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Abstract

We propose an original model of human capital investments after leaving school in

which individuals di�er in their initial human capital obtained at school, their rates of

return and costs of human capital investments and their terminal values of human capital

at an arbitrary date in the future. We derive a tractable reduced form Mincerian model

of log earnings pro�les along the life cycle which is written as a linear factor model in

which levels, growth and curvature of earnings pro�les are individual-speci�c. Using panel

data from a single cohort of French male wage earners observed over a long span of 30

years starting at their entry in the labor market, we estimate this model by random and

�xed e�ect methods, test restrictions, decompose variance of earnings into permanent and

transitory components and evaluate how earnings inequality over the life-cycle is a�ected

by changes in structural parameters. In particular, increases in life expectancy bring about

sizeable increases in earnings inequality.
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1 Introduction1

Since the seminal work of Friedman and Kuznets (1954), a large literature studying the change

in earnings inequality has emerged. Landmark articles such as Lillard and Willis (1978), Hause

(1980) or MaCurdy (1982) introduced parsimonious statistical representations of earnings pro-

cesses to assess the relative importance of permanent and transitory components in the variance

of earnings. This decomposition builds on the observation that permanent changes in earnings

have a larger impact on individual welfare than transitory ones (Blundell, 2014). However, not

much attention is devoted to its economic foundation and how economically interpretable per-

manent di�erences between individuals may contribute to explain earnings dispersion and its

evolution over the life-cycle.

Another more structural strand of the literature focuses on the estimation of post-school

human capital investment models derived from Ben Porath (1967). Heckman, Lochner and

Taber (1998) were among the �rst to estimate such a human capital investment model at school

and later in life in a dynamic and stochastic general equilibrium set-up. Guvenen and Kuruscu

(2012) analyze as well the e�ect of skill biased technical change on inequality in an equilibrium

set-up with heterogeneous agents investing in human capital. This is also the object of Huggett,

Ventura and Yaron (2011) who use such a microeconomic model calibrated on the US PSID

data to decompose inequality into their long-run individual determinants and short-run shocks.

Polachek, Das and Thamma-Apiroam (2013) estimate individual-speci�c parameters that govern

human capital investment behavior and describe these heterogeneity terms as functions of cog-

nitive ability, personality traits and family background. Except in the latter paper, unobserved

heterogeneity in the human capital production technology is restricted. Furthermore, predicted

earnings equations are non linear. Both issues raise econometric questions about identi�cation

of parameters and estimation biases due to incidental parameters.

Our paper aims at bridging the gap between these two strands and we highlight three of

its contributions. First, we propose an original human capital investment model from which

we derive that the earnings process is given by a linear factor model whose factor loadings are

functions of individual speci�c parameters. Second we estimate these parameters using a panel

1This is a substantially revised version of an earlier paper of ours presented at the 1st French Econometrics
Workshop in 2009. We thank Christian Belzil, Richard Blundell, Laurent Gobillon, Jim Heckman, Bernard
Salanié and three anonymous referees for helpful comments and discussions and seminar participants at Yale,
Tilburg, Toulouse, CREST, Pompeu Fabra, Leuven University, Panel Data'12 in Paris, ESEM'12 in Malaga,
Jean-Pierre Florens' Festschrift in Toulouse, Duke, Hong Kong University, Mc Gill, SOLE-EALE ' 13, Ecole
Polytechnique, University College of London, Mannheim and the Cowles conference'14 for their helpful comments.
All errors remain ours.
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of nearly 7,500 male French wage earners who enter the labor market in 1977 and have been

followed for 30 years. These data provide an interesting contrast with the US and the UK

experience since labor earnings inequality has been stable in France over the last forty years.

Third we develop an original empirical strategy that combines the use of random e�ect and

�xed e�ect methods. This structural and empirical set-up permits counterfactual evaluation in

new dimensions. It also provides a more traditional decomposition of earnings inequality into

permanent and transitory components. We now return to each of these contributions in more

detail.

In our human capital investment model, inspired by Ben Porath (1967), the life-cycle pro�les

of individual earnings are summarized by a limited number of individual-speci�c permanent

components in a linear factor model. An appealing feature of our model is that the factor loadings

are functions of the individual speci�c structural parameters. In a sense, we are extending to

post-school investments described by Mincer (1974) what has been developed times ago by

Heckman (see Heckman, Lochner and Todd, 2006, for a survey) and Card (2001) for schooling

investments in human capital. By providing a simple setting, this analysis stands apart from

Polachek, Das and Thamma-Apiroam (2013) in which the estimated earnings equation is non

linear (Haley, 1976) and results from an approximation by the truncation of a series.

In our model, agents di�er in four dimensions. Firstly, they have di�erent initial human

capital levels when they enter the labor market. Secondly, they di�er in their returns to skill

investments, that is, some are more productive in transforming invested time in productive

skills. We also assume that the marginal utility cost of invested time is heterogenous within the

population. Finally, we allow the terminal value of human capital to vary across individuals and

infer from the curvature of the earnings pro�le, the implicit horizon of investment that agents

consider. This follows a suggestion by Lillard and Reville (1999) insisting on this crucial aspect

of earnings growth.

As a result, this model predicts a linear factor model for the earnings equation in which

factor loadings are functions of the individual speci�c structural parameters. Some structural

restrictions are testable and some structural parameters can be point-identi�ed while others

are only partially identi�ed. Furthermore, this set-up is fully compatible with the view that

human capital stocks are perfectly substitutable within education or skill groups while they are

imperfect substitutes between groups as discussed in Browning, Hansen and Heckman (1999).

By construction, the model delivers the well known predictions of a human capital setting

(Ben Porath, 1967). Earnings pro�le are increasing and concave and this re�ects the shortening
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of the investment horizon. Second, the variance of earnings is U-shaped along the life-cycle

because high-return investors have a steeper earnings pro�le than low-return individuals experi-

encing a �atter pro�le and these pro�les cross after a few years (Mincer, 1974). Third, because

investments in human capital are more intensive at the beginning of the life cycle for the high

return investors, the cross-section correlation, at the beginning of the life cycle, between earnings

growth and level, is negative although this correlation increases along the life-cycle and becomes

positive (Rubinstein and Weiss, 2006).

Adopting a highly stylized human capital model comes at the price of simplifying other

elements that might drive earnings dynamics in a structural way. We �rst take as given past

investments in schooling although this is an important heterogeneity dimension in our model.

We treat search and job mobility as frictions under the form of exogenous shocks (see e.g.

Postel-Vinay and Turon, 2010) that contribute to the transitory part of the income process.

We neglect taxes because we cannot reconstruct their value from our data and we �nd a simple

way of modeling the interactions between investments and uncertainty which partially neutralize

the importance of risk (see e.g. Huggett, Ventura and Yaron, 2011). We do not model general

equilibrium e�ects as in Heckman et al. (1998) or uncertainty or learning of individual e�ects

as in Cunha, Heckman and Navarro (2007) or Guvenen (2007). Furthermore, the linear factor

representation of the earnings equation is obtained by assuming away consumption smoothing

although we provide a more elaborate structural form in which consumption is smoothed. From

an empirical perspective, some reduced-form speci�cations estimating also other characteristics

of the earnings distribution such as Browning, Erjnaes and Alvarez (2012) are richer in terms of

heterogeneity while our model focusses on the pro�les of means and variances of earnings over

time that condition the main diagnostics about life-cycle earnings inequality.

Nonetheless, the linear factor representation remains attractive as a simple model of human

capital investments and as a bridge between structural models and earnings dynamics models.

First, the conditions for identi�cation of the distribution of heterogeneity are clearer than in

more complicated models in which identi�cation is di�cult to prove and in which parametric

assumptions are often made in order to make the estimation tractable. Second, the estimation

of this linear model is simpler than alternatives such as the one developed by Polachek et

al. (2013) in which non-linearities might be di�cult to deal with and in which the issue of

incidental parameters might be a problem. Third, this model provides a structural interpretation

to speci�cations used in the literature on the dynamics of earnings such as the heterogeneous

income processes (HIP) examined by Baker (1997) and Guvenen (2009). We provide foundations
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for these speci�cations and make explicit their underlying assumptions.

As a second contribution, we estimate the model on a very long panel for a single cohort

of male French wage earners working in the private sector and observed from 1977 to 2007.

DADS social security data is an administrative dataset collecting earnings in the private sector.

The �rst key advantage for our purposes is that it includes enough observations so that we

can study a large single cohort of males (nearly 7,500). As in the structural model of human

capital investment, individuals simultaneously enter the labor market and face the same economic

environment over their life-cycle in contrast with most studies of earnings dynamics that must

pool di�erent cohorts to collect samples large enough (Meghir and Pistaferri, 2010). Using a

single entry cohort makes the assumption of common priors among agents about future price

or depreciation processes more credible. Furthermore, France is characterized by a stable labor

earnings distribution along those years in strong contrast to the US and the UK (Atkinson,

2008). Thirdly, as the data come from social security records, we expect fewer measurement

errors than in usual surveys or other administrative data although this is not entirely convincing

in our application. Finally, the DADS data are long and homogeneous enough to study the

dynamics of earnings over a long period of time. In particular we �nd much longer dependence

for transitory earnings than what is usually found in the literature.

Our model is a linear factor model whose use was pioneered by Jim Heckman through a

series of papers with diverse coauthors (Aakvik, Heckman and Vytlacil, 2005, Carneiro, Hansen

and Heckman, 2003). Factors consist of a level term, a linear trend and exponential term which

captures the curvature of earnings pro�les. We propose as a third contribution an original

empirical strategy to estimate such models. We �rst decompose the estimation of earnings

equations into aggregate and individual speci�c components. The identi�cation of aggregate

components is obtained by imposing restrictions on human capital prices and depreciation rates

and assessing the robustness of our results to changes in those restrictions. Residuals of log

earnings are then analyzed through a sequence of random and �xed e�ect methods to control

serial dependence and to show that results are robust to incidental parameter issues. We begin

with estimating a random e�ect model by pseudo maximum likelihood (Alvarez and Arellano,

2004) that lets us estimate serial dependence. Controlling for serial dependence, we then derive

�xed e�ect estimates of the individual factors in a second step. To evaluate the importance

of incidental parameter issues, we compare random and �xed e�ect estimates of the covariance

matrix of individual factor loadings and we show that the bias becomes second-order when the

number of observed periods is roughly above 20.

5



We then evaluate structural restrictions and compute estimates of the structural unobserved

heterogeneity terms. This allows us to construct counterfactuals by measuring the impact of

changes in the economic environment. The alternative strategy of estimating distributions of

individual-speci�c e�ects as in Cunha, Heckman and Schennach (2010) turns out to be di�cult

to implement here because of the presence of structural constraints on individual speci�c e�ects

while direct �xed e�ect estimation is performed at a reasonable cost.

Our main results can be summarized as follows. Levels and growth of earnings are positively

correlated in the long run while they are negatively correlated initially. This corroborates one of

the predictions of the human capital setting as seen above. Moreover, the larger the level and

the slope of earnings pro�les, the more concave they are and this stems from the horizon e�ect.

Structural restrictions are satis�ed in most of the sample although a small fraction of earnings

pro�les do not agree with our set-up.

The human capital component of earnings account for 65% of the variance, on average during

the observation period. This share grows over time from 3% at entry in the labor market to

90%, 30 years after entry. Moreover, a counterfactual experiment shows that an increase in the

horizon of investment or life expectancy by two years increases means and variances of earnings,

above all at the end of the observation period. The longer the working period, the more high-

return investors reap bene�ts from investing. Cross-section inequality increases by around 20%

at the end of the period although this estimate has quite a large standard error.

In the next Section, we present the model of human capital accumulation and derive the

predicted life-cycle pro�le of earnings. In Section 3, we state the economic and identifying

restrictions that yield an identi�ed linear factor model of life-cycle earnings. Data are described

in Section 4 and this is followed in Section 5 by a presentation of our empirical strategy. We

also detail the econometric estimation methods that we use and results are presented in Section

6. After the presentation of inequality decompositions and counterfactuals in Section 7, a �nal

Section concludes.

2 The Model

We present an original model of human capital investment in discrete time which shares common

features with Ben Porath (1967) but not all. Speci�cally, we characterize the optimal sequence

of post-schooling human capital investments over the life cycle of agents who maximize their

utility over their lifetime. Agents start with an individual speci�c level of human capital obtained
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at school and have individual speci�c costs, individual speci�c rates of return for investments

and individual speci�c terminal values of human capital stocks. We are considering a single

cohort of agents who enter the labor market at the same time and face the same economic

environment. Time and potential experience are confounded. Our structural assumptions on

the decision problem lead to a closed form solution for the life-cycle pro�le of earnings whose

dynamics depend on individual-speci�c abilities to earn and to learn (Browning, Hansen and

Heckman, 1999).

2.1 The set up

Individuals enter the labor market at a period which is normalized to t = 1. Schooling and the

entry decision in the labour market are considered as given. We follow Heckman, Lochner and

Taber (1998) by assuming that the post-school human capital production process di�ers from

the one a�ecting school investments although both are interdependent. Schooling as the main

element of previous human capital accumulation and as a determinant of labor market entry is

likely to be correlated with individual speci�c characteristics a�ecting post-school investments

in human capital.

From period 1 onwards, agents can acquire human capital by devoting time or e�ort to

training. Human capital is assumed to be of one type only, skills are general and costs are

borne by the workers. Labor supply is inelastic and potential individuals earnings, yPi (t), is

the product of the individual-speci�c stock of human capital, Hi(t) by its individual speci�c

price, exp(δi(t)) that yields yPi (t) = exp(δi(t))Hi(t). Individuals face uncertainty through the

variability of human capital (log) prices δi(t) which are mainly a�ected by aggregate shocks but

also by individual ones when there are frictions (e.g search, information asymmetry or learning

as in Rubinstein and Weiss, 2006). Firms might temporarily value individual speci�c human

capital in a way that di�ers from the market in order to attract, retain or discourage speci�c

individuals, or because information is imperfect. The human capital (log) price, δi(t), is assumed

to follow a stochastic process and is fully revealed at period t to the agent. We do not provide a

market analysis of the wage equilibrium process and take it as given (in terms of its distribution).

We defer the presentation of the stochastic properties of this process until the end of this section

and of its statistical properties until Section 3.2.

Current individual earnings are assumed to be given by:

yi(t) = exp(δi(t))Hi(t) exp(−τi(t)),
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in which 1− exp(−τi(t)) can be interpreted as the fraction of working time, or alternatively the

part of working e�ort, devoted to investing in human capital. This fraction is increasing in τi(t),

equal to zero when τi(t) = 0 and equal to one when τi(t) = +∞ and in this sense, full time

learning is a limit case. We call, τi(t) ≥ 0, the level of investment in human capital at time t.

The technology of production of human capital is described by

Hi(t+ 1) = Hi(t) exp[ρiτi(t)− λi(t)] (1)

in which Hi(t) is the stock of human capital, ρi is the individual speci�c rate of return of human

capital investments and λi(t) is the depreciation of human capital in period t. Depreciation

λi(t) embeds individual-speci�c or aggregate shocks that depreciate previous vintages of human

capital. Individual-speci�c shocks can be negative because of unemployment periods or of layo�s

followed by mobility across sectors. These shocks can also be positive when certain components

of human capital acquire more value because of voluntary moves across �rms or sectors. As the

(log) price δi(t), the variable λi(t) is assumed to be revealed at period t to the agent and we treat

the distribution of λi(t) as given. We also defer the presentation of its stochastic and statistical

properties.

The human capital technology di�ers from Ben Porath (1967) in two ways. First, returns ρi

to investments are constant in the level of human capital, Hi(t) although Magnac, Pistolesi and

Roux (2013) shows how the extension to non constant returns leads to a more general factor

model. Second and more importantly, agents could stop investing in human capital before the

end of the horizon unlike in Ben Porath (1967). In the latter model, returns to investments τi(t)

are equal to +∞ at τi(t) = 0 and then decrease with τi(t) while these returns are constant in

log terms in the current model (∂ lnHi(t+1)
∂τi(t)

= ρi). This means that in Ben Porath (1967), the

last marginal unit of investment today is in�nitely less productive than the �rst marginal unit

of investment tomorrow. Equalizing marginal productivities of investments today and tomorrow

is what uniquely determines investments and those investments are never equal to zero.

Our model relies on a di�erent rationale. Investments are as productive today and tomorrow

and the agent decides to stop investing or learning today because e�ort is costly in utility terms,

as speci�ed below. Agents can stop investing before the end of the horizon because costs are

too high and this justi�es in an exact way the notion of �at spots that Heckman et al. (1998)

have used as an approximation in an otherwise standard Ben Porath model. Furthermore, our

speci�cation will avoid the "regression to the mean" e�ect emphasized by Huggett, Ventura and

Yaron (2011) that makes individual pro�les closer and closer at the end of the working life.
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The next step is to formulate a utility �ow and the way individuals move assets across time.

In order to generate the popular log-linear speci�cation for the earnings equation (e.g. Guvenen,

2009), we assume that period t utility is equal to current log earnings net of investment costs

and that there is no consumption smoothing over time. We return to this assumption at the

end of Section 2.2. Period-t utility is written as:

ln yi(t)− ci
τi(t)

2

2
,

in which the cost of investment is individual speci�c and quadratic in utility terms. We neglect

the linear component of the cost in terms of τi(t) because it cannot be identi�ed as current

log-earnings are:

ln yi(t) = δi(t) + lnHi(t)− τi(t), (2)

and the unit in which τi(t) is expressed, is unobserved. Increasing marginal costs �ts well with

the interpretation of τi(t) as an exerted e�ort which decreases current earnings and provides

future returns. This is what makes unique the solution τi(t) in the dynamic programming.

The decision program of individuals maximizing their discounted expected utility stream

over the present and future is given by the following Bellman equation:

Vt(Hi(t), τi(t)) = δi(t) + lnHi(t)−
(
τi(t) + ci

τi(t)
2

2

)
+ βiEt [Wt+1(Hi(t+ 1))] (3)

in which βi is the individual-speci�c discount rate and:

Wt+1(Hi(t+ 1)) = max
τi(t+1)

Vt+1(Hi(t+ 1), τi(t+ 1)).

The terminal condition of this decision program could be written by specifying an individual

speci�c date at which investing in human capital stops as in Ben Porath (1967). We proceed

di�erently by using the dual formulation that the value of human capital stocks at an arbitrary

date T in the future is individual speci�c.2 Speci�cally, we write that at the future date T + 1

the value function or the discounted value of utility stream from T + 1 onwards is given by:

WT+1(Hi(T + 1)) = δ∗i + κi lnHi(T + 1). (4)

In this expression, κi can be interpreted as the capitalized value of one consumption unit over

the remaining period of life after T + 1 and:

κi = 1 + βi,T+2(1 + βi,T+3(1 + ...))

2This will be the last date of observation in our empirical analysis further on.
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in which discount rates βi,t vary with period t and embody heterogeneous survival probabilities

after T + 1. If we assume that discount factors βi,t>T+1 ≤ βi e.g. βi,t>T+1 = βi Pr (Survival at t)

then for all i:

κi ≤
1

1− βi
. (5)

This suggests that a general interpretation of period T + 1 is as a separating date between a

span of periods before T in which the probability of survival is equal to 1 and a span of periods

after T + 1 in which the survival probability is less than one. As human capital investments are

embodied, a smaller discount rate is a source of decreasing returns to investment as the original

argument by Mincer put it and this explains the concavity of earnings pro�les.

In summary, investments are driven by individual speci�c parameters describing the abilities

of agents to earn and to learn. The initial human capital level at time t = 1 is an ability to

earn parameters while the returns to investments, ρi, and costs of learning, ci, describe the

ability to learn since they a�ect the accumulation process in human capital. Finally, parameter

κi is the implicit value that individuals place on human capital at the horizon T and as such,

can also be considered as an ability to earn parameter although such an interpretation is less

straightforward.

2.2 Investment pro�les

As time t denotes the time elapsed since labor market entry or potential experience, we call

the sequence of investments between t = 1 and t = T a life cycle pro�le of investments. When

human capital investments are always positive, this pro�le is summarized in:

Proposition 1 Suppose that :

βiρiκi > 1, (6)

then:

τi(t) =
1

ci

{
ρi

[
βi

1− βi
+ βT+1−t

i (κi −
1

1− βi
)

]
− 1

}
> 0, ∀t ≤ T (7)

Proof. See Appendix A.1

Equation (7) expresses the well known result that human capital investments decrease with

time. The term in β−ti indeed means that it is always better to invest earlier than later because

the horizon over which investments are valuable is becoming shorter and shorter (Mincer, 1974

and Lillard and Reville, 1999). This is the negative value of κi − 1
1−βi (condition (5)) that
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commands the intensity of the decrease. In addition, levels of investments increase with returns,

ρi, and decrease with costs, ci.

Condition (6) ensures that investments in human capital are positive until period T . Nonethe-

less, investments could stop before period T . Because investments are decreasing, the absence

of investments in a period t, τi(t) = 0, means that no investments would take place later on,

τi(t
′) = 0, ∀t′ ≥ t. In consequence, we can proceed backwards and analyze the conditions under

which human capital investments stop before the last period.

Proposition 2 There exists an optimal stopping period for human capital investments denoted

Ti ∈ {1, ., T} such that:

∀t ≥ Ti, t ≤ T, τi(t) = 0, and τi(Ti − 1) > 0

if and only if:
1

κi,Ti
< βiρi ≤

1

κi,Ti+1

, (8)

where κi,T = κi and κit = 1 + βiκi,t+1 for all t ≤ T (and by convention 1
κi,T+1

= +∞, 1
κi,1

= 0).

Additionally, for all t < Ti, investments are given by replacing κi in equation (7) by κi,Ti:

τi(t) =
1

ci

{
ρi

[
βi

1− βi
+ βTi−ti (κi,Ti −

1

1− βi
)

]
− 1

}
> 0, ∀t < Ti. (9)

Proof. See Appendix A.2

Even if life-cycle investments can stop before T , the shape of the pro�le before stopping

remains similar. This Proposition also shows that if we had information about the stopping

time of human capital investments, we could tie in this information with parameters ρi and κi.

The cost parameter, ci, does not a�ect the duration of investments but their level only. This

is a strong prediction of our set-up and this is because costs do not depend on human capital

stocks.

We can now return to the assumption that consumption is not smoothed over time through

�nancial assets. Allowing for consumption smoothing would allow two channels of inter-temporal

transfers through �nancial assets and human capital accumulation. We show in appendix A.3

that the investment equation (7) would include an additional simple function of the savings rate

si(t). When current income is less than (respectively greater than) consumption, human capital

investments would be larger (resp. smaller) than in the absence of consumption smoothing.

This illustrates the reaction of investments to a change in their opportunity costs (Browning

et al., 1999). We cannot use this investment equation however in our empirical application
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since we do not have access to consumption data and since the reduced form of endogenous

savings depends on other unknown parameters. Moreover, we could not �nd any speci�cation

allowing for consumption smoothing and ensuring that the earnings dynamics equation takes

a linear factor format as shown in the next section. Our conjecture is that there does not

exist a dynamic model with �nancial and human capital accumulation that would generate a

log-earnings equation of the type we �nd. In other words, the micro-funded factor model for

log-earnings that we derive next and which embeds most equations used in the literature about

earnings dynamics is not robust to the presence of consumption smoothing. Nonetheless, we

now continue with the setting in which consumption tracks income exactly as could be justi�ed

by the evidence gathered by Caroll and Summers (1991).

2.3 The Life-cycle Pro�le of Earnings

We deduce from the investment pro�le the life-cycle pro�le of earnings:

Proposition 3 If Ti is the optimal stopping period de�ned in Proposition 2, log earnings are:

ln yi(t) = ηi1 + ηi2t+ ηi3β
−t
i + vit if t ≤ Ti, (10)

ln yi(t) = ln yi (Ti) + vit − viTi if t > Ti (11)

in which:

ηi1 = lnHi(1)− ρ2
i

ci

(
κi,Ti −

1

1− βi

)
βTi+2
i

1− βi
− ρi + 1

ci

(
ρi

βi
1− βi

− 1

)
, (12)

ηi2 =
ρ2
i

ci

βi
1− βi

− ρi
ci
, (13)

ηi3 =
ρi
ci
βT+1(κi −

1

1− β
)

(
ρi

β

1− β
− 1

)
. (14)

and vit is de�ned by:

vit = δi(t)−
t−1∑
l=1

λi(t) = δi(t)− Λi(t), (15)

Proof. See Appendix A.4

Proposition 3 shows that the life-cycle pro�le of earnings can be decomposed sequentially

into a �rst period in which human capital investments are positive and the earnings equation

(10) has a non linear factor structure and a second period in which investments stopped and

earnings are a function of price and depreciation shocks only.

Initially, earnings given by (10) are the sum of a deterministic and permanent component

and a stochastic one. The �rst component is fully deterministic for the agent because it depends
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on individual speci�c parameters, ηi1, ηi2, ηi3, βi and potential experience, t, only. Furthermore,

the reduced-form parameters ηi1, ηi2, ηi3 are functions of the structural parameters which are

the primitives in our post-schooling human capital investment model. Firstly, the level of log

earnings ηi1 is a�ected one to one by the initial human capital stock, Hi(1) with some correction

factors. Secondly, the individual speci�c growth rate ηi2 depends positively on the return ρi

and negatively on the cost ci. Finally, parameter ηi3 (which depends on
(
κi,Ti − 1

1−βi

)
) and the

discount rate βi control the degree of curvature of the pro�le and the e�ect of the horizon of

investment. The closer to zero parameter ηi3 is, or the closer to 1 βi is, the less curved the pro�le

is.

The stochastic component term vit in earnings equation (10) as de�ned in equation (15) is

the sum of the (log)-price of human capital, δi(t) net of the cumulative human capital (log)-

depreciations, Λi(t) =
∑t−1

l=1 λi(l) since labor market entry. We will refer to it thereafter as the

net (log)-price of human capital. This component is the source of stochastic dynamics that

a�ects the life-cycle of earnings. Not much structure is needed in the dynamic model on this

stochastic component except that it is not under the control of the agent. The developments

in this section and the proofs in the appendices are valid (for instance Stokey and Lucas, 1989)

under general assumptions like:3

vit⊥(Hit, ., Hi2) | vit−1, ., vi1, ρi, ci, κi, βi, Hi(1).

In this sense, the derivations of the model above are robust to quite general assumptions on the

expectational side of the model as seen from the developments in Appendix A.

Nonetheless, more restrictive assumptions are needed to identify the parameters of the de-

terministic component in the earnings equation (10) and this is the issue that we now analyze.

3 Economic Restrictions and Identi�cation

We present in this section how we restrict equation (10) that describe the life-cycle pro�le of

earnings to a linear factor model that is comparable to speci�cations used in the literature on

earnings dynamics (Meghir and Pistaferri, 2010). We also state the identifying restrictions on

the stochastic process of the log-prices of human capital net of its depreciation, vit, that we will

need at the estimation stage later. Finally, we derive the economic structural restrictions that

bear on the individual speci�c reduced form parameters of equation (10).

3We shall assume additional technical assumptions such as Et−h(|vit|) <∞ that makes the dynamic program
well de�ned. For the sake of readability these standard assumptions are not fully stated here (see Stokey and
Lucas, 1989).
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3.1 A linear factor speci�cation

We could estimate the individual-speci�c parameters appearing in the deterministic component

of equation (10) as Polachek et al. (2013) do, by specifying orthogonality conditions on vit and

by using a nonlinear earnings function. We did not pursue this path because the estimation of

such non-linear expressions is fragile and sometimes di�cult to achieve.4

This is the foremost reason why we assume that the discount rate βi is homogenous. The

estimation of individual discount rates requires more information from the data than ours can

supply (see for instance in an experimental setting, Andersen, Harrison, Lau and Rutström,

2008) or additional restrictions in an observational set-up (see for instance Alan and Browning,

2010). Indeed, the expression of the deterministic component of earnings in equation (10) could

be approximated by:

ηi1 + ηi2t+ ηi3β
−t + ηi4tβ

−t,

in which ηi4 = −ηi3 (ln βi − ln β) and ln β is the population average of ln βi. Identi�cation of ηi4

however would rely on the interaction between a linear trend and a curvature term and would

probably be fragile.

Furthermore, we conducted experiments that showed that the random e�ect likelihood func-

tion derived in the next section, is �at with respect to the value of the discount rate. This is why

we �xed the value of β at 0.95 (as in many other studies, see for instance Heckman et al., 1998).

Note however that parameter κi indexing the terminal value of human capital partly captures

the heterogeneity of discount factors after period T .

Under these conditions and as long as human capital investments remain strictly positive,

the (log) earnings equation (10) can be written as a linear factor model where the three factors

are ft = (1, t, β−t) and ηi1, ηi2 and ηi3 are individual speci�c e�ects or factor loadings:

ln yit = ηi1 + ηi2t+ ηi3β
−t + vit. (16)

We now turn to the identifying restrictions on the stochastic component vit.

3.2 Human capital prices and depreciation rate

We decompose the net log price of human capital, vit, into aggregate components and individual

speci�c components. The aggregate components are constructed using groupings in the data

4In particular, when the number of observations for each individual is limited. Polachek et al. (2013) report
that their estimation method did not converge for around 3% of the individuals.
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according to skill and age of labor market entry and can be interpreted as market prices net of

depreciation for these types of human capital. In contrast, individual speci�c components are

interpreted as individual speci�c frictions or depreciations. The mechanisms that underlie the

speci�c dynamics of aggregate and individual speci�c components are allowed to di�er and are

left unrelated. In our empirical application, we handle the human capital group aggregates and

individual speci�c e�ects separately and recompose them to recover the full e�ects.

3.2.1 Aggregate components

At the aggregate level of human capital groups, equation (16) can be linearly aggregated into:

ln ygt = ηg1 + ηg2t+ ηg3β
−t + vgt, (17)

in which g denotes a group de�ned by skill and age of entry in the empirical application and

ηgk = E(ηik | i ∈ g) for k = 1, 2 or 3, vgt = E(vit | i ∈ g). The term vgt stands for the

market log-prices of human capital of group g at time t since macro shocks in log prices δi(t)

and depreciation Λi(t) are its underlying components. There are no constraints across groups in

these dynamics if human capital stocks owned by these groups are imperfect substitutes while

perfect substitution holds within groups (Heckman et al., 1998).

We restrict the stochastics of aggregate components by:

E(vgt | ft =
(
1, t, β−t

)
) = 0. (18)

Condition (18) requires that the net log price dynamics is driven by factors orthogonal to the

ones which govern average human capital accumulation and is the key restriction that sepa-

rates quantities from prices. First, orthogonality with respect to the level is a normalization.

Regarding mean independence with respect to the trend, Heckman et al. (1998) and Bowlus

and Robinson (2012) use a "�at spot" condition by which (18) is satis�ed only for a restricted

window of periods close to the end of the working life (around 50) and at which investments and

depreciation shocks exactly balance each other. In our empirical application, we have limited

data that would allow the full application of such a technique. This is why we will resort to

the assessment of robustness of our results to condition (18) by using various earnings de�ators

among which a series derived from a �at spot procedure. We will also argue that the stability

of the between and within group distributions of earnings in France over this period, in contrast

to the US and the UK, make assumption (18) more credible.
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3.2.2 Individual speci�c components

Turning to the within group dimension, we de�ne centered individual e�ects by their deviations

to their means, ηcik = ηik − ηgk, for k = 1, 2, or 3 and vcit = vit − vgt. The earnings equation

becomes:

uit = ln yit − ln ygt = ηci1 + ηci2t+ ηci3β
−t + vcit (19)

in which uit is the deviation of individual log-earnings to their group averages (ln ygt). Individual

speci�c deviations, vcit, stands for frictions in a model of search and mobility. Indeed what

Postel-Vinay and Turon (2010) nicely explicit in their presentation is that the dynamics of the

earnings process is partly controlled by two other processes which are individual productivity in

the current match and outside o�ers that the agent receives while on the job. In this setting,

three things can happen: either earnings remain in the band within the two bounds de�ned

by these processes; or earnings are equal to the productivity process because adverse shocks on

that process make employee and employer renegociate the wage contract; or alternatively, labor

earnings are equal to the outside o�er in the case the employee can either renegociate with his

employer or take the outside o�er if the productivity is lower that the outside option.

We do not model these frictions and posit that they are mean independent of factors and

factor loadings:5

E(vcit | ft =
(
1, t, β−t

)
, ηci ) = 0. (20)

Note that it lets other moments of vcit depend freely on factors and individual e�ects ηci .

Nonetheless, this assumption requires for instance that if the depreciation rate has a �xed com-

ponent, λi, it has to be homogeneous within group g. Otherwise, the individual deviation of

prices would exhibit a linear trend with a slope equal to λi − λg, since

Λi(t)− Λg(t) ∝
t−1∑
l=1

(λi − λg) = (λi − λg) (t− 1) ,

and this would modify equation (13) relating the growth e�ect ηi2 to the structural parameters.

Note that if condition (20) does not hold, it does not necessarily a�ect the linearity of the factor

model but invalidates our structural interpretation of factor loadings in terms of returns, costs

and terminal values that we pursue here. 6

5We slightly relax the assumption of mean independence of frictions with respect to individual e�ects in the
empirical application below by authorizing general initial conditions in the panel data model that we estimate.

6The mean independence of frictions, vit, with respect to factors, ft, is the main driver for the identi�cation
of structural parameters. The mean independence with respect to individual e�ects, ηci , allows us to justify our
random e�ect procedure but is not necessary in the �xed e�ect method (see below).
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A brief comparison to the empirical literature on earnings dynamics might be useful at this

point. This literature aims at �tting the empirical covariance structure of (log) earnings over

the life-cycle, i.e. uit in our notation, using competing speci�cations like the one described as

heterogeneous income pro�les (HIP) or restricted income pro�les (RIP). Up to now, there is

no consensus in the literature about which speci�cation �ts the data best (see Baker, 1997,

Guvenen, 2007 and Hryshko, 2012). Our linear factor structure embeds both models since the

permanent component includes individual speci�c levels and growth rates of earnings as HIP

does and the stochastic component can be any mixture of permanent and transitory shocks like

in RIP. Nonetheless, the three factor structure might blur the key identifying assumption about

the correlations between �rst di�erences of within shocks, u (for instance Blundell, 2014) because

of the presence of the geometric term. In our setting, as long as investments in human capital

are positive (i.e. t ≤ Ti), both HIP and RIP can coexist. Yet, when human capital investments

stop, the deterministic individual speci�c terms should vanish and RIP would prevail.

3.3 From the Reduced to the Structural Form

We shall assume from now on, for want of better identi�cation, that investments in human

capital are positive until the last period of observation T , or Ti ≥ T :

τi(t) > 0 for all t ≤ T. (21)

so that the econometric model is given by equation (16). This section shows that condition (21)

is testable. If this condition did not hold, the life-cycle pro�le of earnings would be the mixture of

two di�erent processes: (1) a generalized heterogeneous growth model driven by human capital

investments in periods before T and a�ected by the dynamics of human capital prices net of

depreciation and frictions; (2) a process driven by the latter dynamics of human capital prices

and frictions only. Identi�cation would have to rely on speci�c distributional assumptions.

We consider from now on that the reduced-form parameters, (ηi1, ηi2, ηi3) are identi�ed al-

though we will return to this issue in Section 5.1. The structural model not only imposes a linear

factor structure on the reduced form but also restrictions on these reduced-form parameters.

The non linear system of three equations (12), (13) and (14) have four unknown parameters

lnHi(1), ρi, ci and κi that are by consequence underidenti�ed although structural restrictions

can be binding. First, there is no restriction on ηi1 since equation (12) is the only source

of identi�cation of the level of initial human capital lnHi(1). Second, structural restrictions
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consist in statements about the terminal value κi or about costs and returns i.e.:

κi ∈ [0,
1

1− β
], ci > 0, ρi > 0, (22)

as well as condition (21). Their implications for the reduced form and the identi�cation of

structural parameters are summarized as:

Proposition 4 Condition (21) and structural restrictions (22) imply the following restrictions

on the individual �xed e�ects ηi2 and ηi3 :

ηi2 > 0,
ηi3
ηi2
∈ [− β

T+1

1− β
, 0].

Parameter κi is identi�ed and:

κi =
1

1− β
+ β−(T+1)ηi3

ηi2
.

Furthermore, parameters (ρi, ci) are partially identi�ed in the sense that there exist values (ρLi , c
L
i )

such that

ρi ≥ ρLi , ci ≥ cLi .

and a one-to-one relationship:

ci = c(ρi, ηi2).

Proof. See Appendix A.5

These results are intuitive. The growth parameter ηi2 is positive because human capital

investments are productive and the curvature term ηi3 is negative because the horizon is �nite

and pro�les are concave. It is also this curvature relative to the growth term, and therefore

the implicit horizon over which investments are valued, which identi�es the capitalized value of

future returns to human capital after period T + 1.

Section 5 describes how we deal with estimation and inference in this model of the earnings

formation process. We �rst describe the data with which we estimate such a model.

4 A Brief Description of the Data

We �rst explain how our sample is constructed as well as our measurement for earnings. We

propose a brief summary of earnings inequality in France over the last 40 years and present

stylized facts about means, variances and autocorrelations of log earnings in our sample.
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4.1 Sample Selection

Our panel dataset on earnings is extracted from a French administrative source named Décla-

rations Annuelles de Données Sociales (DADS). DADS data is collected through a mandatory

data requirement (by French law) for social security and tax veri�cation purposes. All employers

must send to the social security and tax administrations the list of all persons who have been

employed in their establishments during the year. Firms report the full earnings they have paid

to each person but this does not include other labor costs borne by the �rm. Each person is iden-

ti�ed by a unique individual social security number which facilitates the follow-up of individuals

through time although we cannot reconstruct taxes they pay. The tax system is household-based

in France and the linking of this dataset with �scal records is not authorized yet.

The French National Statistical Institute (INSEE) has been drawing a sample from this

dataset at a sampling rate of around 4% since 1976. Regarding the sampling device, all individ-

uals who were born in October of even years are included in this sample. Using administrative

data is an important advantage since these data are less subject to attrition or measurement

errors.7 Unlike survey data, the collection of information does not rely on individual response

behavior and individuals are better followed over time. Moreover, the large sample size enables

us to use a single large cohort of individuals who entered the labor market in the same year. For

simplicity, we shall, in the following, use "cohort" as standing for a labor market entry cohort.

Observations can yet be missing for di�erent reasons. First, data were not collected in three

years (1981, 1983 and 1990) for reasons speci�c to INSEE. Second, this dataset is restricted to

individuals employed in the private sector or in publicly-owned companies. As a consequence,

this analysis is restricted to individuals who have been employed at least one year between 1976

and 2007 in the private sector or in a publicly-owned company. Third, the coding of individual

identi�ers (on 13 digit positions) was at times manually entered at the beginning of the data

collection and this causes errors.

We now describe our sample selection and the construction of earnings. Further details can

be found in a supplementary Appendix available upon request (speci�cally in Section A.IV.1 of

it).

As in Le Minez and Roux (2002), we consider individuals right from their entry into the

labor market and onwards. Labor market entry is de�ned as being employed for more than 6

months and being still employed the following year, possibly in di�erent �rms. For the entry

7To our knowledge, the only other contributions in the earnings literature that use administrative data is
Hofmann (2013) and Daly, Hryshko and Manovskii (2014) (German and Danish data).
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cohort of interest which starts in 1977, this leads us to select from the administrative data

36, 883 individuals who were employed more than 6 months in 1977 and at least one day in 1978.

Among them, 53% have worked but not permanently before. Conversely, individuals who have

worked in 1977 are not considered as entrants if their jobs are not permanent enough. They

may however enter with a subsequent cohort.

In addition, we aim at keeping employees with a permanent full-time attachment to the pri-

vate sector only. Firstly, we consider workers employed full time only and we censor information

about part-time jobs. In addition to the condition which requires workers to work in the private

sector during the year of entry and the following one, we further restrict the sample to men also

working in 1982 and 1984. This is because we want to avoid dealing with non participation issues

for females and with too many exits from the sample since the bulk of entries into public service

occurs at the beginning of the working life. These restrictions lead us to retain in the 1977 entry

cohort 16, 091 men who entered the labor market in 1977 in a full-time position for more than 6

months and who were also full-time employed in 1978. Adding the condition on the presence in

a full-time position in 1982 and 1984 further restricts the sample to 8, 288 individuals. Finally,

we keep only workers who were aged between 16 and 30 at their entry in the labor market and

this restricts the sample to 7, 446 workers.

We impose these restrictions in order to concentrate on a relatively homogeneous sample of

workers with a long term attachment to the private �rms' labor market. Admittedly, it does not

represent the full working population. Because of the lack of a credible identi�cation strategy

to correct for selection, we shall assume that selection is at random or can be conditioned

on individual-speci�c e�ects only. The distribution functions of unobserved factor loadings or

idiosyncratic components that we estimate in the following refer to this subpopulation.

The empirical analysis uses "annualized" earnings. It is de�ned as the sum of all earnings

during the year divided by the number of days worked and remultiplied by 360 (total number

of days during the year in the administrative data). Accounting only for total yearly earnings

would miss other earnings from employment in the public sector, self-employment income or

unemployment bene�ts that are not observed in the data. Considering annualized earnings

instead limits this problem, although it may lead to overestimating yearly income. In order

to weaken the possible impact of measurement error, we coded as missing the �rst and last

percentiles of the earnings distribution in every period.

A shortcoming of administrative data is that few observable characteristics are available apart

from age at labor market entry and the skill level of the �rst job. We consider the interaction
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between the age at entry and the skill level of the entry job as de�ning our human capital

groups. Skills are grouped into three categories based on the codi�cation in 2 digits provided in

the data: high-skill (managers, professionals), medium-skill (blue-collar or white-collar skilled

workers) and low-skill jobs. Due to the speci�c sampling of the dataset as explained above,

the age at entry of workers (in 1977) can only take odd integer values from 17 to 29, i.e seven

di�erent values. It is likely that workers delaying entry have a higher education level than the

ones who entered earlier. Interacting skill levels and ages of entry, we end up with 20 groups,

one being too small to be considered on its own (see Table 4 for the de�nition and size of each

group). Since these groups are de�ned according to characteristics recorded at the entry on the

labor market, individuals are attached to the same group during their whole working life.

4.2 Earnings Inequality in France

The sharp increase in earnings inequality in the UK and in the US over the last thirty years

is a well known empirical fact (see for example Autor, Katz and Kearney, 2008, or Mo�tt and

Gottschalk, 2011, for the US and Blundell & Etheridge, 2010, for the UK). Yet, the picture is

more balanced in other OECD countries and while some European countries have experienced

an increasing dispersion in earnings, others have not been a�ected by this trend and have had

stable or decreasing dispersion. Atkinson and Morelli (2012) compute international earnings

inequality comparisons over the second half of the twentieth century for 25 countries. As re-

gards European economies, they conclude that earnings inequality has increased in Germany,

Italy, Portugal, Sweden, Switzerland while in Finland, France, Netherlands, Norway, and Spain

earnings dispersion has stayed constant or decreased over this period.

In France, earnings inequality in 2010 is broadly comparable to its level in the sixties and

if anything has decreased. Atkinson and Morelli (2012) report an unchanged Gini coe�cient

for earnings over the period. Using Labour Force Surveys (LFS), they also compute yearly

measures of inequality and show a very stable inequality level. Using two di�erent datasets, the

DADS and the French LFS Verdugo (2014) concludes that the two data sets provide strikingly

similar �gures of constant or decreasing earnings dispersion between 1964 and 2005. Verdugo

(2014) decomposes the total earnings dispersion into upper and lower-tail earnings inequality.

The dispersion in the top of the distribution has remained constant since the P90/P50 index

in earnings �uctuates around 2, while the dispersion at the bottom measured by the P50/P10

index has decreased from 1.9 to 1.5. Charnoz, Coudin and Gaini (2011) also use the DADS data

to reach the same conclusion that earnings inequality in France has been rather stable from 1976
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to 1992 and has been slightly decreasing from 1995 to 2004.8 This stability has been attributed,

at least partly, to a strong policy driven increase in education at the end of the 1980s and labor

market policy regulations at the end of the 1990s (Charnoz, Coudin and Gaini, 2014).

A note of caution is in order. While these studies consider changes in the cross-sectional

earnings distributions, changes in the structure of the population that has been given a large

role by the previous studies are neutralized in this paper. We adopt a di�erent perspective by

following a single cohort of individuals entering the labor market in 1977.

4.3 Description of earnings dynamics

Table 1 reports descriptive statistics of the sample. The sample size is 7446 observations in

1977 and 4670 in 2007. The human capital groups de�ned above are of unequal size, the groups

with an early age of entry being the largest ones and the late age of entry groups the smallest.

Attrition follows a somewhat irregular pattern which is partly due in the �rst years to our

sampling design since we require that wage earners be present in 1977, 1978, 1982 and 1984 (see

appendix, Table A.i). Some years are also completely missing (1981, 1983 and 1990). There are

also more surprising features for instance in 1994 (or 2003 at a lesser degree) a year in which

many observations are missing. This is due to the way INSEE reconstructed the data from the

information in the original �les.

We report in Figure 1, the increase of average log-earnings over the period in 2007 euros for

three age of entry groups (< 20, ≥ 20 and ≤ 24 and > 24) since the evolution for smaller groups

is similar.9 The covariance matrix of log-earnings that we consider from now on are computed

by taking deviations of (log) earnings with respect to their means in the 20 groups de�ned by

age of entry, skills and periods.

The left panel of Figure 2 represents the change in the cross-sectional variance of (log)

earnings residuals for the full sample, while the right panel represents the variance by age of

entry groups.10 The �rst few years witness a strong variability of earnings. Until the sixth year

8These diagnostics are relative to labor earnings inequalities and not to income inequalities. In particular,
income inequality has increased in France over the period as in many other countries, albeit at a lesser extent,
and the growth of incomes at the very top is the main reason for this increase (Atkinson, Piketty and Saez, 2011).

9In�ation, as measured by consumer prices, leads to a subtracting factor for current log-earnings over the
whole period which is equal to 1.17. This can be roughly subdivided into two sub-periods between 1977 and 1986
in which this factor is equal to .77 and between 1986 and 2007 during which in�ation levelled o� and this factor
is equal to .40.

10Choosing the variance as a description of the process is adapted to the random e�ect speci�cation that we
estimate. Using other inequality indices (Gini , Theil or Atkinson) does not change the qualitative features of
our descriptions.
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of observation, 1982 (respectively the fourth, 1980), the variance of log earnings drops for the

low skill groups (resp. for the other groups) whereas it increases gradually over the rest of the

sample period till around 1995. The variance pro�le is �at afterwards in contrast to the US

(PSID) where it continues to grow (Rubinstein and Weiss, 2006). From the right panel one

can notice that late entrants in the labor market experience higher levels and larger rates of

growth for the variance of (log) earnings over the life-cycle. The complete covariance matrix of

log earnings residuals is reported in Table 2 although this is easier to use graphs to describe the

main features of earnings autocorrelations.

Figure 3 displays for the full sample the autocorrelation of residuals of log earnings with

residuals in an early (resp. late) year, 1986 (resp. 2007). This Figure reveals an asymmetric

pattern over time which is quite robust to the choice of these speci�c years (1986 and 2007). The

correlation between earnings in year t and in 1986 is swiftly increasing when t is before 1986 and

this is also true for 2007 albeit at a lesser degree. Meanwhile the correlation between earnings in

1986 and in year t is only slowly decaying in t if t is after 1986. Figure 4 takes a di�erent view

that con�rms the previous diagnostic by plotting the autocorrelations of order 1 and 6. Note

that their shape are very similar and increase uniformly over time although at di�erent levels.

The closer to the end of the working life, the larger the autocorrelation coe�cients are.11

5 Econometric Modeling of Earnings Dynamics

In this section we summarize our empirical strategy. Most of the technical details are relegated

to appendices. Our �rst objective is to recover estimates of the individual e�ects (ηi1, ηi2, ηi3)

in the linear factor structure (16) using the identifying restrictions presented in Section 3.2. In

a second stage, we turn to the test of structural restrictions and the estimation of structural

parameters. We �nally use those estimates to compute counterfactuals.

We start from the linear factor model given by equation (16). Stacking log earnings ln yit

and the stochastic component vit into T -vectors ln yi and vi as well as ηik into a 3-vector ηi, this

equation writes:

ln yi = M (β) ηi + vi

in which M (β) is a T, 3 matrix in which a constant, a linear and a geometric term are stacked.

Estimating individual e�ects ηi raises two di�culties. The �rst one, which is standard in the

11In the supplementary appendix available upon request, we provide graphs showing that this cohort has
nothing speci�c when it is compared to younger cohorts entering later the labor market (Appendix A.IV.2).
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panel data literature, is that these parameters can be estimated using the temporal variability

of the observations for every individual only (at most 28 observations in our data). Let Ni the

number of observations for individual i.12 Even if OLS estimates of parameters ηi for every

individual pro�le are consistent when Ni becomes large, the bias in 1/Ni and lack of precision

if serial correlation is sizeable might lead to estimates of poor quality. The second issue is that

we made a case in Section 3 for distinguishing aggregate and idiosyncratic components, both

having their own dynamics.

Hence, we split the estimation in two stages. First, we estimate aggregate equation (17) group

by group using standard time series methods. At this aggregate level, we have 28 observations

per group. Second, within-group centered individual speci�c parameters, ηci , are parameters in

the rewriting of equation (19) as:

ui = M (β) ηci + vci . (23)

in which the matrix of factors M (β) is de�ned above. Because some data are missing and serial

correlation is likely, inference might be poor if we estimate this equation individual by individual.

To overcome this, ηci are estimated using a two-step strategy which consists in estimating

a �exible random e�ect model using the whole sample �rst and second, in estimating equation

(23) by FGLS, individual by individual. In the second step �xed e�ect procedure, the FGLS

weight is the inverse of the population covariance matrix of vci over time estimated in the �rst

random e�ect step. The �nal individual speci�c estimates are obtained by adding aggregate

estimates to these �xed e�ect estimates of the centered factor loadings.

On the one hand, using random e�ect in a �rst step allows us to control for general serial

correlation in the �xed e�ect estimation so that the latter estimates are presumably more precise.

Even if the random e�ect speci�cation is only an approximation of a more complicated data

generating process, for instance obtained by aggregating individual speci�c processes, we argue

that using this approximation enhances the precision of the �xed e�ect estimations that we

implement in the second stage provided that these shocks are mean independent of the permanent

individual e�ects as stated in condition (20). Furthermore, random e�ect estimation provides a

benchmark against which we can assess the amount of bias in the �xed e�ect estimation due to

the �nite length of the observation period for each pro�le.

On the other hand, looking at covariance restrictions only and estimating by random e�ect

methods is overly restrictive. In particular, structural constraints on parameters are not easily

12By construction, Ni is less or equal to T .
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imposed.13 This is what �xed e�ect estimation delivers in the second step. Structural restrictions

of Proposition 4 become easily testable and structural estimates are easily computed.

We continue with presenting random e�ect, �xed e�ect and aggregate e�ect estimation meth-

ods in more detail.

5.1 Random E�ect Estimation

For expository purposes, we neglect in the text initial conditions that are rigorously dealt with

in Appendix B, and in the supplementary appendix. We can use equation (23) and mean

independence restrictions (20) to show that:

E(ui | ηci ) = M(β)ηci ,

V (ui | ηci ) = V (vci | ηci ) ≡ Ω(ηci ),

and therefore:

V (ui) = V (E(ui | ηci )) + E(V (ui | ηci )) = M(β)V (ηci )M(β)′ + E(Ω(ηci )). (24)

Our parameter of interest in this equation is the covariance matrix of the individual e�ects,

V (ηci ) and speci�cally, the correlations between level, growth and curvature e�ects. Identifying

the covariance matrix requires restrictions on the variance of the idiosyncratic errors, E(Ω(ηci )).

An ARMA speci�cation is most common in the earnings dynamic literature and generally low

orders are used (see Guvenen, 2009, or Hryshko, 2012) whereas alternatives could be the com-

position of permanent and transitory shocks with speci�c structures (Bonhomme and Robin,

2009, Lochner and Shin, 2013) or general factor models (Bai, 2009). Furthermore, Arellano and

Bonhomme (2012) show that a �nite lag ARMA speci�cation is su�cient to get identi�cation of

V (ηci ). We use this result and proceed by specifying that the processes vcit belong in the family

of time-heteroskedactic ARMA processes although we limit the orders of the AR and MA to

vary between 1 and 3. This allows us to assess the robustness of our results about the covariance

of individual e�ects, V (ηci ), to the orders of the ARMA process. Moreover, we allow for time

heteroskedasticity of the innovations whose importance is shown by Alvarez and Arellano (2004).

What the decomposition (24) exhibits in addition, is that a restricted form of individual

heterogeneity, possibly dependent on parameters, ηi, could be allowed in the ARMA process

13One route would be to use deconvolution techniques as in Bonhomme and Robin (2010) or Cunha et al.
(2010) although this would require the development of estimation methods for distributions under structural
constraints.
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provided that the expected value, E(Ω(ηci )), remains in the ARMA family that we consider.14

Appendix B presents the full speci�cation of the process for vcit in which we also deal with ini-

tial conditions in the most general way used in the dynamic panel data literature. The covariance

matrix of initial conditions is free as well as the covariance between those initial conditions and

the individual speci�c parameters ηci . Further details are given in the supplementary Appendix

A.II.

The most commonly used minimum distance method for estimating equation (24) as in

Abowd and Card (1989) is severely small-sample biased since the range of moments involved

when the time dimension becomes large makes �rst order asymptotics a poor guide in empirical

research (see Arellano, 2004 for a review). Okui (2009) derives the small sample biases not

only in the mean but also in the variance of GMM estimates due to the presence of too many

moments and he suggests some moment selection mechanism. This is why some researchers

proposed to return to an OLS set up adding a bias correction step (Hahn and Kuersteiner, 2002)

or to maximum or pseudo-maximum likelihood methods that reduce the number of moments

available (Hsiao, Pesaran and Tahmiscioglu, 2002, Alvarez and Arellano, 2004).

Speci�cally, the estimation method proposed by Alvarez and Arellano (2004) seems to dom-

inate in Monte Carlo experiments other �xed T consistent estimators such as the maximum

likelihood estimator using di�erenced data and the corrected within group estimator. This

method is particularly well adapted to the case in which there are missing data in earnings dy-

namics. For any missing data con�guration, it consists in deleting the rows and columns of the

covariance matrix corresponding to missing data and write the likelihood function accordingly.

Random e�ect estimates remain consistent if data are missing at random.

Under a normality assumption, the implicit moment selection underlying this estimation

method is optimal and though the method loses optimality in the non-normal cases, it is still

useful for moment selection and for small-sample bias reduction (Okui, 2009).

5.2 Fixed e�ect estimation of ηci

Random e�ect estimates can now be exploited to construct individual speci�c estimates of pa-

rameters ηci . First, if the ARMA model that we retained above is the correct speci�cation at

the individual level for all individual pro�les, we obtain �xed e�ect estimates as linear combi-

14We also neglect other non linearities. Contributions to the non linear analysis of earnings dynamics include
among others Geweke and Keane (2000), Hirano (2002), Bonhomme and Robin (2009), Browning et al. (2012),
Meghir and Pistaferri (2004) or Hospido (2012).
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nations of residuals uit and those FGLS estimates are optimally weighted to account for serial

dependence. Supplementary appendix A.III.1 develops the analytic computations that lead to

the following individual e�ect estimates:

η̂ci = B̂ui, (25)

in which matrix B is a function of random e�ect parameters, in particular the covariance between

the individual parameters and the initial conditions, and B̂ its plug-in estimate.

Even if the ARMA model is incorrect, those estimates are still consistent when Ni → ∞

because what matters is the mean independence of the factors with respect to the residuals,

and not the speci�c form of serial dependence. Nonetheless, their standard errors should be

corrected. We use Newey-West robust standard errors in the empirical section. Taking serial

dependence as given by random e�ect estimates into account yet exploits the information that

we have about "aggregate" serial dependence as opposed to a simple OLS or non-linear least

square estimate (Polachek et al, 2013). It enhances the quality of the estimates if the term Ω (ηci )

is not too heterogeneous and this will be checked after estimation.

Consistency properties could nonetheless be misleading since Ni varies in our sample between

4 and 28. To assess the magnitude of the bias, we shall compare the estimates of the covariance

matrix of ηc that we obtained by random e�ect and by �xed e�ect methods by grouping individual

pro�les according to the length of the observation period. The bias for the estimated variance of

earnings can also be computed as in Arellano and Bonhomme (2012) and corrected. Abstracting

�rst from sampling errors, an unfeasible estimate is de�ned as:

η̃ci = Bui = ηci +Bwi,

in which random vector wi has mean zero conditionally on ηci and covariance matrix, Ωw. These

objects and this expression are de�ned and derived in the supplementary appendix A.III.1.15

We have:

V (η̃ci ) = EV (η̃ci | ηci ) + V E(η̃ci | ηci )

=⇒ V (η̃ci ) = BΩwB
′ + V (ηci ).

The bias term is given by BΩwB
′ and it is easy to show that the dominating term is of order

1/Ni.
16

15The new notation wi is introduced since it di�ers from vci in equation (23) because of the correlation of initial
conditions with ηci .

16Because our factors are a constant, a linear trend and a geometric one, there are also bias terms in 1/(Ni)
2

and βNi that are dominated by the leading one, 1/Ni.
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Our estimate has an additional bias term which is given by the measurement equation:

η̂ci = B̂ui = η̃ci + (B̂ −B)wi,

although this term is in 1/
√
N and thus dominated in large N and moderate Ni samples by the

bias in 1/Ni. These biases can also be estimated and bias-corrected estimates of those variance

terms can be constructed.

5.3 Estimation of average human capital e�ects, ηg

We use simple time series techniques to derive estimates of average e�ects for each group g

de�ned by equation (17):

E(log(yit) | i ∈ g) = ηg1 + ηg2t+ ηg3β
−t + vgt

As explained in section 3.2, the time series properties of vgt have nothing in common with the

time series properties of vcit−vgt. Furthermore, groups do not have necessarily things in common

since substitution is imperfect between human capital stocks across group in the aggregate

production function. This is why we estimate parameters in each group by simple OLS as

justi�ed by condition (18). This provides consistent estimates of ηg, say η̂g, and standard errors

are computed using a Newey West procedure.

We then recompose estimates of the individual e�ects η̂i by adding estimates of aggregate

components and of individual e�ects de�ned in the previous section :

η̂i = η̂g + η̂ci .

5.4 Constraints and Structural Parameters

We now show how to impose structural constraints on individual-speci�c estimates as derived

in Proposition 4. Indeed, estimates η̂i do not necessarily satisfy the constraints:

ηi2 > 0 and
ηi3
ηi2
∈ [− β

T+1

1− β
, 0].

We let πT = βT+1

1−β and write these contraints as:

H0i : ηi2 > 0, ηi3 < 0 and ηi3 + πTηi2 > 0.

As we know the asymptotic distribution of each factor loadings, we can test each single restriction

(e.g. H
(1)
0i : ηi2 > 0) at the individual level. We can also jointly test for the three constraints

and this leads to the construction of constrained estimates.
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5.4.1 Constrained estimates

We construct constrained estimates by projecting unconstrained estimates on the set of restric-

tions using the distance de�ned by the (log)-likelihood function criteria as explained in Appendix

A.III.3. We can then construct the distribution of the distance in the data between the uncon-

strained and the constrained estimates, η̂Ri :

d(η̂Ri , η̂i) = (η̂Ri − η̂i)′Ω̂−1
ηi

(η̂Ri − η̂i),

in which Ω̂ηi is the estimate of the covariance matrix of the individual �xed e�ects Ωηi . This

distance is the basis for a Quasi-Likelihood Ratio test of all structural restrictions (e.g. Silvapulle

and Sen, 2005). The distribution of this statistic under the null hypothesis H0i is a mixture of

chi-square distributions that can be simulated.

5.4.2 Structural estimates

Constrained estimates are by construction on the frontier of structural restrictions when the

unconstrained estimates are outside the set of structural constraints. This happens quite often

even when the null hypothesis is true because the number of observed periods Ni is not large

enough. For instance, it could be that constrained estimates verify the constraint, ηi3+πTηi2 = 0,

which would mean that the estimate of parameter κi is equal to 0. Because ρi > 1/βκi, this

would generate an in�nitely large estimate for ρi.

This is why we use simulation to sample into the asymptotic distribution of constrained

estimates. Under the additional assumption that vci are normally distributed, we use that the

likelihood function of an individual earnings pro�le is given by:

L(ηci | ui) = H(ui) exp

(
−1

2
(ηci −Bui)′Ω−1

η (ηci −Bui)
)
L0(ηci ),

in which structural restrictions are implicitly stated in the prior distribution L0(ηci ). We draw

into this posterior distribution to construct simulated constrained estimates, η̂si , of ηi using

the developments in Appendix A.III.4. We then take the average of these simulated values to

construct our simulation estimates of factor loadings which by construction are interior points

of the constrained set.

5.5 Counterfactual analysis

We assume that there is a "technological" improvement in survival probabilities in such a way

that there are additional K years after period T during which the survival probability remains

29



equal to 1 (instead of starting declining). This amounts to the transformation of κi into κ
∗
i :

κ∗i −
1

1− β
= βK(κi −

1

1− β
)

as if we were prolonging, all of a sudden, life expectancy by K years. Other parameters like

returns, ρi, and costs, ci, are held �xed. We evaluate the consequences on the earnings pro�les

of these changes as if these news had been revealed at time t = 1 so that the initial level of

human capital would also remain the same. We assume that human capital price dynamics, net

of human capital depreciation, are not changed by these news, so that the stochastic process of

shocks vi also remains the same.

Evaluating individual parameters (12) to (14) at the new values (κ∗i , ρi, ci, Hi(1)) yields that

the new values (η∗1i, η
∗
2i, η

∗
3i) are such that η∗2i = η2i, η

∗
i3 = βKηi3 and that:

η∗i1 − ηi1 = −ρ
2
i

ci

(
κi −

1

1− β

)
βT+2

1− β
(βK − 1). (26)

In order to abstract from the idiosyncratic noise of transitory earnings which remains �xed by

assumption, we shall then compare the earnings variance pro�le V (M(β)η∗i ) with the original

pro�le of V (M(β)ηi) in which M(β)ηi is the permanent component of the earnings pro�le.

Nonetheless, parameters ρi and ci in equation (26) are only partially identi�ed. A lower

bound (ρLi , c
L
i ) on their values can be estimated and used to construct the counterfactual. We

shall then proceed by making di�erent assumptions like ρi = ρLi , ρi = 1.20ρLi etc to assess the

robustness of this construction.

6 Results

We comment the estimation results of the within groups earnings equation by random e�ects in

Section 6.1 and report the estimates of the aggregate human capital group e�ects in Section 6.2.

In Section 6.3 we detail the procedure we implement to estimate unconstrained individual factor

loadings or �xed e�ects and present descriptive statistics of these estimates. Next, we test and

impose structural constraints on estimates. This leads us in Subsection 6.5 to the estimation of

structural parameters which are identi�ed (the terminal value coe�cient) or partially identi�ed

(rates of return). We wind up the section with robustness checks and other diagnostics.

6.1 Random e�ect estimates

We focus on the estimation of the covariance matrix of centered individual e�ects, ηci , and the

goodness of �t of estimates. All other results are detailed in the supplementary appendix.
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The estimated covariance matrix of the centered individual e�ects is quite stable across the

di�erent speci�cations of ARMA processes (see Table 3). Their standard deviations are very

precisely estimated at around .30 for the �xed level factor, ηc1, and .25 for the geometric factor,

ηc3, and at around .04 for the linear trend factor, ηc2. The correlation between the linear trend

and geometric factors is very strongly negative and equal to −.95 consistently across ARMA

speci�cations. The magnitude of this correlation and its sign are consistent with the structural

model that ties in ηi2 and ηi3: ηi3 = (κi − /(1− β)) βT+1ηi2 (Proposition 4 ). More simply, the

higher the growth in earnings is, the more curved the earnings pro�le is.

The correlation coe�cient between the geometric, ηc3, and the level, ηc1, factor loadings is

also signi�cantly negative � around -0.6 � and the one between the level and linear trend factor

loadings, ηc1 and ηc2, is positive and around .4. The sign of the latter correlation coe�cient is

to be expected if the level of human capital at the entry date is positively correlated with the

returns to human capital which govern the factor loading of the linear trend. This correlation

has been examined in the previous literature (see table 4 in Guvenen, 2007, for a summary of

the results) and has not always been found positive (for instance, Hause, 1980).

Both the introduction of the curvature factor and the control of initial conditions seems to

contribute to this �nding. Irrespective of the order of the ARMA process, the initial conditions

are negatively correlated with the �xed level factor ηc1, positively with the linear trend factor ηc2

and negatively with the geometric factor ηc3.
17 These initial conditions account for the strong

transitory conditions that seem to a�ect the earnings process at the beginning of the working

life (as well as our data selection process)18. Even if the earnings process is asymptotically

stationary, initial conditions are for this reason not necessarily set on the stationary path that

corresponds to this process (see Magnac and Roux, 2010).

Goodness-of-�t is examined in di�erent graphs. In Figure 2, we report how the estimated

variances as well as the observed variances evolve over time. They �t very nicely in the �rst part

of the sample (until 1994) but this breaks down after 1994 after which the shape of the evolution

of variances is similar albeit at a level which is higher than the observed level. It con�rms that

1994 is an abnormal year even if the goodness-of-�t for autocorrelations is good as reproduced

in Figures 3 and 4.

17Estimates of the covariances between the factor loadings and the initial conditions are presented in Table A.iv
in the supplementary Appendix.

18The strong decrease of the variance observed during the �rst years might partly be due to the very stringent
selection made in the 1977 entry cohort. The very �exible initial conditions as they are accounted for in the
random e�ect estimation control partly for this selection.

31



We tried di�erent mechanisms in order to understand better the discrepancy between ob-

served and predicted variance pro�les. One possibility is to allow for an additional measurement

error term in 1994 for instance, like in Guvenen (2009) or to drop this year altogether. These

attempts did not a�ect goodness-of-�t. A more disturbing explanation for those discrepancies is

that it re�ects a failure in the missing at random hypothesis. When one represents the evolution

of earnings variance over the life-cycle using �xed e�ect estimates (see below), it clearly appears

that the level of these pro�les negatively depends on the number of periods we observe each

person. Variances are larger for individuals who are present in the panel during shorter spells

and random e�ect estimates overestimate the sample variance. Nevertheless, correcting for non

random attrition seems out of the scope of this paper and we leave it for further research.19

6.2 Average e�ects estimation

Table 4 present for each of the 20 groups the estimations of the average e�ects by OLS. We

neglect the possible impact of initial conditions and assume that the transitory conditions at

the beginning of the working life are pure idiosyncratic frictions and do not a�ect market prices

for the di�erent human capital groups that we observe. Results exhibit the expected patterns.

The �rst factor loading average η̄g1 ranges from 2.4 for the lowest skill groups to 3.4 for the

highest skill groups, i.e. the workers who have their �rst durable high-skilled job at the age of

27. The estimated coe�cient of the linear trend average, η̄g2 ranges from 0.017 to 0.07. As the

previous average, it is larger for the high-skilled groups than for the low-skilled ones although

the evidence is weaker. The geometric factor loading average η̄g3 is negative as expected or non

signi�cantly di�erent from zero.

Interestingly the pattern of correlations of the average e�ects across human capital groups

(weighted by group size) is very close to the correlation pattern of centered factor loadings

estimated by random e�ects as presented in Table 3. The coe�cient of correlation between η̄g1

and η̄g2 (i.e. g varying) is equal to 0.66 and close to the random e�ect estimate of the correlation

between ηc1 and ηc2, which is equal to 0.5. The estimated correlation between η̄g1 and η̄g3 is

negative, −0.64 and very close to the random e�ect estimate, −0.636. Finally, the estimated

correlation between η̄g2 and η̄g3 of −0.96, is very close to the random e�ect estimate. We

interpret this similarity of patterns as evidence that human capital investment patterns between

and within groups are similar in France in contrast to what was found in the US (Heckman et

19Furthermore, the conditions for consistency for the �xed e�ect estimates described below are less stringent
since the missing at random assumption can be weakened and taken as conditional on individual e�ects.
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al., 1998). This might be due to the stability of relative human capital prices over this period.

6.3 Fixed e�ect estimation

We now turn to the results of FGLS estimation of the three individual factor loadings which

uses random e�ect estimates to correct for aggregate serial dependence as derived in equation

(25). Technical details are given in the Supplementary Appendix. Estimated group averages as

described in the previous section are added to within group estimates to reconstruct the �nal

estimates of individual e�ects η̂i as described in Section 5.3.

As said, �xed e�ect estimates are consistent when the number of observed periods Ni tends

to in�nity. Table 5 presents the estimates of quantiles of their distributions in subsamples

constructed according to the number of periods individuals are observed (between 4 and 28).

The bias in 1/Ni is noticeable as the larger the number of observed periods is, the lower the

inter-quartile ratio for all three factors is. Notwithstanding those di�erences, the median of the

coe�cient attached to the level factor is of the order of magnitude of the mean (log-)earnings at

around 2.5 and the range between the 20th and 80th percentile is .5 if the number of observed

periods is maximal (Ni = 28). The median of the coe�cient of the linear trend factor is of the

order of 3 or 4% while its 20-80 quantile range is about 6-8%.

Finally, the median of the coe�cient of the geometric factor lies around -.17 and its inter-

quantile range is about .40. This coe�cient enters multiplicatively in the curvature of the

earnings pro�les over time since the second derivative of the latter with respect to potential

experience is this coe�cient multiplied by (log β)2 = 2.5.10−3. This �ts well with the usual

estimates of earnings equations predicting the maximal value of earnings at a time t close to

log(log(β)η2/η3)/ log β which is equal to 31.2 at the median estimates. Furthermore, the return

to potential experience at labour market entry is η2 − log(β)η3 and the median estimate is in

the range of 2 to 3%.

Table 6 presents estimates of the covariance matrix of centered individual e�ects or factor

loadings obtained by �xed and random e�ect methods. Standard errors for any function of

�xed e�ects are computed using sampling variability to which is added the e�ects of parameter

uncertainty due to random e�ect estimation. We use Monte Carlo simulations to compute the

latter by sampling 1000 times in the asymptotic distribution of random e�ects estimates.

We �nd that for individuals observed over a small number of periods (less than 22) the es-

timates are severely biased upwards and this a�ects the �xed e�ect estimates for the complete

sample when compared to the consistent random e�ect estimates. For the two remaining group-
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ing of observed periods ( (22,26] and (27,28]), random e�ect estimates lie between or close to

these two �xed-e�ect estimates. This might be due not only to a remaining 1/Ni bias but also

to di�erent underlying stochastics which characterize these two sub-populations. Random e�ect

estimates would re�ect the mixture of these two groups.

This interpretation �nds some con�rmation when plotting the pro�le of variances of earnings

along the life-cycle in Figure 5. This sets more clearly the question whether these �xed e�ect

estimates are able to reproduce the pattern of earnings variances over time. In both panels

of this �gure, we graph the life-cycle pro�le of variances due to the factor part of the model

only (i.e. the permanent e�ects due to factors and factor loadings V (M(β)ηci )) in which matrix

M(β) is composed by a constant, a trend and the geometric rate β−t, as explained in Section 5.

Stochastic earnings, vci , are �xed and their passive role obscures these comparisons so that we

prefer not to include them in this comparison. Figure 5 graphs the prediction of the variance

pro�les that can be computed using random or �xed e�ect estimates. We use the subsample in

which the number of observed periods is larger than 22 because Table 6 shows that the bias is

much less severe for such observations. Earnings pro�les using �xed e�ect estimates reproduce

the random e�ect variance pro�le at a higher level during the �rst years of working life in

Figure 5. Discrepancies with random e�ect estimates seem nevertheless second order and this

validates the use of this selected sample in the counterfactual experiment below.

Finally, the comparison between random e�ect and �xed e�ect estimates implicitly relies on

an homogeneity assumption of the residuals, v̂ci as a function of ηi. When plotting the variance

pro�les of these residuals in groups de�ned either by human capital or by the length of the

observation periods, we �nd very little di�erences between those groups (see Figure A.iii in

the supplementary Appendix). The three factor structure seems to be su�cient to describe the

individual permanent heterogeneity in our data and this partly justi�es ex-post the homogeneity

assumption on the covariance matrix of transitory terms in the random e�ect speci�cation.

6.4 Structural restrictions

With these estimates in hand, we can directly evaluate the relevance of economic restrictions.

We have three restrictions, the coe�cient of the linear trend should be non negative (η2 ≥ 0),

the coe�cient of the geometric factor should be non positive (η3 ≤ 0) and a weighted sum of

these two coe�cients should be non negative (η3 + πTη2 ≥ 0). Parameter πT > 0 is �xed in the

population and a function of β (see Section 5.4).

Figure 6 represents those restrictions in an informal way. The cloud of estimates of η2 and
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η3 is scattered around a downward sloping line and this re�ects the strong negative correlation

between these two factor loadings that was found using random e�ect estimates and con�rmed by

average e�ect estimates. From an econometric perspective, this is attributable with no doubt to

the very di�erent asymptotic behaviour of the two factors, one being a linear trend and the other

being geometric. In economic terms, it means that the larger the slope of the pro�le, the larger

the curvature. Second, points in orange (or light) referring to individuals for which the number

of observed periods are few (less than 20) are more scattered than the blue (or dark) points

which refer to more continuously observed individuals. Finally, constraints are represented by

the triangle in red (or dark). This Figure makes clear that checking these constraints is very

sensitive to two key elements. The �rst one is the relative position of the origin point (0,0) with

respect to the earnings group averages described in Section 6.2.20 This is the object of robustness

checks below. Second, the πT parameter which determines the slope of the bottom-left side of

the triangle.

More formally, Tables 7 and 8 report frequencies of restriction violations using previous

estimates and the same presentation regarding the number of observed periods. In Table 7, we

report the sample frequency of rejections at level 5% of each of the three single restrictions using

a standard one sided t-test. Should restrictions hold true in the sample, we would expect the

rejection frequency to be around 5%, i.e. the level of the test. This frequency tends to decrease

with the number of observed periods (at least in the �rst two columns) and this may be partly

due to the quality of the normal asymptotic approximation that we use for testing.

Concentrating on the two groups for which the number of observed periods belongs to (22,26]

and (26,28], we see that the restriction that the random growth parameter, ηi2, is non negative

is plausible.

The second restriction that the the curvature parameter, ηi3, is non positive is less acceptable

since the rejection rate rises up to 10% in the group (26,28]. The last restriction involving both

parameters is even less acceptable, with a rejection rate of 18% in the group (26,28]. This

restriction is related to the assumption that investments are positive until period T . This means

that some people stop investing before the end of the period of observation and this agrees with

hours of formal learning decreasing with age as emphasized by Mincer (1997).

Table 8 reports testing the three restrictions globally. Following what was developed in Sec-

20These restrictions are only partially ful�lled by the point estimates of group averaged coe�cients. If η̄g2 is
positive for every group, and η̄g3 is negative for every group but one, the ratio η̄g3/η̄g2 should be greater than
−πT , equal here to 4.08 since β = 0.95 and T = 30. This last constraint is veri�ed for only 9 groups that account
for 2/3 of the sample.
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tion 5.4.1 and further explained in Appendix A.III.3, we use the quasi likelihood ratio (QLR)

statistic associated to the global restriction. P-values are obtained by simulation in the distri-

bution of the statistic under the null (Silvapulle and Sen, 2005). Table 8 reports the sampling

frequency of rejections using three di�erent levels (0.01, 0.05 and 0.10).21 Overall, these results

are slightly less favourable for the speci�cation that we use and the frequency of rejections is

far larger than the level, in particular in the incomplete group (Ni ∈ (22, 26]) and when the

level is small (0.01, 0.05). There seems to exist a "tail" of individuals for whom we reject these

restrictions and who would roughly account for 10% of the sample.

6.5 Structural parameter estimates

To estimate structural parameters, we adopt the simulation strategy under constraints described

in subsection 5.4 and more precisely in section A.III.4 of the supplementary appendix. Quan-

tiles of the simulated constrained estimates are presented in Table A.viii of the supplementary

appendix which mirrors Table 5 which presents quantiles of the unconstrained estimates. Since

restrictions apply to η2 and η3 only, it is their distributions which are primarily a�ected and

quantiles of simulated constrained estimates are much less dispersed.

Table 9 presents the estimated quantiles of the structural parameters κi, ρ
L
i and cLi based on

the simulated constrained estimates of ηi. Recall that the true structural parameters ρi and ci

are not separately identi�ed and ρLi and cLi are lower bounds (Proposition 4). Quantiles di�er

according to the number of observed periods. The larger the number of periods of observation is,

the smaller most quantiles of the terminal value of investment κi, and the larger most quantiles of

the lower rate of return ρLi and of the lower cost of investment cLi . If the distribution of κi seems

to be symmetric, this is not the case of cLi and ρLi which are characterized by thick tails on the

right of their distributions. For individuals with the largest number of observation periods, the

terminal value of investments range from the 5th percentile 1.4 to the 95th 13.9. The distribution

of κi is by construction bounded between 0 and 1/(1−β) = 20 (Proposition 4). Furthermore, we

can invert the relationship κi = 1/(1−β(T )
i ) to construct the implicit individual speci�c discount

rates β
(T )
i to which those estimates of κi correspond. The 5th (respectively 95th) percentile is

0.28 (resp. 0.93).

The restriction that human capital investments are non negative until the last period of

observation is βρiκi > 1 (Proposition 1). This constraint is used to estimate the minimal value

21Because these computations are numerically intensive, the number of simulations in assessing standard errors
due to parameter uncertainty is smaller than previously (see notes to Tables).
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of ρLi , i.e. 1/(βκi).
22 For the set with the highest number of periods of observation, between 26

and 28, 90% of individuals have ρLi standing between 0.0866 and 6.83. This range is extremely

broad with respect to the consequences it may have on the earnings pro�les. To illustrate this,

considering the values of the other parameters at their medians, a change of ρ from 0.3 to 0.4

multiplies by 1.9 the log human capital level accumulated by the individual. Clearly, this large

range of values can be compatible with the data only if the other structural parameters are very

correlated with each other, which is by construction the case of ρLi and cLi . What it shows is

that a key issue would be the identi�cation of the date at which human capital accumulation

stops. This information would allow the separate identi�cation of ρi and ci.

Figure 7 reports the graphs of the life-cycle pro�le of variance earnings using simulated

estimates. The concavity pattern is somewhat more pronounced when we use these estimates

than when we use the unconstrained �xed e�ect estimates as in Figure 5. The trough of the

pro�le due to permanent e�ects (the Mincer "dip") is happening later in the life cycle (t = 12)

in this Figure with respect to t = 9 using the unconstrained e�ect speci�cation.

6.6 Robustness and other diagnostics

We review here various departures from our baseline estimates too check that our results are

robust. We also comment on additional goodness-of-�t diagnostics.

The �rst and foremost issue is the validity of the identifying restriction (18) that commands

the test of structural restrictions and the estimation of structural estimates. The relative posi-

tioning of the origin point in Figure 6 is sensitive to this restriction. We �rst use a simpli�ed

��at spot� approach proposed by Heckman, et al. (1998) and developed by Bowlus and Robin-

son (2012). Details of the estimation of a single series of human capital prices are presented in

the supplementary Appendix A.IV.8. In a nutshell, human capital prices are estimated using

a population of older males whose potential experience ranges from 25 to 40 as in Bowlus and

Robinson (2012). Those prices are used to de�ate real earnings and the di�erent procedures

of testing and estimation are replicated. Results are provided in the supplementary Appendix

A.IV.8 and change only marginally with respect to the results that were presented above.

More radically, the dynamics of human capital accumulation depends on whether the average

earnings or productivity pro�le is attributed to human capital only or to other factors (physical

22From this relationship one might expect a one to one mapping between quantiles of κi and ρ
L
i . This is not

the case because the relationship is not linear and estimates used in Table 9 are constructed as averages of 20
Monte-Carlo simulations (see Section 5.4.2).
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capital for instance). To control for this issue, we also repeated our procedures by de�ating real

earnings by a series of average labor productivity. It is a more extreme experiment than the one

using the �at spot condition above, yet our results remain qualitatively similar.

Another issue is related to the bias in the �xed e�ect estimates that we reported. Table A.vi

in the supplementary Appendix reports the statistics using bias corrected estimates. First, bias-

correction at the �rst order does not seem su�ciently precise to correct the bias for individuals

which are observed less than 22 periods. Bias correction works much better for the other ob-

servations with a tendency to overcorrect in the group of individuals observed more than 26

periods. Overall, this approach does not qualitatively change our results.

Finally, we also attempted to use our model to assess its predictive power for the non linear

dynamics of earnings. It is well known that linear methods as the ones we are using are poor

when estimating transition matrices (e.g. Hirano, 2002). We report in Tables A.ix and A.x

in the supplementary Appendix two estimated transition matrices across quintiles (i.e. 20%

percentile groups) at 15 year intervals. As expected non linear predictions using unconstrained

or simulated constrained estimates are not as good as linear predictions, speci�cally in the �rst

sample period (from t = 1 to t = 15). The predictions are good in the middle quintiles but

under or over-predict in the bottom and top quintiles. Predictions are much better for the second

sample period (from t = 16 to t = 31). This is certainly because the transitory components are

much less important in that period and because the permanent components or factor loadings

are estimated without imposing that they are normally distributed as in the usual earnings

dynamics set-up.

7 Life cycle inequalities and a counterfactual experiment

Table 10 provides a decomposition of the cross-sectional inequality into permanent and transitory

components. The �rst column reports the variance of logs earnings every �ve years from 1977

to 2007 and the average variance over the sample period. The second column reports the share

of the variance due to permanent factors and the third, the share due to transitory components.

Permanent and transitory components are not orthogonal because of initial conditions. To

make them orthogonal, initial conditions are �rst projected onto permanent components and

this projection is aggregated to permanent components and the residuals to the transitory ones.

We here report results obtained by random e�ects since results obtained by �xed e�ects or

constrained �xed e�ects are very similar. This is because �xed and random e�ect estimates of
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the variance pro�le are similar (e.g. Figure 7).

Firstly, on average, 65% of the variance is due to permanent factors. This magnitude is close

to the one found by Huggett, Ventura and Yaron (2011), who �nd that the initial endowments

related to human capital (initial human capital, learning ability and initial wealth) account for

60% of the variance of lifetime earnings. This share displays a sharp increase over the life cycle

from 3% at entry on the labor market to 89% thirty years later. During the �rst years of the

working life, the transitory component is the main contribution to the variance of earnings (see

Figure 2).

The very low contribution of the permanent component in the early stage of the working life

is partly related to our treatment of initial conditions. Initial conditions are negatively correlated

to η1 and η3, which are the e�ects that play an important role during the �rst years of the working

life (Table A.iv of the supplementary appendix). As a consequence, these negative correlations

lower the contribution of the permanent component to the variance of earnings as computed

by the procedure above. The variance of earnings computed from �xed e�ects only without

controlling for initial conditions would be equal to 0.06 a ten times increase and the permanent

components would now account for 30% of the variance at the beginning of the working life. As

both constructions are valid, it is fair to say that the uncertainty of the permanent component

contribution is rather large at the beginning of the working life (3 to 30%). Those remarks do not

apply at the other end of the pro�le since the in�uence of initial conditions becomes negligible.

The counterfactual exercise of prolonging life expectancy is easily implemented. Life ex-

pectancy is increased by two years (K = 2) and we use the simulated structural estimates as

derived in Section 5.5 to compute those counterfactuals. Nonetheless, this counterfactual is only

partially identi�ed because the rate of return is only partially identi�ed. We �rst set the indi-

vidual speci�c rate of return to the minimal estimated value and check the robustness of results

by using larger and larger rates of return by multiplying them by �xed values. We report results

for the minimal value and not the robustness checks that show that these estimates are quite

robust to changes in the assumptions about ρ.23 In Figure 8, the top panel reports the e�ect

on mean earnings for those individuals who are observed more than 22 periods. Mean earnings

increase and the more so the closer we are to the end of the observation period. This change has

also an impact on the pro�le of earnings variance reported in Figure 8, bottom panel. Variances

are increasing in particular at the end of the period. Because rates of return are heterogenous, a

23More rigorously, the true identi�ed set would be obtained by making the parameters controlling partial
identi�cation individual speci�c. Analyzing results in this case is left for future research.
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larger life expectancy magni�es individual di�erences in earnings and this implies more earnings

inequalities. In the last period, this increases cross-section inequality by 20% although this �gure

is imprecise because standard errors are quite large.

The construction of counterfactuals for the human capital technology is more speculative.

Since only a lower bound for rates of returns can be identi�ed, experiments for constructing coun-

terfactuals leads to very large bounds. It is thus fair to say that those speci�c counterfactuals are

not identi�ed. As mentioned earlier, one possible route would be to use parametric assumptions

for structural parameters in order to identify rates of return and consequently counterfactuals

involving those rates.

8 Conclusion

In this paper, we proposed a structural model of human capital investments that predicts that

a linear factor model describes well the earnings pro�le over the working life and that its un-

observed individual factor loadings have an economic interpretation. Using a long panel on a

single cohort of private sector wage earners in France from 1977 to 2007, we used random e�ect

and �xed e�ect methods to estimate factor loadings and assess the relevance, the bias and the

accuracy of these estimates. This procedure enabled us to evaluate the relevance of structural

restrictions and to construct estimates of structural individual components in the original model

which are returns, costs and terminal values of human capital stocks. This let us compute richer

counterfactuals than the ones that are directly available using random e�ect procedures. We also

showed the importance of dealing properly with initial conditions at entry in the labor market.

Random e�ect estimation delivers empirical results which are close to what has been obtained

in the literature and are easily interpretable in a human capital framework. Fixed e�ect esti-

mation evinces that structural restrictions are not rejected for most of our sample observations.

It remains to be seen if this is because of the low power of our testing procedure as in Baker

(1997) in which heterogenous growth and RIP models are hard to discriminate. Regarding em-

pirical results, a simple counterfactual analysis showed that increasing life expectancy has quite

a large e�ect on earnings inequality even if this result is obtained in a partial analysis in which

initial human capital investments are held constant. It seems dubious to us that making those

initial investments vary as well in the counterfactual scenario would overturn our conclusion

that inequality increases with increasing life expectancy, as individual speci�c rates of returns

to schooling and post-schooling are strongly correlated.
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There are many extensions worth exploring that we are leaving for future research. First,

human capital investment pro�les vary across di�erent education groups. In particular, a pending

conjecture would be that investments by the low skill group stop much earlier than those by the

high skill group. Second, this model is versatile enough to accommodate consumption smoothing

in the case in which consumption and income data are available. Estimating the general model

under these conditions might help further understanding the role that human capital investments

play in welfare inequalities. Third, goodness-of-�t measures seem to point out that the missing

at random assumption might be invalid. Analyzing this condition using complete and incomplete

samples might lead to a better correction of selection and small sample biases although this is

a project on its own. Another theoretical issue in econometric modeling is the analysis of a

mixture of the heterogeneous growth and restricted income processes in the speci�cation of the

earnings equation and speci�cally involve looking at identi�cation issues.
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APPENDICES

A Proofs of Propositions and Extensions

A.1 Proof of Proposition 1

The �rst order condition of the maximization problem for t < T + 1 is

− (1 + ciτi(t)) + βiρiHi(t+ 1)Et

[
∂Wt+1

∂Hi(t+ 1)

]
= 0. (A.1)

The marginal value of human capital is the derivative of the Bellman equation so that by the

envelope theorem:
∂Wt

∂Hi(t)
=

1

Hi(t)
+ βiEt

[
∂Wt+1

∂Hi(t+ 1)

]
Hi(t+ 1)

Hi(t)
(A.2)

For t = T + 1, condition (A.2) writes more simply as:

∂WT+1

∂Hi(T + 1)
=

κi
Hi(T + 1)

=⇒ Hi(T + 1)
∂WT+1

∂Hi(T + 1)
= κi,

so that, by backward induction, we obtain:

Hi(T )
∂WT

∂Hi(T )
= 1 + βiκi, Hi(T − 1)

∂WT−1

∂Hi(T − 1)
= 1 + βi(1 + βiκi)

and so on. This yields:

Hi(t+ 1)
∂Wt+1

∂Hi(t+ 1)
=

1− βT−ti

1− βi
+ βT−ti κi.

Replacing in equation (A.1) yields:

(1 + ciτi(t)) = βiρi

[
1

1− βi
+ βT−ti (κi −

1

1− βi
)

]
= ρi

[
βi

1− βi
+ βT+1−t

i (κi −
1

1− βi
)

]
,

and equation (7) follows. Furthermore, as the second term in (A.1) is constant, the second order

condition is satis�ed if and only if ci > 0.

Furthermore and given that ci > 0, the condition that investments are always positive yields:

ρi

[
βi

1− βi
+ βT+1−t

i (κi −
1

1− βi
)

]
− 1 ≥ 0. ∀t < T + 1

As κi− 1
1−βi < 0 and βi < 1, τi(t) is decreasing in t because of the term β−ti and the RHS attains

its minimum at t = T . This yields condition (6) since:

ρi

[
βi

1− βi
+ βi(κi −

1

1− βi
)

]
− 1 ≥ 0⇐⇒ ρi ≥

1

βiκi
.
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A.2 Proof of Proposition 2

First, condition (8) is consistent since κit = 1 + βiκi,t+1 > κi,t+1 ⇔ κi,t+1 <
1

1−βi ⇔ κi,t+2 <
1

1−βi
and by repetition κi,T+1−1 = κi <

1
1−βi .

We proceed by backward induction. By Proposition 1, we know that

τi(T ) > 0⇐⇒ 1

κi,T+1−1

< βiρi ≤
1

κi,T+1

,

and under this latter condition, that equation (7) is satis�ed for all t+ 1 ≤ T .

Assume that for some t+ 1 ≤ T :

∀t′ ≥ t+ 2, t′ < T + 1, τi(t
′) = 0, and τi(t+ 1) > 0⇐⇒ 1

κi,t+1

< βiρi ≤
1

κi,t+2

(A.3)

and under this latter condition, that equation (7) is satis�ed for all t′ ≤ t + 1. In a proof of

Proposition 2 by backward induction, we thus shall prove that condition (A.3) is true at period

t.

We analyze separately the condition τi(t
′) = 0,∀t′ ≥ t+ 1 and the condition τi(t) > 0.

Assume �rst that τi(t
′) = 0,∀t′ ≥ t + 1 so that the condition τi(t

′) > 0 is violated for any

t′ ≥ t + 1 and therefore by equation (A.3), βiρi ≤ 1/κi,t+1. Conversely, if βiρi ≤ 1/κi,t+1 then

τi(t
′) = 0, ∀t′ ≥ t + 1 because equation (A.3) is satis�ed for t′ ≥ t + 1 Furthermore, conditions

τi(t
′) = 0 implies simple forms for the Bellman equation (3):

Wt(Hi(t
′)) = δi(t

′) + logHi(t
′) + βEt′Wt′+1(Hi(t

′ + 1)),

and the accumulation equation (1):

logHi(t
′ + 1) = logHi(t

′)− λi(t′).

Using equation (4) where we set κi,T+1−1 = κi and the linearity of the previous two equations

lead to the condition derived by induction again:

Wt′(Hi(t
′)) = δ∗(t′) + κi,t′−1 logHi(t

′). (A.4)

for any t′ ≥ t+ 1 and where κit = 1 + βiκi,t+1.

Second, assume that τi(t) > 0. Proposition 1 can be recast in a set-up where the last period

becomes Ti = t + 1 instead of T + 1 since there are no further human capital investments after

this date and since the value function can be written as in equation (A.4) evaluated at t′ = t+1.

We rewrite equation (7) and obtain:

τi(t) =
1

ci

{
ρi

[
βi

1− βi
+ βi

(
κit −

1

1− βi

)]
− 1

}
> 0, (A.5)

which is equivalent to βiρi >
1
κit
.

Therefore the equivalence stated in the Proposition is true at period t. Furthermore equation

(7) applies for any t′ ≤ t. The statement under induction is therefore true at any date t ∈
{0, ., T}. By convention we set 1

κi0
= 0 in order to cover all cases since ρi > 0.�
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A.3 The Model with Consumption Smoothing

Proposition A.1 Under conditions stated in the proof and denoting si(t) = yi(t)−Ci(t)
yi(t)

, the sav-

ing rate, we have:

τi(t) =
1

ci

{
ρi

[
βi

1− βi
+ βT+1−t

i (κi −
1

1− βi
)

]
− 1

1− si(t)

}
.

Proof. Assume that consumption can be smoothed over time. The new dynamic program is

written as:

max
Ci(t),τi(t)

[
log(Ci(t))− cτi(t)2/2 + βiEtWt+1(Ai(t+ 1), Hi(t+ 1))

]
under the constraints:

Ai(t+ 1) = (1 + ri(t))Ai(t) + yi(t)− Ci(t),

yi(t) = exp (δi(t))Hi(t) exp (−τi(t)) ,

Hi(t+ 1) = Hi(t) exp (ρiτi(t)− λi(t)) .

The �rst order conditions write:

1

Ci(t)
− βiEt

∂Wt+1 (Ai(t+ 1), Hi(t+ 1))

∂Ai(t+ 1)
= 0,

− ciτi(t) + βiEt
∂Wt+1 (Ai(t+ 1), Hi(t+ 1))

∂Ai(t+ 1)
[−yi(t)]

+βiEt
∂Wt+1 (Ai(t+ 1), Hi(t+ 1))

∂Hi(t+ 1)
ρHi(t+ 1) = 0,

in which the second term comes from

∂Ai(t+ 1)

∂τi(t)
=
∂Ai(t+ 1)

∂yi(t)

∂yi(t)

∂τi(t)
= −yi(t).

Replacing the �rst in the second �rst order conditions yields:

ciτi(t) +
yi(t)

Ci(t)
= βEt

∂Wt+1 (Ai(t+ 1), Hi(t+ 1)))

∂Hi(t+ 1)
ρHi(t+ 1).

If yi(t) = Ci(t), this is condition (A.1). Note that yi(t)
Ci(t)

= 1
1−si(t) in which si(t) is the savings

rate.

We thus have to replace equation (A.5) in the above Section A.2 by:

τi(t) =
1

ci

{
ρi

[
βi

1− βi
+ βi

(
κi −

1

1− βi

)]
− 1

1− si(t)

}
> 0.
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A.4 Proof of Proposition 3

First, the stock of human capital in period t depends on previous investment choices and past

depreciation that is

Hi(t) = Hi(1) exp

[
t−1∑
l=1

ρiτi(l)−
t−1∑
l=1

λi(l)

]
for 2 ≤ t.

We can write the logarithm of observed earnings in period t as

ln yi(t) = δi(t) + lnHi(1) +
t−1∑
l=1

ρiτi(l)−
t−1∑
l=1

λi(l)− τi(t). (A.6)

If t ≤ Ti, insert the structural expression for τi(·) given by the equation (9) of proposition 2

into the �rst sum of equation (A.6) to get:

t−1∑
l=1

ρiτi(l) =
ρ2
i

ci

t−1∑
l=1

[
βi

1− βi
+ βTi+1−l

i (κi −
1

1− βi
)

]
− ρi
ci

(t− 1),

=
ρ2
i

ci

βi
1− βi

(t− 1) +
ρ2
i

ci
(κi −

1

1− βi
)βTii

t−1∑
l=1

β1−l
i − ρi

ci
(t− 1)

=

(
ρ2
i

ci

βi
1− βi

− ρi
ci

)
(t− 1) +

ρ2
i

ci
(κi −

1

1− βi
)βTii

1− (1/βi)
t−1

1− 1/βi

= −ρ
2
i

ci
(κi −

1

1− βi
)
βTi+1
i

1− βi
+

(
ρ2
i

ci

βi
1− βi

− ρi
ci

)
(t− 1)

+
ρ2
i

ci
(κi −

1

1− βi
)
βTi+2
i

1− βi
β−ti ,

which writes as the sum of three factors whereas one factor is in levels, the second one is a linear

trend and the last one is a geometric trend.

Using equation (9):

τi(t) =
1

ci

(
ρi

βi
1− βi

− 1

)
+
ρi
ci
βT̃i+1
i (κi −

1

1− βi
)β−ti

and rearranging expression (A.6), we obtain equation (10).

If t > Ti, which in our setting can only apply if Ti < T , the sequence of investment from the

period Ti on have been nil. Hence,

Hi(t) = Hi(1) exp

(
Ti∑
l=1

ρiτi(l)−
t−1∑
l=1

λi(l)

)

= Hi(1) exp

(
(

Ti∑
l=1

ρiτi(l)− λi(l)−
t−1∑

l=Ti+1

λi(l)

)
= Hi (Ti + 1) exp (−Λi(t) + Λi(Ti + 1))
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Finally,

ln yi(t) = lnHi (Ti + 1) + Λi(Ti + 1) + δi(t)− Λi(t)

= ln yi (Ti + 1) + vit − viTi+1

which corresponds to equation (11). �

A.5 Proof of Proposition 4

The two equations (13) and (14) simplify to: ηi2 = ρi
ci

(
ρi

β
1−β − 1

)
,

ηi3 = ρi
ci
βT+1(κi − 1

1−β )
(
ρi

β
1−β − 1

)
.

(A.7)

Taking the ratio of the second and the �rst equation yields:

ηi3
ηi2

= βT+1(κi −
1

1− β
)

we derive the restriction from κi ∈ [0, 1
1−β ] that:

ηi3
ηi2
∈ [− β

T+1

1− β
, 0]. (A.8)

Conversely, if this restriction is valid, then κi is given by:

κi =
1

1− β
+ β−(T+1)ηi3

ηi2
∈ (0,

1

1− β
).

Furthermore, Proposition 1 proved that investments remain positive until period T (inclusively)

if and only if βρiκi > 1. This yields that :

ρi > ρLi =
1

βκi
=

1
1

1−β + βT+1 ηi3
ηi2

> 0,

by the above. The �rst equation of (A.7):

ηi2 =
ρi
ci

(
ρi

β

1− β
− 1

)
=

ρi
ciκi

(
ρiβκi
1− β

− κi
)
,

also implies that, given that all parameters are positive that

ηi2 >
ρi
ciκi

(
1

1− β
− κi

)
> 0.

Conversely, assume that ηi2 > 0 and ρi > ρLi . By construction, the condition βρiκi > 1 is satis�ed

and investments are positive until T. Second, de�ne

ci =
ρi
η2i

(
ρi

β

1− β
− 1

)
,
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and write
∂ci
∂ρi

=
1

η2i

(
2ρi

β

1− β
− 1

)
which is positive since ρi

β
1−β > 1 because βρiκi > 1 and κi ≤ 1

1−β . Both expressions prove that

c(ρi, η2i) =
ρi
η2i

(
ρi

β

1− β
− 1

)
is positive and increasing in ρi. Therefore ci ≥ cL = c(ρL, η2i).�

B Random e�ect speci�cation

Rede�ning the time index accordingly, we shall assume that initial conditions of the process

(ui(1−p), ., ui0) are observed. The dynamic process is thus a function of the random variables

zi = (vi(1−p), ., vi0, ζi(1−q), ., ζiT ) which collect initial conditions of the autoregressive process

(vi(1−p), ., vi0), initial conditions of the moving average process (ζi(1−q), ., ζi0) and the idiosyn-

cratic shocks a�ecting random shocks between 1 and T . We write the quasi-likelihood of the

sample using a multivariate normal distribution

zi  N(0,Ωz)

We de�ne vit as

vit = α1vi(t−1) + ...+ αpvi(t−p) + σtwit,

where wit is MA(q):

wit = ζit − ψ1ζit−1 − ...− ψqζit−q.

The construction of the structure of Ωz is detailed in the Supplementary Appendix A.II (Magnac

et al, 2014) although it can be summarized easily. The correlations between initial conditions

and individual e�ects are not constrained, while innovations ζit are assumed orthogonal to any

previous terms including initial conditions. However, the initial conditions (vi(1−p), ., vi0) can be

correlated with previous shocks as ζi0, ., ζi(1−q).

As for the individual e�ects (ηci1, η
c
i2, η

c
i3) we assume that they are independent of the id-

iosyncratic shocks ζi(1−q), ., ζiT while they can be correlated with the initial conditions of the

autoregressive process (vi(1−p), ., vi0) in an unrestricted way. From these restrictions it is possible

to build the covariance matrix of the observed variables

V ui = (ui(1−p), ., ui0, ui1, ., uiT ) ≡ Ωu.

This covariance matrix, Ωu, is a function of the parameters of the model that are the autoregres-

sive parameters {αk}k=1,...,p, the moving average parameters {ψk}k=1,...,q, the covariance matrix

(conditional on groups) of ηc, Ση, the heteroskedastic components {σt}t=1,...,T and the covariance

of �xed e�ects and initial conditions, Γ0η (see Supplementary Appendix A.II).
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A pseudo likelihood interpretation can always be given to this speci�cation. As in Alvarez

and Arellano (2004), the estimates remain consistent under the much weaker assumption that:

E(ζit | ηi, ut−1
i ) = 0,

although optimality properties of such an estimation method are derived under the normality

assumptions only.
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Table 1: Sample size

Age of Entry in 1977
Below 20 Between 20 and 23 Above 23 All

1977 4460 2112 874 7446
1978 4460 2112 874 7446
1979 3855 1923 787 6565
1980 3748 1930 785 6463
1982 4460 2112 874 7446
1984 4460 2112 874 7446
1985 3792 1808 724 6324
1986 3683 1800 726 6209
1987 3569 1741 678 5988
1988 3402 1654 637 5693
1989 3486 1657 644 5787
1991 3319 1598 613 5530
1992 3299 1581 603 5483
1993 3330 1620 627 5577
1994 2508 1316 503 4327
1995 3256 1566 578 5400
1996 3236 1557 579 5372
1997 3202 1529 556 5287
1998 3208 1521 543 5272
1999 3218 1503 547 5268
2000 3180 1506 536 5222
2001 3117 1480 517 5114
2002 3018 1463 511 4992
2003 2800 1323 467 4590
2004 2844 1387 463 4694
2005 2851 1399 467 4717
2006 2896 1382 442 4720
2007 2864 1377 429 4670
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Table 2: Autocorrelation matrix of earnings residuals

1978 1979 1980 1982 1984 1985 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

1977 .438

1978 .280 .424

1979 .241 .367 .563

1980 .211 .343 .478 .539

1982 .223 .326 .439 .499 .733

1984 .221 .306 .401 .411 .665 .814

1985 .216 .301 .368 .430 .643 .785 .807

1986 .161 .266 .386 .441 .634 .767 .772 .853

1987 .156 .260 .401 .459 .634 .756 .744 .809 .871

1988 .134 .254 .368 .421 .617 .733 .730 .776 .830 .874

1989 .135 .239 .321 .383 .557 .682 .681 .726 .790 .824 .857

1991 .145 .221 .334 .370 .577 .685 .679 .721 .765 .798 .821 .887

1992 .134 .193 .306 .333 .515 .619 .619 .667 .724 .738 .762 .831 .854

1993 .111 .179 .274 .314 .482 .607 .606 .644 .695 .709 .723 .810 .803 .823

1994 .102 .183 .280 .330 .480 .590 .580 .632 .696 .711 .735 .809 .815 .810 .792

1995 .109 .197 .289 .319 .491 .589 .582 .624 .686 .711 .746 .802 .815 .804 .795 .836

1996 .128 .192 .305 .315 .497 .623 .623 .653 .720 .741 .764 .826 .839 .827 .816 .854 .878

1997 .129 .198 .308 .336 .507 .625 .614 .656 .716 .737 .761 .828 .842 .833 .816 .862 .883 .932

1998 .108 .194 .294 .316 .496 .618 .610 .651 .707 .735 .756 .819 .835 .813 .797 .838 .859 .904 .939

1999 .117 .160 .294 .291 .478 .600 .594 .638 .689 .714 .730 .791 .815 .799 .784 .812 .837 .881 .908 .904

2000 .124 .179 .293 .310 .501 .619 .613 .635 .696 .715 .741 .808 .822 .802 .795 .820 .830 .885 .919 .913 .908

2001 .122 .180 .294 .296 .463 .588 .591 .616 .656 .685 .707 .776 .787 .767 .751 .779 .798 .855 .884 .880 .874 .912

2002 .122 .179 .257 .261 .415 .543 .558 .568 .577 .605 .622 .695 .720 .694 .697 .716 .720 .785 .810 .811 .811 .844 .875

2003 .128 .168 .291 .299 .469 .589 .585 .616 .669 .697 .715 .780 .794 .770 .763 .787 .799 .858 .887 .883 .877 .916 .914 .862

2004 .108 .170 .289 .296 .462 .593 .584 .610 .666 .691 .707 .773 .784 .763 .757 .781 .792 .849 .876 .877 .873 .905 .903 .854 .950

2005 .103 .155 .291 .287 .470 .595 .587 .619 .671 .698 .709 .776 .794 .771 .770 .790 .800 .853 .878 .878 .875 .903 .901 .857 .942 .957

2006 .106 .157 .286 .279 .449 .572 .558 .591 .638 .670 .677 .738 .754 .745 .732 .757 .770 .819 .840 .845 .841 .872 .874 .828 .909 .931 .952

Note: In each cell, the correlation is computed using the individuals who are in the data both relevant years. Table A.i of the supplementary appendix presents
the number of contributing individuals in each cell.



Table 3: Estimated standard errors and correlations of individual e�ects ηci : Random e�ect
estimation

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
ση1 .302 .302 .301 .310 .306 .304 .306 .300 .298

( .001) ( .003) ( .003) ( .003) ( .003) ( .003) (.003) ( .003) ( .004)
ση2 .038 .039 .039 .038 .039 .036 .038 .037 .037

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
ση3 .255 .259 .256 .263 .260 .248 .258 .247 .242

( .005) ( .006) ( .006) ( .004) ( .005) ( .005) (.005) ( .006) ( .007)
ρη1,η2 .473 .413 .454 .571 .486 .610 .505 .485 .365

( .016) ( .021) .021 ( .013) ( .017) ( .013) ( .017) ( .020) ( .030)
ρη1,η3 - .604 - .548 - .586 - .694 - .618 - .729 - .636 - .620 - .509

( .003) ( .020) .019 ( .011) ( .015) ( .012) ( .016) ( .019) ( .029)
ρη2,η3 - .946 - .948 - .947 - .945 - .946 - .941 - .946 - .943 - .944

( .023) ( .003) .003 ( .002) ( .002) ( .003) ( .002) ( .003) ( .004)

Note: The �rst line corresponds to the ARMA speci�cation (AR-MA) used for the random e�ect estimation.

Standard errors in parentheses.
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Table 4: Group averages of individual factor loadings ηg

Skill group Age group Nb Obs ηg1 ηg2 ηg3
2 17 1268 2.4 0.04 -0.15

(0.032) (0.0067) (0.051)
3 17 1224 2.4 0.039 -0.15

(0.039) (0.0056) (0.04)
1 19 41 2.7 0.07 -0.33

(0.038) (0.0057) (0.042)
2 19 934 2.6 0.044 -0.17

(0.035) (0.0046) (0.034)
3 19 994 2.5 0.042 -0.17

(0.04) (0.007) (0.051)
1 21 117 2.9 0.052 -0.22

(0.086) (0.0085) (0.068)
2 21 710 2.7 0.047 -0.2

(0.014) (0.0024) (0.018)
3 21 512 2.6 0.041 -0.19

(0.015) (0.0026) (0.019)
1 23 171 3.1 0.055 -0.24

(0.018) (0.0036) (0.027)
2 23 348 2.7 0.05 -0.21

(0.026) (0.0037) (0.028)
3 23 254 2.7 0.051 -0.25

(0.046) (0.0053) (0.04)
1 25 191 3.3 0.061 -0.29

(0.056) (0.0066) (0.05)
2 25 146 2.8 0.038 -0.14

(0.059) (0.0065) (0.046)
3 25 93 2.6 0.033 -0.09

(0.018) (0.0031) (0.024)
1 27 114 3.4 0.047 -0.21

(0.019) (0.0045) (0.034)
2 27 87 3 0.061 -0.32

(0.02) (0.0034) (0.025)
3 27 63 2.7 0.03 -0.079

(0.036) (0.005) (0.039)
1 29 58 3.2 0.041 -0.14

(0.052) (0.0058) (0.041)
2 29 67 2.8 0.038 -0.2

(0.084) (0.013) (0.11)
3 29 55 2.6 0.017 0.0061

(0.048) (0.0074) (0.059)

Note: Estimation of equation (17). Standard errors in parentheses.

55



Table 5: Quantiles of individual e�ects ηi: unconstrained estimates

Individual Sample Quantiles
e�ects periods 0.05 0.2 0.35 0.5 0.65 0.8 0.95

(3,15] -2.97 0.483 1.74 2.43 3.04 4.31 8.14
(2.33) (0.591) (0.191) (0.057) (0.135) (0.485) (1.98)

(15,22] 1.52 2.11 2.32 2.51 2.7 3 3.8
η1 (0.0703) (0.0237) (0.0195) (0.0226) (0.0211) (0.0314) (0.0527)

(22,26] 2 2.25 2.39 2.52 2.67 2.87 3.46
(0.0232) (0.019) (0.0165) (0.0162) (0.0179) (0.021) (0.0346)

(26,28] 2.13 2.35 2.47 2.58 2.7 2.86 3.26
(0.0245) (0.0164) (0.015) (0.0138) (0.014) (0.0153) (0.0318)

(3,15] -0.435 -0.162 -0.0538 0.0203 0.0937 0.205 0.539
(0.176) (0.0471) (0.0178) (0.00933) (0.0132) (0.042) (0.152)

(15,22] -0.124 -0.032 0.00555 0.033 0.0601 0.0973 0.194
η2 (0.00967) (0.00434) (0.00318) (0.00315) (0.00329) (0.0042) (0.00963)

(22,26] -0.0471 -0.00103 0.0203 0.0388 0.0567 0.0834 0.141
(0.00394) (0.00265) (0.00246) (0.00218) (0.00247) (0.00271) (0.00558)

(26,28] -0.0218 0.00914 0.0254 0.0383 0.0526 0.073 0.114
(0.00327) (0.0022) (0.00215) (0.00207) (0.00217) (0.00252) (0.00414)

(3,15] -6.27 -2.14 -0.706 -0.00853 0.751 2.24 5.71
(2.14) (0.578) (0.15) (0.0869) (0.207) (0.698) (2.51)

(15,22] -1.44 -0.622 -0.324 -0.125 0.0874 0.395 1.29
η3 (0.0845) (0.0337) (0.0255) (0.0224) (0.0286) (0.0316) (0.12)

(22,26] -0.907 -0.443 -0.275 -0.142 -0.024 0.131 0.445
(0.0474) (0.0194) (0.017) (0.0175) (0.0174) (0.0173) (0.0339)

(26,28] -0.632 -0.36 -0.242 -0.147 -0.0542 0.0559 0.269
(0.0238) (0.0166) (0.0141) (0.0139) (0.0149) (0.0164) (0.0268)

Note: Sample period: Number of observed periods. Standard errors (sampling and parameter uncertainty, 1000 MC simulations) in brackets.



Table 6: Covariance matrix of centered individual e�ects: �xed and random e�ect estimation

Sample periods V ar(ηc1) Cov(ηc1, η
c
2) Cov(ηc1, η

c
3) V ar(ηc2) Cov(ηc2, η

c
3) V ar(ηc3)

(3,15] 11 0.93 -12 0.093 -1.1 14
(16) (1.3) (18) (0.1) (1.4) (19)

(15,22] 0.5 0.057 -0.57 0.01 -0.09 0.83
(0.08) (0.01) (0.11) (0.0016) (0.015) (0.15)

(22,26] 0.14 0.011 -0.099 0.0038 -0.027 0.2
(0.0073) (0.0011) (0.0091) (0.00032) (0.0024) (0.018)

(26,28] 0.076 0.0043 -0.038 0.002 -0.013 0.09
(0.0039) (0.00058) (0.0041) (0.00015) (0.00098) (0.0067)

Complete sample 2.6 0.22 -2.8 0.024 -0.27 3.3
(3.5) (0.28) (3.8) (0.023) (0.31) (4.2)

Random e�ects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066
(0.0036) (0.00051) (0.004) (0.00011) (0.00079) (0.0059)

Notes: The �rst four lines are obtained using �xed e�ect estimates. Sample periods = number of observed

periods. Standard errors (sampling and parameter uncertainty, 1000 MC simulations) between brackets.
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Table 7: Frequencies of violations: single-dimensional restriction

Restrictions −→ η2 ≥ 0 η3 ≤ 0 η3 + πTη2 ≥ 0
Sample periods

(3,15] 0.13 0.16 0.15
(0.041) (0.046) (0.05)

(15,22] 0.12 0.18 0.19
(0.019) (0.021) (0.022)

(22,26] 0.068 0.13 0.21
(0.012) (0.018) (0.024)

(26,28] 0.039 0.1 0.18
(0.01) (0.02) (0.024)

Notes: Sample periods = number of observed periods. 5 per cent level rejection frequency of single-dimensional

tests of restrictions. Standard errors (sampling and parameter uncertainty, 1000 MC simulations) between

brackets.

Sample periods P-values <0.10 0.05 0.01
(3,15] 0.16 0.12 0.078

(0.012) (0.011) (0.0084)
(15,22] 0.21 0.17 0.12

(0.011) (0.0096) (0.0083)
(22,26] 0.21 0.17 0.12

(0.0088) (0.0081) (0.007)
(26,28] 0.18 0.15 0.1

(0.0085) (0.0078) (0.0066)
Complete sample 0.19 0.15 0.1

(0.005) (0.0045) (0.0038)

Notes: Sample periods = number of observed periods. Frequency of p-values of the test of restrictions satisfying

the conditions. Standard errors (sampling and parameter uncertainty, 20 Monte Carlo simulations) between

brackets. The distribution of the test statistic is obtained using 150 replications.

Table 8: Frequencies of violations: global restriction
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Table 9: Quantiles of κ, ρL and cL: simulated estimates

Individual Sample Quantiles
e�ects periods 0.05 0.2 0.35 0.5 0.65 0.8 0.95

(3,15] 6.38 7.43 8.03 8.56 9.15 9.83 10.8
(0.284) (0.292) (0.253) (0.284) (0.298) (0.239) (0.344)

(15,22] 4.51 6.22 7 7.65 8.29 9.07 11
κ (0.238) (0.212) (0.215) (0.219) (0.269) (0.462) (0.358)

(22,26] 2.32 4.65 5.81 6.81 7.86 9.27 12.4
(0.131) (0.228) (0.265) (0.272) (0.256) (0.405) (0.318)

(26,28] 1.4 3.25 4.85 6.27 7.76 9.91 13.9
(0.102) (0.194) (0.229) (0.29) (0.343) (0.441) (0.4)

(3,15] 0.16 0.226 0.285 0.357 0.455 0.702 1.96
(0.0792) (0.0815) (0.0921) (0.102) (0.148) (0.199) (0.525)

(15,22] 0.14 0.254 0.34 0.451 0.621 0.996 2.99
ρL (0.0947) (0.076) (0.0842) (0.111) (0.151) (0.245) (0.601)

(22,26] 0.11 0.227 0.364 0.546 0.797 1.39 5.13
(0.0589) (0.113) (0.123) (0.149) (0.206) (0.283) (0.861)

(26,28] 0.0866 0.174 0.339 0.565 0.966 1.89 6.82
(0.0603) (0.139) (0.17) (0.209) (0.256) (0.356) (0.894)

(3,15] 6.11 22.8 52 109 249 879 10994
(1.19) (1.75) (2.52) (3.61) (5.77) (12.8) (168)

(15,22] 5.79 65.3 162 359 944 3380 52673
cL (1.6) (2.13) (3.28) (5.11) (11.4) (31.8) (678)

(22,26] 2.42 50.2 200 528 1544 6160 128903
(0.564) (2.77) (4.74) (8.17) (14.6) (57.9) (1911)

(26,28] 1.38 20.6 151 586 1954 8407 164666
(0.475) (2.74) (6.02) (10.5) (20.7) (44.5) (1131)

Notes: Sample period: Number of observed periods. Standard errors (sampling and parameter uncertainty, 100

MC simulations) in brackets.
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Table 10: Short term inequalities and their decomposition

Short term Decomposition
Perm. (%) Trans. (%)

1977 .167 .033 .966
1982 .086 .507 .492
1987 .102 .624 .375
1992 .126 .709 .290
1997 .146 .769 .230
2002 .152 .823 .176
2007 .151 .886 .113

Mean .129 .648 .351
Notes: Inequality is measured with the variance of
logs. Short term inequality: cross sectional inequal-
ity. Perm. stands for the share of cross sectional
inequality due to the permanent heterogeneity com-
ponents. Trans. stands for the share of cross-section
inequality which is due to the transitory component.
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Figure 1: Mean log earnings by age at entry: 1977-2007
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Figure 2: Cross-sectional variance of earnings: 1977-2007

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

1980 1985 1990 1995 2000 2005

0.
08

0.
10

0.
12

0.
14

0.
16

Black circle: data, White circle: estimated
Year

V
ar

ia
nc

e

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ● ●

●

●

●

●

●
● ●

● ● ●
●

● ●

●

●

●
● ● ●

●
● ●

●

●

● ● ● ●

1980 1985 1990 1995 2000 2005

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Black circle <20 years, White circle>=20 and <=24 years, Square >24 years
Year

V
ar

ia
nc

e

●

● ●
●

●

●

●

●

●

●
●

● ●

●
●

●
● ●

●
●

●

●

●

●

●
● ● ●

Note: The small vertical lines represent the 95% con�dence inter-
vals.

(A) full sample (B) by age of entry

Figure 3: Autocorrelations with 1986 and 2007

●

●

●
●

●

●
● ●

● ●
● ●

●
●

● ● ● ● ●
● ● ● ● ● ● ● ●

1980 1985 1990 1995 2000 2005

0.
2

0.
4

0.
6

0.
8

 Legend: Black circle: Data, White circle: Estimation
Year

A
ut

oc
or

re
la

tio
n 

w
ith

 1
98

4

●

●

●

●

●

●

●
●

●
●

● ●

●

● ●
●

●
● ● ● ● ● ● ● ●

● ● ● ● ●

●

●

●
●

●
● ● ●

● ●
● ●

● ● ●

● ● ●
● ●

● ●
● ●

● ● ●

1980 1985 1990 1995 2000 2005

0.
2

0.
4

0.
6

0.
8

 Legend: Black circle: Data, White circle: Estimation
Year

A
ut

oc
or

re
la

tio
n 

w
ith

 2
00

7

●
●

● ●

●

●

●

●
● ●

● ●
●

●

● ● ● ●

● ●
●

● ● ● ●
● ●

●
●

●

62



Figure 4: Forward autocorrelations of order 1 and of order 6
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Figure 5: Variance of the permanent components
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Figure 6: Scatter plot of η2 and η3 and the area describing the structural constraint
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Figure 7: Earnings variances (permanent components): Unconstrained estimates and simulated
constrained estimates
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Figure 8: Counterfactual: Additional Years of Life Expectancy (K=2), Mean (Top panel) and
Variance (Bottom Panel) Lower bound Impact
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Supplementary Appendices

A.I Notation

A.I.1 The Model

• t: time elapsed since the entry in the labor market.

• i: index for individuals.

• yPi (t): potential individual earnings.

• Hi(t): individual-speci�c human capital.

• δi(t): log rental rate of the human capital.

• yi(t): current individual earnings.

• τi(t): level of investment in human capital.

• ρi: individual-speci�c rate of return of human capital investments (in log).

• λi(t): individual-speci�c depreciation rate of human capital, at time t.

• ci: individual-speci�c cost of human capital investments in utility terms.

• Vt(Hi(t), τi(t)): Sum of inter-temporal utilities, function of a state variable, Hi (t) and a control

variable, τi(t)

• βi: Individual-speci�c discount rate.

• Wt(Hi(t)): optimized sum of inter-temporal utilities, with respect to the control variable. In the

consumption smoothing section of the appendix, it depends also on the accumulated savings or

debt Ai(t) (see below).

• T : Arbitrary date at which we examine whether individuals goes on investing in human capital,

last date of observation in the empirical application.

• Ti: Individual-speci�c date at which investing in human capital stops.

• T̃i = min (T, Ti): Individual-speci�c date at which investing in human capital stops, censored

with T .

• δ∗i : Sum of discounted prices of human capital after period T , which a�ects the utility in level.

• κi,t: Discounted value of the stock of one unit of (log) human capital over the remaining period

of life after t+ 1, if the worker stops her investments.
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• κi: Discounted value of the stock of one unit of log(human capital) over the remaining period of

life after T + 1, κi = κi,T .

• Ci(t): consumption level at time t.

• Ai(t): accumulated savings or debt at time t.

• si(t): saving rate, share of earnings dedicated to savings or indebtedness.

• rit: individual-speci�c interest rate at time t.

• HCi(t): Human capital contribution to log-earnings.

• ηi1: individual-speci�c �xed level of log-earnings.

• ηi2: individual-speci�c growth rate of log-earnings.

• ηi3: individual-speci�c degree of curvature of log-earnings.

• vit: (log) price of human capital net of cumulative depreciation.

• Λi(t): Cumulative depreciation of human capital since the entry on the labor market.

A.I.2 Identi�ying and economic restrictions

• ηi4: individual-speci�c degree of curvature of log-earnings interacted with a linear trend (not

estimated).

• β: homogenous discount rate

• g: group of workers, de�ned by their age at entry and their skills

• ln ygt: average of ln yit over the group g

• ηgk: average of ηik over g, for k = 1, 2, 3

• vgt: average of vit over g

• δg(t): average of δi(t) over g

• λg(t): average of λi(t) over g

• Λg(t): average of Λi(t) over g

• ηcik: centered individual e�ect of ηik, for k = 1, 2, 3

• uit: centered earnings, with respect to group g

• vcit: individual-speci�c variations of human capital prices
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• ρLi : minimum value of ρi

• cLi : minimum value of ci

A.I.3 Econometric Modeling of Earnings Dynamics

• ln yi, ui, vi, v
c
i : T -vectors for ln yit, uit, vit, v

c
it

• ηi: vector of individual �xed e�ects (ηi1, ηi2, ηi3)

• ηci : vector of centered individual �xed e�ects

• M (β): T, 3 matrix of factors.

• Ω (ηci ): covariance matrix of centered individual �xed e�ects.

• η̂ci : estimate of the centered individual �xed e�ect.

• B: matrix 3, T establishing the relationship between the centered individual �xed e�ects and the

earnings residuals.

• B̂: estimate of B

• η̃ci : unfeasible estimator of ηci using B

• wi: T -vector of residuals, orthogonal to ηci

• Ωw: covariance matrix of wi

• πT : βT+1

1−β

• η̂Ri : constrained estimate of ηi

• Ωη: covariance matrix of ηi

• Ω̂η: estimate of Ωη

• η̂si : simulated constrained estimates of ηi

• κ∗i : counterfactual value of the structural parameter κi

• η∗ik: counterfactual value of ηik, for k = 1, 2, 3, from κ∗i

• Ni: number of actual observations for the individual i.
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A.II The random e�ect model : Model Speci�cation and

Likelihood function

The main di�erence with standard speci�cations lies in the introduction of three individual

heterogeneity factors that interact in a speci�c way with factors depending on time. Equation

(23) writes

u
[1,T ]
i = M (β)[1,T ] ηci + v

c[1,T ]
i

where u
[1,T ]
i = (ui1, ..., uiT )′, v

c[1,T ]
i = (vci1, ..., v

c
iT )′, ηci = (ηci1, η

c
i2, η

c
i3) are the centered versions of

the ηs and:

M (β)[1,T ] =

 1 1 1/β
...

...
...

1 T 1/βT

 ,
is a [T, 3] matrix. The system is further completed by initial conditions, the number of which

depends on the order of the autoregressive process. Denote p this order and write the initial

conditions as:

u
[1−p,0]
i = v

c[1−p,0]
i

since unrestricted dependence between v
[1,T ]
i , ηci and those initial conditions will be allowed for.

We can rewrite the whole system as:

u
[1−p,T ]
i = M (β)[1−p,T ] ηci + v

c[1−p,T ]
i

in which the matrix M (β)[1−p,T ] is completed by p rows equal to zero, M (β)[1−p,0] = 0.

We now go further and specify the correlation structure. A comment is in order. Usually,

the autoregressive structure directly applies to earnings residuals uit and in the absence of

covariates, this is equivalent to specifying it through the residual part vcit because there is a

single individual e�ect. This equivalence still holds when another heterogeneity factor interacted

with a linear trend is present. Nevertheless, our speci�cation includes a third factor interacted

with a geometric term and this breaks the equivalence. To circumvent this problem, we posit

that vcit is a (time heteroskedastic) ARMA process whose innovations are independent of the

individual heterogeneity terms, ηci . As a consequence, our variable of interest, uit, is the sum

of two processes, the �rst one being related to �xed individual heterogeneity and the second

one to the pure dynamic process. These processes are assumed to be independent between them

although they are both correlated with initial conditions, u
[1−p,0]
i .

We now derive the covariance matrix of u
[1−p,T ]
i as a function of the parameters of these

processes in two steps . We �rst describe the ARMA process and then include the individual

heterogeneity factors.
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A.II.1 Time heteroskedastic ARMA speci�cation

Following Alvarez and Arellano (2004) or Guvenen (2009), we specify

vcit = α1v
c
it−1 + ...+ αpv

c
it−p + σtwit

where wit is MA(q):

wit = ζit − ψ1ζit−1 − ...− ψqζit−q.

Let α = (α1, ., αp) and MT (α) a matrix of size [T, T + p] where p = dim(α):

MT (α) =


−αp ... −α1 1 0 ... 0

0 −αp ... −α1 1
. . .

...
...

. . . . . .
...

. . . . . . 0
0 ... 0 −αp ... −α1 1

 .

As v
c[1−p,T ]
i =

(
vci1−p, ..., v

c
iT

)
, we have:( (

Ip 0
)

MT (α)

)
v

[1−p,T ]
i =

(
v

[1−p,0]
i

σtw
[1,T ]
i

)

Since wit is MA (q), we have

w
[1,T ]
i = MT (ψ).ζ

[1−q,T ]
i

where ζ
[1−q,T ]
i = (ζi1−q, ..., ζiT ).

Denote Λ a diagonal matrix whose diagonal is (σ1, ., σT ) to get the following description of

the stochastic process as a function of initial conditions and idiosyncratic errors:(
Ip 0
MT (α)

)
.v
c[1−p,T ]
i =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
. (A.II.1)

To compute the covariance of v
c[1−p,T ]
i , we derive the covariance matrix of

(
v
c[1−p,0]
i ζ

[1−q,T ]
i

)
.

Since ζ
[1−q,T ]
i are i.i.d and are of variance 1, the South-East corner of the matrix is the identity

matrix of size (1 + q + T ). The North West corner is assumed to be an unrestricted covariance

matrix V u
[1−p,0]
i = Γ00. Assuming as usual that E(uiτζit) = 0 for any τ < t, we have that

E(v
c[1−p,0]
i .(ζ

[1,T ]
i )′) = 0. Only E(u

[1−p,0]
i .(ζ

[1−q,0]
i )′) remains to be de�ned:

E(v
c[1−p,0]
i .(ζ

[1−q,0]
i )′) = Ω = [ωrs]

where r ∈ [1− p, 0] and s ∈ [1− q, 0] and where:

r < s : ωrs = 0
r ≥ s : ωrs is not constrained

because the innovation ζis is drawn after r and is assumed to be not correlated with yri .
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Hence the covariance matrix of zi =

(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
writes :

Ωz = V

(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
= V

 v
c[1−p,0]
i

ζ
[1−q,0]
i

ζ
[1,T ]
i

 =

 Γ00 Ω 0
Ω′ Iq 0
0 0 IT

 .

A.II.2 Individual heterogeneity

The covariance matrix of the individual heterogeneity factors is denoted Ση. as said above,

we assume that the �xed heterogeneity terms are independent of the whole innovation process

ζ
[1−q,T ]
i . As for the covariance structure between initial conditions and those factors, we assume

that:

E
(
v
c[1−p,0]
i ηc′i

)
= Γ0η

Consider the covariance matrix of initial conditions Σ :

Σ = V

 v
c[1−p,0]
i

ηci
ζ

[1−q,0]
i

 =

 Γ00 Γ0η Ω
Γ′0η Ση 0
Ω 0 Iq

 .

and de�ne,

RT (α) =

( (
Ip 0

)
MT (α)

)−1

ST,p(ψ,Λ) =

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)
Write the covariance matrix of vector u

[1−p,T ]
i :

Ωu = V
(
u

[1−p,T ]
i

)
= V

(
v
c[1−p,T ]
i +M (β)[1−p,T ] ηci

)
= V

[M (β)[1−p,T ] , RT (α).ST,p(ψ,Λ)
] ηci

v
c[1−p,0]
i

ζ
[1−q,T ]
i



Since v
c[1−p,T ]
i = RT (α).ST,p(ψ,Λ)

(
v
c[1−p,0]
i

ζ
[1−q,T ]
i

)
, the matrix

V
(
v
c[1−p,T ]
i

)
= RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′
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and

E
(
v
c[1−p,T ]
i η′i

)
M (β)[1−p,T ]′ = RT (α).ST,p(ψ,Λ)E

(
v
c[1−p,0]
i (ηci )

′

ζ
[1−q,T ]
i (ηci )

′

)
M (β)[1−p,T ]′

= RT (α).ST,p(ψ,Λ)

(
Γ0η

0T+q,3

)
M (β)[1−p,T ]′

= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
Γ0η

0T+q,3

)(
03,p,M (β)[1,T ]′

)
= RT (α).

(
Ip 0p,T+q

0T,p Λ.MT (ψ)

)(
0p,p Γ0ηM (β)[1,T ]′

0T+q,p 0T+q,T

)
= RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
Hence,

Ωu = RT (α).ST,p(ψ,Λ).Ωz.ST,p(ψ,Λ)′RT (α)′ +M (β)[1−p,T ] ΣηM (β)[1−p,T ]′

+RT (α).

(
0p,p Γ0ηM (β)[1,T ]′

0T,p 0T,T

)
+

(
0p,p 0p,T

M (β)[1,T ] Γ′0η 0T,T

)
RT (α)′

The two �rst terms correspond to variances of the dynamic process and the individual hetero-

geneity factors, the other terms correspond to the correlation between the two processes induced

by initial conditions. Note that the parameters of the MA process don't appear in the correla-

tion between the two processes since innovations are assumed to be independent with individual

heterogeneity factors. Initial conditions are given by ζ
[1−q,0]
i , ηc and v

c[1−p,0]
i .

The Choleski decomposition of matrix Σ can be parametrized expressing the following matrix

into a polar coordinate basis.

1 0 ... ... 0

0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0 1 0
.

.

.

... 0 1 0 0
.

.

.

ω12
η 1 0

0 ω13
η ω23

η 1 0

.

.

. θ
(1)
1−q,1−p θη1,1−p θη2,1−p θη3,1−p 1

0

.

.

.

.

.

.

.

.

. θ2−p,2−p
.

.

. 1

θ
(1)
0,0 θη1,0 θη21,0 θη3,0 ...

.

.

. θ0,0 1



where θ
(1)
1−q,1−p = 0 if p > q and, more generally, θ

(1)
l,m = 0 if l > m.

A.III Fixed E�ect Estimation, Constrained E�ects and Coun-

terfactuals

A.III.1 Estimates of individual factors given observed earnings

The main equation is:

u
[1−p,T ]
i = M(β)[1−p,T ]ηci + v

c[1−p,T ]
i ,
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where ηci and v
c[1−p,T ]
i are centered by construction and where a row of M(β) is de�ned as

M(β)[t] = (1, t, 1/βt) as in Appendix A.II.

Later on, we shall reintroduce the estimated averages, ηg, of the individual e�ects that we

estimate by OLS using the sub-groups de�ned by age of entry and skill level (21 groups). De�ne

the average in each group as ȳ
[1−p,T ]
g and de�ne:

̂̄ηg = (M(β)[1−p,T ]′M(β)[1−p,T ])−1M(β)[1−p,T ]′ȳ[1−p,T ]
g .

We now present the �xed e�ect estimation of ηci . We consider �rst the case with no missing

values and extend it to the case with missing values. We �nally analyze how to deal in the

simulations with constraints on ηi.

A.III.2 Estimating individual e�ects

Assume �rst that there are no missing values. To deal with the correlation between ηci and vi,

we can always write:

v
c[1−p,T ]
i = Cηci + w

[1−p,T ]
i ,

where E((ηci )
′w

[1−p,T ]
i ) = 0 so that we get:

C = E(v
c[1−p,T ]
i (ηci )

′)(E(ηci (η
c
i )
′))−1,

and:

Ωw = E(v
c[1−p,T ]
i v

[1−p,T ]′
i )− E(v

c[1−p,T ]
i (ηci )

′)(E(ηci (η
c
i )
′))−1E(ηci v

c[1−p,T ]′
i ).

This yields the estimating equation for ηci :

u
[1−p,T ]
i = Dηci + w

[1−p,T ]
i where D = M(β)[1−p,T ] + C,

that might be estimated by GLS methods.

It is nevertheless useful to write likelihood functions that will help later to de�ne constrained

estimates. De�ne the conditional (pseudo) likelihood function as:

L(u
[1−p,T ]
i | ηci ) =

1

(2π)T/2 det Ω
1/2
v

exp

(
−1

2
(u

[1−p,T ]
i −Dηci )′Ω−1

w (u
[1−p,T ]
i −Dηci )

)
,

in which Ωw = V (w
[1−p,T ]
i ).

We are seeking the conditional distribution of ηci conditional on the observed u
[1−p,T ]
i which

can be expressed by Bayes law, using a prior for ηci , L0(ηci ) as:

L(ηci | u
[1−p,T ]
i ) =

L(u
[1−p,T ]
i | ηci )L0(ηci )∫

L(u
[1−p,T ]
i | ηci )L0(ηci )dη

c
i

.

Consequently, the distribution function L(ηci | u
[1−p,T ]
i ) can be written as:

H(u
[1−p,T ]
i ). exp

(
−1

2
(ηci −Bu

[1−p,T ]
i )′Ω−1

η (ηci −Bu
[1−p,T ]
i )

)
L0(ηci )
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where the constant of integration is derived by setting to one the integral over ηci . In the case

of a di�use prior i.e. L0(ηci ) = 1, the constant of integration is no longer dependent on u
[1−p,T ]
i

and is equal to the usual reciprocal of (2π)3/2 det Ω
1/2
η . When there are constraints on ηci , these

constraints can be included in the prior (see below).

As all terms in ηci and u
[1−p,T ]
i are quadratic, we can derive the unknown matrices B and Ωη

by solving:

(u
[1−p,T ]
i −Dηci )′Ω−1

w (u
[1−p,T ]
i −Dηci ) = (ηci −Bu

[1−p,T ]
i )′Ω−1

η (ηci −Bu
[1−p,T ]
i ) + u

[1−p,T ]′
i Au

[1−p,T ]
i .

By identifying quadratic terms in (ηci , η
c
i ), (u

[1−p,T ]
i , ηci ) and (u

[1−p,T ]
i , u

[1−p,T ]
i ), we obtain three

equations: 
D′Ω−1

w D = Ω−1
η ,

−D′Ω−1
w = −Ω−1

η B,
Ω−1
w = B′Ω−1

η B + A,

so that, as D′Ω−1
w D is invertible:

Ωη = (D′Ω−1
w D)−1,

B = (D′Ω−1
w D)−1D′Ω−1

w ,
A = Ω−1

w − Ω−1
w D(D′Ω−1

w D)−1D′Ω−1
w .

If those matrices are known, the (unfeasible) estimator for the individual �xed e�ects, by rein-

clusion of the estimated averages, are:

η̃ci = Bu
[1−p,T ]
i = B(Dηci + w

[1−p,T ]
i ) = ηci +Bw

[1−p,T ]
i .

They are such that:

V (η̃ci ) = EV (η̃ci | ηci ) + V E(η̃ci | ηci )

=⇒ V (η̃ci ) = BΩwB
′ + V ηci = Ωη + V ηci .

The term Ωη goes to zero at least at the rate 1/T since matrix D is determined by di�erent

factors which are going to zero at least as fast as T−1.

The feasible estimator is now given by:

η̂ci = B̂u
[1−p,T ]
i ,

and by reinclusion of the estimated averages for each group, η̄g3i = η̄g, we have:

η̂i = η̄g + η̂ci = η̄g + B̂u
[1−p,T ]
i ,

We now analyse the case with missing values. Suppose that u
[1−p,T ]
i is not observable, only

Siu
[1−p,T ]
i is where Si is the matrix of dimension (Ni, T + p + 1) selecting non missing values

and where Ni is the number of such non missing values. Consequently, the distribution function

L(ηci | Siu
[1−p,T ]
i ) becomes:

Hi(Siu
[1−p,T ]
i ). exp

(
−1

2
(ηci −BiSiu

[1−p,T ]
i )′Ω−1

ηi (ηci −BiSiu
[1−p,T ]
i )

)
L0(ηci ),
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where by simple analogy to the results of the previous section:{
Ωηi = (D′S ′i(SiΩwS

′
i)
−1SiD)−1,

Bi = (D′S ′i(SiΩwS
′
i)
−1SiD)−1D′S ′i(SiΩwS

′
i)
−1.

A.III.3 Constrained estimator

We reconsider the uncentered version of the individual e�ects ηi in this section since the con-

straints apply more naturally to those. Nevertheless, we freely borrow the likelihood expressions

derived in the previous section in which we considered the centered version ηci .

Using that the likelihood function L(ηi | y[1−p,T ]
i ) is proportional to:

exp

(
−1

2
(ηi − η̂i)′Ω−1

η (ηi − η̂i)
)
L0(ηi)

where η̂i is the unconstrained estimator, we solve the following program to compute the con-

strained estimator of ηi

min
ηi

(ηi − η̂i)′Ω−1
η (ηi − η̂i)

under the constraints:

ηi2 > 0, ηi3 < 0, ηi3 > −πTηi2.

Denote µ1, µ2 and µ3 the Lagrange multipliers associated to each constraint and write the La-

grangian as:

L(ηi) = (ηi − η̂i)′Ω−1
η (ηi − η̂i)− µ1ηi2 + µ2ηi3 − µ3(ηi3 + πTηi2).

Taking derivatives yields:

2Ω−1
η (η̃i − η̂i)−

 0
µ1 + πTµ3

µ3 − µ2

 = 0.

We immediately have that:

1. If µ2 > 0, µ1 = 0 then η̃i3 = 0 and η̃i2 > 0, and this implies that πT η̃i2+ η̃i3 > 0 so that

µ3 = 0. Therefore: η̃i1 − η̂i1
η̃i2 − η̂i2
−η̂i3

+
Ωη

2

 0
0
µ2

 = 0 =⇒ µ2e
′
3

Ωη

2
e3 = η̂i3,

where e3 = (0, 0, 1)′. This is compatible if µ2 = η̂i3

e′
Ωη
2
e
> 0 and therefore if η̂i3 > 0 since Ωη

is de�nite positive. Denoting e2 = (0, 1, 0)′, we also have:

η̃i2 − η̂i2 = −µ2.e
′
2

Ωη

2
e3.

This satis�es the condition µ1 = 0 i� η̃i2 > 0.
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2. If µ3 > 0, µ1 = 0 then η̃i3 = −πT η̃i2 and η̃i2 > 0, and this implies that η̃i3 < 0 so that

µ2 = 0. We have:

2Ω−1
η (η̃i − η̂i)−

 0
πT
1

µ3 = 0 =⇒ (η̃i − η̂i) = µ3
Ωη

2
vπT

denoting vπ = (0, πT , 1)′. Given that v′πη̃i = η̃i3 + πT η̃i2 = 0, this implies that :

µ3 = − v′πη̂i

v′π
Ωη
2
vπ

> 0,

if v′πη̂i = η̂i3 + πT η̂i2 < 0 This yields the constrained estimators, η̃i2 and η̃i3:

(η̃i − η̂i) = µ3
Ωη

2
v′π

which satisfy the constraint µ1 = 0 i� η̃i2 > 0.

3. If µ1 > 0 then η̃i2 = 0 and thus the constraints πT η̃i2+ η̃i3 ≥ 0 and η̃i3 ≤ 0 imply that

η̃i3 = 0, that µ2µ3 = 0 and that one of them is positive.

Summarizing:

• If η̂i3 < 0, η̂i2 > 0, and η̂i3 +πT η̂i2 > 0, constrained estimates, η̃i, are equal to unconstrained

estimates, η̂i.

• If η̂i3 > 0, η̂i3 + πT η̂i2 > 0 case 1 applies if η̃i2 > 0.

• If η̂i3 + πT η̂i2 < 0, η̂i3 < 0 case 2 applies if η̃i2 > 0.

• In all other cases, η̃i2 = η̃i3 = 0. In this case:

η̃i − η̂i =

 η̃i1 − η̂i1
−η̂i2
−η̂i3

 =
Ωη

2

(
e2 e3

)( v1

v2

)
where vj are unknown. They are obtained using:(

e′2
e′3

)
(η̃i − η̂i) =

(
e′2
e′3

) 0
−η̂i2
−η̂i3

 =

(
e′2
e′3

)
Ωη

2

(
e2 e3

)( v1

v2

)

Denoting I>c =

(
e′2
e′3

)
so that:

(
v1

v2

)
=

[
I ′c

Ωη

2
Ic

]−1

I ′c

 0
−η̂i2
−η̂i3


so that we get the vector:

η̃i − η̂i = ΩηIc [I ′cΩηIc]
−1
I ′c

 0
−η̂i2
−η̂i3

 .
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A.III.4 Imposing constraints on simulations

Assume that we want to impose the constraints that ηi2 > 0 and that ηi3 < 0 and ηi3 > −πTηi2.
Drawing in a multivariate normal distribution with multiple constraints is not as easy as with

a single constraint. We use e�cient Gibbs sampling as proposed by Rodriguez-Yam, Davis and

Scharf (2004).

First, denote Cη the Choleski decomposition of the permutation of matrix Ωη (or Ωηi in the

case of missing values) such that:

CηC
′
η = Ωη.

Without loss of generality, it is convenient to slightly change the order of ηs. Assuming that

the generic element of the lower diagonal matrix Cη is cij, we can write, assuming that the

expectation of ηi is (α1, α2, α3):
η2 = α2 + c11ξ1,
η3 = α3 + c21ξ1 + c22ξ2,
η1 = α1 + c31ξ1 + c32ξ2 + c33ξ3.

We start from the remark that it is easy to draw in univariate truncated normal distributions

conditional to the other variates, for instance, f(ηu1 | ηu2 , ηu3 , ηu2 ≤ 0, ηu3 ∈ [−πTηu2 , 0]). Second,

drawing repetitively in the conditional univariate distributions to construct a Markov chain yields

drawings that are distributed according to the joint distribution we are looking for. Furthermore,

Rodriguez-Yam, Davis and Scharf (2004) recommends drawing the independent errors ξ1, ξ2 and

ξ3 instead of the original variables. For this, we have to rewrite the constraints as (using c11, c22

and c33 are positive, see Section A.III.2):

ξ1 > − α2

c11
,

ξ2 + c21

c22
ξ1 < − α3

c22
,

ξ2 + c21+πT c11

c22
ξ1 > −α3+πTα2

c22
.

(A.III.2)

The algorithm proceeds by considering initial values (η0
2, η

0
3) whose construction we detail below.

Then from (ηk2 , η
k
3), we construct (ηk+1

2 , ηk+1
3 ) using:

1. Draw ξk+1
2 in a truncated normal variable, truncated by the bounds [−α3+πTα2

c22
− c21+πT c11

c22
ξk1 ,

− α3

c22
− c21

c22
ξk1 ] (a non empty interval because of the constraint ξ1 > − α2

c11
).

2. Draw ξk+1
1 in a truncated normal variable, truncated by the bounds [L1, L2]. There are �ve

cases:

• If c21 > 0: L1 = max(− α2

c11
,− c22

c21+πT c11
(α3+πTα2

c22
+ ξk+1

2 ));U1 = − c22

c21
( α3

c22
+ ξk+1

2 )

• If c21 = 0 : L1 = max(− α2

c11
,− c22

c21+πT c11
(α3+πTα2

c22
+ ξk+1

2 )), U1 = +∞

• If c21 ∈ (−πT c11, 0) : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ ξk+1

2 ),− c22

c21+πT c11
(α3+πTα2

c22
+ ξk+1

2 )),

U1 = +∞
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• If c21 = −πT c11 : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ ξk+1

2 )), U1 = +∞

• If c21 < −πT c11 : L1 = max(− α2

c11
,− c22

c21
( α3

c22
+ξk+1

2 )), U1 = − c22

c21+πT c11
(α3+πTα2

c22
+ξk+1

2 )).

Then construct .

When the algorithm is said to have converged to (ξ∞1 , ξ
∞
2 ) then �nish by drawing ξ3 in a N(0,1)

variate since no constraints are binding on η1. Construct the �nal values ηk+1
2 = α2 + c11ξ

∞
1 ,

ηk+1
3 = α3 + c21ξ

∞
1 + c22ξ

∞
2 , η

k+1
1 = α1 + c31ξ

∞
1 + c32ξ

∞
2 + c33ξ3.

The initial conditions are constructed by neglecting the multivariate aspects of constraints:

• Draw ξ0
1 in a truncated normal distribution, truncated by the bound ξ0

1 > − α2

c11
. Construct

η0
2 = α2 + c11ξ

0
1 .

• Draw ξ0
2 in a truncated normal distribution, truncated by the bound [−α3+πTα2

c22
− c21+πT c11

c22
ξ0

1 ,− α3

c22
−

c21

c22
ξ0

1 ]. Construct η0
3 = α3 + c21ξ

0
1 + c22ξ

0
2 .

• Draw ξ0
3 in a normal distribution and construct η0

1 = α1 + c31ξ
0
1 + c32ξ

0
2 + c33ξ

0
3 .

These draws satisfy the constraints but they are not truncated normally distributed.

A.IV Data and Empirical Appendix

A.IV.1 Sample selection and the construction of earnings: Compari-

son with the literature

The data used in this paper di�er in several respects from those used in other studies on earnings

dynamics. We summarize the main di�erences with Guvenen (2009) and Hryshko (2012) two

recent papers from this literature.

First, datasets have very di�erent characteristics. The two US studies use the PSID, a

household panel data, while this paper makes use of DADS, a French administrative panel

dataset collected by tax authorities in the private sector only. The PSID household survey

includes a large set of demographic characteristics while the French DADS administrative data

have larger samples but fewer observable characteristics, namely age at entry on the labor market

and a proxy for skills in three groups. The length of the observation period is broadly similar in

these three studies. The US studies use waves from 1968 to 1993 in Guvenen (2009) and from

1968 to 1997 in Hryskho (2012), representing a maximum of 25 to 30 years of data. Our study

on DADS covers a more recent time period ranging from 1977 to 2007 with 27 yearly e�ective

observations.

As regards the sample selection rules, the two US studies concentrate on male heads of

households while DADS data does not report family structure. This is why we focus on males

irrespective of their family situation. Guvenen (2009) restricts his sample to individuals between
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the ages of 20 and 64 and observed at least 20 times and with positive labor earnings hours.

Hryskho (2012) focuses on males in the 25 to 64 age range. An important di�erence between

US studies and the DADS one is the particular de�nition we use to de�ne a cohort. We de�ne

a cohort by the set of individuals entering the labor market at the same point in time but not

necessarily at the same age, while we control by age in the earnings equation. Therefore, the

cohorts are not de�ned as usually by the date of birth. It is di�cult to assess the consequence of

this choice since we are unaware of another study that would compare earnings dynamics using

di�erent de�nitions for the cohorts. However in sections A.IV.2 and A.IV.3 we demonstrate that

the 1977 cohort used in the paper does not depart signi�cantly from younger ones extracted from

the same dataset in terms of means, variances and autocorrelations of order one.

To �lter out extreme values, Guvenen (2009) sets criteria to discard observations with low

and high hourly earnings and hours worked. In a similar spirit, this study drops observations in

the �rst and last percentiles of the yearly earnings distribution. Hryskho (2012) use alternative

selection rules dropping observations for the years when the percentage change of real labor

income in adjacent years is above 500 or below −80. More importantly, Hryskho (2012) focuses

on consecutive spells of positive incomes with at least 9 observations while the DADS study

allows any time pattern of missing observations as long as individuals are observed working in

the private sector in selected years (ie : in 1977, 1978, 1982 and 1984). Sample size is smaller

in PSID data. Guvenen (2009) main sample includes 1270 individuals, while Hryskho (2012)

includes 1916 heads. The DADS sample starts with 7446 observations in the initial year and

�nishes with 4670 in the last year of data.

Finally, the earnings measure is somewhat di�erent between the two US studies and ours.

First, Guvenen (2009) de�nes labor income as including wage income, bonuses, commissions,

plus the labor portions of several types of income such as farm income, business income and

therefore keeping self-employed or civil servants. Hryskho (2012) introduces a similar de�nition

but excludes self-employment. In this paper we use annualized earnings de�ned by full earnings

divided by the number of days worked and remultiplied by 360.

A.IV.2 Comparison with younger cohorts

Figure A.i compares the time pro�le for the mean and the variance of log earnings for our cohort

entering the labor market in 1977 with cohorts entering the labor market between 1980 and

2000 and observed up to 2007. We cannot compare the 1977 cohort with older ones (except

1976) since the DADS started in 1976. The left panel displays the change over time in mean log

earnings for the various entry cohorts, while the right panel depicts the change in the variances

over time by entry cohort. First, mean log earnings display the usual increasing concave pro�le,

with a very homogeneous pattern across entry cohorts. The mean log earnings of the di�erent

entry cohorts converge to very comparable level over time. Second, comparing the variance

pro�les across entry cohorts in the right panel, we see that the decrease in the variance over the
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�rst few years on the labor market is more pronounced for the entry cohort 1977 than for most

other entry cohorts. The sharp drop in the variance is present for cohorts entering in 1977, 1980,

1988 and 2000, but it is weaker for other entry cohorts. The variance pro�le of the �rst few

years on the labor market can be quite heterogeneous across entry cohorts but we control for

this with very �exible initial conditions in our earnings equation. After a few years on the labor

market the variance for the di�erent entry cohorts converge to very comparable levels except for

more recent entry cohorts with a lower mean inequality level for entry cohorts 1997 and 2000

but they are still in the �rst part of their pro�le though. Strikingly, in 1994, the di�erent entry

cohorts display the same increase in the variance of log earnings making it clear that this survey

year is a�ected by measurement error. Overall, the di�erent pro�les are similar and the entry

cohort 1977 studied in the paper does not depart signi�cantly from the other ones.

A.IV.3 Comparison of �rst order autocorrelation between cohorts

In Figure A.ii we draw the �rst order autocorrelation in earnings residuals relative to potential

experience for three di�erent entry cohorts. We compare our cohort entering in 1977 with

younger ones entering in 1987 and in 1997. The �rst group is observed over thirty years from

1977 to 2007, the second one over twenty years from 1987 to 2007 and the third entry cohort is

observed over ten years from 1997 to 2007. As the Figure illustrates, the pattern of declining

autocorrelation is clearly similar across the three entry cohorts. Starting at one it diminishes up

to 0.6 after �fteen years on the labor market for the 1977 and 1987 entry cohorts. For the 1997

entry cohort it declines only to 0.8 but with only ten years of data the trend and level remain

very similar to previous entry cohorts.

A.IV.4 Attrition

Table A.i gives a dynamic view of attrition. This Table reports the frequencies of non missing

values by pairs of years. For instance, the column 1977, describes the global features of attrition.

Attrition is quite severe in the �rst "normal" (after selection) year, 1985 since 15% of individuals

exit between 1984 and 1985. This is true in every adjacent years at the beginning of the sample

period (other columns for instance in cell 1987, 1988) but it is decreasing over time to reach 7

or 8% at the end of the panel. Year 1994 con�rms its exceptional status as attrition between

1994 and 1995 is very low. More generally though, most individuals reenter the panel quickly

since the attrition at two year intervals is only marginally larger than the one observed at one

year intervals (for instance the two cells in 1977, 1985 and 1986, indicate attrition of 15% and

16.5%) although this varies somewhat over time. Finally, there is a core of observations which

are almost always present in the panel. Looking at row 2007, we can see that out of the 62.7% of

the complete sample of individuals present in this year, it is hardly less than 80% of this sample

which is not present between 1985 and 2006 � with the exception of 1994 again.
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Table A.ii reports the autocorrelation patterns of the �rst di�erences in the earnings residuals.

Contrary to what is found in some papers in the literature using PSID data (for instance, Meghir

and Pistaferri, 2010) we do not �nd strong evidence that the correlation disappears after taking

a two period di�erence. A few very long di�erence autocorrelations seem signi�cant and no

regular pattern seems to emerge.

A.IV.5 Random e�ect estimation and reduced form parameters

Firstly, we estimate covariance matrices of the permanent and stochastic components of errors as

well as their correlation with the initial conditions. The former is composed by three individual

unobserved factors (ηci1, η
c
i2, η

c
i3), while the latter is an ARMA process as explained in Section

A.II. Table A.iii provides the values of the Akaike criterion based on the log-likelihood values

for speci�cations in which orders of the autoregressive and moving average components vary

from (1,1) to (3,3). Unsurprisingly, enlarging the number of AR or MA components strongly

increases the value of the sample likelihood function. Nonetheless, increasing it beyond 3 lags is

di�cult to implement since it involves a year, 1981, in which observations are missing altogether.

This is why we did not pursue further the exploration of higher orders for the ARMA processes.

According to the Akaike criterion we should choose the ARMA(3,3) speci�cation, a much more

persistent speci�cation than in most studies in the literature. Nevertheless, the estimates of the

ARMA(3,3) exhibit some estimates which are very imprecise, speci�cally the ones describing

the correlations between initial conditions and the MA components (Table A.iv). That is why

in the rest of the analysis we will use as our preferred estimates, results from the ARMA(3,1)

model.

Table A.iv presents parameter estimates. Each column reports results for di�erent ARMA(p,q)

speci�cations for (p, q) ∈ {1, 2, 3}2. In every model, autoregressive coe�cients remain largely

lower than one. Their sum re�ects the high persistence of shocks though it is far enough from

one to reject a unit root. A formal statistical test rejects at levels less than 1% that the process

is non-stationary (see Magnac and Roux, 2009). This result parallels the result of Alvarez and

Arellano (2004) on US and Spanish data or of Guvenen (2009) but di�ers from Hryshko (2012).

Autoregressive coe�cients are ranging from 0.2 to 0.02 in the ARMA(3,1) speci�cation and de-

scribe the persistence of shocks due to unemployment spells or mobility for instance while the

MA coe�cient is negative and might stand for measurement errors.

The correlations between initial conditions and these individual factor loadings are also infor-

mative. They are signi�cant and have an economically signi�cant magnitude of around .2 or .3 in

absolute value. The estimated correlations between the linear trend and geometric factors η2 and

η3, and the initial conditions are similar to the estimated correlations between both of them and

the level factor. They are respectively signi�cantly positive and negative. More surprisingly,

the correlation between η1 and the initial conditions is also negative. That would indicate that

individuals endowed with higher starting human capital stock have more di�culties to acquire
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immediately the level of potential earnings that correspond to their skill levels.

Finally, the estimated variance of the idiosyncratic terms is reported in Table A.v. Note �rst

that these parameters are identi�ed even in years 1981, 1983 and 1990 for which information is

missing. Nonetheless, estimates for those years are imprecise and have a magnitude that can

di�er widely from the others and across ARMA speci�cations because they are identi�ed only

out of the structural restrictions that we placed by assuming an ARMA process. Regarding

the "normal" years, period-speci�c variances start from a rather high level in the �rst three

years between .20 and .30. They generally decrease over the sample periods albeit very slowly.

Between 1984 and 2000 they are quite precisely estimated at a level around .18, except the

exceptional year 1994 in which we know that the measurement error is large, and levels o� at

around .14 after 2000 (except the exceptional year 2003). These estimates certainly pick up the

patterns of autocorrelations increasing over time that we spotted in the raw data (see Table 2).

Part of it is certainly attributable to measurement errors although another part of it could be

attributed to a decreasing impact of shocks along the life cycle.

A.IV.6 Constrained and structural estimates

To con�rm the diagnostic of fat tails of �xed e�ect estimates, we also evaluate the distribution

of the QLR statistic in a di�erent way. We computed the distance between the unconstrained

and the constrained estimates and compare this distance with the distance between the same

constrained estimates and simulated unconstrained estimates using normal random draws for

the simulations. In all these experiments, we use the covariance matrix of the ηs as a weighting

matrix to compute the distance and as the basis for simulating the normal errors. Table A.vii

reports the quantiles of the distributions of the actual and simulated distances. The two distri-

butions coincide rather well for all quantiles until 0.6 but the divergence becomes severe over .6

and speci�cally at the upper end. This can either be due to the rejection of the constraints or to

the non normality of the factors which is a standard �nding in studies that assess the normality

of individual e�ects in earnings functions (Hirano, 2002 for instance).

A.IV.7 Non-linear dynamics of earnings: transition matrices across

quintiles

Table A.ix reports the observed and predicted (using both unconstrained and simulated con-

strained estimates) transition matrices between quintiles, between the entry in the labor market

(1977) and 15 years later (1992). Between these two dates, the model predicts more mobility

than the actual data, since the diagonal of the observed transition matrix is for every quintile

higher than the predicted ones (either unconstrained or simulated). The discrepancy is maximal

for the highest quintile since the probability of staying in the highest quantile is observed to be

equal to 0.5 although its prediction is equal to 0.3.
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The �t of the model is better when considering the mobility between quintiles between 1993

and 2007, as reported in table A.x, in particular between the transitions based on the simulated

parameters and the observed ones. Yet, the model predicts more mobility than what is truly

observed (see the diagonal terms corresponding to the 2nd, 3rd and 4th quintiles). The �t is

very good for the transitions related to the 1st and 5th quintiles since the prediction error is less

than two percentage points.

A.IV.8 Estimation of human capital prices by a �at spot condition

and robustness checks

We follow Bowlus and Robinson (2012). From the DADS, average log daily real earnings by age

and year can be computed on full-time males employees in the Private Sector from 1976 to 2010.

To identify the ��at spot� region where human capital remains stable, we run regressions of the

average log daily real earnings on potential experience (di�erence between current age and 16),

an exponential term re�ecting the curvature of the earnings pro�le with respect to potential

experience, and year dummies. We have run di�erent regression changing the contributing indi-

viduals with respect to their potential experience and selected the population with the broader

range of potential experience for which the coe�cients an potential experience and the expo-

nential term were statistically non signi�cant. This leads us to select individuals who are aged

between 43 and 58 whose average log-earnings pro�le did not exhibit any slope or curvature.

The results of the regressions and the human capital prices values are available upon request.

We then repeat the procedures that lead to the construction of Tables 4, 7, 8 and 9. They

are reproduced in Tables A.xi; A.xii, A.xiii and A.xiv.
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Table A.i: Non Missing Values
1977 1979 1980 1985 1986 1987 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1977 1

1978 1

1979 .882 .882

1980 .868 .786 .868

1982 1 .882 .868

1984 1 .882 .868

1985 .849 .751 .743 .849

1986 .834 .739 .731 .75 .834

1987 .804 .714 .704 .718 .737 .804

1988 .765 .675 .668 .694 .690 .691 .765

1989 .777 .689 .677 .701 .694 .691 .689 .777

1991 .743 .658 .65 .67 .663 .655 .649 .678 .743

1992 .736 .653 .647 .663 .655 .649 .642 .662 .679 .736

1993 .749 .665 .653 .657 .666 .654 .631 .652 .659 .673 .749

1994 .581 .515 .506 .508 .518 .511 .492 .506 .513 .517 .544 .581

1995 .725 .643 .634 .636 .644 .632 .609 .628 .63 .635 .661 .535 .725

1996 .721 .641 .631 .631 .638 .627 .603 .622 .622 .627 .652 .521 .671 .721

1997 .71 .629 .621 .622 .63 .619 .596 .613 .612 .618 .642 .511 .649 .661 .71

1998 .708 .628 .619 .618 .625 .615 .591 .61 .609 .614 .636 .506 .642 .649 .667 .708

1999 .708 .628 .617 .617 .623 .614 .59 .61 .605 .609 .63 .502 .635 .639 .652 .665 .708

2000 .701 .622 .611 .612 .62 .61 .583 .6 .595 .601 .623 .497 .625 .629 .637 .649 .662 .701

2001 .687 .61 .598 .599 .605 .595 .573 .589 .584 .587 .605 .479 .608 .612 .62 .629 .639 .65 .687

2002 .67 .595 .586 .588 .591 .581 .559 .575 .568 .573 .592 .471 .59 .594 .597 .606 .613 .617 .621 .67

2003 .616 .547 .539 .544 .542 .532 .516 .533 .526 .53 .539 .425 .538 .541 .546 .553 .561 .564 .563 .577 .616

2004 .63 .559 .551 .552 .556 .545 .523 .541 .534 .539 .555 .441 .555 .557 .559 .567 .573 .574 .574 .584 .565 .63

2005 .634 .560 .552 .554 .558 .548 .526 .544 .536 .541 .558 .446 .557 .558 .559 .566 .570 .574 .571 .574 .543 .574 .634

2006 .634 .561 .553 .556 .557 .549 .525 .544 .535 .541 .556 .444 .553 .556 .557 .563 .568 .570 .567 .574 .538 .566 .586 .634

2007 .627 .557 .547 .55 .552 .542 .521 .538 .531 .535 .548 .436 .547 .549 .551 .556 .560 .562 .557 .561 .525 .552 .570 .591

Notes: Frequencies of observations present in the sample at years described by row and column, relative to the full sample



Table A.ii: Autocorrelation matrix of earnings residuals in di�erences
1978 1979 1980 1985 1986 1987 1988 1989 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

1979 -.400

1980 -.009 -.277

1985 -.018 -.016 -.084

1986 .003 -.031 .090 -.434

1987 .043 .093 -.013 -.058 -.345

1988 .004 .035 .011 -.055 -.046 -.299

1989 .041 -.036 -.008 .028 -.054 -.020 -.323

1992 -.053 .060 -.055 -.014 -.006 -.074 -.003 -.039

1993 -.021 .015 -.019 .007 .013 .048 -.072 .000 -.351

1994 .018 -.013 .024 .000 -.021 -.013 .003 -.037 -.108 -.385

1995 .021 -.001 .017 -.027 .029 .038 .001 .032 .043 -.070 -.519

1996 .012 -.013 -.034 .008 -.020 .000 .036 .046 .029 -.021 .026 -.440

1997 -.052 .032 -.047 .026 -.046 .006 -.022 -.058 -.007 -.005 -.004 -.019 -.520

1998 .010 -.010 .052 -.047 .049 -.040 .004 .000 .009 .015 -.031 .036 -.015 -.391

1999 .056 -.017 -.017 .013 .006 -.013 .040 -.004 .014 -.067 .004 -.020 .003 -.010 -.244

2000 -.087 .085 -.059 .008 .016 -.014 -.006 -.023 .041 .023 .005 -.042 .022 -.003 -.047 -.420

2001 .024 -.051 .051 .009 -.082 .044 -.028 .052 -.046 -.018 .032 -.009 -.062 .051 .044 -.013 -.539

2002 .008 .001 -.037 .027 .010 -.090 .046 -.025 -.019 -.002 -.043 .013 .031 .024 -.028 .005 -.010 -.298

2003 .005 -.050 .001 .041 -.040 -.108 .001 -.015 .061 -.028 .062 -.025 -.049 .052 -.006 .025 .027 -.010 -.247

2004 -.036 .068 .008 -.061 .057 .144 -.005 .004 -.047 .013 -.031 .012 .025 -.043 .005 -.024 -.025 .014 -.157 -.705

2005 .073 -.011 .001 -.021 -.017 .026 -.011 -.010 -.019 .020 .005 .004 -.001 -.009 -.013 .056 .014 -.043 .002 .012 -.227

2006 -.031 .063 -.042 .009 .035 -.025 .021 -.031 .055 -.014 .034 -.023 -.002 -.031 -.013 -.015 .013 -.028 -.002 .039 -.069 -.375

2007 -.002 -.022 -.010 -.042 -.003 -.026 .026 -.036 -.016 .079 -.070 .022 .015 -.015 -.035 .035 -.015 .020 .030 -.028 -.006 .053 -.254



Table A.iii: AIC criterion

ARMA(p,q) q=1 q=2 q=3
p=1 -344885 -344899 -344906

(43) (45) (47)

p=2 -345301 -345447 -345733
(47) (50) (53)

p=3 -345839 -346133 -346293
(51) (54) (58)

AIC criterion computed as -2log(L)+2K, with L the like-

lihood and K the number of parameters. Number of pa-

rameters in brackets.
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Table A.iv: Estimated parameters of the Random E�ects Model

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
α1 .702 .729 .711 .263 .186 .220 .200 .203 .194

( .005) ( .006) ( .007) ( .011) ( .011) ( .011) (.012) ( .011) ( .011)
α2 .145 .324 .143 .191 .143 .161

( .004) ( .008) ( .009) ( .005) ( .009) (.009)
α3 .022 .087 .187

( .003) ( .004) ( .008)
ψ1 .369 .391 .373 - .091 - .172 - .135 - .164 - .166 - .189

( .005) ( .005) ( .007) ( .011) ( .011) ( .012) (.012) ( .011) ( .011)
ψ2 .020 .017 .170 - .028 - .046 - .046

( .003) ( .003) ( .006) ( .008) ( .008) (.008)
ψ3 - .012 - .080 .114

( .004) ( .004) ( .007)
ση1 .302 .302 .301 .310 .306 .304 .306 .300 .298

( .001) ( .003) ( .003) ( .003) ( .003) ( .003) (.003) ( .003) ( .004)
ση2 .038 .039 .039 .038 .039 .036 .038 .037 .037

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
ση3 .255 .259 .256 .263 .260 .248 .258 .247 .242

( .005) ( .006) ( .006) ( .004) ( .005) ( .005) (.005) ( .006) ( .007)
ρη1,η2 .473 .413 .454 .571 .486 .610 .505 .485 .365

( .016) ( .021) .021 ( .013) ( .017) ( .013) ( .017) ( .020) ( .030)
ρη1,η3 - .604 - .548 - .586 - .694 - .618 - .729 - .636 - .620 - .509

( .003) ( .020) .019 ( .011) ( .015) ( .012) ( .016) ( .019) ( .029)
ρη2,η3 - .946 - .948 - .947 - .945 - .946 - .941 - .946 - .943 - .944

( .023) ( .003) .003 ( .002) ( .002) ( .003) ( .002) ( .003) ( .004)
σy0 .491 .506 .496 .448 .479 .429 .442 .455 .494

( .000) ( .007) ( .007) ( .004) ( .005) ( .004) (.004) ( .005) ( .008)
σy−1 .381 .424 .359 .387 .386 .428

( .004) ( .005) ( .004) ( .004) ( .005) (.008)
σy−2

.264 .270 .299
( .004) ( .006) ( .008)

cov(η1, y0) - .227 - .257 - .237 - .156 - .214 - .149 -.186 - .201 - .282
( .019) ( .017) .017 ( .015) ( .016) ( .016) ( .016) ( .017) ( .019)

cov(η1, y−1) - .127 - .183 - .113 - .153 - .168 - .253
( .016) ( .017) ( .017) ( .017) ( .018) (.020)

cov(η1, y−2) - .169 - .185 - .267
( .018) ( .019) ( .022)

cov(η2, y0) .358 .402 .374 .232 .335 .155 .219 .253 .361
( .022) ( .020) .021 ( .017) ( .019) ( .021) ( .020) ( .022) ( .026)

cov(η2, y−1) .218 .331 .119 .242 .235 .352
( .019) ( .021) ( .024) ( .022) ( .025) (.029)

cov(η2, y−2) .239 .253 .351
( .024) ( .027) ( .032)

cov(η3, y0) - .290 - .333 - .305 - .179 - .270 - .107 - .163 - .195 - .291
( .018) ( .023) .023 ( .020) ( .022) ( .023) ( .023) ( .024) ( .029)

cov(η3, y−1) - .169 - .272 - .077 - .190 - .181 - .287
( .021) ( .023) ( .025) ( .023) ( .027) (.032)

cov(η3, y−2) - .181 - .194 - .282
( .026) ( .029) ( .035)

cov(y0, ζ0) .809 .036 - .024 - .823 .826 - .931 .841 - .795 .812
( .023) (8.525) 26.529 ( .269) ( .059) ( .207) (.061) ( .416) ( .096)

cov(y0, ζ−1) .779 - .012 .408 - .352 - .208 .361
( .438) 1.245 ( .102) (17.542) (152.666) (31.114)

cov(y−1, ζ−1) .798 .722 - .066 .830 .234
(.813) ( .062) ( .148) (41.955) (17.858)

cov(y0, ζ−2) - .805 - .719
(3.931) (76.705)

cov(y−1, ζ−2) - .382 - .202
(11.249) (44.061)

cov(y−2, ζ−2) .752
( .094)



Table A.v: Yearly standard deviation of earnings

1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3
1978 .311 .312 .312

( .001) ( .002) ( .002)
1979 .254 .257 .255 .222 .232 .219

( .001) ( .001) ( .001) ( .001) ( .001) ( .001)
1980 .223 .223 .223 .222 .227 .221 .224 .224 .230

( .005) ( .001) ( .001) ( .001) ( .001) ( .001) (.002) ( .002) ( .002)
1981 .264 .260 .263 .000 .103 .002 .004 .006 .001

( .005) ( .005) ( .005) ( .096) ( .040) ( .066) (.082) ( .076) ( .060)
1982 .152 .150 .150 .194 .193 .197 .193 .195 .198

( .005) ( .005) ( .005) ( .002) ( .002) ( .002) (.002) ( .002) ( .002)
1983 .244 .243 .247 .040 .175 .096 .023 .039 .193

( .004) ( .005) ( .005) ( .063) ( .017) ( .037) (.048) ( .049) ( .021)
1984 .154 .149 .149 .189 .184 .187 .188 .188 .182

( .001) ( .004) ( .004) ( .002) ( .001) ( .002) (.001) ( .001) ( .002)
1985 .182 .182 .182 .181 .183 .183 .181 .183 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1986 .187 .187 .187 .189 .189 .190 .190 .190 .192

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1987 .181 .182 .181 .176 .176 .177 .176 .177 .177

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1988 .180 .180 .181 .181 .181 .181 .181 .182 .183

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1989 .171 .172 .172 .168 .170 .169 .169 .170 .171

( .008) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1990 .012 .021 .005 .358 .303 .375 .349 .395 .363

( .002) ( .007) ( .008) ( .012) ( .008) ( .015) (.012) ( .016) ( .013)
1991 .182 .184 .180 .153 .167 .156 .161 .157 .163

( .001) ( .002) ( .002) ( .002) ( .001) ( .002) (.001) ( .002) ( .001)
1992 .162 .162 .162 .159 .155 .159 .157 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1993 .207 .207 .207 .209 .209 .209 .210 .209 .211

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1994 .237 .236 .237 .250 .250 .251 .252 .253 .254

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1995 .193 .195 .194 .177 .179 .177 .177 .178 .180

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1996 .177 .177 .177 .176 .178 .177 .177 .177 .178

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1997 .167 .167 .167 .162 .162 .162 .162 .162 .164

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1998 .137 .138 .138 .134 .137 .135 .135 .136 .138

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
1999 .152 .152 .152 .155 .157 .157 .156 .157 .158

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .001)
2000 .159 .159 .159 .159 .159 .159 .159 .159 .160

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2001 .158 .158 .158 .159 .159 .160 .159 .160 .161

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2002 .153 .153 .153 .146 .146 .146 .146 .147 .149

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2003 .168 .167 .168 .178 .178 .179 .179 .180 .181

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2004 .147 .148 .148 .133 .133 .134 .133 .134 .135

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2005 .128 .128 .128 .130 .132 .130 .131 .131 .133

( .001) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)
2006 .123 .124 .123 .124 .124 .124 .125 .125 .127

( .001) ( .001) ( .001) ( .000) ( .000) ( .000) (.000) ( .000) ( .000)
2007 .117 .117 .117 .115 .116 .116 .115 .117 .118

( .003) ( .001) ( .001) ( .001) ( .001) ( .001) (.001) ( .001) ( .001)



Table A.vi: Estimates of the covariance of individual e�ects: Bias-corrected

Sample periods V ar(η1) Cov(η1, η2) Cov(η1, η3) V ar(η2) Cov(η2, η3) V ar(η3)
(3,15] 2.5 0.2 -2.7 0.024 -0.25 3.1

(11) (0.89) (12) (0.077) (1) (13)
(15,22] 0.31 0.031 -0.31 0.005 -0.043 0.41

(0.13) (0.016) (0.16) (0.0023) (0.022) (0.22)
(22,26] 0.1 0.0076 -0.065 0.0018 -0.013 0.096

(0.014) (0.0021) (0.017) (0.00051) (0.0038) (0.029)
(26,28] 0.047 0.0021 -0.016 0.00029 -0.001 0.0043

(0.0072) (0.001) (0.0073) (0.00025) (0.0017) (0.012)
Complete sample 0.65 0.053 -0.67 0.0069 -0.068 0.78

(2.3) (0.19) (2.6) (0.017) (0.22) (2.8)
Random e�ects 0.093 0.0059 -0.05 0.0015 -0.0093 0.066

(0.0035) (0.00053) (0.0041) (1e-04) (0.00075) (0.0058)

Notes: See Table above
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Table A.vii: Distances between unconstrained and constrained estimates for observations and
simulations

Quantiles Observed distance Simulated distance
0.175 0 0
0.225 0.0021 0.00180
0.275 0.0141 0.0132
0.325 0.0370 0.0391
0.375 0.0763 0.0761
0.425 0.126 0.125
0.475 0.194 0.194
0.525 0.276 0.282
0.575 0.401 0.395
0.625 0.568 0.531
0.675 0.763 0.714
0.725 1.04 0.945
0.775 1.48 1.21
0.825 2.14 1.57
0.875 3.17 2.10
0.925 5.32 2.93
0.975 12.7 4.74

Notes: Distances use as a metric the inverse covariance matrix
of ηs. Simulations are performed by adding to the constrained
estimates a normal noise and by reprojecting on the constrained
set.
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Table A.viii: Quantiles of individual e�ects ηi: simulated constrained estimates

Individual Sample Quantiles
e�ects periods 0.05 0.2 0.35 0.5 0.65 0.8 0.95

(3,15] 1.58 1.96 2.1 2.23 2.35 2.52 2.98
(0.811) (0.0365) (0.0263) (0.0234) (0.0204) (0.0197) (0.0481)

(15,22] 1.94 2.16 2.3 2.4 2.53 2.72 3.18
η1 (0.0288) (0.0204) (0.0177) (0.0118) (0.012) (0.016) (0.0384)

(22,26] 1.99 2.22 2.35 2.46 2.57 2.75 3.21
(0.0193) (0.0151) (0.0126) (0.0125) (0.0106) (0.0116) (0.0218)

(26,28] 2.11 2.34 2.45 2.54 2.65 2.81 3.18
(0.0189) (0.0155) (0.0123) (0.0119) (0.0099) (0.0113) (0.0178)

(3,15] 0.0161 0.0393 0.0598 0.0786 0.103 0.136 0.241
(0.0442) (0.059) (0.0659) (0.0762) (0.0897) (0.116) (0.465)

(15,22] 0.00891 0.0207 0.0294 0.038 0.0475 0.0615 0.103
η2 (0.0223) (0.0277) (0.0295) (0.0305) (0.0337) (0.0358) (0.0513)

(22,26] 0.00832 0.0195 0.0276 0.0353 0.0435 0.056 0.0969
(0.0208) (0.0271) (0.0294) (0.03) (0.0312) (0.0316) (0.0396)

(26,28] 0.00868 0.0213 0.0282 0.0345 0.0425 0.0537 0.0852
(0.0251) (0.0291) (0.0269) (0.0287) (0.0302) (0.0305) (0.0386)

(3,15] -0.683 -0.386 -0.282 -0.21 -0.157 -0.101 -0.0411
(0.682) (0.198) (0.149) (0.122) (0.103) (0.0961) (0.0694)

(15,22] -0.348 -0.182 -0.137 -0.109 -0.0837 -0.0589 -0.0244
η3 (0.114) (0.0663) (0.0614) (0.0579) (0.051) (0.0463) (0.0402)

(22,26] -0.355 -0.184 -0.135 -0.103 -0.0787 -0.0554 -0.0253
(0.0918) (0.0737) (0.0611) (0.0558) (0.0494) (0.0443) (0.0366)

(26,28] -0.328 -0.192 -0.137 -0.102 -0.0788 -0.0557 -0.025
(0.0801) (0.0714) (0.0635) (0.0581) (0.0579) (0.0541) (0.0418)

Notes: Sample period: Number of observed periods. Standard errors (sampling and parameter uncer-
tainty, 1000 MC simulations) in brackets.
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Table A.ix: Transitions t = 1 to t = 15

Quintiles in t=15 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Quintile 1 35.3 25.1 17.9 13.7 7.96
in t=1 (24.1) (22.5) (19.7) (18.2) (15.6)

[26] [24.1] [17.7] [18.3] [13.9]
Quintile 2 29.2 27.6 19.5 13.9 9.7

(22.4) (21.6) (20.3) (19.2) (16.5)
[20.8] [22.5] [21.4] [19.7] [15.7]

Quintile 3 22.3 24.8 22.4 19 11.4
(21.4) (19.4) (20.5) (20.8) (17.8)
[21.8] [18.4] [21.3] [20] [18.4]

Quintile 4 9.95 16.5 26.4 27.1 20
(18.5) (20.2) (20.4) (20.4) (20.5)
[18] [20.4] [19] [20.9] [21.6]

Quintile 5 3.23 5.97 13.7 26.3 50.9
(13.6) (16.3) (19) (21.5) (29.6)
[13.4] [14.6] [20.5] [21.1] [30.4]

Notes: Observed, unconstrained between brackets, simulated between square
brackets. Quintiles of observed data are computed using the non-missing obser-
vations. Predicted data are computed adding the permanent component and
simulated draws from the distribution of the transitory component. Quintiles
are computed on all observations.

Table A.x: Transitions t = 16 to t = 31

Quintiles in t=31 Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
Quintile 1 51.1 31.7 12.2 4.04 0.974
in t=16 (38.1) (32.1) (20.3) (7.24) (2.23)

[46.5] [29.5] [16.8] [4.31] [2.92]
Quintile 2 30.9 35.1 24.1 6.96 2.92

(30.3) (26.2) (23.9) (15.7) (3.76)
[29.4] [27.8] [25.7] [13.2] [3.76]

Quintile 3 11.4 24.8 36.9 23.8 3.2
(20.3) (22.4) (27.4) (21.8) (8.07)
[18.5] [24.8] [28.1] [22.7] [5.98]

Quintile 4 4.45 6.82 21.7 46.8 20.2
(8.35) (16.1) (22.4) (33.5) (19.5)
[5.57] [15.6] [23.4] [36.9] [18.5]

Quintile 5 2.23 1.67 5.01 18.4 72.8
(2.92) (3.06) (5.98) (21.6) (66.5)
[0.139] [2.23] [5.98] [22.8] [68.9]

Notes: see table A.ix
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Table A.xi: Group e�ects ηg

Skill group Age group Nb Obs ηg1 ηg2 ηg3
2 17 1268 2.5 0.024 -0.049

(0.037) (0.0069) (0.054)
3 17 1224 2.5 0.023 -0.051

(0.04) (0.006) (0.044)
1 19 41 2.8 0.053 -0.23

(0.043) (0.007) (0.055)
2 19 934 2.6 0.027 -0.073

(0.037) (0.0053) (0.039)
3 19 994 2.6 0.025 -0.073

(0.041) (0.0073) (0.053)
1 21 117 2.9 0.035 -0.12

(0.087) (0.0087) (0.071)
2 21 710 2.8 0.031 -0.1

(0.017) (0.0031) (0.024)
3 21 512 2.7 0.025 -0.09

(0.017) (0.0032) (0.024)
1 23 171 3.1 0.038 -0.14

(0.019) (0.0035) (0.026)
2 23 348 2.8 0.033 -0.11

(0.027) (0.0045) (0.034)
3 23 254 2.8 0.035 -0.15

(0.043) (0.0057) (0.042)
1 25 191 3.4 0.045 -0.19

(0.054) (0.0063) (0.047)
2 25 146 2.9 0.021 -0.044

(0.061) (0.0061) (0.042)
3 25 93 2.7 0.016 0.0083

(0.024) (0.0037) (0.031)
1 27 114 3.5 0.03 -0.12

(0.027) (0.006) (0.047)
2 27 87 3.1 0.044 -0.22

(0.021) (0.0037) (0.028)
3 27 63 2.7 0.013 0.02

(0.039) (0.0059) (0.046)
1 29 58 3.3 0.024 -0.042

(0.058) (0.0074) (0.056)
2 29 67 2.9 0.021 -0.097

(0.083) (0.013) (0.11)
3 29 55 2.7 -6.2e-05 0.1

(0.053) (0.0082) (0.064)

Note: Standard error in parentheses. A �at spot de�ator is used
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Table A.xii: Frequencies of violations of single-dimensional restrictions: Robustness

Restrictions −→ η2 ≥ 0 η3 ≤ 0 η3 + πTη2 ≥ 0
Sample periods

(3,15] 0.13 0.16 0.15
(0.041) (0.046) (0.05)

(15,22] 0.12 0.18 0.19
(0.019) (0.021) (0.022)

(22,26] 0.068 0.13 0.21
(0.012) (0.018) (0.024)

(26,28] 0.039 0.1 0.18
(0.01) (0.02) (0.024)

Notes: Sample periods = number of observed periods. 5 per cent level rejection frequency of single-dimensional

tests of restrictions. Standard errors (sampling and parameter uncertainty, 1000 MC simulations) between

brackets. A �at spot de�ator is used.
Sample periods P-values <0.10 0.05 0.01

(3,15] 0.17 0.13 0.085
(0.012) (0.011) (0.0087)

(15,22] 0.23 0.18 0.13
(0.011) (0.01) (0.0086)

(22,26] 0.24 0.18 0.13
(0.0092) (0.0084) (0.0072)

(26,28] 0.22 0.17 0.11
(0.0092) (0.0082) (0.0069)

Complete sample 0.22 0.17 0.11
(0.0051) (0.0047) (0.0039)

Notes: Sample periods = number of observed periods. Frequency of p-values of the test of restrictions satisfying

the conditions. Standard errors (sampling and parameter uncertainty, 20 Monte Carlo simulations) between

brackets. Statistic distribution obtained by 150 replications. A �at spot de�ator is used.

Table A.xiii: Frequencies of violations of the global restriction: Robustness
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Table A.xiv: Quantiles of structural estimates: Robustness

Sample periods 0.05 0.2 0.35 0.5 0.65 0.8 0.95
(3,15] 6.4 7.5 8.1 8.62 9.13 9.76 11

(0.297) (0.235) (0.25) (0.282) (0.303) (0.224) (0.276)
(15,22] 4.67 6.32 7.09 7.67 8.29 9.18 11.2

κ (0.26) (0.182) (0.241) (0.253) (0.274) (0.74) (0.324)
(22,26] 2.85 5.11 6.36 7.31 8.17 9.41 12.8

(0.166) (0.159) (0.169) (0.296) (0.249) (0.339) (0.335)
(26,28] 1.91 4.43 5.92 7.29 8.66 10.8 14.7

(0.145) (0.189) (0.215) (0.259) (0.331) (0.46) (0.386)
(3,15] 0.161 0.225 0.286 0.362 0.469 0.713 2.03

(0.0768) (0.0788) (0.0849) (0.104) (0.137) (0.195) (0.526)
(15,22] 0.158 0.255 0.336 0.434 0.602 0.896 2.59

ρL (0.0881) (0.0799) (0.0913) (0.115) (0.125) (0.222) (0.67)
(22,26] 0.102 0.23 0.347 0.48 0.697 1.23 4.3

(0.0819) (0.104) (0.116) (0.153) (0.207) (0.249) (0.664)
(26,28] 0.0797 0.158 0.287 0.459 0.752 1.4 5.1

(0.0576) (0.123) (0.159) (0.177) (0.226) (0.305) (0.793)
(3,15] 7.88 29.2 58.9 130 324 1048 13612

(1.05) (1.75) (2.56) (3.97) (6.69) (14.3) (221)
(15,22] 15.1 78.3 200 434 983 3196 51121

cL (1.65) (3.09) (3.66) (5.62) (11.5) (33.1) (969)
(22,26] 3.57 59.4 208 528 1603 6547 101232

(0.865) (3.04) (5.19) (9.89) (14.3) (39) (1065)
(26,28] 1.48 17.9 113 460 1689 7271 158715

(0.521) (2.3) (5.02) (8.77) (17.7) (46.6) (1327)

Notes: A �at spot de�ator is used.
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Figure A.i: Change over time in mean and variance of log earnings for cohorts 1977-2000
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Figure A.ii: First order autocorrelation relative to potential experience for 1977, 1987 and 1997
entry cohorts
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Figure A.iii: Unconstrained estimates: variance of residuals vit by age and skill group
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