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Abstract
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addressed this issue. The network in international trade studies is much denser than in
typical network studies, so it becomes especially important to control for dyadic error
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1. Introduction

A key component of empirical research is conducting accurate statistical inference. One

challenge to this is the possibility of errors being correlated across observations. In this paper

we present a variance matrix estimator that provides cluster-robust inference for regressions

with paired or dyadic data, such as country-pair data analyzed frequently in international

trade applications.

Controlling for clustering can be very important, as failure to do so can lead to massively

under-estimated standard errors and consequent over-rejection using standard hypothesis

tests. Moulton (1986, 1990) and Bertrand, Du
o and Mullainathan (2004) demonstrated

that the need to control for one-way clustering arose in a much wider range of settings than

had been appreciated by microeconometricians. Most notably, even modest within-group

error correlation can greatly in
ate default standard errors for a grouped regressor (one

observed at a more highly aggregated level than the dependent variable). The common way

to control for clustering is to use one-way \cluster-robust" standard errors that generalize

those of White (1980) for independent heteroskedastic errors. Key references include Shah et

al. (1977) for clustered sampling, White (1984) for a multivariate dependent variable, Liang

and Zeger (1986) for estimation in a generalized estimating equations setting, and Arellano

(1987) and Hansen (2007) for linear panel models. Wooldridge (2003) and Cameron and

Miller (2011, 2015) provide surveys.

Cluster robust inference for the one-way case has been generalized to two-way and multi-

way clustering; see Miglioretti and Heagerty (2006), Cameron, Gelbach and Miller (2011)

and Thompson (2011). An example is cross-section data of individual wages on two grouped

regressors with di�erent types of groupings, such as occupation-level job injury risk and

industry-level job injury risk.

In this paper we consider a di�erent departure from one-way clustering, that due to

paired or dyadic data, such as that for trade 
ows between countries. Then model errors are

likely to be correlated between country-pair observations that have a country in common.

For example, errors for US-UK trade may be correlated with those for any other country pair

that includes either the US or UK. Standard approaches, including using country �xed e�ects

or (for panel data) country-pair �xed e�ects, do not fully account for this error correlation

and lead to standard error estimates that can be misleadingly low.

Cameron and Golotvina (2005) developed a modi�ed two-way random e�ects model for
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dyadic data, but this has the limitation of inference being valid only if the underlying errors

are indeed i.i.d. Cameron, Gelbach and Miller (2011, section 4.2) propose using two-way

cluster-robust standard errors that for country pair (g; h) cluster on country g and on country

h. In the current paper we �nd this provides considerable improvement over current practice,

but does not control for all of the potential error correlation.

We instead use methods that have been proposed in the context of inference for social

network data. Leading examples are Frank and Snijders (1994) and Snijders and Borgatti

(1999) in the non-regression case, and Fafchamps and Gubert (2007) in regression applica-

tions. In many network applications an individual may interact directly with relatively few

others. In international trade applications, by contrast, a country may trade with all other

countries. This means that failure to control for clustering may have a much larger impact

on standard error estimates.

Like the one-way cluster-robust method, our methods assume that the number of clusters

(here countries) goes to in�nity. It is well-known that standard Wald tests based on one-

way and two-way cluster-robust standard errors can over-reject when there are few clusters.

Similar problems can be expected to exist for dyadic-robust standard errors, and we consider

�nite-cluster issues in some detail.

The methods are presented in Section 2. In Section 3 we present Monte Carlo exper-

iments. Section 4 presents two international trade applications that demonstrate the im-

portance of controlling for clustering with dyadic data, even when country �xed e�ects are

included in the model. Section 5 concludes.

2. Cluster-Robust Inference

This section emphasizes the OLS estimator, for simplicity. We begin with reviews of one-

way clustering and two-way clustering before considering dyadic clustering. The section

concludes with extension from OLS to m-estimators, such as probit and logit, and to GMM

estimators.

2.1. One-Way Clustering

The linear model with one-way clustering is

yig = x
0
ig� + uig; i = 1; :::; N; (2.1)
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where i denotes the ith of N individuals in the sample, g denotes the gth of G clusters,

E[uigjxig] = 0, and error independence across clusters is assumed so that

E[uigujg0jxig;xjg0 ] = 0, unless g = g0: (2.2)

Errors for individuals belonging to the same group may be correlated, with quite general

heteroskedasticity and correlation. Grouping observations by cluster, so yg = Xg�+ug, and

stacking over clusters yields y = X� + u, where y and u are N � 1 vectors, and X is an

N �K matrix. The OLS estimator is

b� = (X0X)
�1
X0y =

�XG

g=1
X0
gXg

��1XG

g=1
X0
gyg; (2.3)

where Xg has dimension Ng � K and yg has dimension Ng � 1, with Ng observations in
cluster g.

Under commonly assumed restrictions on moments and heterogeneity of the data,
p
G(b��

�) has a limit normal distribution with variance matrix�
lim
G!1

1

G

XG

g=1
E
�
X0
gXg

���1�
lim
G!1

1

G

XG

g=1
E
�
X0
gugu

0
gXg

���
lim
G!1

1

G

XG

g=1
E
�
X0
gXg

���1
:

(2.4)

The earliest work posited a model for the cluster error variance matrices
g = V[ugjXg] =

E[ugu
0
gjXg], in which case E[X

0
gugu

0
gXg] = E[X

0
g
gXg] can be estimated given a consistent

estimate b
g of 
g. Given these strong assumptions more e�cient feasible GLS estimation

is additionally possible.

Current applied studies instead use the cluster-robust variance matrix estimate

bV[b�] = c� (X0X)
�1
�XG

g=1
X0
gbugbu0gXg

�
(X0X)

�1
; (2.5)

where bug = yg � Xg
b� and c = G=(G � 1) or c = [G=(G � 1)] � [(N � 1)=(N � k)] is

a �nite-sample adjustment. This provides a consistent estimate of the variance matrix if

G�1
PG

g=1X
0
gbugbu0gXg � G�1

PG
g=1E[X

0
gugu

0
gXg]

p! 0 as G ! 1. White (1984, p.134-142)
presented formal theorems for a multivariate dependent variable, directly applicable to bal-

anced clusters. Liang and Zeger (1986) proposed this method for estimation in a generalized

estimating equations setting, Arellano (1987) proposed this method for the �xed e�ects

estimator in linear panel models, and Rogers (1993) popularized this method in applied

econometrics by incorporating it in Stata. Note that (2.5) does not require speci�cation of

a model for 
g, and thus it permits quite general forms of 
g.
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If the primary source of clustering is due to group-level common shocks, a useful approx-

imation is that for the jth regressor the default OLS variance estimate based on s2 (X0X)�1,

where s is the estimated standard deviation of the error, should be in
ated by � j '
1 + �xj�u(

�Ng � 1), where �xj is a measure of the within cluster correlation of xj, �u is
the within cluster error correlation, and �Ng is the average cluster size. Moulton (1986, 1990)

pointed out that in many settings the adjustment factor � j can be large even if �u is small.

For example, if NG = 81, �xj = 1; and �u = 0:10 then default OLS standard errors should

be de
ated by approximately
p
9 = 3. In general it is especially important to control for

clustering when both the errors and regressors are correlated within cluster and there are

many observations per cluster.

A helpful informal presentation of (2.5) is thatbV[b�] = (X0X)�1bB(X0X)�1; (2.6)

where the central matrix

bB = c�
GX
g=1

X0
gbugbu0gXg (2.7)

= c�X0

26664
bu1bu01 0 � � � 0

0 bu2bu02 ...
...

. . . 0
0 � � � � � � buGbu0G

37775X
= c�X0 �bubu0: � SG�X;

where c is the �nite-sample adjustment, :� denotes element-by-element multiplication and
SG is an N � N indicator matrix, or selection matrix, with ijth entry equal to one if the

ith and jth observation belong to the same cluster and equal to zero otherwise. An intuitive

explanation of the asymptotic theory is that the indicator matrix SG must zero out a large

amount of bubu0, or, asymptotically equivalently, uu0. Here there are N2 = (
PG

g=1Ng)
2 terms

in bubu0 and all but PG
g=1N

2
g of these are zeroed out. For �xed Ng, (

PG
g=1N

2
g =N

2) ! 0 as

G ! 1. In particular, for balanced clusters Ng = N=G, so (
PG

g=1N
2
g )=N

2 = 1=G ! 0 as

G!1.
An equivalent expression to (2.7) is

bB = c� NX
i=1

NX
j=1

1[g = g0]� buigbujg0xigx0jg0 ; (2.8)
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where the indicator 1[A] equals 1 if event A occurs and equals 0 otherwise.

2.2. Two-Way Clustering

Now consider situations where each observation may belong to more than one \dimension" of

groups. For instance, if there are two dimensions of grouping, each individual i will belong

to a group g 2 f1; 2; :::; Gg, as well as to a group h 2 f1; 2; :::; Hg. The regression model is
now

yigh = x
0
igh� + uigh; i = 1; :::; N; (2.9)

where we assume that for i 6= j

E[uighujg0h0jxigh;xjg0h0 ] = 0, unless g = g0 or h = h0: (2.10)

If errors belong to the same group (along either dimension), they may have an arbitrary

correlation.

The intuition for the variance estimator in this case is a simple extension of (2.8) for

one-way clustering. We keep those elements of bubu0 where the ith and jth observations share
a cluster in any dimension. This yields bV[b�] in (2.6) where

bB = NX
i=1

NX
j=1

1[g = g0 and/or h = h0 ]� buighbujg0h0xighx0jg0h0 : (2.11)

Now the indicator for sharing a cluster in any dimension can be calculated as the sum of

an indicator for whether g = g0 and an indicator for whether h = h0, and then subtracting

an indicator for whether g = g0 and h = h0 to avoid double counting. Thus in (2.6)

bB = c1 �
P

i

P
j 1[g = g

0]buighbujg0h0xighx0jg0h0 + c2 �Pi

P
j 1[h = h

0]buighbujg0h0xighx0jg0h0
�c3 �

PN
i=1

PN
j=1 1[(g; h) = (g

0; h0)]buighbujg0h0xighx0jg0h0 ;
(2.12)

where c1, c2 and c3 are �nite-sample adjustments. It follows that the three components can

be separately computed by OLS regression of y on X with variance matrix estimates based

on: (1) clustering on g 2 f1; 2; :::; Gg; (2) clustering on h 2 f1; 2; :::; Hg; and (3) clustering
on (g; h) 2 f(1; 1); :::; (G;H)g. bV[b�] is the sum of the �rst and second components, minus

the third component.
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2.3. Dyadic or Paired Clustering

Now consider cross-section dyadic data, such as trade between countries g and h. We consider

specialization to the bidirectional trade volume case. Then countries do not trade with

themselves, so ygg = 0 and we drop pairs with g = h. And for trade volume that is

bidirectional, rather than unidirectional data on import volume or on export volume, ygh =

yhg so we additionally drop pairs (g; h) for which g > h to avoid duplication. It follows that

ygh = x
0
gh� + ugh; h = g + 1; :::; G; g = 1; :::; G� 1; (2.13)

where G is the number of countries. If data are available for all pairs then a dataset with G

countries has a total of G(G� 1)=2 country-pair observations.
Under dyadic correlation the errors ugh and ug0h0 are assumed to be correlated if observa-

tions have either component of the dyad in common, and are otherwise uncorrelated. Thus

we assume that

E[ughug0h0jxgh;xg0h0 ] = 0, unless g = g0 or h = h0 or g = h0 or h = g0: (2.14)

To make ideas concrete, consider the case of cross-section data on bilateral trade between

four countries, numbered 1; 2; 3; and 4. Then there are six country-pair observations, namely

(1; 2), (1; 3), (1; 4), (2; 3), (2; 4) and (3; 4), and there are 36 error correlations.

Clustering on country-pair controls for correlation when (g; h) = (g0; h0). Then only

the diagonal entries in the table below are nonzero; these are denoted cp. Clustering on

country-pair coincides in the cross-section case with using heteroskedastic robust standard

errors.

(g,h)n(g0,h0) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4)
(1,2) cp 2way 2way dyad dyad 0
(1,3) 2way cp 2way 2way 0 dyad
(1,4) 2way 2way cp 0 x x
(2,3) dyad 2way 0 cp x dyad
(2,4) dyad 0 2way 2way cp x
(3,4) 0 dyad 2way dyad 2way cp

Two-way cluster-robust standard errors, with clustering on g and on h, additionally

control for possible correlation when g = g0 and/or h = h0. These additional correlations are

denoted by 2way in the table.

Dyadic clustering additionally picks up cases where g = h0 or h = g0. These additional

cases are denoted dyad in the table.
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The table indicates a potential problem when there are relatively few countries - many

of the pairs may be correlated. In this example, extreme as G is so small, 30 out of 36 terms

in the error variance matrix are nonzero.

Even when there are a relatively large number of countries, a substantial fraction of

the error correlations may be nonzero. When data are available for all country pairs there

are [G(G � 1)=2]2 error correlations and some algebra reveals that given (2.14) there are
[G(G � 1)=2] � (2G � 3) potential nonzero correlations. It follows that the fraction of the
matrix of correlations that are potentially correlated is

(2G� 3)=[G(G� 1)=2] = (4� 6=G)=(G� 1): (2.15)

With G = 10, for example, there are 45 country pairs and 38% of the entries in the 45� 45
correlation matrix are potentially nonzero. Similar �gures for G = 30 and G = 100 are,

respectively, 13% and 4%.

For large G there are 4=(G�1) potential nonzero error correlations compared to 2=(G�1)
with two-way clustering and only 2=[G(G� 1)] if errors are uncorrelated.

2.3.1. Dyadic-Robust Variance Estimator

The �rst estimator for clustering extends the two-way method, by adding in correlations

when g = h0 or h = g0. Then bV[b�] is given in (2.6) with
bB = c� NX

i=1

NX
j=1

1[g = g0 or h = h0 or g = h0 or h = g0]� buighbujg0h0xighx0jg0h0 ; (2.16)

where c = [(G � 1)=(G � 2)]=[(N � 1)=(N � k)] is a �nite-cluster adjustment.1 Unlike the
two-way cluster-robust method, the dyadic-robust method does not appear to lend itself to

a simple calculation analogous to that described after (2.12).

This method is used by Fafchamps and Gubert (2007), who motivate it as an exten-

sion of the method of Conley (1999) for spatial correlation. Fafchamps and Gubert (2007,

p.330) state that \Monte Carlo simulations indicate that standard errors corrected for dyadic

correlation can be much larger than uncorrected ones. The bias is particularly large when

the average degree is high. Correcting standard errors is thus essential when estimating any

dyadic regression. In our case, the magnitude of the correction is relatively small because the

1The adjustment factor c for bidirectional data is explained in Section 3.1. If unidirectional data are
instead used then c = [G=(G� 1)]=[(N � 1)=(N � k)]:
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average degree is low." Here degree is the number of links and in their study each individual

had relatively few links.

For cross-section dyadic data there is only one observation for each dyad. When there are

multiple observations per dyad, as is the case for panel data, formula (2.16) again applies.

2.3.2. Node-Jackknife Variance Estimator

The delete-one-node estimate b�(�g) is obtained by dropping country g and any pair with
that country (i.e. for given g all pairs (g; h) and (h; g) for h = 1; :::; G are dropped).

Then the node-jackknife estimate of the variance matrix of b� is
bV[b�] = G� 2

2G

GX
g=1

(b�(�g) � b�)(b�(�g) � b�)0; (2.17)

where b� = 1
G

PG
g=1

b�(�g). This is proposed in the non-regression case by Frank and Snijders
(1994) and Snijders and Borgatti (1999). The multiplier of the sum is a dyadic data variant

of the multiplier N�1
N
for independent data. (This weight in turn di�ers from 1

N�1 because

each data set is similar to the other since only one observation is changed).

Frank and Snijders (1994) propose this multiplier under a particular sampling scheme

and it is an open question as to how well this variance estimate will work in the setting of

this paper.

2.3.3. Dyadic Random E�ects Estimator

Cameron and Golotvina (2005) consider the following dyadic variant of a two-way random

e�ects model for dyadic data. For the (g; h)th country-pair the regression model is

ygh = x
0
gh� + �g + �h + "gh; h = 1; :::; g � 1; g = 1; :::; G; (2.18)

where �g and �h are country-speci�c error components and "gh is an idiosyncratic error

component. Unlike a two-way random e�ects model, symmetry of �g and �h is imposed, so

there are just G draws of �.

The variance components are assumed to be i.i.d. with

"gh � iid[0; �2"] (2.19)

�g � iid[0; �2�];
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Then for error vgh = �g + �h + "gh

Cov[vgh; vg0h0 ] =

8<:
2�2� + �

2
" g = h; g0 = h0

�2� g = g0; h 6= h0; g 6= g0; h = h0
0 g 6= g0; h 6= h0:

(2.20)

Cameron and Golotvina (2005) compute standard errors for the OLS estimator assuming

the d.g.p. is that given in (2.18)-(2.20). They also present a feasible GLS estimator given

this model. And they provide a default OLS variance in
ation factor in the case of an

intercept-only model.

2.4. Dyadic-robust Inference with Few Countries

The various cluster-robust variance matrix estimates rely on asymptotic theory that assumes

that the number of clusters goes to in�nity. For one-way clustering, �nite-cluster modi�ca-

tions of (2.5) are typically used, since without modi�cation the cluster-robust standard errors

are biased downwards. Cameron, Gelbach, and Miller (2008) reviewed various small-sample

corrections that have been proposed in the literature, for both standard errors and for infer-

ence using resultant Wald statistics. For example, Stata uses the multiplier c de�ned after

(2.5) and uses t(G� 1) critical values rather than standard normal critical values. Improved
�nite-cluster inference with one-way clustering is an active area of research; Cameron and

Miller (2015) provide a summary.

For two-way cluster-robust inference, Cameron, Gelbach and Miller (2011, Table 1)

found even larger over-rejection rates than in the one-way case when there are few clus-

ters. Cameron, Gelbach and Miller (2008) and Imbens and Kolesar (2012) have proposed

few-cluster methods for the one-way case that do not readily extend to two-way clustering.

At a minimum one should use a variance matrix estimate with �nite-cluster correction such

as that in (2.12) and use the Students t-distribution with min(G;H)� 1 degrees of freedom.
For dyadic error correlation we expect the �nite-cluster problem to be even greater still,

as formula (2.12) introduces additional terms in the computation of bB. Additionally, the
simulations and applications in this paper use bidirectional data. Then clusters are unbal-

anced, and recent work by Carter, Schnepel and Steigerwald (2013) and MacKinnon and

Webb (2013) �nds that in the one-way case the few cluster problem becomes more pro-

nounced when clusters are unbalanced. Finite-cluster performance is investigated in the

Monte Carlos of Section 3.

10



Another practical matter is that the dyadic robust estimator bV[b�] may not be positive-
semide�nite, especially when G is small. A similar problem arises in the two-way cluster-

robust case. A positive-semide�nite matrix can be created by employing a technique used in

the time series HAC literature, such as in Politis (2011). This uses the eigendecomposition of

the estimated variance matrix and converts any negative eigenvalue(s) to zero. Speci�cally,

decompose the variance matrix into the product of its eigenvectors and eigenvalues: bV[b�] =
U�U 0, with U containing the eigenvectors of bV, and � = Diag[�1; :::; �d] containing the

eigenvalues of bV. Then create �+ = Diag[�+1 ; :::; �+d ], with �+j = max (0; �j), and use bV+[b�] =
U�+U 0 as the variance estimate.

2.5. Dyadic Clustering for m-estimators and GMM Estimators

The preceding analysis considered the OLS estimator. More generally we can consider dyadic

clustering for other regression estimators commonly used in econometrics. The results for

the dyadic-robust variance estimator are qualitatively the same as for OLS.

We begin with an m-estimator that solves
PN

i=1 hi(
b�) = 0. Examples include nonlinear

least squares estimation, maximum likelihood estimation, and instrumental variables esti-

mation in the just-identi�ed case. For the logit MLE hi(�) = (yi��(x0i�))xi, where �(�) is
the logistic c.d.f.

Under standard assumptions, b� is asymptotically normal with estimated variance matrix
bV[b�] = bA�1bBbA0�1; (2.21)

where bA =
P

i
@hi
@�0

��b� , and bB is an estimate of V[
P

i hi].

For one-way clustering bB =
PG

g=1
bhgbh0g where bhg = PNg

i=1
bhig. Clustering may or may

not lead to parameter inconsistency, depending on whether E[hi(�)] = 0 in the presence

of clustering. As an example consider a probit model with one-way clustering. One ap-

proach, called a population-averaged approach in the statistics literature, is to assume that

E[yigjxig] = �(x0ig�), even in the presence of clustering. An alternative approach is a ran-
dom e�ects approach. Let yig = 1 if y�ig > 0 where y�ig = x0ig� + "g + "ig, the idiosyn-

cratic error "ig � N [0; 1] as usual, and the cluster-speci�c error "g � N [0; �2g]. Then it
can be shown that E[yigjxig] = �(x0ig�=

p
1 + �2g), so that the moment condition is no longer

E[yigjxig] = �(x0ig�). When E[hi(�)] 6= 0 the estimated variance matrix is still that in (2.21),
but the distribution of the estimator will be instead centered on a pseudo-true value (White,
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1982). Note that for the probit model the average partial e�ect is nonetheless consistently

estimated (Wooldridge, 2002, p. 471).

Our concern is with dyadic clustering. The analysis of the preceding section carries

through, with bughxgh in (2.16) replaced by bhi. Then b� is asymptotically normal with esti-
mated variance matrix bV[b�] = bA�1bBbA0�1, with bA de�ned after (2.21) and bB de�ned as in

(2.16) with buighxigh replaced by bhigh.
Finally we consider GMM estimation for over-identi�ed models. A leading example is

linear two stage least squares with more instruments than endogenous regressors. Then b�
minimizes Q(�) =

�PN
i=1 hi(�)

�0
W
�PN

i=1 hi(�)
�
, whereW is a symmetric positive de�nite

weighting matrix. Under standard regularity conditions b� is asymptotically normal with
estimated variance matrix given dyadic clustering

bV[b�] = �bA0WbA��1 bA0WeBWbA�bA0WbA��1 ; (2.22)

where bA =
P

i
@hi
@�0

��b� , and eB is an estimate of V[
P

i hi] that can be computed as in (2.16)

with buighxigh replaced by bhigh.
3. Monte Carlo Exercises

We consider two Monte-Carlo exercises for OLS regression with cross-section dyadic data

with a bidirectional relationship and no relationship with oneself. An example is bidirectional

trade 
ow data in a single year, and we use that terminology with a dyad being a country-pair

and the two components of the dyad being country 1 and country 2.

3.1. Monte Carlo Setup

In both cases the data generating process is of the form

ygh = �1 + �2xgh + ugh; h = g + 1; :::; G; g = 1; :::; G� 1: (3.1)

There are N = G(G�1)=2 observations and k = 2 regression parameters. In the �rst Monte
Carlo the error ugh is i.i.d. and in the second Monte Carlo there is dyadic correlation due to

country-speci�c random e�ects.

The regressor xgh is constructed to be similar to a log-distance measure in a gravity model

of trade. Speci�cally, let (z1g; z2g) denote the coordinates of country g, where z1g and z2g are

i.i.d. draws from the uniform distribution. Then xgh = ln(
p
(z1g � z1h)2 + (z2g � z2h)2).
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The parameters are estimated by OLS regression of ygh on an intercept and xgh.

Standard errors for the OLS coe�cients are computed in the following ways

1. IID: OLS default assuming i.i.d. errors

2. HETROB: heteroskedastic-robust (same as PAIRS: one-way cluster-robust clustering

on country-pair (g; h))

3. CTRY1: one-way cluster-robust with clustering on country 1 (g)

4. TWOWAY: two-way cluster-robust clustering on countries 1 and 2 (g; h)

5. DYADS: dyadic-robust

6. NJACK: leave-one-node-out jackknife.

The �rst three methods use Stata command regress to compute standard errors. So

methods 1-2 use the usual �nite sample adjustment factor of N=(N � k).
For this d.g.p. with bidirectional data there are only G � 1 country 1 clusters as there

are no (G; h) pairs (and similarly there are only G � 1 country 2 clusters as there are no
(g; 1) pairs). As a result, the �nite sample adjustments given after (2.5) and after (2.11)

need to be modi�ed. De�ne G� = G � 1. Then method 3 uses �nite-sample adjustment
factor c = G�=(G�� 1)� [N=(N � k)]. Method 4 in
ates the three components in (2.11) by,
respectively, c1 = G

�=(G�� 1)� [N=(N � k)], c2 = c1, and c3 = N=(N � k). Method 5 again
in
ates by G�=(G� � 1)� [N=(N � k)]. Method 6 is computed as in (2.17).
Additionally a two-sided �ve percent signi�cance test for �2 is performed. The critical

values used are from the t(N � k) distribution for methods 1-2 and from the t(G� � 1)
distribution for methods 3-6, with G� = G� 1 for the d.g.p.'s used here.
We report results for G = 100, 30, and 10. This corresponds to sample sizes of, respec-

tively, 4950, 435 and 45 dyads.

There were 4,000 simulations, so the 95% simulation interval for a test with true size 0:05

is (0:043; 0:057).

3.2. Independent and Identically Distributed Errors

Here in model (3.1) the error ugh is i.i.d. N [0; 1], and �1 = �2 = 0. In this case as G!1
all six standard error estimates should be correct and tests of �2 = 0 at 5% should have

actual rejection rates of 5%. Results are reported in Table 1.
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For G = 100, the various standard error estimates are all close to the standard deviation

of b�2 across simulations of 0:0226. The cost of using more robust methods, unnecessary for
this d.g.p., is increased variability in the standard error estimate. For example the standard

deviations of standard errors computed assuming one-way clustering and dyadic clustering

equal, respectively, 0:0020 and 0:0033, compared to 0:0005 for the default. At the same time

even 0:0033 is small relative to the true standard deviation of b�2 of 0:0226.
Turning to test size, with G = 100, the dyadic-robust standard errors do lead to mild

over-rejection with a rejection rate of 0:064. The other methods all lead to rejection rates

within the 95% simulation interval of (0:043; 0:057).

For G = 30, the various robust standard errors all under-estimate the standard deviation

of b�2 across simulations of 0:0773. The under-estimation increases the more \robust" the
method used. In particular, the dyadic-robust standard error has a standard deviation of

0:0697, a substantial under-estimation of 10%.

This under-estimation of the standard error leads to test over-rejection. For G = 30

the dyadic-robust method has rejection rate of 0:117, while the two-way robust method, for

example, has rejection rate of 0:078.

ForG = 10, the results are qualitatively similar to those withG = 30, though with greater

under-estimation of standard errors and greater test size distortion. This poor performance

is not surprising. There are only 45 observations. The dyadic-robust method then permits

38% of the terms in the 45�45 error covariance matrix to be nonzero, and even the one-way
cluster robust method allows 14% of the terms to be nonzero. The dyadic-robust method

in some cases leads to a non-positive de�nite estimated variance matrix of b�, necessitating
the eigendecomposition adjustment presented in section 2.4, and in several other cases the

estimated standard error of b�2 was essentially equal to zero.
Finally, note that the node jackknife works very well for G = 10, G = 30 and G = 100,

with average standard error very close to the simulation standard deviation of b�2 and test
size very close to 0:05.

In summary, the dyadic-robust variance matrix estimate works well when G = 100, but

works poorly when G = 30 or G = 10.

3.3. Spatially Correlated Errors

Now let the error in model (3.1) be generated by a spatially correlated process, with

ugh = �g + �h + 0:25� "gh
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where �g is i.i.d. uniform and "gh is i.i.d. N [0; 1]. The coe�cients �1 = 8 and �2 = �1.
For this dyadic correlated error d.g.p., introduced in section 2.3.3, the error correlation for

dyads that have a country in common is 0:447, since then (2.20) yields Cor2[ugh; ug0h0 ] =

(1=12)=[(2=12) + 0:25] = 0:2.

In this case as G!1 the dyadic-robust standard error estimates should be correct and

the test of �2 = �1 at 5% should have actual rejection rates of 5%. The remaining methods,
with the exception of the node jackknife, are expected to under-estimate standard errors and

lead to tests that over-reject. Results are reported in Table 2.

For G = 100, the dyadic-robust standard errors are closest on average to the standard

deviation of b�2 across simulations of 0:0248, and the rejection rate of 0:057 is close to 0:05. By
comparison the other methods greatly under-estimate the standard errors and lead to large

test over-rejection. As expected, the performance of the other methods improves the greater

the \robustness" of the variance estimation method, with dyadic best, followed in order by

two-way cluster, one-way cluster and non-clustered methods. Furthermore the di�erences

across the methods are substantial.

For G = 30 there is a similar ordering of the performance of the methods. Now, however,

even the dyadic-robust method su�ers from considerable under-estimation of the standard

deviation of b�2 (0:0458 compared to 0:0525) and test rejection rate of 0:095.
For G = 10 all methods under-estimate standard errors and lead to test over-rejection.

Surprisingly the various cluster-robust methods perform even worse than methods assum-

ing i.i.d. errors or independent heteroskedastic errors. Clearly G = 10 is too low for the

asymptotic theory to kick in.

Finally, note that the node jackknife works very well for G = 10, and reasonably well for

G = 30. For G = 100 it is still a substantial improvement on using one-way cluster-robust

standard errors, but does not perform as well as either two-way or dyad-robust methods.

In summary, the dyadic-robust variance matrix estimate works well when G = 100, works

better than the other methods when G = 30, but works poorly when G = 10.

4. Empirical Examples

We consider two examples - one cross-section and one panel. Both examples use data ob-

tained from Andrew Rose's website. We commend Andrew Rose for making the data and

Stata programs for his many papers readily available to other researchers. It should be clear
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that the methods used in his papers are the standard methods used in the international

trade literature at the time the papers were published. For example, in the panel paper we

study, Rose (2004, p.98) states that \To make my argument as persuasive as possible I use

widely accepted techniques, a conventional empirical methodology, and standard data sets."

4.1. Cross-section Example

We consider a cross-section application with dependent variable the natural logarithm of

bilateral trade (in US$), replicating column 1 of Table 3 of Rose and Engel (2002). Then

there are G = 127 countries and data are available for N = 4618 of the potential 8,001

country pairs (equals 127� 126=2).
The model estimated by OLS is

ygh = x
0
gh� + ugh; (4.1)

with standard errors computed using the six methods detailed in Section 3.1, except now

the one-way clustered standard errors are computed in two di�erent ways, by clustering on

country 1 (as before) and by clustering on country 2.

The results are given in Table 3A. The heteroskedastic-robust standard errors equal those

reported in Rose and Engel (2002). In this cross-section data example they are equivalent to

those obtained by clustering on country pairs. Allowing for increasing amounts of clustering

leads to progressively larger standard errors. For example, for the log distance regressor the

heteroskedastic-robust standard error is 0:0349, the one-way cluster-robust standard error

is 0:0646 or 0:0912, depending on whether one clusters on country 1 or country 2, the two-

way cluster-robust standard error is 0:1062 and the dyad-robust standard error is 0:1215.

Similar increases occur for the log product regressors. In particular, the dyad-robust standard

errors are roughly 3.5 times the heteroskedastic robust standard errors. The standard error

magni�cation is smaller for the standard error of the currency union regressor, the key

regressor in the study of Rose and Engel (2002). Note that this binary regressor is non-zero

for only 24 of the 4,618 observations.2

Some of the correlation in errors may be absorbed by the inclusion of country �xed e�ects.

2We use exactly the same data as used by Rose and Engel (2002). In fact for the OLS regression reported
here, and in Table 3 of Rose and Engel (2002), three country pairs appear twice in the dataset, and all these
duplicates were in a currency union. If these duplicates are dropped then the currency union coe�cient falls
to 0.9769, still very large, and remains statistically signi�cant at the 5% level.
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We estimate the model

ygh = �g + �h + x
0
gh� + ugh; (4.2)

where �g is a �xed e�ect for the �rst country in the pair and �h is a �xed e�ect for the

second country in the pair.

There are several ways to implement this �xed e�ects regression. These lead to the same

coe�cient estimates but di�erent standard error estimates due to di�erent �nite sample

degrees of freedom adjustments. The fastest method is to Frisch-Waugh out the �xed e�ects

and perform OLS regression on the residuals. Thus OLS regress ygh on a full set of country

1 and country 2 dummy variables (in Stata reg y i.cty1 i.cty2) and save the residuals

as r ygh. Similarly OLS regress each component of xgh on a full set of country 1 and country

2 dummy variables, leading to residual vector r xgh. Then OLS regress r ygh on r xgh and

compute the various standard errors as before. Let kx denote the number of regression

parameters other than the �xed e�ects (here kx = 2). Then �nite-sample adjustment factors

that include N�k will use N�kx, whereas direct OLS estimation of (4.2) with the 2(G��1)
country dummies uses N�(kx+2(G�1)). The latter method will lead to a larger adjustment
factor and hence larger standard errors.

Table 3B presents results when country 1 �xed e�ects and country 2 �xed e�ects are

included. The only identi�ed coe�cients are those for currency union and log distance, since

the coe�cients of regressors that are invariant within country 1 or invariant within country

2 are not identi�ed. There is actually an e�ciency improvement, due in part to the root

mean square error (RMSE) falling from 1.75 to 1.35. But the dyadic-robust standard errors

remain much larger than the heteroskedastic-robust standard errors, being 2.84 times larger

for log distance and 1.55 times larger for currency union.

Clearly the inclusion of country-speci�c e�ects does not account for all the error correla-

tion. It is still necessary to control for dyadic error correlation. The two-way cluster-robust

and node-jackknife methods go a long way towards doing so. But the dyad-robust standard

errors are still larger { for regressors other than currency union roughly 10-15% larger than

two-way cluster-robust and 30% larger than node jackknife.

Table 3C presents feasible GLS estimates of a dyadic random e�ects variant of the model

(4.2), under the strong assumption that �g = �g and that �g and ugh are i.i.d. errors. This

is the dyadic random e�ects error correlation model of Section 2.3.3. The FGLS coe�cients

for currency union and log distance lie between the OLS and �xed e�ects coe�cients, while

the other two regressors have coe�cients similar to those obtained without either �xed or
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random country e�ects. There appears to be an e�ciency gain in using the random e�ects

estimator, but this may be illusory as the standard errors given in the last column of Table

3C are only valid if �g and ugh are i.i.d. Indeed, for the coe�cients of currency union and log

distance, these standard errors are close to the i.i.d. standard errors for the FE estimator,

rather than to the larger dyadic-robust standard errors for the FE estimator.

4.2. Panel Example

We apply various standard error estimators to data from Rose (2004), replicating column 1

of his Table 1. This study uses annual data on real bilateral trade 
ows between countries

g and h. There are 187 countries and 52 years (1948-1999) of data. In principal there are

as many as 819,156 observations (equals 52 � 178 � 177=2). The data analyzed here have
234,597 observations.

The model is

yght = x
0
ght� + ught ; (4.3)

where yght is the natural logarithm of real bilateral trade trade between countries g and h in

time period t. Some regressors vary over time while others do not. The regressors include a

full set of time dummies.

Table 4A presents results for the model when no �xed e�ects are included. The coe�-

cients and cluster-robust standard errors, obtained by one-way clustering on country pair,

equal those given in Column 1 of Table 1 of Rose (2004). These country-pair cluster-robust

standard errors are 3-3.5 times the heteroskedastic-robust standard errors. While they allow

for error correlation over time, they do not pick up all potential error correlations as, for

example, it is assumed that the error for a (1,2) pair is independent of the error for a (1,3)

pair. Allowing for more general clustering, either one-way on country 1 or country 2, or

two-way on country 1 and 2 leads to much larger standard errors. The preferred dyadic-

robust standard errors are roughly 10%-25% larger than the node-jackknife standard errors,

10%-25%, and 2-4 times larger than cluster-robust standard errors that cluster on country

pair.

Clearly it is important to control properly for the error correlation. Rose (2004) focused

on the �rst two regressors, respectively, a binary indicator for whether both g and h are

GATT/WTO members and a binary indicator for whether either g and h are GATT/WTO

members. When dyadic-robust standard errors are used the key conclusion of Rose (2004),
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that these two regressors are statistically insigni�cant remains unchanged, though 95% con-

�dence intervals for these two slope parameters will be much broader.

Some of the dyadic correlation in errors may be absorbed by the inclusion of country

�xed e�ects. There are various ways that country �xed e�ects may be included in the panel

case. As in the cross-section case one can include country 1 �xed e�ects and country 2 �xed

e�ects. Here we consider a richer model, with country-pair �xed e�ects. The model is now

yght = �gh + x
0
ght� + ught ; (4.4)

where �gh are country-pair �xed e�ects.

In the current example there are potentially as many as 178� 177=2 = 15; 753 country-
pair �xed e�ects. Now we Frisch-Waugh out both the country-pair �xed e�ects and the

time dummies, and perform OLS regression on the residuals. Thus perform �xed e�ects

estimation of yght on the time dummy variables (in Stata xtreg y d*, fe (i.ctypair)

where d* denotes the time dummies). Similarly perform �xed e�ects estimation of each

component of xght (other than the time dummies) on the time dummy variables, leading to

residual vector r x�ght. Then OLS regress r ygh on r x
�
ght. As in the cross-section case this

will lead to smaller �nite-sample adjustment factor N � k than if (4.4) is directly estimated
by OLS.

Table 4B presents results when country-pair �xed e�ects are included. Only eight of

the seventeen regressors have coe�cients that are identi�ed, as the remaining regressors

are time-invariant (i.e. xght = xgh for all t). The dyadic-robust standard errors are now

roughly 10%-30% larger than the node-jackknife standard errors, 10%-25% larger than two-

way cluster-robust standard errors, and 2-3 times larger than cluster-robust standard errors

that cluster on country pair.

Even with country-pair �xed e�ects included, the country-pair cluster-robust standard

errors greatly under-estimate the standard error and overstate the estimator precision. When

dyadic-robust standard errors are used the key conclusion of Rose (2004), that the �rst two

regressors are statistically insigni�cant remains unchanged, though 95% con�dence intervals

for these two slope parameters will be much broader.3

3Our �xed e�ects estimates di�er from those given in column 4 of Table 1 of Rose (2004). The key �rst
two regressors have coe�cients of 0.15 and 0.05, compared to our 0.13 and 0.06. Other coe�cients di�er
more substantially and, surprisingly, Rose(2004) reports nonzero coe�cients for the regressors that are not
identi�ed even though he states that his �xed e�ects estimates use country-pair �xed e�ects.
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5. Conclusion

Failure to control properly for error correlation in models with country-pair data can lead

to greatly under-estimated standard errors and over-stated t-statistics. In the two empirical

examples dyadic-robust standard errors were often several times larger than country-pair

cluster-robust standard errors, even after inclusion of country �xed e�ects. More generally

such a large di�erence in reported standard errors may arise with dyadic data when each

individual is paired with many other individuals, so that the network is a dense network.

It is well-known that one-way and two-way cluster-robust standard errors lead to standard

Wald tests that over-reject when there are few clusters. Similar problems exist for dyadic-

robust standard errors when there are few underlying individuals forming the dyads (in our

notation when the number of countries G is small even though the number of observed dyads

N may be large). Our Monte Carlos suggest that with G = 100 there is no problem, but

with fewer countries there can be considerable over-rejection.
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TABLE 1: SIMULATION with IID ERRORS
Cross-section OLS of y_gh on intercept and scalar x_gh

Number of "Countries" 100 30 10
Mean Std. Dev. Mean Std. Dev Mean Std. Dev

COEFF 0.0008 0.0226 -0.0016 0.0773 -0.0030 0.2598
SE_IID 0.0227 0.0005 0.0773 0.0049 0.2510 0.0475
SE_HETROB 0.0227 0.0007 0.0768 0.0072 0.2370 0.0628
SE_CTRY1 0.0226 0.0020 0.0755 0.0133 0.2270 0.0847
SE_TWOWAY 0.0225 0.0027 0.0740 0.0179 0.2173 0.1020
SE_DYAD 0.0221 0.0033 0.0697 0.0220 0.1890 0.1106
SE_NJACK 0.0227 0.0017 0.0772 0.0123 0.2596 0.0903
REJ_IID 0.050 0.045 0.049
REJ_HETROB 0.050 0.050 0.079
REJ_CTRY1 0.050 0.059 0.087
REJ_TWOWAY 0.053 0.078 0.142
REJ_DYAD 0.064 0.117 0.219  
REJ_NJACK 0.048 0.051 0.052  
Sample size N = 4950 N = 435 N = 45  

 
4,000 Monte Carlo simulations  
COEFF is the fitted slope coefficient (D.g.p. value is 0).
SE_IID is default standard errors assuming i.i.d. errors
SE_HETROB = SE_PAIRS is heteroskedastic robust standard error
SE_CTRY1 is one-way cluster robust standard error with clustering on country 1 (g)
SE_TWOWAY is two-way cluster robust standard error (g and h)
SE_DYAD is dyadic cluster-robust standard error
SE_NJACK is node-jackknife cluster-robust standard error

REJ_ is rejection rate for two-sided test that β = 0 at 5%
Critical values use  t(N-2) for IID and ROBUST, and t(G*-1) = t(G-2) for the remainder.



TABLE 2: SIMULATION with SPATIALLY CORRELATED ERRORS
Cross-section OLS of y_gh on intercept and scalar x_gh

Number of "Countries" 100 30 10
Mean Std. Dev. Mean Std. Dev Mean Std. Dev

COEFF -1.0001 0.0248 -0.9991 0.0525 -0.9998 0.1290
SE_IID 0.0108 0.0004 0.0360 0.0031 0.1116 0.0225
SE_HETROB 0.0108 0.0005 0.0359 0.0039 0.1059 0.0283
SE_CTRY1 0.0164 0.0022 0.0400 0.0084 0.1014 0.0373
SE_TWOWAY 0.0205 0.0027 0.0435 0.0111 0.0972 0.0453
SE_DYAD 0.0238 0.0033 0.0458 0.0138 0.0854 0.0483
SE_NJACK 0.0190 0.0023 0.0446 0.0089 0.1219 0.0428
REJ_IID 0.402 0.174 0.092
REJ_HETROB 0.402 0.172 0.119
REJ_CTRY1 0.191 0.123 0.116
REJ_TWOWAY 0.099 0.106 0.161
REJ_DYAD 0.057 0.095 0.230
REJ_NJACK 0.128 0.081 0.060

4,000 Monte Carlo simulations 0.872381
COEFF is the fitted slope coefficient (D.g.p. value is -1).
SE_IID is default standard errors assuming i.i.d. errors
SE_HETROB = SE_PAIRS is heteroskedastic robust standard error
SE_CTRY1 is one-way cluster robust standard error with clustering on country 1 (g)
SE_TWOWAY is two-way cluster robust standard error (g and h)
SE_DYAD is dyadic cluster-robust standard error
SE_NJACK is node-jackknife cluster-robust standard error

REJ_ is rejection rate for two-sided test that β = -1 at 5%
Critical values use  t(N-2) for IID and ROBUST, and t(G*-1) = t(G-2) for the remainder.
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