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Abstract

In this paper we consider inference with paired or dyadic data, such as cross-section
and panel data on trade between two countries. Regression models with such data have
a complicated pattern of error correlation. For example, errors for US-UK trade may
be correlated with those for any other country pair that includes either the US or
UK. We consider models with regressors treated as predetermined and stationary. The
standard cluster-robust variance estimator or sandwich estimator for one-way clustering
is inadequate. The two-way cluster robust estimator is a substantial improvement, but
still understates standard errors. Some studies in social network data analysis have
addressed this issue. The network in international trade studies is much denser than in
typical network studies, so it becomes especially important to control for dyadic error
correlation. In applications with the gravity model of trade we find that even after
inclusion of country fixed effects, standard errors that properly control for dyadic error
correlation can be several times those being reported using current methods.
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1. Introduction

A key component of empirical research is conducting accurate statistical inference. One
challenge to this is the possibility of errors being correlated across observations. In this paper
we present a variance matrix estimator that provides cluster-robust inference for regressions
with paired or dyadic data, such as country-pair data analyzed frequently in international
trade applications.

Controlling for clustering can be very important, as failure to do so can lead to massively
under-estimated standard errors and consequent over-rejection using standard hypothesis
tests. Moulton (1986, 1990) and Bertrand, Duflo and Mullainathan (2004) demonstrated
that the need to control for one-way clustering arose in a much wider range of settings than
had been appreciated by microeconometricians. Most notably, even modest within-group
error correlation can greatly inflate default standard errors for a grouped regressor (one
observed at a more highly aggregated level than the dependent variable). The common way
to control for clustering is to use one-way “cluster-robust” standard errors that generalize
those of White (1980) for independent heteroskedastic errors. Key references include Shah et
al. (1977) for clustered sampling, White (1984) for a multivariate dependent variable, Liang
and Zeger (1986) for estimation in a generalized estimating equations setting, and Arellano
(1987) and Hansen (2007) for linear panel models. Wooldridge (2003) and Cameron and
Miller (2011, 2015) provide surveys.

Cluster robust inference for the one-way case has been generalized to two-way and multi-
way clustering; see Miglioretti and Heagerty (2006), Cameron, Gelbach and Miller (2011)
and Thompson (2011). An example is cross-section data of individual wages on two grouped
regressors with different types of groupings, such as occupation-level job injury risk and
industry-level job injury risk.

In this paper we consider a different departure from one-way clustering, that due to
paired or dyadic data, such as that for trade flows between countries. Then model errors are
likely to be correlated between country-pair observations that have a country in common.
For example, errors for US-UK trade may be correlated with those for any other country pair
that includes either the US or UK. Standard approaches, including using country fixed effects
or (for panel data) country-pair fixed effects, do not fully account for this error correlation
and lead to standard error estimates that can be misleadingly low.

Cameron and Golotvina (2005) developed a modified two-way random effects model for



dyadic data, but this has the limitation of inference being valid only if the underlying errors
are indeed i.i.d. Cameron, Gelbach and Miller (2011, section 4.2) propose using two-way
cluster-robust standard errors that for country pair (g, h) cluster on country g and on country
h. In the current paper we find this provides considerable improvement over current practice,
but does not control for all of the potential error correlation.

We instead use methods that have been proposed in the context of inference for social
network data. Leading examples are Frank and Snijders (1994) and Snijders and Borgatti
(1999) in the non-regression case, and Fafchamps and Gubert (2007) in regression applica-
tions. In many network applications an individual may interact directly with relatively few
others. In international trade applications, by contrast, a country may trade with all other
countries. This means that failure to control for clustering may have a much larger impact
on standard error estimates.

Like the one-way cluster-robust method, our methods assume that the number of clusters
(here countries) goes to infinity. It is well-known that standard Wald tests based on one-
way and two-way cluster-robust standard errors can over-reject when there are few clusters.
Similar problems can be expected to exist for dyadic-robust standard errors, and we consider
finite-cluster issues in some detail.

The methods are presented in Section 2. In Section 3 we present Monte Carlo exper-
iments. Section 4 presents two international trade applications that demonstrate the im-
portance of controlling for clustering with dyadic data, even when country fixed effects are

included in the model. Section 5 concludes.

2. Cluster-Robust Inference

This section emphasizes the OLS estimator, for simplicity. We begin with reviews of one-
way clustering and two-way clustering before considering dyadic clustering. The section
concludes with extension from OLS to m-estimators, such as probit and logit, and to GMM

estimators.

2.1. One-Way Clustering

The linear model with one-way clustering is

Yig = X8 + tig, i=1,..., N, (2.1)



where i denotes the i of N individuals in the sample, g denotes the ¢'* of G clusters,

Elu;4|x;4] = 0, and error independence across clusters is assumed so that
Euigujy|Xig, Xjgr] = 0, unless g = ¢ (2.2)

Errors for individuals belonging to the same group may be correlated, with quite general
heteroskedasticity and correlation. Grouping observations by cluster, so y, = X,8+u,, and
stacking over clusters yields y = X3 + u, where y and u are N x 1 vectors, and X is an
N x K matrix. The OLS estimator is

G

—~ —1
B=xx)'xy= (3" xX,) X!y, (2.3)

g=1 g=1
where X, has dimension Ny x K and y, has dimension N, x 1, with IV, observations in
cluster g.

Under commonly assumed restrictions on moments and heterogeneity of the data, v'G (B—

() has a limit normal distribution with variance matrix

-1 -1
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(2.4)
The earliest work posited a model for the cluster error variance matrices Q, = V[u,|X,| =
E[ugufq|Xi], in which case E[X]u,u; X ] = E[X]2,X] can be estimated given a consistent
estimate €2, of €2,. Given these strong assumptions more efficient feasible GLS estimation
is additionally possible.
Current applied studies instead use the cluster-robust variance matrix estimate

A~ AN

VB = e x (x%) 7 (327 Xp5,8,X,) (XX) (2.5)

where i, = y, — X,8 and ¢ = G/(G —1) or ¢ = [G/(G — 1)] x [(N = 1)/(N — k)] is
a finite-sample adjustment. This provides a consistent estimate of the variance matrix if
GIYS XG0 X, — GTL Y0 E[X ugulX,] 0 as G — co. White (1984, p.134-142)
presented formal theorems for a multivariate dependent variable, directly applicable to bal-
anced clusters. Liang and Zeger (1986) proposed this method for estimation in a generalized
estimating equations setting, Arellano (1987) proposed this method for the fixed effects
estimator in linear panel models, and Rogers (1993) popularized this method in applied
econometrics by incorporating it in Stata. Note that (2.5) does not require specification of

a model for €2/, and thus it permits quite general forms of €2,.
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If the primary source of clustering is due to group-level common shocks, a useful approx-
imation is that for the j* regressor the default OLS variance estimate based on s (X'X) "
where s is the estimated standard deviation of the error, should be inflated by 7; ~
L+ p,, pu(N, — 1), where pg, 18 a measure of the within cluster correlation of z;, p, is
the within cluster error correlation, and N, is the average cluster size. Moulton (1986, 1990)
pointed out that in many settings the adjustment factor 7; can be large even if p, is small.
For example, if N¢ = 81, p, =1, and p, = 0.10 then default OLS standard errors should
be deflated by approximately v/9 = 3. In general it is especially important to control for
clustering when both the errors and regressors are correlated within cluster and there are
many observations per cluster.

A helpful informal presentation of (2.5) is that

VB = (X'X)'B(X'X) ™, (2.6)
where the central matrix

B = cx ZX’ 4,0 X, (2.7)

up 0 . 0

o~
_oexx | U W X
: 0
0 - o gt

= cx X' (ut'. « SG) X,

where ¢ is the finite-sample adjustment, .x denotes element-by-element multiplication and
S¢ is an N x N indicator matrix, or selection matrix, with ij"* entry equal to one if the

" and j™ observation belong to the same cluster and equal to zero otherwise. An intuitive
explanation of the asymptotic theory is that the indicator matrix S must zero out a large
amount of Ul’, or, asymptotically equivalently, uu’. Here there are N? = (Zle N,)? terms
in uu’ and all but ZQG:1 N? of these are zeroed out. For fixed Ny, (Zle NZ/N?) — 0 as
G — oo. In particular, for balanced clusters N, = N/G, so (ZQGZI NZ)/N* =1/G — 0 as
G — oo.

An equivalent expression to (2.7) is

N N
B=cx Z Z g = ¢'] X UiglljgXigX,, (2.8)

=1 j=1



where the indicator 1[A] equals 1 if event A occurs and equals 0 otherwise.

2.2. Two-Way Clustering

Now consider situations where each observation may belong to more than one “dimension” of
groups. For instance, if there are two dimensions of grouping, each individual ¢ will belong
to a group g € {1,2,...,G}, as well as to a group h € {1,2,..., H}. The regression model is
now

Yigh = X;gh/@ + Uigh, 1= 17 sy N7 (29)

where we assume that for ¢ # j
Ewigntjgn [Xighs Xjgn] = 0, unless g = ¢’ or h = h'. (2.10)

If errors belong to the same group (along either dimension), they may have an arbitrary
correlation.

The intuition for the variance estimator in this case is a simple extension of (2.8) for
one-way clustering. We keep those elements of Ui’ where the i and j** observations share
a cluster in any dimension. This yields \7[,@] in (2.6) where

N N
B=> "> 1g=g and/or h=h'] X GignTlgnXignXy. (2.11)
i=1 j=1

Now the indicator for sharing a cluster in any dimension can be calculated as the sum of
an indicator for whether ¢ = ¢’ and an indicator for whether h = ', and then subtracting

an indicator for whether g = ¢’ and h = A’ to avoid double counting. Thus in (2.6)

B = e X Y, Zj 1lg = gl]aighajg’h’xighxg‘g'h’ +er X Y Zj 1[h= h/]aighajg’h’xighxgg’h’
—eg X 0Ly 2o (g, h) = (9 W) igh g XignX
(2.12)
where c¢1, ¢ and c3 are finite-sample adjustments. It follows that the three components can
be separately computed by OLS regression of y on X with variance matrix estimates based
on: (1) clustering on g € {1,2,...,G}; (2) clustering on h € {1,2, ..., H}; and (3) clustering

on (g,h) € {(1,1),...,(G, H)}. V[,/B\] is the sum of the first and second components, minus

the third component.



2.3. Dyadic or Paired Clustering

Now consider cross-section dyadic data, such as trade between countries g and A. We consider
specialization to the bidirectional trade volume case. Then countries do not trade with
themselves, so y,, = 0 and we drop pairs with ¢ = h. And for trade volume that is
bidirectional, rather than unidirectional data on import volume or on export volume, vy, =

Yng S0 we additionally drop pairs (g, h) for which g > h to avoid duplication. It follows that
Ygh = XppB +ugn, h=g+1,...,G, g=1,...,G—1, (2.13)

where G is the number of countries. If data are available for all pairs then a dataset with G
countries has a total of G(G — 1)/2 country-pair observations.

Under dyadic correlation the errors ug, and ug; are assumed to be correlated if observa-
tions have either component of the dyad in common, and are otherwise uncorrelated. Thus

we assume that
Elugntugn |Xgn, Xgnr] = 0, unless g = ¢’ or h=h"or g=h"or h =g (2.14)

To make ideas concrete, consider the case of cross-section data on bilateral trade between
four countries, numbered 1,2, 3, and 4. Then there are six country-pair observations, namely
(1,2), (1,3), (1,4), (2,3), (2,4) and (3,4), and there are 36 error correlations.

Clustering on country-pair controls for correlation when (g,h) = (¢’,h’). Then only
the diagonal entries in the table below are nonzero; these are denoted cp. Clustering on

country-pair coincides in the cross-section case with using heteroskedastic robust standard

€ITOorS.
(g\(g’h') (1,2) (1,3) (14) (23) (24) (34)
(1,2) cp 2way 2way dyad dyad 0
(1,3) 2way cp 2way  2way 0 dyad
(1,4) 2way  2way cp 0 X X
(2,3) dyad 2way 0 cp b'e dyad
(2,4) dyad 0 2way 2way cp X
(3,4) 0 dyad 2way dyad 2way cp

Two-way cluster-robust standard errors, with clustering on g and on h, additionally
control for possible correlation when g = ¢’ and/or h = h’. These additional correlations are
denoted by 2way in the table.

Dyadic clustering additionally picks up cases where g = h’' or h = ¢’. These additional
cases are denoted dyad in the table.



The table indicates a potential problem when there are relatively few countries - many
of the pairs may be correlated. In this example, extreme as G is so small, 30 out of 36 terms
in the error variance matrix are nonzero.

Even when there are a relatively large number of countries, a substantial fraction of
the error correlations may be nonzero. When data are available for all country pairs there
are [G(G — 1)/2]? error correlations and some algebra reveals that given (2.14) there are
|G(G —1)/2] x (2G — 3) potential nonzero correlations. It follows that the fraction of the

matrix of correlations that are potentially correlated is
(2G -3)/[G(G-1)/2] =(4—-6/G)/(G —1). (2.15)

With G = 10, for example, there are 45 country pairs and 38% of the entries in the 45 x 45
correlation matrix are potentially nonzero. Similar figures for G = 30 and G = 100 are,
respectively, 13% and 4%.

For large G there are 4/(G'—1) potential nonzero error correlations compared to 2/(G —1)

with two-way clustering and only 2/[G(G — 1)] if errors are uncorrelated.

2.3.1. Dyadic-Robust Variance Estimator

The first estimator for clustering extends the two-way method, by adding in correlations
when g = b/ or h = ¢’. Then \A/[[AB] is given in (2.6) with

N

B=cx Z Z lg=g or h="0" or g="n"or h = g'] X UignUjgnXignXj g, (2.16)
i=1 j=1

where ¢ = [(G —1)/(G — 2)]/[(N — 1)/(N — k)] is a finite-cluster adjustment.! Unlike the

two-way cluster-robust method, the dyadic-robust method does not appear to lend itself to

a simple calculation analogous to that described after (2.12).

This method is used by Fafchamps and Gubert (2007), who motivate it as an exten-
sion of the method of Conley (1999) for spatial correlation. Fafchamps and Gubert (2007,
p.330) state that “Monte Carlo simulations indicate that standard errors corrected for dyadic
correlation can be much larger than uncorrected ones. The bias is particularly large when
the average degree is high. Correcting standard errors is thus essential when estimating any

dyadic regression. In our case, the magnitude of the correction is relatively small because the

!The adjustment factor ¢ for bidirectional data is explained in Section 3.1. If unidirectional data are
instead used then ¢ = [G/(G — 1)]/[(N — 1)/(N — k)].



average degree is low.” Here degree is the number of links and in their study each individual
had relatively few links.
For cross-section dyadic data there is only one observation for each dyad. When there are

multiple observations per dyad, as is the case for panel data, formula (2.16) again applies.

2.3.2. Node-Jackknife Variance Estimator

The delete-one-node estimate ,@(_g) is obtained by dropping country ¢ and any pair with
that country (i.e. for given g all pairs (g, h) and (h, g) for h =1, ..., G are dropped).
Then the node-jackknife estimate of the variance matrix of 3 is

a
VB =22 By - BB, B, (217)
g=1
where B = é 25:1 E(_ )~ This is proposed in the non-regression case by Frank and Snijders
(1994) and Snijders and Borgatti (1999). The multiplier of the sum is a dyadic data variant
of the multiplier %for independent data. (This weight in turn differs from ﬁ because
each data set is similar to the other since only one observation is changed).
Frank and Snijders (1994) propose this multiplier under a particular sampling scheme
and it is an open question as to how well this variance estimate will work in the setting of

this paper.

2.3.3. Dyadic Random Effects Estimator
Cameron and Golotvina (2005) consider the following dyadic variant of a two-way random
effects model for dyadic data. For the (g, h)" country-pair the regression model is

Ygh = XppB +ag+ap+egn, h=1,...,9-1, g=1,.,G, (2.18)

where o, and «; are country-specific error components and €4, is an idiosyncratic error
component. Unlike a two-way random effects model, symmetry of o, and «y, is imposed, so
there are just GG draws of «.

The variance components are assumed to be i.i.d. with

egn ~ iid[0,0?] (2.19)

a, ~ iid[0, 0],



Then for error vy, = ag + o + gy,

202+ 0% g=h,g =N
Cov{vgn, vyn] = o2 g=g h#NW,g#¢,h="n (2.20)
0 g#4g h#N.

Cameron and Golotvina (2005) compute standard errors for the OLS estimator assuming
the d.g.p. is that given in (2.18)-(2.20). They also present a feasible GLS estimator given
this model. And they provide a default OLS variance inflation factor in the case of an

intercept-only model.

2.4. Dyadic-robust Inference with Few Countries

The various cluster-robust variance matrix estimates rely on asymptotic theory that assumes
that the number of clusters goes to infinity. For one-way clustering, finite-cluster modifica-
tions of (2.5) are typically used, since without modification the cluster-robust standard errors
are biased downwards. Cameron, Gelbach, and Miller (2008) reviewed various small-sample
corrections that have been proposed in the literature, for both standard errors and for infer-
ence using resultant Wald statistics. For example, Stata uses the multiplier ¢ defined after
(2.5) and uses t(G — 1) critical values rather than standard normal critical values. Improved
finite-cluster inference with one-way clustering is an active area of research; Cameron and
Miller (2015) provide a summary.

For two-way cluster-robust inference, Cameron, Gelbach and Miller (2011, Table 1)
found even larger over-rejection rates than in the one-way case when there are few clus-
ters. Cameron, Gelbach and Miller (2008) and Imbens and Kolesar (2012) have proposed
few-cluster methods for the one-way case that do not readily extend to two-way clustering.
At a minimum one should use a variance matrix estimate with finite-cluster correction such
as that in (2.12) and use the Students t-distribution with min(G, H) — 1 degrees of freedom.

For dyadic error correlation we expect the finite-cluster problem to be even greater still,
as formula (2.12) introduces additional terms in the computation of B. Additionally, the
simulations and applications in this paper use bidirectional data. Then clusters are unbal-
anced, and recent work by Carter, Schnepel and Steigerwald (2013) and MacKinnon and
Webb (2013) finds that in the one-way case the few cluster problem becomes more pro-
nounced when clusters are unbalanced. Finite-cluster performance is investigated in the
Monte Carlos of Section 3.
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Another practical matter is that the dyadic robust estimator i\/[,/ﬁ\] may not be positive-
semidefinite, especially when G is small. A similar problem arises in the two-way cluster-
robust case. A positive-semidefinite matrix can be created by employing a technique used in
the time series HAC literature, such as in Politis (2011). This uses the eigendecomposition of
the estimated variance matrix and converts any negative eigenvalue(s) to zero. Specifically,
decompose the variance matrix into the product of its eigenvectors and eigenvalues: \A/[B] =
UAU’, with U containing the eigenvectors of \A/, and A = Diag[Aq, ..., \g] containing the

eigenvalues of V. Then create A* = Diag[\}, ..., Ay ], with A} = max (0, );), and use a 8] =

UATU’' as the variance estimate.

2.5. Dyadic Clustering for m-estimators and GMM Estimators

The preceding analysis considered the OLS estimator. More generally we can consider dyadic
clustering for other regression estimators commonly used in econometrics. The results for
the dyadic-robust variance estimator are qualitatively the same as for OLS.

We begin with an m-estimator that solves S | h;(6) = 0. Examples include nonlinear
least squares estimation, maximum likelihood estimation, and instrumental variables esti-
mation in the just-identified case. For the logit MLE h;(3) = (y; — A(x}8))x;, where A(-) is
the logistic c.d.f.

Under standard assumptions, 0 is asymptotically normal with estimated variance matrix

V[ = A'BA" !, (2.21)

where A = >, o g » and B is an estimate of V>, hyl.
G

For one-way clustering B = > g

1 EQH; where ﬂg = Zf\i’l fl,-g. Clustering may or may
not lead to parameter inconsistency, depending on whether E[h;(0)] = 0 in the presence
of clustering. As an example consider a probit model with one-way clustering. One ap-
proach, called a population-averaged approach in the statistics literature, is to assume that
Elyig|xig] = ®(x},0), even in the presence of clustering. An alternative approach is a ran-
dom effects approach. Let y,, = 1 if gy, > 0 where yi = x] B + ¢, + &4, the idiosyn-
cratic error g, ~ N0,1] as usual, and the cluster-specific error ¢, ~ N[0,07]. Then it
can be shown that E[y;e[x;,] = ®(x],8/4/1 + 02), so that the moment condition is no longer
Elyig|xig) = ®(x],8). When E[h;(8)] # 0 the estimated variance matrix is still that in (2.21),

but the distribution of the estimator will be instead centered on a pseudo-true value (White,
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1982). Note that for the probit model the average partial effect is nonetheless consistently
estimated (Wooldridge, 2002, p. 471).

Our concern is with dyadic clustering. The analysis of the preceding section carries
through, with ug,xg, in (2.16) replaced by h;. Then 8 is asymptotically normal with esti-
mated variance matrix V[] = A~'BA’~!, with A defined after (2.21) and B defined as in
(2.16) with w;gpx;g, replaced by lAligh.

Finally we consider GMM estimation for over-identified models. A leading example is
linear two stage least squares with more instruments than endogenous regressors. Then 0
minimizes Q(0) = (Zi\il hi(0)>/W (Zfil hi(9)>, where W is a symmetric positive definite
weighting matrix. Under standard regularity conditions 0 is asymptotically normal with

estimated variance matrix given dyadic clustering
N S I S|
Vo] = (A’WA) A'WBWA (A’WA) , (2.22)

where A = > % 5 » and B is an estimate of V[>_, h;] that can be computed as in (2.16)

with ;%4 replaced by h;gp.

3. Monte Carlo Exercises

We consider two Monte-Carlo exercises for OLS regression with cross-section dyadic data
with a bidirectional relationship and no relationship with oneself. An example is bidirectional
trade flow data in a single year, and we use that terminology with a dyad being a country-pair
and the two components of the dyad being country 1 and country 2.

3.1. Monte Carlo Setup

In both cases the data generating process is of the form
ygh:51+52mgh+ugh7 h:g_'_la'-'aG? gzla'“aG_l' (31)

There are N = G(G —1)/2 observations and k = 2 regression parameters. In the first Monte
Carlo the error ug, is i.i.d. and in the second Monte Carlo there is dyadic correlation due to
country-specific random effects.

The regressor x4, is constructed to be similar to a log-distance measure in a gravity model

of trade. Specifically, let (21,4, z24) denote the coordinates of country g, where 21, and 25, are

iid. draws from the uniform distribution. Then zg, = ln(\/(zlg — 211)2 + (229 — 221)?).
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The parameters are estimated by OLS regression of y,, on an intercept and .

Standard errors for the OLS coefficients are computed in the following ways
1. IID: OLS default assuming i.i.d. errors

2. HETROB: heteroskedastic-robust (same as PAIRS: one-way cluster-robust clustering
on country-pair (g, h))

3. CTRY1: one-way cluster-robust with clustering on country 1 (g)

4. TWOWAY: two-way cluster-robust clustering on countries 1 and 2 (g, h)
5. DYADS: dyadic-robust

6. NJACK: leave-one-node-out jackknife.

The first three methods use Stata command regress to compute standard errors. So
methods 1-2 use the usual finite sample adjustment factor of N/(N — k).

For this d.g.p. with bidirectional data there are only G — 1 country 1 clusters as there
are no (G, h) pairs (and similarly there are only G — 1 country 2 clusters as there are no
(g9,1) pairs). As a result, the finite sample adjustments given after (2.5) and after (2.11)
need to be modified. Define G* = GG — 1. Then method 3 uses finite-sample adjustment
factor ¢ = G*/(G* — 1) x [N/(N — k)]. Method 4 inflates the three components in (2.11) by,
respectively, c; = G*/(G*—1) x [N/(N — k)], co = ¢1, and ¢3 = N/(N — k). Method 5 again
inflates by G*/(G* — 1) x [N/(N — k)]. Method 6 is computed as in (2.17).

Additionally a two-sided five percent significance test for [, is performed. The critical
values used are from the t(N — k) distribution for methods 1-2 and from the #(G* — 1)
distribution for methods 3-6, with G* = G — 1 for the d.g.p.’s used here.

We report results for G = 100, 30, and 10. This corresponds to sample sizes of, respec-
tively, 4950, 435 and 45 dyads.

There were 4,000 simulations, so the 95% simulation interval for a test with true size 0.05
is (0.043,0.057).

3.2. Independent and Identically Distributed Errors

Here in model (3.1) the error ugyy, is i.i.d. M[0,1], and $; = B, = 0. In this case as G — oo
all six standard error estimates should be correct and tests of 5, = 0 at 5% should have

actual rejection rates of 5%. Results are reported in Table 1.
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For G = 100, the various standard error estimates are all close to the standard deviation
of BQ across simulations of 0.0226. The cost of using more robust methods, unnecessary for
this d.g.p., is increased variability in the standard error estimate. For example the standard
deviations of standard errors computed assuming one-way clustering and dyadic clustering
equal, respectively, 0.0020 and 0.0033, compared to 0.0005 for the default. At the same time
even 0.0033 is small relative to the true standard deviation of /BQ of 0.0226.

Turning to test size, with G = 100, the dyadic-robust standard errors do lead to mild
over-rejection with a rejection rate of 0.064. The other methods all lead to rejection rates
within the 95% simulation interval of (0.043,0.057).

For G = 30, the various robust standard errors all under-estimate the standard deviation
of BQ across simulations of 0.0773. The under-estimation increases the more “robust” the
method used. In particular, the dyadic-robust standard error has a standard deviation of
0.0697, a substantial under-estimation of 10%.

This under-estimation of the standard error leads to test over-rejection. For G = 30
the dyadic-robust method has rejection rate of 0.117, while the two-way robust method, for
example, has rejection rate of 0.078.

For G = 10, the results are qualitatively similar to those with G = 30, though with greater
under-estimation of standard errors and greater test size distortion. This poor performance
is not surprising. There are only 45 observations. The dyadic-robust method then permits
38% of the terms in the 45 x 45 error covariance matrix to be nonzero, and even the one-way
cluster robust method allows 14% of the terms to be nonzero. The dyadic-robust method
in some cases leads to a non-positive definite estimated variance matrix of B, necessitating
the eigendecomposition adjustment presented in section 2.4, and in several other cases the
estimated standard error of BQ was essentially equal to zero.

Finally, note that the node jackknife works very well for G = 10, G = 30 and G = 100,
with average standard error very close to the simulation standard deviation of BQ and test
size very close to 0.05.

In summary, the dyadic-robust variance matrix estimate works well when G = 100, but

works poorly when G = 30 or G = 10.

3.3. Spatially Correlated Errors

Now let the error in model (3.1) be generated by a spatially correlated process, with

Ugy, = Qg + ap, + 0.25 X ggp,
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where ay is i.i.d. uniform and ey, is i.i.d. AN[0,1]. The coefficients ; = 8 and 8, = —1.
For this dyadic correlated error d.g.p., introduced in section 2.3.3, the error correlation for
dyads that have a country in common is 0.447, since then (2.20) yields Cor?[ugp, ugn]| =
(1/12)/[(2/12) 4+ 0.25] = 0.2.

In this case as G — oo the dyadic-robust standard error estimates should be correct and
the test of 3, = —1 at 5% should have actual rejection rates of 5%. The remaining methods,
with the exception of the node jackknife, are expected to under-estimate standard errors and
lead to tests that over-reject. Results are reported in Table 2.

For G = 100, the dyadic-robust standard errors are closest on average to the standard
deviation of Bz across simulations of 0.0248, and the rejection rate of 0.057 is close to 0.05. By
comparison the other methods greatly under-estimate the standard errors and lead to large
test over-rejection. As expected, the performance of the other methods improves the greater
the “robustness” of the variance estimation method, with dyadic best, followed in order by
two-way cluster, one-way cluster and non-clustered methods. Furthermore the differences
across the methods are substantial.

For G = 30 there is a similar ordering of the performance of the methods. Now, however,
even the dyadic-robust method suffers from considerable under-estimation of the standard
deviation of Ez (0.0458 compared to 0.0525) and test rejection rate of 0.095.

For G = 10 all methods under-estimate standard errors and lead to test over-rejection.
Surprisingly the various cluster-robust methods perform even worse than methods assum-
ing i.i.d. errors or independent heteroskedastic errors. Clearly G = 10 is too low for the
asymptotic theory to kick in.

Finally, note that the node jackknife works very well for G = 10, and reasonably well for
G = 30. For G = 100 it is still a substantial improvement on using one-way cluster-robust
standard errors, but does not perform as well as either two-way or dyad-robust methods.

In summary, the dyadic-robust variance matrix estimate works well when G' = 100, works
better than the other methods when GG = 30, but works poorly when G = 10.

4. Empirical Examples

We consider two examples - one cross-section and one panel. Both examples use data ob-
tained from Andrew Rose’s website. We commend Andrew Rose for making the data and

Stata programs for his many papers readily available to other researchers. It should be clear
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that the methods used in his papers are the standard methods used in the international
trade literature at the time the papers were published. For example, in the panel paper we
study, Rose (2004, p.98) states that “To make my argument as persuasive as possible I use

widely accepted techniques, a conventional empirical methodology, and standard data sets.”

4.1. Cross-section Example

We consider a cross-section application with dependent variable the natural logarithm of
bilateral trade (in USS$), replicating column 1 of Table 3 of Rose and Engel (2002). Then
there are G = 127 countries and data are available for N = 4618 of the potential 8,001
country pairs (equals 127 x 126/2).

The model estimated by OLS is

Ygh = XgpB + Ugh, (4.1)

with standard errors computed using the six methods detailed in Section 3.1, except now
the one-way clustered standard errors are computed in two different ways, by clustering on
country 1 (as before) and by clustering on country 2.

The results are given in Table 3A. The heteroskedastic-robust standard errors equal those
reported in Rose and Engel (2002). In this cross-section data example they are equivalent to
those obtained by clustering on country pairs. Allowing for increasing amounts of clustering
leads to progressively larger standard errors. For example, for the log distance regressor the
heteroskedastic-robust standard error is 0.0349, the one-way cluster-robust standard error
is 0.0646 or 0.0912, depending on whether one clusters on country 1 or country 2, the two-
way cluster-robust standard error is 0.1062 and the dyad-robust standard error is 0.1215.
Similar increases occur for the log product regressors. In particular, the dyad-robust standard
errors are roughly 3.5 times the heteroskedastic robust standard errors. The standard error
magnification is smaller for the standard error of the currency union regressor, the key
regressor in the study of Rose and Engel (2002). Note that this binary regressor is non-zero
for only 24 of the 4,618 observations.?

Some of the correlation in errors may be absorbed by the inclusion of country fixed effects.

2We use exactly the same data as used by Rose and Engel (2002). In fact for the OLS regression reported
here, and in Table 3 of Rose and Engel (2002), three country pairs appear twice in the dataset, and all these
duplicates were in a currency union. If these duplicates are dropped then the currency union coefficient falls
to 0.9769, still very large, and remains statistically significant at the 5% level.
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We estimate the model
Ygh = Qg + 5h + X;hﬁ + Ugh, (42)

where «y is a fixed effect for the first country in the pair and d, is a fixed effect for the
second country in the pair.

There are several ways to implement this fixed effects regression. These lead to the same
coefficient estimates but different standard error estimates due to different finite sample
degrees of freedom adjustments. The fastest method is to Frisch-Waugh out the fixed effects
and perform OLS regression on the residuals. Thus OLS regress y,, on a full set of country
1 and country 2 dummy variables (in Stata reg y i.ctyl i.cty2) and save the residuals
as 7_Ygn,. Similarly OLS regress each component of x4, on a full set of country 1 and country
2 dummy variables, leading to residual vector r_x,,. Then OLS regress r_y,, on r_x,, and
compute the various standard errors as before. Let kx denote the number of regression
parameters other than the fixed effects (here kx = 2). Then finite-sample adjustment factors
that include N — k will use N — ky, whereas direct OLS estimation of (4.2) with the 2(G*—1)
country dummies uses N — (kx+2(G—1)). The latter method will lead to a larger adjustment
factor and hence larger standard errors.

Table 3B presents results when country 1 fixed effects and country 2 fixed effects are
included. The only identified coefficients are those for currency union and log distance, since
the coefficients of regressors that are invariant within country 1 or invariant within country
2 are not identified. There is actually an efficiency improvement, due in part to the root
mean square error (RMSE) falling from 1.75 to 1.35. But the dyadic-robust standard errors
remain much larger than the heteroskedastic-robust standard errors, being 2.84 times larger
for log distance and 1.55 times larger for currency union.

Clearly the inclusion of country-specific effects does not account for all the error correla-
tion. It is still necessary to control for dyadic error correlation. The two-way cluster-robust
and node-jackknife methods go a long way towards doing so. But the dyad-robust standard
errors are still larger — for regressors other than currency union roughly 10-15% larger than
two-way cluster-robust and 30% larger than node jackknife.

Table 3C presents feasible GLS estimates of a dyadic random effects variant of the model
(4.2), under the strong assumption that §, = a, and that a, and ugy, are i.i.d. errors. This
is the dyadic random effects error correlation model of Section 2.3.3. The FGLS coefficients
for currency union and log distance lie between the OLS and fixed effects coefficients, while

the other two regressors have coefficients similar to those obtained without either fixed or
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random country effects. There appears to be an efficiency gain in using the random effects
estimator, but this may be illusory as the standard errors given in the last column of Table
3C are only valid if oy and ugj, are i.i.d. Indeed, for the coefficients of currency union and log
distance, these standard errors are close to the i.i.d. standard errors for the FE estimator,

rather than to the larger dyadic-robust standard errors for the FE estimator.

4.2. Panel Example

We apply various standard error estimators to data from Rose (2004), replicating column 1
of his Table 1. This study uses annual data on real bilateral trade flows between countries
g and h. There are 187 countries and 52 years (1948-1999) of data. In principal there are
as many as 819,156 observations (equals 52 x 178 x 177/2). The data analyzed here have
234,597 observations.

The model is

Ygnt = Xlghtﬁ Tt Uy (4.3)

where y,45,; is the natural logarithm of real bilateral trade trade between countries g and h in
time period t. Some regressors vary over time while others do not. The regressors include a
full set of time dummies.

Table 4A presents results for the model when no fixed effects are included. The coeffi-
cients and cluster-robust standard errors, obtained by one-way clustering on country pair,
equal those given in Column 1 of Table 1 of Rose (2004). These country-pair cluster-robust
standard errors are 3-3.5 times the heteroskedastic-robust standard errors. While they allow
for error correlation over time, they do not pick up all potential error correlations as, for
example, it is assumed that the error for a (1,2) pair is independent of the error for a (1,3)
pair. Allowing for more general clustering, either one-way on country 1 or country 2, or
two-way on country 1 and 2 leads to much larger standard errors. The preferred dyadic-
robust standard errors are roughly 10%-25% larger than the node-jackknife standard errors,
10%-25%, and 2-4 times larger than cluster-robust standard errors that cluster on country
pair.

Clearly it is important to control properly for the error correlation. Rose (2004) focused
on the first two regressors, respectively, a binary indicator for whether both ¢ and h are
GATT/WTO members and a binary indicator for whether either g and h are GATT/WTO

members. When dyadic-robust standard errors are used the key conclusion of Rose (2004),
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that these two regressors are statistically insignificant remains unchanged, though 95% con-
fidence intervals for these two slope parameters will be much broader.

Some of the dyadic correlation in errors may be absorbed by the inclusion of country
fixed effects. There are various ways that country fixed effects may be included in the panel
case. As in the cross-section case one can include country 1 fixed effects and country 2 fixed

effects. Here we consider a richer model, with country-pair fixed effects. The model is now

Yoht = Qgh + Xy B+ 1, (4.4)

where oy, are country-pair fixed effects.

In the current example there are potentially as many as 178 x 177/2 = 15, 753 country-
pair fixed effects. Now we Frisch-Waugh out both the country-pair fixed effects and the
time dummies, and perform OLS regression on the residuals. Thus perform fixed effects
estimation of y,,; on the time dummy variables (in Stata xtreg y dx, fe (i.ctypair)
where d* denotes the time dummies). Similarly perform fixed effects estimation of each
component of X5, (other than the time dummies) on the time dummy variables, leading to
residual vector r x;,,. Then OLS regress r_yy, on rx7,,. As in the cross-section case this
will lead to smaller finite-sample adjustment factor N — k than if (4.4) is directly estimated
by OLS.

Table 4B presents results when country-pair fixed effects are included. Only eight of
the seventeen regressors have coefficients that are identified, as the remaining regressors
are time-invariant (i.e. xg, = x4, for all t). The dyadic-robust standard errors are now
roughly 10%-30% larger than the node-jackknife standard errors, 10%-25% larger than two-
way cluster-robust standard errors, and 2-3 times larger than cluster-robust standard errors
that cluster on country pair.

Even with country-pair fixed effects included, the country-pair cluster-robust standard
errors greatly under-estimate the standard error and overstate the estimator precision. When
dyadic-robust standard errors are used the key conclusion of Rose (2004), that the first two
regressors are statistically insignificant remains unchanged, though 95% confidence intervals

for these two slope parameters will be much broader.?

30ur fixed effects estimates differ from those given in column 4 of Table 1 of Rose (2004). The key first
two regressors have coefficients of 0.15 and 0.05, compared to our 0.13 and 0.06. Other coeffcients differ
more substantially and, surprisingly, Rose(2004) reports nonzero coefficients for the regressors that are not
identified even though he states that his fixed effects estimates use country-pair fixed effects.
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5. Conclusion

Failure to control properly for error correlation in models with country-pair data can lead
to greatly under-estimated standard errors and over-stated t-statistics. In the two empirical
examples dyadic-robust standard errors were often several times larger than country-pair
cluster-robust standard errors, even after inclusion of country fixed effects. More generally
such a large difference in reported standard errors may arise with dyadic data when each
individual is paired with many other individuals, so that the network is a dense network.

It is well-known that one-way and two-way cluster-robust standard errors lead to standard
Wald tests that over-reject when there are few clusters. Similar problems exist for dyadic-
robust standard errors when there are few underlying individuals forming the dyads (in our
notation when the number of countries G is small even though the number of observed dyads
N may be large). Our Monte Carlos suggest that with G = 100 there is no problem, but

with fewer countries there can be considerable over-rejection.

20



References

Arellano, M. (1987), “Computing Robust Standard Errors for Within-Group Estimators,”
Ozford Bulletin of Economics and Statistics, 49, 431-434.

Bertrand, M., E. Duflo, and S. Mullainathan (2004), “How Much Should We Trust Differences-
in-Differences Estimates?,” Quarterly Journal of Economics, 119, 249-275.

Cameron, A.C., Gelbach, J.G., and D.L. Miller (2008), “Bootstrap-Based Improvements for

Inference with Clustered Errors,” Review of Economics and Statistics 90, 414-427.

Cameron, A.C., Gelbach, J.G., and D.L. Miller (2011), “Robust Inference with Multi-way
Clustering,” Journal of Business and Economic Statistics, 29, 238-249.

Cameron, A.C., and N. Golotvina (2005), “Estimation of Country-Pair Data Models Con-
trolling for Clustered Errors: with International Trade Applications,” U.C.-Davis Economics
Department Working Paper No. 06-13.

Cameron, A.C.; and D.L. Miller (2011), “Robust Inference with Clustered Data” (with Dou-
glas Miller), A. Ullah and D. E. Giles eds., Handbook of Empirical Economics and Finance,
2011, 1-28, CRC Press.

Cameron, A.C., and D.L. Miller (2015), “A Practitioner’s Guide to Cluster-Robust Inference,

Journal of Human Resources, forthcoming.

Carter, A.V., K.T. Schnepel, and D.G. Steigerwald (2013), “Asymptotic Behavior of a t Test

Robust to Cluster Heterogeneity,” University of California - Santa Barbara.

Conley, T.G. (1999), “GMM Estimation with Cross Sectional Dependence,” Journal of
Econometrics, 92, 1-45.

Fafchamps, M., and F. Gubert (2007), “The Formation of Risk Sharing Networks,” Journal
of Development Economics, 83, 326-350.

Frank, O. and T.A.B. Snijders (1994), “Estimating the Size of Hidden Populations under
Snowball Sampling,” Journal of Official Statistics, 10, 53-67.

Hansen, C. (2007), “Asymptotic Properties of a Robust Variance Matrix Estimator for Panel
Data when T is Large,” Journal of Econometrics, 141, 597-620.

21



Imbens, G.W., and M. Kolesar (2012), “Robust Standard Errors in Small Samples: Some
Practical Advice,” NBER Working Paper 18478.

Liang, K.-Y., and S.L. Zeger (1986), “Longitudinal Data Analysis Using Generalized Linear
Models,” Biometrika, 73, 13-22.

MacKinnon, J., and M.D. Webb (2013), “Wild Bootstrap Inference for Wildly Different
Cluster Sizes.” Queens Economics Department Working Paper No. 1314.

Miglioretti, D.L., and P.J. Heagerty (2006), “Marginal Modeling of Nonnested Multilevel
Data using Standard Software,” American Journal of Epidemiology, 165(4), 453-463.

Moulton, B.R. (1986), “Random Group Effects and the Precision of Regression Estimates,”
Journal of Econometrics, 32, 385-397.

Moulton, B.R. (1990), “An Illustration of a Pitfall in Estimating the Effects of Aggregate
Variables on Micro Units,” Review of Economics and Statistics, 72, 334-38.

Politis, D.N. (2011), “Higher-order Accurate, Positive Semi-definite Estimation of Large-
sample Covariance and Spectral Density Matrices,” Econometric Theory, 27, 704-744.

Rogers, W.H. (1993), “Regression Standard Errors in Clustered Samples,” Stata Technical
Bulletin, 13, 19-23.

Rose, A.K.(2004), “Do We Really Know That the WTO Increases Trade?” American Eco-
nomic Review, 94, 98-114.

Rose, A.K. and C. Engel (2002), “Currency Unions and International Integration,” Journal
of Money, Credit and Banking, 34(4), 1067-1089.

Shah, Bbabubhai V., M. M. Holt and Ralph E. Folsom (1977), “Inference About Regres-
sion Models from Sample Survey Data.” Bulletin of the International Statistical Institute
Proceedings of the 41st Session, 47(3), 43-57.

Snijders, T.A.B., and S.B. Borgatti (1999), “Non-Parametric Standard Errors and Tests for
Network,” Connections, 22, 161-70.

Thompson, S. (2011), “Simple Formulas for Standard Errors that Cluster by Both Firm and

Time,” Journal of Financial Economics, 99, 1-10.

White, H. (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a

22



Direct Test for Heteroskedasticity,” Fconometrica, 48, 817-838.
White, H. (1984), Asymptotic Theory for Econometricians, San Diego, Academic Press.

Wooldridge, J.M. (2002), Econometric Analysis of Cross Section and Panel Data, Cam-
bridge, MA, MIT Press.

Wooldridge, J.M. (2003), “Cluster-Sample Methods in Applied Econometrics,” American
Economic Review, 93, 133-138.

23



TABLE 1: SIMULATION with 1ID ERRORS
Cross-section OLS of y_gh on intercept and scalar x_gh

Number of "Countries" 100 30 10

Mean Std. Dev. Mean  Std. Dev Mean  Std. Dev
COEFF 0.0008 0.0226 -0.0016 0.0773 -0.0030 0.2598
SE_IID 0.0227 0.0005 0.0773 0.0049 0.2510 0.0475
SE_HETROB 0.0227 0.0007 0.0768 0.0072 0.2370 0.0628
SE_CTRY1 0.0226 0.0020 0.0755 0.0133 0.2270 0.0847
SE_TWOWAY 0.0225 0.0027 0.0740 0.0179 0.2173 0.1020
SE_DYAD 0.0221 0.0033 0.0697 0.0220 0.1890 0.1106
SE_NJACK 0.0227 0.0017 0.0772 0.0123 0.2596 0.0903
REJ_IID 0.050 0.045 0.049
REJ_HETROB 0.050 0.050 0.079
REJ_CTRY1 0.050 0.059 0.087
REJ_TWOWAY 0.053 0.078 0.142
REJ_DYAD 0.064 0.117 0.219
REJ_NJACK 0.048 0.051 0.052
Sample size N =4950 N =435 N =45

4,000 Monte Carlo simulations

COEFF is the fitted slope coefficient (D.g.p. value is 0).

SE_IID is default standard errors assuming i.i.d. errors

SE_HETROB = SE_PAIRS is heteroskedastic robust standard error

SE_CTRY1 is one-way cluster robust standard error with clustering on country 1 (g)
SE_TWOWAY is two-way cluster robust standard error (g and h)

SE_DYAD is dyadic cluster-robust standard error

SE_NJACK is node-jackknife cluster-robust standard error

REJ_is rejection rate for two-sided test that B =0 at 5%
Critical values use t(N-2) for IID and ROBUST, and t(G*-1) = t(G-2) for the remainder.



TABLE 2: SIMULATION with SPATIALLY CORRELATED ERRORS
Cross-section OLS of y_gh on intercept and scalar x_gh

Number of "Countries" 100 30 10

Mean Std. Dev. Mean  Std. Dev Mean  Std. Dev
COEFF -1.0001 0.0248 -0.9991 0.0525 -0.9998 0.1290
SE_IID 0.0108 0.0004 0.0360 0.0031 0.1116 0.0225
SE_HETROB 0.0108 0.0005 0.0359 0.0039 0.1059 0.0283
SE_CTRY1 0.0164 0.0022 0.0400 0.0084 0.1014 0.0373
SE_TWOWAY 0.0205 0.0027 0.0435 0.0111 0.0972 0.0453
SE_DYAD 0.0238 0.0033 0.0458 0.0138 0.0854 0.0483
SE_NJACK 0.0190 0.0023 0.0446 0.0089 0.1219 0.0428
REJ_IID 0.402 0.174 0.092
REJ_HETROB 0.402 0.172 0.119
REJ_CTRY1 0.191 0.123 0.116
REJ_TWOWAY 0.099 0.106 0.161
REJ_DYAD 0.057 0.095 0.230
REJ_NJACK 0.128 0.081 0.060

4,000 Monte Carlo simulations

COEFF is the fitted slope coefficient (D.g.p. value is -1).

SE_IID is default standard errors assuming i.i.d. errors

SE_HETROB = SE_PAIRS is heteroskedastic robust standard error

SE_CTRY1 is one-way cluster robust standard error with clustering on country 1 (g)
SE_TWOWAY is two-way cluster robust standard error (g and h)

SE_DYAD is dyadic cluster-robust standard error

SE_NJACK is node-jackknife cluster-robust standard error

REJ_is rejection rate for two-sided test that B =-1 at 5%
Critical values use t(N-2) for IID and ROBUST, and t(G*-1) = t(G-2) for the remainder.
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