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The Booms and Busts of Beta Arbitrage  
 
 
 
 
 
 
 

Abstract 
 
 
 
Historically, low-beta stocks deliver high average returns and low risk relative to high-
beta stocks, offering a potentially profitable investment opportunity for professional 
money managers to “arbitrage” away. We argue that beta-arbitrage activity instead 
generates booms and busts in the strategy’s abnormal trading profits. In times of 
relatively little activity, the beta-arbitrage strategy exhibits delayed correction, taking 
up to three years for abnormal returns to be realized. In stark contrast, in times of 
relatively-high activity, short-run abnormal returns are much larger and then revert in 
the long run for the stocks in question. Importantly, we document a novel positive-
feedback channel operating through firm-level leverage that facilitates these boom and 
bust cycles. Namely, when arbitrage activity is relatively high and beta-arbitrage stocks 
are relatively more levered, the cross-sectional spread in betas widens, resulting in stocks 
remaining in beta-arbitrage positions significantly longer with short-run abnormal 
returns more than tripling in value. Our findings are exclusively in stocks with relatively 
low limits to arbitrage (large, liquid stocks with low idiosyncratic risk), consistent with 
excessive arbitrage activity destabilizing prices. 
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I. Introduction 

The trade-off of risk and return is the key concept of modern finance. The simplest and 

most intuitive measure of risk is market beta, the slope in the regression of a security’s 

return on the market return. In the Capital Asset Pricing Model (CAPM) of Sharpe 

(1964) and Lintner (1965), market beta is the only risk needed to explain expected 

returns. More specifically, the CAPM predicts that the relation between expected return 

and beta, the security market line, has an intercept equal to the risk-free rate and a 

slope equal to the equity premium. 

 However, empirical evidence indicates that the security market line is too flat on 

average (Black 1972) and especially so during times of high expected inflation (Cohen, 

Polk, and Vuolteenaho 2005), disagreement (Hong and Sraer 2014) and market 

sentiment (Antoniou, Doukas, and Subrahmanyam 2013). These patterns are not 

explained by other well-known asset pricing anomalies such as size, value, and price 

momentum. 

 We study the response of arbitrageurs to this failure of the Sharpe-Lintner 

CAPM in order to identify booms and busts of beta arbitrage. In particular, we exploit 

the novel measure of arbitrage activity introduced by Lou and Polk (2014). They argue 

that traditional measures of such activity are flawed, poorly measuring a portion of the 

inputs to the arbitrage process, for a subset of arbitrageurs. Lou and Polk’s innovation 

is to measure the outcome of the arbitrage process, namely, the correlated price impacts 

that previous research (Anton and Polk 2014 and others) has shown can generate excess 

return comovement in the spirit of Barberis and Shleifer (2003). 
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 We first confirm that our measure of the excess comovement of beta-arbitrage 

stocks (ܴܣܤܥ) relative to the three-factor model is correlated with existing measures of 

arbitrage activity. In particular, we find that time variation in the level of institutional 

holdings in low-beta stocks (i.e., stocks in the long leg of the beta strategy), the assets 

under management of long-short equity hedge funds, and aggregate liquidity together 

forecast roughly 38% of the time-series variation in ܴܣܤܥ. These findings suggest that 

not only is our measure consistent with existing proxies for arbitrage activity but also 

that no one single existing proxy is sufficient for capturing time-series variation in 

arbitrage activity. Indeed, one could argue that perhaps much of the unexplained 

variation in ܴܣܤܥ represents variation in arbitrage activity missed by existing 

measures. 

 After validating our measure in this way, we then forecast the cumulative 

abnormal returns to beta arbitrage. We first find that when arbitrage activity is 

relatively high (as identified by the 20% of the sample with the highest values of 

 abnormal returns to beta-arbitrage strategies occur relatively quickly, within ,(ܴܣܤܥ

the first six months of the trade. In contrast, when arbitrage activity is relatively low 

(as identified by the 20% of the sample with the lowest values of ܴܣܤܥ), abnormal 

returns to beta-arbitrage strategies take much longer to materialize, appearing only two 

to three years after putting on the trade. 

 These effects are both economically and statistically significant. When beta-

arbitrage activity is low, the abnormal four-factor returns on beta arbitrage are actually 

negative and statistically insignificant from zero in the six months after portfolio 

formation. For the patient arbitrageur, in year 3, the strategy earns abnormal four-
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factor returns of .50% per month with a t-statistic of 2.49. In stark contrast, for those 

periods when arbitrage activity is high, the abnormal four-factor returns to beta 

arbitrage average 1.04% per month with a t-statistic of 2.41 in the six months after the 

trade. Indeed, the return differential in the first six months between high and low 

 .periods is 1.25% per month with a t-statistic of 2.11 ܴܣܤܥ

 We then show that the stronger performance of beta-arbitrage activities during 

periods of high beta-arbitrage activity can be linked to subsequent reversal of those 

profits. In particular, the year 3 abnormal four-factor returns are -0.92% with an 

associated t-statistic of -3.18. As a consequence, the long-run reversal of beta-arbitrage 

returns varies predictably through time in a striking fashion. The post-formation, year-3 

spread in abnormal returns across periods of low arbitrage activity, when abnormal 

returns are predictably positive, and periods of high arbitrage activity, when abnormal 

returns are predictably negative, is -1.41%/month (t-statistic = -3.69) or more than 18% 

cumulative in that year. 

 This finding is the main result of the paper. When beta-arbitrage activity is low, 

the returns to beta-arbitrage strategies exhibit significant delayed correction. In 

contrast, when beta-arbitrage activity is high, the returns to beta-arbitrage activities 

reflect strong over-correction due to crowded arbitrage trading. These results are 

consistent with time-varying arbitrage activity generating booms and busts in beta 

arbitrage. 

We argue that these results are intuitive, as it is difficult to know how much 

arbitrage activity is pursuing beta arbitrage, and, in particular, the strategy is 

susceptible to positive-feedback trading. Specifically, successful bets on (against) low-

beta (high-beta) stocks result in prices for those securities rising (falling). If the 



4 
 

underlying firms are leveraged, this change in price will, all else equal, result in the 

security’s beta falling (increasing) further. Thus, not only do arbitrageurs not know 

when to stop trading the low-beta strategy, their (collective) trades strengthen the 

signal. Consequently, beta arbitrageurs may increase their bets precisely when trading is 

more crowded.1 Consistent with our novel positive-feedback story, we show that the 

cross-sectional spread in betas increases when beta-arbitrage activity is high and 

particularly so when beta-arbitrage stocks are relatively more levered. We document 

that, as a consequence, stocks remain in the extreme beta portfolios for a longer period 

of time. 

 A variety of robustness tests confirm our main findings. In particular, we show 

that controlling for other factors when either measuring ܴܣܤܥ or when predicting beta-

arbitrage returns does not alter our primary conclusion that the excess comovement of 

beta-arbitrage stocks forecasts time-varying reversal to beta-arbitrage bets or that the 

beta spread varies with CoBAR.  

Our findings can also be seen by estimating time variation in the short-run 

(months 1-6) and long-run (year 3) security market line, conditioning on ܴܣܤܥ. Thus, 

the patterns we find are not just due to extreme-beta stocks, but reflect dynamic 

movements throughout the entire cross section. In particular, we find that during 

periods of high beta-arbitrage activity, the short-term security market line strongly 

slopes downward, indicating strong profits to the low-beta strategy, consistent with 

arbitrageurs expediting the correction of market misevaluation. However, this correction 

is excessive, as the long-run security market line dramatically slopes upwards. In 

                                                            
1 Of course, crowded trading may or may not be profitable, depending on how long the arbitrageur holds 
the position and how long it takes for any subsequent correction to occur. 
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contrast, during periods of low beta-arbitrage activity, the short-term security market 

line is essentially flat. During these low-arbitrage periods, we do not find any downward 

slope to the security market line until the long-run. 

A particularly compelling robustness test involves separating ܴܣܤܥ into excess 

comovement among low-beta stocks occurring when these stocks have relatively high 

returns (i.e., capital flowing into low beta stocks and pushing up the prices) vs. excess 

comovement occurring when low-beta stocks have relatively low returns–i.e., upside 

versus downside comovement. Under our interpretation of the key findings, it is the 

former that should track time-series variation in expected beta-arbitrage returns, as that 

particular direction of comovement is consistent with trading aiming to correct the beta 

anomaly. Our evidence confirms this indeed is the case: our main results are primarily 

driven by upside ܴܣܤܥ. 

 Finally, Shleifer and Vishny (1997) link the extent of arbitrage activity to limits 

to arbitrage. Based on their logic, trading strategies that bet on firms that are cheaper 

to arbitrage (e.g., larger stocks, more liquid stocks, or stocks with lower idiosyncratic 

risk) should have more arbitrage activity. This idea of limits to arbitrage motivates tests 

examining cross-sectional heterogeneity in our findings. We show that our results 

primarily occur in those stocks that provide the least limits to arbitrage: large stocks, 

liquid stocks, and stocks with low idiosyncratic volatility. This cross-sectional 

heterogeneity in the effect is again consistent with the interpretation that arbitrage 

activity causes much of the time-varying patterns we document. 

Our novel feedback channel also has implications for cross-sectional heterogeneity 

in abnormal returns. Consistent with our story, we show that the returns to beta-
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arbitrage are particularly strong among high-leverage stocks. The difference in four-

factor alphas in the first six months between high and low ܴܣܤܥ periods is a striking 

3.76% per month (t-statistic of 2.46) for high-leverage stocks. 

 The organization of our paper is as follows. Section II summarizes the related 

literature. Section III describes the data and empirical methodology. We detail our 

empirical findings in section IV, and present some additional results in Section V. 

Section VI concludes. 

 

II. Related Literature 

Our results shed new light on the risk-return trade-off, a cornerstone of modern asset 

pricing research. This trade-off was first established in the famous Sharpe-Lintner 

CAPM, which argues that the market portfolio is mean-variance-efficient. Consequently, 

a stock’s expected return is a linear function of its market beta, with a slope equal to 

the equity premium and an intercept equal to the risk-free rate. 

However, mounting empirical evidence is inconsistent with the CAPM. Black, 

Jensen, and Scholes (1972) were the first to show carefully that the security market line 

is too flat on average. Put differently, the risk-adjusted returns of high beta stocks are 

too low relative to those of low-beta stocks. This finding was subsequently confirmed in 

an influential study by Fama and French (1992). Blitz and van Vliet (2007) and Baker, 

Bradley, and Taliaferro (2013), Frazzini and Pedersen (2014), and Blitz, Pang, and van 

Vliet (2012) document that the low-beta anomaly is also present in both non-US 

developed markets as well as emerging markets.  

Of course, the flat security market line is not the only failing of the CAPM (see 

Fama and French 1992, 1993, and 1996). Nevertheless, since this particular issue is so 
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striking, a variety of explanations have been offered to explain the low-beta 

phenomenon. Black (1972) and more recently Frazzini and Pedersen (2014) argue that 

leverage-constrained investors, such as mutual funds, tend to deviate from the capital 

market line and invest in high beta stocks to pursue higher expected returns, thus 

causing these stocks to be overpriced relative to the CAPM benchmark.2 

Cohen, Polk, and Vuolteenaho (2005) derive the cross-sectional implications of 

the CAPM in conjunction with the money illusion story of Modigliani and Cohn (1979). 

They show that money illusion implies that, when inflation is low or negative, the 

compensation for one unit of beta among stocks is larger (and the security market line 

steeper) than the rationally expected equity premium. Conversely, when inflation is 

high, the compensation for one unit of beta among stocks is lower (and the security 

market line shallower) than what the overall pricing of stocks relative to bills would 

suggest. Cohen, Polk, and Vuolteenaho provide empirical evidence in support of their 

theory. 

Hong and Sraer (2014) provide an alternative explanation based on Miller’s 

(1977) insights. In particular, they argue that investors disagree about the value of the 

market portfolio. This disagreement, coupled with short sales constraints, can lead to 

overvaluation, and particularly so for high-beta stocks, as these stocks allow optimistic 

investors to tilt towards the market. Further, Kumar (2009) and Bali, Cakici, and 

Whitelaw (2011) show that high risk stocks can indeed underperform low risk stocks, if 

some investors have a preference for volatile, skewed returns, in the spirit of the 

                                                            
2 See also Baker, Bradley, and Wurgler (2011) and Buffa, Vayanos, and Woolley (2014) for related 
explanations based on benchmarking of institutional investors. 
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cumulative prospect theory as modeled by Barberis and Huang (2008). Related work 

also includes Antoniou, Doukas, and Subrahmanyam (2013).3 

A natural question is why sophisticated investors, who can lever up and sell short 

securities at relatively low costs, do not take advantage of this anomaly and thus restore 

the theoretical relation between risk and returns. Our paper is aimed at addressing this 

exact question. Our premise is that professional investors indeed take advantage of this 

low-beta return pattern, often in dedicated strategies that buy low-beta stocks and sell 

high-beta stocks. However, the amount of capital that is dedicated to this low-beta 

strategy is both time varying and unpredictable from arbitrageurs’ perspectives, thus 

resulting in periods where the security market line remains too flat–i.e., too little 

arbitrage capital, as well as periods where the security market line becomes overly 

steep–i.e., too much arbitrage capital.  

Not all arbitrage strategies have these issues. Indeed, some strategies have a 

natural anchor that is relatively easily observed (Stein 2009). For example, it is 

straightforward to observe the extent to which an ADR is trading at a price premium 

(discount) relative to its local share. This ADR premium/discount is a clear signal to an 

arbitrageur of an opportunity and, in fact, arbitrage activity keeps any price differential 

small with deviations disappearing within minutes.4 Importantly, if an unexpectedly 

large number of ADR arbitrageurs pursue a particular trade, the price differential 

narrows. An individual ADR arbitrageur can then adjust his or her demand accordingly. 

                                                            
3
 Of course, since all tests of market efficiency are joint tests of market efficiency and a particular model 

of market equilibrium (Fama 1970), one must always consider the possibility that a better model of 
market equilibrium can explain this and other failures of the Sharpe-Lintner CAPM. In fact, Campbell, 
Giglio, Polk, and Turley (2014) document that high-beta stocks hedge time-variation in the aggregate 
market’s return volatility, offering a potential explanation for the low-beta anomaly. 
4 Rösch (2014) studies various properties of ADR arbitrage. For his sample of 72 ADR home stock stock 
pairs, the average time it takes until a ADR/home stock price deviation disappears is 252 seconds. For an 
institutional overview of this strategy, see J.P. Morgan (2014). 
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Similarly, value investors trading the book-to-market effect documented by Fama 

and French (1992) can rely on the cross-sectional spread in book-to-market ratios, 

dubbed the value spread by Cohen, Polk, and Vuolteenaho (2003).  Those authors tie 

the profitability of value investing to the value spread both theoretically and 

empirically. In particular, Cohen, Polk, and Vuolteenaho (2003) derive an approximate 

log-linear model relating the spread in log book-to-market-equity ratios () across high 

and low book-to-market portfolios to the spread in discounted expected future log 

returns (r) and log profitability (e) across those portfolios, 

ሺߠ௧ିଵ
ு െ ௧ିଵߠ

 ሻ∑ ஶߩ
ୀ ௧ାݎ௧ିଵܧ

ுெ െ ∑ ஶߩ
ୀ ௧ିଵ݁௧ାܧ

ுெ. 

Their model motivates a regression forecasting the return on a zero-cost portfolio similar 

to the HML factor of Fama and French (1993) using the value spread and the current 

spread in profitability, 

ܴ௧ுெ ൌ ܽ  ܾሺߠ௧ିଵ
ு െ ௧ିଵߠ

 ሻ  ܿሺ݁௧ିଵ
ு െ ݁௧ିଵ

 ሻ  ߳௧ 

Their model is successful at predicting the returns on HML. Thus, value investors have 

a relatively straightforward anchor that is analogous to the ADR / home stock price 

gap. Buy value stocks and sell growth stocks until the value spread converges to the 

current profitability gap.5 But there is no easy anchor for beta arbitrage.6,7 

                                                            
5 Asness, Friedman, Krail, and Liew (2000) suggest using projected earnings growth in such a comparison. 
6 Polk, Thompson, and Vuolteenaho (2006) use the Sharpe-Lintner CAPM to relate the cross-sectional 
beta premium to the equity premium. They show how the divergence of the two types of equity-premium 
measures implies a time-varying trading opportunity for beta arbitrage. Their methods are quite 
sophisticated and produce signals about the time-varying attractiveness of beta-arbitrage that, though 
useful in predicting beta-arbitrage returns, are still, of course, quite noisy. 
7 On average, low-beta (high-beta) stocks tend to be value (growth) stocks. As a consequence, the spread 
in book-to-market-equity ratios could potentially inform beta arbitrageurs about the relative 
attractiveness of the strategy. However, Frazzini and Pedersen (2014) document that beta-arbitrage 
strategies are not subsumed by value controls. Moreover, our analysis similarly controls for the value 
effect. Nevertheless, we confirm that our results are robust to controlling for the spread in book-to-market 
ratios across beta deciles in Table V.  
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We argue that the difficulty in identifying the amount of beta-arbitrage capital is 

exacerbated by an indirect positive-feedback channel.8 Namely, beta-arbitrage trading 

can lead to the cross-sectional beta spread increasing when firms are levered. As a 

consequence, stocks in the extreme beta deciles are more likely to remain in these 

extreme groups when arbitrage trading becomes excessive. Given that beta arbitrageurs 

rely on realized beta as their trading signal, this beta expansion resulting from leverage 

effectively causes a potential feedback loop in the beta-arbitrage strategy.  

 

III. Data and Methodology 

The main dataset used in this study is the stock return data from the Center for 

Research in Security Prices (CRSP). Following prior studies on the beta-arbitrage 

strategy, we include in our study all common stocks on NYSE, Amex, and NASDAQ. 

We then augment this stock return data with institutional ownership in individual 

stocks provided by Thompson Financial. We further obtain information on assets under 

management of long-short equity hedge funds from Lipper’s Trading Advisor Selection 

System (TASS). Since the assets managed by hedge funds grow substantially in our 

sample period, we detrend this variable. 

We also construct, as controls, a list of variables that have been shown to predict 

future beta-arbitrage strategy returns. Specifically, a) following Cohen, Polk, and 

Vuolteenaho (2005), we construct an expected inflation index, defined as the exponential 

moving average CPI growth rate over the past 100 months (where the weight on month 

                                                            
8 The idea that positive-feedback strategies are prone to destabilizing behaviour goes back to at least 
DeLong, Shleifer, Summers, and Waldmann (1990). In contrast, negative-feedback strategies like ADR 
arbitrage or value investing are less susceptible to destabilizing behaviour by arbitrageurs, as the price 
mechanism mediates any potential congestion. See Stein (2009) for a discussion of these issues. 
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N is given by 2/(n+1)); b) we also include in our study the sentiment index proposed 

by Baker and Wurgler (2006, 2007); c) following Hong and Sraer (2014), we construct 

an aggregate disagreement proxy as the beta-weighted standard deviation of analysts’ 

long-term growth rate forecasts; finally, following Frazzini and Pedersen (2014), we use 

the Ted spread–the difference between the LIBOR rate and the US Treasury bill 

rate–as a measure of financial intermediaries’ funding constraints. 

At the end of each month, we sort all stocks into deciles (in some cases vigintiles) 

based on their pre-ranking market betas. Following prior literature, we calculate pre-

ranking betas using daily returns in the past twelve months. (Our results are similar if 

we use monthly returns, or different pre-ranking periods.) To account for illiquidity and 

non-synchronous trading, we include on the right hand side of the regression equation 

five lags of the excess market return, in addition to the contemporaneous excess market 

return. The pre-ranking beta is simply the sum of the six coefficients from the OLS 

regression.  

We then compute pairwise partial correlations using 52 weekly returns for all 

stocks in each decile in the portfolio ranking period. We control for the Fama-French 

three factors when computing these partial correlations to purge out any comovement in 

stocks induced by known risk factors. We measure the excess comovement of stocks 

involved in beta arbitrage (ܴܣܤܥ) as the average pairwise partial correlation in the 

lowest market beta decile.9 We operationalize this calculation by measuring the average 

                                                            
9 We focus on the low-beta decile as these stocks tend to be larger and more liquid and, as a consequence, 
our measurement of excess comovement will be less susceptible to issues related to asynchronous trading. 
However, our results are robust to measuring CoBAR using the high-beta decile or combining both the 
high- and low-beta deciles together (with the appropriate sign change). 
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correlation of the three-factor residual of every stock in the lowest beta decile with the 

rest of the stocks in the same decile: 

ܴܣܤܥ ൌ
1
ܰ
ݎݎܥ݈ܽ݅ݐݎܽሺݎݐ݁ݎ ݂

, ି݂ݎݐ݁ݎ 
 ห݂݉݇ݎݐ, ,ܾ݉ݏ ݄݈݉ሻ

ே

ୀଵ

, 

where ݎݐ݁ݎ ݂
 is the weekly return of stock ݅ in the (L)owest beta decile, ି݂ݎݐ݁ݎ 

  is the 

weekly return of the equal-weight lowest beta decile excluding stock ݅, and ܰ is the 

number of stocks in the lowest beta decile. We have also measured ܴܣܤܥ using 

characteristics-adjusted stock returns (as in Daniel, Grinblatt, Titman, and 

Wermers, 1997), and returns that are orthogonalized not only to the Fama-French 

factors but also to each stock’s industry return or to other empirical priced factors, and 

all our main results go through. We present these and many other robustness tests in 

Table IV. 

In the following period, we then form a zero-cost portfolio that goes long the value-

weight portfolio of stocks in the lowest market beta decile and short the value-weight 

portfolio of stocks in the highest market beta decile. We track the cumulative abnormal 

returns of this zero-cost long-short portfolio in months 1 through 36 after portfolio 

formation. To summarize the timing of our empirical exercise, year 0 is our portfolio 

formation year (during which we also measure ܴܣܤܥ), year 1 is the holding year, and 

years 2 and 3 are our post-holding period, to detect any (conditional) long-run reversal 

to the beta-arbitrage strategy. 
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IV. Main Results 

We first document simple characteristics of our arbitrage activity measure. Table I 

Panel A indicates that there is significant excess correlation among low-beta stocks on 

average and that this pairwise correlation varies through time. Specifically, the mean of 

 .is .11 varying from a low of .03 to a high of .22 ܴܣܤܥ

 Panel B of Table I examines ܴܣܤܥ’s correlation with existing measures linked to 

time variation in the expected abnormal returns to beta-arbitrage strategies. We find 

that ܴܣܤܥ is high when either disagreement or sentiment is high, with correlations of 

0.34 and 0.12 respectively. ܴܣܤܥ is also positively correlated with the Ted spread, 

consistent with a time-varying version of Black (1972), though the Ted spread does not 

forecast time-variation in expected abnormal returns to beta-arbitrage strategies 

(Frazzini and Pederson 2014). ܴܣܤܥ is negatively correlated with the expected 

inflation measure of Cohen, Polk, and Vuolteenaho. However, in results not shown, the 

correlation between expected inflation and ܴܣܤܥ becomes positive for the subsample 

from 1990-2010, consistent with arbitrage activity eventually taking advantage of this 

particular source of time-variation in beta-arbitrage profits. 

 Figure 1 plots ܴܣܤܥ	 as	 of	 the	 end	 of	 each	December. At the beginning of the 

sample, ܴܣܤܥ exhibits some extreme swings, though these estimates are imprecisely 

measured. Note that we do not necessarily expect a trend in this measure. Though there 

is clearly more capital invested in beta-arbitrage strategies, in general, markets are also 

more liquid. Nevertheless, starting in 1974, ܴܣܤܥ slowly trends slightly upward to the 

end of the sample. However, there are clear cycles around this trend. These cycles tend 

to peak before broad market declines. Also, note that ܴܣܤܥ is essentially uncorrelated 
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with market volatility. A regression of ܴܣܤܥ on contemporaneous realized market 

volatility produces a loading of -0.023 with a t-statistic of -0.62. 

 Consistent with our measure tracking arbitrage activity, ܴܣܤܥ is persistent 

through time. The autocorrelation of non-overlapping December observations is 0.1. 

Table A1 in the Internet Appendix documents that ܴܣܤܥ	 is also persistent in event 

time. Specifically, the correlation between ܴܣܤܥ	measured in year 0 and year 1 for the 

same set of stocks is 0.24. In fact, year-0 ܴܣܤܥ	 remains highly correlated with 

subsequent values of ܴܣܤܥ	for the same stocks all the way out to year 3. The average 

value of ܴܣܤܥ	 remains high as well. Recall that in year 0, the average excess 

correlation is 0.11. We find that in years 1, 2, and 3, the average excess correlation of 

these same stocks remains around 0.07.10 

 

IV.A. Determinants of ܴܣܤܥ 

To confirm that our measure of beta-arbitrage is sensible, we estimate regressions 

forecasting ܴܣܤܥ with two variables that are often used to proxy for arbitrage activity. 

The first variable we use is the aggregate institutional ownership (Inst	Own) of the low-

beta decile–i.e., stocks in the long leg of the beta strategy–based on 13F filings. We 

include institutional ownership as these investors are typically considered smart money, 

at least relative to individuals, and we focus on their holdings in the low-beta decile as 

we do not observe their short positions in the high-beta decile. We also include the 

assets under management (AUM) of long-short equity hedge funds, the prototypical 

arbitrageur. 

                                                            
 is essentially uncorrelated with a similar measure of excess comovement based on the fifth and ܴܣܤܥ 10

sixth beta deciles. 
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 All else equal, we expect ܴܣܤܥ to be lower if markets are more liquid. However, 

as arbitrage activity is endogenous, times when markets are more liquid may also be 

times when arbitrageurs are more active. Indeed, Cao, Chen, Liang, and Lo (2013) show 

that hedge funds increase their activity in response to increases in aggregate liquidity. 

Following Cao, Chen, Liang, and Lo, we further include past market liquidity as proxied 

by the Pastor and Stambaugh (2003) liquidity factor (PS liquidity) in our regressions to 

measure which channel dominates. 

All regressions in Table II include a trend to ensure that our results are not 

spurious. We also report specifications that include variables that arguably should 

forecast beta-arbitrage returns, the inflation, sentiment, and disagreement indices as 

well as the Ted spread. We measure these variables contemporaneously with ܴܣܤܥ as 

we will be running horse races against these variables in our subsequent analysis. 

 Regression (2) in Table II documents that all three variables (Inst	Own,	AUM,	and	

PS	liquidity) forecast ܴܣܤܥ, with an R2 of approximately 38%.11 Regressions (3) and (4) 

show that the extant predictors of beta-arbitrage returns are not highly correlated with 

 ,Only one potential predictor of beta-arbitrage profitability, the Ted spread .ܴܣܤܥ

adds some incremental explanatory power, with the sign of the coefficient consistent 

with arbitrageurs taking advantage of potential time-variation in beta-arbitrage returns 

linked to this channel. Indeed, as we show later, the Ted spread does a poor job 

forecasting beta-arbitrage returns in practice, perhaps because arbitrageurs have 

compensated appropriately for this potential departure from Sharpe-Lintner pricing. 

                                                            
11 We choose to forecast ܴܣܤܥ in predictive regressions rather than explain ܴܣܤܥ in contemporaneous 
regressions simply to reduce the chance of a spurious fit. However, Table A2 in the Internet Appendix 
shows that R2s remain high in contemporaneous versions of these regressions. 
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Overall, these findings make us comfortable in our interpretation that ܴܣܤܥ	 is 

related to arbitrage activity and distinct from existing measures of opportunities in beta 

arbitrage. As a consequence, we turn to the main analysis of the paper, the short- and 

long-run analysis of beta-arbitrage returns, conditional on ܴܣܤܥ. 

 

IV.B. Forecasting Beta-Arbitrage Returns 

Table III forecasts the abnormal returns on the standard beta-arbitrage strategy as a 

function of investment horizon, conditional on 12.ܴܣܤܥ Panel A examines CAPM-

adjusted returns while Panel B studies abnormal returns relative to the four-factor 

model of Carhart (1997). In each panel, we measure the average abnormal returns in the 

first six months subsequent to the beta-arbitrage trade, and those occurring in years 

one, two, and three. These returns are measured conditional on the value of ܴܣܤܥ as 

of the end of the beta formation period. In particular, we split the sample into five equal 

 .groups ܴܣܤܥ

 Pursuing beta arbitrage when arbitrage activity is low takes patience. Abnormal 

CAPM returns are statistically insignificant in the first year for the bottom three 

 groups. Only in the second year do abnormal returns become statistically ܴܣܤܥ

significant for the two lowest ܴܣܤܥ groups. This statistical significance continues 

through year 3 for the 20% of the sample where beta-arbitrage activity is at its lowest 

values. 

                                                            
12 To ensure that our results do not repackage any existing predictability findings, our non-parametric 

portfolio analysis in Tables III, IV, and IX first orthogonalizes ܴܣܤܥ to the two extant beta-arbitrage 
predictors available for the entire sample, the sentiment and inflation indices. The resulting residual 

 is highly correlated (0.93) with the original series and results are quite similar regardless of which ܴܣܤܥ
series we use.  
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 These findings are strengthened once returns are adjusted for size, value, and 

momentum effects. In Panel B, four-factor beta-arbitrage alphas are indistinguishable 

from zero except in year 3 for the lowest ܴܣܤܥ group. In that period, the four-factor 

alpha is 0.50%/month with an associated t-statistic of 2.49.13 

However, as beta-arbitrage activity increases, the abnormal returns arrive sooner 

and stronger. For the highest ܴܣܤܥ group, the abnormal four-factor returns average 

1.04%/month in the six months immediately subsequent to the beta-arbitrage trade. 

This finding is statistically significant with a t-statistic of 2.41. Moreover, the difference 

between abnormal returns in high and low ܴܣܤܥ periods is 1.25%/month (t-statistic of 

2.11).  

 The key finding of our paper is that these quicker and stronger beta-arbitrage 

returns can be linked to subsequent reversal in the long run. Specifically, in year three, 

the abnormal four-factor return to beta arbitrage when ܴܣܤܥ	is high is -0.92%/month, 

with a t-statistic of -3.18. These abnormal returns are dramatically different from their 

corresponding values when ܴܣܤܥ is low; the difference in year 3 abnormal four-factor 

returns is a gigantic -1.41%/month (t-statistic: -3.69). 

 The top plot of Figure 2 summarizes these patterns by plotting the cumulative 

abnormal four-factor returns to beta arbitrage during periods of high and low ܴܣܤܥ. 

This figure clearly shows that there is a significant delay in abnormal trading profits to 

beta arbitrage when beta-arbitrage activity is low. However, when beta-arbitrage 

activity is high, beta arbitrage results in prices overshooting, as evidenced by the long-

run reversal we document. We argue that trading of the low-beta anomaly is initially 

                                                            
13 We have also separately examined the long and short legs of beta arbitrage (i.e., low-beta vs. high-beta 
stocks). Around 40% of our return effect comes from the long leg, and the remaining 60% from the short 
leg. 
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stabilizing, then, as the trade becomes crowded, turns destabilizing, causing prices to 

overshoot.14 

 

IV.C. Robustness of Key Results 

Table IV examines variations to our methodology to ensure that our finding of time-

varying reversal of beta-arbitrage profits is robust. For simplicity, we only report the 

difference in returns to the beta strategy between the high and low ܴܣܤܥ groups in the 

short run (months 1-6) and the long-run (year 3). For comparison, the first row of Table 

IV reports the baseline results from Table III Panel B. 

 In rows two and three, we conduct the same analysis for two subperiods (1965-

1980 and 1981-2010). Our finding is stronger in the second subsample, consistent with 

the intuition that beta arbitrage has dramatically increased in popularity over the last 

thirty years. The second subsample has an average monthly return differential in year 3 

across the high and low ܴܣܤܥ	groups of -1.78%, with an associated t-statistic of -4.99. 

This point estimate is more than twice as large as the corresponding estimate for the 

earlier period. Our results remain robust if we exclude the tech bubble crash (2000-2001) 

or the recent financial crisis (2007-2009) from our sample. 

 In rows six through nine, we report the results from similar tests using extant 

variables linked to potential time variation in beta-arbitrage profits. None of the four 

variables are associated with time variation in long-run abnormal returns. 

 In the tenth row, we control for UMD when computing ܴܣܤܥ. In rows 11 

through 14, we orthogonalize ܴܣܤܥ	not only to the inflation and sentiment indices but 

also to the average correlation in the market (Pollet and Wilson 2010), the past 

                                                            
14 We discuss the bottom plot of Figure 2 as well as the 5-1 (conditional) rows in Table II in Section V.C. 
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volatility of beta-arbitrage returns, and measures of arbitrage activity in momentum 

and value (Lou and Polk 2013). In row 15, we control for a trend in ܴܣܤܥ. In row 16, 

we include stock specific industry factors in the calculation of ܴܣܤܥ. In row 17, we 

separate HML into its large cap and small cap components. In Row 18, we report results 

based on DGTW-adjusted portfolio returns. In Row 19, we report six-factor-adjusted 

abnormal returns (including liquidity and reversal factors). Row 20 documents that our 

results are robust to orthogonalizing ܴܣܤܥ to the volatility of market returns over the 

twelve-month period corresponding to the measurement of ܴܣܤܥ. 

 In all cases, ܴܣܤܥ	 continues to predict time-variation in year 3 returns. The 

estimates are always very economically significant, with no point estimate smaller than 

1%/month.15 Statistical significance is always strong as well, with no t-statistic less than 

2.44. Taken together, these results confirm that our measure of crowded beta arbitrage 

robustly forecasts times of strong reversal to beta-arbitrage strategies. 

 Rows 21 and 22 split ܴܣܤܥ	into upside and downside components. Specifically, 

we measure the following 

ܴܣܤܥ ൌ
1
ܰ
ݎݎܥ݈ܽ݅ݐݎܽ൫ݎݐ݁ݎ ݂

, ି݂ݎݐ݁ݎ 
 ห݂݉݇ݎݐ, ,ܾ݉ݏ ݄݈݉, ݂ݎݐ݁ݎ  ݉݁݀݅ܽ݊ሺ݂ݎݐ݁ݎሻ൯

ே

ୀଵ

 

ܴܣܤܥ ൌ
1
ܰ
ݎݎܥ݈ܽ݅ݐݎܽ൫ݎݐ݁ݎ ݂

, ି݂ݎݐ݁ݎ 
 ห݂݉݇ݎݐ, ,ܾ݉ݏ ݄݈݉, ݂ݎݐ݁ݎ ൏ ݉݁݀݅ܽ݊ሺ݂ݎݐ݁ݎሻ൯

ே

ୀଵ

 

Separating ܴܣܤܥ	in this way allows us to distinguish between excess comovement tied 

to strategies buying low-beta stocks (such as those followed by beta arbitrageurs) and 

                                                            
15 Though in some instances, difference in short-run abnormal returns across high and low ܴܣܤܥ periods 

are no longer statistically significant; the point estimates are always economically large. Moreover, some 
of the overcorrection corresponding to the long-run reversal may accrue in our formation period as the 
timing of our empirical exercise is somewhat arbitrary. It is certainly possible that the beta arbitrageurs 
we are interested in may use shorter formation periods when pursuing their particular version of the 
strategy. 
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strategies selling low-beta stocks (such as leveraged-constrained investors modeled by 

Black (1972)). Consistent with our interpretation, we find that only ܴܣܤܥ forecasts 

time variation in the short- and long-run expected returns to beta arbitrage (whereas 

 .( does notܴܣܤܥ

 Finally, in rows 23 and 24, we report the results of AUM (as the only proxy for 

arbitrage activity available for the full sample) as well as the linear combination of the 

three variables implied by regression (2) in Table II. AUM is unable to pick up the long-

run reversal we have linked to ܴܣܤܥ. Interestingly, the fitted value of ܴܣܤܥ	 from 

regression (2) in Table II is able to pick up some of this reversal, though the effect is 

not statistically significant. 

 In Table V, we report the results of regressions forecasting the abnormal four-

factor returns to beta-arbitrage spread bets. Unlike Table II, these regressions exploit 

not just the ordinal but also the cardinal aspect of ܴܣܤܥ. Moreover, these regressions 

not only confirm that our findings are robust to existing measures of the profitability of 

beta arbitrage, they also document the relative extent to which existing measures 

forecast abnormal returns to beta-arbitrage strategies in the presence of ܴܣܤܥ. 

 Regressions (1)-(3) in Table V forecast time-series variation in abnormal beta-

arbitrage returns in months 1-6. Regression (1) confirms that ܴܣܤܥ	strongly forecasts 

beta-arbitrage four-factor alphas over the full sample. Regression (2) then includes 

controls that are available over the entire sample. These include the inflation and 

sentiment indices, market volatility, and a version of Cohen, Polk, and Vuolteenaho’s 

(2003) value spread for the beta deciles in question. ܴܣܤܥ	 continues to reliably 

describe time-variation in abnormal four-factor returns on the low-beta-minus-high-beta 
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strategy, with only the sentiment index providing any additional explanatory power. 

Over the shorter period where both aggregate disagreement and the Ted spread are 

available, ܴܣܤܥ	does not independently forecast time-variation in the abnormal returns 

to a standard beta-arbitrage strategy. 

 Regressions (4)-(6) of Table V forecast the returns on beta-arbitrage strategies in 

year 3. The message from these regressions concerning the main result of the paper is 

clear; ܴܣܤܥ	 strongly forecasts a time-varying reversal regardless of the other 

forecasting variables included in the regression.  

 

IV.D. Predicting the Security Market Line  

Our results can also be seen from the time variation in the shape of the security market 

line (SML) as a function of lagged ܴܣܤܥ. Such an approach documents that the time-

variation we document is not restricted to a small subset of extreme betas stocks, but 

instead is a robust feature of the cross-section. At the end of each month, we sort all 

stocks into 20 value-weighted portfolios by their pre-ranking betas.16 We track these 20 

portfolio returns both in months 1-6 and months 25-36 after portfolio formation to 

compute short-term and long-term post-ranking betas, and, in turn, to construct our 

short-term and long-term security market lines. 

For the months 1-6 portfolio returns, we then compute the post-ranking betas by 

regressing each of the 20 portfolios’ value-weighted monthly returns on market excess 

returns. Following Fama and French (1992), we use the entire sample to compute post-

ranking betas. That is, we pool together these six monthly returns across all calendar 

                                                            
16 We sort stocks into vigintiles in order to increase the statistical precision of our cross-sectional estimate. 
However, Table A3 in the Internet Appendix confirms that our results are qualitatively the same if we 
instead sort stocks into deciles. 
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months to estimate the portfolio beta. We estimate post-ranking betas for months 25-36 

in a similar fashion. The two sets of post-ranking betas are then labelled ߚଵ
ଵ, ..., ߚଶ

ଵ  and 

ଵߚ
ଶହ, ..., ߚଶ

ଶହ. 

To calculate the intercept and slope of the short-term and long-term security 

market lines, we estimate the following cross-sectional regressions: 

short-term SML: ܴܺ݁ݐ,௧
ଵ ൌ ௧ݐ݁ܿݎ݁ݐ݊݅

ଵ  ߚ௧ଵ݈݁ݏ
ଵ, 

long-term SML: ܴܺ݁ݐ,௧
ଶହ ൌ ௧ݐ݁ܿݎ݁ݐ݊݅

ଶହ  ௧݈݁ݏ
ଶହߚ

ଶହ, 

where ܴܺ݁ݐ,௧
ଵ  is portfolio ݅’s monthly excess returns in months 1 through 6, and ܴܺ݁ݐ,௧

ଶହ 

is portfolio ݅’s monthly returns in months 25 through 36. These two regressions then 

give us two time-series of coefficient estimates of the intercept and slope of the short-

term and long-term security market lines: (݅݊ݐ݁ܿݎ݁ݐ௧ଵ,  ௧ଵ) and݈݁ݏ

௧ݐ݁ܿݎ݁ݐ݊݅)
ଶହ, ௧݈݁ݏ

ଶହ), respectively. As the average excess returns and post-ranking 

betas are always measured at the same point in time, the pair (݅݊ݐ݁ܿݎ݁ݐ௧ଵ,  ௧ଵ) fully݈݁ݏ

describes the security market line in the short run, while (݅݊ݐ݁ܿݎ݁ݐ௧
ଶହ, ௧݈݁ݏ

ଶହ) captures 

the security market line two years down the road. 

 We then examine how these intercepts and slopes vary as a function of our 

measure of beta-arbitrage capital. In particular, we conduct an OLS regression of the 

intercept and slope measured in each month on lagged ܴܣܤܥ. As can be seen from 

Table VI, the intercept of the short-term security market line significantly increases in 

 The top panel of Figure 3 shows .ܴܣܤܥ and its slope significantly decreases in ,ܴܣܤܥ

this fact clearly. During high ܴܣܤܥ–i.e., high beta-arbitrage capital–periods, the 

short-term security market line strongly slopes downward, indicating strong profits to 

the low-beta strategy, consistent with arbitrageurs expediting the correction of market 
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misevaluation. In contrast, during low ܴܣܤܥ–i.e., low beta-arbitrage capital–periods, 

the short-term security market line is essentially flat and the beta-arbitrage strategy, as 

a consequence, unprofitable, consistent with delayed correction of the beta anomaly. 

The pattern is completely reversed for the long-term security market line. The 

intercept of the long-term security market line is significantly negatively related to 

 As can be seen .ܴܣܤܥ whereas its slope is significantly positively related to ,ܴܣܤܥ

from the bottom panel of Figure 3, two years after high ܴܣܤܥ	periods, the long-term 

security market line turns upward sloping; indeed, the slope is so steep that the beta 

strategy loses money, consistent with over-correction of the low beta anomaly by 

crowded arbitrage trading. In contrast, after low ܴܣܤܥ	periods, the long-term security 

market line turns downward sloping, reflecting eventual profitability of the low-beta 

strategy in the long run. 

 

V. Additional Analyses 

We perform a number of further analyses to provide additional support to our thesis 

that crowded arbitrage trading can potentially destabilize prices. 

 

V.A. Beta Expansion 

Beta arbitrage can be susceptible to positive-feedback trading. Successful bets on 

(against) low-beta (high-beta) stocks result in prices for those securities rising (falling). 

If the underlying firms are leveraged, this change in price will, all else equal, result in 

the security’s beta falling (increasing) further.17 Thus, not only do arbitrageurs not know 

                                                            
17 The idea that, all else equal, changes in leverage drive changes in equity beta is, of course, the key 
insight behind Proposition II of Modigiliani and Miller (1958). 
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when to stop trading the low-beta strategy, their (collective) trades also affect the 

strength of the signal. Consequently, beta arbitrageurs may increase their bets precisely 

when trading becomes crowded and the profitability of the strategy has decreased.  

We test this prediction in Table VII. The dependent variable in columns (1) and 

(2) is the spread in betas across the high and low value-weight beta decile portfolios, 

denoted ݀ܽ݁ݎܵܽݐ݁ܤ, as of the end of year 1. The independent variables include lagged 

 the average book leverage ,݀ܽ݁ݎܵܽݐ݁ܤ the beta-formation-period value of ,ܴܣܤܥ

quintile (݁݃ܽݎ݁ݒ݁ܮ) across the high and low beta decile portfolios, and an interaction 

between ܴܣܤܥ	and ݁݃ܽݎ݁ݒ݁ܮ. 

The dependent variable in columns (3) and (4) is the fraction of the stocks in the 

high and low beta decile portfolios that continue to be in these portfolios when stocks 

are resorted into beta deciles at the end of year 1 (denoted ݊݅ݐܿܽݎܨ). Note that since 

we estimate beta using 52 weeks of stock returns, the two periods of beta estimation 

that determine the change in ݀ܽ݁ݎܵܽݐ݁ܤ and ݊݅ݐܿܽݎܨ do not overlap. We include a 

trend in all regressions, but our results are robust to not including the trend dummy. 

Regression (1) in Table VII shows that when ܴܣܤܥ	 is relatively high, future 

 A one-standard-deviation .݀ܽ݁ݎܵܽݐ݁ܤ is also high, controlling for lagged ݀ܽ݁ݎܵܽݐ݁ܤ

increase in ܴܣܤܥ	 forecasts an increase in ݀ܽ݁ݎܵܽݐ݁ܤ of roughly 6%. Regression (2) 

shows that this is particular true when ݁݃ܽݎ݁ݒ݁ܮ is also high. If beta-arbitrage bets 

were to contain the highest book-leverage quintile stocks, a one-standard deviation 

increase in ܴܣܤܥ	 would increase ݀ܽ݁ݎܵܽݐ݁ܤ by nearly 9.5%. These two facts are 

consistent with a positive feedback channel for the beta-arbitrage strategy that works 

through firm-level leverage. 
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Regressions (3) and (4) replace the dependent variable, ݀ܽ݁ݎܵܽݐ݁ܤ, with 

 Regression (3) shows that a larger fraction of the stocks in the extreme beta .݊݅ݐܿܽݎܨ

portfolio remain in these extreme portfolios when ܴܣܤܥ	is relatively high. Specifically, 

a one-standard-deviation increase in ܴܣܤܥ	 is associated with the level of ݊݅ݐܿܽݎܨ 

increasing by almost 7.8%. Regression (4) confirms that this effect is particularly strong 

when ݁݃ܽݎ݁ݒ݁ܮ is also high. If beta-arbitrage bets were to contain the highest book-

leverage quintile stocks, a one-standard deviation increase in ܴܣܤܥ	 would increase 

 by more than 9.3%. Table VII Panel B confirms that these results are robust ݊݅ݐܿܽݎܨ

to the same methodological variations as in Table IV. 

Table VIII turns to firm-level regressions to document the beta expansion our 

story predicts.  In particular, we estimate panel regressions of subsequent changes in 

stock beta on lagged ܴܣܤܥ	 . At the end of each month, all stocks are sorted into 

deciles based on their market beta calculated using daily returns in the past 12 months. 

The dependent variable is ݄݁݃݊ܽܥܽݐ݁ܤ, the change in stock beta from year t to t+1 

(again, we use non-overlapping periods). In addition to ܴܣܤܥ, we also include 

 the difference between a stock’s beta decile rank and the average rank of 5.5 ,݁ܿ݊ܽݐݏ݅ܦ

in year t. ݁݃ܽݎ݁ݒ݁ܮ is the book leverage of the firm, measured in year t. We also include 

all double and triple interaction terms of ݁ܿ݊ܽݐݏ݅ܦ ,ܴܣܤܥ, and ݁݃ܽݎ݁ݒ݁ܮ. Other 

control variables include the lagged firm size, book-to-market ratio, lagged one-month 

and one-year stock return, and the prior-year idiosyncratic volatility. Time-fixed effects 

are included in Columns 3 and 4. Note that since ܴܣܤܥ	is a time-series variable, it is 

subsumed by the time dummies in those regressions. 
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In all four regresisons, stocks with higher Distance have a lower ݄݁݃݊ܽܥܽݐ݁ܤ, 

consistent with mean reversion. Our main focus is on the triple interaction among 

 This mean reversion effect is significantly dampened .݁݃ܽݎ݁ݒ݁ܮ and ,݁ܿ݊ܽݐݏ݅ܦ ,ܴܣܤܥ

when ܴܣܤܥ	and ݁݃ܽݎ݁ݒ݁ܮ are high. 

Taken together, these results are consistent with beta-arbitrage activity causing 

the cross-sectional spread in betas to expand. 

 

V.B. Low Limits to Arbitrage 

We interpret our findings as consistent with arbitrage activity facilitating the correction 

of the slope of the security market line in the short run. However, in periods of crowded 

trading, arbitrageurs can cause price overshooting. In Table IX, we exploit cross-

sectional heterogeneity to provide additional support for our interpretation. All else 

equal, arbitrageurs prefer to trade stocks with low idiosyncratic volatility (to reduce 

tracking error), high liquidity (to facilitate opening/closing of the position), and large 

capitalization (to increase strategy capacity). As a consequence, we split our sample 

each period into two subgroups along each of these dimensions.18 Our focus is on the 

long-run reversal associated with periods of high ܴܣܤܥ. 

 Panels A and B split the sample based on market capitalization. Panel A 

documents that among large-cap stocks, ܴܣܤܥ	negatively forecasts differences in year 3 

abnormal returns (-1.86%/month with a t-statistic of -3.97). Corresponding differences 

among small stocks are insignificant at conventional levels. 

                                                            
18 To ensure that our findings from these double-sorted portfolios are not driven by small stocks, we 
exclude stocks that are microcaps (stocks below the NYSE 20th size percentile) or have stock prices below 
five dollars. However, if we include these stocks, our results are stronger. 
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Panels C and D examine time variation in the abnormal four-factor returns as a 

function of liquidity. For relatively high liquidity stocks, we continue to find that 

 has information about time-series variation in expected abnormal returns in year	ܴܣܤܥ

3. The spread in four-factor alpha across the high and low ܴܣܤܥ	 groups is  

-1.97%/month (t-statistic of -3.45) in the long-run. The corresponding estimates for the 

low liquidity sample are statistically insignificant. 

Panels E and F report results when the sample is split based on idiosyncratic 

variance. Among low idiosyncratic stocks, Panel E shows that, in year 3, ܴܣܤܥ	

strongly predicts a reversal in trading profits of 1.3%/month. This predictability is very 

statistically significant as the t-statistic is -3.60. Turning to high idiosyncratic volatility 

stocks, Table VII Panel F shows that the corresponding point estimate is much lower 

and statistically insignificant. 

Finally, our feedback channel suggests that booms and busts of beta arbitrage 

should be especially strong among levered stocks. Thus, Panels G and H of Table IX 

report results when the sample is split based on leverage. Among high-leverage stocks, 

Panel G shows that for the highest ܴܣܤܥ	 group, the abnormal four-factor returns 

average a striking 3.53%/month in the six months immediately subsequent to the beta-

arbitrage trade. This finding is statistically significant with a t-statistic of 2.39. 

Moreover, the difference between abnormal returns in high and low ܴܣܤܥ	 periods 

among high-leverage stocks is 3.76%/month (t-statistic of 2.46).  

 Again, these stronger beta-arbitrage returns can be linked to subsequent reversal 

in the long run. Specifically, in year three, the abnormal four-factor return to beta 

arbitrage when ܴܣܤܥ	 is high is -1.11%/month, with a t-statistic of -2.79. These 
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abnormal returns are dramatically different from their corresponding values when 

-is low; the difference in year 3 abnormal four-factor returns is -1.27%/month (t	ܴܣܤܥ

statistic: -2.49). 

Panel H of Table IX reports the patterns among low-leverage stocks. Consistent 

with our story, differences across ܴܣܤܥ	 groups among stocks where our positive-

feedback channel cannot play a role are much smaller and, in every case, are 

statistically insignificant. 

In summary, Table IX confirms that our effect is stronger among those stocks 

where limits of arbitrage are weaker, where one expects arbitrageurs to play a larger 

role, and among high-leverage stocks, where our feedback channel is relevant. 

 

V.C. Conditional Attribution 

Of course, if beta is moving with ܴܣܤܥ, we must estimate conditional performance 

attribution regressions. The last rows of Table II Panel A and Table II Panel B report 

the results of those regressions. We find that the long-run reversal of beta-arbitrage 

profits remains. The bottom plot in Figure 2 shows the corresponding cumulative 

abnormal four-factor returns to beta arbitrage during periods of high and low CoBAR. 

We continue to find an economically large reversal of beta-arbitrage profits when 

-is high. Figure 4 plots the conditional security market line in the short and long	ܴܣܤܥ

run as a function of lagged ܴܣܤܥ. The fact that beta expansion and destabilization go 

hand-in-hand is easy to see. 
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V.D. Fresh versus Stale Beta 

Though beta-arbitrage activity may cause the beta spread to vary through time, for a 

feedback loop to occur, beta arbitrageurs must base their strategies on fresh estimates of 

beta rather than on stale estimates. Consistent with this claim, we show that our 

predictability results decay as a function of beta staleness. 

We repeat the previous analysis of section IV.B, but replacing our fresh beta 

estimates (measured over the most recent year) with progressively staler ones. In 

particular, we estimate betas in each of the five years prior to the formation year. As a 

consequence, both the resulting beta strategy and the associated ܴܣܤܥ	are different for 

each degree of beta staleness. For each of these six beta strategies, we regress the four-

factor alpha of the strategy in months one-six and year three on its corresponding 

 .ܴܣܤܥ

Figure 4 plots the resulting regression coefficients (results for months 1-6 plotted 

with a blue square and results for year 3 plotted with a red circle) as a function of the 

degree of staleness of beta. The baseline results with the most recent beta are simply the 

corresponding results from Table V. We find that both the short-run and long-run 

predictability documented in section IV.B decays as the beta signal becomes more and 

more stale. Indeed, strategies using beta estimates that are five years old display no 

predictability. These results are consistent with the feedback loop we propose.  

 

VI. Conclusion 

We study the response of arbitrageurs to the flatness of the security market line. Using 

an approach to measuring arbitrage activity first introduced by Lou and Polk (2014), 

we document booms and busts in beta arbitrage. Specifically, we find that when 
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arbitrage activity is relatively low, abnormal returns on beta-arbitrage strategies take 

much longer to materialize, appearing only two to three years after putting on the 

trade. In sharp contrast, when arbitrage activity is relatively high, abnormal returns on 

beta-arbitrage strategies occur relatively quickly, within the first six months of the 

trade. These strong abnormal returns then revert over the next three years. Thus, our 

findings are consistent with arbitrageurs exacerbating this time-variation in the 

expected return to beta arbitrage. 

 We provide evidence on a novel positive feedback channel for beta-arbitrage 

activity. Welch (2004) shows that firms do not issue and repurchase debt and equity to 

counteract the mechanical effect that stock returns have on their market leverage ratio. 

Since the typical firm is levered and given the benign effects of leverage on equity beta 

(Modigliani and Miller 1958), buying low-beta stocks and selling high-beta stocks may 

cause the cross-sectional spread in betas to increase. We show that this beta expansion 

occurs when beta-arbitrage activity is high and particularly so when stocks typically 

traded by beta arbitrageurs are particularly levered. Thus, beta arbitrageurs may 

actually increase their bets when the profitability of the strategy has decreased. Indeed, 

we find that the short-run abnormal returns to high-leverage beta-arbitrage stocks more 

than triples before reverting in the long run. 

 Interestingly, the unconditional four-factor alpha of beta arbitrage over typical 

holding periods for our 1965-2010 sample is close to zero, much lower than the positive 

value one finds for earlier samples. Thus, it seems that the response to Black, Jensen, 

and Scholes’s (1972) famous finding is right on average. However, our conditional 

analysis reveals rich time-series variation that is consistent with the general message of 
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Stein (2010): Arbitrage activity faces a significant coordination problem for unanchored 

strategies that have positive feedback characteristics. 
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Table I: Summary Statistics 
 

This table provides characteristics of “ܴܣܤܥ,” the excess comovement among low beta stocks over the 
period 1964 to 2010. At the end of each month, all stocks are sorted into deciles based on their market beta 
calculated using daily returns in the past 12 months. To account for illiquidity and non-synchronous 
trading, we include on the right hand side of the regression equation five lags of the excess market return, 
in addition to the contemporaneous excess market return. The pre-ranking beta is simply the sum of the six 
coefficients from the OLS regression. Pairwise partial return correlations (controlling for the Fama-French 
three factors) for all stocks in the bottom beta decile are computed based on weekly stock returns in the 

previous 12 months. ܴܣܤܥ is the average pair-wise correlation between any two stocks in the low-beta 

decile in year ݊݅ݐ݈݂ܽ݊ܫ .ݐ is the exponential moving average CPI growth rate over the past 100 months 
(where the weight on month N is given by 2/(n+1)), as constructed by Cohen, Polk, and Vuolteenaho 

 is ݐ݊݁݉݁݁ݎ݃ܽݏ݅ܦ .is the sentiment index proposed by Wurgler and Baker (2006, 2007) ݐ݊݁݉݅ݐ݊݁ܵ .(2005)
the beta-weighted standard deviation of analysts’ long-term growth rate forecasts, as used in Hong and 

Sraer (2012). ܶ݁݀	ܵ݀ܽ݁ݎ is the difference between the LIBOR rate and the US Treasury bill rate. Panel A 
reports the summary statistics of these variables. Panel B shows the time-series correlations among these 
key variables for the entire sample period. 

 

Panel A: Summary Statistics 

Variable N Mean Std. Dev. Min Max 

 0.215 0.034 0.029 0.108 545 ܴܣܤܥ

Inflation 545 0.004 0.002 0.001 0.007 

Sentiment 545 0.003 1.000 -2.578 2.691 

Disagreement 349 4.426 0.897 3.266 7.338 

Ted Spread 313 0.566 0.412 0.127 3.443 

 

Panel B: Correlation 

CoBAR Inflation Sentiment Disagreemt Ted Spread 

 1.000 ܴܣܤܥ

Inflation -0.315 1.000 

Sentiment 0.123 0.071 1.000 

Disagreement 0.338 -0.384 0.388 1.000 

Ted Spread 0.174 0.254 0.080 -0.137 1.000 

 
 

 
 
   



Table II: Determinants of CoBAR 
 

This table reports regressions of ܴܣܤܥ, described in Table I, on variables plausibly linked to arbitrage 
activity. At the end of each month, all stocks are sorted into deciles based on their market beta calculated 
using daily returns in the past 12 months. To account for illiquidity and non-synchronous trading, we 
include on the right hand side of the regression equation five lags of the excess market return, in addition 
to the contemporaneous excess market return. The pre-ranking beta is simply the sum of the six coefficients 

from the OLS regression. The dependent variable in the regressions, ܴܣܤܥ, is the average pairwise partial 

weekly return correlation in the low-beta decile over the past 12 months. ݐݏ݊ܫ	݊ݓܱ is the aggregate 

institutional ownership of the low-beta decile, ܯܷܣ is the logarithm of the total assets under management 

of long-short equity hedge funds. ݊݅ݐ݈݂ܽ݊ܫ is the exponential moving average CPI growth rate over the 
past 100 months (where the weight on month N is given by 2/(n+1)), as constructed by Cohen, Polk, and 

Vuolteenaho (2005). ܵ݁݊ݐ݊݁݉݅ݐ is the sentiment index proposed by Wurgler and Baker (2006, 2007). 

 is the beta-weighted standard deviation of analysts’ long-term growth rate forecasts, as used ݐ݊݁݉݁݁ݎ݃ܽݏ݅ܦ

in Hong and Sraer (2012). ܶ݁݀	ܵ݀ܽ݁ݎ is the difference between the LIBOR rate and the US Treasury bill 
rate. We also include in the regression the Pastor-Stambaugh liquidity factor (PS Liquidity). A trend 
dummy is included in all regression specifications. All independent variables are divided by their 
corresponding standard deviation, so that the coefficient represents the effect of a one-standard-deviation 

change in the independent variable on ܴܣܤܥ. Standard errors are shown in brackets. *, **, *** denote 
significance at the 10%, 5%, and 1% level, respectively. 
 

DepVar ܴܣܤܥ௧ 

 [1] [2] [3] [4] 

 **௧ିଵ 0.018*** 0.025*** 0.014*** 0.012݊ݓܱ	ݐݏ݊ܫ

[0.007] [0.006] [0.005] [0.006] 

 **௧ିଵ 0.008*** 0.005ܯܷܣ

[0.002] [0.002] 

 ௧ -0.016* -0.005݊݅ݐ݈݂ܽ݊ܫ

[0.009] [0.004] 

 ௧ 0.003 0.004ݐ݊݁݉݅ݐ݊݁ܵ

[0.008] [0.021] 

 ௧   0.007 0.006ݐ݊݁݉݁݁ݎ݃ܽݏ݅ܦ

   [0.005] [0.013] 

 **௧   0.010*** 0.011݀ܽ݁ݎܵ	݀݁ܶ

   [0.003] [0.005] 

 ***௧ 0.007** 0.008*** 0.010*** 0.010ݕݐ݅݀݅ݑݍ݅ܮ	ܵܲ

 [0.003] [0.003] [0.002] [0.003] 

  

TREND YES YES YES YES 

Adj-R2 0.152 0.382 0.372 0.441 

No. Obs. 357 180 357 180 



Table III: Forecasting Beta-arbitrage Returns with CoBAR 
 

This table reports returns to the beta arbitrage strategy as a function of lagged ܴܣܤܥ. At the end of each 
month, all stocks are sorted into deciles based on their market beta calculated using daily returns in the 
past 12 months. To account for illiquidity and non-synchronous trading, we include on the right hand side 
of the regression equation five lags of the excess market return, in addition to the contemporaneous excess 
market return. The pre-ranking beta is simply the sum of the six coefficients from the OLS regression. All 

months are then classified into five groups based on ܴܣܤܥ, the average pairwise partial weekly return 
correlation in the low-beta decile over the past 12 months. Reported below are the returns to the beta 
arbitrage strategy (i.e., to go long the value-weight low-beta decile and short the value-weighted high-beta 
decile) in each of the three years after portfolio formation during 1965 to 2010, following low to high 

 Panels A and B report, respectively, the average monthly CAPM alpha and Carhart four-factor .ܴܣܤܥ
alpha of the beta arbitrage strategy. “5-1” is the difference in monthly returns to the long-short strategy 

following high vs. low 1-5“ ;ܴܣܤܥ Conditional” is the difference in conditional abnormal returns (i.e., 

allowing for risk loadings to vary as a function of ܴܣܤܥ) following high vs. low ܴܣܤܥ. T-statistics, shown 
in parentheses, are computed based on standard errors corrected for serial-dependence with 12 lags. 5% 
statistical significance is indicated in bold. 

 

Panel A: CAPM Adjusted Beta-arbitrage Returns 

  Months 1-6 Year 1 Year 2 Year 3 

Rank No Obs. Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

1 109 0.19% (0.38) 0.38% (1.01) 0.93% (3.18) 0.93% (4.30) 

2 109 0.04% (0.12) 0.43% (1.31) 0.63% (2.07) 0.41% (1.34) 

3 109 -0.08% (-0.20) 0.47% (1.37) 0.36% (1.05) 0.43% (1.31) 

4 109 0.37% (1.25) 0.48% (2.43) 0.29% (0.78) 0.29% (0.93) 

5 109 1.64% (2.85) 1.11% (2.02) 0.63% (1.54) -0.60% (-2.03)

5-1 1.45% (1.93) 0.73% (1.10) -0.30% (-0.61) -1.52% (-3.86)

5-1(Conditional) 1.39% (1.98) 0.66% (1.04) -0.29% (-0.59) -1.48% (-3.77)

 
 

Panel B: Four-Factor Adjusted Beta-arbitrage Returns 

  Months 1-6 Year 1 Year 2 Year 3 

Rank No Obs. Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

1 109 -0.21% (-0.49) 0.05% (0.16) 0.47% (1.74) 0.50% (2.49) 

2 109 -0.57% (-1.91) -0.15% (-0.53) 0.19% (0.68) -0.03% (-0.09)

3 109 -0.42% (-1.46) -0.05% (-0.19) -0.11% (-0.34) -0.04% (-0.13)

4 109 -0.35% (-1.21) -0.29% (-1.96) -0.27% (-0.83) -0.13% (-0.42)

5 109 1.04% (2.41) 0.58% (1.67) 0.01% (0.01) -0.92% (-3.18)

5-1 1.25% (2.11) 0.53% (1.17) -0.46% (-0.96) -1.41% (-3.69)

5-1(Conditional) 0.62% (1.24) -0.01% (-0.04) -0.88% (-1.92) -1.40% (-3.78)

   



Table IV: Robustness Checks 
 

This table reports returns to the beta arbitrage strategy as a function of lagged ܴܣܤܥ. At the end of each 
month, all stocks are sorted into deciles based on their market beta calculated using daily returns in the 
past 12 months. To account for illiquidity and non-synchronous trading, we include on the right hand side 
of the regression equation five lags of the excess market return, in addition to the contemporaneous excess 
market return. The pre-ranking beta is simply the sum of the six coefficients from the OLS regression. All 

months are then classified into five groups based on ܴܣܤܥ, the average pairwise partial weekly return 
correlation in the low-beta decile over the past 12 months. Reported below is the difference in four-factor 

alpha to the beta arbitrage strategy between high ܴܣܤܥ periods and low ܴܣܤܥ periods. Year zero is the 
beta portfolio ranking period. Row 1 shows the baseline results which are also reported in Table III. In 
Rows 2 and 3, we conduct the same analysis for two sub periods. In Rows 4 and 5, we exclude the tech 
bubble crash and the recent financial crisis from our sample. In Rows 6-9, we rank all months based on the 
inflation index (Cohen, Polk, and Vuolteenaho, 2005), sentiment index (Wurgler and Baker, 2006), 
aggregate analyst forecast dispersion (Hong and Sraer, 2014), and Ted Spread (Frazzini and Pedersen, 

2014), respectively. In Row 10, we also control for the UMD factor in computing ܴܣܤܥ. In Rows 11-14, we 

take the residual ܴܣܤܥ after purging out, respectively, the average pair-wise correlation in the market, the 
lagged 36-month volatility of the BAB factor (Frazzini and Pedersen, 2013), and CoMomentum and 

CoValue (Lou and Polk, 2014). In Row 15, we use de-trended ܴܣܤܥ. In Row 16, we further control for 

industry factors in the calculation of ܴܣܤܥ. In Row 17, we control for both large- and small-cap HML in 

computing ܴܣܤܥ. In Row 18, we report DGTW-adjusted portfolio returns. In Row 19, we report results 
using a six-factor model (including liquidity and reversal factors) when measuring CoBAR and 

benchmarking abnormal returns. In Row 20, we orthogonalize ܴܣܤܥ with regard to market volatility over 

the past 12 months. In Rows 21 and 22, we examine upside and downside ܴܣܤܥ, as distinguished by the 
median low-beta portfolio return. Finally in Rows 23 to 24, we rank all months based on aggregate 

institutional ownership of the low-beta decile and the fitted value of ܴܣܤܥ on these two variables. T-
statistics, shown in parentheses, are computed based on standard errors corrected for serial-dependence 
with 12 lags. 5% statistical significance is indicated in bold. 
 
  



 
 

Four-Factor Adjusted Beta-arbitrage Returns 

 Months 1-6 Year 3 

Estimate t-stat Estimate t-stat 

Subsamples 

Full Sample: 1965-2010 1.25% (2.11) -1.41% (-3.69) 

Subsample: 1965-1980 1.45% (2.14) -0.73% (-0.89) 

Subsample: 1981-2010 0.68% (0.85) -1.78% (-4.99) 

Excluding 2000-2001 0.83% (1.66) -1.25% (-3.05) 

Excluding 2007-2009 0.68% (1.38) -1.19% (-2.64) 

     

Other predictors of beta-arbitrage returns 

Inflation 0.56% (1.08) 0.01% (0.03) 

Sentiment 1.63% (2.90) 0.55% (1.18) 

Disagreement 0.81% (1.14) 0.29% (0.37) 

Ted Spread -0.50% (-0.64) -0.60% (-1.24) 

Alternative definitions of CoBAR 

Controlling for UMD 0.87% (1.58) -1.47% (-3.61) 

Controlling for MKT CORR 1.14% (1.94) -1.60% (-4.01) 

Controlling for Vol(BAB) 1.11% (1.99) -1.40% (-3.53) 

Controlling for Comomentum 1.02% (1.82) -1.37% (-3.47) 

Controlling for Covalue 1.02% (1.85) -1.46% (-3.60) 

Controlling for Trend 1.20% (2.01) -1.29% (-3.39) 

Controlling for Industry Return 0.62% (0.95) -1.04% (-2.44) 

Controlling for Large/Small-Cap HML  1.29% (2.19) -1.40% (-3.46) 

Controlling for DGTW Adjustments 2.04% (2.85) -1.20% (-2.70) 

Controlling for Six Factors 1.12% (1.96) -1.35% (-3.47) 

Controlling for Mktvol12 1.24% (2.11) -1.38% (-3.54) 

Upside CoBAR 1.09% (2.08) -0.80% (-2.32) 

Downside CoBAR 0.04% (0.08) -0.30% (-0.65) 

     

Fitted CoBAR 

Institutional Ownership 0.81% (0.89) 0.46% (0.71) 

Fitted CoBAR 0.72% (0.81) -0.38% (-0.65) 

 
  



Table V: Regression Analysis 
 

This table reports returns to the beta arbitrage strategy as a function of lagged ܴܣܤܥ. At the end of each 
month, all stocks are sorted into deciles based on their market beta calculated using daily returns in the 
past 12 months. To account for illiquidity and non-synchronous trading, we include on the right hand side 
of the regression equation five lags of the excess market return, in addition to the contemporaneous excess 
market return. The pre-ranking beta is simply the sum of the six coefficients from the OLS regression. The 
dependent variable is the four-factor alpha of the beta arbitrage strategy (i.e., a portfolio that is long the 
value-weight low-beta decile and short the value-weighted high-beta decile). The main independent variable 

is ܴܣܤܥ, the average pairwise partial weekly three-factor residual correlation within the low-beta decile 
over the past 12 months. We also include in the regression the inflation index (Cohen, Polk, and 
Vuolteenaho, 2005), sentiment index (Wurgler and Baker, 2006), aggregate analyst forecast dispersion 
(Hong and Sraer, 2012), Ted Spread–the difference between the LIBOR rate and the US Treasury bill 
rate, the ValueSpread–the spread in log book-to-market-ratios across the low-beta and high-beta deciles, 
and the market volatility over the past 12 months. The first three columns examine returns to the beta 
arbitrage strategy in months 1-6, and the next three columns examine the returns in year 3 after portfolio 
formation. We report results based on Carhart four-factor adjustments. T-statistics, shown in brackets, are 
computed based on standard errors corrected for serial-dependence with 12 lags. *, **, *** denote 
significance at the 10%, 5%, and 1% level, respectively. 
 

DepVar Four-Factor Alpha to the Beta Arbitrage Strategy 

Months 1-6 Year 3 

  [1] [2] [3] [4] [5] [6] 

***0.174 ܴܣܤܥ 0.176** 0.035 -0.148*** -0.134*** -0.187***

[0.069] [0.071] [0.144] [0.045] [0.047] [0.072] 

 0.009- 0.003 *0.069 0.014 ݊݅ݐ݈݂ܽ݊ܫ

[0.013] [0.043] [0.012] [0.050] 

 0.004- 0.002 0.006 ***0.005  ݐ݊݁݉݅ݐ݊݁ܵ

[0.002] [0.007] [0.001] [0.007] 

 0.005   *0.011   ݐ݊݁݉݁݁ݎ݃ܽݏ݅ܦ

   [0.006]   [0.006] 

 *0.006   0.005-   ݀ܽ݁ݎܵ	݀݁ܶ

   [0.006]   [0.003] 

 ݀ܽ݁ݎܵ݁ݑ݈ܸܽ  0.001 0.002  -0.004 -0.004 

   [0.003] [0.004]  [0.003] [0.003] 

 0.087- 0.01-  0.221- 0.002  12݈ݒݐ݇ܯ

  [0.102] [0150]  [0.100] [0.139] 

       

Adj-R2 0.045 0.099 0.153 0.069 0.095 0.154 

N of Obs 545 545 312 545 545 312 

 



Table VI: Predicting the Security Market Line 
 

This table reports regressions of the intercept and slope of the security market line on lagged ܴܣܤܥ. At 
the end of each month, all stocks are sorted into vigintiles based on their market beta calculated using daily 
returns in the past 12 months. To account for illiquidity and non-synchronous trading, we include on the 
right hand side of the regression equation five lags of the excess market return, in addition to the 
contemporaneous excess market return. The pre-ranking beta is simply the sum of the six coefficients from 
the OLS regression. We then estimate two security market lines based on these 20 portfolios formed in each 
period: one SML using monthly portfolio returns in months 1-6, and the other using monthly portfolio 
returns in year 3 after portfolio formation. The post-ranking betas are calculated by regressing each of the 
20 portfolios’ value-weighted monthly returns on the corresponding market return. Following Fama and 
French (1992), we use the entire sample to compute post-ranking betas. The dependent variable in Panel A 
is the intercept of the SML, while that in Panel B is the slope of the SML. We also include in the 
regressions the inflation index (Cohen, Polk, and Vuolteenaho, 2005), sentiment index (Wurgler and Baker, 
2006), aggregate analyst forecast dispersion (Hong and Sraer, 2012), and Ted Spread, the difference 
between the LIBOR rate and the US Treasury bill rate. Other (unreported) control variables include the 
contemporaneous market excess return, SMB return, and HML return. Standard errors, shown in brackets, 
are computed based on standard errors corrected for serial-dependence with 6 or 12 lags, as appropriate.  *, 
**, *** denote significance at the 10%, 5%, and 1% level, respectively. 

Panel A: DepVar = Intercept of SML 

 Months 1-6 Year3 

 ***0.169- ***0.192- ***0.176- 0.119 ***0.194 **0.149 ܴܣܤܥ

[0.078] [0.054] [0.085] [0.052] [0.048] [0.072] 

 0.002 0.003 0.060 ***0.026 ݊݅ݐ݈݂ܽ݊ܫ

[0.009] [0.032] [0.012] [0.057] 

 0.005- 0.004 0.004 ***0.003 ݐ݊݁݉݅ݐ݊݁ܵ

[0.001] [0.005] [0.002] [0.008] 

 0.010 0.003 ݐ݊݁݉݁݁ݎ݃ܽݏ݅ܦ

[0.004] [0.007] 

 0.001 ***0.011- ݀ܽ݁ݎܵ	݀݁ܶ

[0.005] [0.004] 

       

Adj-R2 0.037 0.384 0.494 0.071 0.132 0.173 

N of Obs 545 545 312 545 545 312 

Panel B: DepVar = Slope of SML 

  Months 1-6 Year3 

 ***0.245 ***0.224 ***0.201 0.084- ***0.179- ***0.314- ܴܣܤܥ

[0.086] [0.051] [0.089] [0.063] [0.060] [0.078] 

 0.007- 0.006 0.065- ***0.026- ݊݅ݐ݈݂ܽ݊ܫ

[0.010] [0.032] [0.016] [0.067] 

 0.007 0.003- 0.005- ***0.003- ݐ݊݁݉݅ݐ݊݁ܵ

[0.001] [0.005] [0.002] [0.010] 

 0.007- 0.002- ݐ݊݁݉݁݁ݎ݃ܽݏ݅ܦ

[0.004] [0.008] 

 0.004- ***0.013 ݀ܽ݁ݎܵ	݀݁ܶ

[0.005] [0.004] 

       

Adj-R2 0.093 0.663 0.708 0.065 0.117 0.164 

N of Obs 545 545 312 545 545 312 



Table VII: Beta Expansion, Time-Series Analysis 
 
This table examines time-series beta expansion associated with arbitrage trading. Panel A reports the 
baseline regression. The dependent variable in columns 1 and 2 is the beta spread between the high-beta 

and low-beta deciles (ranked in year ݐ) in year 1+ݐ. The dependent variable in columns 3 and 4 is the 

fraction of stocks in the bottom beta decile ranked in year ݐ that remain in the bottom beta decile in year 

 is the average pairwise weekly three-factor residual ܴܣܤܥ .(the two periods are non-overlapping) 1+ݐ

correlation in the low-beta decile over the past 12 months. ݁݃ܽݎ݁ݒ݁ܮ is a quintile dummy based on the 
average value-weighted book leverage of the bottom and top beta deciles. We also include in the regression 

an interaction term between ܴܣܤܥ and ݁݃ܽݎ݁ݒ݁ܮ. Panel B reports a battery of robustness checks. The 

dependent variable in all rows is the beta spread between the high-beta and low-beta deciles in year 1+ݐ. 

Reported below is the coefficient on the interaction of ܴܣܤܥ and ݁݃ܽݎ݁ݒ݁ܮ. Row 1 shows the baseline 
results which are also reported in Panel A. In Rows 2 and 3, we conduct the same analysis for two sub-
periods. In Rows 4 and 5, we exclude the tech bubble crash and the recent financial crisis from our sample. 

In Row 6, we also control for the UMD factor in computing ܴܣܤܥ. In Rows 7-10, we take the residual 

 after purging out, respectively, the average pair-wise correlation in the market, the lagged 36-month ܴܣܤܥ
volatility of the BAB factor (Frazzini and Pedersen, 2014), and CoMomentum and CoValue (Lou and Polk, 

2014). In Row 11, we further control for industry factors in the calculation of ܴܣܤܥ. In Row 12, we 

control for both large- and small-cap HML in computing ܴܣܤܥ. In Rows 13 and 14, we control for 
sentiment and inflation indices, and the prior 36-month market return and market volatility. In Row 15, we 

use de-trended CoBAR. In Rows 16 and 17, we examine the upside and downside ܴܣܤܥ, as distinguished 
by the median low-beta portfolio return. Standard errors are shown in brackets. *, **, *** denote 
significance at the 10%, 5%, and 1% level, respectively. 
  

Panel A: Baseline Regression 

DepVar ݀ܽ݁ݎܵܽݐ݁ܤ௧ାଵ ݊݅ݐܿܽݎܨ௧ାଵ 
[1] [2] [3] [4] 

 ݀ܽ݁ݎܵܽݐ݁ܤ 0.282*** 0.276***   

  [0.061] [0.059]   

 0.388 *2.681 0.129 ***1.253 ܴܣܤܥ

 [0.411] [0.498] [1.533] [1.714] 

 ***0.250-  ***0.047-  ݁݃ܽݎ݁ݒ݁ܮ

  [0.011]  [0.040] 

ܴܣܤܥ ∗  **0.766  ***0.456  ݁݃ܽݎ݁ݒ݁ܮ

 [0.117]  [0.279] 

     

Adj-R2 0.12 0.15 0.01 0.09 

No. Obs. 533 533 533 533 

 
 
  



 
 

Panel B: Robustness Checks 

DepVar = ݀ܽ݁ݎܵܽݐ݁ܤ௧ାଵ 

Estimate Std Dev 

Subsamples 

Full Sample:1965-2010 0.456*** [0.117] 

Subsample: 1965-1980 0.064 [0.391] 

Subsample: 1980-2010 0.510*** [0.151] 

Excluding 2000-2001 0.509*** [0.099] 

Excluding 2007-2009 0.305** [0.140] 

Alternative definitions of CoBAR 

Controlling for UMD 0.511*** [0.114] 

Controlling for MKT CORR 0.283** [0.123] 

Controlling for Vol(BAB) 0.417*** [0.117] 

Controlling for CoMomentum 0.249** [0.119] 

Controlling for CoValue 0.427*** [0.117] 

Controlling for Industry Return 0.567*** [0.120] 

Controlling for Large/Small-Cap HML 0.460*** [0.121] 

Controlling for Sentiment and Inflation 0.324*** [0.118] 

Controlling for mktvol12  0.466*** [0.113] 

Controlling for Trend 0.365*** [0.121] 

Upside CoBAR 0.567*** [0.158] 

Downside CoBAR 0.384*** [0.123] 

 

 
  



Table VIII: Beta Expansion, Cross-Sectional Analysis 
 

This table reports panel regressions of subsequent changes in stock beta on lagged ܴܣܤܥ. At the end of 
each month, all stocks are sorted into deciles based on their market beta calculated using daily returns in 
the past 12 months. To account for illiquidity and non-synchronous trading, we include on the right hand 
side of the regression equation five lags of the excess market return, in addition to the contemporaneous 
excess market return. The pre-ranking beta is simply the sum of the six coefficients from the OLS 

regression. The dependent variable is the change in stock beta from year ݐ to 1+ݐ (non-overlapping 

periods). The main independent variable is lagged ܴܣܤܥ, the average pairwise excess weekly return 

correlation in the low-beta decile over the past 12 months. ݁ܿ݊ܽݐݏ݅ܦ is the difference between a stock’s beta 

decile rank and the average rank of 5.5 in year ݁݃ܽݎ݁ݒ݁ܮ .ݐ is the book leverage of the firm, measured in 

year ݐ. We also include all double and triple interaction terms of ݁ܿ݊ܽݐݏ݅ܦ ,ܴܣܤܥ, and ݁݃ܽݎ݁ݒ݁ܮ. Other 
control variables include lagged firm size, book-to-market ratio, momentum, idiosyncratic volatility (over 
the prior year), and the past one-month return. Time-fixed effects are included in Columns 3 and 4. (Since 

 ,is a time-series variable, it is subsumed by the time dummies.) Standard errors, shown in brackets ܴܣܤܥ
are double clustered at both the firm and year-month levels. *, **, *** denote significance at the 10%, 5%, 
and 1% level, respectively. 
 

DepVar ܽݐ݁ܤ  ௧ାଵ݄݁݃݊ܽܥ
[1] [2] [3] [4] 

 0.172 **0.295 ܴܣܤܥ

[0.136] [0.134] 

 ***0.079- ***0.077- ***0.079- ***0.077- ݁ܿ݊ܽݐݏ݅ܦ

[0.004] [0.005] [0.004] [0.005] 

ܴܣܤܥ ∗  0.012 0.029 0.053 **0.071 ݁ܿ݊ܽݐݏ݅ܦ

[0.036] [0.042] [0.036] [0.042] 

 ***0.006- ***0.008- ݁݃ܽݎ݁ݒ݁ܮ

[0.002] [0.002] 

ܴܣܤܥ ∗  **0.032 ***0.054 ݁݃ܽݎ݁ݒ݁ܮ

[0.016] [0.016] 

݁݃ܽݎ݁ݒ݁ܮ ∗  0.000 0.000 ݁ܿ݊ܽݐݏ݅ܦ

[0.001] [0.001] 

ܴܣܤܥ ∗ ݁݃ܽݎ݁ݒ݁ܮ ∗  ***0.013 ***0.015 ݁ܿ݊ܽݐݏ݅ܦ

[0.005] [0.004] 

 ***0.008 ***0.009 ***0.004 ***0.005 ݁ݖ݅ܵ

[0.002] [0.002] [0.002] [0.002] 

 ***0.031- ***0.031- ***0.019- ***0.018- ܯܤ

[0.003] [0.003] [0.003] [0.003] 

 ***ଵ 0.059*** 0.059*** 0.053*** 0.054ିݐܴ݁

[0.023] [0.023] [0.019] [0.019] 

 ***ଶ,ିଵଶ 0.723*** 0.731*** 0.545*** 0.551ିݐܴ݁

[0.084] [0.083] [0.070] [0.070] 

 ***0.205 ***0.210 ***0.152 ***0.154 ܮܱܸܫ

[0.015] [0.014] [0.009] [0.009] 

     

Time Fixed Effect No No Yes Yes 

Adj-R2 0.217 0.219 0.279 0.281 

No. Obs. 1,105,815 1,105,815 1,105,815 1,105,815 



Table IX: Low Limits to Arbitrage 
 

This table reports returns to the beta arbitrage strategy as a function of lagged ܴܣܤܥ in various 
subsamples. At the end of each month, all stocks are sorted into deciles based on their market beta 
calculated using daily returns in the past 12 months. To account for illiquidity and non-synchronous 
trading, we include on the right hand side of the regression equation five lags of the excess market return, 
in addition to the contemporaneous excess market return. The pre-ranking beta is simply the sum of the six 

coefficients from the OLS regression. All months are then classified into five groups based on ܴܣܤܥ, the 
average pairwise weekly three-factor residual correlation in the low-beta decile over the past 12 months. 
Reported below are the Carhart four-factor alpha to the beta arbitrage strategy (i.e., to go long the value-
weight low-beta decile and short the value-weighted high-beta decile) in each of the three years after 

portfolio formation during 1965 to 2010, following low to high 1-5“ .ܴܣܤܥ” is the difference in monthly 

returns to the long-short strategy following high vs. low ܴܣܤܥ. To ensure that our findings from these 
double-sorted portfolios are not driven by small stocks, we exclude stocks that are microcaps (stocks below 
the NYSE 20th size percentile) or have stock prices below five dollars. Panels A and B report the average 
monthly returns to the beta-arbitrage strategy constructed solely based on stocks with large size or small 
market capitalization (as of the beginning of the holding period), respectively. Panels C and D report the 
average monthly returns to the beta-arbitrage strategy constructed solely based on stocks with high or low 
liquidity (as of the beginning of the holding period), respectively. Panels E and F report the average 
monthly returns to the beta-arbitrage strategy constructed solely based on stocks with high or low 
idiosyncratic volatilities (as of the beginning of the holding period), respectively. Panels G and H report the 
average monthly returns to the beta-arbitrage strategy constructed solely based on stocks with high or low 
leverage (as of the beginning of the holding period), respectively.  Across all Panels, splits are based on the 
median value of the firm characteristic in each month. T-statistics, shown in parentheses, are computed 
based on standard errors corrected for serial-dependence with 12 lags. 5% statistical significance is indicated 
in bold. 

 

Panel A: Large Stocks 

Month1-6 Year 1 Year 2 Year3 

Rank No Obs Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

1 109 -0.27% (-0.54) -0.17% (-0.34) 0.69% (1.54) 0.40% (1.38) 

2 109 -0.73% (-1.62) -0.37% (-0.88) 0.06% (0.13) -0.11% (-0.19) 

3 109 -0.35% (-0.66) -0.15% (-0.36) -0.84% (-1.81) -0.48% (-0.81) 

4 109 -0.08% (-0.17) -0.34% (-1.59) -1.57% (-5.45) -0.43% (-0.87) 

5 109 1.84% (1.83) 0.94% (1.26) 0.52% (1.00) -1.46% (-4.20) 

5-1 2.11% (2.00) 1.11% (1.27) -0.17% (-0.23) -1.86% (-3.97) 

Panel B: Small Stocks 

Month1-6 Year 1 Year 2 Year3 

Rank No Obs Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

1 109 0.75% (1.35) 0.92% (1.88) 0.19% (1.14) -0.29% (-0.86) 

2 109 0.06% (0.13) -0.15% -(0.59) -0.06% (-0.14) -0.46% (-1.49) 

3 109 0.28% (0.62) 0.39% (1.64) -0.44% (-1.22) -0.06% (-0.09) 

4 109 1.06% (1.55) 0.94% (1.35) -0.75% (-1.78) -1.00% (-2.10) 

5 109 1.17% (1.59) 0.75% (1.56) 1.05% (1.23) -0.11% (-0.23) 

5-1 0.41% (0.45) -0.16% (-0.25) 0.86% (0.99) 0.18% (0.37) 

 
  



 
 

Panel C: Liquid Stocks 

Month1-6 Year 1 Year 2 Year3 

Rank No Obs Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

1 109 0.02% (0.03) -0.16% (-0.27) 0.17% (0.49) -0.03% (-0.10) 

2 109 -0.71% (-1.33) -0.53% (-1.29) -0.13% (-0.49) -0.41% (-0.84) 

3 109 -0.13% (-0.25) -0.13% (-0.29) -1.08% (-2.26) -0.61% (-1.11) 

4 109 -0.09% (-0.20) -0.36% (-1.66) -1.61% (-3.80) -0.71% (-1.37) 

5 109 1.06% (1.41) 0.44% (0.57) 0.53% (0.81) -1.99% (-5.08) 

5-1 1.04% (1.18) 0.60% (0.60) 0.35% (0.42) -1.97% (-3.45) 

Panel D: Illiquid Stocks 

Month1-6 Year 1 Year 2 Year3 

Rank No Obs Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

1 109 0.95% (4.13) 0.34% (1.23) -0.23% (-0.33) -0.27% (-0.67) 

2 109 -0.91% (-1.10) -0.75% (-1.61) -0.43% (-1.16) -0.26% (-0.74) 

3 109 -1.68% (-1.34) -0.58% (-1.22) -0.84% (-1.10) -0.12% (-0.25) 

4 109 0.35% (0.57) 0.00% (0.01) -0.65% (-1.18) -0.65% (-2.88) 

5 109 1.87% (1.13) 0.99% (1.46) 0.79% (2.04) -1.25% (-4.58) 

5-1 0.92% (0.55) 0.64% (0.87) 1.02% (1.01) -0.98% (-1.78) 

 
 

Panel E: Low Idiosyncratic Volatility Stocks 

Month1-6 Year 1 Year 2 Year3 

Rank No Obs Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

1 109 -0.18% (-0.33) 0.04% (0.08) 0.80% (1.82) 0.17% (0.50) 

2 109 -0.34% (-1.04) 0.08% (0.23) 0.27% (0.62) 0.06% (0.16) 

3 109 -0.45% (-1.20) -0.20% (-0.75) -0.46% (-1.06) -0.40% (-0.77) 

4 109 0.31% (0.74) -0.25% (-1.41) -0.92% (-2.10) -0.38% (-0.76) 

5 109 1.24% (1.34) 0.59% (1.01) 0.70% (1.68) -1.25% (-4.37) 

5-1 1.42% (1.35) 0.55% (0.72) -0.10% (-0.15 -1.41% (-3.60) 

Panel F: High Idiosyncratic Volatility Stocks 

Month1-6 Year 1 Year 2 Year3 

Rank No Obs Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

1 109 0.36% (0.80) 0.19% (0.64) 0.14% (0.46) -0.25% (-0.85) 

2 109 -0.67% (-0.98) -0.35% (-0.65) 0.12% (0.37) -0.34% (-0.54) 

3 109 -0.70% (-0.69) -0.32% (-0.43) -0.29% (-0.55) 0.20% (0.26) 

4 109 0.43% (0.46) 0.33% (0.58) -0.42% (-1.49) -1.09% (-2.20) 

5 109 1.43% (1.60) 1.47% (1.85) 0.77% (1.00) -0.78% (-1.48) 

5-1 1.07% (1.12) 1.28% (1.55) 0.63% (0.72) -0.53% (-1.02) 

 
  



 
 

Panel G: High Leverage 

Month1-6 Year 1 Year 2 Year3 

Rank No Obs Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

1 109 -0.23% (-0.44) -0.36% (-0.60) 0.56% (1.00) 0.16% (0.47) 

2 109 -0.47% (-0.73) -0.06% (-0.11) 0.43% (0.99) 0.49% (0.75) 

3 109 -0.28% (-0.47) 0.01% (0.02) -0.56% (-0.99) -0.33% (-0.46) 

4 109 1.05% (1.77) 0.37% (0.75) -1.32% (-2.89) -0.49% (-1.20) 

5 109 3.53% (2.39) 2.38% (2.47) 0.19% (0.35) -1.11% (-2.79) 

5-1 3.76% (2.46) 2.74% (2.51) -0.37% (-0.47) -1.27% (-2.49) 

 

Panel H: Low Leverage 

Month1-6 Year 1 Year 2 Year3 

Rank No Obs Estimate T-stat Estimate T-stat Estimate T-stat Estimate T-stat 

1 109 0.60% (1.43) 0.71% (1.73) 0.56% (1.53) -0.08% (-0.22) 

2 109 -0.51% (-1.02) -0.23% (-0.62) -0.16% (-0.37) -0.50% (-0.77) 

3 109 -0.51% (-0.86) -0.59% (-1.08) -0.67% (-1.13) 0.22% (0.31) 

4 109 -0.14% (-0.21) 0.05% (0.10) -1.08% (-2.53) 0.28% (0.62) 

5 109 1.11% (1.36) 0.72% (0.72) 1.17% (3.05) -1.11% (-1.86) 

5-1 0.51% (0.57) 0.01% (0.01) 0.61% (1.07) -1.03% (-1.60) 

 
 
  



 
 
 

 
 
 

Figure 1: This figure shows the time series of the ܴܣܤܥ measure. At the end of each month, all stocks are 
sorted into deciles based on their market beta calculated using daily returns in the past 12 months. To 
account for illiquidity and non-synchronous trading, we include on the right hand side of the regression 
equation five lags of the excess market return, in addition to the contemporaneous excess market return. 

The pre-ranking beta is simply the sum of the six coefficients from the OLS regression. ܴܣܤܥ is the 
average pairwise partial return correlation in the low-beta decile measured in the ranking period. 
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Figure 2: This figure shows returns to the beta arbitrage strategy as a function of lagged ܴܣܤܥ. At the 
end of each month, all stocks are sorted into deciles based on their market beta calculated using daily 
returns in the past 12 months. To account for illiquidity and non-synchronous trading, we include on the 
right hand side of the regression equation five lags of the excess market return, in addition to the 
contemporaneous excess market return. The pre-ranking beta is simply the sum of the six coefficients from 

the OLS regression. All months are then sorted into five groups based on ܴܣܤܥ, the average pairwise 
weekly three-factor residual correlation within the low-beta decile over the previous 12 months. The red 
curve shows the cumulative Carhart four-factor alpha to the beta arbitrage strategy (i.e., a portfolio that is 

long the value-weight low-beta decile and short the value-weighted high-beta decile) formed in high ܴܣܤܥ 
periods, whereas the dotted blue curve shows the cumulative Carhart four-factor alpha to the beta 

arbitrage strategy formed in periods of low ܴܣܤܥ. The top panel shows the unconditional four-factor 
alpha and the bottom panel shows the conditional four-factor alpha (i.e., where betas are allowed to vary 

with ܴܣܤܥ). 
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Figure 3: This figure shows the security market line as a function of lagged ܴܣܤܥ. At the end of each 
month, all stocks are sorted into vigintiles based on their market beta calculated using daily returns in the 
past 12 months. To account for illiquidity and non-synchronous trading, we include on the right hand side 
of the regression equation five lags of the excess market return, in addition to the contemporaneous excess 
market return. The pre-ranking beta is simply the sum of the six coefficients from the OLS regression. We 
then estimate two security market lines based on these 20 portfolios formed in each period: one SML using 
portfolio returns in months 1-6, and the other using portfolio returns in year 3 after portfolio formation; the 
betas used in these SML regressions are the corresponding post-ranking betas. The Y-axis reports the 
average monthly excess returns to these 20 portfolios, and the X-axis reports the post-ranking betas of 

these portfolios. Beta portfolios formed in high ܴܣܤܥ periods are depicted with a blue circle and fitted 

with a solid line, and those formed in low ܴܣܤܥ periods are depicted with a red triangle and fitted with a 
dotted line. The top panel shows average excess returns and betas to the beta-arbitrage strategy in months 
1-6 after portfolio formation, while the bottom panel shows average excess returns and betas in year 3 after 
portfolio formation. 
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Figure 4: This figure shows the conditional security market line as a function of lagged ܴܣܤܥ (i.e., where 

betas are allowed to vary with ܴܣܤܥ). At the end of each month, all stocks are sorted into vigintiles based 
on their market beta calculated using daily returns in the past 12 months. To account for illiquidity and 
non-synchronous trading, we include on the right hand side of the regression equation five lags of the excess 
market return, in addition to the contemporaneous excess market return. The pre-ranking beta is simply 
the sum of the six coefficients from the OLS regression. We then estimate two security market lines based 
on these 20 portfolios: one SML using portfolio returns in months 1-6, and the other using portfolio returns 
in year 3 after portfolio formation; the betas used in these SML regressions are the corresponding post-
ranking betas. The Y-axis reports the average monthly excess returns to these 20 portfolios, and the X-axis 

reports the post-ranking beta of these portfolios. Beta portfolios formed in high ܴܣܤܥ periods are depicted 

with a blue circle and fitted with a solid line, and those formed in low ܴܣܤܥ periods are depicted with a 
red triangle and fitted with a dotted line. The top panel shows average excess returns and betas to the beta 
arbitrage strategy in months 1-6 after portfolio formation, while the bottom panel shows average excess 
returns and betas in year 3 after portfolio formation. 
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Figure 5: This figure shows how the information in ܴܣܤܥ about time-variation in the expected holding 
and post-holding return to beta-arbitrage strategies decays as staler estimates of beta are used to form the 
beta-arbitrage strategy. At the end of each month, all stocks are sorted into deciles based on their market 
beta calculated using daily returns in the past 12 months. To account for illiquidity and non-synchronous 
trading, we include on the right hand side of the regression equation five lags of the excess market return, 
in addition to the contemporaneous excess market return. The pre-ranking beta is simply the sum of the six 
coefficients from the OLS regression. We then compute the strategy return as the value-weight low-beta 
decile return minus the value-weight high-beta decile return. We separately regress the abnormal return of 

the beta-arbitrage strategy in months one-six and year three on ܴܣܤܥ. In this process, we first use a fresh 
estimate of beta, calculated using daily returns in the past 12 months. We then repeat the analysis using 
stale betas, computed from daily returns in each of the prior 5 years (thus having different beta portfolios 
as of time zero for each degree of beta staleness). We plot the corresponding regression coefficients (results 
for months 1-6 plotted with a blue square and results for year 3 plotted with a red circle) for each of the six 
beta-arbitrage strategies, ranging from fresh beta to five years stale beta. The top panel reports the CAPM 
alpha, and the bottom panel shows the Carhart four-factor alpha to the beta arbitrage strategy. 
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