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Abstract

Building models for high dimensional portfolios is important in risk management and asset
allocation. Here we propose a novel and fast way of estimating existing models of time-varying
covariances that overcome an undiagnosed incidental parameter problem which has troubled
existing methods when applied to hundreds or even thousands of assets. Indeed we can handle
the case where the cross-sectional dimension is larger than the time series one. The theory of
this new strategy is developed in some detail, allowing formal hypothesis testing to be carried
out on these models. Simulations are used to explore the performance of this inference strategy
while empirical examples are reported which show the strength of this method. The out of
sample hedging performance of various models estimated using this method are compared.

Keywords: ARCH models; composite likelihood; dynamic conditional correlations; incidental
parameters; quasi-likelihood; time-varying; covariances.

1 Introduction

The estimation of time-varying covariances between the returns on hundreds of assets is a key input

in modern risk management and asset allocation. Typically this is carried out by calculating the

∗An earlier version of this paper was circulated in 2008 under the same title but with authors Engle, Shephard
and Sheppard.

1



sample covariance matrix based on the last 100 or 250 days of data or through an exponential

smoother. When these covariances are allowed to vary through time using ARCH-type models, the

computational burden of likelihood based fitting is overwhelming in very large dimensions, while

the usual two step quasi-likelihood estimators of the dynamic parameters indexing them can be

massively biased due to an undiagnosed incidental parameter problem even for very simple models.

In this paper we introduce novel econometric methods which sidestep both of these issue allowing

richly parameterised ARCH models to be fit in vast dimensions, which potentially can be much

larger than the time series dimension.

Early work on time-varying covariances in large dimensions was carried out by Bollerslev (1990),

where the volatilities of each asset were allowed to vary through time but the correlations were time

invariant. Surveys of more sophisticated models are given by Bauwens, Laurent, and Rombouts

(2006), Silvennoinen and Teräsvirta (2009) and Engle (2009a).

The only econometric work that we know of which allows correlations to change through time in

vast dimensions is that of RiskMetrics by J.P. Morgan released in 1994, the DECO model of Engle

and Kelly (2012) and the MacGyver estimation method of Engle (2009b). Engle and Kelly (2012)

assume that the time-changing correlation amongst assets is common across the cross-section of L

assets, allowing the log-likelihood to be computed in O(L) calculations. However, that model is

quite restrictive since the diversity of correlations is often the key to risk management.

The RiskMetrics estimator of the conditional covariance matrix is parameter free. Formally

this is a special case of the scalar integrated BEKK process discussed by Engle and Kroner (1995).

It has been widely used in industry and was until recently the only viable proposed method.

An alternative method was suggested by Engle (2009b) where he fit many pairs of bivariate

estimators, governed by simple dynamics, and then took a median of these estimators. This method

requires O(L2) calculations, is not invariant to reparameterisation and formalising this method in

order to conduct inference is difficult. Our method has some similarities to the Engle (2009b)

strategy but is more efficient and is invariant.

A further set of papers advocate methods which can be used on moderately high dimensional

problems, such as 50 assets. The first was the covariance targeting and scalar dynamics BEKK

model of Engle and Kroner (1995), the second was the DCC model introduced by Engle (2002) and

studied in detailed by Engle and Sheppard (2001) — recent developments in this area include Aielli

(2013) and Engle (2009a). When these methods have been implemented in practice, they always use

a two stage estimation strategy which removes an enormously high dimensional nuisance parameter

using a method of moments estimator and then maximises the corresponding quasi-likelihood func-

tion. We will show that even if we could compute the quasi-likelihood function for these models
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in dimensions of many hundreds, the incidental parameter problem causes quasi-likelihood based

inference to have economically important biases in the estimated dynamic parameters.

Our approach is to construct a type of composite likelihood, which we then maximise to deliver

our preferred estimator. The composite likelihood is based on summing up the quasi-likelihood of

subsets of assets. Each subset yields a valid quasi-likelihood, but this quasi-likelihood is only mildly

informative about the parameters. By summing over many subsets we can produce an estimator

which has the advantage that we do not have to invert large dimensional covariance matrices. We

provide a proof of the consistency of the composite likelihood estimator in the presence of incidental

parameters and show that the estimator is asymptotically normal. Multivariate volatility modelling

is typically applied to datasets that have long time-series dimensions but a much smaller number

of assets. An important implication of our study then is that the scope of multivariate volatility

modelling now encompasses both fixed-N large-T and large-N large-T panels.

The theoretical analysis is general in the sense that it focuses on a generic likelihood estimation

problem for large-N large-T nonlinear dynamic panels with incidental parameters. In this part, we

build upon Pakel (2014) who analyses the first-order bias of the integrated composite likelihood

estimator under different types of dependence. We extend their results for the strong dependence

setting by allowing for a vector-valued nuisance parameter.

Our approach can also be used in the context of more structured models, which impose stronger a

priori constraints on the model. Factor models with time-varying volatility are the leading example

of this, e.g. King, Sentana, and Wadhwani (1994), Fiorentini, Sentana, and Shephard (2004), Engle,

Ng, and Rothschild (1990) and Rangel and Engle (2012).

The structure of the paper is as follows. In Section 2 we outline the model and discuss alterna-

tive general methods for fitting time-varying covariance models. We also discuss the usual use of

covariance targeting, which helps us in the optimisation of the objective functions discussed in this

paper. In Section 3 we discuss the core of the paper, where we average in different ways the results

from many small models in order to carry out inference on a large model. We show this method has

a hidden incidental parameter problem and that the use of composite likelihoods largely overcomes

this problem. The formal theoretical analysis and the main results are presented in Section 4. Sec-

tion 6 provides a Monte Carlo investigation comparing the finite sample properties of our estimator

with the quasi-maximum likelihood. Section 7 illustrates our estimator on 95 components of the

S&P 100, finding evidence of both qualitative and quantitative differences. We extend this analysis

to cover 480 components of the S&P 500. In Section 8 we discuss some important additional topics.

Section 9 concludes, while the Appendix contains proofs.
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2 The framework

Our primary objective is large scale modelling in a statistically parsimonious and computationally

efficient fashion. Let rlt, be the (log) return on individual asset l at time t, where l = 1, ..., L and

t = 1, ..., T. Data are assumed to exhibit both time and cross-section dependence. Typically, the

interest would be on estimating the time-varying conditional covariance matrix,

Cov(rt|Ft−1) = Ht,

where rt = (r1t, ..., rLt)
′ , Ft is the information set at time t and E[rt|Ft−1] = 0. Ht is modelled

parametrically, indexed by a parameter vector ψ. Two examples are below.

Example 2.1 The scalar BEKK (Baba, Engle, Kraft and Kroner) model,

Ht = (1− α− β) Σ + αrt−1r
′
t−1 + βHt−1, α ≥ 0, β ≥ 0, α+ β < 1,

which is a special case of Engle and Kroner (1995). Typically, this model is completed by setting

H0 = Σ. Hence, ψ = (λ′, θ′)′, where λ = vech(Σ) and θ = (α, β)′.

Example 2.2 Nonstationary covariances with scalar dynamics, Ht = αrt−1r
′
t−1 + (1 − α)Ht−1,

α ∈ [0, 1). A simple case of this EWMA dynamics is RiskMetrics, which puts α = 0.06 for daily

returns and 0.03 for monthly returns. Inference is typically made conditional on λ = vech(H0),

which has to be estimated. Therefore, ψ = (λ′, θ)′, where λ = vech(H0) and θ = α.

Section 5 discusses the popular Dynamic Conditional Correlation (DCC) model of Engle (2002).

Estimation in these multivariate GARCH style models gets increasingly complicated as L increases.

To illustrate, consider the popular setting of Gaussian normality where rt|Ft−1 ∼ N(0,Ht), where

0 is a (L× 1) vector of zeroes. Then, the quasi-likelihood is given by

logL(ψ; r) =
T∑

t=1

ℓ(ψ; rt), where ℓ(ψ; rt) = −1

2
log |Ht| −

1

2
r′tH

−1
t rt. (1)

with r = (r′1, ..., r
′
T )

′. Estimating ψ by the maximum likelihood method using (1) is prone to

several issues in high-dimensional models. The first problem is the modelling of Ht which has O(L2)

parameters. Although this curse of dimensionality issue could be solved by parameter reduction

methods, such as factor modelling, there still remains a computational issue: the solution to the

optimisation problem will not exist in closed form, requiring numerical optimisation. This in turn

implies that H−1
t will have to be calculated for each t, and many times until the numerical optimiser

converges; a daunting task even for moderate L as the computational load is O
(
L3
)
. This paper’s

objective is to side-step these issues.
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In these examples, the parameter vector ψ was divided into two parts: λ and θ. Typically pa-

rameters that govern the volatility dynamics (θ in our examples) would be considered as parameters

of interest while the remaining parameters, λ, would be considered nuisances. The dimension of

the nuisance parameter is an important issue. In Example 2.1, Σ has L(L+ 1)/2 free parameters,

which will be vast if L is large. Similar issues arise in many multivariate models.

2.1 Empirical illustration

Here we estimate the models given in Examples 2.1 and 2.2 (and the DCC model discussed in

Section 5) using data for all companies at one point listed on the S&P 100, plus the index itself,

over the period January 1, 1997 until December 31, 2006 taken from the CRSP database. This

database has 124 companies although 29, for example Google, have one or more periods of non-

trading, (e.g. prior to IPO or subsequent to an acquisition). Selecting only the companies that have

returns throughout the sample reduced this set to 95 (+1 for the index). This means T = 2, 516 and

L ≤ 96. To allow L to increase, which allows us to assess the sensitivity to L, we set the first asset

as the market and the other assets are arranged alphabetically by ticker (for stocks that changed

tickers during the sample, the ticker on the first day of the sample was used). The estimated θ

parameters from an expanding cross-section of assets are contained in Table 1. Throughout θ is

estimated using the conventional multistep procedures for each model, which we refer to as 2MLE

here and spelt out later in the paper.

S&P 100 Components S&P 500 Components

Scalar BEKK EWMA DCC Scalar BEKK DCC

L α̃ β̃ α̃ α̃ β̃ L α̃ β̃ α̃ β̃

5 .0189 .9794 .0134 .0141 .9757 5 .0261 .9715 .0101 .9823
10 .0125 .9865 .0103 .0063 .9895 25 .0080 .9909 .0030 .9908
25 .0081 .9909 .0067 .0036 .9887 50 .0055 .9932 .0018 .9882
50 .0056 .9926 .0045 .0022 .9867 100 .0034 .9934 .0015 .9524
96 .0041 .9932 .0033 .0017 .9711 250 .0015 .9842 .0020 .5561

480 .0032 .5630 .0013 .2556

Table 1: Parameter estimates from a covariance targeting scalar BEKK, EWMA (estimating H0)
and DCC using maximum m-profile likelihood (2MLE). Based upon a real database built from daily
returns from 95 companies plus the index from the S&P100, from 1997 until 2006. The same
analysis is also reported on 480 components from the S&P 500 over the same time period.

The empirical results suggest the increasing L destroys the 2MLE as α̃ falls dramatically as

L increases. These results will be confirmed by detailed simulation studies in Section 6 which

produce the same results by simulating BEKK or DCC models and then estimating them using

2MLE techniques. In addition Section 7 suggests the 2MLE parameter values when L = 96 are

poor when judged using a simple economic criteria.

These results are reinforced by an empirical study using the same type of database, but now
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based on the corresponding components of the S&P 500. Including the index this produces a

dataset with L = 480. The results in Table 1 show dramatic distortions — where the estimated β

also crash towards zero as L increases.

We now turn to our preferred estimator which allows L to have any relationship to T .

3 The composite likelihood method

3.1 Main ideas

Our strategy in dealing with these statistical and computational issues will be to use a composite

likelihood. The main idea behind this is that if the joint density is difficult to specify or to work

with, then one can instead use an approximation based on lower dimensional marginal densities.

This idea can be traced back to Lindsay (1988).1 The simplest composite log-likelihood is given by

L∑

l=1

T∑

t=1

ℓ(ψ; rkt), (2)

where
∑T

t=1 ℓ(ψ; rkt) is the log-likelihood for the lth individual. Obviously, if data are independent

across L, then (2) coincides with the true joint likelihood function.2 In this study we will focus

on composite likelihoods constructed from bivariate marginal densities. The objective is to obtain

a consistent and computationally fast valid estimator of the parameter of interest by reducing

the dimensionality of the problem from L to 2. Beyond computational gains, estimation based

on lower dimensional marginal densities is also useful in a robustness sense: one is more likely

to misspecify the more complicated joint density compared to the simpler univariate or bivariate

marginal densities (Xu and Reid (2011)). Hence, composite likelihood estimation is potentially

more robust to misspecification. There will, of course, be some efficiency loss. However, this would

very much depend on the particular model at hand.

We now introduce the notation. Let the pairs of observations be given by Yjt = (rj1t, rj2t)

where (j1, j2) ∈ {1, ..., L}2 and j1 6= j2 for all j = 1, ..., N. Obviously, all cases where (ri1t, ri2t) =

(rj1t, rj2t) and i 6= j are ruled out, in order to exclude redundant pairs from analysis. N depends

on the particular sampling approach. For example, if all unique bivariate pairs are considered, then

N = L(L− 1)/2. Another possibility is to take all (or some) contiguous pairs:

Y1t = (r1t, r2t), Y2t = (r2t, r3t), . . . YNt = (rL−1,t, rL,t),

where N = O(L). These samples are studied here, though other sampling strategies are interesting.

1See also Cox and Reid (2004), Varin and Vidoni (2005), Varin (2008) and Varin, Reid, and Firth (2011).
2This type of marginal analysis has appeared before outside the time-series statistics literature. Examples include

Besag (1974) in his analysis of spatial processes, Fearnhead (2003) in bioinformatics, deLeon (2005) on grouped data,
Kuk and Nott (2000) and LeCessie and van Houwelingen (1994) for correlated binary data. Cox and Reid (2004)
discuss this problem in the non-time-series case.
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Implicit here is that for each pair j the lower dimensional likelihood ℓ(θ, λj ;Yjt) are such that

(θ̂, λ̂j) = argmax
θ,λj

T∑

t=1

ℓ(θ, λj;Yjt)

is a consistent estimator of the (pseudo) true parameter vector (θ0, λj0) as T → ∞. In other words,

in our particular case, the bivariate likelihood functions carry enough information to consistently

estimate (θ0,λj0). However, more information can be obtained by using the composite likelihood

function, formed by averaging across all pairs in the sample:

CLNT (ψ) =
1

NT

N∑

j=1

T∑

t=1

ℓjt(θ, λj), (3)

where ℓjt(θ, λj) = ℓ(θ, λj;Yjt). What is essentially being done here is pooling the information in

the dataset in order to estimate (θ0, λj0), without having to use the complicated full likelihood

function. Hence, using the whole information pool for estimation is now much cheaper in terms of

computational costs. Another advantage is that in short panels, where time-series variation is not

sufficient, the individual specific parameter λj0 might be poorly identified, due to an almost flat

score function. Averaging across pairs would improve the curvature of the score and, thus, improve

identification of the pair-specific parameter.

Depending on the particular sampling strategy, computational gains can be substantial. Evalu-

ation of CLNT (ψ) costs O(N) calculations. In the case where all distinct pairs is used, this means

that the CL costs O(L2) calculations - which is distinctively better than the O(L3) implied by

the full likelihood, based on the joint density. One can also use the subset of contiguous pairs or

an economically motivated selection like the so called “beta CL” discussed in Section 8.1 which is

based on all pairs involving the market index returns. Both of these would cost O(L) calculations.

When it comes to constructing the composite likelihood function, another alternative is to choose

only O(1) pairs, which is computationally faster. It is also tempting to randomly select N pairs

and make inference conditional on the selected pairs as the selection is strongly exogenous. We will

see in a moment that the efficiency loss of using large, but ultimately only O(1) numbers of subsets

compared to computing all possible pairs can be extremely small.

3.2 Parameter Space for λj

A peculiar feature of λj is that, there is no guarantee that there will be no links between λi and

λj for different values of i and j. For instance, in the scalar BEKK model of Example 2.1, for

Y1t = (r1t, r2t)
′ and Y2t = (r2t, r3t)

′, one has

λ1 = (Σ11,Σ21,Σ22)
′ and λ2 = (Σ22,Σ32,Σ33)

′.
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Although it is possible to make gains in estimation by using these links, extension towards

this direction would not be trivial. Therefore, we leave this interesting avenue for future research.

Then, the explicit assumption is that λj0 are variation free (Engle, Hendry, and Richard (1983)),

in the sense that (λ1, ..., λN ) ∈ Λ1× ...×ΛN , where Λj is the parameter space for λj . In the BEKK

example this is achieved by having no pairs that contain the same rlt.

Remark 1 Ignoring possible links means that estimation for λi should be carried out based solely

on the time variation for the jth pair, using Yj1, ..., YjT . Thus the variation-free structure requires

that λj is identified using the jth submodel’s likelihood, given knowledge of θ. For many models this

will be the case, e.g. an unstructured Σ in a scalar BEKK model. If a factor model is imposed on

Σ however, some care needs to be taken that dim(Yjt) is larger than the dimension of the factor.

Of course, this risks efficiency loss. However, our experiments which use cross-submodel con-

straints, not reported here, indicate that the efficiency loss in practice is tiny when N is large.

3.3 Theoretical framework: nonlinear and dynamic panels with incidental pa-

rameters

Although the primary focus of this study is volatility modelling, the theoretical setting considered

here has a general scope as the analysis is based on a generic likelihood estimation problem. In

Section 4, we will make specific assumptions on the dependence structure of data, smoothness

properties of the likelihood function and the existence of moments. However, the main theoretical

results will not be with respect to a particular model, such as BEKK or DCC.

The estimation problem of this paper belongs to the more general class of estimation in the

presence of incidental parameters in a nonlinear and dynamic panel data model with large-N large-

T asymptotics. To illustrate, let the full joint likelihood function be given by ℓ(θ, λ1, ..., λN ;Y )

where Y is the (N × T ) data matrix. Then, the concentrated (or profile) likelihood estimator,

based on the joint density, is given by

θ̂ = argmax
θ∈Θ

ℓ(θ, λ̂1(θ), ..., λ̂N (θ);Y ) and λ̂j(θ) = arg max
λj∈Λj

T∑

t=1

ℓ(θ, λj;Yjt), (4)

In the case of the composite likelihood method, we accordingly have

θ̂ = argmax
θ∈Θ

N∑

j=1

T∑

t=1

ℓjt(θ, λ̂j(θ)) and λ̂j(θ) = arg max
λj∈Λj

T∑

t=1

ℓ(θ, λj;Yjt), (5)

Here, λ1, ..., λN are called the incidental or nuisance parameters. It is well known that estimation in

this setting is prone to the incidental parameter issue, first analysed by Neyman and Scott (1948).

There is a rich literature dealing with this issue in statistics (e.g. Barndorff-Nielsen (1983), Cox
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and Reid (1987), McCullagh and Tibshirani (1990) and Sartori (2003)). A classic reference in

econometrics is Nickell (1981). Recently, there has been a particular interest on this problem in

the microeconometrics literature, within the framework of estimation in the presence of unobserved

heterogeneity (e.g. Hahn and Kuersteiner (2011), Hahn and Newey (2004), Carro (2007), Arellano

and Bonhomme (2009), Bester and Hansen (2009), Fernández-Val (2009), Dhaene and Jochmans

(2011) and Pakel (2014). Lancaster (2000) and Arellano and Hahn (2007) provide detailed surveys).

We will adopt a similar theoretical setting as in and build upon Pakel (2014) who allows for both

serial and cross-section dependence, which is appropriate for financial data.

The classical incidental parameter bias in large-N large-T panel data models under cross-section

independence is asymptotically non-vanishing in the following sense: the estimation error associated

with each λ̂j gets accumulated in
∑N

j=1

∑T
t=1 ℓjt(θ, λ̂j(θ)) (the joint likelihood function under cross-

section independence) as N → ∞. Then, as N,T → ∞, despite the increasing information from

the time-series dimension, the accumulated estimation error remains sufficiently large, leading to
√
NT (θ̂− θ0) d→ N (B,Ω) ,B = O(

√
N/T ) as N,T → ∞, where Ω is some asymptotic covariance

matrix. This necessitates the use of bias correction methods. An important distinction of our paper

is that, under the dependence setting considered here, this bias turns out to be an asymptotically

vanishing time-series small-sample bias. Of course, some bias correction might still be desirable in

small samples, but, as the simulation results later reveal, this is not required for the sample sizes

we consider.

In volatility modelling, often we can side step the optimising over λ by concentrating at some

moment based estimator λ̃, by using the covarince-targeting idea of Engle and Mezrich (1996). In

the particular case of Example 2.1, they suggest using Σ̂ = T−1
∑T

t=1 rtr
′
t in which case λ̂ = vech(Σ̂).

By the same idea, in Example 2.2 one can put Ĥ0 = T−1
∑T

t=1 rtr
′
t and λ̂ = vech(Ĥ0).

3 Appropriate

two-step estimator versions of (4) and (5) are then given by

θ̂ = argmax
θ∈Θ

ℓ(θ, λ̃1, ..., λ̃N ;Y ) and θ̂ = argmax
θ∈Θ

N∑

j=1

T∑

t=1

ℓjt(θ, λ̃j),

respectively. These estimators are not concentrated likelihood estimators anymore, since λ̃j are not

likelihood based. Instead, they can be considered as two-step GMM estimators (see Newey and

McFadden (1994)). We will provide the theory for the concentrated likelihood estimator, but will

use the moments based approach in applications. Note that in large samples the two approaches

are expected to deliver similar results. In what follows, we refer to (4) as 2MLE. In the case of (5),

3When we use quasi-likelihood estimation to determine α in the EWMA model a significant problem arises when
K is large for α̃ will be forced to be small in order that the implied Ht has full rank— for a large α and large K will
imply Ht is singular. This feature will dominate other ones and holds even though element by element the conditional
covariance matrix will very poorly fit the data.
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L 2MLE 2MCLE 2MSCLE

5 24s 0.1s 0.2s
25 46s 2.1s 0.2s
50 2m 10s 10s 0.5s

100 1h 50m 39s 0.8s
250 15h 11m 4m 7s 1.6s
480 85h 33m 18m 6s 4.5s

Table 2: CPU time required to estimate a covariance targeting scalar BEKK on the assets of the
S&P 500. All models were estimated on a 2.5GHz Intel Core 2 Quad.

2MCLE corresponds to the case where all unique bivariate pairs are used, while 2MSCLE is the CL

estimator based on contiguous pairs. We finish this part by presenting some computational times

for a problem based on modelling up to 480 assets (Table 2). Clearly, the concentrated likelihood

approach does deliver in terms of computational efficiency. A detailed discussion of this will be

given in Section 7.4.

4 Dependence structure and large sample theory

4.1 Dependence setting

The main idea underlying the dependence setup is mixing-type dependence across time and a

strong-type of cross-sectional dependence. The essence of mixing is that although a mixing random

variable is not independently distributed, dependence between observations at two points in time

vanishes as the time distance increases.

Mixing is a property related to the sigma-algebras generated by random variables. Therefore,

we start by defining some relevant sigma-fields:

F t
j,−∞ = σ(..., Yj,t−1, Yjt), F∞

j,t+m = σ(Yj,t+m, Yj,t+m+1, ...),

F t
ij,−∞ = σ(..., Yi,t−1, Yj,t−1, Yit, Yjt), F∞

ij,t+m = σ(Yi,t+m, Yj,t+m, Yi,t+m+1, Yj,t+m+1, ...).

Note that the sigma-field generated by some sequence of Yjt will essentially be a sigma-field gen-

erated by a corresponding sequence of rlt. For example, F t
j,−∞ = σ(..., rj1,t−1, rj2,t−1, rj1t, rj2t) and

F∞
j,t+m = σ(rj1,t+m+1, rj2,t+m+1, rj1,t+m+2, rj2,t+m+2, ...).

Definition 4.1 (α-mixing) For two events G ∈ G and H ∈ H, where G and H are some sigma-

fields, the α-mixing coefficient is defined as α(G,H) = sup{|P (G ∩H)− P (G)P (H)| : G ∈ G,H ∈
H}. A random sequence {Yjt}Tt=1 is called α-mixing if limm→∞ supt α(F t

j,−∞,F∞
j,t+m) = 0.

As we focus on a panel of random variables, we have to consider some slightly more compli-

cated dependence structures. For example, what is the magnitude of dependence between Yit and

10



Yj,t+m (as opposed to the magnitude of dependence between observations on the same pair at

different points in time, e.g. Yit and Yi,t+m)? Therefore, it is necessary to introduce the follow-

ing mixing coefficients: αi,j(m) = supt α(F t
i,−∞,F∞

j,t+m), αij,k(m) = supt α(F t
ij,−∞,F∞

k,t+m) and

αi,jk(m) = supt α(F t
i,−∞,F∞

jk,t+m), where i, j, k = 1, ..., N . Intuitively, αi,j(m) measures the de-

pendence between m-period apart observatons on pairs i and j (note that in what follows, we use

αi(m) = αj(m) = αi,j(m) whenever i = j). On the other hand, αij,k(m) measures the depen-

dence between m-period apart observations that belong to (i) the sigma-field generated by pairs

i and j together and (ii) the sigma-field generated by pair k. Such coefficients will be useful for

understanding the dependence properties of non-standard covariances, such as Cov(ri1trj2t, rk1t).

These mixing coefficients are slightly different from the usual ones, such as αi(m) which controls

the dependence structure for a single time-series only. Our modification is due to the necessity that

in financial panels one has to allow for dependence between observations on two different pairs

that are m units apart in time. If limm→∞ αi,j(m) = 0, then this dependence is restricted to be

of α-mixing type. Therefore, for instance, the daily return on the IBM equity at time t is allowed

to have a mixing-type dependence with the return on the JP Morgan equity at time t +m. The

essential idea is that dependence between any two observations is determined entirely by their

time distance, independent of the cross-sectional indices. Implicitly, the only assumption made on

contemporaneous cross-section dependence is that it is finite uniformly across all pairs and time

periods, which allows for strong dependence across cross-section. Dependence can be weakened by

assuming some form of weak dependence across cross-section but we do not pursue this route here.

4.2 Assumptions

We consider a multidimensional setting where dim(λj) = P and dim(θ) = R. The (pseudo) true

parameter values are given by (λ10, ..., λN0) and θ0. In what follows, we use the following short

hand notation:

ℓjT (θ, λj) =
1

T

T∑

t=1

ℓjt(θ, λj), ℓNT (θ, λ) =
1

NT

N∑

j=1

T∑

t=1

ℓjt(θ, λj),

ℓλjT (θ, λ̂(θ)) =
∂

∂λ
ℓjT (θ, λ̂(θ)), ℓθλjT (θ, λ̂(θ)) =

∂2

∂θ∂λ′
ℓjT (θ, λ̂(θ)),

ℓθθjT (θ, λ̂(θ)) =
∂2

∂θ∂θ′
ℓjT (θ, λ̂(θ)), ℓλθjT (θ, λ̂(θ)) = [ℓθλjT (θ, λ̂(θ))]

′,

∇θℓ
λ
jT (θ, λ̂(θ)) =

d

dθ

∂

∂λ′
ℓjT (θ, λ̂(θ)) etc.

Therefore, partial differentiation is denoted by superscripts, while total derivatives are denoted by

the gradient operator ∇. Whenever a term is evaluated at (θ0, λj0), the arguments are dropped for

conciseness. Hence, for instance, ℓjT = ℓjT (θ0, λj0). Also, all moments are evaluated with respect
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to the true underlying density.

A further likelihood concept, which we use as the theoretical benchmark in the asymptotic

expansions, is the target likelihood. The target likelihood estimator is given by

θ̂ = argmax
θ∈Θ

N∑

j=1

T∑

t=1

ℓjt(θ, λ̄jT (θ)) and λ̄jT (θ) = arg max
λj∈Λj

T∑

t=1

E[ℓ(θ, λj ;Yjt)]. (6)

This looks similar to the concentrated likelihood estimator. However, a major difference is that

λ̄jT (θ) is an infeasible quantity as it depends on θ0 and λj0, as well as θ. In essence, λ̂j(θ) is

an estimator of λ̄jT (θ). Consequently, ℓjt(θ, λ̂j(θ)) can be shown to be asymptotically equivalent

to ℓjt(θ, λ̄jT (θ)). Importantly, λ̄jT (θ0) = λj0 and the target likelihood is maximised at θ0. See

Severini and Wong (1992) for a more detailed discussion.

We use the following notation to denote likelihood derivatives of any order: Let r = {r1, ..., rR}
and p = {p1, ..., pP } be sets of R and P non-negative integers where |r| =∑R

i=1 ri and |p| =∑P
i=1 pi.

Then, define f
(r,p)
jt (θ, λ) =

d(|r|+|p|)ℓjt(θ,λ)
dθr1 ...dθrRdλp1 ,...,dλpP

. Hence, for example, f
(r,p)
jt (θ, λ) where |r|+ |p| = 1

yields the set of all first order derivatives. Similarly, the same term evaluated across all (r, p)

such that |r| + |p| ≤ 2 yields all derivatives up to and including the second order. As a final

example, consider f
(r,p)
jt (θ, λ) where |r| = 0 and |p| ≤ 3: this encompasses all the derivatives of the

likelihood function with respect to λ up to and including the third order. Notice that f
(r,p)
jt (θ, λ)

where |r| + |p| = 0 gives back the likelihood function. Finally, for any (r, p) let f̄
(r,p)
jt (θ, λ) =

f
(r,p)
jt (θ, λ)− E[f

(r,p)
jt (θ, λ)].

Assumption 4.1 (i) λ ∈ Λ and θ ∈ Θ where Λ and Θ are compact convex subsets of RP and R
R,

respectively; (ii) N and T tend to ∞ such that N/T → c where c is some positive finite constant;

(iii) ℓjt(θ, λ) ∈ C5 for all j and t, where Cc is the class of functions whose derivatives up to and

including order c are continuous.

Assumption 4.2 (i) For all
(
θ′, λ′

)
,
(
θ′′, λ′′

)
∈ Ψ = Θ× Λ we have

∣∣ℓjt(θ′, λ′)− ℓjt(θ
′′, λ′′)

∣∣ ≤ c(Yjt)
∣∣∣∣(θ′, λ′)− (θ′′, λ′′)

∣∣∣∣ ,

where c(·) is a measurable function of Yjt and supj,tE[|c(Yjt)|] < ∞; (ii) the same holds for all

f
(r,p)
jt (θ, λ), where (r, p) is such that (|r|, |p|) ∈ {(0, 4), (1, 4), (2, 3), (5, 0), (3, 1), (4, 1)}. Note that

the function c(·) is not necessarily the same across its all appearances.

Assumption 4.3 (i) For any η > 0,

ε = inf
1≤j≤N

[
E[ℓjT (θ0, λj0)]− sup

{(θ,λ):||(θ,λ)−(θ0,λj0)||>η}
E[ℓjT (θ, λ)]

]
> 0;
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(ii) for any η̃ > 0,

ε̃ = inf
θ∈Θ

inf
1≤j≤N


E[ℓjT (θ, λ̄jT (θ))]− sup

{λ:||λ−λ̄jT (θ)||>η̃}

E[ℓjT (θ, λ)]


 > 0.

Assumption 4.4 (i) The underlying random variable rlt, (l = 1, ..., L; t = 1, ..., T ) is such that

for any j = 1, ..., N, {Yjt}Tt=1 is an α-mixing process with mixing coefficients of size −(2 + ε)/ε

for some ε > 0; (ii) limm→∞ αi,j(m) = 0, limm→∞ αij,k(m) = 0, limm→∞ αi,jk(m) = 0 while
∑∞

m=1mαij,k(m)ε/3+ε < ∞ and
∑∞

m=1mαi,jk(m)ε/3+ε < ∞ uniformly for all i, j, k = 1, ..., N ;

(iii) V ar[T−1/2
∑T

t=1 f̄
(r,p)
jt (θ, λ̄jT (θ))] > 0 uniformly for all j, T ,θ such that |r| ≤ 4 and |p| = 1 or

|r| ≤ 1 and |p| = 2.

Assumption 4.5 Let
(
∂2ℓjT (θ,λ)

∂λj∂λ
′
j

)

p1,p2
be the row p1 and column p2 entry of the matrix

∂2ℓjT (θ,λ)

∂λj∂λ
′
j

and
(
d2ℓNT (θ,λ)

dθdθ′

)
r1,r2

be the row p1 and column p2 entry of the matrix
(
d2ℓNT (θ,λ)

dθdθ′

)
r1,r2

. Then, (i)

∂2ℓjT (θ,λ)

∂λj∂λ
′
j

and d2ℓNT (θ,λ)
dθdθ′

are invertible and (ii)
(
∂2ℓjT (θ,λ)

∂λj∂λ
′
j

)

p1,p2
and

(
d2ℓNT (θ,λ)

dθdθ′

)
r1,r2

are bounded,

uniformly for all j,N, T, θ and λj.

Assumption 4.6 For 1 ≤ |r| ≤ 3 and |p| = 0, σ2r,NT = V ar
[√

T 1
NT

∑N
j=1

∑T
t=1 f̄

(r,p)
jt (θ0, λj0)

]
is

positive for all N,T and

√
T

1

NT

N∑

j=1

T∑

t=1

f̄
(r,p)
jt (θ0, λj0)

d→ N(0, σ2r) as N,T → ∞, where σ2r = p lim
N,T→∞

σ2r,NT .

In addition V ar(
√
TdℓNT /dθ) is positive definite.

Assumption 4.1 contains the standard conditions on the parameter space (e.g. Hahn and Kuer-

steiner (2011)) and formalises the double asymptotic setup where both dimension sizes tend to

infinity at the same rate. This is a sensible setting for financial datasets where both the time and

cross-section dimensions are of non-negligible sizes. The continuity assumption serves two purposes.

First, the likelihood function is smooth enough to guarantee the existence of asymptotic expansions

to sufficiently high orders. Second, it also implies that the objective function and its derivatives

are measurable functions. This is useful since mixing properties of a sequence of random variables

are directly inherited by measurable functions of their finite sub-sequences (see Doukhan (1994)

and Bradley (2005)). Thus, for instance, existence of a law of large numbers (LLN) or central limit

theorem (CLT) for a mixing sequence will imply the existence of the same large sample results

for continuous transformations of the same mixing sequence, under standard regularity conditions.

Assumption 4.2 is a Lipschitz continuity type assumption, which imposes further smoothness con-

ditions on some particular derivatives of the likelihood function. This is necessary for proving
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consistency and for bounding the remainder terms in mean value expansions. The first part of

Assumption 4.3 is standard which imposes unique identifiability of (θ0, λj0) for all j. The second

part, which is not as standard, ensures that λ̄jT (θ) is the unique maximiser of E[ℓjT (θ, λ)] for all

j, T. Note that the two parts of this assumption do not contradict since
(
θ0, λ̄jT (θ0)

)
= (θ0, λj0) .

Dependence is formalised in Assumption 4.4. The first part establishes the standard α-mixing

property for each individual series. The size assumption is necessary to invoke mixing LLNs and

CLTs. In the second part, the α-mixing property across different pairs is established in the sense

of the α-mixing coefficients introduced in Section 4.1. The summability conditions are required

to bound the expectations of the terms appearing in expansions. Note that these assumptions

are strong enough to generate other summability conditions such as
∑∞

m=1mαi,j(m)ε/2+ε < ∞,
∑∞

m=1 αi(m)ε/3+ε < ∞ etc. The variance assumption of the final part is essential for obtaining

CLTs for centred likelihood terms. When coupled with the size assumption and existence of 2 + ε

moments, this assumption implies a mixing CLT (see, e.g. White (2001)). Assumption 4.5 is

required for the existence of the asymptotic expansions.

Assumption 4.6 is key to the existence of a large-N large-T CLT for the composite likelihood

estimator θ̂. As usual, asymptotic normality of the estimator is achieved by the asymptotic nor-

mality of the score, ∇θℓNT (θ0, λ0). Let Zt,T,N = N−1
∑N

j=1(ℓ
θ
jt − E[ℓθλjT ]{E[ℓλλjT ]}−1ℓλjt). Then, this

assumption implies that

√
T∇θℓNT (θ0, λ0) =

√
T
1

T

T∑

t=1

Zt,T,N
d→ N (0,I),

where I = limN,T→∞ V ar
[√

T∇θℓNT (θ, λ0)
]
. Asymptotic normality for the second and third order

derivatives with respect to θ are required for the higher order terms in the expansion. An important

implication of this assumption is that due to strong dependence, cross-section information does

not contribute to asymptotic convergence. Hence
√
T -convergence ensues. A similar assumption

has also appeared in the recent paper by Gonçalves (2011). This is a high-level, yet intuitively

reasonable assumption. Given that N is linearly related to T as implied by Assumption 4.1, one

can also consider T−1/2
∑T

t=1 Zt,T,NT
= T−1/2

∑T
t=1 Zt,T and use a triangular array CLT. Two

examples are Bosq, Merlevède, and Peligrad (1999) and Utev (1991). The former study is made

with kernel estimation in mind, and so is based on assumptions that would not be required in our

case. However, diluting their assumptions is beyond the scope of our study. We leave the proof of

the existence of a CLT valid for our case for future research. Finally, the moment conditions used

in the paper are listed in Section B.1 of the Mathematical Appendix. These moment assumptions

are sufficient enough to ensure that all contemporaneous covariance terms considered in the proofs

are bounded uniformly across all i, j, k and t.
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4.3 Main results

Our first main result is the consistency of the composite likelihood estimator θ̂ in the presence of

incidental parameters.

Theorem 4.1 Let Assumptions 4.1(i)-(ii), 4.2(i), 4.3, 4.4(i)-(ii) and B.1 hold.4 Then, for all

θ ∈ Θ and η, η̃ > 0,

P

[
max

1≤j≤N

∣∣∣
∣∣∣λ̂j(θ)− λ̄jT (θ)

∣∣∣
∣∣∣ < η

]
= 1− o(1) and P

[∣∣∣
∣∣∣θ̂ − θ0

∣∣∣
∣∣∣ < η̃

]
= 1− o(1).

Notice that, by the definition of the target likelihood, λ̄jT (θ0) = λj0 for all j and T. Therefore,

Theorem 4.1 in particular implies that the composite likelihood estimator (θ̂, λ̂j(θ̂)) converges in

probability to (θ0, λj0). We need the more general version of convergence to λ̄jT (θ) because we use

the target likelihood estimator as the theoretical benchmark in the asymptotic analysis of θ̂.

Theorem 4.2 Let Assumptions 4.1-4.6 and B.1 hold. Then,

√
T (θ̂ − θ0)

d→ N(0,D−1ID−1) as N,T → ∞, where

D = lim
N,T→∞

E[ℓθθNT ]−





1

N

N∑

j=1

E[ℓθλjT ]









1

N

N∑

j=1

E[ℓλλjT ]





−1


1

N

N∑

j=1

E[ℓλθjT ]



 .

This result formalises the earlier claim that in our particular case, characterised by strong

cross-section dependence and
√
T -convergence, the asymptotic distribution is not asymptotically

biased anymore. Intuitively, with
√
T -consistency, the incidental parameter bias turns into a pure

small-sample time-series bias. This O(T−1) small sample bias is precisely characterised in Theorem

4.3 below. The crucial implication of this discussion is that our estimator is valid independent of

how N is related to T as both tend to infinity. To be explicit, in small samples one might of course

still have to do some bias correction, independent of whether the asymptotic distribution is biased

or not. However, as will be demonstrated later, for the data dimensions we consider there will be

no need to employ bias correction in our context.

Another important message of Theorem 4.2 is that with
√
T -convergence, the incidental pa-

rameter bias turns into purely a small-sample time-series bias. This is precisely characterised in

Theorem 4.3 below. To be explicit, there is no need to employ bias correction in our context.

4Note that some of these assumptions are stronger than necessary. For example, we do not require all of the moment
conditions listed in Assumption B.1. In fact, E

[
|ℓjt(θ, λ)|

2+ε
]
< ∞ is sufficient for proving consistency. Similarly, the

summability conditions of Assumption 4.4(ii) are stronger than the condition that
∑∞

m=1 αi(m)1/q−1/r < ∞ for some
r > q > 1,which is a key condition in proving consistency. However, the stronger portions of these assumptions will
be used elsewhere to prove Theorems 4.2 and 4.3. Especially when it comes to moment conditions, it is impossible
to construct a separate non-overlapping list of conditions for each Theorem. Therefore, in order to prevent a large
list of overlapping assumptions, we choose to group similar assumptions together.
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Theorem 4.3 Let Assumptions 4.1-4.6 and B.1 hold. Then E[θ̂− θ0] = E[ANT (θ0, λ0)]+O
(
T−2

)

as N ,T → ∞, where ANT (θ, λ) depends on N,T and E[ANT (θ0, λ0)] = O(T−1) as N,T → ∞.

The term ANT (θ, λ) has a complicated expression based on higher order likelihood derivatives.

This is given in (28) in the Appendix.

5 Extended example: DCC model

The DCC model of Engle (2002) and Engle and Sheppard (2001) allows a much more flexible

time-varying covariance model than Examples 2.1 and 2.2. Write the submodel based on a pair as

Yjt = {r1jt, r2jt} , Cov(Yjt|Ft−1) =

(
h
1/2
1jt 0

0 h
1/2
2jt

)
Rjt

(
h
1/2
1jt 0

0 h
1/2
2jt

)
,

where we construct a model for the conditional variance hljt = Var(rljt|Ft−1, ηlj), where ηlj are

parameters.5 This has a log-likelihood for the {rljt} return sequence of

logEljt = −1

2
log hljt −

1

2
r2ljt/hljt, l = 1, 2.

The devolatilised series are defined as

Sjt =

(
h
−1/2
1jt 0

0 h
−1/2
1jt

)(
r1jt
r2jt

)
, so Cov(Sjt|Ft−1) = Rjt = Cor(Yjt|Ft−1).

We build a model for Rjt using the cDCC dynamic introduced by Aielli (2013). It is defined as

Rjt = P
−1/2
jt QjtP

−1/2
jt , Pjt =

(
Q11jt 0
0 Q22jt

)
, where

Qjt = Ψj (1− α− β) + αP
1/2
jt−1

(
Sjt−1S

′
jt−1 −Rjt−1

)
P

1/2
jt−1 + (α+ β)Qjt−1, Ψj =

(
1 ϕj

ϕj 1

)
.

It has the virtue that if we let S∗
jt = P

1/2
jt Sjt, then Cov

(
S∗
jt|Ft−1

)
= P

1/2
jt RjtP

1/2
jt = Qjt, and so

1
T

∑T
t=1 S

∗
jtS

∗′
jt

p→ Ψj. The parameters for this model are θ = (α, β)′, λj =
(
η′1j, η

′
2j , ϕj

)′
. The

5The first step of fitting the cDCC models is to model hlt = Var(rlt|Ft−1). It is important to note that although
it is common to fit standard GARCH models for this purpose, allowing the hlt to depend the lagged squared returns
on the l-th asset, in principle Ft−1 includes the lagged information from the other assets as well — including market
indices. Many of the return series exhibited large moves in volatility during this period. This large increase has been
documented by, for example, Campbell, Lettau, Malkeil, and Xu (2001) and appears both in systematic volatility
and idiosyncratic volatility. Initial attempts at fitting the marginal volatilities Var(rlt|rlt−1, rlt−2, ...) included a wide
range of “standard” ARCH family models failed residual diagnostics tests for our data.

To overcome this difficulty, a flexible components framework has been adopted which brings in a wider information
set. The first component is the market volatility as defined by the index return, rt =

1
L

∑L
l=1 rl,t. The volatility was

modeled using an EGARCH specification Nelson (1991),

ln h•,t = ω• + α•|ǫ•,t−1 −
√

2/π|+ κ•ǫ•,t−1 + β• ln h•,t−1, ǫ•,t = rth
−1/2
•,t . (7)

A second component was included for assets other than the market, resulting in a factor structure for each asset l,

ln h̃l,t = ωl + αl|ǫl,t−1 −
√

2/π|+ κlǫl,t−1 + βl ln hl,t−1, hl,t = h•,th̃l,t, ǫl,t = rl,th
−1/2
l,t . (8)

This two-component model was able to adequately describe the substantial variation in the level of volatility seen in
this panel of returns.

16



Bias RMSE

2MLE 2MCLE 2MSCLE 2MLE 2MCLE 2MSCLE
L α β α β α β α β α β α β

α = .02, β = .97

3 .001 -.011 .001 -.012 .001 -.017 .006 .033 .007 .038 .008 .059
10 -.001 -.004 -.000 -.005 -.000 -.006 .002 .005 .002 .006 .003 .009
50 -.003 -.003 -.000 -.005 -.000 -.005 .003 .003 .001 .005 .002 .006

100 -.005 -.004 -.000 -.005 -.000 -.005 .005 .004 .001 .005 .001 .005

α = .05, β = .93

3 -.000 -.005 -.000 -.006 -.000 -.007 .008 .015 .009 .016 .011 .022
10 -.002 -.001 -.000 -.003 -.000 -.004 .003 .004 .003 .006 .005 .009
50 -.009 .003 -.001 -.003 -.001 -.003 .009 .003 .002 .004 .003 .005

100 -.014 .002 -.001 -.003 -.001 -.003 .014 .002 .002 .004 .002 .004

α = .10, β = .80

3 -.001 -.007 -.001 -.008 -.001 -.010 .016 .037 .017 .040 .019 .051
10 -.003 -.003 -.001 -.005 -.001 -.006 .006 .011 .007 .016 .009 .022
50 -.014 .000 -.001 -.004 -.001 -.004 .014 .004 .004 .009 .005 .011

100 -.024 -.003 -.001 -.004 -.001 -.004 .024 .004 .004 .008 .005 .010

Table 3: Properties of the estimators of α and β in the cDCC model using T = 2, 000. The
estimators are: subset CL (2MSCLE), CL (2MCLE), and likelihood (2MLE) estimators. Based on
2, 500 replications.

corresponding ingredients into the estimation of θ from this model is the common structure

logLjt = −1

2
log |Rjt| −

1

2
S′
jtR

−1
jt Sjt.

6 Monte Carlo experiments

6.1 Relative performance of estimators

Here we explore the effectiveness of three estimators of the parameters in the DCC model outlined

in Section 5 above. These are the 2MLE, 2MCLE and 2MSCLE methods discussed in Section 3.3.

The Appendix A mirrors exactly the same setup based upon the scalar BEKK model: the results

are very similar for that model.

A Monte Carlo study based on 2, 500 replications has been conducted across a variety of sample

sizes and parameter configurations. As in Engle and Sheppard (2001), we assume away ARCH

effects by setting hjt = 1. Throughout we used T = 2, 000, L is one of {3, 10, 50, 100} and the

returns were simulated according to a cDCC model given in Section 5. Three choices spanning

the range of empirically relevant values of the temporal dependence in the Q process were used

(α, β) = (0.02, 0.97), (0.05, 0.93) or (0.10, 0.80). The parameters were estimated using a constraint

that 0 ≤ α < 1, 0 ≤ β < 1, α+ β < 1. None of the estimators hit the parameter space boundary.

The intercept Ψ was chosen to match the properties of the S&P 100 returns studied in the

previous Section. The unconditional correlations were generated from a single-factor model, so
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that Ψl1l2 = πl1πl2 for l1 6= l2 and 1 if l1 = l2. Here the πl are distributed according to a

truncated normal with mean 0.5, standard deviation 0.1 where the truncation occurs at ±4 standard

deviations. This means π ∈ (0.1, 0.9) and the average correlation in the cross section is 0.25. This

choice for Ψ produces assets which are all positively correlated and ensures that the intercept is

positive definite for any cross-sectional dimension L.6

Bias RMSE

2MLE 2MCLE 2SCLE 2MLE 2MCLE 2SCLE
T α β α β α β α β α β α β

L = 10

100 -.021 -.161 -.011 -.141 -.009 -.218 .025 .237 .021 .221 .028 .347
250 -.006 -.018 -.002 -.021 -.002 -.026 .008 .021 .008 .026 .012 .042
500 -.003 -.005 -.001 -.008 -.001 -.009 .005 .008 .005 .011 .007 .016

1,000 -.002 -.001 -.001 -.003 -.001 -.003 .003 .004 .004 .006 .005 .009
2,000 -.001 -.000 -.000 -.002 -.000 -.002 .002 .003 .003 .004 .004 .006

L = 50

100 -.050 -.915 -.014 -.091 -.013 -.108 .050 .915 .016 .103 .018 .146
250 -.022 -.034 -.003 -.018 -.003 -.019 .022 .034 .005 .020 .006 .022
500 -.013 -.004 -.001 -.007 -.001 -.007 .013 .004 .003 .009 .004 .010

1,000 -.009 .003 -.001 -.003 -.001 -.003 .009 .003 .002 .004 .003 .005
2,000 -.006 .003 -.000 -.001 -.000 -.001 .006 .003 .001 .002 .002 .003

L = 100

100 – – -.014 -.090 -.014 -.098 – – .016 .103 .017 .121
250 -.037 -.108 -.003 -.019 -.003 -.019 .037 .109 .004 .020 .005 .021
500 -.021 -.013 -.001 -.007 -.001 -.007 .021 .013 .003 .008 .003 .009

1,000 -.014 .001 -.001 -.003 -.001 -.003 .014 .002 .002 .004 .002 .004
2,000 -.010 .004 -.000 -.001 -.000 -.001 .010 .004 .001 .002 .002 .003

L = 200

100 – – -.014 -.086 -.013 -.082 – – .016 .092 .016 .095
250 -.050 -.913 -.002 -.018 -.003 -.018 .050 .918 .004 .019 .005 .019
500 -.033 -.053 -.001 -.007 -.001 -.007 .033 .053 .002 .008 .003 .008

1,000 -.021 -.006 -.000 -.003 -.001 -.003 .022 .006 .002 .004 .002 .004
2,000 -.015 .003 -.000 -.002 -.000 -.001 .015 .003 .001 .002 .001 .002

Table 4: Results from a simulation study for the cDCC model using the true values of α = .05,
β = .93. The estimators were: subset CL (2MSCLE), CL (2MCLE), and likelihood (2MLE)
estimators. Based on 2, 500 replications.

Table 3 contains the bias and root mean square error of the estimates. The two-step maximum

likelihood (2MLE) method develops a significant bias in estimating α as L increases. This is

consistent with the findings of Engle and Sheppard (2001) and our earlier theoretical discussion on

the nuisance parameter issue.

To further examine the bias across T and L a second experiment was conducted for L =

{10, 50, 100, 200} and T = {100, 250, 500, 1000, 2000}. Only the results for the α = .05, β = .93

parameterization are reported.

6The effect of this choice of unconditional correlation was explored in other simulations. These results of these
runs indicate that the findings presented are not sensitive to the choice of unconditional correlation.
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All of the estimators are substantially biased when T is very small. For any cross-section size

L, the bias in the 2MLE is monotonically decreasing in T . For large L, α is biased downward by

30% even when T = 2, 000. The 2MCLE and 2MSCLE show small biases for any cross-section size

as long as T ≥ 250. Moreover, the bias does not depend on L. This experiment also highlights

that the 2MCLE and 2MSCLE estimators are feasible when T ≤ L. Results for the 2MLE in the

T ≤ L case are not reported because the estimator failed to converge in most replications.

Overall the Monte Carlo provides evidence of the 2MCLE has better RMSE for all cross-

section sizes and parameter configurations. There seems little difference between the 2MCLE and

2MSCLE. In simulations not reported here, both estimators substantially outperform the Engle

(2009b) McGyver estimator. The evidence presented here suggests 2MSCLE is attractive from

statistical and computational viewpoints for large dimensional problems.

6.2 Efficiency gains with increasing cross-section length

Figure 1 contains a plot of the square root of the average variance against the cross-section size

for the maximized 2MCLE and 2MSCLE. Both standard deviations rapidly decline as the cross-

section dimension grows and the standard deviation of the 2MCLE is always slightly smaller than

the 2MSCLE for a fixed cross-section size. Recall that the 2MCLE uses many more submodels

than the 2MSCLE when the cross-section size is large, and so when L = 50 the 2MCLE is based

on 1, 225 submodels while the 2MSCLE is using only 49.

This Figure shows there are very significant efficiency gains from using a CL compared to

the simplest strategy for estimating θ — which is to fit a single bivariate model. The standard

deviation goes down by a factor of 4 or so, which means the cross-sectional information is equivalent

to increasing the time series dimension by a factor of around 16 when L is around 50.

Another interesting feature of the Figure is the expected result that as L increases the standard

error of the 2MCLE and 2MSCLE estimators become very close. In the limit they asymptote to

a value above zero — it looks like this asymptote is close to being realised by the time L = 100.

6.3 Performance of asymptotic standard errors

The Monte Carlo study was extended to assess the accuracy of the asymptotic based covariance

estimator in Section 4.3. Data was simulated according to a cDCC model using the above config-

uration for α = .05, β = .93 with T = 2, 000. The 2MCL estimator and the 2MSCL estimator

were computed from the simulated data and the covariance of the parameters was estimated. This

was repeated 1, 000 times and the results are presented in Table 5. The Table contains square

root of the average asymptotic variance, σ̄2α = 1
1000

∑1000
i=1 σ̂

2
i,α and the corresponding Monte Carlo’s

estimated parameters, σ̂2α = 1
1000

∑1000
i=1 (α̃i − ¯̃α)

2
with ¯̃α = 1

1000

∑1000
i=1 α̃i, for both α and β.
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Figure 1: Standard deviation of the CL estimators drawn against L calculated from a Monte Carlo
based upon α = .05, β = .93 using T = 2, 000. L varies from 2 up to 100. Graphed are the
results for the maximum CL estimator (2MCLE) and the subset version (2MSCLE) based on only
contiguous submodels.

The results are encouraging, except when L is tiny, the asymptotics performs quite accurately

and yield a sensible basis for inference for this problem.

7 Empirical comparison

7.1 Database

The data used in this empirical illustration is the same as used in Section 2.1. Recall this database

includes the superset of all companies listed on the S&P 100, plus the index itself, over the period

January 1, 1997 until December 31, 2006 taken from the CRSP database. This set included 124

companies although 29, for example Google, have one or more periods of non-trading, for example

prior to IPO or subsequent to an acquisition. Selecting only the companies that have returns

throughout the sample reduced this set of 95 (+1 for the index).

We will use pairs of data and look at two 2MCLE estimators for a variety of models. One is

based on all distinct pairs, which has N = L(L − 1)/2. The other just looks at contiguous pairs

Ylt = (rlt, rl+1,t)
′ so N = L− 1. The results, given in Table 6, are directly comparable with Table

1. The figures in brackets are asymptotic standard errors.
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2MCLE 2MSCLE

L σ̄α σ̂α σ̄β σ̂β σ̄α σ̂α σ̄β σ̂β

α=.02, β=.97

3 .010 .008 .261 .152 .008 .007 .052 .028
10 .002 .002 .004 .004 .003 .003 .008 .007
50 .001 .001 .002 .002 .002 .002 .003 .003

100 .001 .001 .002 .001 .001 .001 .002 .002

α=.05, β=.93

3 .009 .009 .016 .015 .011 .010 .021 .019
10 .003 .003 .006 .006 .005 .005 .009 .009
50 .002 .002 .003 .003 .003 .003 .004 .004

100 .002 .002 .003 .003 .002 .002 .003 .003

α=.10, β=.80

3 .017 .016 .041 .040 .020 .019 .052 .049
10 .007 .006 .015 .014 .009 .010 .022 .022
50 .004 .004 .008 .008 .005 .005 .011 .011

100 .003 .003 .007 .007 .004 .004 .009 .009

Table 5: Square root of average asymptotic variance, denoted σ̄α and σ̄β, and standard deviation
of the Monte Carlo estimated parameters, denoted σ̂α and σ̂β.

The results for the two-step CL are reasonably stable with respect to L and they do not vary

much as we move from using all pairs to a subset of them. The corresponding results for the

maximum CL estimator, optimising the CL over λ, are also reported in Table 6. Again the results

are quite stable with respect with L.

Estimates from the 2MLE are markedly different from those of any of the CL based estimators,

which largely agree with each other. The parameter estimates of the 2MLE and other estimators

also produced meaningfully different fits.

It is interesting to see how sensitive the contiguous pairs estimator is to the selection of the

subset of pairs. The bottom row of Figure 2 shows the density of the estimator as we select

randomly 1,000 sets of different subsets of L− 1 pairs. We see the estimate is hardly effected.

To examine the fit of the models, the conditional correlations of the 95 individual stocks with

the S&P 500 from the 2MCLE and 2MLE are presented in Figure 3. Rather than present all of the

series simultaneously, the figure contains the median, inter-quartile range, and the maximum and

minimum. The parameter estimates from the 2MCLE produce large, persistent shifts in conditional

correlations with the market, including a marked decrease in the conditional correlations near the

peak of the technology boom in 2001. The small estimated α for 2MLE produces conditional

correlations which are nearly constant and exhibiting little variation even at the height of the

technology bubble in 2001.
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Scalar BEKK EWMA DCC

L α̃ β̃ α̃ α̃ β̃

2MCLE

5 .0287
(.0081)

.9692
(.0092)

.0205
(.0037)

.0143
(.0487)

.9829
(.0846)

10 .0281
(.0055)

.9699
(.0063)

.0211
(.0027)

.0107
(.0012)

.9881
(.0016)

25 .0308
(.0047)

.9667
(.0055)

.0234
(.0023)

.0100
(.0009)

.9871
(.0017)

50 .0319
(.0046)

.9645
(.0056)

.0225
(.0026)

.0101
(.0008)

.9856
(.0018)

96 .0334
(.0041)

.9636
(.0049)

.0249
(.0019)

.0103
(.0009)

.9846
(.0019)

2MSCLE

5 .0284
(.0083)

.9696
(.0094)

.0189
(.0037)

.0099
(.0033)

.9885
(.0045)

10 .0272
(.0054)

.9709
(.0062)

.0201
(.0027)

.0093
(.0016)

.9886
(.0018)

25 .0307
(.0049)

.9668
(.0056)

.0227
(.0024)

.0089
(.0011)

.9889
(.0012)

50 .0316
(.0047)

.9647
(.0057)

.0220
(.0029)

.0092
(.0010)

.9869
(.0019)

96 .0335
(.0043)

.9634
(.0051)

.0247
(.0020)

.0094
(.0009)

.9860
(.0014)

Table 6: Based on the maximum m-profile and maximum CL estimator (2MCLE) using real and
simulated data. Top part uses L(L−1)/2 pairs based subsets, the bottom part uses L−1 contiguous
pairs. Parameter estimates from a covariance targeting scalar BEKK, EWMA (estimating H0)
and DCC. The real database is built from daily returns from 95 companies plus the index from the
S&P100, from 1997 until 2006. Numbers in brackets are asymptotic standard errors.

7.2 Out of sample comparison of hedging performance

To determine whether the fit from the estimators was statistically different, a simple hedging

problem is considered in an out-of-sample period. The out-of-sample comparison was conducted

using the first 75% of the sample: January 2, 1997 until July 1, 2002 as the “in-sample” period for

parameter estimation, and July 2, 2002 until December 31, 2006 as the evaluation period. All of

the parameters were estimated once and used throughout the tests.

We examined the hedging errors of a conditional CAPM where the S&P 100 index proxied for the

market. Using one-step ahead forecasts, the conditional time-varying market betas were computed

as β̂l,t = ĥ
1/2
l,t ρ̂lm,t/ĥ

1/2
m,t where hl,t = Var(rl,t|Ft−1), ρlm,t = Cor(rl,t, rm,t|Ft−1) and l = 1, 2, ..., L.

The corresponding hedging errors were computed as ν̂l,t = rl,t − β̂l,trm,t. Here rl,t is the return on

the l-th asset and rm,t is the return on the market. Since all of the volatility models are identical

in the DCC models in this comparison and use the same parameter estimates, all differences in the

hedging errors are directly attributable to differences in the correlation forecast.

We use the Giacomini and White (2006) (GW) test to examine the relative performance of the

2MCLE to the 2MLE. The GW test is designed to compare forecasting methods, which incorporate

such things as the forecasting model, sample period and, importantly from our purposes, the

estimation method employed.

Defining the difference in the squared hedging error δ̂l,t =
{
ν̂l,t

(
ρ̂2MCLE
l,t

)}2
−
{
ν̂l,t

(
ρ̂2MLE
l,t

)}2
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cDCC

β̃

0.0325 0.033 0.0335 0.034 0.0345
α̃

Scalar BEKK

0.9625 0.963 0.9635 0.964 0.9645

β̃

Scalar BEKK

Figure 2: Sensitivity to random selection of pairs. Density of the maximum m-profile CL estimator
based on L−1 distinct but randomly choosen pairs. Top row are the estimators of the cDCC model
and the bottom row are the corresponding estimators for the scalar BEKK.

where explicit dependence on the forecast correlation is used. If neither estimator is superior in

forecasting correlations, this difference should have 0 expectation. If the difference is significantly

different from zero and negative, the 2MCLE would be the preferred model while significant positive

results would indicate favor for the 2MLE. The null of H0 : E
(
δ̂l,t

)
= 0 was tested using a t-test,

GW = δ̄l/

√
avar

(√
T δ̄l

)
, δ̄l = P−1

∑P
t=R δl,t. Here δ̄l is the average loss differential. Under mild

regularity conditions GW is asymptotically normal. See Giacomini and White (2006) for further

details (note we also tried a heteroskedastically adjusted version of the GW test, in order to increase

its power, but this had no impact.).

The test statistic was computed for each asset excluding the market, resulting in 95 test statis-

tics. Table 7 holds the results, where 37 series favour the 2MCLE estimator compared to 2 which

prefer the 2MLE based estimated model. 56 are inconclusive. The results for the maximum two-step

CL estimator are 24 in favour of that estimator, 8 preferring 2MLE and 63 inconclusive.

7.3 Out of sample comparison with other models

7.3.1 Scalar BEKK

We can use the CL methods to estimate the scalar BEKK model using this database. The results
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Figure 3: How do the correlations with the market temporally change? Plot of the median, in-
terquartile range and min & max of the correlations of the 95 included S&P 100 components with
the index return using the estimates produced by the maximum CL estimator (2MCLE) & maximum
m-profile likelihood estimator. Each day the 95 correlations were sorted to produce the quantiles.

are in Table 1 and 6. They follow the same theme with the estimates from the quasi-likelihood

parameters yielding extreme values — in this case close to being non-responsive to the data.

The usual out of sample GW hedging error comparison is given in Table 7, which compares

2MLE and 2MCLE. They show the CL method delivering estimators which produce smaller hedging

errors than the conventional 2MLE technique.

7.3.2 Many bivariate models

An interesting way of assessing the effectiveness of the DCC model fitted by the CL method is to

compare the fit to fitting a separate DCC model to each pair — that is permit θ to be different for

each l. The Table 7 shows the multivariate DCC model, estimated using CL methods, performs

better than fitting a different model for each pair. This is a striking result — suggesting the

pooling of information is helpful in improving hedging performance.

Figure 4 shows us why the large dimensional multivariate model is so effective. This shows the

estimated value of αl and βl for each of the l-th submodels — it demonstrates a very significant

scatter. It has 22 of the estimated αl + βl on their unit boundary. We will see in a moment such
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M-profile

Model A Favours A No Decision Favours B Model B

DCC 2MCLE 24 63 8 DCC 2MLE
DCC 2MCLE 92 3 0 DECO
DCC 2MCLE 18 68 9 Bivariate DCC
DCC 2MCLE 9 82 4 EWMA

BEKK 2MCLE 29 65 1 BEKK 2MLE
BEKK 2MCLE 50 44 1 Bivariate BEKK

Table 7: Which model and estimation strategy leads to smallest hedging errors? GW t-statistics for
the null of equal out of sample hedging performance using Giacomini-White tests with 95% critical
values. 3 decisions can be made for each of the 95 single assets. The test can favour model A, model
B or be indecisive. Table records the number of assets which fall in each of these three buckets.

unit root models, which are often called EWMA models, perform very poorly indeed in terms of

hedging. Once in a while the estimates of αl + βl are pretty small.

Figure 5 shows four examples of estimated time varying correlations between a specific asset

and the market, drawn for 4 specific pairs of returns we have chosen to reflect the variety we have

seen in practice. The vertical dotted line indicates where we move from in sample to out of sample

data. Top right shows a case where the estimated bivariate model and the fit from the highly

multivariate model are very similar, both in and out of sample. The top left shows a case where

the fitted bivariate model has too little dependence and so seems to give a fitted correlation which is

too noisy. The bottom left is the flip side of this, the bivariate model delivers a constant correlation

which seems very extreme. The bottom right is an example where the EWMA model is in effect

imposed in the bivariate case and this EWMA model fits poorly out of sample.

7.3.3 Equicorrelation model

The Engle and Kelly (2012) linear equicorrelation (DECO) model has a similar structure to the

DCC type models, with each asset price process having its own ARCH model, but assumes asset

returns have equicorrelation Rt = ρtιι
′+(1− ρt) I, with ρt = ω+ γut−1+βρt−1, where ut−1 is new

information about the correlation in the devolatilised rt−1. A simple approach would be to take

ut−1 as the cross-sectional MLE of the correlation based on this simple equicorrelation model.

Table 7 compares the out of sample hedging performance of this method with the cDCC fit.

We can see that cDCC is uniformly statistically preferable for this dataset.

7.3.4 RiskMetrics

The 2MCLE fit of the cDCC model can be compared to the RiskMetrics method in Example 2.2

using the Giacomini and White (2006) t-test. The results are reported in the bottom right of Table

7, which shows that the cDCC outperforms RiskMetrics in terms of out of sample hedging errors.
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Figure 4: Should the data be pooled across pairs? Seperately estimated αj and βj for each bivariate
submodel for the beta-pair of the market and an individual asset. Dotted line is the CL estimator
— which acts as a pooling device.

7.4 Extending the empirical analysis

In this subsection we will push the previous analysis to a higher dimensions. Our database consists

of the returns of all equities that appeared in the S&P 500 between January 1, 1997 and December

31, 2006 and were continuously available. This resulted in 480 unique assets, including the S&P

500 index, with 2, 516 observations of each. The data were extracted from CRSP and series were

ordered alphabetically according to their ticker on the first day of the sample. Obviously around

25% of the data used in this analysis has previously appeared in the S&P 100 comparison.

As before the scalar BEKK was fitted using 2MLE, 2MCLE and 2MSCLE (contiguous pairs).

The model was estimated across L = {5, 25, 50, 100, 250, 480}. Results are presented in Table 8.

The 2MLE shows signs of bias as the cross-sectional dimension is increased, and for the two

largest panel sizes produces volatilities that are virtually constant. When the full cross-section

sample is used the smoothing coefficient β also shows a large downward bias. The CL estimates are

very similar, all with α ≈ .03, β ≈ .96, and the standard errors decline quickly and then modestly

as L increases. For large L the difference between the contiguous and all pairs estimators is small.

In the analysis of the cDCC model, for this wider set of data the best performing volatility

model was the GJR-GARCH(1,1) hl,t = ωl + δlr
2
l,t−1 + γlr

2
l,t−1I[rl,t−1<0] + κlhl,t−1 for each margin.
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Figure 5: Comparison of estimated conditional correlations for j-th model, including out of sampling
projections, using the high dimensional model and the bivariate model. Top left looks like the
bivariate model is overly noisy. Top right give results which are basically the same. Bottom left
gives a constant correlation for the bivariate model, while the multivariate model is more responsive.
Bottom right is a key example as we see it quite often. Here the bivariate model is basically estimated
to be an EWMA, which fits poorly out of sample.

The results for the cDCC model are presented in Table 8. The 2MLE of α for the cDCC model

exhibits a strong bias as the sample size increases and for L > 250 the β estimate is also badly

affected. This contrast with the estimates from the maximum composite and maximum m-profile

composite likelihood where α ≈ .008 and α + β ≈ .995 (The maximized CL was computed by

jointly maximizing the correlation intercept with the dynamics parameters. The estimates from

the volatility models were held at their initial estimated values).

Table 2 contains the times for each of the methods for estimating the scalar BEKK model —

the simpler of the two models. The 2MLE method takes around 3.5 days on the L = 480 problem,

while for L = 25 the time is quite modest being under a minute. This shows the impact of the

O(L3) computational load. The composite methods are much more rapid than 2MLE, with the all

pairs method still being quite fast for L = 100 and being around 200 times faster than 2MLE in

that case. The contiguous pair method is fast even when L = 480, just taking a small handful of

seconds. This means it is around 68, 000 times faster than 2MLE in this vast dimensional case.

27



Scalar BEKK DCC

2MLE 2MCLE 2MSCLE 2MLE 2MCLE 2MSCLE
L α β α β α β α β α β α β

5 .0261 .9715 .0369
(.0057)

.9603
(.0065)

.0312
(.0053)

.9664
(.0061)

.0101 .9823 .0133
(.0041)

.9794
(.0081)

.0070
(.0033)

.9912
(.0038)

25 .0080 .9909 .0300
(.0062)

.9670
(.0075)

.0289
(.0055)

.9682
(.0067)

.0030 .9908 .0083
(.0015)

.9885
(.0031)

.0071
(.0011)

.9911
(.0016)

50 .0055 .9932 .0282
(.0051)

.9692
(.0062)

.0277
(.0049)

.9698
(.0059)

.0018 .9882 .0078
(.0010)

.9887
(.0021)

.0073
(.0010)

.9901
(.0019)

100 .0034 .9934 .0296
(.0046)

.9670
(.0057)

.0292
(.0045)

.9674
(.0056)

.0015 .9524 .0073
(.0007)

.9881
(.0015)

.0076
(.0010)

.9866
(.0028)

250 .0015 .9842 .0322
(.0049)

.9633
(.0064)

.0322
(.0048)

.9633
(.0063)

.0020 .5561 .0076
(.0007)

.9872
(.0015)

.0080
(.0016)

.9858
(.0039)

480 .0032 .5630 .0290
(.0041)

.9672
(.0054)

.0290
(.0040)

.9672
(.0053)

.0013 .2556 .0073
(.0007)

.9874
(.0016)

.0079
(.0008)

.9863
(.0020)

Table 8: Results for fitting the Scalar BEKK model using a variety of estimators. The database
is made up of the 480 components of the S&P 500, ordered alphabetically by ticker. L is the
dimension of problem fitted.

8 Additional remarks

8.1 Beta CL

All statistical models are misspecified. If the goal is to estimate market betas, that is the dependence

between the market and individual assets, it may make sense to define the “beta CL” based on

the pairs Y1t = (r1t, r2t)
′, Y2t = (r1t, r3t)

′,. . . , Y(L−1)t = (r1t, rLt)
′, where N = L − 1 and {r1t} is

the return on the market. Statistically, if the model was correctly specified, this is likely to be

less efficient than using L randomly chosen pairs, as the corresponding submodel quasi-likelihoods

logLlt (θ, λl) will be tightly dependent across l. However, as the models will be incorrect then

having this highly tuned to estimating betas may be beneficial — in effect allowing one to pool

information on the estimation of betas across assets.

8.2 CL and λ

CL estimation of θ does not necessarily deliver estimates of all λj, for some CL estimators do not

use all available pairs. Of course once θ is estimated all the missing elements in λ can be filled in

rapidly. In the scalar BEKK and DCC cases this will costs O(L2).

8.3 Engle’s method

Engle (2009b) proposed a method for estimating large dimensional models. He called it the Mac-

Gyver strategy, basing it on pairs of returns. Instead of averaging the log-likelihoods of pairs of

observations, the log-likelihoods were separately maximised and then the resulting estimators were

averaged using medians. This overcomes the difficulty of inverting H, but has the difficulty that

(i) it is not clear that the pooled estimators should have equal weight, (ii) it involves L(L − 1)/2

maximisations, (iii) no properties of this estimator were derived, (iv) the resulting estimator may

not be in the permissible parameter space. Engle’s method has some similarities, but is distinct,
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to the Ledoit, Santa-Clara, and Wolf (2003) procedure which also fits models to many pairs of

observations. It is distinctively focused on estimating a small number of common parameters.

It is not difficult to study the asymptotic properties of this estimator in the case where we

replace the median by an average. This linear version of the method would average the submodels

maximum quasi-likelihood estimators, which asymptotically behave like

1

N

N∑

j=1

θ̂j =
1

N

N∑

j=1

θj −
1

NT

N∑

j=1

(
ℓθθjT − ℓθλjT (ℓ

λλ
jT )

−1ℓλθjT

)−1
T∑

t=1

(
ℓθjt − ℓθλjT (ℓ

λλ
jT )

−1ℓλjt

)
.

Hence its asymptotic variance can be estimated by applying a HAC estimator to

N∑

j=1

(
ℓθθjT − ℓθλjT (ℓ

λλ
jT )

−1ℓλθjT

)−1 (
ℓθjt − ℓθλjT (ℓ

λλ
jT )

−1ℓλjt

)
.

In the linear case the estimator is dominated by the submodel estimators with largest variances —

i.e. components which are least informative.

8.4 Imposing factor structure on Σ

In some stationary multivariate models it might make sense to impose a factor structure on Σ,

particularly when L is very large (e.g. in financial economics, see for example, Chamberlain and

Rothschild (1983), King, Sentana, and Wadhwani (1994) and Diebold and Nerlove (1989)). A

leading candidate would be that Σ obeys a strict factor structure Σ = ff ′+Ω, where f is a L×M

matrix of factor loadings and Ω is an L by L diagonal matrix containing the residual variances.

This implies the long run the covariances in the model obey a factor structure but in the short run

there can be departures from it. This can be carried out using a two step procedure: estimating

the constrained Σ and then plugging this into a composite likelihood to estimate α and β.

Taking this model to the data, we estimate the factor model using the Jöreskog (1967) method

which assumes the returns, factors and innovations are i.i.d. Gaussian. This implies the estimated

Σ has the same diagonal elements of T−1
∑T

t=1 rtr
′
t and so only the correlations estimates differ.

The parameters controlling the dynamics were estimated for M = 1, 2, 3 using a composite

likelihood. The estimates are presented in Table 9. The estimated parameters vary substantially as

the cross-sectional dimension increases. The first step estimates that use a factor intercept are very

close to α+β = 1, although the sum moves marginally away from this boundary as the cross section

increases. This is the classic sign of misspecification (Monte Carlo experiments, not reported here,

indicate the above estimation method does not yield biased estimators when the factor structure

is used as the data generator process), where the data wants to ignore the log-run Σ matrix and it

does this by imposing a near unit root on the parameters.
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M = 1 M = 2 M = 3
L α β α β α β

5 0.0261 0.9715 0.0261 0.9715 0.0261 0.9715
25 0.0082 0.9909 0.0081 0.9909 0.0080 0.9908
50 0.0057 0.9935 0.0057 0.9934 0.0057 0.9933

100 0.0041 0.9949 0.0040 0.9947 0.0039 0.9946
250 0.0026 0.9955 0.0025 0.9953 0.0024 0.9950
480 0.0017 0.9964 0.0016 0.9963 0.0016 0.9961

Table 9: Parameter estimates from fitting a scalar BEKK to the S&P 500 components continuously
available between 1998 and 2007 using a M dimensional factor based estimate of the intercept and
a composite likelihood function for α and β. L denotes the number of assets analysed.

9 Conclusions

This paper has introduced a new way of estimating large dimensional time-varying covariance

models, based upon the sum of quasi-likelihoods generated by time series of pairs of asset returns.

This CL procedure leads to a loss in efficiency compared to a full quasi-likelihood approach, but it

is easy to implement, is not effected by the incidental parameter problem and scales well with the

dimension of the problem. These new methods can be used to estimate models in dimensions of

many hundreds, indeed the dimension could be larger than the time series dimension.
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A Scalar BEKK simulation

Here we report the results from repeating the experiments discussed in Section 6 but on the scalar
BEKK model given in Example 2.1. In this experiment the same values of α and β are used but
with Ψ being replaced by Σ.

The results are presented in Table 10, their structure exactly follows that discussed for the
cDCC model given in Section 6.

B Mathematical Appendix

B.1 Moment conditions

The moment conditions used in the rest of the proofs are provided below.
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Bias RMSE
2MLE 2MCLE 2MSCLE 2MLE 2MCLE 2MSCLE

N α β α β α β α β α β α β

α = .02, β = .97

3 .000 -.005 .000 -.005 .000 -.006 .005 .009 .005 .010 .006 .012
10 -.001 -.003 .000 -.004 .000 -.004 .002 .004 .003 .006 .003 .007
50 -.005 -.000 .000 -.004 .000 -.004 .005 .001 .002 .005 .002 .005
100 -.009 -.001 .000 -.004 .000 -.004 .009 .001 .002 .005 .002 .005

α = .05, β = .93

3 -.000 -.008 -.000 -.009 .000 -.010 .008 .023 .009 .025 .010 .029
10 -.001 -.005 -.000 -.007 -.000 -.007 .003 .009 .005 .014 .006 .015
50 -.006 -.003 -.000 -.006 -.000 -.006 .006 .004 .003 .009 .003 .009
100 -.012 -.004 -.000 -.006 -.000 -.006 .012 .004 .003 .009 .003 .009

α = .10, β = .80

3 -.001 -.005 -.001 -.006 -.001 -.006 .013 .028 .014 .030 .015 .033
10 -.003 -.003 -.001 -.005 -.001 -.005 .006 .011 .009 .019 .009 .019
50 -.014 .001 -.001 -.005 -.001 -.005 .015 .004 .006 .012 .006 .012
100 -.026 .001 -.001 -.005 -.001 -.005 .026 .003 .006 .012 .006 .012

Table 10: Bias and RMSE results from a simulation study for the covariance estimators of the
covariance targeting scalar BEKK model. We only report the estimates of α and β and their
sum. The estimators are the subset CL (2MSCLE), the CL (2MCLE), and the likelihood (2MLE)
estimator. All results based on 2 , 500 replications.

Assumption B.1 For some ε > 0 we have

E

[∣∣∣∣
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]

< ∞, E

[∣∣∣∣
d4ℓjt(θ, λ)

dθr1dθr2dθr3dθr4

∣∣∣∣
1+ε
]
<∞,

E

[∣∣∣∣
d4ℓjt(θ, λ)

dλp1dλp2dλp3dλp4

∣∣∣∣
2+ε
]

< ∞, E

[∣∣∣∣
d5ℓjt(θ, λ)

dθr1dλp1dλp2dλp3dλp4

∣∣∣∣
2+ε
]
<∞,

E

[∣∣∣∣
d5ℓjt(θ, λ)

dθr1dθr2dλp1dλp2dλp3

∣∣∣∣
2+ε
]

< ∞, E

[∣∣∣∣
d5ℓjt(θ, λ)

dθr1dθr2dθr3dθr4dθr5

∣∣∣∣
2+ε
]
<∞,

E

[∣∣∣∣
d4ℓjt(θ, λ)

dθr1dθr2dθr3dλp1

∣∣∣∣
2+ε
]

< ∞, E

[∣∣∣∣
d5ℓjt(θ, λ)

dθr1dθr2dθr3dθr4dλp1

∣∣∣∣
2+ε
]
<∞,

E

[
|ℓjt(θ, λ)|2+ε

]
< ∞, E

[∣∣∣∣
dℓjt(θ, λ)

dλp1

∣∣∣∣
3+ε
]
<∞, E

[∣∣∣∣
dℓjt(θ, λ)

dθr1

∣∣∣∣
3+ε
]
<∞,

E

[∣∣∣∣
d2ℓjt(θ, λ)

dθr1dλp1

∣∣∣∣
3+ε
]

< ∞, E

[∣∣∣∣
d3ℓjt(θ, λ)

dθr1dθr2dλp1

∣∣∣∣
3+ε
]
<∞, E

[∣∣∣∣
d2ℓjt(θ, λ)

dλp1dλp2

∣∣∣∣
3+ε
]
<∞,

E

[∣∣∣∣
d2ℓjt(θ, λ)

dθr1dθr2

∣∣∣∣
3+ε
]

< ∞, E

[∣∣∣∣
d3ℓjt(θ, λ)

dθr1dλp1dλp2

∣∣∣∣
3+ε
]
<∞, E

[∣∣∣∣
d3ℓjt(θ, λ)

dθr1dθr2dθr3

∣∣∣∣
3+ε
]
<∞,

uniformly for all θ, λ, j, t and r1, ..., r5 ∈ {1, ..., R} and p1, ..., p4 ∈ {1, ..., P}.
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B.2 Consistency

The analysis in this section is to a large extent based on Lemmas 1 and 4, and Theorems 3 and 4
of Hahn and Kuersteiner (2011), and their proofs. In what follows, let Q̂(j)(θ, λ) = ℓjT (θ, λ) and
Q(j)(θ, λ) = E[ℓjT (θ, λ)]. Throughout this section we maintain the Assumptions of Theorem 4.1.
As mentioned before, the particular moment and summability conditions required in this section
are (i) E[|ℓjt(θ, λ)|2+ε] <∞ and (ii)

∑∞
m=1 αj(m)1/q−1/r <∞ for some r > q > 1.

We start with two preliminary results, which will be followed by the proof of consistency.

Lemma B.1 Let {Yjt}Tt=1 be a zero-mean α-mixing sequence where, for some r and q such that

r > q > 1,
∑∞

m=1 αj(m)1/q−1/r < ∞ for all j = 1, ..., N . Moreover, supj,tE[||Yjt||2+δ] < ∞ for

some δ > 0. Then, P [|| 1T
∑T

t=1 Yjt|| ≥ η] = o(T−1) for every η > 0 as T → ∞.

Proof of Lemma B.1. We start with

P

[∣∣∣∣∣

∣∣∣∣∣
1

T

T∑

t=1

Yjt

∣∣∣∣∣

∣∣∣∣∣ ≥ η

]
= P



∣∣∣∣∣

∣∣∣∣∣

T∑

t=1

Yjt

∣∣∣∣∣

∣∣∣∣∣

2+δ/2

≥ η2+δ/2T 2+δ/2


 ≤ 1

(Tη)2+δ/2
E



∣∣∣∣∣

∣∣∣∣∣

T∑

t=1

Yjt

∣∣∣∣∣

∣∣∣∣∣

2+δ/2

 ,

which follows from Markov’s inequality. Then, by Corollary 3 of Hansen (1991), for some K <∞
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Choosing q = 2 + δ/2 and r = 2 + δ, this yields, after some rearranging,7
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Hence,
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which is o(T−1), as desired.

Lemma B.2 For all η > 0,
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Proof of Lemma B.2. For some η > 0,
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Let Sδ (ψk) = {(θ, λ) : ||(θ, λ)− (θk, λk)|| < δ} and Sk
δ = Sδ (ψk) . Since Θ and Λ are compact,
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there exists a finite collection of subsets S1
δ , ...,S

K(δ)
δ such that Ψ ⊂ ∪K(δ)

k=1 Sk
δ . Hence,
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Now, consider some particular value of k. Then, for some (θ, λ) ∈ Sk
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which follows from the Triangle Inequality. Then,
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where the first inequality follows from Assumption 4.2(i) and the fact that for (θ, λ) ∈ Sk
δ ,

||(θ, λ)− (θk, λk)|| < δ. One can pick δ such that 2δmaxj,t E[c(Yjt)] < η/3. Then,
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where the final probability on the right hand side is equal to zero for the particular choice of δ here.

Hence, by Lemma B.1, P
[
sup(θ,λ)∈Sk

δ

∣∣ℓjT (θ, λ)−Q(j)(θ, λ)
∣∣ ≥ η

]
= o(T−1) and, finally,
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(θ,λ)∈Ψ

∣∣ℓjT (θ, λ)−Q(j)(θ, λ)
∣∣ ≥ η

]
= o(1),

since N = O(T ). The mixing conditions of Assumption 4.4(ii) are stronger than necessary for
Lemma B.1. However, they will be needed when proving Theorems 4.2 and 4.3.

The main proof follows next.
Proof of Theorem 4.1. Let η > 0. By Lemma B.2, for any τ > 0
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[
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]
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Let τ = ε/2, where ε = inf1≤j≤N

[
Q(j)(θ0, λj0)− sup{(θ,λ):||(θ,λ)−(θ0,λj0)||>η}Q(j)(θ, λ)

]
> 0 by

Assumption 4.3(i). Then, with probability 1− o(1),
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The 3rd and 5th inequalities follow from Lemma B.2, while the 4th is due to Assumption 4.3(i).
Hence, with probability 1 − o(1), ||θ̂ − θ0|| < η, giving the desired result. Proving consistency of
the nuisance parameter estimator follows using the same ideas. Let η > 0. Again, by Lemma B.2,
P [max1≤j≤N sup(θ,λ)∈Ψ |Q̂(j)(θ, λ)−Q(j)(θ, λ)| > τ ] = o(1), for some τ > 0. We choose

2τ = ε = inf
θ∈Θ

inf
1≤j≤N


Q(j)(θ, λ̄jT (θ))− sup

{λ:||λ−λ̄jT (θ)||>η}

Q(j)(θ, λ)


 > 0,

where ε > 0 by Assumption 4.3(ii). Now, with probability 1− o(1),

max
1≤j≤N

max
{λ:||λ−λ̄jT (θ)||>η}

Q̂(j)(θ, λ) < max
1≤j≤N

max
{λ:||λ−λ̄jT (θ)||>η}

Q(j)(θ, λ) + ε/2

< max
1≤j≤N

Q(j)(θ, λ̄jT (θ))− ε/2 < max
1≤j≤N

Q̂(j)(θ, λ̄jT (θ))

≤ max
1≤j≤N

max
λ∈Λ

Q̂(j)(θ, λ).

Hence, for each j and any η, P [max1≤j≤N ||λ̂j(θ)− λ̄jT (θ)|| < η] = 1− o(1).
We finish this section by providing one more result, which will be used below in finding the

orders of the remainder terms in mean value expansions.

Theorem B.1 Let θ̃ ∈ Θ be such that θ̃
p→ θ0 as N,T → ∞. Then,

P

[
max

1≤j≤N

∣∣∣
∣∣∣λ̂j(θ̃)− λ̄jT (θ0)

∣∣∣
∣∣∣ < η

]
= 1− o(1), for all η > 0.

Proof of Theorem B.1. For conciseness, define E = max1≤j≤N supλ∈Λ |Q̂(j)(θ̃, λ)−Q(j)(θ0, λ)|.
Then,

E ≤ max
1≤j≤N

sup
λ∈Λ

∣∣∣Q̂(j)(θ̃, λ)−Q(j)(θ̃, λ)
∣∣∣+ max

1≤j≤N
sup
λ∈Λ

∣∣∣Q(j)(θ̃, λ)−Q(j)(θ0, λ)
∣∣∣

≤ max
1≤j≤N

sup
(θ,λ)∈Ψ

∣∣∣Q̂(j)(θ, λ)−Q(j)(θ, λ)
∣∣∣+ max

1≤j≤N
sup
λ∈Λ

E[c(Yjt)]
∣∣∣
∣∣∣(θ̃, λ)− (θ0, λ)

∣∣∣
∣∣∣

= max
1≤j≤N

sup
(θ,λ)∈Ψ

∣∣∣Q̂(j)(θ, λ)−Q(j)(θ, λ)
∣∣∣+ max

1≤j≤N
E[c(Yjt)]

∣∣∣
∣∣∣θ̃ − θ0

∣∣∣
∣∣∣ .
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Therefore, for some τ > 0,

P [E ≥ τ ] ≤ P

[
max

1≤j≤N
sup

(θ,λ)∈Ψ

∣∣∣Q̂(j)(θ, λ)−Q(j)(θ, λ)
∣∣∣ ≥ τ/2

]
+ P

[
max

1≤j≤N
E[c(Yjt)]

∣∣∣
∣∣∣θ̃ − θ0

∣∣∣
∣∣∣ ≥ τ/2

]

= P

[
max

1≤j≤N
sup

(θ,λ)∈Ψ

∣∣∣Q̂(j)(θ, λ)−Q(j)(θ, λ)
∣∣∣ ≥ τ/2

]
+ P

[∣∣∣
∣∣∣θ̃ − θ0

∣∣∣
∣∣∣ ≥ τ

2max1≤j≤N E[c(Yjt)]

]
,

which, by the assumption that ||θ̃− θ0|| p→ 0 and by Lemma B.2, implies that P [E < τ ] = 1− o(1).

Now, let τ be such that 2τ = ε = inf1≤j≤N

[
Q(j)(θ0, λ̄jT (θ0))− sup{λ:||λ−λ̄jT (θ0)||>η}Q(j)(θ0, λ)

]
,

which is positive by Assumption 4.3(ii). Now, for any Λ̂ ⊆ Λ,
∣∣∣supλ∈Λ̂ Q̂(j)(θ̃, λ)− supλ∈Λ̂Q(j)(θ0, λ)

∣∣∣ ≤
supλ∈Λ̂

∣∣∣Q̂(j)(θ̃, λ)−Q(j)(θ0, λ)
∣∣∣ . Then, since P [E < τ ] = 1− o(1), this implies that

P

[
max
1≤i≤j

∣∣∣∣∣sup
λ∈Λ̂

Q̂(j)(θ̃, λ)− sup
λ∈Λ̂

Q(j)(θ0, λ)

∣∣∣∣∣ < ε/2

]
= 1− o(1), (9)

as well. Therefore, with probability 1− o(1), we have for all j

sup
{λ:||λ−λ̄jT (θ0)||>η}

Q̂(j)(θ̃, λ) < sup
{λ:||λ−λ̄jT (θ0)||>η}

Q(j)(θ0, λ) + ε/2

≤ Q(j)(θ0, λ̄jT (θ0))− ε/2 < Q̂(j)(θ̃, λ̂j(θ̃)),

where the first and last inequalities follow from (9) while the second inequality is due to Assumption
4.3(ii). Since, by definition, λ̂j(θ̃) = argmaxλ∈Λ Q̂(j)(θ̃, λ), it must be the case that ||λ̂j(θ̃) −
λ̄jT (θ0)|| ≤ η, for all j with probability 1− o(1), which proves the theorem.

B.3 Proofs of theorems 4.2 and 4.3

Proofs in this part are inspired by the strong dependence case of Pakel (2014), who considers
the integrated composite likelihood method. Our main contribution is extending these results to
multivariate incidental parameters for the standard composite likelihood method.

B.3.1 A short overview of the index notation

Due to θ and λ being vector-valued parameters, we have to use multivariate asymptotic expansions
in the remainder. Unfortunately, these become quite tedious, even with low order expansions. To
simplify the algebra, we will use index notation and the Einstein summation convention. Below,
we provide a short overview; for a more detailed treatment of these notational techniques see
McCullagh (1987) and Pace and Salvan (1997).

Here to make the likelihood notation more concise, we use the following short hand notation:

ℓ̄jT = ℓjT (θ, λ̄jT (θ)), ℓ̄NT = ℓNT (θ, λ̄1,T (θ), ..., λ̄N,T (θ)), ℓ̂NT = ℓNT (θ, λ̂1(θ), ..., λ̂N (θ)),

ℓ̂jT = ℓjT (θ, λ̂j(θ)), ℓjT = ℓjT (θ0, λ̄jT (θ0)), ℓNT = ℓNT (θ0, λ̄1,T (θ0), ..., λ̄N,T (θ0)).

In index notation an array of any dimension can be written as a scalar where the array structure
is made explicit by the use of indices. For example, let [xd] denote a D-dimensional vector where
d = 1, ...,D. Using index notation, this can be written more concisely as xd. Similarly, a D1 ×D2

matrix [xd1,d2 ], where d1 = 1, ...,D1 is the row index and d2 = 1, ...,D2 is the column index, would
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be written as xd1,d2 . We adopt this convention for all likelihood derivatives. For example,

ℓj;p =
dℓjT
dλj;p

, ℓ̂j;r =
dℓ̂jT
dθr

, ℓj;p1,p2,r1 =
d3ℓjT

dλj;p1dλj;p2dθr1
,

ℓ̄p =
dℓ̄NT

dλj;p
, ℓr =

dℓNT

dθr
, ℓp1,p2,r1 =

d3ℓNT

dλj;p1dλj;p2dθr1
etc.

where pi ∈ {1, ..., P} and ri ∈ {1, ..., R}. Note that, we use the indices q and r for derivatives with
respect to θ only, while a, b, c, d, e, f, l,m, n, o and p are reserved for derivatives with respect to λ.
Hence, for example, [ℓp] is the P -dimensional score vector dℓNT /dλj while [ℓj;ri,rj ] is the Hessian
matrix d2ℓjT /dθdθ

′ where r1, r2 = {1, ..., R} etc. In the following, we will use the index notation
both to denote a particular entry and the whole array itself, e.g. depending on context ℓj;ri,rj can
stand for d2ℓjT/dθdθ

′ or the row ri and column rj entry of this matrix. We also use the following
notation for expected values of likelihood terms and their centred versions:

v̄j;p1,p2 = E[ℓ̄j;p1,p2 ], vp1,p2 = E[ℓp1,p2 ], Hj;a,b = ℓj;a,b − vj;a,b H̄q,m = ℓ̄q,m − v̄q,m etc.

To denote the inverse of a matrix, we use upperscript indices: for example, v̄p1,p2j denotes row

p1 column p2 entry of the matrix
(
d2ℓjT (θ,λ̄j(θ))

dλjdλ
′
j

)−1
. The Kronecker Delta is given by κqp where

κqp = 1 if p = q and κqp = 0 if p 6= q. In what follows, we will use ǫj;p(θ) = λ̂j;p(θ) − λ̄jT ;p(θ) and

δr = θ̂r − θ0;r, where λj;p is entry p of λj and θr is entry r of θ.
Another technique employed here is the Einstein summation convention, which is used to repre-

sent multiple summations concisely. The essence of this notation is that, whenever an index appears
twice in a given expression, that expression is to be summed across that index. For example, con-
sider the following term written in the Einstein summation notation: xr,qxq,px

r,pyz. The indices
p, q and r appear twice while z appears only once. Therefore, in the standard notation this term
is equal to

∑P
p=1

∑Q
q=1

∑R
r=1 xr,qxq,px

r,pyz. The number of indices that appear once (the so called
free indices) then determine the dimension of the expression. For example, the previous expression
is a vector while xr,qyq,z is a (2×2) matrix since r and z appear only once. Note that one can freely
change the letters used for the indices, as long as the relationship between the indices remains the
same. For example xa,bx

b,c is the same as xd,fx
f,e whereas xb,dx

b,a is a different expression.

Remark 2 Notice that, since by definition ∂
∂λj

∑T
t=1 E[ℓjt(θ, λj)]

∣∣∣
λj=λ̄jT (θ)

= 0 for all θ, we have

∇θ

{
∂

∂λj

T∑

t=1

E[ℓjt(θ, λj)]

}∣∣∣
λj=λ̄jT (θ)

= 0, ∇θθ

{
∂

∂λj

T∑

t=1

E[ℓjt(θ, λj)]

}∣∣∣
λj=λ̄jT (θ)

= 0,

etc. ∀θ.

B.3.2 Some preliminary lemmas

First recall a result from Pakel (2014, Lemma A.3).

Lemma B.3 For any given j, let Yjt, t = 1, ..., T be an α-mixing random sequence such that
limm→∞ αij,k(m) = 0, limm→∞ αi,jk(m) = 0, and for some δ > 0

∑∞
m=1mαij,k(m)δ/3+δ < ∞

and
∑∞

m=1mαi,jk(m)δ/3+δ < ∞, uniformly for all i, j, k = 1, ..., N. Let f(·), g(·) and h(·) be
some measurable functions of Yjt where E[f(·)] = E[g(·)] = E[h(·)] = 0. In addition assume
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that E[|f(Yjt)|3+δ] <∞, E[|g(Yjt)|3+δ] <∞ and E[|h(Yjt)|3+δ] <∞ for all j,t. Then,

E

[
1

T 2

T∑

s=1

T∑

t=1

f(Yis)g(Yjt)

]
= O

(
1

T

)
, (10)

E


 1

T 3

T∑

s=1

T∑

t=1

T∑

q=1

f(Yis)g(Yjt)h(Ykq)


 = O

(
1

T 2

)
, (11)

E


 1

N2T 2

N∑

i=1

N∑

j=1

T∑

s=1

T∑

t=1

f(Yis)g(Yjt)


 = O

(
1

T

)
, (12)

E


 1

N3T 3

N∑

i=1

N∑

j=1

N∑

k=1

T∑

s=1

T∑

t=1

T∑

q=1

f(Yis)g(Yjt)h(Ykq)


 = O

(
1

T 2

)
, (13)

where (10) and (11) hold for all i, j,k = 1, ..., N.

Lemma B.4 Let λ̃j(θ) be the mean value between λ̂j(θ) and λ̄jT (θ) and θ̃ be the mean value between

θ̂ and θ0. Note that, in what follows, λ̃j(θ) and θ̃ do not necessarily take on the same value for all
the terms considered. Then, using the index notation as defined before,

ℓj;p1,p2,p3,p4(θ, λ̃j(θ))ǫj;p2(θ)ǫj;p3(θ)ǫj;p4(θ) = Op(T
−3/2), (14)

ℓj;r1,r2,m,n,l(θ0, λ̃j(θ0))ǫj;m(θ0)ǫj;n(θ0)ǫj;l(θ0) = Op(T
−3/2), (15)

ℓj;r1,m,n,l,o(θ0, λ̃j(θ0))ǫj;m(θ0)ǫj;n(θ0)ǫj;l(θ0)ǫj;o(θ0) = Op(T
−2), (16)

ℓr1,r2,r3,r4,r5(θ̃, λ̂j(θ̃))δr2δr3δr4δr5 = Op(T
−2), (17)

ℓj;r1,r2,r3,m(θ0, λ̃j(θ0))ǫj;m(θ0) = op(T
−1/2), (18)

ℓj;r1,r2,r3,r4,m(θ0, λ̃j(θ0))ǫj;m(θ0) = op(T
−1/2). (19)

Proof of Lemma B.4. Consider (14). By the same arguments as in the proof of Lemma
B.2, a uniform convergence result for ℓj;p1,p2,p3,p4(θ, λ) (and any of the other likelihood derivatives
given in Lemma B.4) can be obtained. Then, by uniform convergence of ℓj;p1,p2,p3,p4(θ, λ) and since

λ̃j(θ)
p→ λ̄jT (θ), using standard arguments one obtains

ℓj;p1,p2,p3,p4(θ, λ̃j(θ)) = E[ℓj;p1,p2,p3,p4(θ, λ̄jT (θ))] + op(1).

Since, λ̂j(θ)− λ̄jT (θ) = Op(T
−1/2) for all j and θ, we have, ℓj;p1,p2,p3,p4(θ, λ̃j(θ))ǫ

p2
j (θ)ǫp3j (θ)ǫp4j (θ) =

Op(T
−3/2), as desired. By using exactly the same line of arguments as above, (15) and (16) can be

shown to be Op(T
−3/2) and Op(T

−2), respectively.

Next, take (17). We know that θ̃ − θ0
p→ 0. In addition, by Theorem B.1, λ̂j(θ̃)− λ̄jT (θ0)

p→ 0

for all j. Hence, (θ̃, λ̂j(θ̃))− (θ0, λ̄jT (θ0))
p→ 0. By the above arguments,

ℓr1,r2,r3,r4,r5(θ̃, λ̂j(θ̃)) = E[ℓr1,r2,r3,r4,r5(θ0, λ̄jT (θ0))] + op(1),

which, together with ||θ̂−θ0|| = Op(T
−1/2), implies that ℓr1,r2,r3,r4,r5(θ̃, λ̂j(θ̃))δr2δr3δr4δr5 = Op(T

−2).
Two terms are left. By definition both E[ℓj;r1,r2,r3,m(θ0, λ̄jT (θ0))] and E[ℓj;r1,r2,r3,r4,m(θ0, λ̄jT (θ0))]

are equal to zero (see Remark 2). Then, by using similar arguments as before,

ℓj;r1,r2,r3,m(θ0, λ̃j(θ0)) = E[ℓj;r1,r2,r3,m(θ0, λ̄jT (θ0))] + op(1) = op(1),

ℓj;r1,r2,r3,r4,m(θ0, λ̃j(θ0)) = E[ℓj;r1,r2,r3,r4,m(θ0, λ̄jT (θ0))] + op(1) = op(1).

Since λ̂j(θ)− λ̄jT (θ) = Op(T
−1/2) for all j and θ, we have the desired results.
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B.3.3 First step: multivariate expansion for λ̂j(θ)− λ̄jT (θ)

We start with an expansion of the score with respect to λj around λ̂j(θ) = λ̄jT (θ) :

ℓ̂j;p1 = ℓ̄j;p1 + ℓ̄j;p1,p2ǫj;p2(θ) +
1

2
ℓ̄j;p1,p2,p3ǫj;p2(θ)ǫj;p3(θ)

+
1

6
ℓ̄j;p1,p2,p3,p4(θ, λ̃j(θ))ǫj;p2(θ)ǫj;p3(θ)ǫj;p4(θ),

= ℓ̄j;p1 + v̄j;p1,p2ǫj;p2(θ) + H̄j;p1,p2ǫj;p2(θ) +
1

2
v̄j;p1,p2,p3ǫj;p2(θ)ǫj;p3(θ) +Op

(
T−3/2

)

where the remainder term is Op(T
−3/2) by Lemma B.4. Since ℓ̂j;p1 = 0, we have

v̄j;p1,p2ǫj;p2(θ) = −
(
ℓ̄j;p1 + H̄j;p1,p2ǫj;p2(θ) +

1

2
v̄j;p1,p2,p3ǫj;p2(θ)ǫj;p3(θ)

)
+Op

(
T−3/2

)
. (20)

The next step is to invert (20) in order to obtain an expression for ǫj;m(θ) = λ̂j;m(θ)− λ̄jT ;m(θ) in
terms of likelihood terms only. First, notice that, v̄j;p1,p2 v̄

p1,m
j ǫj;p2(θ) = κmp2ǫj;p2(θ) = ǫj;m(θ); see

e.g. Pace and Salvan (1997). Then, multiplying both sides of (20) by v̄p1,mj yields

ǫj;m(θ) = −ℓ̄j;p1v̄p1,mj − [H̄j;p1,p2 v̄
p1,m
j +

1

2
v̄j;p1,p2,p3v̄

p1,m
j ǫj;p3(θ)]ǫj;p2(θ) +Op(T

−3/2), (21)

ǫj;p2(θ) = −
(
ℓ̄j;av̄

a,p2
j + H̄j;a,bv̄

a,p2
j ǫj;b(θ) +

1

2
v̄j;a,b,cv̄

a,p2
j ǫj;b(θ)ǫj;c(θ)

)
+Op

(
T−3/2

)
, (22)

ǫj;p3(θ) = −
(
ℓ̄j;dv̄

d,p3
j + H̄j;d,ev̄

d,p3
j ǫj;e(θ) +

1

2
v̄j;d,e,f v̄

d,p3
j ǫj;e(θ)ǫj;f(θ)

)
+Op

(
T−3/2

)
.(23)

Note that (22) and (23) are copies of (21), although with a different set of indices to prevent
confusion. Substituting (22) and (23) into (21) finally yields an expansion for λ̂j(θ)− λ̄jT (θ):

ǫj;m(θ) = −
(
ℓ̄j;p1v̄

p1,m
j + H̄j;p1,p2 v̄

p1,m
j ℓ̄j;av̄

a,p2
j +

1

2
v̄j;p1,p2,p3 v̄

p1,m
j ℓ̄j;av̄

a,p2
j ℓ̄j;dv̄

d,p3
j

)
+Op(T

−3/2).

B.3.4 Second step: multivariate expansion for θ̂ − θ0

Now, by a mean value expansion of ℓr1(θ̂, λ̂j(θ̂)) around θ̂ = θ0, we have

ℓr1(θ̂, λ̂j(θ̂)) = ℓr1(θ0, λ̂j(θ0)) + ℓr1,r2(θ0, λ̂j(θ0))δr2 +
1

2
ℓr1,r2,r3(θ0, λ̂j(θ0))δr2δr3

+
1

6
ℓr1,r2,r3,r4(θ0, λ̂j(θ0))δr2δr3δr4 +

1

24
ℓr1,r2,r3,r4,r5(θ̃, λ̂j(θ̃))δr2δr3δr4δr5 .(24)

By Lemma B.4, the remainder term is Op(T
−2). Unfortunately, the asymptotic behaviour of the

likelihood derivatives evaluated at (θ0, λ̂j(θ0)) is not clear. However, by expanding these terms
around (θ0, λ̄jT (θ0)) = (θ0, λj0) we can obtain an asymptotically equivalent expression, which can
be analysed conveniently. Doing this for each term on the right hand side of (24) yields

ℓj;r1(θ0, λ̂j(θ0)) = ℓj;r1 + ℓj;r1,mǫj;m(θ0) +
1

2
ℓj;r1,m,nǫj;m(θ0)ǫj;n(θ0) +

1

6
ℓj;r1,m,n,lǫj;m(θ0)ǫj;n(θ0)ǫj;l(θ0)

+
1

24
ℓj;r1,m,n,l,o(θ0, λ̃j(θ0))ǫj;m(θ0)ǫj;n(θ0)ǫj;l(θ0)ǫj;o(θ0)

= ℓj;r1 + ℓj;r1,mǫj;m(θ0) +
1

2
(vj;r1,m,n +Hj;r1,m,n) ǫj;m(θ0)ǫj;n(θ0)

+
1

6
vj;r1,m,n,lǫj;m(θ0)ǫj;n(θ0)ǫj;l(θ0) +Op(T

−2)
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= ℓj;r1 − ℓj;r1,m

(
ℓj;p1v

p1,m
j +Hj;p1,p2v

p1,m
j ℓj;av

a,p2
j +

1

2
vj;p1,p2,p3v

p1,m
j ℓj;av

a,p2
j ℓj;dv

d,p3
j

)

+
1

2
vj;r1,m,n

[
ℓj;p1v

p1,m
j ℓj;p′1v

p′1,n
j

+ℓj;p1v
p1,m
j

(
Hj;p′1,p

′
2
v
p′1,n
j ℓj;a′v

a′,p′2
j +

1

2
vj;p′1,p′2,p′3v

p′1,n
j ℓj;a′v

a′,p′2
j ℓj;d′v

d′,p′3
j

)

+ℓj;p′1v
p′1,n
j

(
Hj;p1,p2v

p1,m
j ℓj;av

a,p2
j +

1

2
vj;p1,p2,p3v

p1,m
j ℓj;av

a,p2
j ℓj;dv

d,p3
j

)]

+
1

2
Hj;r1,m,nℓj;p1v

p1,m
j ℓj;p′1v

p′1,n
j

−1

6
vj;r1,m,n,lℓj;p1v

p1,m
j ℓj;p′1v

p′1,n
j ℓj;p′′1v

p′′1 ,l
j +Op(T

−2),

while

ℓj;r1,r2(θ0, λ̂j(θ0)) = vj;r1,r2 +Hj;r1,r2 + ℓj;r1,r2,mǫj;m(θ0) +
1

2
ℓj;r1,r2,m,nǫj;m(θ0)ǫj;n(θ0)

+
1

6
ℓj;r1,r2,m,n,l(θ0, λ̃j(θ0))ǫj;m(θ0)ǫj;n(θ0)ǫj;l(θ0),

= vj;r1,r2 +Hj;r1,r2 − ℓj;r1,r2,m(ℓj;p1v
p1,m
j ) +

1

2
vj;r1,r2,m,n[ℓj;p1v

p1,m
j ℓj;p′1v

p′1,n
j ]

+Op(T
−3/2),

ℓj;r1,r2,r3(θ0, λ̂j(θ0)) = vj;r1,r2,r3 +Hj;r1,r2,r3 + ℓj;r1,r2,r3,m(θ0, λ̃j(θ0))ǫj;m(θ0)

= vj;r1,r2,r3 +Hj;r1,r2,r3 +Op(T
−1),

ℓj;r1,r2,r3,r4(θ0, λ̂j(θ0)) = vj;r1,r2,r3,r4 +Hj;r1,r2,r3,r4 + ℓj;r1,r2,r3,r4,m(θ0, λ̃j(θ0))ǫj;m(θ0)

= vj;r1,r2,r3,r4 +Op(T
−1/2).

The orders of the remainder terms in these four mean value expansions are given by Lemma B.4
(see (15), (16), (18) and (19)). In the above calculations we have used

ǫj;m(θ0) = −ℓj;p1vp1,mj −Hj;p1,p2v
p1,m
j ℓj;av

a,p2
j − 1

2
vj;p1,p2,p3v

p1,m
j ℓj;av

a,p2
j ℓj;dv

d,p3
j +Op(T

−3/2),

ǫj;n(θ0) = −ℓj;p′1v
p′1,n
j −Hj;p′1,p

′
2
v
p′1,n
j ℓj;a′v

a′,p′2
j − 1

2
vj;p′1,p′2,p′3v

p′1,n
j ℓj;a′v

a′,p′2
j ℓj;d′v

d′,p′3
j +Op(T

−3/2),

ǫj;l(θ0) = −ℓj;p′′1v
p′′1 ,l
j −Hj;p′′1 ,p

′′
2
v
p′′1 ,l
j ℓj;a′′v

a′′,p′′2
j − 1

2
vj;p′′1 ,p′′2 ,p′′3 v

p′′1 ,l
j ℓj;a′′v

a′′,p′′2
j ℓj;d′′v

d′′,p′′3
j +Op(T

−3/2).

These expressions are identical, except that in each case different indices have been used, in order
to keep track of different entries of the arrays appearing in the expansion. Now, substituting the
above derived asymptotically equivalent expressions into (24) and summing across i gives

ℓr1(θ̂, λ̂j(θ̂)) = ℓr1 + δr2vr1,r2 + δr2Hr1,r2 +
1

2
δr2δr3vr1,r2,r3 +

1

2N

N∑

j=1

vj;r1,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j

− 1

N

N∑

j=1

ℓj;r1,mℓj;p1v
p1,m
j +

1

6
δr2δr3δr4vr1,r2,r3,r4 +

1

2
δr2δr3Hr1,r2,r3

− 1

N

N∑

j=1

ℓj;r1,m

(
Hj;p1,p2v

p1,m
j ℓj;av

a,p2
j +

1

2
vj;p1,p2,p3v

p1,m
j ℓj;av

a,p2
j ℓj;dv

d,p3
j

)
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+
1

2N

N∑

j=1

vj;r1,m,nℓj;p1v
p1,m
j

(
Hj;p′1,p

′
2
v
p′1,n
j ℓj;a′v

a′,p′2
j +

1

2
vj;p′1,p′2,p′3v

p′1,n
j ℓj;a′v

a′,p′2
j ℓj;d′v

d′,p′3
j

)

+
1

2N

N∑

j=1

vj;r1,m,nℓj;p′1v
p′1,n
j

(
Hj;p1,p2v

p1,m
j ℓj;av

a,p2
j +

1

2
vj;p1,p2,p3v

p1,m
j ℓj;av

a,p2
j ℓj;dv

d,p3
j

)

+
1

2N

N∑

j=1

Hj;r1,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j − 1

6N

N∑

j=1

vj;r1,m,n,lℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j ℓj;p′′1v

p′′1 ,l
j

−δr2
1

N

N∑

j=1

ℓj;r1,r2,mℓj;p1v
p1,m
j + δr2

1

2N

N∑

j=1

vj;r1,r2,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j +Op(T

−2).

The next step is to formally invert this expression in order to obtain an asymptotic expansion for δ
in terms of likelihood terms only. Observe that (i) ℓr1(θ̂, λ̂j(θ̂)) = 0 for all possible values of r1, (ii)
ℓr1,r2 = vr1,r2 +Hr1,r2 and (iii) by the definition of Kronecker’s Delta, vr1,r2v

r1,qδr2 = κqr2δr2 = δq.
Then, multiplying both sides by vr1,q and rearranging gives

δq = −ℓr1vr1,q +
1

N

N∑

j=1

vr1,qℓj;r1,mℓj;p1v
p1,m
j − δr2Hr1,r2v

r1,q − 1

2
δr2δr3vr1,r2,r3v

r1,q

− 1

2N

N∑

j=1

vj;r1,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j vr1,q

+
1

N

N∑

j=1

ℓj;r1,mv
r1,q

(
Hj;p1,p2v

p1,m
j ℓj;av

a,p2
j +

1

2
vj;p1,p2,p3v

p1,m
j ℓj;av

a,p2
j ℓj;dv

d,p3
j

)

−1

6
δr2δr3δr4vr1,r2,r3,r4v

r1,q − 1

2
δr2δr3v

r1,qHr1,r2,r3

− 1

2N

N∑

j=1

vj;r1,m,nℓj;p1v
p1,m
j vr1,q

(
Hj;p′1,p

′
2
v
p′1,n
j ℓj;a′v

a′,p′2
j +

1

2
vj;p′1,p′2,p′3v

p′1,n
j ℓj;a′v

a′,p′2
j ℓj;d′v

d′,p′3
j

)

− 1

2N

N∑

j=1

vj;r1,m,nℓj;p′1v
p′1,n
j vr1,q

(
Hj;p1,p2v

p1,m
j ℓj;av

a,p2
j +

1

2
vj;p1,p2,p3v

p1,m
j ℓj;av

a,p2
j ℓj;dv

d,p3
j

)

− 1

2N

N∑

j=1

Hj;r1,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j vr1,q +

1

6N

N∑

j=1

vj;r1,m,n,lℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j ℓj;p′′1v

p′′1 ,l
j vr1,q

+δr2
1

N

N∑

j=1

ℓj;r1,r2,mℓj;p1v
p1,m
j vr1,q − δr2

1

2N

N∑

j=1

vj;r1,r2,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j vr1,q +Op(T

−2).(25)

For convenience, we list below the copies of δq which we will use in the remainder of the inversion
process. These are

δr2 = −ℓr̄1vr̄1,r2 +
1

N

N∑

j=1

vr̄1,r2ℓj;r̄1,m̄ℓj;p̄1v
p̄1,m̄
j − δr̄2Hr̄1,r̄2v

r̄1,r2 − 1

2
δr̄2δr̄3vr̄1,r̄2,r̄3v

r̄1,r2

− 1

2N

N∑

j=1

vj;r̄1,m̄,n̄ℓj;p̄1v
p̄1,m̄
j ℓj;p̄′1v

p̄′1,n̄
j vr̄1,r2 +Op(T

−3/2),

δr3 = −ℓr̃1vr̃1,r3 +
1

N

N∑

j=1

vr̃1,r3ℓj;r̃1,m̃ℓj;p̃1v
p̃1,m̃
j − δr̃2Hr̃1,r̃2v

r̃1,r3 − 1

2
δr̃2δr̃3vr̃1,r̃2,r̃3v

r̃1,r3
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− 1

2N

N∑

j=1

vj;r̃1,m̃,ñℓj;p̃1v
p̃1,m̃
j ℓj;p̃′1v

p̃′1,ñ
j vr̃1,r3 +Op(T

−3/2),

δr4 = −ℓṙ1vṙ1,r4 +
1

N

N∑

j=1

vṙ1,r4ℓj;ṙ1,ṁℓj;ṗ1v
ṗ1,ṁ
j − δṙ2Hṙ1,ṙ2v

ṙ1,r4 − 1

2
δṙ2δṙ3vṙ1,ṙ2,ṙ3v

ṙ1,r4

− 1

2N

N∑

j=1

vj;ṙ1,ṁ,ṅℓj;ṗ1v
ṗ1,ṁ
j ℓj;ṗ′1v

ṗ′1,ṅ
j vṙ1,r4 +Op(T

−3/2),

δr̄2 = −ℓrvr,r̄2 +Op(T
−1), δr̄3 = −ℓrvr,r̄3 +Op(T

−1), δr̃2 = −ℓrvr,r̃2 +Op(T
−1),

δr̃3 = −ℓrvr,r̃3 +Op(T
−1), δṙ2 = −ℓrvr,ṙ2 +Op(T

−1), δṙ3 = −ℓrvr,ṙ3 +Op(T
−1).

Substituting these terms repeatedly into (25) until the right hand side of this equation is free of
any δ terms and rearranging according to order gives

δq = −ℓr1vr1,q +
1

N

N∑

j=1

vr1,qℓj;r1,mℓj;p1v
p1,m
j +Hr1,r2v

r1,qℓr̄1v
r̄1,r2

−1

2
ℓr̄1v

r̄1,r2ℓr̃1v
r̃1,r3vr1,r2,r3v

r1,q − 1

2N

N∑

j=1

vj;r1,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j vr1,q

−Hr1,r2v
r1,q

(
1

N

N∑

j=1

vr̄1,r2ℓj;r̄1,m̄ℓj;p̄1v
p̄1,m̄
j + ℓrv

r,r̄2Hr̄1,r̄2v
r̄1,r2

−1

2
ℓrv

r,r̄2ℓrv
r,r̄3vr̄1,r̄2,r̄3v

r̄1,r2 − 1

2N

N∑

j=1

vj;r̄1,m̄,n̄ℓj;p̄1v
p̄1,m̄
j ℓj;p̄′1v

p̄′1,n̄
j vr̄1,r2

)

+
1

2
ℓr̄1v

r̄1,r2vr1,r2,r3v
r1,q

(
1

N

N∑

j=1

vr̃1,r3ℓj;r̃1,m̃ℓj;p̃1v
p̃1,m̃
j + ℓrv

r,r̃2Hr̃1,r̃2v
r̃1,r3

−1

2
ℓrv

r,r̃2ℓrv
r,r̃3vr̃1,r̃2,r̃3v

r̃1,r3 − 1

2N

N∑

j=1

vj;r̃1,m̃,ñℓj;p̃1v
p̃1,m̃
j ℓj;p̃′1v

p̃′1,ñ
j vr̃1,r3

)

+
1

2
ℓr̃1v

r̃1,r3vr1,r2,r3v
r1,q

(
1

N

N∑

j=1

vr̄1,r2ℓj;r̄1,m̄ℓj;p̄1v
p̄1,m̄
j + ℓrv

r,r̄2Hr̄1,r̄2v
r̄1,r2

−1

2
ℓrv

r,r̄2ℓrv
r,r̄3vr̄1,r̄2,r̄3v

r̄1,r2 − 1

2N

N∑

j=1

vj;r̄1,m̄,n̄ℓj;p̄1v
p̄1,m̄
j ℓj;p̄′1v

p̄′1,n̄
j vr̄1,r2)

)

+
1

N

N∑

j=1

ℓj;r1,mv
r1,q

(
Hj;p1,p2v

p1,m
j ℓj;av

a,p2
j +

1

2
vj;p1,p2,p3v

p1,m
j ℓj;av

a,p2
j ℓj;dv

d,p3
j

)

+
1

6
ℓr̄1v

r̄1,r2ℓr̃1v
r̃1,r3ℓṙ1v

ṙ1,r4vr1,r2,r3,r4v
r1,q − 1

2
ℓr̄1v

r̄1,r2ℓr̃1v
r̃1,r3vr1,qHr1,r2,r3

− 1

2N

N∑

j=1

vj;r1,m,nℓj;p1v
p1,m
j vr1,q

(
Hj;p′1,p

′
2
v
p′1,n
j ℓj;a′v

a′,p′2
j +

1

2
vj;p′1,p′2,p′3v

p′1,n
j ℓj;a′v

a′,p′2
j ℓj;d′v

d′,p′3
j

)

− 1

2N

N∑

j=1

vj;r1,m,nℓj;p′1v
p′1,n
j vr1,q

(
Hj;p1,p2v

p1,m
j ℓj;av

a,p2
j +

1

2
vj;p1,p2,p3v

p1,m
j ℓj;av

a,p2
j ℓj;dv

d,p3
j

)
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− 1

2N

N∑

j=1

Hj;r1,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j vr1,q +

1

6N

N∑

j=1

vj;r1,m,n,lℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j ℓj;p′′1v

p′′1 ,l
j vr1,q

−ℓr̄1vr̄1,r2
1

N

N∑

j=1

ℓj;r1,r2,mℓj;p1v
p1,m
j vr1,q + ℓr̄1v

r̄1,r2 1

2N

N∑

j=1

vj;r1,r2,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j vr1,q

+Op(T
−2). (26)

Our objective is to derive an analytical expression for E[θ̂−θ0] up to a O(T−2) remainder. Although
(26) looks quite complicated, determining the orders of the terms comprising E[δq] is straightforward
using Lemma B.3. The main idea is as follows: All the terms comprising (26) are products of some
expectations (which are all O(1)) and some zero-mean likelihood derivatives. Therefore, by using
Lemma B.3, if a term contains two zero-mean likelihood derivatives, then it will be O(T−1) in
expectation. If, on the other hand, a term contains three zero-mean likelihood derivatives, then it
will be O(T−2) in expectation (although the product itself is Op(T

−3/2)). This reveals that all the
terms except for the first five are O(T−2) in expectation. Below we illustrate these points formally
by considering some specific terms.

Example B.1 Start with T0 = ℓr̄1v
r̄1,r2vr1,qHr1,r2 . Here, vr̄1,r2 is the row r̄1 and column r2 en-

try and vr1,q is the row r1 and column q entry of
{
E

[
d2

dθdθ′
1

NT

∑N
j=1

∑T
t=1 ℓjt

]}−1
. The vector

d
dθ

1
NT

∑N
j=1

∑T
t=1 ℓjt is given by the array [ℓr̄1 ] whereas Hr1,r2 is the row r1 and column r2 en-

try of d2

dθdθ′
1

NT

∑N
j=1

∑T
t=1 ℓjt − E

[
d2

dθdθ′
1

NT

∑N
j=1

∑T
t=1 ℓjt

]
. Notice that vr̄1,r2 and vr1,q are O(1)

while ℓr̄1 and Hr1,r2 are zero-mean. Let f(Yis) = ℓis;r̄1 = dℓ(θ0,λ̄iT (θ0);Yis)
dθr̄1

and g(Yjt) = Hjt;r1,r2 =

dℓ(θ0,λ̄jT (θ0);Yjt)
dθr1dθr2

− E

[
dℓ(θ0,λ̄jT (θ0);Yjt)

dθr1dθr2

]
. Then,

E[T0] = O(1)E[ℓr̄1Hr1,r2 ] = O(1)
1

N2T 2

N∑

i=1

N∑

j=1

T∑

s=1

T∑

t=1

E[f(Yis)g(Yjt)],

which is O(T−1) for any r1, r2 and r̄1 by Lemma B.3.

Example B.2 Consider T1 = ℓr̄1v
r̄1,r2vr1,q 1

N

∑N
j=1 ℓj;r1,r2,mℓj;p1v

p1,m
j . Again, we have both zero-

mean likelihood derivatives and O(1) expected values. For example, vp1,mj is the row p1 column m en-

try of
{
E

[
∂2

∂λ∂λ′
1
T

∑T
t=1 ℓjt

]}−1
while vr̄1,r2 and vr1,q are different entries of 1

N

∑N
j=1{

E

[
d2

dθdθ′
1
T

∑T
t=1 ℓjt

]}−1
. All these expressions are O(1). Now, consider the zero-mean terms. A

typical element of the three-dimensional array given by ℓj;r1,r2,m would be d2

dθr1dθr2

∂
∂λm

1
T

∑T
t=1 ℓjt.

Similarly, ℓj;p1 represents ∂
∂λ

1
T

∑T
t=1 ℓjt while ℓr̄1 is the same as in Example B.1. Now, let f(Yis) =

ℓis;r̄1 =
dℓ(θ0,λ̄iT (θ0);Yis)

dθr̄1
, g(Yjt) = ℓjt;r1,r2,m =

d3ℓ(θ0,λ̄jT (θ0);Yjt)
dθr1dθr2dλj;m

and h(Yjw) = ℓjw;p1 =
dℓ(θ0,λ̄jT (θ0);Yjw)

dλj;p1
.

Notice that all of these functions are zero-mean and they retain the α-mixing properties of the un-
derlying dataset. Then,

T1 =


 1

NT

N∑

j=1

T∑

s=1

f(Yjs)


 vr̄1,r2vr1,q

1

NT 2

N∑

j=1

T∑

t=1

T∑

w=1

g (Yjt) h(Yjw)v
p1,m
j

= O (1)
1

N2T 3

N∑

i=1

N∑

j=1

T∑

s=1

T∑

t=1

T∑

w=1

f(Yis)g (Yjt) h(Yjw).
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By (11) in Lemma B.3,
∑T

s=1

∑T
t=1

∑T
w=1 E [f(Yis)g (Yjt) f(Yjw)] = O(T ) for any i and j. There-

fore, E[T1] = O(T−2).

Example B.3 The third example is,

T2 =
1

2N
vr1,q

N∑

j=1

ℓj;p1ℓj;a′ℓj;d′vj;r1,m,nv
p1,m
j vj;p′1,p′2,p′3v

p′1,n
j v

a′,p′2
j v

d′,p′3
j

The terms v
p′1,n
j , v

a′,p′2
j , v

d′,p′3
j and vp1,mj represent different entries of the matrix ∂2

∂λ∂λ′E

[
1
T

∑T
t=1 ℓjt

]
.

Further, vr1,q which stands for the row r1 and column q entry of d2

dθdθ′
E

[
1

NT

∑N
j=1

∑T
t=1 ℓjt

]
. The

arrays given by vj;r1,m,n and vj;p′1,p′2,p′3 have typical entries given by d
dθr

∂
∂λm∂λn

E

[
1
T

∑T
t=1 ℓjt

]
and

∂3

∂λp′1
∂λp′2

∂λp′3

E

[
1
T

∑T
t=1 ℓjt

]
, respectively. These terms are all O(1). As before, ℓj;p1, ℓj;a′ and ℓj;d′

are different entries of the score with respect to λ. Using the same ideas as above, the asymp-
totic order of E[T2] depends on the zero-mean likelihood terms and, specifically, on the order of
E
[
ℓj;p1ℓj;a′ℓj;d′

]
. Let f(Yjs) = ℓjs;p1, g(Yjt) = ℓjt;a′ and h(Yjw) = ℓjw;d′ be defined similarly as in

Examples B.1 and B.2. Then,

E[T2] = O(1)
1

2N

N∑

j=1

E
[
ℓj;p1ℓj;a′ℓj;d′

]
= O(1)

1

2N

N∑

j=1

E

[
1

T 3

T∑

s=1

T∑

t=1

T∑

w=1

f(Yjs)g(Yjt)h(Yjw)

]
,

which is O(T−2) by Lemma B.3 (remember that (11) holds for any i, j, k = 1, ..., N).

Example B.4 Finally, consider T3 = vr1,r2,r3v
r1,qℓr̄1v

r̄1,r2ℓr̄1v
r̄1,r̃2ℓr̄1v

r̄1,r̃3vr̃1,r̃2,r̃3v
r̃1,r3. The pat-

tern we have been using so far is now clear: the order of the expected value of any term depends
directly on the order of the expected value of the product of the zero-mean likelihood derivatives.
If a given term, T , contains only one zero-mean likelihood derivative, then T is exactly equal to
zero. If there are two zero-mean likelihood terms involved, as with T0, then E[T ] = O(T−1). If, on
the other hand, there are three zero-mean terms, then E[T ] = O(T−2), as with T1 and T2. In this
specific example, the terms comprising vr1,r2,r3v

r1,qvr̄1,r2vr̄1,r̃2vr̄1,r̃3vr̃1,r̃2,r̃3v
r̃1,r3 are all O(1). Hence,

E[T3] = O(1)E[ℓr̄1ℓr̄1ℓr̄1 ] and by using the same arguments as above, one can easily show that, by
(13) in Lemma B.3, E[ℓr̄1ℓr̄1ℓr̄1 ] and, therefore, E[T3] are O(T−2).

By using the same methods, one can finally show that

E[δq] = vr1,q
1

N

N∑

j=1

E[ℓj;r1,mℓj;p1v
p1,m
j ] + vr̄1,r2vr1,qE [ℓr̄1Hr1,r2 ]

−1

2
E
[
ℓr̄1v

r̄1,r2ℓr̃1v
r̃1,r3vr1,r2,r3v

r1,q
]
− vr1,q

1

2N

N∑

j=1

E[vj;r1,m,nℓj;p1v
p1,m
j ℓj;p′1v

p′1,n
j ]

+O(T−2), (27)

where all terms other than the remainder are O(T−1). This characterises the first-order bias terms.

B.3.5 Third step: from index to matrix notation

We will now prove Theorems 4.2 and 4.3, and show that

ANT (θ0, λ10, ..., λN0) =

{
E

[
d2ℓNT

dθdθ′

]}−1
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×
[
1

N

N∑

j=1



(
d

dθ

∂ℓjT
∂λ′j

){
E

[
∂2ℓjT
∂λj∂λ

′
j

]}−1
∂ℓjT
∂λj


− 1

2N

N∑

j=1

M ′
j

+

{
d2ℓNT

dθdθ′
− E

[
d2ℓNT

dθdθ′

]}{
E

[
d2ℓNT

dθdθ′

]}−1
dℓNT

dθ
− 1

2
M ′′

]
(28)

where

M ′
j =




∂ℓjT
∂λ′

j

{
E

[
∂2ℓjT
∂λj∂λ

′
j

]}−1
E

[
d

dθ1

∂2ℓjT
∂λj∂λ

′
j

]{
E

[
∂2ℓjT
∂λj∂λ

′
j

]}−1 ∂ℓjT
∂λj

...
∂ℓjT
∂λ′

j

{
E

[
∂2ℓjT
∂λj∂λ

′
j

]}−1
E

[
d

dθr

∂2ℓjT
∂λj∂λ

′
j

]{
E

[
∂2ℓjT
∂λj∂λ

′
j

]}−1 ∂ℓjT
∂λj


 ,

M ′′ =




dℓNT

dθ′

{
E

[
d2ℓNT

dθdθ′

]}−1
E

[
d3ℓNT

dθ1dθdθ
′

]{
E

[
d2ℓNT

dθdθ′

]}−1
dℓNT
dθ

...

dℓNT

dθ′

{
E

[
d2ℓNT

dθdθ′

]}−1
E

[
d3ℓNT

dθrdθdθ
′

]{
E

[
d2ℓNT

dθdθ′

]}−1
dℓNT
dθ


 .

Remember that, as mentioned in Section B.3.1, the indices q and r are used to denote differen-
tiation with respect to θ while the indices a, b, c, d, e, f, l,m, n, o and p denote differentiation with

respect to λ. First, ℓr1v
r1,q =

{
E

[
d2ℓNT

dθdθ′

]}−1
dℓNT
dθ , an (R × 1) vector. Next,

ℓq1Hr1,r2v
r1,qvq1,r2 =

{
E

[
d2ℓNT

dθdθ′

]}−1{
d2ℓNT

dθdθ′
− E

[
d2ℓNT

dθdθ′

]}{
E

[
d2ℓNT

dθdθ′

]}−1
dℓNT

dθ
. (29)

To see this, notice that ℓq1v
q1,r2 is the same as ℓr1v

r1,q while,

Hr1,r2v
r1,q =

{
d2ℓNT

dθdθ′
− E

[
d2ℓNT

dθdθ′

]}{
E

[
d2ℓNT

dθdθ′

]}−1

︸ ︷︷ ︸
(R×R)

.

Similarly,

vr1,q
1

N

N∑

j=1

ℓj;p1ℓj;r1,mv
p1,m
j =

{
E

[
d2ℓNT

dθdθ′

]}−1
1

N

N∑

j=1



(
d

dθ

∂ℓjT
∂λ′j

){
E

[
∂2ℓjT
∂λj∂λ

′
j

]}−1
∂ℓjT
∂λj


 .

Next, consider vr1,q
∑N

j=1 ℓj;p1ℓj;p2vj;r1,m,nv
p1,m
j vp2,nj . Observe first that

ℓj;p1v
p1,m
j = ℓj;p2v

p2,n
j =

{
E

[
∂2ℓjT
∂λj∂λ

′
j

]}−1
∂ℓjT
∂λj

︸ ︷︷ ︸
(P×1)

.

Then, the (R× 1) array vj;r1,m,nℓj;p1v
p1,m
j ℓj;p2v

p2,n
j is the same as M ′

j . Therefore,

vr1,q
N∑

j=1

ℓj;p1ℓj;p2vj;r1,m,nv
p1,m
j vp2,nj =

{
E

[
d2ℓNT

dθdθ′

]}−1 N∑

j=1

M ′
j .

Following a similar pattern, one can show that, ℓq1ℓq4vr1,r2,r3v
r1,qvq1,r2vq4,r3 =

{
E

[
d2ℓNT

dθdθ′

]}−1
M ′′.
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Proof of Theorem 4.2. By (26), θ̂ − θ0 =
{
−E

[
d2ℓNT

dθdθ′

]}−1
dℓNT
dθ + op(1) where

dℓNT

dθ
=

1

NT

N∑

j=1

T∑

t=1

{
∂ℓjt
∂θ

− E

[
∂2ℓjT
∂θ∂λ′

]{
E

[
∂2ℓjT
∂λ∂λ′

]}−1
∂ℓjt
∂λ

}

E

[
d2ℓNT

dθdθ′

]
= E

[
∂2ℓNT

∂θ∂θ′

]
−





1

N

N∑

j=1

E

[
∂ℓjT
∂θ∂λ′

]






1

N

N∑

j=1

E

[
∂2ℓjT
∂λ∂λ′

]


−1


1

N

N∑

j=1

E

[
∂2ℓjT
∂λ∂θ′

]
 .

Let I = limN,T→∞ INT where INT = V ar
(√

T dℓNT
dθ

)
. Then, for any (R × 1) vector γ such that

γ′γ = 1, γ′
√
TI−1/2

NT

∑N
j=1

∑T
t=1

d
dθ ℓjt is a linear combination of mixing processes and, therefore, is a

mixing process itself. Moreover, V ar
(
γ′
√
TI−1/2

NT
dℓNT
dθ

)
= 1. Therefore, γ′

√
TI−1/2

NT
dℓNT
dθ

d→ N (0, 1)

and by the Cramér-Wold device
√
T dℓNT

dθ
d→ N (0,I). Hence, by Slutsky’s Theorem, θ̂ − θ0

d→
N (0,D−1ID−1).
Proof of Theorem 4.3. Rewriting (27) in matrix notation by using the results of section B.3.5
and remembering that all terms in (27) other than the remainder are O(T−1) proves (28) and the
theorem.
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