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Abstract

This paper develops a laboratory test of a distinctive prediction of reference-de-
pendent preferences, testable only in dynamic settings: decision makers suboptimally
delay realizing disappointing outcomes (procrastination) but suboptimally rush to re-
alize outcomes that are better-than-expected (rushing). In the experiment, subjects
invest in a risky asset, whose price evolves in near-continuous time, and they are pro-
vided with the option to liquidate it at a fixed salvage value. Optimal behavior is
characterized by an upper and a lower stopping thresholds in the asset price space,
thus producing a clear rational benchmark and eliminating known confounds. Most
subjects indeed tend to delay liquidating losing assets beyond the optimal point and
to sell winning assets before reaching the optimal stopping time. Among subjects who
show the effect, the median stopping points imply the probability of realizing a win-
ner conditional on stopping is 70% larger than optimal. Such behavior is shown to
be consistent with a model of a decision maker who evaluates payoffs relative to an
expectation-based reference point, is risk-averse over gains and risk-seeking over losses.
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1 Introduction

The disposition effect - the tendency of individual investors to sell assets whose price has

increased and hold on to assets that have dropped in value - is a cornerstone of behav-

ioral finance.1 More generally, the disposition effect is an important notion for behavioral

economics as it exemplifies the idea that decision makers suboptimally delay realizing dis-

appointing outcomes (procrastination) but suboptimally rush to realize outcomes that are

better-than-expected (rushing).2 However, previous evidence has been mostly indirect. For

instance, the typical procedure used in studies on the disposition effect in stock markets

involves testing whether the frequency of sales is larger for winning stocks than for losing

stocks.

I propose and conduct a sharper test of the disposition effect using a laboratory exper-

iment that produces an unambiguous benchmark of rational stopping decisions. I design a

security that bundles a risky asset, whose price follows a stochastic process in continuous

time, with the option to liquidate the asset at a constant salvage value. I analyze an impa-

tient decision maker who makes a decision about when, if ever, to liquidate the investment.

Optimal behavior entails maintaining the current position in the security until either:

1. the asset price reaches an upper threshold B∗ above which the expected benefit from

waiting is outweighed by the immediate reward from selling the asset and the decision

maker reaps this opportunity, or

2. the asset price reaches a lower threshold b∗ and the decision maker capitulates, liquidat-

ing at an exogenously fixed salvage value and forgoing potential future price increases.

Thus my model provides a clear rational benchmark against which to evaluate the disposition

effect. Indeed, the original formulation of the disposition effect by Shefrin and Statman [1985]

as the tendency to sell winners too early and ride losers too long can be formally characterized

in terms of the stopping times induced by the optimal thresholds. There is a disposition

effect if the actual thresholds (B and b) are both lower than optimal (b < b∗&B < B∗).

Results from my experiment strongly support the hypothesis that individual investors have

a preference for realizing winners vis-à-vis realizing losers. Both at the aggregate and at

the individual level, subjects tend to sell the asset as soon as its price has increased to a

point significantly below B∗, while they wait for the price to fall considerably below b∗ before

1Evidence surveyed in Barber and Odean [2011] suggests the disposition effect in financial markets; see
also Genesove and Mayer [2001] for evidence regarding the US real estate market.

2Problems where the timing of uncertainty resolution is endogenous are ubiquitous in modern economics.
In section 5 I review two potential applications of the disposition effect in the field of information economics,
pertaining to experimentation and signaling respectively.
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capitulating. This departure from rational behavior is economically significant as the median

stopping points imply a probability of realizing a winner conditional on stopping 60% larger

than optimal.

Laboratory research provides an important complement to studies on the disposition ef-

fect that use financial market data. Obtaining and skillfully analyzing field evidence is a

necessary step for understanding the behavior of individual decision makers, however impor-

tant aspects of the decision making process are unobservable in naturally occurring settings.

It is often difficult to identify a normative benchmark against which the disposition effect can

be measured. In practice, field data studies rely on the implicit assumption that a rational

decision about how long to hold on to an investment should be independent of whether the

investment is a winner or a loser. Thus, the typical test of the disposition effect involves

checking whether sales of winners are more likely than sales of losers.3 However, these tests

are not grounded in any specific theory and the results may be subject to different interpre-

tations.4 In my experiment I define an unambiguous benchmark and eliminate confounding

factors by design.

While important laboratory work has been conducted on the disposition effect, such as

Weber and Camerer [1998], most face potential confounds that make the effect difficult to

interpret and difficult to distinguish from rational behavior. At a basic level my design differs

from Weber and Camerer [1998] in the mechanism used to induce stopping decisions: while

in Weber and Camerer [1998] liquidation decisions arise from portfolio choice motives, here

stopping is induced by inter-temporal trade-offs, which more closely matches the environment

contemplated in recent theoretical work on the effect. In (lab and field) environments where

decision makers are actively engaged in portfolio choice, risk aversion and other diversification

motives may lead to differences in the propensity to sell winners and losers.5 In the multiple

heterogenous asset framework of Weber and Camerer [1998] the optimal, expected-value

maximizing behavior is to hold on to the single asset that the decision maker identifies as

the winner based on her beliefs at a point in time. However, this is also a very risky strategy,

because of uncertainty about which asset is the actual winner. Thus holding on to losers

3While early evidence on the disposition effect was based on such statistics as the fraction of realized
gains relative to realized losses (Odean [1998]), recent studies take a more dynamic view of trading and study
how the hazard of a sale is affected by a paper gain or loss (see the survey by Barber and Odean [2011]).

4Researchers have interpreted similar findings in opposite ways. A number of recent papers, summarized
in Barber and Odean [2011], show that the hazard rate of stock sales as a function of return since purchase
is much steeper for gains than for losses and argue that this supports the existence of the disposition effect.
Ben-David and Hirshleifer [2012] estimate similar hazard functions, but they argue that there is no clear
evidence of preferences for selling a stock by virtue of having a gain versus a loss since there is no upward
jump in selling at zero profits.

5For example, portfolio rebalancing after price changes is known to be a potential explanation for dispo-
sition effect-like behavior in empirical studies (Odean [1998]).
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might just be a way to hedge some risk.6 In my design, standard risk preferences induce

behavior that is qualitatively different from the disposition effect. Risk aversion produces a

narrowing of the inaction band (b > b∗&B < B∗): since a risk-averse decision maker prefers

less payoff variability, she liquidates losers sooner than predicted by risk-neutrality and by

the disposition effect.

This paper provides empirical content to theoretical investigations on microfounded mod-

els of the disposition effect. Seminal works on the disposition effect, such as Shefrin and Stat-

man [1985], Odean [1998] and Weber and Camerer [1998], tended to ascribe the disposition

effect to reference-dependent preferences, featuring risk aversion over gains and love of risk

over losses, as hypothesized by Kahneman and Tversky [1979]’s prospect theory7. A further

contribution of this paper is to formalize this argument for the stylized optimal stopping prob-

lem I consider. I present a model of expectation-based reference-dependent preferences and

show that it reliably predicts the disposition effect: a decision maker with these preferences

procrastinates realizing disappointing outcomes but rushes to realize better-than-expected

ones. Moreover, I show that there is a clear mapping between the model’s parameter (the

elasticity of utility to gains and losses) and the stopping thresholds. The model qualita-

tive and quantitative predictions are borne out in the data for a majority of subjects and

the experiment allows me to rule out competing belief-based explanations. This is the first

application of expectation-based reference-dependent preferences to stopping decisions I am

aware of and the problem formulation and solution methods can be readily extended to other

one-time stopping problems.

The paper is organized as follows. In the next section I provide a theoretical description

of the decision problem I implement in the lab. I first describe the optimal strategies of

a risk-neutral decision maker (section 2.1). I then discuss how to measure the disposition

effect in this setting (section 2.2). I study the behavior induced by standard risk-preferences

(section 2.3) and I show that reference-dependent preferences are predicted to result in

the disposition effect (section 2.4). Section 3 describes the experimental design. Section 4

presents the results and section 5 concludes.

6The potential confounds in Weber and Camerer [1998] are not limited to risk aversion. Failures in
Bayesian learning of asset qualities is another concern that I eliminate in my design. Furthermore in Weber
and Camerer [1998] optimal behavior entails never selling a winner before stock holdings are liquidated
in an exogenously fixed final period, so any variability in sales of winners is interpreted as support of the
disposition effect.

7The relation between the disposition effect in financial markets and prospect theory remains a contro-
versial issue, see for example Barberis and Xiong [2009] and Ingersoll and Jin [2013]. The aim of this paper
is not to exactly replicate the environment real investors face. For example, I ignore the possibility of rein-
vestment. I show that reference-dependent preferences are a powerful explanation of the disposition effect
in a stylized optimal stopping problem and therefore can be expected to apply to similar situations.
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2 Theoretical Framework

2.1 Optimal Asset Liquidation with a Constant Salvage Value

The theoretical framework considers an asset (hereafter stock) that is a claim to a single

random dividend. I work on the standard probability space (Ω,F , P ), with filtration {Ft, t ≥
0} supporting a Wiener process w = {wt, t ≥ 0}. The stock price s follows a geometric

Brownian motion:

dst = µstdt+ σstdwt (1)

The stock pays out the dividend according to a Poisson process with intensity λ and after

the dividend is paid out the stock expires. The dividend (conditional on its realization), yt,

is given by:

yt = δst (2)

where δ is an exogenous parameter8.

In order to obtain a simple model that is consistent with liquidating the stock at both

high and low prices, I consider the behavior of an impatient and risk-neutral decision maker

who is endowed with a unit of the stock and the option to liquidate it at a constant salvage

value. At each point in time, the decision maker can choose one of the following actions: 1)

hold on to the investment and wait, 2) cash the stock and receive its price st or 3) exercise

the option and obtain the salvage value (or strike price) x. Let τo be the time at which the

decision maker exercises the option and τc the time at which he cashes the stock. Similarly,

let τλ be the random time of the dividend arrival, at which point the decision maker obtains

the dividend according to equation (2). Let

τ ≡ min{τo, τc, τλ}

Then the problem of the decision maker is described by the following value function:

v(st) = max
τo,τc

Et
{
e−ρ(τ−t) [1{τ=τo}x+ 1{τ=τc}sτ + 1{τ=τλ}yτ

]}
(3)

where 1 is an indicator function and I assume the decision maker discounts future payoffs

at an instantaneous rate of ρ9.

8In a general equilibrium setting δ is the inverse of the pricing kernel, but here I take it as an exogenous
parameter since I am studying the disposition effect at the individual level.

9As noted above, in a general equilibrium setting δ and ρ should be related by the pricing mechanism. In
fact, I will deliberately calibrate the experiment in such a way that the decision maker discounts future at
a higher rate than what would be implied by a general equilibrium interpretation of the asset price process.
This is necessary to avoid that the decision maker always waits for the dividend to realize. Many behavioral
finance models assume that investors are more impatient than what is otherwise standard, see for example
Ingersoll and Jin [2013].
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The solution to this optimal stopping problem is characterized by an inaction region

(b, B). As soon as s reaches B the decision maker sells (cashes the stock): τc = inf{t :

st ≥ B}. As soon as s reaches b the decision maker sells by exercising the salvage option:

τo = inf{t : st ≤ b}. Then the value function satisfies:

v(s) = s, ∀s ≥ B (4)

v(s) = x, ∀s ≤ b (5)

As shown in appendix A.1, inside the inaction region, the value function is given by:

v(s) =
−2λδ

σ2(1−R1)(1−R2)
s+ C1s

R1 + C2s
R2 , s ∈ (b, B) (6)

where R1 and R2 are algebraic functions of the parameters, while C1 and C2 are constants

to be determined (see appendix A.1 for details).

I denote the optimal risk-neutral thresholds by b∗ and B∗. The associated optimal stop-

ping times that achieve the maximum in equation (3) are denoted by τ ∗o and τ ∗c . For the

optimal thresholds, the value function is continuous and differentiable at the boundaries of

the inaction region (see Dixit [1993]) and thus the following value matching and smooth

pasting conditions must hold:

lim
s↘b∗

v(s) = x (7)

lim
s↘b∗

v′(s) = 0 (8)

lim
s↗B∗

v(s) = B∗ (9)

lim
s↗B∗

v′(s) = 1 (10)

From this system of equations it is possible to determine that the constants C1 and C2 are

related to the optimal thresholds, b∗ and B∗, by the following conditions:

C1 = − x

b∗R2B∗R1 − b∗R1B∗R2

B∗R2

1−R1

(11)

C2 =
x

b∗R2B∗R1 − b∗R1B∗R2

B∗R1

1−R2

(12)

The two optimal thresholds can then be found by solving (7),(8),(9),(10) numerically. The

value function of the decision maker’s problem is illustrated in Figure 1.

The intuition behind these optimal threshold rules is the following. At the upper thresh-

old B∗ the expected benefit from waiting for the price to rise further is outweighed by the
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Figure 1: Value function and inaction region of the problem

immediate reward from selling the asset and the decision maker reaps this opportunity. At

the lower threshold b∗, the salvage value x exceeds the value of waiting for the price to reach

the upper threshold and the decision maker optimally capitulates, forgoing potential future

price increases. In a static setting (or when σ → 0 or ρ → ∞), the problem reduces to a

standard protective put strategy with the following optimal liquidation rule: cash the stock

if s > x, exercise the option if s < x. I summarize the analysis of the risk-neutral case in

the following:

Remark 1. Optimal behavior involves holding on to the investment until the asset price
reaches either an upper threshold B or a lower threshold b. The two optimal thresholds for
a risk-neutral decision maker, B∗ and b∗, solve equations (7),(8),(9),(10).

2.2 The Disposition Effect: Definition and Measurement

The model presented above provides a clear benchmark for measuring the disposition effect.

The classical definition of the disposition effect is the tendency of investors to hold on to

losing stocks for too long and to realize winning stocks too early, where winners and losers

are defined relatively to the purchase price s0. In the following discussion I will assume that

the purchase prices coincides with the salvage value, as in the lab implementation of the

model, i.e. s0 = x. This implies that an agent exercises the safe option if and only if she

liquidates a loser.

In the current setting the disposition effect will result in the lowering of both boundaries

of the inaction region relative to the optimal benchmark, as illustrated in Figure 2, where I
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Figure 2: Disposition Effects

denote by B (b) the actual upper (lower) liquidation threshold used by the decision maker.

Panels 2a and 2b illustrates how the classical definition of the disposition effect applies in

this setting: in the former the decision maker liquidates a loser too late (τo > τ ∗o ), while

in the latter he sells a winner too early (τc < τ ∗c ). Panel 2c illustrates the notion that

the disposition effect leads to realizing winners more frequently and losers more rarely than

optimal. The situation illustrated in Figure 2 is summarized in the following:

Definition 1. Let {b∗, B∗} be the optimal thresholds for a risk-neutral decision maker and
{b, B} be the actual thresholds (or their empirical counterpart). {b, B} satisfy the disposition
effect condition if:

b < b∗ ∧B < B∗ (13)

.

I introduce a measure of the bias towards realizing winners vs. losers. First, I compute

the probability of realizing a winner conditional on stopping. This is equal to the probability

7



that st hits B rather than b, conditional on st hitting one of the two stopping thresholds. In

the case µ = 0 considered in the experiment, this probability is given by: Π ≡ x−b
B−b . This

provides a compact and meaningful way of combining the two threshold values and can be

readily compared with the optimal benchmark value of the probability: Π∗ ≡ x−b∗
B∗−b∗ , leading

to the following:

Definition 2. Let Π and Π∗ be the probability of realizing a winner conditional on stopping
induced by the actual and optimal stopping thresholds respectively. The winner bias, Ψ, is
defined as the increase in the probability of realizing a winner conditional on stopping relative
to the optimal benchmark:

Ψ ≡ Π− Π∗

Π∗

While a positive winner bias does not necessarily signal a disposition effect as defined above,

Ψ can be used to gauge the economic significance of the effect. More importantly, the

empirical analysis will reveal that subjects who show the disposition effect are indeed those

with a strongest winner bias.

2.3 Standard Risk Preferences

It is important to note that standard risk aversion (or love of risk) does not generate a

disposition effect. The decision problem was carefully designed to ensure this. I illustrate

this point in the case of CRRA utility. In general the solution for a decision maker with

Bernoulli utility function f(m) is given by:

max
τo,τc

Et
{
e−ρ(τ−t) [1{τ=τo}f(x) + 1{τ=τc}f(sτ ) + 1{τ=τλ}f(yτ )

]}
I solve the modified problem for a CRRA decision maker: where f(m) = m1−γ

1−γ (see appendix

A.2 for details). In figure 3 I plot the liquidation thresholds for different values of the relative

risk aversion coefficient γ. Risk aversion does not lead to a disposition effect. Risk aversion

shrinks the inaction region, violating condition (13) as b > b∗. Love of risk has the opposite

effect, widening the inaction region. Thus standard risk preferences induce behavior that is

qualitatively different from the disposition effect. This is a major advantage of my design. I

summarize the previous discussion in the following:

Remark 2. The disposition effect in this stopping problem cannot arise from standard risk
preferences.

2.4 Reference-Dependent Preferences

Standard preferences cannot generate behavior that resembles the disposition effect in this

environment, and this is critically important for any clean test of the effect. The disposition
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effect has always been attributed to non-standard, “behavioral” preferences and it is therefore

important to look for it in an environment where it cannot be confused with standard

economic behavior. In light of the results presented in the previous subsection, I note that

a decision maker whose stopping decisions match the disposition effect behaves as if she is

risk-seeking when holding a loser but behaves as if she is risk-averse when holding a winner.

Indeed, this was the informal explanation of the disposition effect in financial markets offered

by the seminal works on this topic (such as Shefrin and Statman [1985], Odean [1998] and

Weber and Camerer [1998]).

The notion that a decision maker has asymmetric risk-attitudes is consistent with a

long-standing theory of how individuals evaluate risky prospects, namely prospect theory

(Kahneman and Tversky [1979] and Tversky and Kahneman [1992], see also the survey of

Barberis [2013]). One of the components of prospect theory is an S-shaped utility function,

convex over losses and concave over gains, relative to some reference level10. This property

is also known as diminishing sensitivity because “it implies that, while replacing a $100

gain (or loss) with a $200 gain (or loss) has a significant utility impact, replacing a $1,000

gain (or loss) with a $1,100 gain (or loss) has a smaller impact” (Barberis [2013]). There is

much evidence in favour of the diminishing sensitivity hypothesis from static lottery-choice

experiments (see for example Tversky and Kahneman [1992], Camerer and Ho [1994] and Wu

and Gonzalez [1996]). It is a reasonable assumption for this experiment: ordinary laboratory

10Another component of prospect theory is loss aversion. Loss aversion is not sufficient to generate the
disposition effect in this task: indeed loss aversion raises the lower threshold because of the presence of
expiration risk (as discussed below).
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subjects are likely to experience disappointment from the realization of a loser and elation

from the realization of a winner, but disappointment and elation are unlikely to be very

sensitive to the size of the loss or gain.

In what follows I set up a model of a decision maker with S-shaped reference-dependent

risk preferences and show that it reliably predicts the disposition effect. I assume that the

decision maker evaluates a monetary payoff m according to the following S-shaped Bernoulli

utility function, standard in the literature on prospect theory:

u(m;R) =

{
(m−R)α if m ≥ R

− (R−m)α if m < R
(14)

Here R is the reference point against which the monetary payoff m is assessed. The parameter

α ∈ (0, 1] is the elasticity of utility to gains and losses. When α < 1, utility has the property

of diminishing sensitivity. Figure 4 illustrates how the parameter α controls the shape of

the utility function. A lower α implies stronger risk-aversion over gains and stronger love of

risk over losses. The classical estimate of α, obtained by Tversky and Kahneman [1992], is

0.88. Wu and Gonzalez [1996] obtained a lower estimate, around 0.5 (for other estimates see

Camerer and Ho [1994], Abdellaoui [2000] and Bruhin et al. [2010]).

The reference point R could be a constant value, for example the reference point could

be set equal to the salvage value x. Here I use the notion of an expectation-based reference

point, as in the approach originally developed by Bell [1985] and Loomes and Sugden [1986]

and recently extended by Kőszegi and Rabin [2007]. One clear advantage of this modeling
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strategy is that it can be applied to other contexts. In particular, I believe it can provide a

microfoundation for the disposition effect in important economic models that involve stop-

ping decisions (as I discuss in Section 5). This notion may also provide a better descriptive

model of the actual behavior of subjects in this task. Indeed note that for a decision maker

who starts the task at s0 = x and plans to stop at some future date, the expected monetary

payoff is greater than x. For example, this is the case for the optimal risk-neutral policy,

which yields v(x) > x, as can be seen from Figure 1. It seems plausible that a decision maker

with reference-dependent preferences may evaluate the actual realization of the monetary

payoff relative to her initial expectation. Thus I assume that, given a pair of stopping times

τo and τc, the reference point is the expected discounted value of the monetary payoffs at

the start of the task:

R = E
{
e−ρ(τ−t) [1{τ=τo}x+ 1{τ=τc}sτ + 1{τ=τλ}yτ

]
|s0

}
(15)

Clearly, this reference point depends on the choice of the two stopping times and in turn on

the choice of thresholds. An important question in modeling this type of expectation-based

reference-dependent preferences is whether the decision maker is aware of the effect of her

choices on her reference point or not. I assume that when choosing the stopping times τo

and τc the decision maker disregards the effect of her choice on the reference-point. In the

terminology of Kőszegi and Rabin [2007] the reference point is choice-unacclimating.

Another issue that arises when modeling reference-dependent preferences is how to deal

with discounting. The usual interpretation of discounting is that of a time-preference, but

in my experiment, as in most experiments on dynamic decisions (e.g., Oprea et al. [2009]),

discounting is implemented by expiration risk. It is assumed that at random time, τρ, the

investment expires, yielding 0. The expiration time, τρ, is assumed to follow an exponen-

tial distribution with parameter equal to the discount factor ρ. Under these conditions,

preference-based time-discounting at a rate ρ and expiration risk yield the same utility and

behavior in the risk-neutral or risk-averse case. However, under reference-dependent prefer-

ences the distinction is important because u(0;R) 6= 0: intuitively when the asset expires the

decision maker experiences a loss relative to her reference point, but there is no loss when

discounting of a future gain is due to time-preferences. In order to provide predictions that

apply to behavior in my experiment, I solve the model with expiration risk.

The problem of the decision maker can now be formulated in the following way:

(τ̂o, τ̂c) = arg max
τo,τc

Et

[
1{τ=τo}u(x; R̂) + 1{τ=τc}u(sτ ; R̂) + 1{τ=τλ}u(yτ ; R̂) + 1{τ=τρ}u(0; R̂)

]
R̂ = E

{[
1{τ=τ̂o}x+ 1{τ=τ̂c}sτ + 1{τ=τλ}yτ + 1{τ=τρ}0

]
|s0

}
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where now τ ≡ min{τo, τc, τλ, τρ}. Details of the numerical solution method are discussed in

appendix A.3. Given the optimal stopping times, it is also possible to define the stopping

thresholds b̂ and B̂ by:

τ̂o = inf{t|st ≤ b̂}

τ̂c = inf{t|st ≥ B̂}

Figure 5 illustrates how the parameter α affects the solution to the problem. When α = 1,

the problem reduces to the risk-neutral benchmark. Both the upper and lower liquidation

thresholds fall as α decreases. Thus there is a monotonic relation between the elasticity

to gains and losses and the disposition effect. The intuition is clearer if the mechanism

is analyzed separately for gains and losses. First, a lower elasticity of utility to gains (α)

reduces the incentive to wait for a larger gain, thus producing a lower value for the optimal

upper threshold B. To understand the effects on the lower threshold, first note that for all

values of α the reference point is above x and therefore the salvage value is framed as a loss.

So even though liquidating a loser does not entail any nominal loss, it does generate a loss

relative to the reference point. The decision maker still chooses to realize losers to avoid

incurring larger losses, that may occur, for example, when the asset expires. However, as the

elasticity of utility to losses (α) falls, the difference in terms of disutility between realizing

a loser and losing the investment decreases, allowing the decision maker to postopone the

voluntary realization of losses by choosing a lower b. I summarize the previous discussion in

the following:

Remark 3. S-shaped expectation-based reference-dependent preferences generate the dispo-
sition effect.

3 The Experiment

3.1 Implementing the Model in the Lab

In order to implement the model in the lab, I use a discrete approximation. Each discrete

time step or tick has length ∆t. I approximate the geometric Brownian motion st with the

following binomial process:

st+∆t =

{
st(1 + h) with probability p

st(1− h) with probability 1− p
(16)

As in other dynamic experiments (such as Oprea et al. [2009]), I implement time discounting

with random expiration, i.e. termination of the game with no payoff. To approximate the
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exponential distribution of expiration times with parameter ρ, I use a geometric distribution

with parameter r. Similarly the distribution of dividend arrival times, parameterized by λ,

is approximated by a geometric distribution with parameter l. The relation between the

parameters of the original model and the discrete approximation is discussed in Appendix

A.4. Figure 6 summarizes the events that can occur in a tick.

As remarked above, a value of λ different from zero is not necessary to solve the model.

However, when λ = 0, in order to yield a round length of one or two minutes on average, ρ

has to be large, and this in turn makes the optimal inaction region narrow. Fixed an average

round length, when some of the rounds end in the stock paying out (i.e. λ > 0) the width of

the optimal inaction regions increases. I thus calibrate λ and ρ in order to target a reasonable

round duration and a desirable width of the optimal inaction region. Table 1 summarizes

the choice of parameter values and the resulting predictions. A tick lasts for 0.2 seconds.

The average duration of a round implied by the parameters r and l is around 1.5 minutes.

Conditional on termination, the probability that a round expires with no payoff is around

45% and the expected fraction of rounds that end with the arrival of the dividend is 55%.

The price process has no drift, so that the uptick probability is p = 0.5. The percentage

change in the price at each tick is around 5%. The strike price is set at 10, while the optimal

inaction region is (6.2, 17.3), and therefore the inaction region is reasonably wide in terms

of steps of the price process. Finally the optimal inaction region yields an expected fraction

of winners in total sales equal to Π∗ = 34%.

13



st ticks up
or down

Sell?

Payoff = max{x; st}

Wait

Next tick

Payoff = 0

Payoff = δst

yes

no
1− r − l

r

l

Figure 6: Timeline of a tick.

Continuous Discrete Other Predictions
µ σ ρ λ ∆t p h r l x δ b∗ B∗ Π∗

0.00 0.12 0.005 0.006 0.2 0.50 0.054 0.001 0.0012 10 1 6.2 17.3 34%

Table 1: Parameter values and theoretical predictions.
Note: time is measured in seconds.

3.2 Experiment Details

I implemented the experiment using a custom piece of software programmed in a new

Javascript environment called Redwood. Each session is divided into 35 rounds, essentially

repetitions of the same task with random ending times as discussed in the previous section.

Each round has an initial buying stage. At the beginning of each round each subject is

given 100 units of experimental cash. In the buying stage the subject can decide to use her

cash to buy shares of a stock at a given price per share. Note that the purchase decision is

irrelevant for the rational benchmark. I use this procedure in order to be consistent with

the existing literature on the disposition effect and to potentially generate a salient reference

point. Also note that a rational decision maker will be always willing to pay s0 for a security

that bundles a put option and a stock priced at s0 (i.e. v(s0) > s0).

The purchase price is equal to 10 in every round. The subject can choose to spend up

to and no more than the 100 units of cash, but each subject has to buy at least one share.

Figure 7 illustrates the screen of the buying stage. After the buying decision is made (or

after 20 seconds have passed, with 1 share as default choice), the round moves on to the

14



Figure 7: Buying stage.

selling stage.

In the selling stage, the subject display, reproduced in Figure 8 plots the time series of

the stock price in real time, with s0 equal to the purchase price. A subject’s only decision is

when to press a button labeled “Sell.” The choice of whether to cash the stock or exercise

the option is automated: whenever the current price is below 10 and the subject decides

to sell, she receives the strike price, 10. This feature only eliminates potential noise that is

not relevant to the disposition effect. The experiment is run with a semi-strategy method,

showing the st process up to expiration even after the subject sells. The realization of {st}t
is determined by the software in real time, so each subject faces different sample paths of the

stock price. Similarly, the actual values of the round ending times and of the dividend arrival

times are drawn from the same distributions but independently for each subject. After the

selling stage is over the computer displays useful summary information about the round,

such as the subject’s score, her action and whether the round ended with the stock paying

out or expiring.

Data was collected in the LEEPS laboratory at the University of California, Santa Cruz

between May and October 2013 and in May-June 2014. A total of 108 subjects were drawn

from an undergraduate subject pool using students from across the curriculum, recruited

using the ORSEE software (Greiner [2004]). Subjects were randomly assigned to visually

isolated terminals and interacted with no other subjects during the session. Instructions,

reproduced in Online Appendix, were read aloud prior to the beginning of the experiment.

Subjects were paid a $5 showup fee and the sum of points earned over all periods converted

at an exchange rate of $0.3 for 10 points. Sessions lasted roughly 1 hour and 30 minutes

including instructions and subject earnings averaged around $14.
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Figure 8: Selling stage.

4 Results

I analyze the experiment results by studying the distribution of stopping points and compare

it to the optimal threshold benchmark in order to test for a disposition effect. I leave an

analysis of the subjects’ purchasing behavior to the Appendix B.1, as it offers no particular

insight.

I define a stopping point as a value of the asset price s at which a sale occurs. Figure

9 illustrates the distribution of stopping points pooling all subjects in the study. Letting

S represent the random variable that generates stopping points, Panel 11b plots Prob(S ≤
s|S ≥ s0), while panel 11a shows Prob(S ≥ s|S ≤ s0), as s varies in the relevant range.

Confidence bounds at the 99% level are included. The solid vertical lines mark the optimal

thresholds, while dashed lines show the actual medians.

The sample medians are b = 5.14 and B = 14.21. For both thresholds it is possible to

reject the hypothesis that they are equal to the optimal level, with a Wilcoxon signed-rank

p-value of nearly zero. The aggreagate winner bias is Ψ = 62%. It is possible to conclude

the following:

Result 1. In the aggregate there is evidence of a disposition effect in terms of stopping
points: the median lower stopping point is significantly smaller than b∗ and the median
upper stopping point is significantly smaller than B∗.

The disposition effect I find in the aggregate data is robust to learning over rounds. To
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Figure 9: CDFs of stopping points

show this, I split the whole sample into a sample of early rounds (the first 20) and a subsample

of late rounds (the last 15). Figure 10 plots the empirical distributions of stopping points.

It is possible to observe that the deviation of the median stopping points (the dashed lines)

from the optimal thresholds (the solid lines) does not change much over the experiment

(and it is slightly larger in the late rounds sample). Formally, the null-hypothesis that the

early and late distributions are equivalent cannot be rejected at standard confidence levels

(Kolmogorov-Smirnov p-values: 0.24 and 0.14 for winners and losers respectively).

Another concern is that the empirical distribution of stopping points may be a biased

estimate of the underlying process, as random termination of play implies that stopping

points farther from s0 are less frequently observed. Thus the empirical distribution may be

biased towards stopping points closer to the initial value. This has different implications for

winners and losers. The result that the average stopping point for losers is below the optimal

lower threshold is not affected by this concern, as correcting the bias may only strengthen

such finding. However, the bias in favor of smaller stopping points could in priciple be the

main driver of the finding that the average stopping point for winners is below the optimal

lower threshold. Indeed the behavior of a risk seeking individual (with a wide band) may look

like the disposition effect if the censoring bias is large. In order to rule out this possibility

I create a sub-sample of stopping points for winners by restricting attention to rounds in

which, at some time before expiration, the asset price reaches the optimal upper threshold.

Similarly for losers, I generate a sub-sample of stopping points from rounds in which, at some

time before expiration, the asset price reaches the optimal lower threshold. In these restriced
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Figure 10: CDFs of stopping points in early and late rounds.

samples the censoring bias is eliminated and since the asset price process is exogenous there

is no selection bias. This procedure reduces the sample size by 27% for winners and 4%

for losers. Figure 11 plots the empirical distributions for the original sample (labeled “All”)

and the restriced samples. The original and restriced samples of stopping of losers have very

similar distributions. There is some evidence of censoring bias in the distribution of stopping

decisions for winners, as the median stopping point in the restricted sample is larger than in

the original sample. However, even after correcting for censoring the median stopping point

in the restricted sample is lower than the optimal threshold. It is still possible to reject the

hypothesis that stopping points for winners are clustered around the optimal level, with a

Wilcoxon signed-rank p-value of nearly zero.

Result 2. The finding of an aggregate disposition effect is robust to subject learning and to
statistical censoring bias.

I have shown that the median aggregate stopping points are consistent with the disposi-

tion effect condition (13), suggesting that subjects ride losers too long and sell winners too

early. However, this is the correct interpretation only insofar as the behavior of subjects

is well approximated by threshold rules. In principle a stopping decision at point s may

occur much later than the first time the price process has hit s. For example, a subject may

observe the price rising from s = 10 to s = 19, then falling again to s = 14 and decide to stop

at that point. This is a very different behavior from stopping as soon as the price reaches

s = 14. Non-threshold behavior will bias tests of the disposition effect based on liquidation

points in a precise direction: liquidation points that lie inside the optimal inaction band and
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Figure 11: CDFs of stopping points controlling for censoring bias.

therefore seem to suggest early stopping decisions may in fact represent stopping decisions

that happened too late. Thus the result that subjects ride losers too long is robust to non-

threshold behavior. On the contrary, the conclusion that subjects tend to sell winners too

early may be due to a failure to account for non-threshold behavior. In the current section

I address this issue by looking at whether the liquidation decision of a subject occurred

before or after the optimal stopping time.11 For each round in which a stopping decision was

made I check whether this decision occurred before or after the optimal stopping time (τ ∗c

for winners and τ ∗o for losers). I then report the fraction of stopping decisions that occurred

too late, i.e. at t > τ ∗c for winners and t > τ ∗o for losers. I compare this to the fraction of

stopping decisions that seemed to occur too late based on stopping points, i.e. st > B∗c for

winners and st < b∗ for losers. Figure 12 illustrate the results (for each fraction I also show

a two-standard error bar). For both criteria I show the fraction of late stopping decisions in

the original sample (labelled “All”), in the sample of late rounds (“Late”) and in the sample

of late rounds restricted to avoid censoring bias (“Late Restricted”). There is some evidence

of non-threshold behavior as using the stopping-time criterion increases the fraction of late

decisions with respect to the liquidation-point criterion. However, the disposition effect is

robust to this check: the majority of stopping decisions for winners occur too early, while

the majority of the stopping decisions for losers occur too late.

Result 3. Using a stopping-time criterion confirms the finding of a significant disposition
effect in the aggregate: on average, subjects tend to sell winners too early and ride losers

11In terms of design, subjects’ choices could be restricted to treshold strategies as in Oprea [2012].
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Figure 12: Fraction of stopping decisions that occur too late.

too long. The difference in the fraction of stopping decisions that occur later than optimal
between winners and losers is highly significant.

In the aggregate 80% of stopping decisions for losers occur later than optimal and similarly

the majority of stopping decisions for winners occur earlier than the optimal stopping time.

In order to provide further evidence that the aggregate disposition effect reflects a widespread

tendency in the subject pool, I look at the individual level. In what follows I use only data

from the last 20 rounds for each subject (the results are robust to this choice). I thus

define b as the median from the sample of a subject’s lower stopping points (and similarly

for B). I classify subjects according to the following taxonomy. A subject is classified as

risk-neutral if the median lower (upper) stopping points lie within a 10% error band around

the optimal lower (upper) threshold (the results are robust to the choice of the error band).

A subject’s behavior is consistent with the disposition effect (“DE”) if the both median

stopping points are lower than the respective benchmark (again allowing for an error band).

The label “Anti-DE” applies to subjects whose median liquidation points are larger than the

respective benchmark. The other two cases are a wider band, labelled “Risk-seeking”, and

a narrower band relative to the optimal, labelled “Risk-averse”. The resulting classification

of subjects is summarized in table 2.

For each category, in the first row I show the fraction of subjects. The second and

third rows collect the median stopping points for winners and losers respectively. These are

medians of the subject-level median points. In the fourth row I show the median of the Ψ

measure. Around 62% of the subjects are classified as disposition-effect decision makers.
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Subject type
Risk-neutral DE Anti-DE Risk-seeking Risk-averse

Fraction 3% 62% 0 13% 22%
Median B 16.0 13.6 - 19.6 13.1
Median b 5.8 4.9 - 4.0 6.9
Median Ψ 20% 72% - 12% 46%

Table 2: Subject classification.

Notably, no subject behaves in the opposite way of the disposition effect. Note that for

many subjects Ψ is positive, meaning that the probability of realizing a winner conditional

on stopping is larger than optimal even for subjects who are close to the optimal or who adopt

a risk-seeking or a risk-averse strategy. However, this statistics is significantly larger for the

disposition effect group, with a mean around 72%. The subject-level analysis summarized

in table 2 leads to the following:

Result 4. The behavior of more than half of the subjects is consistent with the disposition
effect. Moreover, for this group of subjects the deviation from optimal behavior is particularly
significant, as it implies a probability of realizing a winner conditional on stopping 72% larger
than optimal.

5 Discussion

This paper develops a laboratory test of a distinctive prediction of reference-dependent pref-

erences, testable only in dynamic settings: decision makers suboptimally delay realizing

disappointing outcomes (procrastination) but suboptimally rush to realize outcomes that

are better-than-expected (rushing). Many empirical studies have found evidence suggest-

ing the disposition effect in financial markets - the tendency of individual investors to sell

winners too soon and ride losers too long. However, most of the evidence is indirect and

using field data it is difficult to establish whether the effect actually reflects an underlying

preference.

To address these issues, I develop and conduct a laboratory test based on a model of op-

timal stopping decisions. The task involves deciding when, if ever, to liquidate a risky asset,

whose price follows a stochastic process in continuous time. The payoff structure is designed

in such a way that optimal behavior entails stopping as soon as the asset price reaches either

an upper threshold or a lower threshold, realizing a winner or a loser respectively.

Because the ranking of stopping payoffs is highly salient, ordinary laboratory subjects

are likely to experience disappointment from the realization of a loser and elation from

the realization of a winner. In this situation, the principle of diminishing sensitivity (for-
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malized by an S-shaped utility function) predicts subjects will show the disposition effect.

My results indicate that indeed most subjects behave as predicted by a model of S-shaped

expectation-based reference-dependent preferences. The disposition effect I observe in the

lab is economically significant (implying a probability of realizing a winner conditional on

stopping 70% larger than optimal), robust to learning and cannot be confounded by standard

preferences, such as risk aversion.

This paper shows that S-shaped reference-dependent preferences are a very powerful

explanation of behavior in a stylized optimal stopping problem. The disposition effect that I

document in my experiment has obvious implications for financial markets but its potential

scope is considerably broader. Any microeconomic setting in which optimal behavior takes

the form of a two-sided stopping rule with a salient ranking of stopping payoffs is potentially

vulnerable to this sort of effect. Here we consider two applications that are quite distinct

from financial markets, pertaining to signaling and experimentation respectively.

1. When stochastic information about the value of a privately-informed seller’s asset is

gradually revealed to a market of buyers, equilibrium involves a no-trade region in the

market posterior belief space. As shown by Daley and Green [2012], as soon as the

belief reaches the upper threshold, both the low and high types sell at a high price.

At the lower threshold, the low type mixes between accepting a low price and waiting.

The results of my experiment suggest that most low types would be willing to wait

longer before capitulating and try to realize the higher offer sooner than the theory by

Daley and Green [2012] predicts. Clearly the effects of reference-dependent preferences

depend on equilibrium considerations in this setting, but I conjecture that S-shaped

preferences may create an important amplification mechanism of the inefficiency intro-

duced by asymmetric information.

2. In dynamic R&D models, the decision maker collects costly information about the

value of a project in continuous time and stops the experimentation process either by

abandoning the research or by building the prototype. As shown by Moscarini and

Smith [2001] the optimal solution involves an inaction region in the posterior belief

space: when beliefs are sufficiently pessimistic the research is abandoned, yielding a

null payoff, and when beliefs are sufficiently optimistic the project is built . However,

abandoning the project is likely to be viewed as a loss by most individual decision mak-

ers, and this can trigger risk-seeking behavior over a range of pessimistic beliefs, thus

delaying the abandonment decision. The implications of reference-dependent prefer-

ences for the timing of the building decision are less obvious: on one hand diminishing

sensitivity induces a lower building threshold (a slope effect), on the other risk-aversion
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implies a lower expected utility from builiding as the prototype value is uncertain (a

level effect).

Finally, the results of this paper are likely to apply to individual investors in real-world

stock markets, especially those who make small investments (in which case diminishing

sensitivity to losses is a reasonable assumption). When investors have multiple opportunities

to reinvest, the implications of diminishing sensitivity for behavior are less straightforward

than in one-time stopping problems. Nonetheless theoretical work on this topic has already

shown the importance of S-shaped reference-dependent preferences (Ingersoll and Jin [2013]).

Mine is the first paper to produce evidence about this property of utility in a dynamic

stochastic experiment12.

To conclude, the evidence I provide in this paper suggests that S-shaped reference-

dependent preferences are important in shaping behavior when the timing of uncertainty

resolution is endogenous. Studying how this kind of preferences affect stopping decisions in

specific contexts, especially dynamic learning problems, seems a promising avenue for future

research.

12Frydman et al. [2012] use brain imaging during a laboratory experiment with multiple trading and
reinvestment opportunities. They show that individuals experience bursts of utility from sales, even before
final monetary payoffs are assigned. However, Frydman et al. [2012] do not address the issue of whether
realization utility is S-shaped.
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Constantinides, Milton Harris, and René M Stulz, editors, Handbook of the economics of

finance: Financial Market and Asset Pricing, volume 2B. Elsevier, Amsterdam, 2011.

Nicholas Barberis and Wei Xiong. What drives the disposition effect? an analysis of a

long-standing preference-based explanation. the Journal of Finance, 64(2):751–784, 2009.

Nicholas Barberis and Wei Xiong. Realization utility. Journal of Financial Economics, 104

(2):251–271, 2012.

Nicholas C Barberis. Thirty years of prospect theory in economics: A review and assessment.

The Journal of Economic Perspectives, 27(1):173–195, 2013.

David E Bell. Disappointment in decision making under uncertainty. Operations research,

33(1):1–27, 1985.

Itzhak Ben-David and David Hirshleifer. Are investors really reluctant to realize their losses?

trading responses to past returns and the disposition effect. Review of Financial Studies,

25(8):2485–2532, 2012.

Adrian Bruhin, Helga Fehr-Duda, and Thomas Epper. Risk and rationality: Uncovering

heterogeneity in probability distortion. Econometrica, 78(4):1375–1412, 2010.

Colin F Camerer and Teck-Hua Ho. Violations of the betweenness axiom and nonlinearity

in probability. Journal of risk and uncertainty, 8(2):167–196, 1994.

Brendan Daley and Brett Green. Waiting for news in the market for lemons. Econometrica,

80(4):1433–1504, 2012.

Avinash Dixit. The Art of Smooth Pasting. Harwood Academic Publishers, 1993.

Cary Frydman, Nicholas Barberis, Colin Camerer, Peter Bossaerts, and Antonio Rangel.

Using neural data to test a theory of investor behavior: An application to realization

utility. Working paper, National Bureau of Economic Research, 2012.

David Genesove and Christopher Mayer. Loss aversion and seller behavior: Evidence from

the housing market. The Quarterly Journal of Economics, 116(4):1233–1260, 2001.

24



B. Greiner. The online recruitment system orsee 2.0 - a guide for the organization of ex-

periments in economics. Working Paper Series in Economics 10, University of Cologne,

Department of Economics, 2004.

Jonathan E Ingersoll and Lawrence J Jin. Realization utility with reference-dependent pref-

erences. Review of Financial Studies, 26(3):723–767, 2013.

Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk.

Econometrica: Journal of the Econometric Society, pages 263–291, 1979.
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Online Appendices

A Model Details

A.1 Solving the Risk-Neutral Model

Inside the inaction region (b, B) the value function of the risk-neutral decision-maker defined
in (3) can be written in a recursive way. Consider a small time interval ∆t, then standard
arguments give:

v(s(t)) ' λ∆t

1 + ρ∆t
y(t) +

1− λ∆t

1 + ρ∆t
Etv(s(t+ ∆t))

(1 + ρ∆t)v(s(t)) ' λ∆ty(t) + (1− λ∆t)Etv(s(t+ ∆t))

ρ∆tv(s(t)) ' λ∆t[y(t)− v(s(t))] + (1− λ∆t)Et[v(s(t+ ∆t))− v(s(t))]

ρv(s(t)) ' λ[y(t)− v(s(t))] + (1− λ∆t)
1

∆t
Et[v(s(t+ ∆t))− v(s(t))]

Taking ∆t→ 0:

ρv(s) = λ[y − v(s)] +
1

dt
Etdv(z(t)), s ∈ (b, B) (17)

The left hand side can be interpreted as the instantaneous return to holding on to the stock.
The first term on the right hand side is the gain or loss realized when a dividend arrives: the
decision maker has to give up v(s) and obtains a dividend y. The second term on the right
is the expected change in the value of holding on to the stock. Using Ito’s lemma leads to
the Hamilton-Jacobi-Bellman equation of the problem:

(ρ+ λ)v(s) = λy + µsv′(s) +
1

2
σ2s2v′′(s), s ∈ (b, B) (18)

I use (2) to express the dividend in terms of the current price and obtain:

(ρ+ λ)v(s) = λδs+ µsv′(s) +
1

2
σ2s2v′′(s), s ∈ (b, B) (19)

The general solution of this second order differential equation is:

v(s) =
−2λδ

σ2(1−R1)(1−R2)
s+ C1s

R1 + C2s
R2 (20)

where:

R1 =

1
2
σ2 − µ+

√
µ2 + 1

4
σ4 − µσ2 + 2(ρ+ λ)σ2

σ2

R2 =

1
2
σ2 − µ−

√
µ2 + 1

4
σ4 − µσ2 + 2(ρ+ λ)σ2

σ2
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The boundary conditions at the optimal thresholds b∗, B∗ are:

lim
s↘b∗

v(s) = x

lim
s↘b∗

v′(s) = 0

lim
s↗B∗

v(s) = B∗

lim
s↗B∗

v′(s) = 1

Substituting the expression for the value function gives:

−2λδ

σ2(1−R1)(1−R2)
b∗ + C1b

∗R1 + C2b
∗R2 − x = 0 (21)

−2λδ

σ2(1−R1)(1−R2)
+ C1R1b

∗R1−1 + C2R2b
∗R2−1 = 0 (22)

−2λδ

σ2(1−R1)(1−R2)
B∗ + C1B

∗R1 + C2B
∗R2 −B∗ = 0 (23)

−2λδ

σ2(1−R1)(1−R2)
+ C1R1B

∗R1−1 + C2R2B
∗R2−1 − 1 = 0 (24)

From these four equations it possible to obtain expressions for the two constants C1, C2 in
terms of B∗ and b∗, leading to equations (11) and (12). In order to solve for the two optimal
thresholds it is necessary to solve this system of non-linear equations numerically.

A.2 Solution with CRRA Utility

When payoffs are evaluated by means of a CRRA utility function f(·), the model can be
solved in a similar way to the risk-neutral case. Equation (18) is replaced by the following
Hamilton-Jacobi-Bellman equation:

(ρ+ λ)v(s) = λf(y) + µsv′(s) +
1

2
σ2s2v′′(s), s ∈ (b, B) (25)

Since the CRRA utility function f(·) is a power function, equation (25) can be solved an-
alytically. The two thresholds can then be found by solving (numerically) the system of
equations given by the four boundary conditions:

lim
s↘b∗

v(s) = f(x)

lim
s↘b∗

v′(s) = 0

lim
s↗B∗

v(s) = f(B∗)

lim
s↗B∗

v′(s) = f ′(B∗)
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A.3 Solution with Reference-Dependent Preferences

Let τ ≡ min{τo, τc, τλ, τρ}. The problem under reference-dependent preferences is:

(τ̂o, τ̂c) = arg max
τo,τc

Et

[
1{τ=τo}u(x; R̂) + 1{τ=τc}u(sτ ; R̂) + 1{τ=τλ}u(yτ ; R̂) + 1{τ=τρ}u(0; R̂)

]
R̂ = E

{[
1{τ=τ̂o}x+ 1{τ=τ̂c}sτ + 1{τ=τλ}yτ + 1{τ=τρ}0

]
|s0

}
Solving this problem involves dealing with a number of issues related to the S-shape of
the function u(·;R), defined in equation (14), and to the fact that the reference point is
endogenous. Since the function u(·;R) is not differentiable at R, the problem needs to
be solved separately for gains and for losses. Let vL(·) be the value function in the loss
domain and vG(·) be the value function in the gain domain. At the two optimal thresholds
b̂, B̂ value matching and smooth pasting apply. Additionally, the two value functions must
satisfy value matching and smooth pasting at the reference point, R. Proceeding as before,
the value functions of the problem can be written in terms of a Hamilton-Jacobi-Bellman
equation:

(ρ+ λ)vL(s) = ρu(0; R̂) + λu(y; R̂) + µsv′L(s) +
1

2
σ2s2v′′L(s), s ∈ (b, R̂) (26)

(ρ+ λ)vG(s) = ρu(0; R̂) + λu(y; R̂) + µsv′G(s) +
1

2
σ2s2v′′G(s), s ∈ (R̂, B) (27)

The boundary conditions at the optimal thresholds b̂, B̂ and at the reference point are:

lim
s↘b̂

vL(s) = u(x; R̂) (28)

lim
s↘b̂

v′L(s) = 0 (29)

lim
s↗B̂

v(s)G = u(B̂; R̂) (30)

lim
s↗B̂

v′(s)G = u1(B̂; R̂) (31)

lim
s↗R̂

vL(s) = lim
s↘R̂

vG(s) (32)

lim
s↗R̂

v′L(s) = lim
s↘R̂

v′G(s) (33)

Since u(·;R) is not simply a power function, these differential equations cannot be solved
analytically. Additionally, they cannot be solved with standard numerical methods, because
this is a free-boundary problem. In order to solve them I use the method described in
Muthuraman and Kumar [2008]. This method involves starting with arbitrary boundaries,
solving the differential equation numerically using the value matching conditions (equations
(28), (30) and (32)) and then adjusting the boundaries to ensure that also smooth pasting
is satisfied (equations (29), (31) and (33)). This loop is repeated until the boundaries and
the value function converge. To this algorithm I add the computation of the endogenous
reference point R̂. First note that R̂ is the value function of a risk-neutral decision maker
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at s0. To solve for this value function I use the two value-matching conditions at the given
thresholds b̂, B̂. Using the method described in A.1, we have a system of three equations in
three unknowns R̂,K1, K2, where K1 and K2 are constants that can be obtained by the two
value-matching conditions. The three equations are:

R̂ =
−2λδ

σ2(1−R1)(1−R2)
s0 +K1s

R1
0 +K2s

R2
0 (34)

x =
−2λδ

σ2(1−R1)(1−R2)
b̂+K1b̂

R1 +K2b̂
R2 (35)

B̂ =
−2λδ

σ2(1−R1)(1−R2)
B̂ +K1B̂

R1 +K2B̂
R2 (36)

This computation is nested in each loop of the algorithm.

A.4 Discrete Approximation

The continuous time and discrete time parameters are related by the following standard
conditions (see Dixit [1993]):

µ =
(2p− 1)h

∆t

σ2 =
4p(1− p)h2

∆t

ρ =
− ln(1− r)

∆t

λ =
− ln(1− l)

∆t

B Details of the Empirical Analysis

B.1 Purchasing Decisions

Figure 13 shows the histogram of the number of shares bought in a round by a subject.
Only a small fraction of buying decisions involve the one share minimum requirement. The
number of shares bought did not seem to be related to behavior in any significant way.
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Figure 13: The distribution of the number of shares bought
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