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Accounting and Actuarial Smoothing of Retirement Payouts  
in Participating Life Annuities 

 
Life is a short affair; we should try to make it smooth, and free from strife. 

Euripides 

 
1. Introduction 

Life insurers are permitted to employ both accounting and actuarial techniques to smooth 

surpluses earned in good years, in order to support benefit payouts to policyholders in bad years. To 

this end, insurers have a long history of reporting asset values at historical costs rather than fair 

market values in their financial statements, and assessing their liabilities using an actuarial rather 

than an alternative approach. Yet such smoothing techniques have come under fire of late, in part 

due to life insurers’ difficulties in the present low interest rate environment (Ng and Schism, 2010). 

Additionally, smoothing has been criticized for being nontransparent, making it difficult for 

shareholders, policyholders, and regulators to assess insurers’ financial status (Jorgensen 2004). In 

fact, based on their study of a Danish pension saving product, Guillen, Jorgensen, and Nielsen (2006) 

concluded that “smoothing is an illusion,” providing no value to policyholders. Their result, 

however, was limited to a product that provided no payouts until maturity; that is, benefits depended 

on the contract’s terminal value, but not on the particular return trajectory that led to this value. 

This paper explores how these smoothing techniques affect financial contracts known as 

lifetime payout annuities offered by life insurance companies and purchased by retirees to provide a 

steady stream of lifetime income. The predominant form of these payout products is with-profit or 

participating payout life annuities (PLAs), which provide retirees with a guaranteed benefit for life 

along with variable non-guaranteed payments that depend on investment returns and mortality 

experiences of the insurance pool (Maurer, Rogalla, and Siegelin 2013). Accordingly, the particular 

return trajectory has immediate consequences for the benefit stream provided by the annuity. Such 

products with variable payouts are one of the most rapidly growing financial products over the last 

few decades: in 2012, these products held $1.64 trillion of assets under management in the U.S. and 

sales accounted for $145 billion, or two-thirds of all annuity sales (IRI 2013). Our goal is to examine 

how the smoothing techniques employed by actuaries and accountants shape the risk and return 

profiles of PLA payout streams, as well as insurer profitability and solvency. 
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Accounting smoothing in the insurance context values assets at historical cost rather than at 

fair market value; this practice helps shield insurer balance sheets and income statements against 

capital market volatility. Additionally, surpluses to be shared with policyholders are conventionally 

computed using realized gains and losses. By contrast, those pressing for fair market valuation of 

insurer assets seek to determine and distribute surpluses generated by unrealized as well as realized 

gains and losses. Of course this introduces additional volatility into the insurer’s balance sheet, 

which could undermine insurer profitability and erase the appeal of retirement annuities. In addition 

to the accounting-related asset return smoothing, actuaries regularly smooth surplus payouts using a 

buffer fund on the liability side of the life insurer’s balance sheet, known as the contingency reserve 

position.  

For firms outside the insurance sector, international and general US accounting standards 

have moved from historical cost to fair market valuation, requiring that firms’ financial statements 

report both liabilities and assets at market values. According to US Financial Accounting Standard 

FAS 157, fair market values are measured as quoted prices from orderly transactions of identical 

assets in active markets, or on a mark-to-model approach.1 When assets are recorded at fair market 

values, unrealized gains and losses influence company balance sheets and can also impact their 

income statements. FMV proponents contend that mark-to-market prices improve transparency since 

they reflect current market conditions, depict the true financial status of the insurer, and provide an 

effective early warning mechanism for investors, creditors, and regulators (Bleck and Liu 2007). 

This allows capital providers to evaluate the ex-ante risk and return profile of a potential investment 

in the firm and to monitor the use of its capital by managers ex post (c.f., Beyer, Cohen, Lys, and 

Walther 2010). Opponents argue that FMV can be misleading for assets held to maturity, may not be 

reliable if based on model prices, and could lead to undesirable firm actions. In the context of banks, 

Allen and Carletti (2008) and Sapra (2008) argue that mark-to-market valuation of illiquid assets can 

result in fire sales, downward spirals, as well as contagion between financial institutions in a 

                                                            
1 A similar definition is used according to International Accounting Standards (IAS).  
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financial crisis. Heaton, Lucas, and McDonald (2010) show, in a general equilibrium context, how 

mark-to-market accounting can negatively impact the real economy during a financial crisis.2  

Despite the central importance of these actuarial and accounting rules for the life insurance 

industry, little has been written on the economic and financial impacts of these valuation approaches 

on annuitants and the insurance companies offering these policies. In point of fact, smoothing 

permits losses to be deferred, but when assets must be sold to pay the benefits (and losses realized), 

this can trigger large reductions in benefit payments and challenge firm solvency. Smoothing also 

defers gains, and when the gains are realized, benefits can increase due to the larger value of the 

contingency reserve. To analyze these behaviors, we develop a model of a participating life annuity 

to show how using historical cost versus fair market valuation of assets can shape outcomes, as well 

as a contingency fund for liabilities can shape both policyholder wellbeing and insurer profitability. 

We illustrate how such actuarial and accounting techniques can be welfare-enhancing, in that risk-

averse consumers may benefit substantially when insurers smooth asset and longevity surprises.  

Our paper is related to the debate in the accounting literature about the pros and cons of fair 

market value accounting (FMA) versus historical cost accounting (HCA). In the U.S., most life 

insurance companies follow statutory accounting principles recommended by National Association 

of Insurance Commissioners (NAIC), which generally allow the recording of assets at historical 

costs.3 According to HCA, asset values are reported at purchase prices and updated later for 

amortization, but not for increases in market values (c.f., Laux and Leuz 2009, 2010). When market 

values decline, write-downs depend on how assets are classified in conjunction with an impairment 

test. For assets classified as “available for sale,” write-downs are required, while those classified as 

“held-to maturity” are only written down when declines are perceived as non-temporary. There is 

some discretion for the company to classify assets across these categories. Exactly how these 

practices affect insurer behavior is, as yet, not well understood. Ellul et al. (2013) provide empirical 

evidence that HCA led US insurers to engage in strategic trading during the financial crisis, seeking 

                                                            
2 Nevertheless Laux and Leuz (2010), using data on US banks, found no evidence that fair-value accounting 
created or exacerbated the severity of the 2008 financial crisis. 
3 For a comprehensive discussion of accounting for insurance companies see, e.g., Herget et al. (2008) and 
Lombardi (2009).  
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to protect their solvency capital.4 And the Society of Actuaries (2013) recently noted that smoothing 

methods are important for “what financial results get disclosed in terms of funding rules, reported 

values and statutory reporting.”5  

Our paper also builds on a growing literature regarding how households can use life 

annuities as retirement income instruments in a private accounts funded pension system.6 To date, 

however, these studies have focused mainly on the demand side, analyzing the welfare implications 

of having access to various types of life annuities and investigating when to optimally purchase life 

annuities.7 Few have examined the relationship between accounting and actuarial policies, and 

insurer supply of these products.8 Moreover, most studies of household portfolio choice and 

annuitization have focused on fixed payout annuities, where the insurer takes on all capital market as 

well as mortality risk. A few studies have evaluated investment-linked/unit-linked annuities where 

the insurer passes on the investment risk to the policyholder, and also the longevity risk can be 

shared between the annuitant and the insurer.9 Most interesting is the case of participating annuities, 

which offer retirees access to the mortality credit as well as a smoothed payout stream over their 

remaining lifetimes.  

In what follows, we provide a coherent analysis of PLAs from the perspective of the annuity 

purchaser and the insurer providing the annuity, and we examine how different accounting and 

actuarial rules influence results. Our goal is to show how these rules shape consumer utility and 

insurer profitability. To this end, we first discuss benefit smoothing within a stylized 2-period model. 

Subsequently, we develop a full-fledged, realistically calibrated stochastic asset-liability model of a 

life insurance company that offers a PLA, and we show how using historical cost versus fair market 

valuation of assets and maintaining a buffer fund influence both policyholder welfare and insurer 

                                                            
4 Specifically, they concluded that life insurers sought to shore up capital by selectively sells assets with high 
unrealized gains, whereas property and casualty firms did not. 
5 While not our primary focus here, in a related discussion various authors continue to debate what interest rate 
should be used to discount guaranteed annuity payments from pension plans (c.f., Hann, Heflin, and 
Subramanayam 2007, Comprix and Muller 2011, Jorgensen 2004, Novy-Marx and Rauh 2011). 
6 Work in the area includes Brown, Mitchell, Poterba, and Warshawsky (2001), Davidoff, Brown, and 
Diamond (2005), Milevsky and Young (2007), Horneff, Maurer, and Rogalla (2010). 
7 Other researchers seek to explain why households seem not to annuitize much; see Inkman, Lopez, and 
Michaelidis (2011). 
8 In a recent paper, Koijen and Yogo (2013) study the impact of financial and regulatory frictions on the supply 
side of life insurance. 
9 See Piggott, Valdez, and Detzel (2005), Denuit, Haberman, and Renshaw (2011), Richter and Weber (2011), 
Maurer, Mitchell, Rogalla, and Kartashov (2013).  
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profitability. The findings are likely to be of substantial interest to policymakers seeking to spur 

growth in the annuity market to enhance old-age security for those needing to manage their 401(k) 

plan drawdowns in retirement.10   

 

2. A Stylized Model of Participating Life Annuity with Payout Smoothing 

2.1 Setup 

To fix ideas, we first devise a simple 2-period model of a stylized PLA to illustrate the 

circumstances under which smoothing annuity payouts over time can increase annuitants’ lifetime 

utility and add value to the insurer. The model setup is as follows: at time ݐ ൌ 0, an individual 

purchases a PLA that, in the absence of payout smoothing, promises to pay the value of one fund 

unit (FU) at time ݐ ൌ 1 and ݐ ൌ 2, subject to the annuitant being alive.11 For notational convenience, 

we assume that the individual survives to ݐ ൌ 1 with certainty and to ݐ ൌ 2 with probability . Under 

this assumption, and based on the actuarial equivalence principle, the premium charged by the 

insurer per PLA sold amounts to ሺ1  ݐ ሻܵ, where ܵ is the value of one FU at time ൌ 0. On 

selling the PLA to ܰ annuitants, the insurer’s initial reserves amount to ܰ ⋅ ሺ1   ሻ FUs. Due to

benefit payouts, these reserves will decrease by ܰ FUs at time ݐ ൌ 1, and by ܰ ⋅ ݐ FUs at time  ൌ

2, leaving the insurer with depleted reserves at the end of the model horizon.12 

As time progresses, the FU value changes according to a binomial process: each period, it 

can either increase or decrease by a proportional factor ݑ or ݀. Consequently at time ݐ ൌ 1, the FUs 

may be worth either ܵ௨ ൌ ݑ ⋅ ܵ or ܵௗ ൌ ݀ ⋅ ܵ, while at time ݐ ൌ 2, their value may be ܵ௨௨ ൌ

ଶݑ ⋅ ܵ, ܵ௨ௗ ൌ ݀ݑ ⋅ ܵ, ܵௗ௨ ൌ ݑ݀ ⋅ ܵ, or ܵௗௗ ൌ ݀ଶ ⋅ ܵ. Since PLA payouts are denominated in FUs, 

these price fluctuations (capital market movements) directly affect benefits paid to annuitants. By 

                                                            
10 For instance Mark Iwry, senior adviser to the US Secretary of the Treasury and Deputy Assistant Secretary 
for retirement and health policy, has stated that “[o]ne solution is to provide for a predictable lifetime stream of 
income, such as an annuity provided under a retirement plan or IRA. By pooling those who live shorter and 
longer than average, everybody can essentially put away what’s necessary to reach the average life expectancy, 
and those who live longer than average will be protected.” (Steverman, 2012). 
11 Fund Units may represent a mutual fund or a single asset such as a stock. Hence, our model PLA can also be 
regarded as a unit-linked annuity. As we restrict our analysis to a 2-period model, we posit that the annuitant 
does not live to ݐ ൌ 3. 
12 This requires a sufficiently large number ܰ of annuitants, such that the insurer can perfectly eliminate 
individual longevity risks through pooling. Moreover, this requires that the survival probability  is 
deterministic and known at time ݐ ൌ 0. Hence, we abstract from systematic mortality risk. 
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contrast, the insurer is not at risk because capital market risk is hedged by investing the collected 

premiums into the FUs underlying the PLA.  

To mitigate the impact of FU price risk on annuity payouts, we now introduce a smoothing 

factor ݕ	ሺ∈ ሾ0; 1ሿሻ, representing the fraction of a FU that is deducted from (added to) the regular 

payout every time the FU value has increased (decreased) in the prior period. If, for example, the FU 

value increased to ܵ௨ at ݐ ൌ 1, the annuitant receives a payout of only ሺ1 െ ሻ FUs, worth ሺ1ݕ െ ሻݕ ⋅

ܵ௨. If, on the other hand, the FU value decreased to ܵௗ, the annuitant receives a payout of ሺ1   ሻݕ

FUs, worth ሺ1  ሻݕ ⋅ ܵௗ. Correspondingly, at time ൌ 2,  if the FU value increases from ܵ௨ to ܵ௨௨, the 

payout is ሺ1 െ   ሻܵ௨௨. Any FUs not paid out after a price increase are retained by the insurer, whileݕ

the insurer must cover the additional payouts triggered by price drops. Figure 1 summarizes the 

alternative developments of the FU price and the corresponding evolution of annuity payouts and 

reserves held by the insurer after payouts are made. 

Figure 1 here 

This smoothing process reduces payout volatility, although it also reduces the expected 

benefit since the value of the FUs withheld in good states exceeds the value of the additional FUs 

received in bad states. From the annuitant’s perspective, this may be appealing depending on the 

utility-maximizing smoothing factor	ݕ. Concurrently, the insurer’s position is no longer risk-free. 

That is, in the absence of smoothing (i.e. ݕ ൌ 0ሻ, the insurer’s reserves are always depleted after the 

final annuity payouts have been made. With smoothing, however, the insurer will either have some 

FUs left or be some FUs short at time ݐ ൌ 2, depending on how the capital market develops. Hence, 

from the perspective of the insurer, the question is whether the potential gains from retaining some 

FUs in up-states compensate sufficiently for the risk taken. 

2.2 Deriving the Optimal Smoothing Factor 

Next we take the annuitant’s perspective and derive the smoothing factor ݕ that maximizes 

utility. To this end, we posit that the annuitant’s preferences can be described by a time-separable 

constant relative risk aversion (CRRA) lifetime utility function defined over consumption:  

 ܷ ൌ ܧ
గ ቈߚ ⋅

ଵܥ
ଵିఊ

1 െ ߛ
 ଶߚ ⋅  ⋅

ଶܥ
ଵିఊ

1 െ ߛ
, (1) 
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with consumption ܥଵ	ሺܥଶሻ at time 	ݐ ൌ 1	ሺݐ ൌ 2ሻ equal to the PLA payouts, a coefficient ߛ of relative 

risk aversion, a time preference of ߚ, and a probability of survival of  to ݐ ൌ 2. Here, ܧ
గ is the 

expectation at time ݐ ൌ 0 under the subjective probability measure ߨ, with ߨ௨	ሺߨௗ ൌ 1 െ  ௨ሻߨ

representing the subjective probability for an increase (decrease) in FU prices. 

Substituting the PLA payout stream described in Figure 1 into the lifetime utility function 

and maximizing it with respect to the smoothing factor ݕ, we get:13   

ݕ  ൌ
ܣ
ଵ
ఊ െ ܤ

ଵ
ఊ

ܣ
ଵ
ఊ  ܤ

ଵ
ఊ

 (2a) 

with 

ܣ ൌ ݀ଵିఊ ∙ ൫ߨௗ  ߚ ⋅  ሺݑଵିఊ ⋅ ௨ௗߨ  ݀ଵିఊ ⋅ ௗߨ
ଶሻ൯ 

ܤ ൌ ଵିఊݑ ∙ ൫ߨ௨  ߚ ⋅  ሺݑଵିఊ ⋅ ௨ଶߨ  ݀ଵିఊ ⋅  .ௗ௨ሻ൯ߨ
(2b) 

If ܣ   is positive, i.e. smoothing will increase utility. For risk-averse ݕ the smoothing factor ,ܤ

investors with a typical coefficient of relative risk aversion of ߛ  1, smoothing will be appealing 

when the subjective probability for a market downturn (ߨௗ) and/or the volatility of FU prices (i.e. the 

difference between ݑ and ݀) are sufficiently high. In these situations, the potential utility loss from a 

capital market downturn cannot be compensated by the possible utility gain resulting from an 

increase in FU prices. Hence the annuitant will be willing to give up some upside potential as 

insurance against adverse capital market developments, as we will discuss more fully below.  

Turning to the insurer’s perspective, we next identify the smoothing factor that maximizes 

the value for the PLA provider. The insurer’s gains/losses from smoothing PLA payouts depend on 

the number and value of the FUs remaining at time ݐ ൌ 2 (see Figure 1). This payoff profile 

resembles a complex derivative strategy, a combination of two path-dependent options, which can be 

replicated by a dynamically rebalanced portfolio of the risky asset and (risk-free) cash. 

Consequently, it can be priced using risk-neutral valuation. Following this approach, it can easily be 

shown that the value ܸܫ the insurer receives from payoff smoothing is given by: 

ܫܸ ൌ 	
ܰሺ1  ሻܵ ⋅ ሾݍଶ ⋅ ଶݑ െ ሺ 1 െ ሻଶݍ ⋅ ݀ଶሿ

ሺ1  ݅ሻଶ
⋅  (3) ,ݕ

                                                            
13 See Appendix A for details. 
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with risk-free interest rate ݅ and a risk-neutral probability of an upward jump ݍ. The value generated 

for the insurer is a linear function of the smoothing factor ݕ; it is increasing in the smoothing factor 

as long as the term in the squared brackets is positive. This is the case as long as the following 

relation between ݑ and ݀ holds:14  

 
ሺ1  ݅ሻ ⋅ ݑ
ݑ2 െ ሺ1  ݅ሻ

 ݀. (4) 

The insurer profits from rising FU prices, since more valuable FUs will be retained. Hence 

the gains increase with the probability that FU prices increase. At the same time, higher FU price 

volatility (i.e. the difference between ݑ and ݀) will also increase the insurer’s profit, inasmuch as the 

value of potential FU subsidies decreases when the value of potential FU withholdings increases. 

In summary, this example shows that PLA payout smoothing adds value to both annuitant 

and insurer, as long as certain restrictions are met with respect to possible capital market 

developments, and as long as the annuitant believes that FU prices will drop with a particular 

probability.  

2.3 Numerical Example 

To provide additional insight into the conditions under which smoothing is beneficial, as 

well as the magnitude of the optimal smoothing factor, we next use reasonable calibrations for the 

parameters involved to evaluate analytical solutions for the framework just laid out. We assume that 

the annuitant has a time preference rate of ߚ ൌ 0.96. The probability of survival to ݐ ൌ 2 is set to 

 ൌ 0.8, which is approximately the 10-year survival probability of a US male aged 65 in 2013. 

With respect to the capital market, we study two calibrations: a lower volatility regime with ݑ ൌ 1.2, 

and a higher volatility regime with ݑ ൌ 1.3 (in both cases ݀ ൌ  The first value corresponds to .(ݑ/1

the development of annual total returns on the S&P 500 over the period 1981 through 2012, while 

the second value focuses on the recent financial crisis and limits the calibration period to 2008 

through 2012. 

We seek to determine the subjective threshold probability of a market downturn ߨௗ
∗  , beyond 

which smoothing will be beneficial for the annuitant. To find this threshold, we equate ܣ and ܤ in 

                                                            
14 Under the typical assumption ݀ ൌ  this inequality is always fulfilled (see Hull 2000, ch. 9.7, for details ,ݑ/1
on how to calibrate a binomial model to historical data). 
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Equation (2b) and solve for the subjective probability. Figure 2 presents the results for a range of risk 

aversion values ߛ and the two capital market specifications discussed above. 

Figure 2 here 

As one would expect, the threshold probability is decreasing in the level of risk aversion. If 

payout smoothing is to increase utility, an annuitant with a low risk aversion of ߛ ൌ 2 must believe 

that markets will drop with a probability of around 40% or more. Conversely, a very risk averse 

annuitant with ߛ ൌ 10 benefits from smoothing even if he believes that there is a 95% probability 

that the markets will go up. With ߛ ൌ 5, our baseline calibration in subsequent analyses, the 

annuitant has a threshold probability of ߨௗ
∗ ൌ 18.9%	ሺ10.9%ሻ in the low (high) volatility regime 

with ݑ ൌ 1.2	ሺ1.3ሻ.  

Table 1 presents utility-maximizing smoothing factors ݕ, the corresponding welfare gains for 

the annuitant, and the profits the insurer can generate by offering such a PLA. We show these for our 

two capital market calibrations for individuals with low, medium, and high risk aversion (ߛ ൌ

2, 5,	and 10), and for two subjective probabilities of market downturns (ߨௗ ൌ 0.2 and 0.5). These 

latter probabilities are derived by calibrating our binomial model to historical returns on the S&P500, 

with the probability of 20% (50%) corresponding to observations over the period 1981 (2008) 

through 2012. 

Table 1 here 

Results in Table 1 show that our baseline annuitant with medium risk aversion will optimally 

chose a PLA with a smoothing factor of 0.7%, when he faces both low volatility and a low 

probability of a market downturn. This results in a small welfare gain of about one basis point, 

measured in terms of an increase in the certainty-equivalent fixed life annuity. An insurer offering 

such a PLA can generate a profit in the amount of 0.1% of the PLA premium. As indicated in Figure 

2, the subjective market downturn probability of 20% is only marginally above the threshold value 

beyond which smoothing is beneficial, which explains the modest amount of smoothing in this case. 

If, by contrast, the individual is exposed to a capital market having higher volatility and a higher 

(subjective) probability of a market downturn, he will elect a PLA with a much larger smoothing 

factor, 20.7%. In other words, the annuitant would be willing to forfeit one-fifth of his benefit in 
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good times, so as to have his payout increased by the same fraction when markets go down. Such a 

PLA generates a welfare gain of about 9.5% and a profit for the insurer of 2.7% of the annuity 

premium. Not surprisingly, in all scenarios, more risk averse individuals choose a higher level of 

smoothing. While the less risk averse do not demand smoothing in a normal capital market 

environment, in a high volatility scenario such as the present, they prefer a substantial smoothing 

factor of 13% for a welfare increase of 1.7 percent.  

This simplified two-period model illustrates how PLA payout smoothing can be beneficial 

for both the annuitant and the insurer, where benefit payments are linked to the value of the 

underlying fund units meaning capital market risk is smoothed. Nevertheless we have not yet 

considered mortality risk, so next we turn to a more complete framework. This extends our model to 

incorporate mortality, and to generalize it to more periods and more assets. Most importantly, we 

allow two methods of smoothing using both actuarial and accounting techniques, and we examine 

their tradeoffs. To this we turn next. 

 

3.  Analyzing a More Complex Participating Life Annuity Contract  

3.1 Setup and Product Design 

To illustrate how payout smoothing works in a more realistic setting, we construct a model 

of a stylized life-insurance company that sells single premium participating life annuity contracts. In 

addition to realistic accounting and actuarial smoothing techniques, we incorporate capital market 

risk, and systematic as well as idiosyncratic mortality risk. Our stylized product model is closely 

modeled on the TIAA Traditional Annuity offered by the Teachers Insurance and Annuity 

Association-College Retirement Equities Fund (TIAA-CREF), one of the most important life 

insurance companies operating in the US market.15  

The product we model is a participating life annuity (PLA) which provides retirees with 

lifetime guaranteed benefits plus non-guaranteed surplus payments.16 To price the guaranteed 

                                                            
15 In 2012, TIAA-CREF supervised 3.6 million annuity contracts and managed assets of $487B. In the 
European market, participating life annuity products are offered comparable to the TIAA product outlined in 
the text; see Maurer, Rogalla, and Siegelin (2013) for a detailed discussion. 
16 The TIAA Traditional Annuity also builds up capital during the accumulation phase, whereby contributions 
paid by policyholders earn a minimum guaranteed yearly interest rate (depending on the vintage when 
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benefits, the company uses a specific mortality table in combination with an assumed interest rate to 

discount benefits (also called the guaranteed interest rate). The non-guaranteed surplus is determined 

annually by the insurer’s Board of Trustees as a percentage of the guaranteed benefit and paid to 

annuitants the following year. The potential to generate surpluses stems from two sources: the 

insurer’s experience on investment returns, and the realized annuitant pool mortality. When the 

return on the insurer’s asset portfolio backing the liability due to promised annuity benefits exceeds 

the guaranteed interest rate, and/or if realized annuitant mortality is higher than expected, the 

insurance company earns a surplus. The company can influence the expected risk and return profile 

of uncertain surplus payments by its choice of assets in its portfolio. In addition, the insurance 

company can smooth the policyholder surpluses. To this end, accounting smoothing based on 

accounting standards, and actuarial smoothing based on building up reserves, both play central roles. 

Accounting smoothing arises from the fact that unrealized gains and losses on assets are not 

used to calculate the investment return used to specify policyholder surpluses. In the U.S., most life 

insurance companies follow statutory accounting principles recommended by National Association 

of Insurance Commissioners (NAIC). These are specific accounting guidelines for insurers which 

permit the companies to value their bond portfolios in their annual statements using the historical 

cost approach. That is, these assets are recorded at their prices when purchased, and values are not 

updated for (non-credit related) changes in market values as long as they are unrealized.17  

Actuarial smoothing results from withholding a part of the surplus earned in good years to 

support surplus payments in bad years. To this end, the insurer is permitted to build a special position 

on the liability side of its balance sheet, the so-called contingency reserve. Allocations into and 

withdrawals from the contingency reserve are governed by the insurer’s Board of Trustees with 

guidance from the firm’s actuaries. 

In what follows, we introduce our realistically-calibrated company model for a pool of PLA 

policyholders with uncertain capital markets and mortality dynamics incorporating the above 

                                                                                                                                                                                       
premiums are paid) plus a non-guaranteed surplus. Here we concentrate only on the liquidation phase of the 
product.  
17 See Lombardi (2009) for further details on valuation requirements. Also, under NAIC rules, insurers may 
discount the liabilities resulting from the guaranteed benefit with a fixed interest rate specified at the beginning 
of the contract (i.e. the guaranteed interest rate). See for instance TIAA-CREF (2011). 
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mentioned institutional features. Our goal is to spell out the implications of these various smoothing 

techniques from the perspective of the policyholder (i.e. the benefit stream) and the life insurance 

company (i.e., profitability and solvency), within such a realistic setting. 

3.2 The Insurance Provider  

We assume that the insurance company sells PLA contracts paying guaranteed lifetime 

benefits ܤܩ to ܫ individuals of the same age ݔ (i.e. the pool is closed after the sale). The premium ௧ܲ 

per contract paid at time ݐ is calculated according to: 

Here ௫ ൌ ∏ ሺ1 െ ௫ାݍ
 ሻିଵ

ୀ 	 is the k-period survival probability at age ݔ, the ݍ௫ are actuarial 

mortality rates used in the industry, and ߱ is the terminal age of the mortality table. ܴܫܩ refers to the 

firm’s guaranteed interest rate.18  To reflect the guaranteed annuity payment obligations, the 

insurance company builds a special reserve position on the liability side of its balance sheet, called 

the actuarial reserve. At time ݐ ൌ 0, the actuarial reserve is equal to the total premium collected, i.e. 

ܸ ൌ ܲ ⋅  ௧ by the present value of remainingܫ . Multiplying the surviving number of annuitantsܫ

benefits, given in equation (5), describes the evolution of the actuarial reserve in subsequent years, 

௧ܸ ൌ ௧ܲ ⋅  .௧ܫ

The insurer invests the total premium collected into a portfolio of dividend-paying stocks 

and bonds paying coupons. This portfolio is recorded as the General Account on the asset side of the 

balance sheet of the insurance company, and at ݐ ൌ 0	,	it is equal to the actuarial reserve. At the 

beginning of each subsequent year, the insurance company pays annuitant benefits from asset 

income (dividends/coupons) and from assets sold at market prices. The stochastic dynamics of the 

market prices of stocks are governed by a geometric random walk with drift and the evolution of 

bond prices is driven by a 3-Factor CIR term structure model (see Appendix B). 

Depending on the insurer’s investment and mortality experience, annuitants may receive 

surplus payments in addition to their guaranteed benefit. This surplus is generated when the insurer’s 

                                                            
18 Here and throughout the analysis, we disregard explicit costs in terms of loadings, as these are not critical to 
our model. 

 

௧ܲ ൌ ܤܩ ⋅  ௫ା௧

ሺ1  ሻܴܫܩ

ఠିሺ௫ା௧ሻ

ୀ

.  (5) 
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total investment return exceeds the ܴܫܩ, and/or when actual policyholder mortality exceeds that 

assumed when the annuity was price. The determination of the actual surplus generated by the 

insurer and, hence, the amounts paid out to annuitants, depend on a complex set of rules specified by 

the insurance company, to which we turn next. 

The total annual surplus ܶ ௧ܵ generated by the insurer is given by: 

where the mortality surplus is ܵܯ௧ and ܵܣ௧	refers to the asset surplus. The mortality surplus arises 

from the difference between realized and anticipated mortality in the annuitant pool. Formally, the 

mortality surplus is calculated as: 

where ௧ܸ is the actuarial reserve for the surviving annuitants. ܫ௧ represents the stochastic number of 

living annuitants at time ݐ , is given by: 

Here, ܫ௧
 represents an indicator variable ܫ௧

 which takes the value of one if the annuitant ݅	ሺ݅ ൌ

1,… , ݊; 	݊ ൌ  and 0 if the annuitant has died. Over time, the sequence of ,ݐ ሻ is alive at timeܫ

indicator variables ܫ௧
 for each annuitant ݅ forms a Markov chain with: 

where ݍ௫ା௧
  is the actual mortality rate of annuitants of age ݔ at time ݐ. Actual mortality rates can 

differ from those used to price the PLA, as they are stochastic; their dynamics are modeled as in 

Cairns, Blake, and Dowd (2006) (see also Appendix B). Accordingly our model incorporates both 

idiosyncratic longevity risk (uncertainty about individual lifetimes), and also systematic longevity 

risk (uncertainty about the mortality table). 

 ܶܵ௧ ൌ ௧ܵܯ  ,௧ܵܣ  (6) 

 
௧ܵܯ ൌ ௧ܸାଵ ⋅ ൬

௧ܫ െ ௧ାଵܫ
௧ܫ

െ ௫ା௧ݍ ൰, (7) 

 
௧ܫ ൌ ܫ௧



ୀଵ

. (8) 

ܲ൫ܫ௧ାଵ
 ൌ 1หܫ௧ ൌ 1ሻ ൌ 1 െ ௫ା௧ݍ ൌ ௫ା௧ , 

ܲ൫ܫ௧ାଵ
 ൌ 0หܫ௧ ൌ 1ሻ ൌ ௫ା௧ݍ , (9) 

ܲ൫ܫ௧ାଵ
 ൌ 0หܫ௧ ൌ 0ሻ ൌ 1 ,   
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The insurer’s asset surplus naturally depends on the stochastic dynamics of the underlying 

stock/bond portfolio, and also on how the insurer values the assets. The relevant valuation method is 

determined by the accounting category into which each asset is classified. According to US 

Generally Accepted Accounting Principles, three asset categories are allowable: assets held to 

maturity, assets held for trading purposes, and assets available for sale (see e.g., Herget et al. 2008). 

Assets held to maturity are valued at amortized cost when acquired (historical cost valuation, or 

HCV); in this case, changes in asset prices are only recognized as gains or losses when the 

instruments are sold. Assets held for trading purposes are reported at fair market value (FMV), so 

price changes immediately affect the insurer’s profits whether or not they are realized.19 Assets 

available for sale are also reported at FMV, yet unrealized gains and losses resulting from market 

price fluctuations are not stated in the insurer’s profit and loss statement (P&L). Instead, they are 

carried in a separate account on the liability side of the insurer’s balance sheet, known as the Other 

Comprehensive Income account (OCI). When these assets are sold, the OCI account is reversed, and 

realized gains or losses are recorded in the P&L.  

Formally, when using FMV, the insurer’s investment return on stocks, ݅௧
ௌ,ிெ and on bonds, 

݅௧
,ிெ, is given by: 

where ݊,௧ (݊ௌ,௧) denotes the number of bond fund units (stocks) held in year ܤ ;ݐ௧ (ܵ௧) refers to the 

price of the bond fund unit (stock) at time t;  ܥ௧ (ܦ௧ሻ is the coupon (dividend) payment received on 

each bond fund unit (stock); and ܮ௧ represents payments to individual annuitants. As indicated 

above, ܸݐ is the actuarial reserve, and	ܫ௧ is the number of policyholders in the pool.   

Under the historical cost valuation method (or the other comprehensive income valuation 

approach), the corresponding returns ݅௧
ௌ,ு and ݅௧

,ு are calculated as: 

                                                            
19 Under USGAAP, the default category of bonds (stocks) refers to those available for sale (held for trading) 
purposes. By contrast, under NAIC accounting, bonds are classified as held to maturity by default. 

݅௧
ௌ,ிெ ൌ 	

݊ௌ,௧ିଵ ⋅ ሺܵ௧ െ ܵ௧ିଵሻ  ݊ௌ,௧ ⋅ ௧ܦ
ሺ ௧ܸ െ ௧ܫ ⋅ ௧ሻܮ

 (10a) 

݅௧
,ிெ ൌ 	

݊,௧ିଵ ⋅ ሺܤ௧ െ ௧ିଵሻܤ  ݊,௧ ⋅ ௧ܥ
ሺ ௧ܸ െ ௧ܫ ⋅ ௧ሻܮ

 (10b) 



15 

  

with ൫݊ௌ,௧ିଵ െ ݊ௌ,௧൯ the number of stocks sold, and ൫݊,௧ିଵ െ ݊,௧൯	the number of bond units sold. 

According to the OCI approach, unrealized gains and losses from price fluctuations are neutralized 

using the OCI account, which develops according to ܱܫܥ௧ ൌ ௧ିଵܫܥܱ 	݊ௌ,௧ିଵ ⋅ ሺܵ௧ െ 	ܵ௧ିଵሻ 

݊,௧ିଵ ⋅ ሺܤ௧ െ	ܤ௧ିଵሻ	where ܱܫܥ ൌ 0. Therefore, investment returns are given by equations (11a) 

and (11b).  

To some extent, life insurers may choose between the various valuation methods for their 

asset holdings. Naturally their choices have consequences for the asset surplus of the participating 

annuity. To study the impact of categorizing assets into different accounting valuation regimes, we 

define two parameters, ߙௌ and ߙ, that specify the fraction of stocks and bonds valued using HCV 

(or OCI). Given those ratios and asset returns, the insurer’s realized total investment return ݅௧
்ை் is 

calculated as: 

Based on realized total investment returns, the firm’s asset surplus for the pool is determined by: 

After the period’s total surplus, ܶܵ௧, is determined, it must be distributed among annuitants 

and the insurer. To this end, we posit that the annuitants receive a fixed allocation percentage ܽ 

subject to several constraints. Since the insurance company guarantees lifelong minimum benefits, 

policyholders do not participate in negative surpluses. Consequently negative surpluses directly 

decrease the insurer’s equity capital. In addition, the level of surplus depends on the insurer’s 

solvency capital, which includes three components: the insurer´s equity capital, the value of its OCI 

account, and its contingency reserve. When the insurer’s solvency capital exceeds a pre-specified 

solvency limit, an amount ܽ ⋅ ܶܵ௧ is allocated to the policyholders; consequently, the insurance 

݅௧
ௌ,ு ൌ

൫݊ௌ,௧ିଵ െ ݊ௌ,௧൯ ⋅ ሺܵ௧ െ ܵሻ  ݊ௌ,௧ ⋅ ௧ܦ
ሺ ௧ܸ െ ௧ܫ ⋅ ௧ሻܮ

 (11a) 

݅௧
,ு ൌ

൫݊,௧ିଵ െ ݊,௧൯ ⋅ ሺܤ௧ െ ሻܤ  ݊,௧ ⋅ ௧ܥ
ሺ ௧ܸ െ ௧ܫ ⋅ ௧ሻܮ

 (11b) 

 ݅௧்ை் ൌ 		 ሺ1 െ ௌሻߙ ⋅ ݅௧
ௌ,ிெ  ௌߙ ⋅ ݅௧

ௌ,ு  ሺ1 െ ሻߙ ⋅ ݅௧
,ிெ  ߙ ⋅ ݅௧

,ு. (12) 

௧ܵܣ  ൌ ሺ ௧ܸ െ ௧ܫ ⋅ ௧ሻܮ ∙ ሺ݅௧்ை் െ  ሻ. (13)ܴܫܩ
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company keeps ሺ1 െ ሻܽ ⋅ ܶܵ௧ of the surplus. When the insurer’s solvency capital falls below the 

limit, we posit that ܽ is reduced by 50%, i.e. only 0.5 ⋅ ܽ ⋅ ܶܵ௧ is allocated to the annuitants. The 

insurer thus retains the total surplus if no equity capital remains.20 Accordingly, the portion of total 

surplus allocated to policyholders, ܵܦ௧, is given by: 

where ܧ௧ is the insurer´s equity, ܱܫܥ௧ is the value of the OCI account, and ݈ݏ is the solvency limit, 

defined here as a fraction of the actuarial reserve. The surplus ܵܦ௧ is allocated to the contingency 

reserve ܴܥ௧. 

Next, the insurance company must determine how much surplus to pay to the annuitants, 

defined as ܲܵ௧, and how much to retain in the contingency reserve. Typically this decision is made 

by the firm’s Board of Trustees and informed by the insurer’s chief actuary; the goal is to smooth 

annuitant payouts over time, given each year’s realized surplus and the level of the contingency 

reserve. While the specifics of the decision process are not formally prescribed, we can characterize 

it using an algorithm which embodies both a backward- and a forward-looking component. By the 

backward-looking component, the current payout should be set in such a way that it is as similar as 

possible to the previous year’s payout. The forward-looking element seeks to preserve this surplus 

stability in future years as well; this is implemented by maintaining a certain target level of the 

contingency reserve. To balance these two, the insurer will determine ܲܵ௧ such that the following 

objective function is maximized: 

where 

 

                                                            
20 We posit that the annuity provider is part of an insurance group, so if the annuity provider’s equity capital 
drops below zero, the parent company brings additional equity capital to pay guaranteed benefits. This 
precludes the need for us to take on the computational burden of modeling the consequences of formal 
insolvency. 

௧ܵܦ ൌ 	 ൝
max	ሺ0; ܽ ∙ ܶܵ௧ሻ ,
max	ሺ0; 0.5	 ∙ ܽ ∙ ܶܵ௧ሻ
0	,

,
݂݅ ௧ܧ  ௧ܫܥܱ  ௧ܴܥ  ݈ݏ ∙ ௧ܸ ܽ݊݀ ௧ܧ  0
݂݅ ௧ܧ  ௧ܫܥܱ  ௧ܴܥ  ݈ݏ ∙ ௧ܸ ܽ݊݀ ௧ܧ  0
݂݅ ௧ܧ ൏ 0

 (14) 

 max
ௌ

݂ሺܲܵ௧ሻ  ݃ሺܴܥ௧ሻ  (15a) 
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The objective function is concave and it has two terms, the polynomials ݂ and ݃. Both 

functions depend on the endogenous variable ܲܵ௧ and reach their maximum when the expressions 

within all parentheses are equal to one. Moreover, function ݂	depends on two components. The term 

ܲܵ௧ ܲܵ௧ିଵ
ௗ⁄  seeks to keep annuitants’ surplus payouts as close as possible to the previous period’s 

level, where ܲܵ௧ିଵ
ௗ is the previous period’s surplus payout adjusted for the change in the size of the 

annuitant cohort ሺ	ܫ௧ ⁄௧ିଵሻܫ . The term ൫ܵܦ௧ െ 	ܲܵ௧ିଵ
ௗ൯ ܲܵ௧ିଵ

ௗൗ  penalizes (rewards) the withholding of 

current realized surplus from annuitants when ܵܦ௧	is higher (lower) than	ܲܵ௧ିଵ
ௗ. In other words, 

when the current surplus falls below (is above) last year’s payout, the firm has an incentive to reduce 

(increase) payouts. To avoid extreme fluctuations in the surplus payouts, the surplus may vary only 

within a predefined boundary (equation 15d). For example, if ܾ ൌ 1.25, the minimum (maximum) 

payout to each annuitant in the current year is 80% (125%) of last year’s payout.  

Function ݃ is intended to sustain the insurer’s ability to pay stable future surpluses. It 

reaches its maximum when the contingency reserve ܴܥ௧ equals the target value ܴܥ௧
, where the 

latter is a fraction of the current actuarial reserve. Inserting the transition equation (15e) into (15c) 

shows that the insurer withdraws from the contingency reserve when its previous level exceeds the 

target, i.e. ܲܵ௧  ௧ିଵܴܥ ௧ ifܵܦ  ௧ܴܥ
. 

The interaction between the terms ݂ and ݃ reflects the tradeoff between paying 

policyholders more today, versus maintaining the insurer’s stability for the future. In a period of high 

 
݂ሺܲܵ௧ሻ ൌ 	െቆ

ܲܵ௧
ܲܵ௧ିଵ

ௗ െ
௧ܵܦ െ ܲܵ௧ିଵ

ௗ

ܲܵ௧ିଵ
ௗ ቇ

ଶ

 2ቆ
ܲܵ௧
ܲܵ௧ିଵ

ௗ െ
௧ܵܦ െ ܲܵ௧ିଵ

ௗ

ܲܵ௧ିଵ
ௗ ቇ (15b) 

 
݃ሺܴܥ௧ሻ ൌ െ ቆ

௧ܴܥ
௧ܴܥ

ቇ
ସ

 4 ⋅ ቆ
௧ܴܥ
௧ܴܥ

ቇ െ 2 (15c) 

 ܲܵ௧
ܲܵ௧ିଵ

ௗ ∈ ቈ
1
ܾ
; ܾ  , ܾ  1 (15d) 

௧ܴܥ  ൌ ௧ିଵܴܥ  ௧ܵܦ െ ܲܵ௧ , ௧ܴܥ  0 (15e) 

 
ܲܵ௧ିଵ

ௗ ൌ ܲܵ௧ିଵ
௧ܫ
௧ିଵܫ

 

(15f) 
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surplus, the ݂ function would call for increased benefit payments, but this will only be realized when 

the contingency reserve is high enough (according to the ݃ function). But if the contingency reserve 

is too low, the ݃ function inhibits the call for benefit increases. Conversely, in a period of low 

surplus, benefits would be reduced according to the ݂ function, unless a sufficiently high level of the 

contingency reserve encourages the insurer to maintain or even increase the benefit level. 

Finally, the insurer’s next year equity capital develops according to: 

where ܴሺݐ, 1ሻ is the 1-year government bond spot rate, and ܦߤ is the dividend rate paid to 

shareholders. The dividend is only paid if the insurer’s next year solvency capital is adequate. 

3.3 The Policyholder  

To quantify how individuals with different risk aversion and time preferences value the 

stochastic PLA income stream, we use an expected utility framework as in Section 2. Specifically, 

policyholder preferences are modeled using a time additive constant relative risk aversion (CRRA) 

utility function as follows: 

Here ߛ denotes the consumer’s coefficient of relative risk aversion and the discount factor 1 > ߚ 

represents the individual’s subjective time preference. Following Maurer, Rogalla, and Siegelin 

(2013), the expected lifetime utility	ܷ from the PLA benefit stream is transformed into a utility-

equivalent fixed life annuity ܣܧ: 

The EA can be interpreted as the constant guaranteed lifetime income stream that the annuitant will 

require to give up the upside potential of a PLA with stochastic surpluses. 

 

௧ାଵܧ ൌ ቊ
௧ܧൣ ∙ ൫1  ܴሺݐ, 1ሻ൯  ሺܶܵ௧ െ ௧ሻ൧ܵܦ ∙ ሺ1 െ ,ሻߤ

௧ܧ ∙ ൫1  ܴሺݐ, 1ሻ൯  ሺܶܵ௧ െ ,௧ሻܵܦ
݂݅ ௧ାଵܧ  ௧ାଵܫܥܱ  ௧ܴܥ  	݈ݏ ∙ ௧ܸାଵ
݁ݏ݈݁

	 (16) 

 
ܷ ൌ ቌܧ ௫௧௧ߚ



ఠି௫

௧ୀ

௧ܮ
ሺଵିఊሻ

1 െ ߛ
ቍ . (17) 

 

ܣܧ ൌ ቈ
ܷ ሺ1 െ ሻߛ

∑ ௫௧௧ߚ
ఠି௫

௧ୀ


ଵ
ሺଵିఊሻ

. (18) 
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4 Numerical Evaluation  

4.1 Setup and Calibration 

Next we describe the impact of actuarial and accounting smoothing on PLA policyholder 

utility and insurer profitability. We do so by simulating 5,000 independent sample paths of an insurer 

selling the PLA described above to a cohort of 10,000 males age 65 in 2013. Our goal is to compare 

the outcome for two cases: the first where surpluses are smoothed using the historical cost approach 

(accounting smoothing), and the second where assets are evaluating using historical costs and where 

actuarial reserves for liabilities are accumulated (accounting and actuarial smoothing).  

We model a PLA paying a guaranteed lifetime benefit of $10,000 per year. Premiums for 

guaranteed benefits as well as the actuarial reserve in later years are calculated using an interest rate 

of 3% per year (similar to the TIAA Traditional Annuity), and the Annuity 2000 mortality table 

recommended by the Society of Actuaries with an age shift of four years. These assumptions imply a 

single premium per contract of $163,399. In addition to the guaranteed benefits, the insurer promises 

to pay surpluses to the annuitants as described above. The surplus allocation parameter specifying 

how annuitants participate in total surpluses is assumed to be ܽ	 ൌ 	90%. The surplus paid to 

policyholders in the first year is set to 2% of the guaranteed benefit. Also we assume that the 

company has equity capital worth 4% of the actuarial reserves, which we set as the solvency limit in 

equation (14).21   

Next we describe the firm’s initial balance sheet. The liability side includes the actuarial 

reserve, the contingency reserve, and the firm’s equity capital. Without actuarial smoothing, the 

initial and targeted values of the contingency reserve are set to 0%. With actuarial smoothing, the 

initial contingency reserve is set to 5% of the actuarial reserve and the target contingency reserve is 

set to 10%.22 Assets backing the actuarial reserve are held in the general account and invested in a 

constant-mix portfolio of stocks and bonds with a target duration of 10 years. The asset side also 

                                                            
21 In doing so, we are informed by TIAA-CREF’s 2011 financial statement which reported equity capital of 
$2B and an actuarial reserve of $175B (page 6). In addition TIAA-CREF reported valuation reserves (i.e. the 
difference between fair market minus book/adjusted carrying value), which increases the effective equity 
capital substantially. Since the initial valuation reserve in our model is zero, we adjust for this using a higher 
equity capital ratio. 
22 The TIAA-CREF 2011 financial statement reported a contingency reserve ($23B) worth 13% of the actuarial 
reserve ($175B; page 6).  
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includes a cash account corresponding to the contingency reserve and the insurer’s equity capital. 

This earns an interest rate equal to the one-year spot rate given by the term structure model (see 

Appendix B). 

Using our simulation results, we calculate the equivalent fixed life annuity (FLA) which 

would provide the same lifetime utility as the PLA. In our base case we stipulate a relative risk 

aversion of ߛ ൌ 5 and a time preference factor of ߚ ൌ 0.96; these are subsequently varied in 

sensitivity analyses. The policyholder’s subjective survival probabilities ௧ ௫	
  are derived as in 

Appendix B. To explore the impact of actuarial and accounting techniques on annuitants’ benefits 

and firm profitability, we permit the firm to select its asset allocation and choice of accounting 

method. To this end, we vary the asset allocation in the general account from all bonds to all stocks, 

and the valuation approach from all assets at historical cost (HCV Ratio ߙௌ ൌ ߙ ൌ 100%), to all 

assets at fair market (HCV Ratio  ߙௌ ൌ ߙ ൌ 0%), all in 10% steps. In sensitivity analysis, we also 

allow for bonds to be valued according to the OCI instead of the HCV approach.   

4.2 The Annuitant’s Perspective 

Figure 3 shows how alternative smoothing approaches influence annuitant wellbeing. Panel 

A involves only accounting smoothing but not actuarial smoothing; Panel B adds in actuarial 

smoothing. The graph on the left of each Panel depicts the benefit that a fixed life annuity (FLA) 

must pay so as to generate the same utility as the PLA with a guaranteed benefit of $10,000 plus a 

variable surplus, for a range of asset allocations. The solid line reflects FLA values under HCV 

accounting, while the dotted line reflects the range of FLAs under fair market valuation. On the right, 

we illustrate the utility impact of permitting intermediate or blended accounting regimes, combining 

HCV and FMV in different proportions, again for a range of asset allocations.     

Figure 3 here 

Specifically, when the insurer invests only in bonds, the FLA is worth 8% more under full 

HCV accounting than under the FMV methord ($12,300 vs. $11,400; see Panel A1). Similar utility 

increases are observed for other asset allocations. In other words, if the only smoothing being 

undertaken is attributable to the accounting approach, historical cost valuation dominates fair market 

valuation from the annuitant’s perspective.  Moreover, utility rises as the fraction in bonds increases, 
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but it turns down after about 70 percent. This holds regardless of the accounting rule: that is, 

diversification is beneficial, independent of the valuation approach selected.   

In Panel A2, we see that the utility-equivalent FLA surface generally slopes upward as more 

assets are valued using the HCV approach, given a specific bond percentage. This is because using a 

higher HCV fraction lowers capital market volatility and thus generates a smoother surplus payout 

stream, which the policyholder prefers. Nevertheless, using only HCV is suboptimal because returns 

resulting from asset price appreciation are not immediately allocated to the surplus, which reduces 

the annuitant’s payout. This is particularly relevant for stocks whose major source of return is asset 

price appreciation. Consequently, it is preferable to account for at least some of the portfolio using 

fair market valuation rules. For our base case with ߛ ൌ 5, the annuitant’s optimal outcome would be 

for the insurer to hold 40 percent in bonds and use historical cost valuation for 80 percent of the 

assets, yielding a utility level equivalent to that of a fixed life annuity of almost $13,000.  

Panel B illustrates how the annuitant’s perspective changes when the insurer can smooth 

using both accounting and actuarial methods. For a given portfolio allocation, Panel B1 shows that 

the utility equivalent outcomes are now more similar between the HCV and the FMV approaches. 

Compared to Panel A1, FMV plus actuarial smoothing results in utility increases of about 5%, 

independent of asset allocation. This is because the actuarial smoothing dampens the surplus 

volatility introduced by FMV. By contrast, with the HCV approach, adding actuarial smoothing 

results in lower utility with an all-bond allocation by about 2%, and by about 4% for an all-stock 

allocation. In other words, too much smoothing is not preferred by the PLA policyholder. Focusing 

last on the two curves in Panel B1, neither valuation regime clearly dominates. When the actuary 

removes substantial volatility via smoothing, the annuitant will prefer a higher stock fraction as 

compared to the case without actuarial smoothing. 

As before, Panel B2 confirms that the utility-equivalent FLA surface rises as more assets are 

valued using the HCV approach, given a particular bond percentage. Yet the accounting regime now 

has less of an impact on utility levels than before. There is again an interior maximum to the surface: 

in our base case with ߛ ൌ 5, the annuitant would like the insurer to hold 60 percent in bonds and use 

historical cost valuation for 70 percent of the assets, yielding a utility level equivalent to that of a 
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fixed life annuity of almost $12,300. The higher fraction in bonds does curtail surplus volatility, but 

it also reduces earnings potential; moreover, actuarial smoothing shifts some of the surplus into the 

future, which is also detrimental to utility. The somewhat lower HCV fraction partly offsets these 

effects, but not by enough to generate utility comparable to that in Panel A2.  

Table 2 also presents additional optimal utility equivalent FLAs for alternative values of risk 

aversion. We find the expected result, namely that when only accounting smoothing is available, the 

policyholder prefers both a higher bond fraction and a higher HCV ratio with increasing risk 

aversion. Including actuarial smoothing boosts the bond percent with no change in the HCV fraction, 

confirming our earlier finding that the valuation technique selected matters less in the case of 

actuarial smoothing. Finally, for all risk aversion values examined, when actuarial smoothing is in 

place, the policyholder can tolerate a higher share of assets valued at fair market. 

Table 2 here 

4.3 The Insurer’s Perspective  

Next we assess the insurer’s perspective regarding asset valuation and smoothing methods. 

To this end, we calculate the internal rate of return (IRR) on capital provided by the insurer’s 

shareholders for each simulation run. This computation accounts for the initial investment, along 

with periodic dividend payments. In addition, it includes what investors receive at the end of the 

product’s lifespan, namely the value of equity capital, contingency reserve, and any actuarial 

reserves that remain when the last annuitant dies. We also consider the shortfall probability of the 

insurer, defined as the percent of times that equity capital is negative when the last policyholder dies. 

The time horizon for each simulation run varies depending on when the last annuitant is gone (a 

stochastic event). 

Figure 4 plots the internal rate of return and shortfall probability as a function of the 

insurer’s asset allocation and the accounting regime in place. Panel A presents results for the 

accounting smoothing alone, while Panel B reports findings where both the accounting and actuarial 

smoothing techniques are in force. For alternative asset allocations, Panel A1 plots the expected IRR 

for the two polar cases of the pure historical cost versus pure fair market accounting regimes. Clearly 

HCV dominates FMV in terms of IRR for all portfolio allocations. Additionally, the HCV produces 
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positive expected IRRs in the range of 3-4 percent, whereas the FMV generates expected IRRs of -10 

percent for an all-stock allocation, to -0.5 percent for an all-bond portfolio; the IRR is marginally 

positive in the middle-range bond allocation. 

Figure 4 here 

Panel A2 depicts how the expected internal return responds to alternative combinations of 

bonds and historical cost versus fair value accounting. Expected IRRs are increasing in the HCV 

ratio, a finding that holds for all asset allocation patterns. This occurs since unrealized surpluses must 

be paid out to the annuitants under FMV, while the insurer must bear unrealized losses which are not 

passed on to policyholders. By contrast, under HCV, unrealized losses from periods of bad 

performance are offset by unrealized surpluses from good performance, thus producing a smoothed 

impact on payouts. Such fluctuations reduce the value of the options held by annuitants. Moreover, 

IRRs are also generally rising with the percentage of the portfolio held in bonds, due to their more 

constant payment streams. 

Finally, the shading in Figure 4 provides information about the insurer’s shortfall 

probability, with darker areas representing more risk. Not surprisingly, holding an all-stock 

allocation along with the FMV approach is associated with a 20-25 percent shortfall probability; the 

insurer’s equity capital would then be zero or negative. Moving toward a pure historical cost 

valuation, as well as to more bonds, substantially reduces the shortfall risk (to 0%).  

Panel A3 reports additional information about the development of the shortfall risk over 

time, illustrating the four cases of 100 percent bonds/all HCV, 100 percent stocks/all HCV, 100 

percent bonds/all FMV, and 100 percent stocks/all FMV. Under both FMV scenarios, the insurer is 

exposed to substantial shortfall risk (over 30 percent) early in the retirement phase, which declines 

thereafter. Specifically, with the all-bond (all-stock) portfolio, the shortfall risk under fair market 

value falls after about year 2, and falls to about 5 (10) percent in the long term. Under the HCV/all-

bond allocation, there is no shortfall risk, whereas the HCV/all-stock combination provides an 

intermediate level (around 10 percent) of shortfall risk that peaks at 7-10 years and fades away 

thereafter. Also, under the HCV, an all-stock portfolio has the same shortfall risk as an all-bond 

portfolio under FMV. This underscores the strength of the smoothing approach under HCV: that is, 
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in terms of shortfall risk, requiring an insurer to move from historical cost to fair market valuation 

has the same impact as requiring the insurer to hold only equity.  

Turning to Panel B, where both accounting and actuarial smoothing are available, we note 

that the shapes of the expected IRR curves are similar to those presented in Panel A.  Under the 

historical cost method depicted in Panel B1, expected returns are again positive for all portfolio 

allocations. By contrast, under FMV, the curve is more concave than before. The impact of adding 

actuarial smoothing is that funds must be set aside in a contingency reserve owned by the 

policyholders until the last annuitant dies; at that juncture, remaining assets are paid out to investors. 

This results in higher IRRs for the investor, as can be seen when the firm holds a high bond 

allocation.  

Despite this general tendency, in the FMV scenario with actuarial intervention, the insurer 

holding all stocks receives a large negative expected IRR (-15 percent). With the actuary in place, by 

contrast, benefit payments are less directly linked to capital market performance; consequently, 

annuity payouts can be much higher than in the asset-smoothing only case. In particular, benefits are 

less likely to be reduced in bad times, which in turn diminishes investors’ eventual claims. This is 

particularly likely when the portfolio allocation is heavy in stocks and it can offset the investor’s 

opportunity to retain the contingency reserve.  

Comparing Panels A2-B2 and A3-B3, we note that shortfall probabilities under the all-

stock/FMV scenario are even higher than without actuarial smoothing, and they do not decline as 

much with the passage of time. Thus with the all-stock portfolio, the shortfall risk under fair market 

value stands at about 17 percent in the long term, compared to 10 percent without actuarial 

smoothing. In other words, we conclude that under the historic cost approach, insurer stability and 

expected IRRs perform do better if the firm holds mostly bonds. That is, fair market valuation 

reduces stability and expected IRRs. Moreover, when the insurer holds mostly bonds, incorporating 

actuarial smoothing raises expected IRRs and offers some degree of protection for investors in terms 

of expected IRRs and shortfall risk.  

To show that investors would find acceptable the utility-maximizing combinations of bond 

percentages and HCV ratios reported in Table 2, we summarize in Table 3 the corresponding 
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expected IRRs, their volatilities, and shortfall probabilities. Overall, expected IRRs are moderately 

positive and shortfall probabilities are acceptably low. For example, given moderately risk-averse 

policyholders, accounting smoothing alone produces an expected IRR of 3.61 percent and shortfall 

probability of 1.58 percent; with actuarial smoothing, these values are 4.85 percent and 0.75 

respectively. A similar pattern holds for other risk aversion patterns, except when very low risk 

aversion can produce a very high stock allocation.  

Table 3 here  

4.4 Sensitivity Analysis 

To this point, we have modeled insurers as having the freedom to value their assets 

according to either HCF or FMV principles. In fact, however, regulators usually set standards for 

asset valuation practices. For example, the NAIC requires that bonds be valued according to the 

HCV approach by default, and stocks according to FMV. Accordingly, asset allocation will drive the 

insurer’s valuation approach. Additionally, in addition to the HCF and FMV approaches, yet a 

different accounting valuation technique can also be used by life insurance companies if the latter 

issue securities on the stock exchange (as per the Securities and Exchange Commission).23 Known as 

the Other Comprehensive Income (OCI) approach, this is the default approach for bonds under US 

GAAP.24 Under OCI, assets are reported on the balance sheet using fair market valuation, while 

unrealized gains/losses are not reported on the P&L statement but rather tracked in the OCI account.  

Using the OCI approach produces identical investment returns as under HCM and hence the 

amount of surplus generated, but the two approaches differ with respect to the distribution of 

surpluses. This is because unrealized gains and losses recorded in the OCI account are part of the 

insurer’s solvency capital, which influences the level of total surplus that can be allocated to 

policyholders according to equation (14). Thus, for instance, if the OCI account were sufficiently 

negative (positive), surplus distributions to annuitants could be reduced (increased). In what follows, 

we explore how our key results change when the insurer adopts OCI valuation instead of the 

alternatives.  

                                                            
23 Specifically, the SEC seeks to insure that firm financial reports confirm to US GAAP so as to inform 
investors. By contrast, the purpose of the statutory accounting principles under NAIC guidelines is to protect 
insurer solvency.  
24 Stocks require fair market valuation. 



26 

  

Figure 5 depicts how these alternative approaches influence both policyholder and insurer 

outcomes, with Panel A illustrating the impact of the accounting smoothing alone, while Panel B 

reflects what happens after adding actuarial smoothing. The three black lines (solid, dotted, and 

dashed) in the Figure illustrate what happens when all of the assets are evaluated according to a 

single valuation rule. The two red lines (solid and dashed) indicate results when stocks are valued at 

FMV, and bonds according either to HCM (the NAIC default) or OCI (the US GAAP default).  

Figure 5 here  

It is not surprising that the (red) utility-equivalent value curves of the affected annuity 

policyholder under the two mixture approaches lie between the two extremes previously discussed 

(Figure 3, Panel A1). When no actuarial smoothing is in effect, the fixed lifetime annuity (FLA) 

under OCI (dotted black line) is worth around 3% more than with FMV, for the full range of 

portfolio allocations. Despite the fact that unrealized gains/losses do not directly affect surplus under 

OCI, losses do reduce the insurer’s equity and through this channel may reduce the allocation of 

surplus to the annuitant. This explains why the utility-equivalent FLA is lower than under pure HCV 

(solid black line). If US GAAP defaults are in effect (dotted red line), stocks are fair market valued 

while bonds are valued using OCI. Consequently, at low bond allocations, US GAAP and FMV 

produce the same outcomes; by contrast, with high bond fractions, US GAAP valuations are similar 

to those with OCI. We observe similar results for NAIC valuation (solid red line): for a low bond 

allocation, results are similar to FMV, while at a high bond percent the pattern tracks that of the 

HCV approach. Under the NAIC approach (solid red line), results for low bond allocations are 

similar to the FMV outcome, but for higher allocations, the annuitant’s utility equivalent is close to 

that under the HCV. Moreover, the NAIC technique provides more value to the annuitant than under 

the US GAAP methodology, because the former protects the policyholder from asset volatility with 

additional smoothing.  

Turning to the insurer’s perspective, Panel A2 makes clear that OCI (dashed black line) 

generates expected IRRs above those flowing from historical cost valuation (solid black line) for 

most portfolio allocations. This is because under OCI, as described above, even unrealized losses 

may reduce the surplus distributed and hence benefit payments. In turn, the investor retains more 
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equity capital which reduces the need for shareholders to provide additional capital injections; this 

produces a higher expected IRR. By contrast, the insurer strongly disfavors the FMV approach 

(black dotted line), which produces negative expected returns across all portfolio allocations. For the 

US GAAP, the expected IRR curve (dashed red line) is a weighted average of the FMV and OCI 

approaches; for the NAIC curve (solid red line), the result is a weighted average of FMV and HCV. 

Overall, expected insurer profitability will be somewhat higher under US GAAP treatment compared 

to the NAIC approach, for realistic bond exposures. That is, there is a tension between the 

policyholder’s preferred valuation method and that favored by the insurer. 

Panel B indicates the impact of adding actuarial smoothing to the mix, and overall the results 

are quite similar. A comparison of Panels A1 and B1 shows that the additional smoothing provided 

by the actuary has relatively little impact on utility, for low equity exposures; if the insurer were to 

hold a riskier portfolio, the actuary’s extra smoothing is slightly welfare-enhancing. Once again, 

annuitants see the NAIC technique as more appealing than US GAAP; actuarial smoothing has little 

marginal impact. Turning to the firm, a comparison of Panels B1 and B2 indicates that the expected 

IRR is higher with than without the actuary (for reasonable bond allocations25). Also, as before, 

insurer profitability is higher under US GAAP than NAIC for realistic bond exposures. Hence again 

there is a tension between the policyholder’s preferred valuation method and that favored by the 

insurer. 

Figure 6 illustrates how the key outcomes depend as a function of surplus fraction attributed 

to annuitants (ܽ). All results are based on the asset allocation and book value ratio that maximizes 

the annuitant’s utility. The solid line depicts utility-equivalent FLA values (left axis), while the 

dashed line (right axis) illustrates expected IRRs, as we vary ܽ from 0.8 to 1.0 (around the 0.9 base 

case above). First, and somewhat surprisingly, annuitant values are relatively insensitive to variations 

in ܽ. The reason is that attributing high values of the surplus to annuitants leaves the insurer unduly 

exposed to capital market shocks; this in turn increases the chance that surplus allocations will be cut 

to avoid insolvency, in which case the annuitants may end up with lower benefits. Second, the 

                                                            
25 For example, TIAA-CREF (2011, page 6) holds about 85% of its assets in fixed income calculated as 
follows: bonds ($168B) plus mortgages and contract loans ($14.5B) plus cash ($0.6B) divided by total 
admitted assets ($226B) less separate account assets ($16B). 



28 

  

insurer’s expected IRR is much more responsive, dropping from 6 to 1.5 percent, as the portion of 

surplus dedicated to the annuitant rises. In other words, for reasonable sharing rates and assuming 

actuarial intervention, smoothing using mostly historical cost valuation is preferable to fair market 

valuation.26  

Figure 6 here 

To summarize, this section confirms that accounting smoothing is appealing to the annuitant 

and, for reasonable bond allocations, to the insurer as well. The insurer finds attractive high bond 

exposures along with historical cost value accounting, as this combination helps stabilize returns and 

reduce the cost of the guarantee issued to policyholders. Such a conservative investment and 

valuation approach is also congruent with policyholder preferences, since annuitants favor stable 

payout profiles. Adding actuarial smoothing techniques improves the insurer’s profitability and 

solvency situation, given a realistic bond fraction and FMV accounting. Yet an approach that stresses 

more fair market valuation such as OCI will be unattractive to the annuitant. 

  

5 Conclusions 

A participating payout annuity can be a very attractive mechanism to provide retirees a 

guaranteed benefit plus some upside potential in the form of surplus sharing, while handling 

systematic shocks to mortality tables, capital market uncertainty, and default risk. Our paper 

develops a realistically-calibrated model of such a product to investigate how alternative accounting 

and actuarial valuation techniques can influence policyholder welfare as well as insurer profitability 

and stability. Our main contribution is to study how two different smoothing mechanisms shape 

policyholder and insurer outcomes, to help illuminate the current public debate about whether to 

push insurance companies to undertake fair market valuation. We show that smoothing reduces 

volatility without subtracting the expected returns from holding equity; consequently, smoothing is 

economically attractive to risk-averse annuitants and affordable for insurers. In this sense, smoothing 

is not simply an illusion in the insurance context.  

                                                            
26 In results not detailed here, we also conclude that the preferred bond fraction is in the range of 0.6-0.7. 
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Using a simple two-period illustrative model, we showed how PLA payout smoothing can 

add value to both annuitant and insurer. Next, a more complex approach examined how insurers can 

use accounting and actuarial techniques to smooth reporting with the goal of transferring surpluses 

earned in good years to support benefit payouts in bad years. Nevertheless with such smoothing, 

investors and policyholders are hard-pressed to perceive an insurer’s true financial status. 

Accordingly, the practice has prompted calls for fair market valuation in insurance company’s 

balance sheets. Yet this also introduces additional volatility which could undermine insurer 

profitability and the appeal of retirement annuities.  

Our findings should be of considerable current interest, since insurance company valuation 

techniques have been charged in the press with being nontransparent and potentially conducive to 

insurer instability. Moreover, international accounting standards are moving away from historical 

cost accounting toward a fair value approach, requiring that companies report both liabilities and 

assets at market values. While this movement will enhance reporting to those seeking to buy 

insurance company shares, curtailing smoothing also threatens policyholders seeking the protection 

associated with long-term retirement payout products. 
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Appendix A: Proof of Equations (2) and (3) 

The CRRA lifetime utility function describing the annuitant´s preferences is given by 

 ܷ ൌ ܧ
గ ቈߚ ∙

ଵܥ
ଵିఊ

1 െ ߛ
 ଶߚ ∙ 

ଶܥ
ଵିఊ

1 െ ߛ
. (A1) 

where the coefficient of relative risk aversion is ߛ, the rate of time preference is ߚ, the probability of 

survival to ݐ ൌ 2	ሺݐ ൌ 1ሻ of 	ሺ1ሻ, and the expectation ܧ
గat time ݐ ൌ 0 under the subjective 

probability measure ߨ. The realization and the probability of the consumption ܥଵ	ሺܥଶሻ at time ݐ ൌ 1 

ሺݐ ൌ 2ሻ  are as follows: 

ଵܥ ൌ ൜
ሺ1 െ ሻݕ ⋅ ܵݑ with	probability ௨ߨ
ሺ1  ⋅ ሻݕ ݀ܵ with	probability ௗߨ ൌ 1 െ ௨ߨ

 and (A2) 
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ሺ1  ሻݕ ⋅ ܵ݀ݑ with	probability ௨ௗߨ
ሺ1 െ ሻݕ ⋅ ܵݑ݀ with	probability ௗ௨ߨ
ሺ1  ሻݕ ⋅ ݀ଶܵ with	probability ௗߨ

ଶ

  (A3) 

where ߨ௨	ሺߨௗ ൌ 1 െ  ௨ሻ measures the subjective probability for an increase (decrease). Next weߨ

factor out ߚ/ሺ1 െ  :ሻ and replace the expected consumption by its realization and probabilityߛ

ܷ ൌ
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 ሾሺ1  ሿଵିఊܵ݀ݑ	ሻݕ ⋅ ௨ௗߨ  ሾሺ1 െ ሿଵିఊܵݑ݀	ሻݕ ⋅ ௗ௨ߨ  ሾሺ1  ݀ଶܵሿଵିఊ	ሻݕ ⋅ ௗߨ
ଶ	ሻሽ 

Rearranging terms we get: 
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⋅ ܵ
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Therefore: 
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with 

ܣ  ൌ ݀ଵିఊ ⋅ ௗߨ  ଵିఊ݀ݑ൫ߚ ⋅ ௨ௗߨ  ݀ଶሺଵିఊሻ ⋅ ௗߨ
ଶ൯ (A5a) 

ܤ  ൌ ଵିఊݑ ⋅ ௨ߨ  ଶሺଵିఊሻݑ൫ߚ ⋅ ௨ଶߨ  ଵିఊݑ݀ ⋅  ௗ௨൯. (A5b)ߨ

Calculating the derivative of ܷ with respect to ݕ and setting it equal to zero gives us: 
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Solving for the smoothing factor ݕ yields: 
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The value ܸܫ of the PLA for the insurer is given by:  

 
VI ൌ 	

Nሺ1  pሻS ⋅ ሾqଶ ⋅ uଶ െ ሺ 1 െ qሻଶ ⋅ dଶሿ
ሺ1  iሻଶ

⋅ y, (A8) 

with the risk-neutral probability of an upward jump ݍ and the riskless interest rate	݅. ܵ and ሺ1   ሻ
are positive variables. Consequently, the value of the insurer is a linear function of the smoothing 

parameter ݕ if: 

ଶݍ  ⋅ ଶݑ  ሺ1 െ ሻଶݍ ⋅ ݀ଶ or ݍ 
݀

ݑ  ݀
. (A9) 

Replacing  ݍ with its definition ሺሺ1  ݅ሻ െ ݀ሻ/ሺݑ െ ݀ሻ gives us the following result: 
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We rearrange terms and assume ݑ  ݀  0: 
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Since ݑ	  	1  ݅ by definition, finally we can solve for ݀: 
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Appendix B: Capital Market and Mortality Model 
The portfolio of our life insurance company includes a stock and a bond fund. The stochastic 

dynamics of the bond fund are modeled using a multi-factor CIR model of the term structure as 

described in Chen and Scott (1993). In this model, the short rate ܴܫܥݎ is the sum of ܭ independent 

state variables: 

 
ூோݎ ൌݎ
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 (B1) 

Each of the state variables followings a CIR-type square root diffusion process: 
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where ߙ ߤ	,
ூோ, and ߪ

ூோare positive constants and ݎ
ூோ 	 	0, if 	ߤ

ூோ 	 	 ሺߪ
ூோሻଶ	. ܹ are 

independent Wiener processes. 

The term structure of interest rates has an affine structure and is described by: 
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where ܴሺݐ, ߬ሻ represents the ߬-period spot rate at time ݐ, and ܣሺ߬ሻ and ܪሺ߬ሻ are given by  
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ூோሻଶ. 

 

where the ߣ are constants. 

We assume that the insurer holds a bond fund with target duration ܦ that is re-adjusted at the 

beginning of each period to maintain that target value. The price ܤ of one unit of the bond fund 

evolves according to: 

 
௧ାଵܤ ൌ ௧ܤ ⋅ 

൫1  ܴሺݐ, ሻ൯ܦ


൫1  ܴሺݐ  1, ܦ െ 1ሻ൯
ିଵ െ ܴሺݐ,  ሻ൩, (B5)ܦ

with ܴሺݐ, ߬ሻ being the spot rates from equation (A3). The bond fund pays annual coupons ܥ௧ାଵ given 

by: 

௧ାଵܥ ൌ ௧ܤ ⋅ ܴሺݐ,  ሻܦ

In addition to the bond fund, the insurer invests in stocks, with prices ܵ௧ evolving according to: 
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మ
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Here, ݎ௧
ூோ	is again the short rate, and ݎ௧

ோ ൌ 			 ோ	ߤ  ோߪ ௧ܹ
ଶ is the stochastic risk premium (net of 

non-stochastic dividends) with constants ߤோ	and ߪோ and a standard Wiener process ௧ܹ
ଶ 

uncorrelated to ܹ,௧
ଵ . Stocks pay an annual dividend ܦ௧ based on a fixed dividend yield ߤ : 

To calibrate the term structure model, we rely on historical data on US 3-month T-bills rates and US 

Treasury zero yields with maturities of 1 to 10 years over the period January 1988 to December 

2012.27 We set ܭ ൌ 3, as the a 3-factor CIR model provide the best fit to the data when compared to 

alternative parsimonious multi-factor specifications. Based on this data and model specification, the 

calibration approach presented in Chen and Scott (1993) produced the following parameter estimates 
(see Table B1), with  r୧,

େ୍ୖ the initial factor value derived from the current term structure:  

Table B1: Estimates of 3-factor CIR Model 

ࣆ  
ࡾࡵ ࣌ ࢻ

,࢘ ࣅ ࡾࡵ
 ࡾࡵ

1  0.0092 0.2576 0.0851 -0.2036 0.0000 
2  0.0014 0.3035 0.0708 -0.5642 0.0009 
3  0.0122 0.3108 0.1427 0.0655 0.0188 

Note: Estimates of the 3-factor CIR model based on data provided by 
Datastream. Source: Authors´ calculation. 

Stock price developments and dividend rates are calibrated to the S&P 500 Price Index and the S&P 

500 Dividend Yield Index over the same period (December 1981 to December 2012). This produces 

the following parameter estimates:	ߤோ = 3.28%, ߪோ = 16.5%, and ߤ  = 2.6%. The insurer’s asset 

allocation follows a constant mix strategy: the portfolio is rebalanced annually toward the targeted 

allocation when assets are sold to pay benefits to the annuitants. In case the stock exposure exceeds 

the target exposure, the insurance company sells a higher percentage of stocks to pay the benefits. 

When we use the calibration parameters of the asset model described above, we use the risk and 

return profiles of the asset model reported in Table B2: 

Table B2: Means, Standard Deviations and Correlations of Capital Market Model 
 

Note: Mean, standard deviation and correlation of bond fund ௧ܸ, cupon ܥ௧, stocks ܵ௧, and 
dividends ܦ௧. Number of simulations = 10.000, Source: Authors` calculation. 

                                                            
27 Specifically, we use the following Datastream time series: FRTCM3M, FRTNY01, FRTNY02, FRTNY03, 
FRTNY04, FRTNY05, FRTNY06, FRTNY07, FRTNY08, FRTNY09, FRTNY10. 

௧ܦ  ൌ ܵ௧ିଵ ∙ ቀ݁ఓ
ವ
െ 1ቁ, (B8) 

  ௧ܸ ܥ௧ ܵ௧ ܦ௧ 

Expectation (%) 2.30 4.21 7.89 2.63 

Standard Deviation (%) 11.67 1.66 18.10 - 

Correlation      

௧ܸ 1 0 0 0 

 ௧ 0.4498 1 0 0ܥ

ܵ௧ 0.0300 0.0865 1 0 

 ௧ 0 0 0 1ܦ
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Following Cairns, Blake and Dowd (CBD, 2006), the stochastic dynamics of the annuitants’ actual 

mortality rates ݍ௫ ,ݐሺݍ ≕  :are described by ݐ and time ݔ ሻ at ageݔ

where ݐ,ݔݍ are the single year death probabilities, Κݐ
ሺ1ሻand Κݐ

ሺ2ሻ are period mortality indexes and ݔഥ is 

the average age over the considered age range. To estimate future mortality rates, the period 

mortality indexes component Κݐ
ሺ1ሻ and Κݐ

ሺ2ሻ are forecasted using a bivariate random walk with drift: 

Here, ߤ and Κݐ  are constant vectors, Σ is an upper triangular 2x2 matrix, and ߝ௧ is 2-dimensional 

standard normal random vector.  

We calibrate the CBD model to US mortality data from the Human Mortality Database.28 This 

produces the parameter estimates reported in Table B3:  

Table B3: Calibration of CBD Mortality Model 

݅  Κݐ     Σߤ 

1  -10.9033 -0.0400 0.0719 0 

2  0.1011 0.0004 - 0.0010 0.0003 

Note: Estimated parameters of the CBD mortality model based 
on US mortality data for the human mortality database. Κ୲  the 
period mortality index, ߤ estimated mortality, ߑ correlation 
matix Source: Authors´ calculation. 

 

  

                                                            
28 Specifically we use the U.S. Death Rates (Period 1x1), Males and Females, Last modified: 16-Nov-2012, 
Version MPv5 for the period 1933-2010. See http://www.mortality.org. 

௫ݍ	ݐ݈݅݃  ൌ ln
௫,௧ݍ

1 െ ௫,௧ݍ
ൌ Κ௧

ሺଵሻ  ሺݔ െ ሻݔ̅ ⋅ Κ௧
ሺଶሻ (B9) 

 Κ௧ାଵ ൌ Κ௧  ߤ  Σ ⋅  ௧. (B10)ߝ
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Figure 1: Stylized Model of Participating Life Annuity with Payout Smoothing 

      

     ܵ௨௨ 
     ሺ1 െ ሻݕ ∙ ܵ௨௨ 
   ܵ௨  ܰ ∙ ݕ ∙ ሺ1  ሻ ∙ ܵ௨௨
   ሺ1 െ ሻݕ ∙ ܵ௨   
   ܰ ∙ ሺ  ሻݕ ∙ ܵ௨  ܵ௨ௗ 
     ሺ1  ሻݕ ∙ ܵ௨ௗ

FU Price ܵ    ܰ ∙ ݕ ∙ ሺ1 െ ሻ ∙ ܵ௨ௗ
Annuity Payments 0     
Insurer‘s Reserves ܰ ∙ ሺ1  ሻ ∙ ܵ    ܵௗ௨ 

     ሺ1 െ ሻݕ ∙ ܵௗ௨ 
   ܵௗ  ܰ ∙ ݕ ∙ ሺ െ 1ሻ ∙ ܵௗ௨
   ሺ1  ሻݕ ∙ ܵௗ   
   ܰ ∙ ሺ െ ሻݕ ∙ ܵௗ  ܵௗௗ 
     ሺ1  ሻݕ ∙ ܵௗௗ
     ܰ ∙ ݕ ∙ ሺെ െ 1ሻ ∙ ܵௗௗ
      

࢚  ൌ   ࢚ ൌ   ࢚ ൌ  

Notes: Evolution of Fund Unit (FU) prices, annuity benefits, and insurer reserves over two periods if smoothing is applied. 
The number of individuals,ܰ, the smoothing factor ݕ, the two-year survival probability , the initial price of the FU ܵ , and 
the FU prices in the following periods ܵ௨, Sୢ, S୳୳, S୳ୢ, Sୢ୳	and ܵௗௗ,  with ܵௗ௨ ൌ ݀ ⋅ ݑ	 ⋅ 	ܵ. Source: Authors´ illustration; see 
text. 
 

 

Figure 2: Threshold Subjective Probability of Downward Jumps Necessary to Value Smoothing 

 

Notes: Participating Life Annuity (PLA) policyholder’s subjective probability ߨௗ
∗  for a capital 

market downturn beyond which PLA payout smoothing is utility increasing for alternative 
levels of relative risk aversion (ߛ). Calibration: time preference rate: ߚ ൌ 0.96, 2-period 
survival probability:  ൌ 0.8. Capital markets: Fund unit (FU) price may increase (decrease) 
by a proportional factor of ݑ	ሺ݀ ൌ  .ሻ. Source: Authors´ calculations; see textݑ/1
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Figure 3: Effect of Asset Allocation versus Valuation Method on PLA Policyholder Utility 

Panel A: Accounting Smoothing 

A1: FMV vs. HCV A2: Asset Allocation vs. Valuation Method 

 

Panel B: Accounting and Actuarial Smoothing 

B1: FMV vs. HCV B2: Asset Allocation vs. Valuation Method 

 

Notes: Utility equivalent fixed life annuity (FLA; in $000) that generates the same utility as a Participating Lifetime Annuity 
(PLA) with a guaranteed initial lifelong annual benefits of $10,000 for alternative scenarios based on a time-additive CRRA 
utility function. HCV = Historical Cost Valuation, FMV = Fair Market Valuation. Calibration accounting smoothing, male 
age 65 in 2013; initial guaranteed PLA benefits: $10,000; time preference: ߚ ൌ 0.96; relative risk aversion: ߛ ൌ 5; GIR: 3%; 
mortality table: “Annuity 2000” (PLA present value $163,399); bonds fund duration: 10 years; surplus allocation to 
annuitant: 90%; equity capital endowment: 4%; solvency limit 4%; initial contingency reserve: 0%; target contingency 
reserve 0%. Calibration accounting and actuarial smoothing, initial contingency reserve: 5%; target contingency reserve 10%. 
Source: Authors’ calculations; see text. 
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Figure 4: Effect of Asset Allocation versus Valuation Method on Insurer Profitability and Stability for a PLA Product 

Panel A: Accounting Smoothing 

A1: FMV vs. HCV A2: Asset Allocation vs. Valuation Method  A3: Shortfall Probability of Corner Cases over Time 

         

 

Panel B: Accounting and Actuarial Smoothing 

B1: FMV vs. HCV B2: Asset Allocation vs. Valuation Method B3: Shortfall Probability of Corner Cases over Time 

                

Notes: Expected internal rate of return (IRR) and shortfall probability of a Participating Lifetime Annuity (PLA) with guaranteed initial lifelong annual benefits of $10,000 for alternative scenarios. 
HCV = historical cost valuation, FMV = fair market valuation. Calibration accounting smoothing, male age 65 in 2013; initial guaranteed PLA benefits: $10,000; time preference: ߚ ൌ 0.96; relative 
risk aversion: ߛ ൌ 5; GIR: 3%; mortality table: “Annuity 2000” (PLA present value $163,399); bonds fund duration: 10 years; surplus allocation to annuitant: 90%; equity capital endowment: 4%; 
solvency limit 4%; initial contingency reserve: 0%; target contingency reserve 0%. Calibration asset and actuarial smoothing, initial contingency reserve: 5%; target contingency reserve 10%. 
Source: Authors` calculations. 
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Figure 5: Effect of Alternative Valuation Methods on PLA Policyholder and Insurer Outcomes 
 

Panel A: Accounting Smoothing 

A1: Annuitants´ Perspective A2: Insurers´ Perspective  

 
Panel B: Accounting and Actuarial Smoothing 

B1: Annuitants´ Perspective B2: Insurers´ Perspective 

 
 
Notes: Figure A1 and B1 show the utility equivalent fixed life annuity (in $000) that generates the same utility as a 
Participating Lifetime Annuity (PLA) with a guaranteed initial lifelong annual benefits of $10,000 based on a time-additive 
CRRA utility function for alternative valuation scenarios. Figure A2 and B2 show the expected internal rate of return 
(IRR). OCI = other comprehensive income valuation, HCV = historical cost valuation, FMV = fair market valuation, US 
GAAP Default = bond valuation OCI and stock valuation FMV, NAIC Default = bond valuation HCV and stock valuation 
FMV. Calibration accounting smoothing, male age 65 in 2013; initial guaranteed PLA benefits: $10,000; time preference: 
ߚ ൌ 0.96; relative risk aversion: ߛ ൌ 5; GIR: 3%; mortality table: “Annuity 2000” (PLA present value $163,399); bonds 
fund duration: 10 years; surplus allocation to annuitant: 90%; equity capital endowment: 4%; solvency limit 4%; initial 
contingency reserve: 0%; target contingency reserve 0%. Calibration asset and actuarial smoothing, initial contingency 
reserve: 5%; target contingency reserve 10%. Source: Authors` calculations; see text. 
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Figure 6: Impact of Surplus Sharing and Actuarial Smoothing on Key Outcomes 

 

 
Notes: Optimal utility equivalent fixed life annuity (FLA; in $000) that generates the same utility as a Participating 
Lifetime Annuity (PLA) with a guaranteed initial lifelong annual benefits of $10,000 based on a time-additive CRRA 
utility function, corresponding internal rate of return for alternative annuitant participation rates. HCV = historical cost 
valuation. Calibration, male age 65 in 2013; initial guaranteed PLA benefits: $10,000; time preference: ߚ ൌ 0.96; relative 
risk aversion: ߛ ൌ 5; GIR: 3%; mortality table: “Annuity 2000” (PLA present value $163,399); bonds fund duration: 10 
years; equity capital endowment: 4%; solvency limit 4%; initial contingency reserve: 5%; target contingency reserve 10%. 
Source: Authors` calculations; see text. 
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Table 1: Stylized Two Period Model of Participating Life Annuity(PLA) with Smoothing  

  

Annuitants’ Optimal
Smoothing Factor ࢟ 

(in %) 

Welfare Gains from 
Optimal Smoothing 

(in %) 
 

Insurers’ Gains from 
Optimal Smoothing 

(in %) 

ௗߨ   ൌ ௗߨ 0.2 ൌ ௗߨ 0.5 ൌ ௗߨ 0.2 ൌ ௗߨ  0.5 ൌ ௗߨ 0.2 ൌ 0.5 

Low Volatility Capital Market Scenario (ݑ ൌ 1.2) 
ߛ ൌ 2  0 9.1 0 0.8 0  0.8 
ߛ ൌ 5  0.7 14.5 0.01 4.9 0.1  1.3 
ߛ ൌ 10  11.9 16.3 3.6 9.9 1.1  1.5 

       
       

High Volatility Capital Market Scenario ሺݑ ൌ 1.3ሻ 
ߛ ൌ 2  0 13.0 0 1.7 0  1.7 
ߛ ൌ 5  13.1 20.7 0.3 9.5 1.7  2.7 
ߛ ൌ 10  18.1 23.2 10.0 16.8 2.4  3.0 

Notes: Annuitants’ utility-maximizing smoothing factor ݕ (in %), corresponding welfare gains for 
annuitants (percentage increase in certainty equivalent fixed life annuity), and corresponding gain for the 
insurer (in % of the PLA premium). Calibration, time preference: ߚ ൌ 0.96, 2-period survival probability: 
 ൌ  represents the ߛ ,ௗ represents the annuitant’s subjective probability of a capital market downturnߨ .0.8
coefficient of relative risk aversion. Capital markets: Fund unit (FU) price may increase (decrease) by a 
proportional factor of ݑ	ሺ݀ ൌ  .ሻ. Source: Authors´ calculation; see textݑ/1
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 Table 2: Utility-Maximizing Asset Allocation and Valuation Methods  
for PLA Policyholder Having Alternative Levels of Risk Aversion 

 
Notes: Optimal utility equivalent fixed life annuity (FLA; in $) with respective asset allocation percentage and book value 
ratio for alternative calibrations of the time-additive CRRA utility function. Calibration accounting smoothing, male age 65 
in 2013; initial guaranteed Participating Lifetime Annuity (PLA) benefits: $10,000; time preference: ߚ ൌ 0.96; relative risk 
aversion: low (ߛ ൌ 2), medium (ߛ ൌ 5), high (ߛ ൌ 	10); GIR: 3%; mortality table: “Annuity 2000” (PLA present value 
$163,399); bonds fund duration: 10 years; surplus allocation to annuitant: 90%; equity capital endowment: 4%; solvency 
limit 4%; initial contingency reserve: 0%; target contingency reserve: 0%. Calibration asset and actuarial smoothing, initial 
contingency reserve: 5%; target contingency reserve 10%. Source: Authors` calculations; see text. 
 

Table 3: Impacts of Optimal Combination of Asset Allocation and Valuation Method on 
Internal Rates of Return and Shortfall Probabilities, PLA Policyholder Having Alternative 

Levels of Risk Aversion 
  

   Relative Risk 
Aversion  

Bond 
Percentage

HCV 
Ratio 

ܴܴܫሺܧ ሻ 
(in %) 

Shortfall 
Probability (in %)  

Accounting Smoothing  Low / ߛ ൌ 2 0 80 6.20 6.96 
  Medium / ߛ ൌ 5 40 80 3.61 1.58 
  High / ߛ ൌ 10 80 100 4.97 0.00 

Asset and Actuarial Smoothing  Low / ߛ ൌ 2 10 70 6.60 8.24 
  Medium / ߛ ൌ 5 60 70 4.85 0.75 
   High / ߛ ൌ 10 80 70 4.67 0.15 

 
Notes: Expectation of internal rate of return and shortfall probability in percent for the optimal utility-equivalent fixed life 
annuity for alternative scenarios. Calibration accounting smoothing, male age 65 in 2013; initial guaranteed Participating 
Lifetime Annuity (PLA) benefits: $10,000; time preference: ߚ ൌ 0.96; relative risk aversion: low (ߛ ൌ 2ሻ, medium 
ሺߛ ൌ 5ሻ, high ሺߛ ൌ 10ሻ; GIR: 3%; mortality table: “Annuity 2000” (PLA present value $163,399); bond fund duration: 10 
years; surplus allocation to annuitant: 90%; equity capital endowment: 4%; solvency limit 4%; initial contingency reserve: 
5%; target contingency reserve: 0%. Calibration asset and actuarial smoothing, initial contingency reserve: 5%; target 
contingency reserve 10%. Source: Authors` calculations; see text. 
 

  Accounting Smoothing  Accounting and Actuarial Smoothing 

Relative Risk Aversion 
 Bond 

Percentage 
HCV 
Ratio

Optimal Utility 
Equivalent FLA 

 Bond 
Percentage

HCV 
Ratio 

Optimal Utility 
Equivalent FLA 

Low / 	ߛ ൌ 2  0 80 15,533  10 70 14,159 
Medium / 	ߛ ൌ 5  40 80 12,881  60 70 12,283 
High / 	ߛ ൌ 10  80 100 11,783  80 70 11,469 




