)-E(X'Z)(Z2'Z)'E(Z'Y) =E[X'Y (0)] + E(X'X)#
~K(X'Z)(Z2'2)'Z'Y(0) -E(X'Z)(Z'Z)"'E(Z'X)0
= [E(X'X) -E(X'Z)(Z'Z)"'E(Z'X))0+E{X'[Y(0) - Z(Z'Z)' Z'Y (0)]}
= [E(X'X) -E(X'Z)(Z'Z)"'E(Z'X)]|0+ E{X'[Y (0) — Zy]}

The second term is Zf\il Ex {Xinm [Yine (0) — Z!,, 7]}, which is zero by Assumption 12. So we have
shown that

[E(X'X)-E(X'Z)(Z'Z)'E(Z'X))0y = [E(X'X)-E(X'Z)(Z2'Z)'E(Z'X))0

and solving gives Opr = 0. Invertibility holds for M sufficiently large by Assumption 10. Plugging
0y = 0 into the orginal second set of equations gives

E(Z'X)0+ Z'ZAy = Z'Y (0) + E(Z'X)6
and so Jy = (Z2'Z)1Z'Y(0) = vy O

Proof of Theorem 3:

By the Frisch-Waugh Theorem (for example, Hayashi, 2000, page 73) we can write
-1
éols =

M M
N1 Z Wine(Xinr — ZiaUng)(Xing — ZigUpg)' | N7 Z Wine(Xinr — ZinaUag)Yin
i1 i1

where Y;r = Yins (Xinr) and

M M
Ty = (N—l ZWZ-MZZ-MZ;M> (N—l > WZ-MZZ-MX;M>

i=1 =1
Plugging in for Y;; = ZZ{MVM + X{MG + gip gives
M M M

i Z Wint(Xing — ZiaUp)Yig = N7 Z Wine (Xing — ZingTag) X100 + N1 Z Wint (Xing — ZiaTar)eins
i=1 i=1 i=1

M
Nt Z Wint (Xing — ZinaTag) (Xing — ZinaTlag)' | 6
i=1

M
+N-t Z Wint(Xine — ZinaUar)eins
i1
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where we use the fact that
M
Nt Z Wint(Xine — Zingllpg) Zpy = 0
i=1

by definition of Iy. It follows that
-1

M
N7/2 Z Wini(Xine—Zine g )eing -

M
VN (éols - 9> = [N_l > Wint (Xins = Zina M) (Xins — ZinaTng)
i=1 i=1

Now

M M
i Z Wint(Xing — Zina T ) (Xing — ZigTyy) = N71 Z Wint (Xing — Zia Tl ) (Xing — Zina Aar)'
i=1 i=1
M
_ -1 . . . . . /
= N Win(Xin — ZineAat)(Xins — ZingAar)
i1

M
+N7t Z Wine Zing (X — Aar)(Xing — ZineAnr)!
i1

M
= N_l Z WZM(XZM — ZZMAM)(XZM — ZZMAM)/ + op(l)
i=1
because Iy — Ay = op(1) and N1 le\il Wint Zint(Xinr — ZingAar)' = Op(1). Further,

M M
N2 Z Wint (Xing — ZingTlar)eing = N7Y2 Z Wint(Xine — Zina A )eins + 0p(1)
=1 =1

because N~1/2 Zf\il Wini Zineeine = Op(1) by the convergence to multivariate normality.
Next, if we let
Xinr = Xinr — ZineAur

then we have shown

M -1 M
VN (éols - 9) = (N_l Z Wz’MXiMX{M> N2 Z Wint Xineeint + 0p(1)
i=1 =1
Now we can apply Theorems 1 and 2 directly. Importantly, ;s is nonstochastic and so

E(Ximein) = E(Xinm)eins =0

because

E(X;0) = E(Xing) — ZingAps = 0

by Assumption 13. We have already assumed that Wjys is independent of X;j;. Therefore, using
Theorem 2, we conclude that

VN (o= 0) 5 N0, 1A, T



where

N
ry = lim MY R (XZ-MXZ!M>
N . .
AOhW,X = ]\}li)noo J\4_1 ZE (612MXZMXZ/M> .
=1

APPENDIX B: A BAYESIAN APPROACH

Given that we are advocating for a different conceptual approach to modeling inference, it is useful to
look at the problem from more than one perspective. In this section we consider a Bayesian perspective
and re-analyze the example from Section 2.3. Using a simple parametric model we show that in a
Bayesian approach the same issues arise in the choice of estimand. Viewing it from this perspective
reinforces the point that formally modeling the population and the sampling process leads to the
conclusion that inference is different for descriptive and causal questions. Note that in this discussion
the notation will necessarily be slightly different from the rest of the paper; notation and assumptions
introduced in this subsection apply only within this subsection.

Define Y (low) s, Y ( high)as to be the M vectors with typical elements Y;ys(low) and Y;ps (high) respec-
tively. We view the M-vectors Y (low) s, Y (high)as, Wiy , and Xy as random variables, some observed
and some unobserved. We assume the rows of the M x 4 matrix [Y (low)s, Y (high) s, War, X ] are
exchangeable. Then, by appealing to DeFinetti’s theorem, we model this, with (for large M) no es-
sential loss of generality as the product of M independent and identically distributed random triples
(Y;(low), Yi(high), X;) given some unknown parameter 3:

F(Y (low) a7, Y (high) s, X r) H f(Yi(low), Y;(high), X;| ).

Inference then proceeds by specifying a prior distribution for 3, say p(3).
Let us make this specific, and use the following model. The X; and W; are assumed to have binomial
distributions with parameters ¢ and p,

pr(X; = high|Y;(low), Y;(high), W) =g¢,  pr(W; = 1[¥;(low), Y;(high)) =

The pairs (Y;(low), Y;(high)) are assumed to be jointly normally distributed:

(g o stsn,om, s (2533 ) (oiioon ™ 008 )

so that the full parameter vector is 3 = (g, p, u(low), u(high), o2(low), o (high), x).

We change the observational scheme slightly from the previous section to allow for the analytic deriva-
tion of posterior distributions. For all units in the population we observe the pair (W;, X;), and for
units with W; = 1 we observe the outcome Y; = Y;(X;). Define Y; = W;-Y;, so we can think of observing
for all units in the population the triple (W;, X;,Y;). Let Wiy, X, and Yy, be the M vectors of these

variables. As before, ﬁ?;h denotes the average of Y; in the subpopulation with W; = 1 and X; = 1,
and 7?;)5 denotes the average of Y; in the subpopulation with W; =1 and X; = 0.
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The issues studied in this paper arise in this Bayesian approach in the choice of estimand. The
descriptive estimand is

M
X; Y, — 1-X;)-Y,.
Mhlgh Z Mlow Z( Z) '

=1

edoscr

The causal estimand is

M
gsausal — % Z(y;-(high) - y;(low)>.

i=1

It is interesting to compare these estimands to an additional estimand, the super-population average
treatment effect,

geresal — 4y (high) — p(low).

In principle these three estimands are distinct, with their own posterior distributions, but in some
cases, notably when M is large, the three posterior distributions are similar.

For each of the three estimands we evaluate the posterior distribution in a special case. In many
cases there will not be an analytic solution. However, it is instructive to consider a very simple case
where analytic solutions are available. Suppose o?(low), o (high), x and ¢ are known, so that the only
unknown parameters are the two means p(low) and p(high). Finally, let us use independent, diffuse
(improper), prior distributions for poy and p(high).

Then, a standard result is that the posterior distribution for (e, p(high)) given (War, Xar, Yar) is

w(low) N Yﬁlovi o2(1ow) /Niow 0
( p(high) >‘WM’XM’ N (( Yo ) 0 o” (high)/Nign ) )

This directly leads to the posterior distribution for #2%al = y(high) — u(low):

- a?(1 2(high
05" W, Xar, Yay ~ N (ﬁih Vo = low) 4 2 - )> :
Nlow Nhlgh

A longer calculation leads to the posterior distribution for the descriptive estimand:

0555 |\ Wy, X g, Yas ~

21 Niow 2(high Ni;
N (Tl i, T (1 B () S ) ),
Niow Mow Nhigh Mhien

descr
QM

is very similar to the corresponding confidence interval based

. . . . . . ob b
on the normal approximation to the sampling distribution for Y(})li;h 7?05 If Miow, Myign are large,

this posterior distribution converges to

The implied posterior interval for

d \/ 1 \/
QJ\ZI)SCY|WM7 XM7 YM7 MIOW — 00, Mhigh — OO0 ~ eggusa |WM7 XM7 YM

If, on the other hand, Niow = Miow and Npigh = Mhyigh, then the distribution becomes degenerate:

d g obs -obs
057> IWir, X1, Yar, Niow = Miow, Nhigh = Mhigh ~ N (Yh1gh Yiow 0)
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A somewhat longer calculation for 95@“"“1 leads to

~ —obs —obs NOW . M i
9?\?{1183,1|WM’ XMa YM ~ N <Yh}i)gh _ Yl(}w’ ]\142 gz(hlgh) . (1 — [{2) + ]\Zgh 0'2(1OW) . (1 — [{2)
—_~ 52(high) —— 52 (low) oM — (high)o (low)
Tz o)+ e —otllow) = 2 —Ro(high)o (low

2(hi Nuign > | o2(1 high)\ Now \ >
42 (high) - 11—k 0'(1(.)W) high |, O (low) 1 (1 _I{U( igh) low '
Nhigh o (high) M Now o(low) M
Consider the special case where k = 1, o(low) = o(high). Then
0535\ War, Xr, Yr, & = 1, 0(low) = o(high) ~ 052558 Wy, X, Y.
The same limiting posterior distribution applies if M goes to infinity.
053" Wr, Xty Yr, Miow — 00, Miigh — 00 ~ 05258 Wy X s, Y.

The point is that if the population is large, relative to the sample, the three posterior distributions
agree. However, if the population is small, the three posterior distributions differ, and the researcher
needs to be precise in defining the estimand. In such cases simply focusing on the super-population
estimand gcausal — Hhigh — Mow 1S arguably not appropriate, and the posterior inferences for such
estimands will differ from those for other estimands such as 65312l or gqescr,



