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Abstract

High frequency inference has generated a wave of research interest among econometricians
and practitioners, as indicated from the increasing number of estimators based on intra-day
data. However, we also witness a scarcity of methodology to assess the uncertainty – standard
error– of the estimator. The root of the problem is that whether with or without the presence
of microstructure, standard errors rely on estimating the asymptotic variance (AVAR), and
often this asymptotic variance involves substantially more complex quantities than the original
parameter to be estimated.

Standard errors are important: they are used both to assess the precision of estimators in
the form of confidence intervals, to create “feasible statistics” for testing, and also when building
forecasting models based on, say, daily estimates.

The contribution of this paper is to provide an alternative and general solution to this
problem, which we call Observed Asymptotic Variance. It is a general nonparametric method
for assessing asymptotic variance (AVAR), and it provides consistent estimators of AVAR for a
broad class of integrated parameters Θ =

∫
θtdt. The spot parameter process θ can be a general

semimartingale, with continuous and jump component. The construction and the analytics of

ÂV AR(Θ̂) work well in the presence of microstructure noise, and when the observation times
are irregular or asynchronous in the multivariate case. The edge effect – phasing in and phasing
out the information on the boundary of the data interval – of any relevant estimator is also
analyzed and treated rigorously.

As part of the theoretical development, the paper shows how to feasibly disentangle the effect
from estimation error Θ̂ − Θ and the variation in the parameter Θ alone. For the latter, we
obtain a consistent estimator of the quadratic variation (QV) of the parameter to be estimated,
for example, the QV of the leverage effect.

The methodology is valid for a wide variety of estimators, including the standard ones for
variance and covariance, and also for estimators, such as, of leverage effects, high frequency
betas, and semi-variance.

Keywords: asynchronous times, consistency, discrete observation, edge effect, irregular
times, leverage effect, microscructure, observed information, realized volatility, robust estima-
tion, semimartingale, two scales estimation.
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1 Introduction

1.1 The Problem of Standard Error

As high frequency data becomes more readily available, the demand for analyzing such big and noisy

data is also increasing. Within the recent decade, we have seen the arrival of novel methodologies

for using the high frequency data to estimate volatility, to assess the asymmetric information in

financial returns via semi-variance, to measure statistical leverage, to make inference on the number

of jumps, and many other objects of interest. As financial markets and global economies evolve,

we expect an ongoing need to estimate new parameters of interest from data of the high-frequency

variety. This process will substantially improve the precision with which we can measure financial

and economic quantities.

A main hindrance to this development is that it is often very difficult to set the standard errors

for estimators. When we are faced with an unknown Θ, we need not only to find an estimator Θ̂n,

but we also need to estimate the size of the estimation error. The latter is usually expressed in the

form of a standard error se(Θ̂)n, by which we here mean a data-based statistic so that

Θ̂n −Θ

se(Θ̂)n

L→ N(0, 1), (1)

where the convergence in law takes place as the number of observations n becomes large. Un-

derstanding the estimation uncertainty is as important in high frequency econometrics as in other

fields of statistics, because it provides a tool to test hypotheses, to set up confidence intervals, to

improve forecasting, and to optimize tuning parameters in finite sample problems. However, deliv-

ering a feasible measure for the standard error of an estimator – no matter whether it is volatility,

or regression betas, or leverage effect – has shown itself to be particularly hard in high frequency

data.

1.2 The Trouble with Standard Errors: Diagnosis

Why is it so hard to set standard errors? We here provide a diagnosis for this phenomenon, and

an alternative solution. The diagnosis is that the literature has tended to rely on an approach

to the problem which may be called “estimated theoretical asymptotic variance (AVAR)”, similar

to the “estimated expected information” of likelihood theory. In other words, one calculates the

theoretical AVAR, and then one finds an estimator ÂV ARn of the theoretical quantity AVAR.1

1 The underlying theory would be that nα(Θ̂n − Θ) converges in law stably (for some α > 0) to a normal

distribution with a random variance V (see Section 4.1). We use the notation AVAR = AVARn = n−2αV , and

ÂVARn is consistent if ÂVARn = AVARn(1 + op(1)). Hence the standard error takes the form (2). This is useful

since it clarifies that one does not need to know the rate of convergence nα to implement our results in data. It also

leads to less cluttered notation.
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Finally, the standard error is

se(Θ̂)n =

√
ÂV ARn. (2)

The problem with the above procedure is that the implementation is often overwhelmingly

difficult. The theoretical asymptotic variance of Θ̂ is frequently complicated, and in addition

actually harder to estimate than Θ itself. To corroborate this, we draw attention to the substantial

number of cases where one can find an estimator Θ̂n of Θ, but feasible (asymptotically pivotal)

statistics of the form (1) are not available.

A notable class of examples of this problem is provided by the number of estimators that are

documented for the case where there is no microstructure – thus revealing interest in the problem –

but little literature on the case where microstructure is present. Anecdotal evidence suggests that

this is usually because microstructure makes the problem so forbidding that researchers never get

around to it. Also, the main challenge is not in finding Θ̂n, but rather the problem of finding AVAR

and ÂVARn.2 Examples in the literature include, but not limited to, semivariance (Barndorff-

Nielsen, Kinnebrouck, and Shephard (2009)), nearest neighbor truncation (Andersen, Dobrev, and

Schaumburg (2012), see also Section 8), or estimating the rank of the volatility matrix (Jacod

and Podolskij (2013)), or the volatility of volatility (Vetter (2011)), high frequency regression, and

ANOVA (Mykland and Zhang (2006, 2012)). In all these examples, one can obtain a point estimate,

but one does not have access to tests, confidence intervals, or other methods that require a standard

error. The overall challenge is thus not specific to one estimator, but holds across estimators of

various types, which reminds us that we all are in the same boat in searching of how to quantify

the uncertainty in the estimators.3

The problem of lacking the estimation error is equally pronounced when one seeks to tackle

asynchronous observations, or even just irregular observations. Like microstructure, asynchronicity

and irregularity in observation times are natural features of the high frequency data. After all,

trades (or quote updates) across different securities rarely occur simultaneously. Even for a single

security series (say, Google), one can hardly require it to trade on a regular time schedule, or

to have bid and ask updates at synchronous times. However, in the setting that takes account

of asynchronous and irregular observation times, the literature is meager on the topic of how to

assess the estimation uncertainty, the only exception being the covariance estimator. A deeper

understanding of many other highly relevant estimators is greatly needed, for example, co-skewness

under microstructure, and estimators which involve large dimension p of multivariate processes

(usually formalized by p → ∞ with n). Here again, the lack of literature would seem to be due

2Researchers frequently also seek solace in a consideration that data sampled every fine minutes doesn’t really

have miocrostructure. The latter is optimistic, and is rarely checked out properly, and in any case, one loses a lot of

data this way. – The other popular slogan is that one can always pre-average. Indeed, this will in many cases yield

Θ̂n, but it does not solve the standard error problem.
3To the best of our knowledge, assuming the presence of microstructure noise, the theoretical AVAR and its

estimation have been documented only in the case of variance (volatility), covariance, leverage effect (skewness), and,

in some instances, of jumps. See Section 7 for references.
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more to a lack of AVAR and ÂVARn than a lack of Θ̂n.

1.3 Our Alternative Solution: An Observed Asymptotic Variance (Observed

AVAR)

Our proposal in this paper is for an all-purpose high frequency estimator of standard error that

bypasses the theoretical asymptotic variance. In other words, we provide a statistic ÂVARn – which

we call the observed asymptotic variance – which does not rely on finding the theoretical AVAR.

The observed standard error then follows by taking the square root (2). It remains true that the

proposed estimator ÂVARn is consistent, in other words, ÂVARn = AVARn(1 + op(1)). One does

not, however, need to derive any formula for the theoretical AVARn. The crucial result (1) is stated

as Theorem 6 in Section 6.2, with weights chosen as in Section 6.4.

The observed asymptotic variance resembles the observed information in parametric statistical

theory, in that there is no need for an intermediate theoretical asymptotic step, involving expecta-

tions or similar operations. Just as in likelihood theory, the observed asymptotic variance is easier

to use, and it has a more universal form. – In parametric statistic, there has been a lively debate

about the relative accuracy properties of observed and estimated expected information.4 Some of

the same issues may pertain to the corresponding two types of ÂVAR, but we have not investigated

this matter.

Apart from regularity conditions, our only assumption is that Θ =
∫ T

0 θtdt, where the spot

parameter process {θt} is allowed to be a general semimartingale, hence {θt} can have jump or

continuous evolution and it can be either an Itô or non-Itô process as in Calvet and Fisher (2008).5

Allowing non-Itô processes makes the results appropriate to more areas of data applications. We

shall see in Sections 7-8 that the conditions for our results are satisfied broadly, including on quite

exotic quantities such as leverage effect, and nearest neighbor truncation. See Section 9 for some

additional practical guidance to how to use our theory.

As an additional application, many estimators involve one or more “tuning parameters”, such

as block or subgrid size. Optimizing the estimator Θ̂n as a function of these tuning parameters

would naturally involve minimizing the asymptotic variance. We shall see that this optimization

can be done on the basis of our proposed ÂVARn. See Sections 2.2.2 and 6.5 for references and

4Originally going back to the debates between Fisher, and Neyman and Pearson. The neo-likelihood wave would

seem to have started with Cox (1958, 1980) and Efron and Hinkley (1978), followed by a large literature, including

Barndorff-Nielsen (1986, 1991); DiCiccio and Romano (1989); DiCiccio, Hall, and Romano (1991); Jensen (1992,

1995, 1997); McCullagh (1984, 1987); McCullagh and Tibshirani (1990); Pierce and Peters (1994); Reid (1988);

Skovgaard (1986, 1991); Mykland (1995a, 1999, 2001). Connoiseurs of the likelihood argument may feel uneasy with

the symbol ÂVARn. We have used this notation to emphasize that the observed asymptotic variance is consistent for

the theoretical AVAR.
5See also Rosenbaum, Duvernet, and Robert (2010) and Aı̈t-Sahalia and Jacod (2013) for recent interest in this

type of evolution.
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further development.

1.4 Connections

The basic principle behind the observed AVAR is to segment the available time line into sub-periods,

and then compare the estimators in successive sub-periods. We show that this difference can be

decomposed into two parts. One part reveals the behavior of Θ̂ in the form of its estimation error,

and the other part tells us the dynamics of spot parameter process θ alone. We develop estimators

to disentangle these two effects and to construct the observed AVAR. A heuristic outline of the

principles is given in Section 2.

Our prodedure is unlike resampling in that it is not based on the “Russian doll” principle (Hall

(1992, Chapter 1.2)), and in particular it does not involve a second level of nesting. The comparison

of adjacent estimators, however, is also a feature of the subsampling developed for volatility in the

pioneering work of Kalnina and Linton (2007) and Kalnina (2011).

In addition to the overall construction of observed asymptotic variance, there are two other in-

tellectual novelties in the paper. On the one hand, the comparison of adjacent values of the integral

of θ is given a highly precise formulation, in the form of the Integral-to-Spot Device (Theorem 1

in Section 3) which shows that “realized volatility” of integrals
∫
θtdt converges to the volatility of

the spot parameter process θt. The only condition is that the spot process be a semi-martingale.

On the other hand, the estimation of asymptotic variance AVAR(Θ̂−Θ) is reduced to a problem

which resembles that of estimating volatility, with edge effects playing the rôle of “microstructure”.

We can thus adapt known methods to the current problem of estimating asymptotic variance. It is

worth to mention that edge effect is estimator-specific. As its name suggests, edge effect shows up

in an estimator whenever the estimator under-uses or over-uses the data at the edge of a sampling

interval, relative to the middle portion of the data interval. In a sense, this effect permeates in high

frequency inference, especially when the inference involves multi-variate, multi-power, or multi-

scale estimation, or microstructure noise. In the current paper, edge effect of different magnitudes

is explicitly discussed and treated. The effect is also referred to as burn-in time, and border effect.

After setting up the statistical structure, we pursue this in Sections 4-6.

We emphasize that our purpose in this paper is to provide a method for getting at observed

asymptotic variance, for any estimator of interest. The proposed approach extends broadly to high

frequency inference. The contribution of the current paper is to estimators other than volatility of

the financial returns. For the latter, much is known, both in terms of asymptotic variances AVAR,

and in terms of resampling.6 Our examples in Section 7 include volatility examples, just to show

behavior in the baseline case. Volatility, however, is not our main focus.

6The subsampling device mentioned above, and the bootstrapping of Gonçalves and Meddahi (2009) and

Gonçalves, Donovon, and Meddahi (2013).
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In addition to the main line of argument, we also provide consistent estimators of the quadratic

variation of the spot parameter process θt (Sections 2.3, 6.3-6.4). The generalization to the mul-

tidimensional case is given in Section 6.6. Sections 7 and 8 give examples. Section 9 provides a

practical guidance. Finally, proofs are, for the most part, located in the Appendix.

2 Outline of Observed Asymptotic Variance

2.1 The Apparent Quadratic Variation of a Parameter Process

We here describe the simplest case in heuristic terms, where the parameter process is continuous,

and where edge effects are negligible. A formal statement embodying these results is given after

the introduction of the relevant definitions, in Theorem 2 in Section 4.2. We treat the general case

in Section 6, after building up the technical tools in Sections 3-5.

We observe a semimartingale Xt at high frequency, or an observable Yt which may be con-

taminated by microstructure noise. We suppose that we are interested in estimating integrals

of a “parameter” spot process θt, which also is assumed to be a semimartingale.7 For example,

we can take θ to be the spot variance of the continuous part of the process Xt: θt = σ2
t where

dXt = σtdWt + dt-terms + jump terms, and W is a Brownian motion. In the multivariate case,

θt can be a function of the instantaneous covariance. The development, however, holds more gen-

erally, such as for the leverage effect where θt = d[Xc, σ2]t/dt, the volatility of volatility where

θt = d[σ2, σ2]ct/dt, or other. The case of multivariate θt is considered in Section 6.6.

We here consider B time periods (days, five minutes, or other) (Ti−1, Ti] from T0 = 0 to TB = T .

We suppose that we have at hand a consistent estimator Θ̂i of

Θi =

∫ Ti

Ti−1

θtdt . (3)

Even when estimating the spot volatility, one almost invariably estimates such integrals.8 The

estimator Θ̂i can depend on tuning parameters, as we shall see in Section 6.5.

The basic insight behind the Observed AVAR is that we can decompose the increment Θ̂i+1−Θ̂i

7For the definition of semimartingale, see, e.g., Jacod and Shiryaev (1987, Definition I.4.41, p. 43), as well as

Protter (2004, Definitions on p. 52, and Definition and Theorem III.1 on p. 102), and also Dellacherie and Meyer

(1982). The theory requires the existence of a “spot” θt, cf. Section 9.2. – To the extent that the “integral” process

has jumps, we assume that they have been suitably removed by the estimation procedure in use, as also discussed at

the beginning of Section 7, see also Examples 1 and 8 in the same section. On the other hand, we shall see that the

process θt can have as many jumps as it wants.
8The standard spot estimate is θ̂Ti = Θ̂i/(Ti − Ti−1) for suitable choice of Ti−1. See, for example, Foster and

Nelson (1996); Comte and Renault (1998); Mykland and Zhang (2008).
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into the parts related to estimator behavior and the part solely tied to parameter behavior:

Θ̂i+1 − Θ̂i = Θ̂i+1 −Θi+1︸ ︷︷ ︸
estimation error

+ Θi+1 −Θi︸ ︷︷ ︸
evolution in parameter

− Θ̂i −Θi︸ ︷︷ ︸
estimation error

. (4)

We can therefore write the apparent quadratic variation of Θt
9 as∑

i

(Θ̂i+1 − Θ̂i)
2 = 2

∑
i

(Θ̂i −Θi)
2 +

∑
i

(Θi+1 −Θi)
2

+ martingale and negligible terms

=

2
∑
i

AVAR(Θ̂i −Θi)︸ ︷︷ ︸
cumulative AVAR

+ quadratic variation of Θi︸ ︷︷ ︸
parameter behavior

 (1 + op(1)) (5)

when maxi(Ti+1 − Ti) goes to zero, and the asymptotic variance is accumulated across B time

periods.10

The problem we seek to solve is to extract the AVARs, that is, to disentangle the AVARs from

the parameter behavior in (5). To achieve this, we need to get a handle on the second term in (5).

We need to show how the quadratic variation of the integrals Θi =
∫ Ti
Ti−1

θtdt is tied to the quadratic

variation [θ, θ]t of the spot process θt. This is most simply obtained when θt is continuous; for this

case we show in Proposition 4 in Appendix A that if ∆T = Ti+1 − Ti is independent of i, then

(∆T )−2
∑
i

(Θi+1 −Θi)
2 p→ 2

3
[θ, θ]T as ∆T → 0. (6)

Here, [θ, θ]T is the total quadratic variation of θt over whole interval from 0 to T .11

It follows that the quadratic variation term in (5) is, to first order, only tied to the underlying

process:

∑
i

(Θ̂i+1 − Θ̂i)
2 =

(
2
∑
i

AVAR(Θ̂i −Θi) +
2

3
(∆T )2[θ, θ]T

)
(1 + op(1)). (7)

The discontinuous θ case is more complicated (Remark 8 in the same appendix), and this forms

part of the motivation for the development starting in Section 3. For now, for motivation, we

assume that (6)-(7) is valid.

9We call
∑
i(Θ̂i+1 − Θ̂i)

2 the apparent quadratic variation of Θt from 0 to T . This is in analogy to the use of

apparent misclassification rate, see, e.g., Efron and Tibshirani (1991).
10See Footnote 1 in the Introduction for the normalization of AVAR. - The statement (5) involves having a small

edge effect. We return to this in Sections 4-5.
11For notational convenience, we take [θ, θ]0 = 0. The development in the paper goes through also for the case

when the θt process does not start at zero, in which case [θ, θ]t should be replaced by [θ, θ]t − [θ, θ]0 for 0 ≤ t ≤ T .
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Figure 1: This plot shows the decomposition (5) and (7) in practice, for the S&P E-mini future as

traded on the Chicago Mercantile Exchange, for the 22 trading days of May 2007. The total curve

is the apparent volatility for each day, the red part is 2 × ÂV AR for each day, and the blue part

is 2
3∆T 2 ̂[θ, θ]T , as given in this Section. The data is preaveraged to fifteen seconds, a (1, 2) TSRV

is computed on this basis for each five minute period, using the forward half interval method in

Section 4.3. The square root of AVAR is thus of the standard error of the daily TSRV estimators

of integrated volatility
∫
σ2
t dt, and the quadratic variation is the dispersion of the spot volatility:

θt = σ2
t and [θ, θ]T = [σ2, σ2]T . The estimation method has low enough edge effect that the “small

edge” result in Section 4.2 applies. See also Example 3 in Section 7.



Observed Asymptotic Variance for High Frequency Data 8

To get a sense of how (5) and (7) play out in real data, we plot the separation of cumulative

AVAR and [θ, θ]T using one month of tick-by-tick data from E-mini S&P 500 futures. As shown in

Figure 1, cumulative AVAR is the main component in the apparent quadratic variation of Θ, in the

meantime we could identify the days that the dispersion [θ, θ]T of the underlying spot parameter

moved notably in May 2007.

2.2 Three Applications: the Selection of Tuning Parameters, the Estimation of

the Observed AVAR, and the Estimation of the Quadratic Variation of θ

We here give a sketch of the kinds of objects that can be estimated on the basis of (7). The

estimators in this section are not final, but intended to convey the spirit of our investigation.

2.2.1 Cumulative Asymptotic Variance

The finding (6) suggests the construction of a two scales estimator in time periods i. From (7) it

is easy to see that by taking every two-period interval (Ti, Ti+2], and then averaging suitably, we

obtain

1

2

∑
i

(Θ̂(Ti,Ti+2] − Θ̂(Ti−2,Ti]))
2 ≈

∑
i

AVAR(Θ̂(Ti,Ti+2] −Θ(Ti,Ti+2]) +
2

3
(2∆T )2[θ, θ]T

≈ 2
∑
i

AVAR(Θ̂i −Θi) +
2

3
(2∆T )2[θ, θ]T , (8)

where Θ̂(Ti−2,Ti] = Θ̂i−1 + Θ̂i and Θ(Ti−2,Ti] = Θi−1 + Θi. Hence we can cancel the [θ, θ] term by

setting a two-scales estimator for the cumulative asymptotic variance

TSAV AR =
2

3

∑
i

(Θ̂(Ti,Ti+1] − Θ̂(Ti−1,Ti])
2 − 1

12

∑
i

(Θ̂(Ti,Ti+2] − Θ̂(Ti−2,Ti])
2

=

(∑
i

AVAR(Θ̂i −Θi)

)
(1 + op(1)). (9)

The simplest case of this is given in Theorem 2 in Section 4.2. This estimator can be be adapted

to jumps in θt, and adjusted for edge effects, as we shall see in subsequent sections.12

Apart from estimating the asymptotic variance, this estimator is stable under changes in ∆T ,

and can thus also be used for model selection when ∆T is involved as tuning parameter.

12This estimator is based on different considerations than the TSRV from Zhang, Mykland, and Aı̈t-Sahalia (2005),

while the estimator in Section 2.3 is based on mostly the same considerations. We therefore concentrate on this

estimator in the sequel. Also note that if ∆T can be taken to be small enough (cf. the conditions of Theorem 2),

one can simply use a one scale estimator for AVAR by ignoring the [θ, θ]T term, cf. Section 9.
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2.2.2 Selection of Tuning parameters

Many estimators involve one or more tuning parameters, for example block or subgrid size. The

typical situation is that of a tradeoff between two asymptotic variances. This is unlike the more

typical situation in statistics, where the bias-variance tradeoff dominates. Variance-variance trade-

off is explicitly carried out in connection with the estimation of integrated volatility in Zhang,

Mykland, and Aı̈t-Sahalia (2005); Zhang (2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008); Podolskij and Vetter (2009b,a); Aı̈t-Sahalia, Mykland, and Zhang (2011); Jacod, Li, Myk-

land, Podolskij, and Vetter (2009a); Jacod and Mykland (2013). The typical question is how many

grids to subsample over, or how long a time window to average data over, or how many autoco-

variances to include. – In a twist of this problem, the adaptive method of Jacod and Mykland

(2013) does do local model selection, but there is still a global tuning parameter which is left to

be determined. – Similar tuning involving a variance-variance tradeoff occurs in connection with

covariance estimation (Zhang (2011); Bibinger and Mykland (2013)), spot volatility estimation

(see Mykland and Zhang (2008)), estimation of the leverage effect (Wang and Mykland (2014),

Aı̈t-Sahalia, Fan, Wang, and Yang (2013)), estimation of the volatility of volatility (Vetter (2011),

Mykland, Shephard, and Sheppard (2012)). These and other inference situations requiring tuning

are described in Section 7.

One can think of the tuning problem as involving a parameter c on which the estimators

Θ̂i depend. If the choice of c leaves ∆T unchanged, then one can simply chose c to minimize∑
i(Θ̂i+1 − Θ̂i)

2. One does not even have to estimate AVAR. The same principle applies to the

more complex form of observed AVAR that we shall introduce in the following. See Section 6.5.

2.3 Estimating the Quadratic Variation of θ

We proceed as in Section 2.2.1, but combine (7)-(8) with different weights so as to cancel the

asymptotic variances. This gives a two scales estimator of the form

̂[θ, θ]T = (∆T )−2

(
1

4

∑
i

(Θ̂(Ti,Ti+2] − Θ̂(Ti−2,Ti])
2 − 1

2

∑
i

(Θ̂(Ti,Ti+1] − Θ̂(Ti−1,Ti])
2

)
p→[θ, θ]T . (10)

where Θ̂(Ti−2,Ti] and Θ(Ti−2,Ti] are as in the earlier section. This simple case is stated formally in

Theorem 2 in Section 4.2. The more realistic case of edge effect, and of jumps in θt is discussed

throughout the rest of the paper.
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2.4 Implementation via High Frequency Inference

There are, potentially, two ways of using the (5) and (7). For these approximations to hold, we need

B to be large, which can be achieved by either letting ∆T → 0, or by keeping ∆T , and sending T
to infinity. This creates two scenarios, high and low frequency, and in this paper we focus on the

former.13

In our high frequency scenario, T is a fixed time period, such as a day, and one estimates

Θ =
∫ T

0 θtdt with the help of Θ̂ = Θ̂1 + · · · + Θ̂B. The Θ̂i can be intra-five-minutes or intra-half-

hour estimators. In this case, we naturally suppose that ∆T → 0.

The main object of interest is AVAR(Θ̂−Θ), that is, the asymptotic variance of Θ̂ over a longer

time period [0, T ]. One needs this quantity to approximately coincide with the cumulative AVAR

from the ∆T -sized segments:

AVAR(Θ̂−Θ) =

(∑
i

AVAR(Θ̂i −Θi)

)
(1 + op(1)). (11)

The big question in this case is how to implement (11), or something similar. The solution will

turn out to depend on the solution to one of two challenges.

2.5 The Two Challenges

There are two main provisos to the presentation above. One is that the spot process θt need not

be continuous, in which case (6) will fail. The other is that estimators typically have edge effects,

which can lead the additivity (11) to fail.

As far as θt is concerned, we shall see in Section 3 and Appendix A that, on the one hand,

the convergence (6) will fail when θt is not continuous. On the other hand, we present a powerful

result: If we use subsampling and averaging, then a result akin to (6) will hold when θt is a general

semimartingale. In other words, it can have arbitrary jumps, and also other unusual behavior, such

as being multi-fractal, or more generally, not an Itô process. This result is the Integral-to-Spot

Device, in Theorem 1 in the next section.

Edge effects are a common phenomenon in high frequency estimators, as documented by ex-

amples in Section 7. We provide a broad model for such effects in Sections 4-5. It turns out that

edge effects are a form of meta-microstructure. There are several candidates for how to handle this

meta effect: we have turned to subsampling and averaging since this approach cleanly solved our

problems with θt.

13In terms of the Integral-to-Spot Device (Section 3 and Appendix A), the proof in Equations (A.5)-(A.7) also

goes through in the low frequency case, except at the edge. The latter discrepancy would disappear under standard

normalization by T . The item that would require extra handling is the much more innocuous looking approximation

in Lemma 2.
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In other words, subsampling and averaging creates a unified theory that copes with both the

edge effects, and the possible discontinuity of θt. This also lets us go on to create multi-scale

estimators, as in Section 6.1.

3 The Integral-to-Spot Device: A General Result for the Quadratic

Variation of Integrals of Semimartingales

The convergence (6) will typically fail when θt is not continuous. This is documented in Remark 8

in Appendix A. To carry through (6) in a general setup, we build on the techniques of subsampling

and averaging. We extend our notation as follows: for any S, T ∈ [0, T ], we set

Θ(S,T ] =

∫ T

S
θtdt. (12)

Define the K-Averaged Quadratic Variation of Θ by

QVK(Θ) =
1

K

B−K∑
i=K

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2. (13)

A main result is then the following, with proof in Appendix A.

Theorem 1. (The Integral-to-Spot Device.) Assume that θt is a semimartingale on [0, T ].

Set ∆T = T /B, and assume that Ti = i∆T . Suppose that K → ∞ and K∆T → 0 at the same

time. Then
1

(K∆T )2
QVK(Θ)

p→ 2

3
[θ, θ]T − (14)

where [θ, θ]T − = limt↑T [θ, θ]t.

Remark 1. At the cost of more notation, the result can be generalized to a QVK process in t. The

elements for this are all in Appendix A. – We note that unless one looks into the observations beyond

T , one cannot capture the contribution of any jump ∆θT at the ultimate time T . The possibility

of microstructure will also complicate the detection of a jump at the end time T . 2

Remark 2. The result is conjectured to have implications for the consistency of pre-averaging

estimators of volatility (Jacod, Li, Mykland, Podolskij, and Vetter (2009b); Podolskij and Vetter

(2009b)). Our assumptions are weaker than those required in earlier papers on pre-averaging. In

the former paper, for example, one has to think of their X as being similar to our current θ. Since

this issue is not the focus of this paper, we have not pursued this matter here. 2
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4 Intra Day Estimators in High Frequency Data

4.1 Abstract Description of Standard Asymptotics

We continue to use the notation (12) and we suppose that we have at hand estimators Θ̂(S,T ] of

Θ(S,T ].

The typical situation is now as follows: there is a semi-martingale MT and edge effects eS and

ẽT , so that, for S < T ,

Θ̂(S,T ] −Θ(S,T ] = MT −MS + ẽT − eS . (15)

The edge effect is essentially anything that messes up the martingaleness of the difference Θ̂(0,T ] −
Θ(0,T ], and it occurs in many shapes, which we shall document in Section 7.14 The edge effect

has a component eS relating to phasing in the estimator at the beginning of the time interval, and

component ẽT for the phasing out at T . For the estimator on the whole interval, we use Θ̂ = Θ̂(0,T ]

from now on. An important construction leading to (15) relates to half-inverval estimators (Section

4.3).

Remark 3. (Edge Effect for Bipower Variation) To rephrase, the Edge Effect is the dif-

ference in behavior of an estimator between the middle and the edges of the interval on which it

is defined. For a preliminary illustration, consider the bi-power estimator (Barndorff-Nielsen and

Shephard (2004, 2006)) of the integrated volatility of a process Xt, where Xt is observed (without

microstructure) at equidistant times ti, i = 0, · · · , n , spanning [0, T ]. The estimator has the form

Θ̂(S,T ] = π
2

∑
S<ti−1≤ti≤T |∆Xti−1 ||∆Xti |. Each absolute return |∆Xti | appears twice in the sum-

mation, except the first and the last such return. This is a case of edge effect. The precise form of

this effect is given in Equation (68) in Section 7, along with a number of other examples. 2

A substantial fraction of the high frequency literature has studied the behavior of Θ̂(S,T ]−Θ(S,T ]

for all S < T ∈ [0, T ], or at least for S = 0 and all T ∈ [0, T ]. This is typically required to achieve

stable convergence.15

14All of Θ̂(S,T ], MT , eS , and ẽT will depend on the number of observations n. For the most part, n is omitted from

our notation to avoid an excessive number of subscripts, but when crucial for understanding we may write Mn,T , etc.

Equation (15) need only hold for S, T of the form Ti. Normally, these quantities will, in fact, be well defined for all

n observation times. One can extend Mt to all t ∈ [0, T ] as in Section 4.3 below. See also Example 1 in Section 7 for

an example of “proactive” interpolation.
15Let Zn be a sequence of random variables. We say that Zn converges stably in law to Z as n → ∞ if Z is

measurable with respect to an extension of F so that for all A ∈ F and for all bounded continuous g, EIAg(Zn) →
EIAg(Z) as n→∞. For background, see Rényi (1963), Aldous and Eagleson (1978), Hall and Heyde (1980, Chapter

3, p. 56), Rootzén (1980). For use in high frequency asymptotics, see Jacod and Protter (1998, Section 2, pp.

169-170), Zhang (2001), and later work by the same authors. Stable convergence commutes with measure change on

F (Mykland and Zhang (2009, Proposition 1, p. 1408)). – Note that Zn need not be F-measurable, cf., inter alia,

Example 4 in Section 7. With this convention, we suppress the need to distinguish between stable and conditional

convergence.
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The standard asymptotic result in the literature is as follows.16 We here make this our starting

point.

Assumption 1. (Standard Convergence Situation.) Assume that θt is a semimartingale on

[0, T ]. Assume (15) holds. Stable convergence is defined with reference to a sigma-field F , which

contains the information in the underlying processes,17 including Xt and θt, but not necessarily any

microstructure noise.18 There is a convergence rate nα, a sequence of local martingales Ln,t and a

finite variation processes An,t, so that

nαMn,t = Ln,t +An,t ,

TV (An −A)T
p→ 0 ,

Ln,t
L→ Lt stably in law, while

nαen,S
L→ RS and nαẽn,T

L→ R̃T stably in law, jointly with Ln,t, for any S and T (16)

where Lt, At, RS and R̃T are limiting quantities. TV (An)T is the total variation of An,t on

[0, T ]. Lt is a nonvanishing local martingale, At is a continuous process of finite variation,19 with

L0 = A0 = 0; (RT , R̃T ) are conditionally independent given F for different T s, and conditionally

independent of the process (Lt), also given F .20 Furthermore,

sup
n
E sup

0≤t≤T
|∆Ln,t| <∞. (17)

2

We recall the basic facts about this situation. For proof and more discussion, see Appendix

D.1.

Proposition 1. (Quadratic Variation and Asymptotic Variance.) Consider a grid 0 =

T0 < T1 < · · · < TB = T , and let maxi(Ti − Ti−1) → 0. Under Assumption 1, n2α
∑

i(Mn,Ti −
Mn,Ti−1)2 L→[L,L]T as n → ∞. If Lt is a square integrable martingale conditionally on F , and if

[L,L]T is F-measurable, then

Var(LT |F) = [L,L]T . (18)

Finally, also suppose that R0 and R̃T have mean zero and finite second moment. Then the asymp-

totic variance21 of Θ̂−Θ is

AVAR(Θ̂−Θ) = n−2α
(

[L,L]T + Var(R0) + Var(R̃T )
)

+ op(n
−2α). (19)

16General conditions for this to be true can be found in Hall and Heyde (1980) and Jacod and Shiryaev (2003).

This kind of result has also been found in countless articles in specific situation, including those of most researchers

in high frequency data.
17I.e., with respect to which these will be measurable.
18For examples of precise formulations involving partial measurability, see Example 4 is Section 7, and also Zhang,

Mykland, and Aı̈t-Sahalia (2005), Zhang (2006), Jacod, Li, Mykland, Podolskij, and Vetter (2009b), and Podolskij

and Vetter (2009b).
19Often identically zero, but sometimes not, cf. Examples 5 and 7 in Section 7.
20By convention, we set RT = R̃0 = 0.
21See Footnote 1 in the Introduction on normalization of AVAR.
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Remark 4. (Asymptotic Normality.) Results like Proposition 1 are most useful when the

process Lt is a conditionally Gaussian given F . The proposition then defines the asymptotic

distribution of nα(Θ̂−Θ). The F-measurability of [L,L]T assures that, in principle, this asymptotic

quadratic variation can be consistently estimated by data as n→∞. The current paper, of course,

is about how to implement such estimation in practice.

In the conditionally Gaussian case, if there are no jumps to affect the asymptotic distribution,

one will normally find that Lt =
∫ t

0 fsdBs, where Bt is a Brownian motion independent of the

underlying data F , while f is measurable with respect to F , i.e., f can be consistently estimated

from the data (e.g., Mykland and Zhang (2012, Theorem 2.28, p. 152)). More generally, conditional

Gaussianity can also occur with jumps, as in Examples 5 and 8 in Section 7, and the references

mentioned there. See also Jacod and Protter (1998, Section 6, pp. 296-306). 2

Remark 5. (AVAR vs. AMSE.) There are situations of interest when Assumption 1 is satisfied,

but the additional conditions of Proposition 1 are not. Most notably, consider the situation where

[L,L]T is not F-measurable but instead just integrable. We otherwise continue to suppose that

Assumption 1 holds, and that R0 and R̃T have mean zero and finite second moment. In this case,

(19) needs to be replaced by

AMSE(Θ̂−Θ) = n−2α
(

[L,L]T + Var(R0) + Var(R̃T )
)

+ op(n
−2α), (20)

where AMSE is the asymptotic mean squared error. This situation arises, for example, in the case

of endogenous sampling times (Example 1 in Section 7). The same phenomenon occurs under direct

estimation of skewness (Kinnebrock and Podolskij (2008, Example 6), Mykland and Zhang (2009,

Example 3, p. 1414-1416)). 2

4.2 Observed AVAR when the Edge Effect is Small

The simplest case is that of negligible edge effect. This is sufficiently intuitive that we discuss it

first. The results promised in Section 2.2 all hold without modification, and we extend them to a

more general situation, involving subsampling and averaging.

We consider a grid 0 = T0 < T1 < · · · < TBn = T . We call Bn the total number of basic blocks,

and we let K denote the sampling scale over the basic blocks. In analogy with (13), we define the

K-averaged apparent quadratic variation of Θ as

QVK(Θ̂) =
1

K

Bn−K∑
i=K

(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])
2 (21)

This generalizes (5) and (7) to K-averaged subsampling and averaging. For comparison, in Section

2.2, we considered sampling scales K = 1 and K = 2, as well as the notation Θ̂i = Θ̂(Ti−1,Ti].

We can then consistently estimate both the asymptotic variance of Θ̂, and the quadratic varia-

tion of parameter process θ. We obtain easily that
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Theorem 2. (Negligible Edge Effects) Suppose that Assumption 1 holds, with the additional

condition that
∑

i e
2
Ti

= op(n
−2α) and

∑
i ẽ

2
Ti

= op(n
−2α). Also assume that maxi(Tn,i+1−Tn,i)→ 0.

Let K, K1, and K2 be fixed positive integers, K1 < K2. Then

1

K

∑
i

(Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ])
2 = n−2α[L,L]T + op(n

−2α). (22)

Under the additional assumptions of Proposition 1, the expression in equation (22) equals

1

K

∑
i

AVAR (Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ]) = AVAR(Θ̂−Θ) + op(n
−2α). (23)

Also, if θt is a continuous semimartingale and the Tis are equidistant, with ∆T = O(n−α), the

following results hold, respecitvely generalizing (7), (9) and (10) in Section 2:

QVK(Θ̂) =
2

3
(K∆T )2[θ, θ]T − + 2n−2α[L,L]T + op(n

−2α) ,

TSAVAR =
1

2

(
1

K2
1

− 1

K2
2

)−1( 1

K2
1

QVK1(Θ̂)− 1

K2
2

QVK2(Θ̂)

)
(24)

consistently estimates AV AR(Θ̂−Θ), the variation in the estimation error. And provided ∆T and

O(n−α) are of the same order, another two scale estimator

̂[θ, θ]T =
3

2
(K2

2 −K2
1 )−1(∆T )−2

(
QVK2(Θ̂)−QVK1(Θ̂)

)
consistently estimates [θ, θ]T , the variation in the parameter process.

The above-mentioned two scale constructions effectively separate the impact of the underlying

parameter behavior (as in the quadratic variation of parameter Θ) from estimator behavior (as in

Θ̂−Θ). However, as we shall see in the examples in Section 7, many estimators inherit edge effect of

relatively large magnitude and thus require additional treatment. The main instances of small edge

effect is that of realized volatility, and bipower variation in the absence of microstructure noise, cf.

Examples 1-2 in the examples section. See also Example 3 on a combination of preaveraging and

TSRV. Even in these cases, though, one would typically need to go to subsampling and averaging

with larger sampling scales K if the spot volatility process can have jumps. See the examples for

further discussion. We thus move on to subsampling and averaging with larger sampling scale K,

which can deal with much larger edge effects.

4.3 Implementation with Half-interval Estimators

A simple way of obtaining estimators Θ̂(S,T ] is to take half-interval estimators Θ̂(0,T ] and Θ̂(T,T ] as

given, and write, for S < T ,

“Forward” estimator: Θ̂
(f)
(S,T ] = Θ̂(0,T ] − Θ̂(0,S] and

“Backward” estimator: Θ̂
(b)
(S,T ] = Θ̂(S,T ] − Θ̂(T,T ] (25)
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with the superscripts “f” for forward and “b” for backward. If we suppose that (15) holds for

the two half-interval estimators, then (15) also holds for the estimators in (25), with, in obvious

notation,

Edge effects for forward estimator: e
(f)
S = ẽS and ẽ

(f)
T = ẽT for S ∈ (0, T ] ∩ G and T ∈ [0, T ] ∩ G

Edge effects for backward estimator: e
(b)
S = eS and ẽ

(b)
T = eT for S ∈ [0, T ] ∩ G and T ∈ [0, T ) ∩ G

with special cases: e
(f)
0 = e0 and ẽ

(b)
T = ẽT . (26)

where G = {ti} are the observation points for data, or, more generally, the points at which the

estimator is naturally defined. This suggests that the forward estimator only retains the phasing-

out edge effect while the backward estimator is solely subject to the phasing-in edge. One can thus

choose half-interval estimators to deal with one side – either the beginning or end part – of the

edge effect, instead of two sides.

This eases implementation: the half-inverval estimators can easily extend to be defined for all

T , by taking a previous/subsequent tick definition

Θ̂
(f)
(0,T ]

∆
= Θ̂

(f)
(0,T∗]

and Θ̂
(b)
(S,T ]

∆
= Θ̂

(b)
(S∗,T ] (27)

where T∗ = max{ ti ≤ T , ti ∈ G} and S∗ = max{ ti ≥ S , ti ∈ G}. The investigator is thus relieved

of making sure that an estimator is defined on any particular interval (S, T ]: this will always be

true for the forward and backward estimator. One can thus take ∆T to be as small as is allowed

by our results, cf. Section 9.1 below. The extension (27) has different edge effects, In particular,

(26) is generalized by (28) below. The use of half-interval estimators also eases the analysis of the

Meta Edge Effects E introduced in Section 5 (see Remark 6).

We now turn to edge effects for half-interval estimators. In the event that the grid {0 =

T0, T1, · · · , TBn−1, TB = T } does not coincide with a subset of the grid of observation points tj ,

we here give the form of the edge effect for interpolated (or, rather, previous/subsequent tick)

values. Suppose (15) and (26) hold for S, T ∈ {tj}, and suppose that Mt is an interpolation for all

t of the martingale Mtj .
22 The edge effect for the forward estimator then gets the following form,

generalizing (15) and (26):

Edge effects for forward estimator: e
(f)
T = ẽ

(f)
T = ẽT∗ +MT −MT∗ +

∫ T

T∗

θtdt for all T

Edge effects for backward estimator: e
(b)
S = ẽ

(b)
S = eS∗ +MS∗ −MS +

∫ S∗

S
θtdt for all S

with special cases: e
(f)
0 = e0 and ẽ

(b)
T = ẽT (28)

Similar extensions apply to other estimators than the half-interval type.

22see, e.g., Heath (1977), Mykland (1995b), Mykland and Zhang (2006, 2012). One cannot simply take the

martingale Mt to be constant (and càdlàg) on intervals between observations (or between the Ti), because of the

presence of the process θt.
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5 Hard Edge

One cannot always take the edge effect to be negligible. To cope with this, we observe that the

situation (15) is rather similar to observing the martingale Mt with microstructure noise et and/or

ẽt. This suggests that the current literature on microstructure noise can provide methods for

dealing with this problem. We emphasize that the situation is not wholly similar, since there is

also the unknown term due to the integral of θt. Since our main Theorem 1 in Section 3 relies on a

multi-scale construction, it is most convenient to also use this approach on the process (15), thus

drawing on Zhang, Mykland, and Aı̈t-Sahalia (2005) and Zhang (2006).23

The difficulty under edge effects is that the additivity (11) no longer holds. Take, for example

Θ̂
(f)
(S,T ] from (25). Under Assumption 1, in analogy with Proposition 1,

AVAR(Θ̂
(f)
(S,T ] −Θ(S,T ]) = n−2α

(
[L,L]T − [L,L]S) + Var(R̃T ) + Var(R̃S)

)
+ op(n

−2α) (29)

(unless S and T are very close). We cannot just add up the AVAR(Θ̂i − Θi)s and get an overall

asymptotic variance for Θ̂ = Θ̂(0,T ]. In the high frequency scenario, the target we are looking for is

the full asymptotic variance (19).

To remedy the situation, and also in response to the results in Section 3, we pursue a stronger

subsampling and averaging, still using QVK(Θ̂) from (21), but now letting K → ∞. – We make

the following set of assumptions.

Assumption 2. (Hard Edge Assumptions.) Suppose that there is an integer J for which eTi =

e′Ti +e
′′
Ti

and ẽTi = ẽ′Ti + ẽ
′′
Ti

, where there is a filtration24 (Gt) so that (e′Ti , ẽ
′
Ti

) are GTi+J -measurable,

and for which E(e′Ti | GTi−J ) = E(ẽ′Ti | GTi−J ) = 0 and where
∑

i(e
′′
Ti

)2 = op(n
−2α) and

∑
i(ẽ
′′
Ti

)2 =

op(n
−2α). Also suppose25 that for some β ≥ α

sup
n
E nβ

(
max

0≤i≤Bn
|e′n,Ti |+ max |ẽ′n,Ti |

)
< ∞. (30)

We finally assume that for Kn →∞, Kn = o(Bn)26

1

Kn

Kn−1∑
i=0

n2αuTi
p→ Eu(0) and

1

Kn

Bn∑
i=Bn−Kn+1

n2αuTi
p→ Eu(T ) (31)

23It is quite possible that other methods for handling microstructure can be adapted to the current problem,

but this is beyond the scope of this paper. One would then need to prove results akin to this paper’s Theorem

1 (Section 3) and Proposition 5 in Appendix B.1. Since our main goal is to estimate asymptotic variance, we are

looking for consistency, and thus the order of convergence is a lesser consideration in this context than in the classical

estimation-of-volatility-under-microstructure problem.
24For motivation for this filtration, see Appendix C.1.
25The default assumption is that β = α. For the rôle of β, see Section 9.1. See also Examples 2-3 in Section 7 for

cases where β > α.
26 For connoisseurs: This condition can be modified to requiring that there is B′n, B′n →∞, B′n = Op(Bn), so that

when Kn →∞, Kn ≤ 2B′n, then (31) holds. Equation (33) in Theorem (3) is then changed to “J ≤ Kn ≤ B′n” etc
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for all of u = ẽ2, u = e2, and u = (ẽ + e)2. We also assume that R0 and R̃T have mean zero and

finite second moment, and that

E(e(b))2(0) = Var(R0) and E(ẽ(f))2(T ) = Var(R̃T ), (32)

where e(b) and ẽ(f) are as given in (26).27

We shall see in our examples that the assumptions above are reasonable. As a complement,

they are argued from a mixing perspective in Appendix C.1.

The following is our main result, which provides an alternative to Theorem 2 when the edge

effects are not negligible. The subsequent results are, for the most part, corollaries. The proof is

in Appendix B.

Theorem 3. (Representation of K-Averaged Apparent Quadratic Variation.) Suppose

that Assumption 1-2 holds. Let B = Bn and K = Kn be a sequence of integers so that

J ≤ Kn ≤ Bn, with KnB
−1
n = O(n−α), K−1

n B1/2
n = O(n−α+β) and Kn →∞ as n→∞. (33)

Then

QVK(Θ̂) =
2

3
(K∆T )2[θ, θ]T −

+ 2n−2α[L,L]T + Meta Edge Effect

+
1

K
V0 + op(n

−2α). (34)

where V0 is given by (B.27), (B.66)-(B.67), and (B.76), and does not depend on the choice of Kn

sequence. V0 = Op(n
−2αBn). The “Meta Edge Effect” (MEE) is given by

MEE = −n−2α
(
2Eẽ2(0) + E(ẽ+e)2(0) + E(ẽ+e)2(T ) + 2Ee2(T )

)
. (35)

If instead K is bounded, K ≥ J , then QVK = MEE + 1
KV0+Op(n

−2α)+Op(n
−2α(Bn−2Kn+1)1/2).

Remark 6. (Estimating the Meta Edge Effect.) See Section 9.1 for whether this adjust-

ment needs to be applied or not. With reference to (19), we recall that the AVAR(Θ̂ − Θ) =

n−2α
(

[L,L]T + Var(R0) + Var(R̃T )
)

(1 + op(1)). For the purpose of estimating AVAR we have an

interest in modifying the Meta Edge Effect from (35) to Ee2(0) + Eẽ2(T ). In other words, we wish

to estimate an adjustment of the MEE given by

AMEE = n−2α
(

2Eẽ2(0) + E(ẽ+e)2(0) + E(ẽ+e)2(T ) + 2Ee2(T ) + Var(R0) + Var(R̃T )
)
. (36)

27This may seem a little odd, but relates to the fact that the edge effects can be moved around depending on whether

one uses an estimator Θ̂(S,T ] which is internally defined on the interval (S, T ], or alternatively a forward or backward

estimator. For comparison, consult equations (26) and (28). The statement (32) covers all these possilibilies.
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There are multiple ways of doing this, here is one. Set, for t > 2,

ÂMEE0 =
1

K(t− 2)

bKtc∑
i=K

(
(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])

2 +
1

6
(Θ̂

(f)
(Ti,Ti+K ] − Θ̂

(f)
(Ti−K ,Ti]

)2

)
,

ÂMEET =
1

K(t− 2)

B−K∑
i=B−bKtc

(
(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])

2 +
1

6
(Θ̂

(b)
(Ti,Ti+K ] − Θ̂

(b)
(Ti−K ,Ti]

)2

)
(37)

and

ÂMEE = ÂMEE0 + ÂMEET , (38)

where Θ̂(f) and Θ̂(b) are defined in Section 4.3. It is clear from (32) and the proof of Theorem 3

that,28

ÂMEE = AMEE(1 + op(1)). (39)

Thus one can implement the required adjustment. The finer points of how to optimize t and K are

left for another paper. Finally, note that for the forward estimator from Section 4.3, the first line

of the expression (37) simplifies to

ÂMEE0 =
1

K(t− 2)

7

6

bKtc∑
i=K

(
Θ̂

(f)
(Ti,Ti+K ] − Θ̂

(f)
(Ti−K ,Ti]

)2
, (40)

and similarly for the backward estimator. 2

6 Applications of Intra Day Observed AVAR

6.1 A Multiscale Estimator

We shall in the following harvest the application of Theorem 3. First, however, note that a two-

or multiscale construction (Zhang, Mykland, and Aı̈t-Sahalia (2005), Zhang (2006)) is needed to

cancel the really large term, V0/K, which contains the sum of squares of the edge effects. We

consider m scales,

J ≤ K1 = Kn,1 < K2 = Kn,2 < · · · < Km = Kn,m ≤ Bn. (41)

For simplicity, take the number of scales m to be finite.29 We consider a multi-scale estimator

MSQV =

m∑
l=1

γlQVKl(Θ̂) (42)

28If one follows Footnote 26, one needs to require that Kn ≤ tB′n in lieu of Kn ≤ 2B′n.
29To optimize the convergence rate of the estimator, one may need to follow Zhang (2006) and let m → ∞ with

n. However, since the purpose of this paper is to show consistency (which, to first order, is all that is needed for the

asymptotic variance), we have deemed this additional complication to be beyond the scope of this paper.
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where the γl = γn,l. We wish to to eliminate the V0/K term. It is easy to see that this requires

m∑
l=1

γl
Kl

= 0. (43)

For the general result, we also need the set L = {l ∈ [1,m] : Kn,l is bounded as n→∞}. We then

have the following.

Theorem 4. (Multiscale Quadratic Variation.) Suppose that Assumptions 1-2 hold. Let m

be given. Let Kn,l (l = 1, · · ·m) be as in (41), and suppose that

Kn,mB
−1
n = O(n−α), and Kn,m →∞ (44)

Assume that
∑

l∈L |γn,l| = o(1). If γn =
∑m

l=1 γn,l, then

MSQV =
2

3

m∑
l=1

γn,lK
2
n,l(∆T )2[θ, θ]T −

+ γn
{

2n−2α[L,L]T + MEE
}

+ op(max
l
|γn,l|n−2α) +Op

(
n−2βE1/2

n

)
+Op(γnn

−βB−1/2
n ), (45)

where the MEE is given by (35), and where

En =
m∑
l=1

(
γn,l
Kn,l

)2

(Bn − 2Kn,l + 1) (46)

The last two orders of error in (45) represent a dissolution and a refinement of the error term

op(n
−2α) in Theorem 3 into a variance and a bias term. We can do this since the bias term is from

Proposition 5 while the variance terms in from Proposition 6, both in Appendix B. For the bias

term, the derivation is in Remark 9 in Appendix B.1, which also has comments on the use of the

word “bias”. The variance term is handled in Appendix C.2, where we also argue that this in most

cases is the exact order of the main error term (Remark 11 in the same Appendix).

This dissolution permits us to accept the things we cannot change, the ability to change the

things we can, and the insight to know the difference.30 It also shows that the choice of γn,l does

not influence the bias term, since both for the asymptotic variance and for the quadratic variation

of θt, the γn is fixed, cf. equations (47) and (52).

It follows that to optimize the estimator, one would want to minimize En subject to the relevant

linear constraints, such as (43) and (below) either (47) or (52). (The hard constraints of the theorem

also have to hold, of course.)

30To paraphrase the widely used “Serenity Prayer”. One could, of course, seek to estimate what we here call the

bias term, but this is beyond the scope of this paper.
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6.2 Estimation of Asymptotic Variance

From Theorem 4, we can clearly estimate AVAR(Θ̂n) by further requiring

m∑
l=1

γn,l =
1

2
and

m∑
l=1

γn,lK
2
n,l = 0, (47)

and by adjusting the edge effect, which is discussed in Remark 6. We thus get an estimator

ÂVAR(Θ̂n) = MSQV +
1

2
ÂMEE. (48)

Theorem 5. (Consistently Estimating the Asymptotic variance.) Assume the conditions

of Proposition 1 and Theorem 4, and also that (47) is satisfied. Also suppose that ÂMEE is formed

with the help of a Kn (which may or may not be a Kn,l, but which satisfies the conditions of Remark

6. Assume that maxl |γl| = O(1), and B−1
n = o(n2β−4α). Also assume that En = o(n4(β−α)). Then

ÂVAR(Θ̂n) = AVAR(Θ̂n) (1 + op(1)) (49)

We note that the results follows from the previous Theorem and Remark since AVAR(Θ̂n) =

Op(n
−2α). If the conditions of Proposition 1 are omitted, then the above result remains valid with

AMSE replacing AVAR (cf. Remark 5).

Because of its importance, we here state the main usage as a corollary to the above result:

Theorem 6. (Feasible Estimation.) Assume the conditions of Theorem 5, and also that

(LT , R0, R̃T ) is conditionally Gaussian given F . Then

Θ̂n −Θ

ÂV AR
1/2

n

L→ N(0, 1) stably in law. (50)

Remark 7. (A Three Scales ÂVARn.) There are at two ways of implementing these results.

One is to use a three-scales estimator, m = 3. In this case, the three γn,l are determined by the

three linear equations (43) and (47), the solution being

γn,1 = − 1

vn
Kn,1(K3

n,3 −K3
n,2),

γn,2 =
1

vn
Kn,2(K3

n,3 −K3
n,1), and

γn,3 = − 1

vn
Kn,3(K3

n,2 −K3
n,1), where

vn = 2(Kn,1 +Kn,2 +Kn,3)(Kn,2 −Kn,1)(Kn,3 −Kn,1)(Kn,3 −Kn,2). (51)
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In this case, it is easy to see that it is optimal to choose Kn,3 to be as large as possible, in particular

satisfying (44). If one chooses Kn,1/Kn,3 and Kn,2/Kn,3 to be bounded away from each other, and

from 0 and 1, then En = O(BnK
−2
n,3) = O(n2αB−1

n ) since (44) is the exact order. Thus, since

B−1
n = o(n2β−4α), En = o(n2(β−α)) = o(n4(β−α)) since β ≥ α. The condition on En in Theorem 5

is thus satisfied. 2

To get an even more efficient estimator for AVAR, we discuss how to proceed with a multi-scale

construction (m > 3) in Section 6.4.

6.3 Estimating the Quadratic Variation of θ

We can similarly use Theorem 4 to estimate the quadratic variation [θ, θ]T −. The side conditions

on weights γn,l now become (instead of (47))

m∑
l=1

γn,l = 0 and

m∑
l=1

γn,lK
2
n,l =

3

2
(∆T )−2. (52)

There is also no need to worry about edge effect. Our estimator is therefore

̂[θ, θ](n)

T = MSQV. (53)

which is the same form as (48), except that, of course, the requirement on the γs is different. There

is also no need for ÂMEE.

Theorem 7. (Consistently Estimating the Quadratic Variation of θ.) Assume the

conditions of Theorem 4, with the order (44) being exact, and also that (52) is satisfied. Assume

that maxl |γl| = O(n2α) and En = o(n4(β−α)). Then

̂[θ, θ](n)

T

p→ [θ, θ]T − as n→∞. (54)

Once again, the result follows from the previous Theorem 4.

6.4 Optimized Estimators of AVAR and of Quadratic Variation

We now consider the case of general number m of scales. Set

An =

 K−1
n,1 K−1

n,2 · · · K−1
n,m

1 1 · · · 1

K2
n,1 K2

n,2 · · · K2
n,m

 and γ
n

=

 γn,1
· · ·
γn,m

 (55)
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Also let Cn = diag(K−2
n,1(Bn−2Kn,1 + 1), · · · ,K−2

n,m(Bn−2Kn,m+ 1)). We note that En = γ∗
n
Cnγn,

where “∗” denotes transpose. Our two optimization problems thus become

min γ∗
n
Cnγn subject to Anγn = bn (56)

with standard solution (e.g., Boyd and Vandenberghe (2004, p. 304))

γ
n

= C−1
n A∗n(AnC−1

n A∗n)−1bn. (57)

In view of the preceding sections,

• To estimate AVAR(Θ̂n), and satisfy the conditions of Theorem 5, choose

bn =

(
0,

1

2
, 0

)∗
. (58)

• To estimate the quadratic variation [θ, θ]T −, and satisfy the conditions of Theorem 7, choose

bn =

(
0, 0,

3

2
(∆Tn)−2

)∗
. (59)

6.5 Selection of Tuning Parameters

As we discussed in Section 2.2.2, there is a class of estimators for which the optimal choice of tuning

parameters will minimize the asymptotic variance. In the earlier section, we have described the

situation as a variance-variance tradeoff.

Assumption 3. Suppose that there is a tuning parameter c (chosen by the econometrician) upon

which Θ̂n = Θ̂n,c and AVAR = AVARc depends.31 Assume (as provided in, say, Theorem 5) that

∀c ∈ C : ÂVARn,c = AVARc(1 + op(1)) (for fixed) c. (60)

We seek c∗ = arg minc AVARc∈C, which we for simplicity of discussion take to be unique. C is a set

of values for the tuning parameters within which one wishes to optimize. For the following prima

facie discussion, we also take the number of points in C to be finite.32

For given number of observations n, our estimate is accordingly ĉn = arg minc∈C ÂVARn,c, where

ÂVARn,c is obtained through our proposals in the preceeding sections.

31Observe that Θ does not depend on c, but will normally be (statistically) mutually dependent with c∗. Also, for

the purposes of this arguments, we assume that n−2αAVAR is independent of n (cf. Footnote 1 in the Introduction.
32This case if of practical interest. One should imagine that there is a finite partition, say, P of the space of all c’s,

and that C has one representative of each element of P. With a well chosen P and C, this construction will normally

achieve approximate optimality. – The consistency part below generalizes straightforwardly to more complex C’s,
under, say, uniform convergence conditions. The validity part is best left as a separate paper.
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Consistency. Under Assumption 3, automatically

ĉn → c∗. (61)

Validity. This procedure provides an estimator with asymptotic variance AVARc∗ :

asymptotic variance of Θ̂n,ĉn −Θ = AVARc∗ . (62)

This is the conceptually more complex issue. Since AVARc is typically random, so will c∗ be

random. A priori, the insertion of ĉn into an estimator might in principle create problems for the

standard convergence setup discussed in Assumption 1. At least in our simple case, however, this

difficulty does not arise. We embody this in a formal result.

Proposition 2. (Optimization commutes with Asymptotic Variance.) Assume (all) the

conditions of Proposition 1, as well as Assumption 3. Also suppose that c∗ is F-measurable and

that, for each c ∈ C, (Θ̂n,c−Θ)/AVAR
1/2
c converges stably in law to a N(0, 1) random variable that

is independent of F . Then (62) holds, and also

(Θ̂n,ĉn −Θ)/AVAR
1/2
c∗

L→ N(0, 1) and (Θ̂n,ĉn −Θ)/ÂVAR
1/2

n,ĉn
L→ N(0, 1), both stably. (63)

Proof: With probability one, for n large enough, nα(Θ̂n,ĉn − Θ) =
∑

c∈C n
α(Θ̂n,c − Θ)I{c=c∗}.

We are thus rescued by the stable convergence.

Implementation. In analogy with the discussion in Section 2.2.2, it is not actually necessary

to estimate AVAR to find c∗, so long as the [θ, θ] component remains stable in c. It is in fact enough

to optimize with a single scale QVK(Θ̂) from Theorem 3. For maximal efficiency, however, one can

use a multiscale estimator from Theorem 4. This time, however, only two constraints are needed.

The criterion MSQV is obtained by minimizing En subject to
m∑
l=1

γl
Kl

= 0 and
m∑
l=1

γn,l =
1

2
. (64)

If one also wishes to know the asymptotic variance, then, obviously, one needs the three conditions

of Theorem 5 instead.

Example. Volatility estimation via preaveraging followed by a (J,K) TSRV estimator (Exam-

ple 3 in Section 7), with J and K finite, provides an example where the action space C can indeed

be taken to be finite. The assumptions of Proposition 2 are satisfied. 2

6.6 Several Dimensions

The extension of this theory to several dimensions is straightforward, so long as the grid(s) {Ti, i =

0, · · · , B} are the same in all dimensions, or if they are nested.33 A standard procedure is to use

33We conjecture that asynchronous Ti can be handled by the methods in Zhang (2011) or Christensen, Podolskij,

and Vetter (2013), but a full exploration of this would be another paper.
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some version of the identity xy = 1
2

(
(x+ y)2 − x2 − y2

)
. For typical examples, see the definition

of multivariate quadratic variation Jacod and Shiryaev (2003, Eq. (I.4.46), p. 52), or the extension

of quasi-likelihood in Aı̈t-Sahalia, Fan, and Xiu (2010).

Since it would be tedious to repreat the entire theory for this case, we state by way of example

a generalization of Theorem 4. All the other results in the paper generalize similarly.

Theorem 8. (Multivariate Multiscale Quadratic Variation.) Suppose that θt is p-dimensional,

for a fixed finite p, and similarly for Θ̂(S,T ], Mt, eT , ẽT , and so on. Quadratic variations and asymp-

totic variances are, similarly, p× p matrices. Suppose that the grid {Ti, i = 0, · · · , B} is the same

in all dimensions, and that QV and MSQV are formed with the same Ki and γi. Assume (44),

and that that
∑

l∈L |γn,l| = o(1). Then

(i) Suppose that Assumptions 1-2 are satisfied for the relevant vector and matrix processes.

Then the matrix MSQV satisfies the conclusions of Theorem 4.

(ii) Alternatively suppose that Assumptions 1-2 are satisfied marginally in each dimension, by

p scalar processes. Then every subsequence of the matrix MSQV has a further subsequence which

satisfies (as a matrix) the conclusions of Theorem 4.

The theorem describes two scenarios under which the extension holds. The second scenario

may at first sight seem arcane, but is actually the more comfortable case. One only needs to satisfy

the conditions on scalar processes, and whatever subsequence one is on, one is headed towards

the appropriate limit for that subsequence, thus, say, for the appropriate AVAR. This assures, for

example, the stable onvergence in law of ÂVAR
−1/2

n (Θ̂n − Θ) under the asssumption of the stable

convergence to a limit of (and to the same limit as that of) AVAR
−1/2
n (Θ̂n −Θ).

For earlier use of the subsequence approach, see the discussion in Zhang, Mykland, and Aı̈t-

Sahalia (2005, Proof of Theorem 3, p. 1411), as well as the concept of “relatively compact in

probability” in Zhang (2011, Definition 3, pp. 35-36). The approach, as well as the proof of

Theorem 8(ii), relies on Helly’s Theorem (Ash (1972, p. 329)). We omit the proof, which is in the

same spirit as in the cited papers.

7 Examples: Corroboration of Concept

The purpose of this Section is to document that the assumptions in this paper are widely satisfied

in the existing literature. The relevant papers will typically have expressions for AVARn and an

estimator thereof. In most cases, however, alternative observed AVAR is much easier to implement

when constructing a feasible statistic of the form (1). For an example of a new analysis where

we deliberately do not find the theoretical AVAR, see the next section. – We also in many cases

describe carefully the separation into martingale and edge effect, thereby hopefully assisting the
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understanding of the concept.

Unless the opposite is indicated, we suppose that Xt is an Itô-semimartingale, either with no

jumps (dXt = µtdt+ σtdWt), or with jumps that are removed by truncation (Mancini (2001), Aı̈t-

Sahalia and Jacod (2007, 2008, 2009, 2012), Jacod and Todorov (2010), Lee and Mykland (2008,

2012), Jing, Kong, Liu, and Mykland (2012)), or by bi- and multi-power methods (Barndorff-Nielsen

and Shephard (2004, 2006), Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard (2006)),

as appropriate. See also Zhang (2007), ?, and Bajgrowicz, Scaillet, and Treccani (2013). We

emphasize that θ can be a general semimartingale,34 so that, for example, the model in Barndorff-

Nielsen and Shephard (2001) is covered by the examples. – We either observe Xti at times ti, i =

0, · · · , n spanning [0, T ], or we observe Yti , which is a version of Xti that is contaminated by

microstructure noise.

Example 1. (Realized Volatility, No Microstructure.) The parameter is θt = σ2
t . The

convergence rate is α = 1/2. – In the straightforward X-is-continuous case, a popular estimator

for the
∫ t

0 θds is the standard realized volatility (RV),
∑

ti+1≤t(Xti+1 −Xti)
2 (Andersen, Bollerslev,

Diebold, and Ebens (2001a); Andersen, Bollerslev, Diebold, and Labys (2001b); Barndorff-Nielsen

and Shephard (2002); Jacod and Protter (1998); Zhang (2001)). There is no edge effect if the Ti
coincide with observation times. Hence, if the spot volatility is continuous, Theorem 2 applies. If

one is not sure of the continuity of σ2
t , one should use the subsampling and averaging approach to

construct estimator (Theorem 3, and then the methods in Section 6) even if there is no edge effect.

To see the precise correspondence with Assumption 1, one can take Mn,t =
∑

tn,j+1≤t(Xtn,j+1 −
Xtn,j )

2+(Xt−Xtn,∗)
2−
∫ t

0 σ
2
sds, where the tn,j are the observation times, with tn,∗ = maxj{tn,j ≤ t}.

This is an additive process (when T and n is fixed), and it can for simplicity be taken to be a

martingale under an equivalent measure.35

For slightly more complicated estimators than standard RV, or if the Ti do not coincide with

observation times tj (Section 4.3), one may easily incur edge effects eTi and ẽTi of size Op(∆t
1/2
j ),

typically Op(n
−1/2), at every Ti. The conditions of Theorem 2 are thus often violated.36 but those

of Theorem 3 are easily verified for X either being a continuous process or having finitely many

jumps. For an intermediate case, we study bipower variation in the next example.

An interesting feature even of this classical example is that even though Assumption 1 holds, the

further conditions of Proposition 1 may not hold (Fukasawa (2010a,b), Fukasawa and Rosenbaum

(2012), Li, Mykland, Renault, Zhang, and Zheng (2013)): when observation times are endogenous,

one obtains a case of martingale bias: an additive component of Lt that is F-measurable. Thus,

in this case, the asymptotic quadratic variation of Lt can be larger than the asymptotic variance.

The assessment of ÂVARn is nonetheless useful, as it can be used to compare alternative estimators

34In all our examples, the spot values of θ exists. See Section 9.2 for further discussion of this.
35Footnote 15 in Section 4.1. The interpolation is as in Mykland and Zhang (2012, Chapter 2.3.3 pp. 136).
36Since

∑
i e

2
Ti

would normally be of the same order as (T /n)Bn, which is small but not O(n−1). In some cases,

it is possible that a creative interpolation will avoid this. For references on interpolation, see Section 4.3.
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that seek to remove the bias. (Such as the ones proposed in Li, Mykland, Renault, Zhang, and

Zheng (2013)). 2

Example 2. (Bipower Variation.). In the absence of microstructure noise in X, the bipower

estimator Θ̂(S,T ] = π
2

∑
S<ti−1≤ti≤T |∆Xti−1 ||∆Xti | (Barndorff-Nielsen and Shephard (2004, 2006))

estimates the integrated volatility. The convergence rate is α = 1/2. To see how the heuristic

explanation in Remark 3 interfaces with our definitions, assume for simplicity that σ2
t = d[X,X]t/dt

is continuous, and that the X process has no jumps. Set ∆Zti =
√

π
2 |∆Xti | − σti−1

√
∆t. Then

π

2
|∆Xti−1 ||∆Xti | −

∫ ti−1

ti−2

σ2
t dt = ∆M

(1)
ti

+ ∆M
(2)
ti−1

(65)

where

∆M
(1)
ti

=

√
π

2
|∆Xti−1 |∆Zti and

∆M
(2)
ti

= ∆Ztiσti−1

√
∆t+

√
π

2
|∆Xti |∆σti

√
∆t+ σ2

ti−1
∆t−

∫ ti

ti−1

σ2
t dt (66)

Aggregate the increments to get M
(1)
tk

=
∑k

i=1 ∆M
(1)
ti

, and similarly for M
(2)
tk

. Set Mtk = M
(1)
tk

+

M
(2)
tk

. It is easy to see that while none of M
(1)
tk

, M
(2)
tk

or Mtk are martingales, they are close enough

to satisfy the relevant conditions in Assumption 1.

For notational simplicity, suppose that S, T take values in the grid of observation times {ti, i =

0, n}. Let tk ≤ tl. Then

Θ̂(tk,tl] −Θ(tk,tl] =
π

2

∑
tk<ti−1≤ti≤tl

|∆Xti−1 ||∆Xti | −
∫ tk

tl

σ2
t dt

= M
(1)
tl
−M (1)

tk+1
+ M

(2)
tl−1
−M (2)

tk
−
∫ tl

tl−1

σ2
t dt

= Mtl −Mtk + ẽtl − etk , (67)

where the edge effects are thus

ẽtl = −∆M
(2)
tl
−
∫ tl

tl−1

σ2
t dt and etk = ∆M

(2)
tk

(68)

Under mild conditions, both ẽ2
tl

and e2
tk

are of exact order Op(∆t
2), uniformly under aggregation.

Since in this case, α = 1/2, the conditions of Theorem 2 are satisfied if Bn = o(n), and otherwise

narrowly missed. In the latter case, the conditions in Theorem 3 still go through. On the other

hand, in Assumption 2, β = 1 > α under mild regularity conditions (and/or by invoking localization

as in Section D.2), and, in particular all the Eu(0) and Eu(T ) are zero, so there is no need for the

asymptotic adjustment in Remark 6. 2



Observed Asymptotic Variance for High Frequency Data 28

Example 3. (Preaveraging followed by TSRV). The parameter remains θt = σ2
t . There

is microstructure noise. The estimator is constructed as follows. One preaverages observations

across blocks of size O(n1/2) observations, and then calculates a (J,K) TSRV37 on the basis of

the preaveraged observations, where 1 ≤ J < K are finite. It is easy to see that this estimator of

integrated volatility converges at rate α = 1/4, and has particularly benign edge effects, of order

Op(n
−1/2). The small edge effect condition in Section 4.2 is thus satisfied provided Bn = o(n1/2).

We have used this in Figure 1. – The conditions for the hard edge effect result in Section 5 is satisfied

with β = 1/2, which is larger than α, so that in Theorem 3, the meta edge effect vanishes. – It is

conjectured that the same type of situation pertains to classical preaveraging (Jacod, Li, Mykland,

Podolskij, and Vetter (2009b); Podolskij and Vetter (2009b)), but we have not investigated this.

2

Example 4. (Multiscale and Kernel Realized Volatility.) The parameter remains θt =

σ2
t . There is microstructure noise. The convergence rate is α = 1/4. – We here show that

the Multiscale Realized Volatility (MSRV, Zhang (2006)) is covered by our current development.

Following Bibinger and Mykland (2013), the result also covers Realized Kernel estimators (RK,

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)). Similar considerations will cover the

Twoscales Realized Volatility (TSRV, Zhang, Mykland, and Aı̈t-Sahalia (2005)).

We shall go through this case in some detail since it illustrates many of the issues. From

equation (15), p. 1024, and eq. (51), p. 1039, in Zhang (2006),

Mn,t = M
(1)
n,t +M

(2)
n,t +M

(3)
n,t , (69)

where38

M
(1)
n,t = −2

Mn∑
i=1

an,i
1

i

∑
ti+1≤t

εtn,j εtn,j−i ,

M
(2)
n,t =

Mn∑
i=1

an,i[X,X]
(n,i)
t −

∫ t

0
σ2
sds, and

M
(3)
n,t = 2

Mn∑
i=1

an,i[X, ε]
(i)
t . (70)

The edge effects – e and ẽ – are given by (again, cf. Ibid., eq. (51), p. 1039)

en,tk =

Mn∑
i=1

an,i
i

j−1∑
j=0

ε2tk+i
− Eε2 and ẽn,tk =

Mn∑
i=1

an,i
i

j−1∑
j=0

ε2tk−i+1
− Eε2. (71)

up to Op(n
−1/2). Under the conditions of Ibid., Theorem 4 (p. 1031), including Mn/n

1/2 → c, it

is easy to see that the asymptotic variance is retrieved, and also that Assumptions 1-2, as well as

37For the TSRV, see Zhang, Mykland, and Aı̈t-Sahalia (2005) and Aı̈t-Sahalia, Mykland, and Zhang (2011).
38Except that we use Mn to denote the number of scales (called Mn in the multiscale paper. The square brackets

in (70) are discrete sums. The an,i are given by Ibid., eq. (21)-(22) p. 1026.
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the conditions of Proposition 1 are satisfied. – Similar arguments would extend to the dependent

but mixing noise in Aı̈t-Sahalia, Mykland, and Zhang (2011). 2

Example 5. (Block Estimation of Higher Powers of Volatility.) The parameter is

θt = g(σ2
t ), with g not being the identity function. In the absence of microstructure noise, the

convergence rate is α = 1/2. If microstructure noise is present, the convergence rate is α = 1/4. We

are here concerned with the former case. The estimation of integrals of σpt goes back to Barndorff-

Nielsen and Shephard (2002), which showed that the case g(x) = x2 is related to the asymptotic

variance of the realized volatility. See also Barndorff-Nielsen, Graversen, Jacod, Podolskij, and

Shephard (2006) and Mykland and Zhang (2012, Proposition 2.17, p. 138) for related developments.

Block estimation (Mykland and Zhang (2009, Section 4.1, p. 1421-1426) has the ability to make

these estimators approximately or fully efficient. One path is to keep the block size finite. This

avoids bias. When using overlapping blocks, however, the asymptotic variance is hard to compute

(Mykland and Zhang (2012, Ch. 2.6.2, pp. 170-172)). This is an instance where the observed

AVAR would seem to be particularly appealing, and our Assumptions 1-2 are obviously satisfied.

Another path is to let the block size increase with n. As seen, however, in Mykland and Zhang

(2011, Section 5, pp. 224-229), Jacod and Rosenbaum (2013a, Section 2, pp. 2-9), and Jacod and

Rosenbaum (2013b, Section 3, pp. 1466-1473), there is a bias that can be corrected for. If one uses

the raw estimators, therefore, our asymptotic bias At is non-zero.

It nicely illustrates the theory in the current paper to consider the bias terms A1
t to A4

t in Jacod

and Rosenbaum (2013b, p.1468). First of all A1
t is edge effect (the authors call it “border terms”).

At = A2
t + A3

t is asymptotic bias in the sense of our Assumption 1, with requirements on the bias

satisfied. The jump term A4
t contributes to quadratic variation, and hence one has an interest

in classifying it with the martingale part Lt. This can be done and (if desirable) subsequently

undone with the help of a measure change, in the spirit of Mykland and Zhang (2009, Section 2.2),

which also works for jump processes (Doléans-Dade (1970); Jacod (1975); Gill and Johansen (1990);

Andersen, Borgan, Gill, and Keiding (1992); Jacod and Shiryaev (2003)). The martingale part of

bias is then viewed the same way as the martingale bias (for endogenous observations) encountered

in Example 1 above. – Thus our Assumptions 1-2 are satisfied.

As a final comment, n is typically given for fixed data. When this is the case, it is entirely in

the mind of the econometrician whether the block size is finite or not as n → ∞. This raises the

question of which asymptotics to use. This problem may also be a reason for exploring resampling

and other small sample methods. 2

Example 6. (Estimation of Co-volatility from Asynchronous Observations.) A pop-

ular estimator is due to Hayashi and Yoshida (2005), see also Podolskij and Vetter (2009a), Chris-

tensen, Podolskij, and Vetter (2013), and Bibinger and Vetter (2014) for micro-structure, jumps,

and asymptotic distributions. Alternatives include the Previous-Tick estimator (Zhang (2011),

Bibinger and Mykland (2013)), and Quasi-Likelihood (Shephard and Xiu (2012)). The estima-

tor in Mykland and Zhang (2012, Chapter 2.6.3, p. 172-175) is a hybrid of Hayashi-Yoshida and
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Quasi-Likelihood. In all these cases, it is quite clear that the stable convergence holds, and that

the current paper’s Assumptions 1-2 are satisfied. The asymptotic distributions, however, are quite

complex, and the estimation of AVARn is daunting. In comparison, the approach of observed AVAR

offers a pleasing alternative to assessing the asymptotic variance of co-volatility. 2

Example 7. (High Frequency Regression, and ANOVA.) We are here concerned with sys-

tems on the form dVt = βtdXt + dZt, where Vt and Xt can be observed at high frequency, either

with or without microstructure. The coefficient process βt can either be the “beta” from portfolio

optimization, with Zt in the role of ideosyncratic noise, or βt can be the hedging “delta” for an

option, with Zt as tracking error. Nonparametric estimates can be used directly, or for forecasting,

or for model checking. Xt can be multidimensional. The regression problem seeks to estimate or

make tests about
∫ T

0 βtdt (Mykland and Zhang (2009, Section 4.2, pp. 1424-1426), Kalnina (2012),

Zhang (2012, Section 4, pp. 268-273)). The ANOVA problem seeks to estimate [Z,Z]T (Zhang

(2001) and Mykland and Zhang (2006)). Convergence rates are as for realized or other powers of

volatility, with α = 1/2 when there is no microstructure noise, and α = 1/4 otherwise. Assumptions

1-2 of the current paper are easily seen to be satisfied. 2

Example 8. (Continuous Leverage Effect, with or without Microstructure.) The

parameter is θt = d[σ2, Xc]t/dt. If there is no microstructure noise, the convergence rate is α = 1/4.

If microstructure noise is present, the convergence rate is α = 1/8. – The estimation of leverage

effect is discussed in Wang and Mykland (2014) for the case where Xt is continuous, and in Aı̈t-

Sahalia, Fan, Wang, and Yang (2013) for the case where the process Xt can also have jumps.39 In

the latter, more general paper, jumps are removed according to Jacod and Todorov (2010). The

asymptotic criteria in (our current) Assumption 1-2 and Proposition 1, are seen to be satisfied

through a slight extension of Aı̈t-Sahalia, Fan, Wang, and Yang (2013, Theorem 7.2). 2

Example 9. (Volatility of Volatility, no Microstructure.) The process X is assumed

to be continuous, and the parameter is θt = d[σ2
t , σ

2]ct/dt. The convergence rate is α = 1/4. The

results in the literature on this inference problem are Vetter (2011, Theorems 2.1 and 2.5) and

Mykland, Shephard, and Sheppard (2012, Theorem 7 and Corollary 2). The asymptotic criteria in

Assumption 1-2 and Proposition 1 hold through a slight extension. 2

8 A New Application: Nearest Neighbor Truncation

To illustrate the ease with which the current theory can be applied to a new problem, we consider

the nearest neighbor truncation of Andersen, Dobrev, and Schaumburg (2012), where estimators are

defined and studied for the case where there is no microstructure noise. See also ? on quarticity. In

both cases, preaveraging is actually used on the data, but not taken account of in the asymptotics.

We here adapt the estimation problem from Andersen, Dobrev, and Schaumburg (2012) to the

setting where microstructure noise is present in the model. To get a point estimator, extend their

39Both papers study both the case where there is microstructure, and where there is none.
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estimator with the help of pre-averaging and a two scales construction, which is straightforward.

We then show that the Observed Asymptotic Variance can be used to assess the statistical error,

and hence to create a feasible estimator.

Suppose for simplicity that observations are of the form Ytj = Xtj + εj , where the εj are i.i.d.,

and the efficient log price process Xt is an Itô semimartingale with finite activity jumps, as assumed

by Andersen, Dobrev, and Schaumburg (2012). Using pre-averaging, and in analogy with Equation

(4) of their paper, we consider an estimator based on

MedRVM,n =

bn/Mc−2∑
i=3

med(∆ȲM,i−2,∆ȲM,i,∆ȲM,i+2)2 (72)

where ∆ȲM,i = ȲM,i − ȲM,i−1 and ȲM,i = 1
M

∑iMn

j=(i−1)Mn+1 Yj . For simplicity, suppose that the

tj are equidistant, i.e., tj − tj−1 = ∆t = T /n for all j.40 The statistic ȲM,i is thus based on

observations in the time interval (τi−1, τi], where τi = iM∆t, and ∆τ = M∆t. When taking the

median, we have used every second ∆ȲM,i to avoid autocorrelation. As n → ∞, we let M = Mn,

with Mn/
√
n→ c.

To suitably adjust (72), and to verify the conditions of our current theorems, we invoke the re-

sults of Mykland and Zhang (2013). Set Y c
tj = Xc

tj+εj , and similarly Ȳ c
i , where Xc

t is the continuous

part of the latent process. Following Mykland and Zhang (2013), there is a contiguous (sequence of)

probability measures Qn, and “super-blocks” of 2M Ȳ c
i , with starting points λn,l = 2lMMn∆t, so

that, conditionally on sigma-field at the start of each block, ∆τ−1/2∆Ȳ c
lM+1, · · · ,∆τ−1/2∆Ȳ c

(l+1)M

is a Gaussian MA(1) process with marginal variance 2
3σ

2
λl

+ 2 ν2

c2T , where ν2 = Var(ε). Thus, if (Ft)
is the filtration generated by the Xc

t s and the εs,

EQn


2(l+1)M−4∑
i=2lM+5

med(∆Ȳ c
Mn,i−2,∆Ȳ

c
Mn,i,∆Ȳ

c
Mn,i+2)2 |Fλl

 = (2M−8)∆τ(
2

3
σ2
λl

+2
ν2

c2T
)
6− 4

√
3 + π

π

(73)

in analogy with Andersen, Dobrev, and Schaumburg (2012): if Z1, Z2, Z3 are i.i.d. N(0, 1), then

Emed(Z1, Z2, Z3)2 = (6 − 4
√

3 + π)/π. One now needs to dispose of the nuisance parameter ν2.

To stay in the sprit of Andersen, Dobrev, and Schaumburg (2012), we adjust by using the MedRV,

but doubling the block size: ∆Ȳ2Mn,i = (∆ȲMn,2i−1 + ∆ȲMn,2i)/2 (which is based on observations

in (τ2i−2, τ2i]. Now observe that, also under Qn,

EQn


(l+1)M−2∑
i=lM+3

med(∆Ȳ c
2Mn,i−2,∆Ȳ

c
2Mn,i,∆Ȳ

c
2Mn,i+2)2 |Fλl

 = (M−4)(2∆τ)(
2

3
σ2
λl

+2
ν2

(2c)2T
)
6− 4

√
3 + π

π
,

(74)

40Otherwise, a correction factor applies, cf. Mykland and Zhang (2013).
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where we have in both cases used samples from the time interval (τ2lM+4, τ2(l+1)M−4] ⊂ (λn,l, λn,l+1].

Eq. (74) − 1

4
× Eq. (73) = 2(M− 4)∆τ

2

3
σ2
λl

3

4

6− 4
√

3 + π

π

= (τ2(l+1)M−4 − τ2lM+4)σ2
λl

6− 4
√

3 + π

2π
. (75)

In view of the development in Mykland and Zhang (2013), the aggregated (over M) terms

(l+1)M−2∑
i=lM+3

med(∆Ȳ c
2Mn,i−2,∆Ȳ

c
2Mn,i,∆Ȳ

c
2Mn,i+2)2 − 1

4

2(l+1)M−4∑
i=2lM+5

med(∆Ȳ c
Mn,i−2,∆Ȳ

c
Mn,i,∆Ȳ

c
Mn,i+2)2

− (τ2(l+1)M−4 − τ2lM+4)σ2
λl

6− 4
√

3 + π

2π
(76)

satisfy stable convergence and also the other conditions of Assumptions 1-2 and Proposition 1

under Qn, with α = 1/4. One can take the Ti to be the same as the λi. This is easily seen to carry

over to the original measure. The left out terms (around the boundaries λl) are handled with the

big-block-small-block device described in Mykland and Zhang (2012, Chapter 2.6.2, pp. 170-172).

Also, the jumps are negligible since assumed to be of finite activity. In conclusion:

Proposition 3. (Median Realized Volatility under Microstructure Noise.) Let Θ

be the integrated volatility on [0, T ]. A pre-averaged extension of the median realized volatility of

Andersen, Dobrev, and Schaumburg (2012) is given by41

Θ̂ =
2π

6− 4
√

3 + π

(
MedRV2Mn,n −

1

4
MedRVMn,n

)
, (77)

Then, with the Ti taken to be the same as the τi, conditions of Assumptions 1-2 and Proposition 1

are satisfied, with α = 1/4. Subject to their respective conditions on choice of averaging parameter

K, Theorems 3, 4, and 5 are valid. In particular, one can use the observed AVAR to set the

standard error, as in Theorem 6.

9 Some Practical Guidance

9.1 Two or Three Scales? Should one correct for Edge Effect? What choice of

Bn?

Three situations. The situation described in Sections 5-6 is a worst case scenario, and should be

used by default. For a prima facie data analysis, It can be used without too much mathematics.

If the estimator is benign, and one is willing to do a little extra analysis, showing that β > α in

41The estimator can be small sample adjusted as in the original paper, without affecting the conclusion of this

proposition.
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Assumption 2 relieves one of the need for the meta edge effect correction in the hard edge case.

Alternatively, one can verify the “small edge” condition in Section 4.2 and use Theorem 2.

It should be emphasized that when the “small edge” condition prevails, the results of Theorem

2 also hold when K → ∞ (under the precise conditions of Theorem 3), and in that case, θ does

not have to be continuous. Thus, a large-ish K1 and K2 in Theorem 2 will avoid the problem of

this continuity condition. We summarize the situation in the following Table 1.

What is known about How many scales Is Meta Edge Effect

the estimator? are needed? correction needed?

Default: Only three or more yes

Assumptions 1-2

Hard Edge, β > α three or more no

Soft Edge two (or more) no

Table 1: Choice of Methodology Depending on Estimator Θ̂

The choice of Bn, and more about β. This is equivalent to the choice of ∆Tn = T /Bn. –

In the soft edge situation, the conditions of Theorem 2 will control the maximal size of Bn, while

Theorem 3 only has a lower bound on Bn. This is most easily seen by invoking β from (30) in

combination with Lemma 6 in Appendix D.2, from which the small edge condition of Theorem 2

is satisfied provided Bn = o(n2(β−α)). Thus, if β > α, one can always use this theorem, but the

size of Bn is controlled to not be too large. On the other hand, in the hard edge case, Bn can be

as large as one wishes; it is controlled from below by B−1
n = o(n2β−4α). – It should be clear from

the preceding that even a rough analysis of β may yield substantial additional flexibility in how

the AVAR is calculated.

Dropping the volatility term? If K∆T = o(n−2α), then the [θ, θ] term in Theorems 2-3 are

of lower order than the asymptotic variance. This raises the possibility of a one scale estimator

of variance in the soft edge case, and a two scale estimator under hard edge (one may still have

to remove the microstructure). This may in some cases work well, for example, for classical real-

ized volatility (Example 1), a one scale estimator is both practicable and, and somewhat similar to

quarticity (Barndorff-Nielsen and Shephard (2002), see also Mykland and Zhang (2012, Proposition

2.17, p. 138)). In the more general case, however, disregarding the [θ, θ] creates a risk of overesti-

mating AVAR. Imagine, for example, that one were to estimate AVAR as (half) the full amount of

apparent quadratic variation Figure 1. Even if a term goes away asymptotically, it doesn’t mean

that it isn’t there for a finite sample size. – If one wishes to use such a reduced scale estimator, it

would be wise to also compute the two or three (or more) scales estimator for comparison, as due

diligence.

The choice of the Kis. For the hard edge case, a formal analysis is provided in Section 6.4.

We conjecture, however, that suitable use of signature plots for the AVAR (as a function of the
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Kis) will in practice suffice. This is particularly easy to implement for the two scales estimator

(24).

9.2 The case where the Spot Process θt does not exist

The theory in this paper requires the existence of a “spot” θt, and does not apply, say, to estimating

the discontinuous part of the quadratic variation. For example, suppose that Θ(0,T ] =
∫ T

0 θtdt+TT ,

where Tt is a process with finitely many jumps in (0, T ]. Then, obviously, to first order, QVK(Θ) =

[T,T]T − [T,T]0 + op(1). The same is true for QVK(Θ̂) – The situation is not exotic: A simple

example would be the estimation of [X,X] when the X process can have jumps. – In our setting,

the methodology applies to estimating the continuous part
∫
σ2
t of this quadratic variation.

For this reason, in our examples (Section 7), we consider that the primary estimating procedure

removes anything that can cause Tt to be nonzero. In the case that the Tt process has finitely many

jumps, these can alternatively be removed directly with truncation or bi-/multi-power methods,

cf. the references at the beginning of Section 7. We presently show how one can proceed using

truncation.

Algorithm 1. (Jump removal in Θ̂.) If there are ν (finitely many) jumps, truncation cre-

ates ν removed intervals42 (Tij , Tij+1], j = 1, · · · , ν. (These intervals are identified with prob-

ability one as n → ∞.) One can then proceed as follows. For scale K, omit all Θ̂(Ti,Ti+K ] for

which (Tij , Tij+1] ⊆ (Ti, Ti+K ] for any of the removed intervals. When Θ̂(Ti,Ti+K ] is removed

the relevant squares in QVK(Θ̂) are computed as (Θ̂(Ti+K ,Ti+2K ] − Θ̂(Ti−K ,Ti])
2. Call this quan-

tity QVK,modified(Θ̂). Similarly, for the true process θ, denote the modified averaged quadratic

variation by QVK,modified(Θ). 2

The critical piece for analyzing the above construction is then the following, which generalizes

Theorem 1 in Section 3, by the same methods.

Theorem 9. (The Integral-to-Spot Device with Removed Intervals.) Assume that θt is

a semimartingale on [0, T ]. Set ∆T = T /B, and assume that Ti = i∆T . Suppose that K∆T → 0,

and that either K → ∞ or θt is continuous. Suppose that there are stopping times τ1, · · · , τv ∈
(0, T ). Assume that in Algorithm 1 above, P (∩νj=1{τj ∈ (Tij , Tij+1]})→ 1 as B →∞. Then

1

(K∆T )2
QVK,modified(Θ) =

(
2

3
[θ, θ]T − +

2

3
([θ, θ]Tij+1 − [θ, θ]Tij )

)
(1 + op(1))

p→ 2

3
[θ, θ]T − +

2

3

ν∑
j=1

(∆θτj )
2. (78)

Thus, if jump times in Tt coincide with those of θt, the estimation [θ, θ]T − becomes additionally

complicated.

42The method carrying out the truncation may depend on the estimator.
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The AVAR estimates, however, are not affected. Under the conditions of Theorem 2, the

TSAVAR (24) remains consistent for AV AR(Θ̂ − Θ), and the more complex results in Theorems

5-6 in Section 6.2 are also unchanged. Proposition 2 in Section 6.5 is, of course, also unaffected.

Since QVK,modified(Θ̂) will have lost a fraction ν/Bn of its asymptotic variance component, one

can consider a small sample multiplicative adjustment of (1− ν̂/Bn)−1 to the estimated variances,

where ν̂ is the number of removed intervals (Tij , Tij+1], but this does not impact the asymptotics.

For reference, note that under the conditions of Theorems 2 and 3, respectively,

QVK,modified(Θ̂) =
2

3
(K∆T )2

[θ, θ]T − +
ν∑
j=1

(∆θτj )
2


+ 2n−2α[L,L]T

+ Meta Edge Effect +
1

K
V0 (if in the situation of Theorem 3)

+ op(n
−2α). (79)

We note that if jumps are not fully removed, there remain pieces of the process Tt, and in this

case QVK(Θ̂) would be unusually large. This makes the question of standard error in QVK(Θ̂)

more interesting. – If one splits a jump part of TT into a predictable (often continuous) part, then

Theorem 3 remains valid, but with the martingale part attached to Lt. This would create a case

for using our procedure in a multi-day setting. – Also note that for the case of many small jumps,

the contiguity results of Zhang (2007) may mitigate the problem.

A detailed investigation of these issues is left for another paper.

10 Conclusion

The paper introduces a nonparametric estimator of estimation error which we call the observed

asymptotic variance. In analogy with the “observed information” of parametric inference, our

statistic estimates the asymptotic variance without needing a formula for the theoretical quantity.

As we have seen in our examples, the estimator is consistent in all of them.

We emphasize that the method has a strong applied motivation, and that we think it meets a

need. Assessing the standard error of a high-frequency-based estimator is challenging to implement.

We hope our proposed methodology will be a useful tool at the disposal of everyone who works

with high frequency data.

On the mathematical side the basic insight is Equation (4) in Section 2.1. To operationalize

this insight, the two main tools are the Integral-to-Spot Device (Section 3), and the mathematical

similarity between edge effects and microstructure noise (Section 5). The estimation of asymptotic
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variance (AVAR) is implemented with the help of multi-scale methods in Sections 4.2 and 6, and

examples are given in Section 7. The estimate AVAR can also be used for the selection of tuning

parameters, also in the non-obvious case of stable convergence and random variance. As part of

the theoretical development, we show how to feasibly disentangle the impact of estimation error

Θ̂T − ΘT and the variation [θ, θ]T in the parameter process alone. For the latter, we also obtain

a new estimator of quadratic variation of target parameters. The methods generalize readily to

several dimensions.

A number of issues have been left for later. Consistency is the only first order requirement on

estimators of AVAR, but a main question still remains of how to optimize the number and position

of scales K in Section 6. This may involve the convergence rate and the AVAR of the AVAR,

and perhaps one can iterate the observed AVAR procedure. As the likelihood movement of the

1980s and 90s has shown, however, statistical accuracy may not only be about the efficiency of

estimates of AVAR.43 There is also room for a more complete theory of tuning parameter selection,

of multivariate inference, and of adjusting the meta-edge effects (as in Remark 6). It would also be

interesting to extend Observed AVAR to the case where the spot process θt is not a semimartingale,

and to the case where it does not exist (see Section 9.2).
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Äıt-Sahalia, Y., J. Fan, C. D. Wang, and X. Yang (2013): “The Estimation of continuous

and discontinuous leverage effect,” Discussion paper.
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APPENDIX: PROOFS AND TECHNICAL ISSUES

A Results on the Quadratic Variation of θ: Tightness and Con-

vergence Properties

Set

f
(l,n)
t =

1

K∆T

∑
K≤i≤B−K;i≡l[2K]

((Ti+K − t)I{Ti+K ≥ t > Ti}+ (t− Ti−K)I{Ti ≥ t > Ti−K}) .

(A.1)

where i ≡ l[2K] means that i is on the form 2K + l. We note that f
(l)
t = f

(l,n)
t depends on n

through ∆T , K, and B. Observe that

0 ≤ f (l)
t ≤ 1 for all t, l, and n. (A.2)

Define the processes θ
(l,n)
t =

∫ t
0 f

(l,n)
s dθs. To motivate the following development, note from Itô’s

Formula that

1

K2(∆T )2

∑
K≤i≤B−K,i≡l[2K]

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2 =

∑
K≤i≤B−K,i≡l[2K]

(θ
(l)
Ti+K

− θ(l)
Ti−K

)2. (A.3)

Lemma 1. Let θt be a semimartingale. Assume that ∆T is independent of i, and that K∆T → 0

as n → ∞. Then the collection {θ(l,n)
t , all l, n} is tight, with respect to convergence in law with

respect to the Skorokhod metric on D, and also P-UT (Jacod and Shiryaev (2003, Chapter VI.3.b,

and Definition VI.6.1, p. 377)).

Lemma 1 follows by invoking (A.2) along with Jacod and Shiryaev (2003, Corollary VI.6.20 p.

381). The corollary can be used since the since the process θt, when viewed as a constant sequence

of processes, is obviously P-UT. 2

Lemma 2. Let θt be a semimartingale. Assume that ∆T is independent of i, and that K∆T → 0

as n→∞. Then

1

2K3(∆T )2

B−K∑
i=K

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2 =

1

2K

2K∑
l=1

[θ(l), θ(l)]T + op(1). (A.4)

Lemma 2 is proved at the end of this section.

Proof of Theorem 1. In view of Lemma 2, we calculate

1

2K

2K∑
l=1

[θ(l,n), θ(l,n)]T =

∫ T
0
g

(n)
t d[θ, θ]s , (A.5)
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where

g
(n)
t =

1

2K

2K∑
l=1

(f
(l,n)
t )2

=
1

2K3(∆T )2

∑
K≤i≤B−K

(
(Ti+K − t)2I{Ti+K ≥ t > Ti}+ (t− Ti−K)2I{Ti ≥ t > Ti−K}

)
. (A.6)

Under the conditions of the theorem, K = Kn →∞. Thus. for t ∈ (Tj−1, Tj ] ⊆ (TK , TB−K ],

g
(n)
t =

1

2K3(∆T )2

 ∑
j−K≤i≤j−1

(Ti+K − t)2 +
∑

j≤i≤j+K−1

(t− Ti−K)2


=

1

2K3(∆T )2

 ∑
j−K≤i≤j−1

(Ti+K − Tj)2 +
∑

j≤i≤j+K−1

(Tj−1 − Ti−K)2

+O(K−1)

=
1

K3

K−1∑
k=1

k2 +O(K−1) =
1

3
+O(K−1), (A.7)

where the O(K−1) is uniform in t ∈ (TKn , TBn−Kn ], and hence, eventually, on all [δ, T − δ], for any

δ > 0. Since, for all t ∈ [0, T ], 0 ≤ g
(n)
t ≤ 1 (from (A.2)), and since g

(n)
T = 0, Theorem 1 follows.

2

We first obtain results for the continuous case. Lemmae 1-2 do cover the situation where K can

be finite, including K = 1, which is identical with the situation in the following Proposition and

then Remark.

Proposition 4. Let ∆T = Ti+1 − Ti be independent of i. Assume that θt is a continuous semi-

martingale. Then (6) holds.

Remark 8. (Convergence fails for finite K in the Presence of Jumps.) The result in

Proposition 4 will fail when θ has jumps, and this is one of the reasons why we move to subsampling

and averaging. The right hand side of (A.4), however, has different behavior if there is discontinuity.

To see why, suppose for simplicity that θt is continouous except for a single jump at (stopping)

time τ ∈ (0, T ). Instead of (6), we get, as ∆T → 0 ((A.4)-(A.6)),

(∆T )−2
∑
i

(Θi+1 −Θi)
2 =

2

3
([θc, θc]T − [θc, θc]0) +

1

2

(
(1− Un)2 + U2

n

)
∆θ2

τ + op(1), (A.8)

where Un = (τ − τn,∗)/∆Tn, where τn,∗ = maxi{i∆T < τ}. If, for example, the jump happens at

a Poisson time independent of the rest of the θt process, then one can proceed along the lines of

Jacod and Protter (2012, Chapter 4.3) and get that Un converges in law to a standard uniform

random variable.
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On the other hand, if τ is a non-random time, such as the time of the news release from a (U.S.)

Federal Open Market Committee meeting,44 the right hand side of (A.8) simply does not converge,

in probability or law. – What is arguably even worse is that this effect does not cancel with a two

scales construction. 2

Before proving Lemma 2, we recall the following useful concept.

Definition 1. The Canonical Decomposition of θ.) We shall be using the canonical

decomposition of θt (Jacod and Shiryaev (2003, Chapter II.2a pp. 75-76)), which is defined for a

general semi-martingale (Ibid. Definition I.4.21, p. 43), by writing45

θt = θ0 + θ(h)t +B(h)t + θ̆(h)t. (A.9)

Compared to the notation in our reference work, their X is our θ, their M(h) is our θ(h), while

their B(h) is the same as ours. Also, let C̃t = 〈θ(h), θ(h)〉. This is the “second modified charac-

teristic” (Ibid., Definition II.2.16, p. 79). For the case of no trucation function, θ can similarly

be decomposed into a local martingale and a finite variation process At. See also Ibid, p. 84, for

further clarification of the relationship between the untruncated and the truncated processes. We let

TV denote total variation,46 and set

D(θ)(h)t = TV (θ̆)t − TV (θ̆)0 + TV (B(h))t − TV (B(h))0. (A.10)

2

Proof of Lemma 2. Define

Zn,l(t) =
∑

Ti+K≤t,i≡l[2K]

(θ
(l)
Ti+K

− θ(l)
Ti−K

)2 + (θ
(l)
t − θ

(l)
T∗,L

)2 − [θ(l), θ(l)]T∗,L , (A.11)

where T∗,L = max{Ti+K ≤ t, i ≡ L[2K]}, so that

dZn,l(t) = 2(θ
(l)
t− − θ

(l)
T∗,L

)dθ
(l)
t . (A.12)

For given trunctation function h, define the processes θ
(l)
t (h) =

∫ t
0 f

(l)
s dθ(h)s, θ̆

(l)
t (h) =

∫ t
0 f

(l)
s dθ̆(h)s,

etc. (The truncation is thus done on the original jumps, and not starting with the process θ
(l)
t . This

assures uniformity in the following argument.) Similarly, define Zn,L(h)(t) = 2(θ
(l)
t−−θ

(l)
T∗,L

)dθ(l)(h)t,

starting at Zn,L(h)(0) = Zn,L(0) = 0. Also set

Zn(t) =
1

2K

2K∑
L=1

Zn,L(t) and Zn(h)(t) =
1

2K

2K∑
L=1

Zn,L(h)(t) (A.13)

44At the time of writing, 2 pm Washington DC time, on the day of the meeting. This time appears to be defined

to within single digit milliseconds. See, for example, “Fed probes for leaks ahead of policy news” (Financial Times,

24 September 2013).
45Note that we use a slightly different decomposition in the latter part of Appendix B, cf. Equation B.41 and

Remark 10.
46As in Assumption 1 above. Jacod and Shiryaev denotes the total variation by V ar.
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Observe that Zn(T ) = the left hand side of (A.4).

To bound the difference between Zn(t) and Zn(h)(t), note that

|Zn,L(h)(t)− Zn,L(t)| ≤ 2

∫ t

0
|θ(l)
s− − θ

(l)
T∗,L
|dD(h)t (A.14)

where D(h) is defined in (A.10), and with the original θ. Also, in the notation of Jacod and Shiryaev

(2003, Vi.1.8, p. 326), it follows from (A.2) that for all t ∈ [0, T ],

|θ(l)
t− − θ

(l)
T∗,L
| ≤ 2w′T (θ(l)(h), 2K∆T ) + sup

T∗,L<s<t
|∆θs|

≤ 2w′T (θ(l)(h), 2K∆T ) + vn(t) (A.15)

where vn(t) = supT∗∗<s<t |∆θs|, with T∗∗ = max{Ti+2K ≤ t, }, so that

sup
0≤t≤T

|Zn(h)(t)− Zn(t)| ≤ 4 max
1≤L≤2K

w′T (θ(l)(h), 2K∆T )D(h)(T ) + 2

∫ T
0
vn(t)dD(h)t. (A.16)

This is because the right hand side bounds sup0≤t≤T |Zn,L(h)(t)−Zn,L(t)| for each L, and thus the

average.

Meanwhile, to assess the size of Zn(h)t, by similar argument,

〈Zn(h), Zn(h)〉T ≤ 8

(
4 max

1≤L≤2K
w′T (θ(l)(h), 2K∆T )2C̃T +

∫ T
0
v2
n(t)dC̃t

)
. (A.17)

This is because the same bound applies to each 〈Zn,L1(h), Zn,L2(h)〉T .

Let ε > 0 be given. Set

Dε,d(h)t =
∑

0<t≤t
∆D(h)sI{|∆D(h)s|>ε} (A.18)

and let Dc
t be the continuous part of D (which is the same as the continuous part of TV (B)t).

Let Nε = #{t : |∆θt|2 ≥ ε or ∆Ct ≥ ε}. The number Nε is finite with probability one, since

Nεε ≤ [θ, θ]T + C̃T <∞ a.s. Call these jumps τ1, · · · , τNε . Set δε = min{τi+1− τi, 1 ≤ i ≤ Nε− 1}.
δε > 0 with probability one. When 2K∆T < δε (and this does happen eventually, by assumption)∫ T

0
vn(t)dD(h)t ≤ ε1/2D(h)T +

∫ T
0
vn(t)dD

√
ε,d(h)t +

∑
i

∫ (τi+2K∆T )∧T

τi

vn(t)dDc(h)t(h)t

≤ ε1/2D(h)T +
√

[θ, θ]T

(
D
√
ε,d(h)T +

∑
i

(Dc(h)(τi+2K∆T )∧T −Dc(h)τi)

)
→ ε1/2D(h)T +

√
[θ, θ]TD

√
ε,d(h)T as n→∞. (A.19)
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Hence lim sup
∫ T

0 vn(t)dD(h)t is bounded by the right hand side of (A.19), w.p. 1. However, since

ε > 0 was otherwise arbitrary, and since the right hand side tends to zero as ε→ 0, it follows that∫ T
0
vn(t)dD(h)t → 0 almost surely as n→∞. (A.20)

Similarly but more informally, when 2K∆T < δε,∫ T
0
v2
n(t)dC̃t ≤ εC̃T + [θ, θ]T

(
C̃ε,dT +

∑
i

(C̃c(τi+2K∆T )∧T − C̃
c
τi)

)
→ εC̃T + [θ, θ]T C̃

ε,d
T as n→∞

→ 0 as ε→ 0 a.s., for both convergences. (A.21)

Finally, by Lemma 1 and by Jacod and Shiryaev (2003, Theorem VI.3.21, p. 350),

max
1≤L≤2K

w′T (θ(l)(h), 2K∆T )
p→ 0 as n→∞. (A.22)

Combining (A.16)-(A.17) with (A.20)-(A.22), we obtain, as n→∞,

sup
0≤t≤T

|Zn(h)(t)− Zn(t)| p→ 0 and

〈Zn(h), Zn(h)〉T
p→ 0. (A.23)

From the second line in (A.23), by Lenglart’s inequality (Jacod and Shiryaev (2003, Lemma I.3.30,

p. 35)),

sup
0≤t≤T

|Zn(h)(t)| p→ 0. (A.24)

Combining (A.24) with the first line of (A.23) yields the result of the Lemma, since Zn(T ) = the

left hand side of (A.4). 2

B Proof of Theorem 3

To help clarify the structure of the proof, we show some intermediate results, and then assemble the

pieces. We prove the result for the Case (i) where Kn →∞. In the Case (ii) where Kn = O(1): For

terms that are op(n
−2α) in Case (i), these terms become Op(n

−2α) instead in Case (ii) (convergence

to zero is replaced by tightness). For terms that have other orders, the situation under Case (ii) is

mentioned explicitly.

We use the following notation. For S < T , set

Θ′(S,T ] =

∫ T

S
(T − t)dθt and Θ′′(S,T ] =

∫ T

S
(t− S)dθt (B.25)

By Itô’s formula, Θ(T,T+δ] −Θ(T−δ,T ] = Θ′(T,T+δ] + Θ′′(T−δ,T ].
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B.1 Decomposition of Quadratic Variation into Variance and Quadratic Varia-

tion.

The following intermediate result, which generalizes (5) to K scales subsampling and averaging.

Proposition 5. (Decomposition of Quadratic Variation into Variance and Quadratic

Variation.) Suppose that Assumption 1-2 holds. Let K = Kn be a sequence of integers so that

(33) holds. Then

QVK =
1

K

B−K∑
i=K

(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])
2 =

1

K

B−K∑
i=K

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2

+
1

K

B−K∑
i=K

(
(Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ])− (Θ̂(Ti−K ,Ti] −Θ(Ti−K ,Ti])

)2

+
2

K
V1 +Op

(
n−(α+β)Kn − J

K2
n

(B − 2K + 1)1/2

)
+ op(n

−2α), (B.26)

where V1 do not depend on K, specifically

V1 =

B∑
i=2J

Θ′(Ti−J ,Ti]ẽ
′
Ti +

B−2J∑
i=0

Θ′′(Ti,Ti+J ]e
′
Ti −

B−J∑
i=J

(
Θ′(Ti,Ti+J ] + Θ′′(Ti−J ,Ti]

)
(e′Ti + ẽ′Ti) (B.27)

Remark 9. It is easy to see from the proof that a more precise precise form of the

Op

(
n−(α+β)Kn−J

K2
n

(B − 2K + 1)1/2
)

term is

2
∆T (Kn − J)

Kn
V2 + op(n

−2α), where

V2 = −
B−J∑
i=J

(θTi+J − θTi−J )(e′Ti + ẽ′Ti) = Op(n
−βB1/2

n ). (B.28)

V2 does also not depend on K. Though this representation does not help with Theorem 3, it will

be handy for Theorem 4, were the first order part becomes

2∆TV2

m∑
l=1

γn,l
(Kn,l − J)

Kn,l
= 2∆TV2γn = Op(γnn

−βB−1/2
n ). (B.29)

by (43). We treat V2 as bias, which is a worst case scenario, and a loose choice of words.47 For

example, if the edge effects are indpendent of the θt process, this term will be much smaller, and

it is can be handled as a variance type term. 2

47Our motivation for the term is that is the general case, V2 has nonzero mean. We also conjecture that it can be

consistently estimated from the data.
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Proof of Proposition 5. To show the result of the proposition, we need to get rid of the cross

term, i.e.

1

K

B−K∑
i=K

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])(Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ] − (Θ̂(Ti−K ,Ti] −Θ(Ti−K ,Ti])). (B.30)

We divide the proof into parts (A)-(C). The overall result follows by combining (B.34), (B.61), and

(B.64), below.

(A) We start with the part of (B.30) due to M , which is four times

1

2K

B−K∑
i=K

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
(
(MTi+K −MTi)− (MTi −MTi−K )

)
=
K∆T

2K

2K∑
l=1

∑
K≤i≤B−K,i≡l[2K]

(θ
(l)
Ti+K

− θ(l)
Ti−K

)
(
(MTi+K −MTi)− (MTi −MTi−K )

)
, (B.31)

in the notation of Appendix A. We show

Lemma 3. Under the conditions of Proposition 5,

l.h.s. of (B.31) =
n−αK∆T

2K

2K∑
l=1

∑
K≤i≤B−K,i≡l[2K]

(
([θ(l), Ln]Ti+K − [θ(l), Ln]Ti)− ([θ(l), Ln]Ti − [θ(l), Ln]Ti−K )

)
+ op(n

−2α). (B.32)

The right hand side of B.32 is a telescope sum. Thus, by the Kunita-Watanabe Inequality (see,

e.g., Protter (2004, Theorem II.25 (p. 69))), if 2K∆T ≤ δ, (B.32) yields

l.h.s. of (B.31) ≤ n−αK∆T (([θ, θ]δ − [θ, θ]0)[Ln, Ln]δ

+([θ, θ]T − − [θ, θ]T −δ)([Ln, Ln]T − [Ln, Ln]T −δ)) + op(n
−2α). (B.33)

By the stable convergence and the P-UT property of Ln,t (Appendix D.1), Jacod and Shiryaev

(2003, Theorem VI.6.26, p. 384) yields that (nα/K∆T )× the right hand side of (B.33) converges

in law to ([θ, θ]δ−[θ, θ]0)[L,L]δ+([θ, θ]T −−[θ, θ]T −δ)([L,L]T −[L,L]T −δ). This expression converges

in probability to zero as δ → 0. Thus (Jacod and Shiryaev (2003, Property VI.3.1, p. 347))

l.h.s. of (B.31) = øp(n
−2α). (B.34)

Proof of Lemma 3. To see (B.32), we can proceed as in the proof of Lemma 2. This involves

processes of the form dZcross
n,l (t) = 2(θ

(l)
t−− θ

(l)
T∗,L

)d(Ln +An)t and dZcross
n,l (h)(t) = 2((Ln +An)t−−

(Ln+An)T∗,L)dθ
(l)
t , as well as the jump-truncated local martingale versions dZcross

n,l (h)(t) = 2(θ
(l)
t−−

θ
(l)
T∗,L

)dLn,t(h) and dZcross
n,l (h)(t) = 2((Ln + An)t− − (Ln + An)T∗,L)dθ(l)(h)t. Still in analogy with
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the proof of the earlier lemma, we need to show properties for the Ln,t + An,t process that mirror

those shown there for the θ
(l)
t processes. The An,t process can be ignored since we have assumed

that TV (An)T
p→ 0. That leaves us to deal with the elements of the decomposition (A.9)

Ln,t = Ln,0 + L(h)n,t +BL(h)n,t + L̆(h)n,t. (B.35)

Inequalities analogous to (A.16)-(A.17) hold in our case. We now show that these bounds go to in

probability to something arbirarily small.

However, Ln,t converges to Lt by assumption, and the sequence is P-UT by Appendix D.1.

Therefore, in notation similar to the proof of the earlier lemma, and by Jacod and Shiryaev (2003,

Theorem VI.3.21, p. 350),

w′T (L(h)n, 2K∆T )
p→ 0 as n→∞. (B.36)

while DLn(h)T and C̃LnT are tight by Jacod and Shiryaev (2003, Theorem VI.6.16, p. 380). Because

of the stable convergence, therefore, terms (in the bounds) involving max1≤L≤2K w
′
T (θ(l)(h), 2K∆T )

and w′T (L(h)n, 2K∆T ) go to zero in probability. This leaves us to deal with with the following four

terms: ∫ T
0
vLn (t)dD(h)t,

∫ T
0
vn(t)dDLn(h)t,

∫ T
0
v2
n(t)dC̃Lnt , and

∫ T
0

(vLn )2(t)dC̃t . (B.37)

The convergence in law of Ln,t causes slight additional complications. Focus on the first term

in (B.37). The three other terms follow analogously. Terms two and four also use Jacod and

Shiryaev (2003, Theorem VI.6.15, p. 380), and proceeds through subsequences to convert tightness

to convergence in law.

Let η1 > 0, and set

Y Ln
t =

∑
s≤t

g(∆Ln,s) and Y L
t =

∑
s≤t

g(∆Ls) (B.38)

where g is continuous, nonnegative, and vanishes in a neighborhood of zero, g(−x) = g(x), and

g(x) = x for x ≥ η. Also let η2 > 0, and let G is a finite grid on [0, T ], which includes 0 and T ,

with distance between the grid points no more than η2. For all t ∈ [0, T ], let T∗∗∗ = max{T ∈
G : T ≤ t − η2} ∧ 0. When 2K∆T ≤ η2, T∗∗∗ ≤ T∗∗. We see that vLn (t) ≤ η + Yt− − YT∗∗∗ . And

so, for 2K∆T ≤ η2, ∫ T
0
vLn (t)dD(h)t ≤ η1D(h)T +

∫ t

0
(Y Ln
t− − Y

Ln
T∗∗∗

)dD(h)t. (B.39)

Because of the stable convergence assumption on the process Ln,t, it follows that the processes Ln,t
and D(h)t converge jointly in law. By Jacod and Shiryaev (2003, Proposition VI.3.16), it follows

that the processes Y Ln
t and D(h)t converge jointly in law. By Ibid., Theorem VI.6.22 (p. 383), the

right hand side of (B.39) converges in law to η1D(h)T +
∫ t

0 (Y L
t− − Y L

T∗∗∗
)dD(h)t, so that, for any

η3 > 0,

lim sup
n→∞

P (

∫ T
0
vLn (t)dD(h)t ≥ η3) ≤ P (η1D(h)T +

∫ t

0
(Y L
t− − Y L

T∗∗∗)dD(h)t ≥ η3) (B.40)
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(Jacod and Shiryaev (2003, Property VI.3.1, p. 347)). We have now overcome the problems

associated with the convergnce in law of Ln,t, and can proceed on the right hand side of (B.40) as

in the proof of Lemma 2, though taking into account the jumps both in Lt and in θt. By sending

η2 and then η1 to zero, we obtain that first term in (B.37) tends to zero in probability.

As the three other terms in (B.37) are dealt with similarly, Lemma 3 is proved. 2

With reference to Definition 1, for the purposes of the remainder of this proof, unlike Appendix

A, we use (A.10)

D(θ)(h)t = TV (θ̆)t − TV (θ̆)0 + TV (B(h)−A)t − TV (B(h)−A)0 (B.41)

Remark 10. (Properties). We note that the truncation function h is bounded, so θ(h)t and

B(h)t have bounded jumps, and hence are locally bounded. One can choose h = hn so that

D(θ)(h)T is arbitrarily small, i.e., D(θ)(hn)T
p→ 0. 2

(B) We continue with the part of (B.30) that is due to the (e′Ti , ẽ
′
Ti

). This part can be

written as two times

1

K

B−K∑
i=K

(Θ′(Ti,Ti+K ] + Θ′′(Ti−K ,Ti])
(

(ẽ′Ti+K − e
′
Ti)− (ẽ′Ti − e

′
Ti−K )

)
. (B.42)

Now again invoke the canonical decomposition of θt from Definition 1. The for the part of

(B.42) that is due to θ̆n,t, write, in obvious notation, and by invoking (D.81) in Remark 12,

| 1

K

B−K∑
i=K

(Θ̆′(Ti,Ti+K ] + Θ̆′′(Ti−K ,Ti])
(

(ẽ′Ti+K − e
′
Ti)− (ẽ′Ti − e

′
Ti−K )

)
|

≤ 4n−αΓ
1

K

B−K∑
i=K

|Θ̆′(Ti,Ti+K ] + Θ̆′′(Ti−K ,Ti]|

≤ 4n−αΓ
1

K

B−K∑
i=K

(∫ Ti+K

Ti

(Ti+K − t)dTV (θ̆)t

∫ Ti

Ti−K

(t− Ti)dTV (θ̆)t

)
≤ 16n−αΓK∆T (TV (θ̆)T − TV (θ̆)0). (B.43)

For the first term, this is because

4n−αΓ
1

K

B−K∑
i=K

∫ Ti+K

Ti

(Ti+K − t)dTV (θ̆)t ≤ 8n−αΓK∆T (TV (θ̆)T − TV (θ̆)0). (B.44)

The other term is handled similarly.

In the same way,

| 1

K

B−K∑
i=K

(Θ
(B−A)′
(Ti,Ti+K ] + Θ̆

(B−A)′′
(Ti−K ,Ti]

)
(

(ẽ′Ti+K − e
′
Ti)− (ẽ′Ti − e

′
Ti−K )

)
|

≤ 16n−αΓK∆T (TV (B −A)T − TV (B −A)0), (B.45)
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We shall use the two bounds in the following. For now, concentrate on the remaining part of (B.42),

1

K

B−K∑
i=K

(Θ(h)′(Ti,Ti+K ] + Θ(h)′′(Ti−K ,Ti])
(

(ẽ′Ti+K − e
′
Ti)− (ẽ′Ti − e

′
Ti−K )

)
, (B.46)

where Θ(h)′(Ti,Ti+K ] and Θ(h)′′(Ti−K ,Ti] are defined as Θ′(Ti,Ti+K ] and Θ′′(Ti−K ,Ti], but with θ(h) +B(h)

replacing θ. To make things more readable, we split up into more lemmae.

Lemma 4. (The terms in (B.46) that cannot be written on martingale form.) These

terms are the sum of (B.48)-(B.49) below. They satisfy

1

Kn
V1 +Op

(
n−(α+β)Kn − J

K2
n

(Bn − 2Kn + 1)1/2

)
+Op(n

−2α) (B.47)

where V1 is defined in (B.27).

Proof and Elaboration of Lemma 4. We show the result for hte case where β = α. The argument
for general β is given in Remark 9. – We are concerned with the part of (B.46) that cannot be
written on martingale form. Consider first the ẽ′ terms, which add up to48

1

K

B−K∑
i=K

Θ(h)
′
(Ti+K−J ,Ti+K ]ẽ

′
Ti+K

−
1

K

B−K∑
i=K

(∫ Ti+J

Ti

(Ti+K − t)d(θ + B)(h)t +

∫ Ti

Ti−J

(t− Ti−K)d(θ + B)(h)t

)
ẽ
′
Ti

=
1

K

B∑
i=2K

Θ(h)
′
(Ti−J ,Ti]

ẽ
′
Ti
−

1

K

B−K∑
i=K

(
∆T (K − J)((θ + B)(h)Ti+J

− (θ + B)(h)Ti−J
) + Θ(h)

′
(Ti,Ti+J ] + Θ(h)

′′
(Ti−J ,Ti]

)
ẽ
′
Ti

(B.48)

Similarly, the non-martingale terms containing e′ add up to

1

K

B−2K∑
i=0

Θ(h)
′′
(Ti,Ti+J ]e

′
Ti
−

1

K

B−K∑
i=K

(
∆T (K − J)((θ + B)(h)Ti+J

− (θ + B)(h)Ti−J
) + Θ(h)

′
(Ti,Ti+J ] + Θ(h)

′′
(Ti−J ,Ti]

)
e
′
Ti

(B.49)

We first dispose of (taken from both (B.48)-(B.49))

!
1

K

B−K∑
i=K

(
∆T (K − J)((θ +B)(h)Ti+J − (θ +B)(h)Ti−J )

)
(e′Ti + ẽ′Ti)|

≤ n−α∆T (K − J)2Γ
1

K

B−K∑
i=K

|(θ +B)(h)Ti+J − (θ +B)(h)Ti−J |

≤ n−α∆T (K − J)2Γ
1

K

(
(B − 2K + 1)1/2

B−K∑
i=K

(θ(h)Ti+J − θ(h)Ti−J )2 +

B−K∑
i=K

|B(hTi+J −B(h)Ti−J |

)

= Op

(
n−2αKn − J

K2
n

(Bn − 2Kn + 1)1/2

)
(B.50)

48Since
∫ Ti+J

Ti
(Ti+K − t)dθt = (Ti+K − Ti+J)(θTi+J − θTi) + Θ′(Ti,Ti+J ] = ∆T (K − J)(θTi+J − θTi) + Θ′(Ti,Ti+J ] and

similarly
∫ Ti

Ti−K
(t− Ti−J)dθt = ∆T (K − J)(θTi − θTi−J ) + Θ′′(Ti−J ,Ti]

, with the same results for θ(h) +B(h).
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The sum of (B.48)-(B.49)) is then equal to

1

K

B∑
i=2J

Θ(h)′(Ti−J ,Ti]ẽ
′
Ti +

1

K

B−2J∑
i=0

Θ(h)′′(Ti,Ti+J ]e
′
Ti

− 1

K

B−J∑
i=J

(
Θ(h)′(Ti,Ti+J ] + Θ(h)′′(Ti−J ,Ti]

)
(e′Ti + ẽ′Ti)

+Op

(
n−2αK − J

K2
(B − 2K + 1)1/2

)
+ op(n

−2α). (B.51)

The change of summation limits in the remaining sums is valid because, for example,

| 1

K

B−K∑
i=K

Θ(h)′(Ti+K−J ,Ti+K ]ẽ
′
Ti+K

− 1

K

B∑
i=2J

Θ(h)′(Ti−J ,Ti]ẽ
′
Ti | ≤

1

K

2K−1∑
i=2J

|Θ(h)′(Ti−J ,Ti]||ẽ
′
Ti |

≤ n−αΓ
1

K

2K−1∑
i=2J

|Θ(h)′(Ti−J ,Ti]|

≤ n−αΓ
1

K

2K−1∑
i=2J

|
∫ Ti

Ti−J

(Ti − t)dθ(h)t|+Op(n
−α∆T ) (B.52)

by invoking (D.81) in Remark 12. However, the square of the main term in (B.52) is Lenglart

dominated by

n−2αΓ2

(
2(K − J)

K2

) 2K−1∑
i=2J

∫ Ti

Ti−J

(Ti − t)2dC̃t

≤ n−2αΓ2

(
2(K − J)

K2

) J∑
j=1

j2(∆T )2(C̃T2K−1
− C̃TJ ) = op(n

−4α), (B.53)

where we have used a similar kind of bound to that used in (B.43)-(B.45) (but with (Ti− t)2 rather

than (Ti − t)). Hence, by Lenglart’s inequality (Jacod and Shiryaev (2003, Lemma I.3.20, p. 35)),

the main term in (B.52) is of order op(n
−2α). The other terms follow similarly, hence (B.48)-(B.49)

equals (B.51).

Now write (B.51) as

1

K
V1(h) +Op

(
n−2α 1

K
(B − 2K + 1)1/2

)
+ op(n

−2α), (B.54)

where V1(h) is as in (B.27), but with the modification that it is based on θ(h) instead of θ. –

Similarly to (B.43)-(B.45), we get that |V1(h)−V1| ≤ 16n−αΓK∆T (TV (θ̆)T −TV (θ̆)0 +TV (B)T −
TV (B)0). This yields that (B.51) can be further written as (B.47) in the Lemma, since K∆T =

O(n−α). 2

Lemma 5. (The terms in (B.46) that can be written on martingale form.) These

are the remaining terms in (B.46), minus the sum of (B.48)-(B.49) below. They are of order

Op(n
−2αK

−1/2
n ).
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Proof and Elaboration of Lemma 5. For the remaining terms in (B.46), if K →∞, write them

as (B.42) with Θ(h)R′(Ti,Ti+K ] +Θ(h)R′′(Ti−K ,Ti]
replacing Θ(h)′(Ti,Ti+K ] +Θ(h)′′(Ti−K ,Ti]. For the first (the

ẽ′Ti+K ) term, proceed as follows. The term (with I = B) can be written

1

K

I−K∑
i=K

(Θ(h)R′(Ti,Ti+K ] + Θ(h)R′′(Ti−K ,Ti]
)ẽ′Ti+K (B.55)

Use (D.81) in Remark 12. First of all, the finite variation terms (involving B(h)) yield a contribution

of size Op(n
−α∆T ). Hence assume that Θ(h)R′(Ti,Ti+K ] + Θ(h)R′′(Ti−K ,Ti]

only contains the martingale

θ(h). Hence, by Lemma 7 (choose N = 2J), the square of (B.55) is Lenglart dominated by

n−2αΓ2(4J − 1)
1

K2

I−K∑
i=K

(Θ(Ti,Ti+K ](h)R′ + Θ(Ti−K ,Ti](h)R′′)2, (B.56)

which in turn (for simplicity) is Lenglart dominated by

n−2αΓ2(4J − 1)
1

K2

I−K∑
i=K

(Θ(Ti,Ti+K ](h)′ + Θ(Ti−K ,Ti](h)′′)2. (B.57)

As in (B.53), this expression is in turn Lenglart dominated by

2n−2αΓ2(4J − 1)
1

K2

I−K∑
i=K

(∫ Ti+K

Ti

(Ti+K − t)2dC̃t +

∫ Ti

Ti−K

(t− Ti−K)2dC̃t

)

≤ 4n−2αΓ2(4J − 1)
1

K2

K∑
j=1

j2(∆T )2
(
C̃TI − C̃0

)
= Op(n

−4αK−1
n ). (B.58)

Hence, by Lenglart’s inequality (Jacod and Shiryaev (2003, Lemma I.3.20, p. 35)), (B.55) is of

order Op(n
−2αK

−1/2
n ). The other martingale part of terms in (B.46) can be handled similarly. This

shows Lemma 5. 2

To round up the discussion of (B.42), we see from Lemmae 4-5 that

eq. (B.46)− 1

Kn
V1 +Op

(
n−2α 1

K
(B − 2K + 1)1/2

)
+Op(n

−2αK−1
n ) (B.59)

Meanwhile, from (B.43)-(B.45)

n2α| eq. (B.46) − eq. (B.42) | ≤ 16nα(K∆T )Γ
(
TV (θ̆)T − TV (θ̆)0 + TV (B)T − TV (B)0.

)
(B.60)

nα(K∆T ) = O(1) by assumption, and the trucation function h can be chosen so that TV (θ̆)T −
TV (θ̆)0 + TV (B −A)T − TV (B −A)0

p→0 (cf. Remark 10). Thus, finally,

eq. (B.42) = n−2α 1

Kn
V1 +Op

(
n−2α 1

K
(B − 2K + 1)1/2

)
+Op(n

−2αK−1
n ) (B.61)
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2

( C ) We continue with (B.30), now the part due to the (e′′Ti , ẽ
′′
Ti

). This part can be

written

1

K

B−K∑
i=K

(Θ′(Ti,Ti+K ] + Θ′′(Ti−K ,Ti])
(

(ẽ′′Ti+K − e
′′
Ti)− (ẽ′′Ti − e

′′
Ti−K )

)
(B.62)

Again just focus on one of the sub-terms, say, the one due to ẽ′′Ti+K . From Cauchy-Schwartz,

| 1

K

B−K∑
i=K

(Θ′(Ti,Ti+K ] + Θ′′(Ti−K ,Ti])ẽ
′′
Ti+K

|

≤ 1

K

(
B−K∑
i=K

(Θ′(Ti,Ti+K ] + Θ′′(Ti−K ,Ti])
2

)1/2(B−K∑
i=K

(ẽ′′Ti+K )2

)1/2

= op

(
K−1(K∆T )3B)1/2n−α

)
= op

(
K∆Tn−α

)
= op

(
n−2α

)
(B.63)

ex. hyp.. The other terms go away similarly. Thus

eq. (B.62) = op(n
−2α). (B.64)

As indicated at the beginning of the proof, Proposition 5 is thus proved. 2

B.2 Representation of the Variance Term

Given Proposition 5, the main outstanding problem is to handle the asymptotic variance term in

(B.26).

Proposition 6. (Representation of the Variance Term.) Suppose that Assumption 1-2

holds. Let K = Kn be a sequence of integers so that (33) holds. Then

1

K

B−K∑
i=K

(
(Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ])− (Θ̂(Ti−K ,Ti] −Θ(Ti−K ,Ti])

)2

= 2n−2α([L,L]T − [L,L]0)− n−2α
(
2Eẽ2(0) + E(ẽ+e)2(0) + E(ẽ+e)2(T ) + 2Ee2(T )

)
+

1

K
TSEn +

2

K
V ′1 + op(n

−2α) +Op(n
−2βK−1

n (Bn − 2Kn + 1)1/2) (B.65)

where TSEn denotes the total squared error (for the smallest possible K), given by

TSEn = 2

B∑
i=0

(ẽ2
Ti + e2

Ti + ẽTieTi) (B.66)
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(with ẽ0 = eT = 0 by convention), and where

V ′1 =

B−J∑
i=J

(MTi −MTi−J )(eTi + 2ẽTi)−
B−J∑
i=J

(MTi −MTi−J )(2eTi + ẽTi) (B.67)

Proof of Proposition 6. Following (15), write

1

K

B−K∑
i=K

(
(Θ̂(Ti,Ti+K ] −Θ(Ti,Ti+K ])− (Θ̂(Ti−K ,Ti] −Θ(Ti−K ,Ti])

)2

=
1

K

B−K∑
i=K

(
(MTi+K −MTi)− (MTi −MTi−K ) + (ẽTi+K − eTi − ẽTi + eTi−K )

)2
=

1

K

B−K∑
i=K

(
(MTi+K −MTi)

2 + (MTi −MTi−K )2 + ẽ2
Ti+K

+ (eTi + ẽTi)
2 + e2

Ti−K

)
+ crtn

= n−2α 1

K

B−K∑
i=K

(
(Ln,Ti+K − Ln,Ti)

2 + (Ln,Ti − Ln,Ti−K )2
)

+
1

K
TSEn + crtn

− 1

K

(
2K−1∑
i=0

ẽ2
Ti +

B∑
i=B−2K+1

e2
Ti +

K−1∑
i=0

(ẽTi + eTi)
2 +

B∑
i=B−K+1

(ẽTi + eTi)
2

)
+ op(n

−2α)

= 2n−2α([L,L]T − [L,L]0)− n−2α
(
2Eẽ2(0) + E(ẽ+e)2(0) + E(ẽ+e)2(T ) + 2Ee2(T )

)
+

1

K
TSEn + crtn + op(n

−2α) (B.68)

where crtn are the cross-terms, and where TSEn is given by (B.66).

The last transition: for the edge effect erms, this is by (31) in Assumption 2. Meanwhile, to

see why, for example, 1
K

∑B−K
i=K (Ln,Ti+K − Ln,Ti)2 p→([L,L]T − [L,L]0), set L

(l)
n,t = Ln,Ti−L , where

Ti ≤ t < Ti+1. Also, w.l.o.g., set [L,L]0) = 0. Then

1

K

B−K∑
i=K

(Ln,Ti+K − Ln,Ti)
2 =

1

K

K∑
L=1

[L(l)
n , L

(l)
n ]T + op(1) (B.69)

For each L, Jacod and Shiryaev (2003, Proposition VI.6.37, p.387), along with the Assumption

(17), assures that [L
(l)
n , L

(l)
n ]T

p→[L,L]T . For a given subsequence of n, by iterative further picking

of subsequences, one can find a subsequence so that this convergence holds almost surely for all K.

By Toeplitz Lemma, e.g., Hall and Heyde (1980, p. 31), it follows that (B.69) converges a.s. to

[L,L]T . Since the initial subsequence was arbitrary, it follows that (B.69) converges in probability

to [L,L]T , as required. (One can alternatively procced along the lines of Lemmae 2-3.)

Cross terms. Without loss of generality we can replace e by e′. – We first handle the terms

that only contain eTi and ẽTi . One such term (and the others are all handled the same way) is
2
K

∑B−K
i=K ẽTi+KeTi . By Assumption 2, this term has the same limit as 2

K

∑B−K
i=K ẽ′Ti+Ke

′
Ti

. We
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then invoke statement (D.81) in Remark 12. Now identify the sum with Sn,I in Lemma 7 (with

Hn,i = GTi+J , N = 2J , and B′n = Bn − Kn.). The multi lag angle braket process 〈Sn, Sn〉(N)
B′n
≤

(4J−1)4K−2
n (Bn−2Kn+1)Γ2n−4α = O(n−4βK−2

n (Bn−2Kn+1)) since it then follows from Lemma

7 that 2
K

∑B−K
i=K ẽTi+KeTi = Op(n

−2βK−1
n (Bn − 2Kn + 1)1/2). This is the uncancellable variance

term, which later (Thorem 4) shows up as Op

(
n−2βE

1/2
n

)
, and is therefore included specially in the

statement of the Proposition. – The result is clearly the same if Kn = O(1) (Case (B) mentioned

at the beginning of Section B).

The cross term on the form 2
K

∑B−K
i=K (MTi+K −MTi)(MTi −MTi−K ) is handled by writing

2

K

B−K∑
i=K

(Ln,Ti+K − Ln,Ti)(Ln,Ti − Ln,Ti−K ) =
1

K

B−K∑
i=K

(Ln,Ti+K − Ln,Ti−K )2

− 1

K

B−K∑
i=K

(Ln,Ti+K − Ln,Ti)
2 − 1

K

B−K∑
i=K

(Ln,Ti − Ln,Ti−K )2

p→ (2− 1− 1)([L,L]T − [L,L]0) = 0. (B.70)

by the same argument as that surrounding (B.69).

We now approach the cross term on the form

2

K

B−K∑
i=K

(MTi+K −MTi)eTi−K = n−2α 2

K

B−K∑
i=K

(Ln,Ti+K − Ln,Ti)n
αeTi−K . (B.71)

Write

2

K

I−K∑
i=K

(Ln,Ti+K − Ln,Ti)n
αeTi−K =

I∑
j=K

(Ln,Tj − Ln,Tj−1)Hn,j =

∫ TI

TK

Hn(t−)dLn,t (B.72)

where Hn(t) = Hn,j for t ∈ [Tj−1, Tj ], and where Hj = 2K−1
∑
nαeTi−K , the sum being over

i ∈ [j−K, j−1]∩ [K, I−K]. By invoking (D.81) in Remark 12, we see that we can take |Hj | ≤ 2Γ.

Also, as in the proof of the proof of Lemma 7, we see that E(H2
j ) ≤ (2J−1)K−1Γ2. Thus, following

Lenglart’s inequality (Jacod and Shiryaev (2003, Lemma I.3.20, p. 35)), sup0≤t≤T |Ht|
p→0. By

combining Ibid., Lemma VI.3.31 (p. 352), Corollary 3.33 (p. 353), and Theorem VI.6.22(b) (p.

383), and since Ln,t is P-UT (Appendix D.1), it follows that B.72 goes to zero in probability. Hence

the expression in (B.71) is of order op(n
−2α).

The cross term on the form 2
K

∑B−K
i=K (MTi −MTi−K )eTi+K is handled much the same way.



Observed Asymptotic Variance for High Frequency Data 59

The remaining cross terms can be decomposed as crt′n + crt′′n, where

crt′n =
2

K

B−K∑
i=K

(
(MTi+K −MTi+K−J )ẽTi+K − (MTi−K+J

−MTi−K )eTi−K
)

− 2

K

B−K∑
i=K

(
(MTi+J −MTi)− (MTi −MTi−J )

)
(eTi + ẽTi)

=
2

K
V ′1 + op(n

−2α) (B.73)

by the same methods as above, where V ′1 is given by (B.67) Meanwhile, the residual crt′′n is a

sum of square integrable martingales (along with a canonical decomposition term, in analogy with

Definition 1 in Appendix A), and are op(n
−2α), also by the same methods as above. 2

B.3 Three Represents: Final Arguments to prove Theorem 3

From Theorem 1 in Section 3, we obtain

1

K

B−K∑
i=K

(Θ(Ti,Ti+K ] −Θ(Ti−K ,Ti])
2 =

2

3
(K∆T )2[θ, θ]T −(1 + op(1)). (B.74)

In view of Propositions 5-6, we therefore have

QVK =
1

K

B−K∑
i=K

(Θ̂(Ti,Ti+K ] − Θ̂(Ti−K ,Ti])
2 =

2

3
(K∆T )2[θ, θ]T −

+ 2n−2α([L,L]T − [L,L]0)−
(
2Eẽ2(0) + E(ẽ+e)2(0) + E(ẽ+e)2(T ) + 2Ee2(T )

)
+

1

K
TSEn +

2

K
V ′1 +

2

K
V1

+ op(n
−2α) +Op(n

−(α+β)K−1
n (Bn − 2Kn + 1)1/2), (B.75)

where the Vi and TSEn do not depend on K, and are given by (B.27) and (B.66)-(B.67). If we

write

V0 = TSEn + 2V1 + 2V ′1 , (B.76)

and because of the three middle assumptions in (33) we obtain the statement of Theorem 3. 2

C Properties and Convergence of the Edge Effect

C.1 About Assumption 2 on the Edge Effects

The fomulation means that the main edge effect at Ti is allowed to depend on observations in J

time periods on each side of Ti.
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The specific conditions can be verified under mixing assumptions. The following is a complement

to out examples. This is not intended to provide minimal conditions, just to explain why our

conditions are reasonable.

The Decomposition eTi = e′Ti + e′′Ti and ẽTi = ẽ′Ti + ẽ′′Ti. We have chosen this way of stating the

conditions of the edege effect since, in our examples, this is readily verifiable. To tie the condition

to the literature, however, we observe that, subject to mixing conditions, we require (eTi , ẽTi) to

be a mixingale, see, e.g., McLeish (1975) and Hall and Heyde (1980, pp. 19-21, 41). As the name

suggests, it is tied up with the concept of mixing. See also Wu and Woodroofe (2004).

α- and φ- mixing. For a more general treatment, see McLeish (1975, p. 834) and Hall and

Heyde (1980, Chapter 5 and Appendix III). For simplicity, we here focus on φ-mixing.49 If A and

B are two sigma-fields, then the phi-fixing coefficient is

φ(A,B) = sup
A∈A,B∈B,P (A)>0

|P (B|A)− P (B)| (C.77)

The Decomposition, again. Set ẽ′′Ti = ẽTi − E(ẽTi | GTi−J ), and similarly for e′′Ti . The difference

ẽ′Ti = ẽTi = ẽ′′Ti will then have the martingale-like properties described, as will e′Ti .

Meanwhile, if we require, say, that supnE
(
max0≤i≤Bn |nαen,Ti |1+δ + max |nαẽn,Ti |1+δ

)
< ∞,

for some δ > 0, and also that
∑

i(Een,Ti)
2 + (Eẽn,Ti)

2 = o(n−2α), then the lemma on McLeish

(1975, p. 834) assures that our conditions on (e′′Ti , ẽ
′′
Ti

) are satisfied provided∑
i

φ(GTi−J , σ(e′′Ti , ẽ
′′
Ti))

2δ
1+δ = o(n−2α). (C.78)

Normally, however, the number of observations in each interval (Ti−1, Ti] will go to infinity with n,

thus under exponential mixing (in the original microstructure noise), (C.78) will normally hold.

The assumption (31) can be derived from mixing assumtions in much the same way.

C.2 Proof and Comments on Theorem 4

Proof of Theorem 4. In view of Remark 9, it remains to handle the dominating error term, which cor-

responds to the first cross term in the proof of Proposition 6. For given K, the full and exact expres-

sion is of the form S
(K)
n,I =

∑I
i=1 ζ

(K)
n,i , where ζ

(K)
n,i = 2K−1

(
ẽ′Ti(e

′
Ti−2K

− u′Ti−K )I{2K≤j≤B} − u′TieTi−KI{K≤j≤B−K}
)

,

with u′Ti = ẽTi + eTi .

When dealing with multiple K’s, we have Sn,I =
∑m

i=1 γn,KS
(K)
n,I , which we can write Sn,I =∑I

i=1 ζn,i, with ζn,i =
∑m

l=1 γn,l2K
−1
n,l

(
ẽ′Ti(e

′
Ti−2K

− u′Ti−K )I{2K≤j≤B} − u′Tie
′
Ti−K

I{K≤j≤B−K}

)
. In

49One can do similar things with α-mixing, using the definition and lemma on McLeish (1975, p. 834).
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analogy with the single term case (in the proof of Proposition 6), We then invoke statement (D.81)

in Remark 12, and then apply Lemma 7 (with the same elections Hn,i = GTi+J , N = 2J , and

B′n = Bn −Kn.). From the Lemma, the multi lag angle braket process

〈Sn, Sn〉(N)
B′n
≤ (4J − 1)4

m∑
l=1

(
γn,l
Kn,l

)2

(Bn − 2Kn + 1)Γ2n−4α

= Op

(
n−4α

m∑
l=1

(
γn,l
Kn,l

)2

(Bn − 2Kn,l + 1)

)
. (C.79)

In particular, by Lenglart’s Inequality (and our Lemma), Sn has the order in probability as the

square root of (C.79). This is used in eq. (45) in Theorem 4. 2

Remark 11. Sharpness of the Bound in (C.79) and Theorem 4.) To get a sense of what is

the best possible rate, assume that the (ẽTi , eTi) are iid with second moments.. In this case, Sn,I
is a martingale (in I, for fixed n), with predictable quadratic variantion 〈Sn, Sn〉I =

∑I
i=1E(ζ2

n,i |
GTi−1). By the law of large numbers, subject to moment conditions,

〈Sn, Sn〉B = 4

m∑
l=1

(
γn,l
Kn,l

)2

(Bn − 2Kn,l + 1)
(
Eẽ2(Eu2 + Eu2) + Eu2Eu2

)
(1 + op(1)). (C.80)

A more realistic scenario is to impose the kind of mixing condition discussed in Appendix C.1. We

assume second moments, again. For simplicity, consider only one term, say,

ζn,i =
∑m

l=1 γn,l2K
−1
n,l ẽ

′
Ti
e′Ti−2Kn,l

I{2K≤j≤B}. One can then decompose Sn,I =
∑N

j=1 S
(L)
n,I as in the

Proof of Lemma 7, with N = 2J . The individual S
(L)
n,I is a martingale, with predictable quadratic

variation, 〈S(L)
n , S

(L)
n 〉I =

∑
i∈[1,I],i≡L =

∑I
i=1

∑m
l=1 γn,l2K

−1
n,lE((ẽ′Ti)

2 | GTi−J )(e′Ti−2Kn,l
)2I{2K≤i≤B},

By the Lemma in McLeish (1975, p. 834), sufficient mixing will assure that this can be well ap-

proximated by
∑I

i=1

∑m
l=1 γn,l2K

−1
n,lE((ẽ′Ti)

2)(e′Ti−2Kn,l
)2I{2K≤i≤B}. If the Kn,l are at least J apart,

one can then in turn use the martingale property and the mixing to see that 〈S(L)
n , S

(L)
n 〉I =

4
∑m

l=1

(
γn,l
Kn,l

)2 (∑I
i=1E((ẽ′Ti)

2)E(e′Ti−2Kn,l
)2I{2K≤i≤B}

)
(1 + op(1)), which is again of the same or-

der as (C.79). Since Sn,I is a finite sum of S
(L)
n,I , this order will be preserved except in truly

exceptional circumstances.

In fact, given (30), each S
(L)
n,I is asymptotically normal with the relevant variance.50 – A sim-

ilar but more eleborate analysis will give the exact asymptotic variance (and normality) of S
(L)
n,I .

2

50See Mykland (1994, Section 4) for the relevant regularity condition.



Observed Asymptotic Variance for High Frequency Data 62

D Odds and Ends

D.1 About the P-UT Property, and Proof of Proposition 1

The first statement of this proposition uses (17) as well as Jacod and Shiryaev (2003, Corollary

6.30, p 385 and Proposition VI.3.37, p. 387). More generally, (17) can be replaced in Assumption 1

(for our entire development) by a requirement that Ln,t be “Predictably Uniformly Tight” (P-UT),

in the sense of Ibid., Definition VI.6.1 (p. 377), cf. also their Theorem VI.6.26 (p. 384). The

proof of their Corollary 6.30 is, in fact, a proof that the sequence of local martingales is P-UT. The

condition (17) is weaker that what is usually required for a central limit theorem, and it does not

assure asymptotic negligibility. – The contribution of An,t −At to the asymptotics is negligible by

Ibid., Proposition I.3.3 (p. 27), Corollary VI.3.33 (p. 353), and Theorem VI.3.37 (p. 354).

To see equation (18), use that L2
t − [L,L]t is a local martingale w.r.t. filtration F ∨ FLt , hence

E(LT | F) = 0 and E(L2
T − [L,L]T | F) = 0.

D.2 Technical Lemmae

To handle general moments, we shall use the following.

Lemma 6. (Truncating the Edge Effects.) Suppose Assumption 2. Then, for any δ > 0,

there exists (possibly on an extension of the space) etr
n,Ti

and ẽtr
n,Ti

, and a nonrandom constant Γ,

so that

1. For each n etr
n,Ti

= e′n,Ti and ẽtr
n,Ti

= ẽ′n,Ti for all i ∈ [0, Bn], on a measurable set An, and

P (An) < δ;

2. etr
n,Ti

and ẽtr
n,Ti

satisfy the conditions in Assumption 2 in lieu of e′n,Ti and ẽ′n,Ti; and

3. |etr
n,Ti
| ≤ Γn−α and |ẽtr

n,Ti
| ≤ Γn−α for all i and n.

Remark 12. (Using Lemma 6.) We shall use the lemma to assert, in various places, that

|nαe′n,Ti | and |nαẽ′n,Ti | can without loss of generality be taken to be bounded by a constant Γ.

(D.81)

Here is the specific mechanism that we refer to.

Let Yn be a sequence of random variables, involving a functional form of e′n,Ti and ẽ′n,Ti (as well

as any of the other random quantities in our setup). Let D be a countable set, D ⊂ (0, 1), with a

limit point at zero.

For given δ ∈ D, create Yn,δ by replacing the e′n,Ti and ẽ′n,Ti by the etr
n,Ti

and ẽtr
n,Ti

as described

by Lemma 6. Then Yn = Yn,δ on the set An. Suppose one can show that there is a random variable
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Y (independent of δ) so that Yn,δ
p→Y as n→∞. Then, for any ε > 0, and since P (An) < δ,

P (|Yn − Y | > ε) ≤ P ({|Yn,δ − Y | > ε} ∩Acn) + P (An)

≤ P (|Yn,δ − Y | > ε) + δ

→ δ as n→∞. (D.82)

Since D has limit point at zero, it follows that Yn
p→Y as n→∞. 2

Proof of Lemma 6. For L = 1, · · · 2J , set S
(L)
n,I =

∑
i∈[1,I] and i≡L[2J ] e

′
n,Ti

, where i ≡ L[N ] means

that i is of the form i = L + jN for some integer j. Then for each L and n, S
(L)
n,I is a martingale

with respect to the filtration Hn,i = GTi+J . We now invoke the construction from Mykland (1994,

eq. (4.8), p. 27), which produces etr
n,Ti

(i ≡ L[2J ]). satisfying items (1), (2) and (3) in the Lemma,

with, say An,L,1 and ΓL,1, and with P (An,L,1) < δ/4J . We repeat this constrtuction for all L, and

similarly for ẽ′n,Ti , in the latter case giving rise to An,L,2 and ΓL,2. By construction, the whole set

of etr
n,Ti

and ẽtr
n,Ti

satisfy items (1), (2) and (3) in the Lemma, with An = ∪An,L,r and Γ = max ΓL,r.

2

To handle cross-terms, we use the following.

Lemma 7. (Negligibility of Multi-lag martingales.) Let Sn,I =
∑I

i=1 ζn,i, where we sup-

pose that ζn,i is Hni -measurable and satisfies that E(ζni | Hi−N ) = 0.51 Define 〈Sn, Sn〉(N)
I =∑I

i=1E((ζn,i)
2 | Hi−N ). (It’s an N’th lag angle bracket process.) Let αn be a nonrandom sequence

so that 〈Sn, Sn〉(N)
B′n

= op(αn). Then sup1≤|≤B′n |Sn,I | = op((Nαn)1/2).

Proof of Lemma 7. For 0 ≤ L ≤ N − 1, let S
(L)
n,I =

∑
i∈[1,I] and i≡L[N ] ζn,i, where i ≡ L[N ]

means that i is of the form i = L+ jN for some integer j.

Thus, Sn,I =
∑N

j=1 S
(L)
n,I . Since no two different S

(L)
n,I change value for the same I, we also get

that [Sn, Sn]I =
∑N

j=1[S
(L)
n , S

(L)
n ]I . Meanwhile,

E(Sn,I)
2 = E

I∑
i=K

(ζn,i)
2 + 2E

I∑
i=K

N−1∑
j=1

ζn,iζn,i−j

= E

I∑
i=K

(ζn,i)
2 + 2E

N−1∑
j=1

I∑
i=K

ζn,iζn,i−j

≤ E
I∑

i=K

(ζn,i)
2 + 2(N − 1)E[Sn, Sn]I (Cauchy-Schwarz)

= (2N − 1)E[Sn, Sn]I . (D.83)

51As convenient, we can take some ζ’s in the beginning to be zero if the sum starts at K or similar. Definitely

ζn,i = 0 for i < N . – For an example of such a structure, one can take ζn,i = e′n,Ti
or = ẽ′n,Ti

, with Hn,i = GTi+J

and N = 2J . This construction is also used in Lemma 6.
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Hence, (Sn,I)
2 is Lenglart-dominated (Jacod and Shiryaev (2003, Section I.3c, pp. 35-36), Jacod

and Protter (2012, Section 2.1.7, p. 45)) by (2N−1)[Sn, Sn]I , and hence also by (2N−1)〈Sn, Sn〉(N)
I .

By the same reasoning as in the proof of Jacod and Protter (2012, Proposition 2.2.5, p. 574), the

result follows. 2


