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1 Introduction

The payment industry is rapidly evolving. The proliferation of new payment methods on the
Internet, such as PayPal, Google Checkout, Amazon Payments and Bitcoin, challenges the busi-
ness and regulatory models of traditional card payment systems, such as Visa, MasterCard
and American Express. An important dimension of this reconsideration concerns the extent
to which merchants should be allowed to price discriminate according to payment method.
Absent public regulation on the matter, payment systems have prohibited merchants from sur-
charging for payments methods other than cash, so as to favor consumers at the expense of
merchants, who often face high fees.1

Merchants have long complained that their inability to pass through high merchant fees to
consumers interfered with the proper working of a free market. Over the last decade, most
regulators2 sided with the merchants and struck down the uniform-pricing3 mandate imposed
by card systems, only to discover a few years later that substantial surcharges may end up
being levied on unfortunate consumers. In response to abusive surcharging, the European
Union, the UK and Australia all have proposed variations on the idea that surcharges should
be limited to some variant of the notion of “cost of acceptance”, which includes the merchant
fee plus possible various other costs.4

Meanwhile, most regulators have capped the fees that card systems can levy on merchants.
For example, the European Commission adopted as its benchmark for the regulation of mer-
chant fees charged by Visa and MasterCard members the “tourist or avoided cost test”, ac-
cording to which the merchant fee should not exceed the merchant’s convenience benefit of a
card payment.5 The tourist test induces the cardholder to internalize the merchant’s welfare

1For instance, PayPal, Google Checkout and Amazon Payments charge merchant fees of 2.9% of the retail price
plus $0.3 per transaction for merchants with low volume on the payment platform. Discounts are granted to mer-
chants who actively use the payment platform.

2Australia pioneered this regulation in 2003. A key provision of a long-standing litigation brought by a class of
US retailers in 2005 was to force Visa to allow merchants to surcharge; since January 2013, merchants in the United
States are permitted to impose a surcharge on consumers when they use a credit card, except in states with laws
prohibiting surcharging, such as California, New York and Massachusetts.

3Technically, all platforms allow cash discounts. As we will demonstrate in the paper, though, this degree of
freedom is unlikely to generate departures from uniform pricing.

4For example, in the UK surcharge regulation, the attributable costs can include direct costs beyond the merchant
service charge, such as point of sale devices, risk management, charges for reversing or refunding a payment, or
payments for services from intermediaries who provide equipment, fraud detection and processing services for
card payments.

5That is, conditional on the customer being at the point of sale and willing to pay regardless of the payment
method, the merchant is happy to have the customer pay by card. The reference to a tourist captures the idea that
there is no repeat purchase, and so accepting the card does not bring about any benefit from the customer’s being
more willing to return to the store because he now knows that cards are accepted. The test was developed in Rochet
and Tirole (2011). Note also that in the case of Visa and MasterCard, the merchant fee is regulated only indirectly
through the so-called “interchange fee” that the merchant’s bank pays to the cardholder’s bank. The interchange
fee is set by the platform (e.g., Visa or MasterCard). For extensive overviews of the economics of interchange fees,
see Evans and Schmalensee (2005) and Evans (2011).
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when choosing the payment method and is thus the incarnation of the Pigovian precept in
the payment context. Because the merchants’ surcharging behavior ultimately depends on the
fees they pay on card payments, the merchant fee and surcharging regulations should not be
designed separately, unlike under current practice.6

The purpose of this paper is to clarify the surcharging debate and determine how the regu-
lation of surcharges should be related to public policy toward merchant fees. To this purpose,
we develop a micro-founded framework for the study of payment-method-based price dis-
crimination. In contrast with the existing literature, we assume that consumers are imperfectly
informed about the merchant’s “payment policy” (card acceptance, card surcharge, cash dis-
count). Accordingly, the transaction costs per sale are shrouded from consumers’ sight (hence
the title of the paper).

We obtain three main insights:

1) We show that concerns about missed sales induce merchants to perceive that they must
take the card. By assuming perfect consumer information about merchant payment policy, the
economics literature has ignored the possibility that card refusal or a high surcharge may cause
the merchant to lose business at the point of sale, a widespread concern. Besides introducing
missed sales in the literature, the paper also shows that, in the absence of surcharging, mer-
chants will accept cards with inefficiently high merchant fees, and that payment systems will
indeed want to levy such fees. The “must-take-card” argument has been the centerpiece for
many antitrust lawsuits against Visa and MasterCard. We here provide a different and com-
plementary rationale for the already existing must-take card argument according to which,
under complete consumer information, the payment platform can charge the merchant for the
increased attractiveness stemming from card acceptance.7

2) Second, we derive a set of predictions that match, and shed light on existing evidence on
merchant comparative resistance to merchant fees for debit and credit cards, on the pattern of
surcharging when allowed (credit/debit, Internet/brick and mortar, business/personal cards),
and on how platforms adjust their fee structures in response to laws allowing merchants to
practice cash discounts/card surcharges. The theoretical predictions and the available evidence
are compared in the conclusion.

3) Finally, we show that the optimal regulation of surcharging is related to public policy
toward merchant fees and substantially differs from current practice. First, we note that pro-
hibiting surcharging increases welfare if the merchant fee lies above some threshold that ex-
ceeds the tourist test level, and decreases it otherwise; in particular allowing surcharging is
very likely to reduce welfare if merchant fees are otherwise capped. We then show that the op-
timal regulation consists in allowing surcharges but capping them at the merchant fee minus

6An exception is the European Commission’s July 2013 proposal to allow surcharging for cards which fee struc-
ture is currently not subject to regulation, and to ban it for the others.

7See Rochet and Tirole (2002), Vickers (2005), Rochet and Tirole (2011) and Wright (2012).
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the merchant’s convenience cost of card payment; thus the cap should be equal to zero if the
merchant fee is regulated according to the tourist test.

Organization of the paper

Section 2 sets up the model. The payment platform charges a merchant fee and a cardholder
fee per card transaction. The merchant’s listed price is just a commitment to sell the good at
that price through some payment method (cash or card). Customers differ in their relative cost
of a cash payment, and choose a payment method as a function of the platform’s cardholder fee
and the merchant’s payment policy. A crucial ingredient of our analysis is that consumers are
imperfectly informed about the merchant’s cash/card policy (and, in equilibrium, form ratio-
nal expectations about it). This assumption is natural in industries characterized by one-time
(or infrequent) shopping, such as travel (e.g., airlines and gas stations), tourism, and various
retail/service sectors (e.g., durable goods). More broadly, this assumption is likely to hold
whenever consumers have bounded memory or are rationally inattentive regarding past pur-
chasing experiences.

Section 3 considers the benchmark of uniform pricing, where neither cash discounts nor
card surcharges are permitted, and develops the notions of missed sales and must-take cards
in our imperfect information setting. A missed sale occurs when the customer is in the shop
and eager to buy, but has a high inconvenience cost of paying by cash, and is discouraged by
either a high card surcharge or an outright rejection of the card.

Section 3 then relates the missed sales concern, and the concomitant low merchant resis-
tance to high merchant fees, to the nature of the demand curve. An inelastic demand for the
good calls for a high markup, and therefore makes the merchant particularly wary of missed
sales. We characterize the maximum merchant fee that the merchant is willing to accept. Im-
portantly, this uniform pricing threshold violates the tourist test and under weak conditions is
selected by the platform.

Section 4 studies the merchant’s optimal payment-method-based price discrimination (cash
discount and card surcharge). Because consumers imperfectly observe the merchant’s payment
policy, a cash discount is a giveaway to consumers who already are in the shop. In contrast,
a card surcharge holds up the consumer, who has made the specific investment to come to
the store and inspect wares. While card acceptance is a no-brainer for a merchant whose sur-
charging behavior is unconstrained, it is not so when only cash discounts are permitted. In this
case, steering customers away from using the card is costly for the merchant, and, as a result,
merchants may refuse cards if merchant fees are sufficiently high. Yet, because cash discounts
improve the merchant’s ability to avoid card fees, the card acceptance threshold is higher than
under uniform pricing.

The merchant’s optimal cash discount (card surcharge) balances the marginal revenue from
steering customers to pay by cash and the marginal cost (gain) directly generated by the dis-
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count (surcharge). A cash discount (card surcharge) is optimal for the merchant if and only
if the merchant fee exceeds a second, price discrimination threshold. The price discrimination
threshold is lower for a card surcharge, which brings in additional revenue to the seller, than
for a cash discount, which benefits customers. As a result, card surcharges occur even when
the tourist test is met, while cash discounts only occur if the merchant fee is sufficiently above
the tourist test level.

Price discrimination then leads us to define effective merchant and cardholder fees, which
are the fees that merchants and consumers effectively pay once the merchants’ discount or
surcharge are factored in. Because merchants use a card surcharge as a price discrimination de-
vice (screening consumers with different costs of cash payments), the merchant always “over-
shoots” in the surcharge, leading to an effective merchant fee that strictly satisfies the tourist
test. In contrast, because a cash discount is a costly gift to consumers, the merchant always
“undershoots” in the discount, leading to an effective merchant fee that strictly violates the
tourist test. Furthermore, if given the choice, the merchant always prefers a card surcharge to a
cash discount.

Section 4 also shows that, fixing the platform’s fee structure, allowing cash discounts raises
welfare. By contrast, the welfare impact of card surcharges depends on the level of the mer-
chant fee; if the latter satisfies the tourist test or even lies reasonably above the merchant’s
convenience benefit, allowing card surcharge reduces welfare by excessively reducing card us-
age. For very high merchant fees by contrast, allowing card surcharges improves welfare.

Section 5 then studies how the platform optimally adjusts its fee structure in response to
laws allowing merchants to practice cash discounts/card surcharges. We show that the possi-
bility of cash discounts/card surcharges reduces the effective merchant fee and increases the
cardholder fee (relative to uniform pricing). The magnitude of these effects is strictly higher
in the case of surcharging, as a result of the “abusive” surcharges practiced by merchants. In
particular, when surcharging is allowed, the effective merchant fee in equilibrium is below the
tourist test level, and card usage is inefficiently low.

Interestingly, we show that the platform is able to achieve maximal card usage by selecting
nominal merchant and cardholder fees that generate no card surcharges on the equilibrium
path. Arguably, such fees should be the ones selected by the platform whenever surcharges
involve any extra convenience cost for merchants. This implication is consistent with ample
evidence documenting that public regulations authorizing card surcharging do not generate
much actual surcharging.

Section 6 derives the optimal regulation of surcharging and shows that a surcharge cap set
at or above the merchant fee is too lax. It derives the optimal cap. Section 6 then studies the
impact of a recent proposal for mandated transparency by the merchant. According to this
regulation, the merchant would be required to post the surcharge(s) together with the price.
Mandated transparency regulation eliminates hold-ups for attentive customers; however, it (i)
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may not be feasible (the consumer learns price through a national advertising campaign or a
price comparison engine), (ii) may involve transaction costs for the merchant, (iii) does not ad-
dress the existence of inattentive consumers, and (iv) does not prevent inefficient surcharging
if the consumer’s willingness to pay is correlated with his desire to use the card (as we argue is
likely to be the case). Thus transparency is not a perfect regulatory response to the inefficiencies
attached to surcharging, and the two regulations may well be complementary.

Section 7 offers two extensions/robustness checks. Section 7.1 assumes that consumers are
naïve about the existence of surcharges; the case for the regulation of surcharging is then even
stronger than with rational consumers. Section 7.2 endogenizes the consumer’s cash holdings.
Intuitively, an increase in the anticipated card surcharge makes cash holdings more attractive;
in turn, higher cash holdings limit the merchant’s incentive to surcharge.

Section 8 summarizes the main insights and policy implications and concludes with evi-
dence consistent with various predictions of the theory. Proofs that are missing in the text can
be found in the technical appendix.

Related Literature

Our study of surcharging is related to the literatures on add-ons (Shapiro 1995, Ellison 2005)
and on shrouded attributes and incomplete contracting (Gabaix and Laibson 2006, Tirole 2009,
Heidhues et al 2012, 2014, Grubb 2014). In these one-sided market contributions, competing
sellers may conceal the prices of add-ons when consumers are naïve or unaware of the exis-
tence of the add-on, that is, either do not think about the possibility of ex-post hold up, or
are inattentive in that they fail to take measures (such as tracking their bank balance to avoid
overdrafts) that protect them from seller hold ups.

A large literature looks at add-ons or tied aftermarket sales in environments mixing sophis-
ticated and naïve customers. The emphasis in this literature, reviewed by Armstrong and Vick-
ers (2012), is on externalities between the two groups of consumers. Sometimes, sophisticated
users benefit naïve ones; they may for instance exert downward pressure on prices. Conversely,
they may be cross-subsidized by naïve users, as when competitive merchants charge low base
fees and break even through high ex-post mark-ups paid by the unsophisticated. Our paper
allows for various levels of rationality/attention levels (see Section 7), but does not investi-
gate redistributive consequences under a mixed population of users. Nor does it analyze the
consumers’ incentives to become informed, or forms of regulation that aim at educating naïve
consumers.8

While the impact of add-ons in one-sided markets is now well-understood, little is known
regarding add-ons in two-sided markets. In a two-sided market, the platform intermediating
transactions between the buyer and the seller can affect the seller’s behavior, indirectly through
the fees charged for using the platform’s services, or directly by regulating the pricing of the

8See, e.g., Kostfeld and Schüwer (2011) and Armstrong et al (2009 a,b) for theoretical analyses of the effects of
regulatory intervention via educating naïve consumers. For an empirical assessment, see Agarwal et al (2014).
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add-on. This yields a richer and more complex environment for the study of add-ons, leading to
business strategy and regulatory insights that substantially differ from those gleaned from one-
sided market theory. Another difference with the earlier literature is that in the latter missed
sales concerns do not arise in the following sense: The seller first sells the basic good and then
may or may not sell the add-on. In our paper, by contrast, the price of the add-on (the card
transaction) is learned before the sale of the basic good is completed. Hence the basic good
itself may not be traded because of excessive add-on prices.

The relevance of merchant fees under cash discounts or card surcharges in our paper con-
trasts with the neutrality result of Carlton and Frankel (1995), Rochet and Tirole (2002) and,
in more generality, Gans and King (2003). These papers have shown that, under perfect con-
sumer information, the choice of merchant fee has no impact on the real allocation. Imperfect
information generates imperfect passthrough, which explains the difference in results.

Another contribution to the payments literature is to bring life to common policy issues that
have eluded previous analysis. A case in point is missed sales, which is a prominent concern
for merchants. Because perfectly informed consumers would never come to the shop and not
purchase the item, missed sales have not been accounted for in the economics literature.9 Simi-
larly, we endogenize cash holdings and thereby the distribution of inconvenience costs of cash
payments. Finally, the current literature provides limited guidance to assess the conventional
wisdom according to which allowing surcharging is an antidote to abusive merchant fees.10

The recurrent lawsuits against card associations are predicated on the “must-take-card” ar-
gument, which merchants cannot turn down the card even when the merchant fee exceeds the
merchant’s card convenience benefit (Vickers 2005). The standard modeling of the must-take-
card argument is based on the idea that card acceptance makes the merchant more attractive to
consumers, so that payment platforms can charge a merchant fee beyond the socially efficient
level (Rochet and Tirole 2002, Tirole 2011 and Wright 2012). The attractiveness channel hinges
on the consumers being perfectly informed about the merchant’s cash/card policy. By con-

9Chakravorti and To (2007) study a related issue; namely, that credit cards enable liquidity-constrained con-
sumers to make purchases for which they cannot pay with their current income. In their perfect-information frame-
work, missed sales do not occur, as consumers would never visit merchants who do not take cards. Relatedly,
Rochet and Wright (2010) assume that some customers need to use credit to purchase, which can be provided by
the merchant (in the form of store credit). Because consumers are perfectly informed about the merchant cash/card
policy, there cannot be missed sales; rather, missed sales concerns motivate the offering of store credit by the mer-
chant. The must-take card channel in Rochet-Wright is the attractiveness channel rather than the missed-sales
channel emphasized in our paper.

10In a consumer-full-information environment, Proposition 6 in Rochet and Tirole (2002) shows that, besides
making the interchange fee irrelevant, surcharging leads to an underuse of cards and may increase or decrease
welfare; this reflects a horse race between two competitive distortions: the overuse of cards induced by the plat-
form’s exploitation of the must-take nature of the card, and the underuse of cards due to issuer market power; the
former distortion can be eliminated by allowing surcharging; the second can no longer be corrected through the
interchange fee under surcharging as the interchange fee is then made neutral. One driver of the Rochet-Tirole
result – market power on the issuer side – plays no role in this paper; while the other driver, their must-take card
argument (merchant attractiveness under perfect consumer information), is complementary to ours (missed sales
under imperfect consumer information).
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sidering the other polar case of uninformed consumers, this paper completely shuts down the
attractiveness channel.11 It therefore contributes to the literature by identifying a novel (and
independent) channel for must-take cards: the merchant’s concern about missed sales.12

Other papers have investigated the impact of surcharging card transactions. Assuming
perfect consumer information about the merchant’s payment policy and a perfectly inelastic
demand for the good, Wright (2003) concludes that lifting the no-surcharge rule decreases so-
cial welfare, and may completely shut down the card payment network. By contrast, among
other differences, we assume that the demand for the good is elastic, and that consumers are
imperfectly informed about the merchants’ payment policy (what generates the missed sales
concerns described above). This leads to different results: We show that allowing for card sur-
charging is welfare-enhancing if and only if the merchant fees are high. We also show that
lifting the no-surcharge rule, while properly regulating the merchants’ behavior through sur-
charging caps, can lead to substantive welfare improvements relative to uniform pricing.

Schwartz and Vincent (2006) consider a model with fixed populations of cash and card
users. Their analysis emphasizes the role of the no-surcharge rule in preventing cross-sub-
sidization from cash to card users. Lifting the no-surcharge rule is shown to increase social
welfare provided the fraction of cash users is sufficiently small. By assuming that the choice
of payment method is exogenous, their model ignores the cash/card steering effects that are
central to our analysis. More recently, Edelman and Wright (2014) consider the problem of
an intermediary (such as a booking website, a financial brokerage firm, or a card payment
platform) that may invest to provide a non-pecuniary benefit to consumers. They show that,
under uniform pricing, the intermediary over-invests in the provision of the non-pecuniary
benefit, and can actually decrease social welfare. By assuming perfect consumer information,
these works abstract from missed sales and the hold-up issues that lie at the core of the present
article.13

11As we point out in Section 3, in the absence of missed sales, merchants refuse cards if the merchant fee exceeds
the merchant’s card benefit (i.e., cards are no longer “must-take-cards”). In this case, the merchants’ card acceptance
behavior is as in Baxter (1983) – see also Wright (2004).

12In Bedre-Defolie and Calvano (2013), consumers make membership and usage decisions, while merchants only
make membership decisions. The asymmetry in decision-making between consumers and merchants generates
inefficiently high merchant fees. Yet, in their model, cards are not must-take cards, as merchants accept cards if and
only if the average benefit of card usage exceeds the merchant fee.

13The same applies to the contribution of Economides and Henriques (2011), who investigate the impact of the
no-surcharge rule in a model with competing payment platforms. Taking a reduced-form approach to consumer
demand for cards (à la Schmalensee 2002), they conclude that the no-surcharge rule increases social welfare if the
network externality exerted by merchants on cardholders is sufficiently weak.
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2 Model and preliminaries

2.1 Description

Consumers contemplate purchasing a good, which they may pay for either in cash or by card.
Consumers differ in their valuation v for the good; v is distributed according to cumulative
distribution G with support [0,∞). The density of G is g and the hazard rate g

1−G
is assumed

to be weakly increasing in v.
The good sought by consumers is sold by a (brick-and-mortar or internet) merchant at a

retail price p. Together with the retail price, the merchant chooses his cash/card policy, which
consists of the decision to accept/refuse cards, and, when allowed, the card surcharge/cash
discount.

A merchant has convenience cost normalized at 0 for a card payment and a known bS > 0

for a cash payment. The merchant pays a fee m to his acquirer bank for each card transaction.
We normalize production costs to zero, in which case the (endogenous) retail price p coincides
with the merchant’s mark-up.

The tourist test is said to be satisfied if and only if the merchant fee does not exceed the
merchant’s convenience benefit of a card payment, also called the avoided cost:

bS ≥ m.

That is, conditional on the customer being at the point of sale and willing to pay regardless of
the payment method, the merchant is happy to have the customer pay by card. When satisfied
with an equality, the tourist test implies that the merchant is indifferent as to the payment
method and so cardholders do not exert an externality on the merchant when choosing whether
to pay by cash or card.

Under “uniform pricing”, the merchant is required to set a single retail price applying re-
gardless of the payment method. Under “discriminatory pricing”, a merchant who accepts
cards may practice a cash discount σ ≥ 0 or a card surcharge τ ≥ 0, depending on what is
allowed. The notation (σ; τ) reflects the fact that a discount (surcharge) is a subsidy granted (a
tax levied) by the merchant on card payments.

Once in the shop, each consumer learns his cost bB of paying by cash. The parameter bB

is distributed according to H with support [bB,+∞). The density of H is h, and the hazard
rate h

1−H
and the reverse hazard rate h

H
are assumed to be weakly monotone (increasing and

decreasing, respectively) in bB . As is standard in the literature, we assume that the distributions
G and H are independent. We allow the lower limit bB to be strictly negative, in which case
the support of H contains positive and negative realizations. The cost bB is positive when
paying by cash is a nuisance for the consumer (due, e.g., (i) to the inconvenience of going to
an ATM prior to the purchase, or just after the purchase to prepare for the next expenses, (ii)
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to the convenience of paying by card for recording purposes). The cost bB is negative when
the consumer wants to get rid of cash (e.g., a foreign tourist in the last days of vacation), or
prefers paying by cash for tax evasion purposes.14 Another interesting interpretation of bB is
specific to credit cards (relative to direct debit, checks or cash). The ability to use credit allows
the consumer to smooth consumption. The cost of “cash” (here including direct debit) is then
the sacrifices incurred on current consumption.

Under our convention, the consumer’s net surplus from buying the good by cash under a
cash discount σ is15

v − (p− σ + bB).

When using the card, the consumer pays a per-transaction fee f to his issuer bank.16 Fol-
lowing our convention, the consumer’s net surplus from buying the good by card under a card
surcharge τ ≥ 0 is17

v − (p+ f + τ).

We assume that the consumer learns the retail price p set by the merchant before observing
his cash/card policy; for instance, retail prices can be known from manufacturer or retailer
advertising campaigns or price comparison websites. Knowing the retail price, the consumer
chooses whether to incur the shopping cost s. The shopping cost covers finding and going to
the shop, inspecting or trying the good, thinking about potential usage, size and model, loss
aversion, etc. For instance, in the case of a brick-and-mortar merchant, the shopping cost may
capture, for instance, transportation costs and/or the time spent in the store before getting to
the cashier (where card acceptance and cash discounts/card surcharges are usually revealed).
In the case of online merchants, the shopping cost captures the nuisance of completing the
usually numerous steps before card surcharges are revealed. For brevity, we shall say that a
consumer “visits the store” when he incurs the shopping cost s.

Upon learning the realization of bB , the consumer decides whether to buy and, if he does,
through which payment method. The payment card system incurs per-transaction total cost c;
this cost decomposes between the cost on the merchant side (the “acquiring cost”) cA and that
on the buyer side (the “issuing cost”) cI : c = cA + cI . The platform chooses fees (m, f).

14Of course, the social welfare function need not respect end-user preferences in this case.
15To rule out pathological cases, we will assume that b

B
is sufficiently high so that p − σ + b

B
> 0 prevails in

equilibrium. This is a very mild condition, as the consumer could throw away an amount of cash equal to the net
purchase price p− σ, rather than buy the item and not use it.

16Note that f can in principle have either sign; indeed, in practice, it is often equal to zero or is negative (discount
at the point of sale, cash-back bonuses, frequent flyer miles, free insurance against cancellation or damage, etc).

17To rule out pathological cases, we shall make the weak assumption that p + f > 0 in equilibrium (otherwise,
absent card surcharges, consumers would benefit from buying the good even if their valuation for it is zero).
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Card platform
chooses fee
structure
(m, f ).

Merchant chooses

• retail price p

• cash/card policy.

Consumers

• observe p, but not the
merchant’s cash/card
policy;

• choose whether to
incur shopping cost
s > 0.

If shopping cost s
incurred, consumer

• observes merchant’s
cash/card policy

• draws his
convenience cost bB
of cash payment.

Consumer decides
whether to
purchase and how
to pay for the good.

Figure 1: Timing

Open system: If the system is a payment card association (such as Visa or MasterCard) with
interchange fee a (the payment from the merchant’s bank to the cardholder’s bank), and the
issuing and acquiring sides are populated by competitive banks, then m + f = c, as m =

cA + a, and f = cI − a; more generally, c stands for total cost, including markups levied by
acquirers or issuers with market power. Like in the rest of the literature (to which we refer for
a foundation of this assumption), we will assume that an open system’s members select (m, f)

so as to maximize the volume of transactions.

Closed system: By contrast, closed systems like Amex or PayPal face no such constraint. They
only need to meet the break-even condition: m + f ≥ c. We will assume that a platform
operating as a closed system selects (m, f) so as to maximize profit. We will point out which
results are specific to an open system.

The timing and information structure of our model is summarized as follows:

1. The card platform publicly chooses a fee structure (m, f).

2. The merchant chooses retail price and cash/card policy (i.e., whether or not to accept
cards, and, if allowed, the card surcharge/cash discount).

3. Consumers decide whether to visit the store, having observed the retail price, but not the
merchant’s cash/card policy. When taking this decision, consumers correctly anticipate
the merchant’s cash/card policy.

4. If a consumer visits the store, he observes his convenience cost of cash payment, bB , and
learns the merchant’s cash/card policy. The consumer then decides whether to purchase,
and how to pay for the good.

Our solution concept is Perfect Bayesian equilibrium. This concept in particular assumes that
consumers rationally anticipate the card surcharge or cash discount selected by the merchant.
This assumption therefore presumes non-negligible rationality, but allows us to study the least
favorable environment for the regulation of surcharges. Section 7.1 studies the case of naive
consumers who fail to comprehend the merchant’s incentives and do not anticipate surcharges.
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2.2 Consumer behavior and missed sales

We will study equilibria of the game above under four alternative scenarios. In the first sce-
nario, the merchant accepts cards, but private or social regulations prevent him from using cash
discounts or card surcharges, in which case uniform pricing prevails: σ = τ = 0. In the second
scenario, the merchant is allowed to practice cash discounts, but not card surcharges: σ ≥ 0 and
τ = 0. In the third scenario, card surcharges are allowed, but not cash discounts: τ ≥ 0 and σ = 0.
There is no loss of generality involved in disregarding the case where both cash discounts and
card surcharges are allowed, as the latter will be always preferred to the former by merchants
(and so equilibrium is as if only card surcharges were permitted). In the fourth scenario, the
merchant does not accept cards (cash only). Because consumers do not observe the merchant’s
cash/card policy before visiting the store, this is equivalent to the merchant accepting cards
but setting τ = +∞.

Consumer behavior

To describe the consumers’ behavior in a unified manner, consider a merchant who practices a
cash discount σ ≥ 0 and a card surcharge τ ≥ 0. Once in the store, and facing a cost bB of cash
payments, the consumer buys the good if and only if his willingness to pay exceeds the total
price with the cheapest payment option:

v ≥ p+ min {f + τ, bB − σ}.

Note that the shopping cost s is sunk at this stage and therefore does not influence the
consumer purchasing or payment decision. In turn, the consumer’s decision to go to the store
is taken ex ante, i.e., before the realization of the cost bB is known. To analyze this decision, it
is convenient to define the function

TB(v − p, f + τ,σ) ≡ E [min {v − p, f + τ, bB − σ}] , (1)

which is the expected transaction cost of a consumer with valuation v, facing a price p, a card fee f , a
cash discount σ and a card surcharge τ (expectations are taken with respect to bB). To understand
the expression above, note that (i) if the consumer pays by card, his transaction cost is f + τ ,
(ii) if the consumer pays by cash, his transaction cost is bB −σ, and (iii) if the consumer decides
not to buy the good (in which case missed sales occur), his transaction cost is the gross surplus
from the foregone purchase, v − p. We will clarify below under what conditions missed sales
do not occur. In this case, the expected transaction cost of consumers does not depend on the
gross surplus v − p, and we denote it by T

B
(∞, f + τ,σ).

In equilibrium, ex-ante optimality implies that only consumers with valuation greater than
a threshold V (p, f + τ

a
,σ

a) go to the store, where τ
a and σ

a are the anticipated surcharge and

12



discount (in equilibrium equal to the values τ and σ chosen by the merchant). This threshold
solves the following equation in v:

v = s+ p+ TB (v − p, f + τ
a
,σ

a) . (2)

In words, the only consumers to make the trip to the store are those whose valuations exceed
the sum of the shopping cost, the advertised price and the expected transaction costs at the
equilibrium cash discount σa = σ or card surcharge τ

a = τ .18

Missed sales

Missed sales occur when some consumers who have incurred the shopping cost s decide that
not buying the good is the best course of action. The following lemma provides a necessary
and sufficient condition on the shopping cost for missed sales not to occur in equilibrium.

Lemma 1 (missed sales) Missed sales do not happen in equilibrium if and only if the equilibrium
values of σ and τ satisfy:

s+ E [min {bB − f − σ − τ, 0}] ≥ 0. (3)

Proof. Notice first that, because the support of H(bB) contains arbitrarily large numbers,
missed sales do not occur if and only if the lowest-valuation consumer to go to the store finds
it worthwhile to pay by card:

V (p, f + τ,σ) ≥ p+ f + τ. (4)

To establish the “only if” part of the lemma, assume that (4) holds. It then follows from (2)
that

s+ TB (∞, 0,σ + f + τ) ≥ 0,

which is equivalent to (3).
For the “if” part of the lemma, assume that condition (4) is violated. Because

v − TB (v − p, f + τ,σ)

is strictly increasing in v (as implied by straightforward differentiation), we obtain that

v − s− p− TB (v − p, f + τ,σ) > 0

18An alternative, and perhaps more familiar, derivation of the threshold V (p, f + τ
a
,σ

a) is the following. Let us
define V (p, f + τ

a
,σ

a) as the unique solution of the following equation in v:
ˆ

v−p+σ
a

bB

(v − p−min {f + τ
a
, bB − σ

a}) dH(bB) + (1−H (v − p+ σ
a)) ·max {v − p− f − τ

a
, 0} = s.

Accordingly, V (p, f + τ
a
,σ

a) is the smallest valuation such that the expected benefit of visiting the store equals the
shopping cost. Straightforward algebra shows that the equation above is equivalent to (2).
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at v = p+ f + τ . This is equivalent to

s+ E [min {bB − σ − f − τ, 0}] < 0,

establishing the claim.

Missed sales do not occur provided that shopping costs are high relative to the equilibrium
card fee and merchant’s cash discount/card surcharge. While stated in terms of endogenous
quantities, this result will be useful to determine when missed sales occur on the equilibrium
path.

An immediate consequence of the lemma above is that missed sales always occur if the
merchant does not accept cards (in which case τ = +∞). As we explain in the next section, the
fear of missed sales underlies the novel “must-take-card” argument developed in this paper.

Before proceeding, we shall impose a weak regularity condition.

Assumption 1 (convenience of card payments) The following inequality holds:

s+ E [min {bB + bS − c̃, 0}] > 0,

where c̃ ≡ m+ f is aggregate fee charged by the platform.

Intuitively, this assumption means that, relative to card payments, payments by cash are on
average sufficiently inconvenient to consumers and merchants. This is a very mild assumption,
as shopping costs are usually significant, and paying by cash is more often costly (bB > 0) than
beneficial (bB < 0) to consumers. In the case of an open system (where c̃ = c), this inequality is
trivially satisfied whenever bB+bS ≥ c. In the case of a closed system, this assumption requires
that the platform’s profit margin per transaction is small relative to the inconvenience cost of
cash payments jointly experienced by consumers and merchants.

In light of Lemma 1, Assumption 1 implies that missed sales do not occur provided that
f + σ + τ ≤ bS − c̃. As shown in the next subsection, this guarantees that any fee structure
(m, f) and cash/card policy (σ, τ) conductive to efficient card usage generates no missed sales.

2.3 Aggregate transaction costs and the first best

In the analysis that follows, we will employ the welfare-maximizing outcome as a benchmark
to identify the relevant distortions in the scenarios of uniform pricing, cash discount and card
surcharge. It is convenient to disregard the possibility of missed sales, and verify ex post that
missed sales indeed do not happen in the welfare-maximizing allocation.

14



Merchant and aggregate transaction costs

Let

TS(m, f,σ, τ) ≡ H(σ + τ + f) · [σ + bS ] + [1−H(σ + τ + f)] · [m− τ ] (5)

denote the merchant’s expected transaction costs under the fee structure (m, f) and the cash/card policy
(σ, τ). The expression above is the sum of transaction costs per sale (which are σ + bS in the
case of cash, and m − τ in the case of card payments) weighted by the fractions of consumers
who use either cash or card.

The aggregate transaction costs (borne by consumers and the merchant) are then equal to

T (m, f,σ, τ) ≡
ˆ

σ+τ+f

b
B

(bB + bS) dH(bB) + [1−H(σ + τ + f)] · [m+ f ], (6)

which is the sum of (1) and (5). The maximization of total welfare, as pursued by social regu-
lation, is closely related to the minimization of aggregate transaction costs (when missed sales
are ruled out). The next lemma will play a key role in the analysis that follows.

Lemma 2 (minimizing aggregate transaction costs) For any fee structure (m, f) and cash/card
policy (σ, τ), let us define the effective merchant fee and the effective cardholder fee as

m̂ ≡ m− τ − σ and f̂ ≡ f + τ + σ.

Holding constant the platform’s aggregate fee c̃ = m + f , the quadruple (m, f,σ, τ) minimizes
aggregate transaction costs if and only if

m̂ = bS and f̂ = c̃− bS . (7)

Moreover, along the locus m̂ + f̂ = c̃, the aggregate transaction cost is a U-shaped function of m̂ with
strict minimum at m̂ = bS .

Intuitively, the minimization of aggregate transaction costs requires that the effective mer-
chant fee be equal to the merchant’s convenience cost of cash payments. That is, the tourist test
has to be satisfied with equality, after one replaces the merchant fee by its effective counterpart,
which accounts for the merchant’s cash discounts or card surcharges. The effective cardholder
fee f̂ is then determined by the accounting identity m̂+ f̂ = m+ f = c̃.

First best

In line with the objectives of most regulatory authorities, our social welfare measure accounts
for the surplus jointly obtained by consumers and merchants, but does not account for those
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obtained by the card platform, issuer and acquirer banks.19

In order to define social welfare, let us denote by

p
∗(m, f,σ, τ) ≡ argmax

p
(1−G (V (p, f + τ,σ))) · (p− TS(m, f,σ, τ)) (8)

the merchant’s profit-maximizing retail price under a fee structure (m, f) and the cash/card
policy (σ, τ). Our measure of social welfare is then the sum of the valuations of all consumers
who visit the store, net of the shopping cost and the aggregate transaction costs incurred in
each purchase:20

W (m, f,σ, τ) ≡
ˆ +∞

V (p∗(m,f,σ,τ),f+τ,σ)
(v − s− T (m, f,σ, τ)) dG(v). (9)

The next lemma characterizes the fee structure and cash/card policies that maximize social
welfare.

Lemma 3 (welfare). For any fee structure (m, f) and cash/card policy (σ, τ) satisfying the no-missed-
sales condition (3),

1. the threshold valuation V (p∗(m, f,σ, τ), f + τ,σ) is a univariate and strictly increasing function
of the aggregate transaction costs,

2. social welfare W (m, f,σ, τ) is a univariate and strictly decreasing function of aggregate transac-
tion costs.

Therefore, holding constant the platform’s aggregate fee c̃, any fee structure (m, f) and cash/card policy
(σ, τ) satisfying condition (7) is welfare-maximizing. Moreover, social welfare strictly decreases with
the platform’s aggregate fee c̃.

Note that Assumption 1 guarantees that missed sales do not occur at any fee structure (m, f)

and cash/card policy (σ, τ) conducive to efficient card usage (where condition (7) holds), or
conductive to inefficiently high card usage (where f̂ < bS − c̃).

19This qualification is obviously mute if the platform operates as an open-system in a market with perfectly
competitive issuer and acquirer sectors. See Tirole (2011) for a discussion of whether issuer and acquirer profits
should be included into the measure of social welfare.

20As we shall see in Section 4, the equilibrium cash/card policy (σ, τ) is a function of the fee structure (m, f),
and so one could write social welfare as a function of (m, f) only. It is however convenient to explicitly indicate the
dependence of social welfare on (σ, τ), since the merchant’s cash/card policy might be subject to direct regulation
(as discussed in Section 6). Because retail prices are usually out of the scope of regulatory authorities, we directly
plug the equilibrium retail prices in defining social welfare.
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3 Uniform pricing: Missed sales and must-take cards

This section studies equilibria when private or social regulations prevent the merchant from
practicing cash discounts or card surcharges. It thereby characterizes the uniform pricing
benchmark with which discriminatory pricing should be compared.

3.1 Markups and merchant resistance

When facing a high merchant fee and a prohibition to surcharge, the merchant may refuse the
card, leading the customer to forgo buying if he finds it too costly or does not have time to
go and fetch cash. As our analysis reveals, concerns about missed sales are an important new
rationale for the “must-take-card” argument. In particular, the possibility of missed sales has
been ignored in the card payment literature; it is therefore of independent interest to study its
implications.

Note that, if the tourist test is satisfied, i.e., m ≤ bS , it is a dominant strategy for merchants to
accept payments by card. The more interesting case happens when the tourist test is violated,
i.e. m > bS , introducing a genuine trade-off between economizing on transaction costs and
losing sales. In a first step, we take the price p as fixed and investigate equilibria with card
acceptance and card refusal. We will then look at the choice of price.

Card acceptance equilibrium. For a given retail price, an equilibrium is characterized by the
merchant’s strategy to accept or not card payments, and the consumers’ beliefs about the mer-
chant’s policy (which determines their decision to go to the store). We shall proceed by as-
suming that missed sales do not happen if the merchant accepts cards. After completing our
characterization, we will then confirm that this is indeed true in equilibrium.

In an equilibrium in which the merchant accepts cards, all consumers with valuation v ≥
V (p, f, 0) go the store, where the threshold V (p, f, 0) is given by (2). Moreover, merchants
have to find it profitable to accept card transactions given the consumers’ expectations of card
acceptance. Equivalently, the profit differential between card acceptance and refusal should be
positive:

∆π(p,m, f) ≡
ˆ ∞

V (p,f,0)
{p− TS(m, f, 0, 0)−H(v − p) · (p− bS)} dG(v) ≥ 0,

where TS(m, f, 0, 0) is the merchant’s expected transaction cost per sale under uniform pricing
(as defined in (5)). Note that the last term of the integrand above captures the effect of missed
sales on profits when cards are not accepted.

Card refusal equilibrium. For a given retail price, a card refusal equilibrium is characterized
by the threshold V (p,∞, 0), defined in (2), such that only consumers with valuation above this
threshold visit the store. Moreover, merchants must find it profitable to refuse card transactions

17



card acceptance
price p

card refusal

card acceptance
Pareto dominates

Figure 2: Equilibrium multiplicity under uniform pricing

given the consumers’ expectations of card refusal.
The next proposition shows that a card acceptance equilibrium exists if and only if the

markup p is sufficiently high, and that a card refusal equilibrium equilibrium exists if and only
if the markup p is sufficiently low.

Proposition 1 (markups and merchant resistance under uniform pricing) Assume that the tourist
test is violated (i.e., m > bS), and consider the case of uniform pricing.

1. There exists a threshold P
u(m, f) such that a card acceptance equilibrium exists if and only if

p ≥ P
u(m, f). This threshold is continuous with P

u(bS , f) = bS for all f . It is also strictly
increasing in m.

2. There exists a threshold Q
u(m, f) such that a card refusal equilibrium exists if and only if p ≤

Q
u(m, f). This threshold is continuous with Q

u(bS , f) = bS for all f . It is also strictly increasing
in m.

3. For any (m, f), the thresholds identified above satisfy Q
u(m, f) ≥ P

u(m, f), and there exist
multiple equilibria when p ∈ [P u(m, f), Qu(m, f)]. In this case, the card acceptance equilibrium
Pareto-dominates the card refusal equilibrium.

Proposition 1 unveils an important driver of merchant resistance, namely the merchant’s
markup. A high markup makes it costly to the merchant to lose sales by turning down the
card. Thus the card acceptance equilibrium exists only for a sufficiently high markup.

The multiplicity of equilibria, illustrated in Figure 2, stems from complementarities between
the merchant’s card acceptance decision and the consumers’ expectations about card accep-
tance (which determine who visit the store). For intermediate retail price levels, if consumers
expect the merchant to accept cards, the volume of missed sales that would result from card
refusal is high enough to induce the merchant to indeed accept card transactions. In turn, if
consumers expect merchants to refuse cards, the reduction in missed sales that would result
from card acceptance is not sufficient to compensate for the expenses associated with card fees.
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Obviously, consumers are better off at the card acceptance equilibrium, as they enjoy an extra
payment option. The same is true for the merchant, as in this equilibrium, more consumers go
to the store and the increase in transaction costs is more than compensated by the extra sales
made possible by card acceptance.

The next corollary shows how the thresholds P
u(m, f) and Q

u(m, f) change as the incon-
venience costs of cash payments increase (in the appropriate probabilistic sense). As intuition
suggests, the range of prices under which a card acceptance (refusal) equilibrium exists ex-
pands (contracts) as cash payments become more inconvenient.

Corollary 1 (merchant resistance and cash inconvenience). Consider two distributions of the con-
sumers’ cost of cash payments H and Ĥ , and denote their respective thresholds of card acceptance and
refusal equilibria by (P u(m, f), Qu(m, f)) and (P̂ u(m, f), Q̂u(m, f)). Then, if H is dominated by Ĥ

according to first-order-stochastic dominance in the range (f,+∞),21

P̂
u(m, f) ≤ P

u(m, f) and Q̂
u(m, f) ≤ Q

u(m, f).

Remark 1 (credit vs. debit cards). Corollary 1 also reveals that merchant resistance to card ac-
ceptance goes down as the inconvenience cost of cash payments faced by consumers increases.
This result allows us to make an interesting comparison between merchant resistance to credit
vis-a-vis debit cards. Because credit cards allow consumers to defer payments (and smooth
consumption), cash payments are more inconvenient than card payments when the card is a
credit rather than a debit card. Therefore, for a fixed fee structure, the corollary above implies
that merchant resistance is lower to credit than to debit cards. Of course, the platform takes
that into account when it chooses its fee structure, as discussed in Subsection 3.3.

3.2 Merchant resistance with optimal pricing

We will now study card acceptance by merchants when retail prices are endogenous. More
formally, this corresponds to studying perfect equilibria of the game defined from stage 2 on-
wards (i.e., taking the fee structure (m, f) as given), where merchants simultaneously choose
retail prices and the cash/card policy.

An equilibrium with endogenous pricing is then characterized by the merchant’s decision
to accept/reject card payments, the optimal retail price p

∗(m, f, 0, 0) defined in (8), and the
belief of consumers about card acceptance for each possible retail price p.

We construct out-of-equilibrium beliefs by selecting the Pareto-dominant equilibrium in
the subgame that follows each price announcement. Namely, following any announcement

21That is, Ĥ(bB) = H(bB) for all bB ∈ [b
B
, f ], and Ĥ(bB) ≤ H(bB) for all bB ∈ (f,+∞). So, relative to H ,

the distribution Ĥ corresponds to a higher cost of using cash and generates more missed sales in the case of card
refusal.
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p ≥ P
u(m, f), we assume that the card acceptance equilibrium is played in the continuation

game that follows the announcement. When the merchant sets price p < P
u(m, f), card refusal

is the unique equilibrium and so no selection is required.

The next proposition shows that an equilibrium with card acceptance exists provided that
the merchant fee is smaller than a threshold Mu(f). Most importantly, the threshold Mu(f)

violates the tourist test, i.e. Mu(f) > bS . Accordingly, missed sales induce merchants to ac-
cept inefficiently high merchant fees, establishing a new foundation for the “must-take-card”
argument.

Proposition 2 (equilibrium merchant resistance under uniform pricing) When the retail price p

is endogenized, the merchant accepts cards if and only if the merchant fee is no larger than a threshold
Mu(f), where Mu(f) violates the tourist test: Mu(f) > bS for all f .

The intuition for Proposition 2 is simple. Suppose for a moment that m = bS , in which case
the tourist test is satisfied with equality. In this case, the merchant faces the same transaction
cost per sale as if only cash transactions were accepted. The merchant however does not incur
any missed sales. Therefore, the merchant has a strict gain from card acceptance at m = bS .
As m > bS , the gains from avoiding missed sales are mitigated by higher transactions costs
per sale. The rise in transaction costs impacts retail prices and leads to a lower volume of
consumers visiting the store (as implied by Lemma 3). As established by Proposition 2, the
gains from avoiding missed sales are larger than the losses due to higher transaction costs
provided that the merchant fee is lower than some threshold Mu(f) > bS .

3.3 Equilibrium merchant fee

We now study the equilibrium fee structure set by the platform in the case of uniform pric-
ing. We again assume that following the platform’s choice of (m, f), the Pareto-superior Nash
equilibrium identified in Proposition 2 is played from stage 2 onwards.

In the case of an open system, we assume that the card association maximizes the volume
of card transactions. Accordingly, the fee structure is chosen to solve

max
{m,f}

(1−G (V (p∗(m, f, 0, 0), f, 0))) · (1−H(f)) , (10)

subject to c − f = m ≤ Mu(f). That the merchant fee m has to be lower than the threshold
Mu(f) reflects the fact that the platform is constrained to choose fee structures for which the
card is accepted by the merchant. We refer to this requirement as the card acceptance constraint.

In the case of a closed system, we assume that the card platform maximizes profit. Accord-
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ingly, the fee structure is chosen to solve

max
{m,f}

(1−G (V (p∗(m, f, 0, 0), f, 0))) · (1−H(f)) · (m+ f), (11)

subject to c − f ≤ m ≤ Mu(f). To simplify the technical discussion, we will assume from now
on that programs (10) and (11) are quasi-concave.22

As the programs above reveal, the fee structure (m, f) affects the platform’s objective by (i)
impacting the retail prices practiced by the merchant, (ii) changing the fraction of consumers
who pay by card and, in the case of a closed system, (iii) determining the platform’s profit
per card transaction. The next proposition establishes that the card platform has an incentive
to set an inefficiently high merchant fee, so as to steer consumers towards using the card. As
established in Proposition 2, the fear of missed sales makes the merchant accept merchant fees
that exceed the benefit of card usage.

Proposition 3 (equilibrium fee structure under uniform pricing) Under uniform pricing, for either
an open or closed system, the card platform sets a fee structure (mu

, f
u) such that

h(fu)

1−H(fu)� �� �
card usage

semi-elasticity

−
�
∂p

∗

∂m
− (1−H(fu))

�

� �� �
demand sensitivity

· g (V u)

1−G (V u)� �� �
demand

semi-elasticity

≥ 0, (12)

where V
u ≡ V (p∗(mu

, f
u
, 0, 0), fu

, 0). This condition holds with equality if and only if the card
acceptance constraint is slack. Moreover, the merchant fee mu strictly violates the tourist test: mu

> bS .

Proof (sketch). Consider first the case of an open system, in which case m + f = c. As a
first step, note from Lemmas 2 and 3 that the merchant fee that maximizes the volume of con-
sumers visiting the store (as opposed to the volume of card transactions) satisfies the tourist
test with equality: m = bS . Consider now the platform’s incentive to increase the merchant fee
(and decrease the cardholder fee) at the fee structure (m, f) = (bS , c − bS). Optimality implies
that a marginal increase in m generates a second-order loss at the volume of consumers visiting
the store. It however entails a first-order gain in the share of card transactions (as 1 − H(f) is
strictly decreasing in f ), as opposed to cash. As a consequence, a volume-maximizing plat-
form chooses a merchant fee that violates the tourist test. In particular, because f

u
< c − bS ,

Assumption 1 guarantees that missed sales do not happen on the equilibrium path.
The first-order condition (12) follows from straightforward differentiation of the platform’s

objective in (10). The proof in the appendix shows that the case of a closed system can be
22This assumption is made only to avoid a tedious discussion of second-order conditions. This requirement holds

for most distributions of interest, for example when G and H are either exponential or lognormal.
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treated similarly to that of an open system: It suffices to replace the transaction cost c with a
generalized cost c̃ that incorporates the platform’s profit margin over each card transaction. �

The first-order condition (12) illustrates the trade-off faced by the platform in choosing mer-
chant fees. On the one hand, high merchant fees serve to “cross-subsidize” card usage by
consumers (by means of a lower card fee f ). On the other hand, high merchant fees increase
aggregate transaction costs, resulting in higher retail prices and a lower volume of consumers
visiting the store (i.e., demand for the good). The fee structure set by the platform balances the
impacts of a marginal increase in m on the share of card transactions per sale, and on the volume
of consumers visiting the store. The effect on the share of card transactions is captured by the
semi-elasticity of card usage evaluated at the optimal card fee, as it appears on the first term of
(12). In turn, the effect on volume is captured by the second term of (12): It equals the semi-
elasticity of demand (evaluated at the threshold V

u, which determines which consumers visit
the store) adjusted by the sensitivity of demand to the merchant fee. In particular, the demand
sensitivity term is always positive: a higher merchant fee increases the threshold valuation
V (p∗(m, f, 0, 0), f, 0), therefore decreasing the volume of consumers visiting the store.23

It should be noted that the first-order condition (12) is satisfied with equality at the optimum
only if the card acceptance constraint is slack: m

u
< Mu(f). If this constraint is binding, the

platform will be obliged to set mu = Mu(f), as it cannot further raise the merchant fee without
losing the merchant’s membership. The next remark argues that this corner solution will most
likely prevail at the optimum.

Remark 2 (card acceptance constraint). How likely is it that the card acceptance constraint
binds, in which case m

u = Mu(fu)? Letting ηC denote the elasticity of card usage to cardholder
fee and ηD the price elasticity of demand, the card acceptance constraint binds at the optimum
when

|fu|
p

<

����
ηC

ηD

���� ·
�
∂p

∗

∂m
− (1−H(fu))

�−1

.

In practice f
u is negative and typically smaller than 1% of the retail price. As result, for rea-

sonable values of elasticities ηC and ηD and demand sensitivity, the merchant fees observed in
reality should equal the acceptance threshold Mu(fu).

Remark 3 (credit vs. debit cards). It is straightforward to infer from Proposition 3 that the
equilibrium merchant fee m

u increases as the distribution of consumers’ inconvenience costs
of cash benefits increases in the sense of hazard-rate dominance (which implies first-order
stochastic dominance).24 Therefore, in the spirit of Remark 1, the merchant fees for debit cards

23The demand sensitivity term equals the total derivative of the threshold valuation with respect to m along the
locus m+ f = m

u + f
u, evaluated at (mu

, f
u). This derivative is positive by virtue of Lemmas 2 and 3.

24The distribution Ĥ dominates H according to hazard-rate dominance if ĥ(bB)

1−Ĥ(bB)
≤ h(bB)

1−H(bB) for all bB .
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should be lower than those for credit cards. This prediction is in line with the fee structure of
most card payment platforms.

Importantly, Proposition 3 reveals that, absent regulation, the economy exhibits an inef-
ficiently high use of cards. As established in Lemma 2, aggregate transaction costs are strictly
higher under the equilibrium fee structure (mu

, f
u) than under the efficient fee structure (bS , c−

bS). Lemma 3 then implies that the social welfare when platform fees are left unregulated is
strictly below first best.

4 Cash discounts and card surcharges

When consumers are perfectly informed about the merchant’s card policy, the difference be-
tween cash discounts and card surcharges is semantic. After all, the merchant can always
redefine retail prices and interchangeably label the difference between cash and card payments
as either a discount or a surcharge. This observation comes at odds with the fact that public
authorities and business executives do not see discounts and surcharges as equivalent, as the
recent and intense antitrust litigation on this matter attests.

In this section we derive the merchant’s optimal cash discount and card surcharge. As
our analysis reveals, imperfect consumer information about the merchant cash/card policy
breaks the aforementioned equivalence between discounts and surcharges. More importantly,
in equilibrium, merchants shall always prefer surcharges to discounts.

We start the analysis with the merchant’s card acceptance decision, and then study optimal
cash discounts and card surcharges.

4.1 Card acceptance

As one should expect, merchant resistance towards card acceptance is lower when discrimina-
tory pricing is allowed. In the card surcharge scenario, the merchant accepts cards regardless of
the merchant fee, as he has the ability to pass through to consumers the merchant fee. In the
case of cash discounts, the merchant is willing to accept cards provided that the merchant fee is
smaller than a threshold Md(f). Because the merchant can use discounts to steer consumers to
use cash, merchant resistance to card transactions is smaller than in the case of uniform pricing,
in the sense that Md(f) ≥ Mu(f). These results are collected in the next lemma.

Lemma 4 (equilibrium merchant resistance under discriminatory pricing)

1. When cash discounts are allowed, the merchant accept cards if and only if the merchant fee is no
larger than a threshold Md(f), where Md(f) ≥ Mu(f) > bS .

2. When card surcharges are allowed, the merchant accept cards regardless of the merchant fee
(Ms(f) = +∞).
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The proof in the appendix proceeds as in the scenario of uniform pricing. It first constructs
card acceptance and refusal equilibria taking retail prices as exogenous. It then incorporates
optimal retail prices, and relates the merchant’s card acceptance decision to the merchant fee
set by the platform. As before, we construct out-of-equilibrium beliefs by selecting the Pareto-
dominant equilibrium in the continuation game that follows each price announcement.25

4.2 Cash discounts

In this subsection, which can be skipped in a first reading, we analyze the merchant’s optimal
choice of cash discounts. Given the fee structure announced by the platform at stage 1, the
merchant’s problem at stage 2 is that of choosing a retail price p and a cash discount σ to
maximize

(1−G (V (p, f,σa))) · (p− TS(m, f,σ, 0)) ,

where σ
a is the cash discount anticipated by consumers. That the threshold V (p, f,σa) is eval-

uated at σa reflects the fact that consumers do not observe the merchant’s card policy before
visiting the store. Of course, in equilibrium, the cash discount anticipated by consumers will
coincide with the actual cash discount practiced by the merchant.

The equilibrium cash discount then has to minimize the expected transaction costs faced by
the merchant:

σ
∗(m, f) ∈ argmin

σ
{TS(m, f,σ, 0)} .

The next proposition characterizes the solution to this problem.

Proposition 4 (equilibrium cash discount) In any equilibrium where cash discounting is allowed:

1. The equilibrium cash discount is σ∗(m, f) = 0 if and only if

m ≤ M
d(f) ≡ bS +

H(f)

h(f)
,

where the threshold M
d(f) is weakly increasing in f .

2. If m > M
d(f), the equilibrium cash discount σ∗(m, f) > 0 is the unique solution of the following

equation in σ:

σ +
H(f + σ)

h(f + σ)
= m− bS . (13)

The equilibrium cash discount is strictly increasing in m, and weakly decreasing in f .

25Following an out-of-equilibrium price announcement, beliefs about cash discounts and card surcharges do
not change. As will be clear shortly, this results from the fact that the merchant-optimal cash discounts and card
surcharges do not depend on the retail price.
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3. In the case of an open payment system, let m̃d solve m̃d = M
d(c− m̃

d). Then

σ
∗(m, f) = max

�
m− m̃

d
, 0
�
.

Accordingly, the equilibrium cash discount is positive, and varies one-for-one with the merchant
fee, whenever m ≥ m̃

d.

According to Proposition 4, cash discounts are positive if and only if the merchant fee is
sufficiently higher than bS , that is, when the fee m entails a “large” violation of the tourist test.
In this case, cash discounts are characterized by the first-order condition (13). This condition
equalizes the gains on transaction costs from steering the marginal consumer to use cash with
the losses associated with “giving away” discounts to infra-marginal consumers (i.e., those
who strictly prefer to pay by cash at the discount σ∗(m, f)). Conversely, for “small” violations
of the tourist test, the merchant finds it too costly to actively subsidize consumers to use cash.
Thus, a sufficient condition for the absence of cash discounts is that the tourist test be satisfied.

Interestingly, when the payment system is open, there is a complete pass-through of mer-
chant fees into cash discounts. That is, the cash discount varies one-for-one with the merchant
fee (and therefore with the interchange fee). Moreover, for both open and closed systems, dis-
counts increase if the distribution H increases in the sense of reverse-hazard-rate dominance.26

Accordingly, one should expect higher cash discounts when the card option is credit rather
than debit.

For any fee structure (m, f) for which m �= bS , allowing for cash discounts does not lead to
the welfare-maximizing outcome (as discussed in Lemmas 2 and 3). Indeed, as implied by (13),
the effective merchant fee m−σ

∗(m, f) is, at the optimum, too high relative to the convenience
benefit of card transactions, bS . Accordingly, for a fixed fee structure (m, f), cash discounts
reduce but do not eliminate the inefficient overuse of cards that would prevail under uniform
pricing.

Finally, by virtue of Assumption 1, the cash discount σ∗(m, f) generates no missed sales in
equilibrium. Once in the store, those consumers who find themselves with high inconvenience
costs of cash payments will pay by card rather than refrain from buying the good.

4.3 Card surcharge

We now consider the scenario where the merchant is allowed to use card surcharges, but (as
will turn out without loss of generality) is not allowed to use cash discounts. We shall assume
that missed sales do not occur on the equilibrium path. This simplification deserves some jus-
tification, as missed sales are likely to occur when card surcharges are high (recall that when
τ = ∞, which is the cash-only scenario, missed sales always occur). First, the next proposition

26The distribution Ĥ dominates H according to reverse-hazard-rate dominance if ĥ(bB)

Ĥ(bB)
≥ h(bB)

H(bB) for all bB .
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will provide, for any given fee structure (m, f), necessary and sufficient conditions in terms
of the shopping cost for missed sales not to occur when merchants optimally surcharge card
transactions. Second, as the analysis of Section 5 reveals, card surcharges, under mild qualifica-
tions, do not occur at the equilibrium fee structure, in which case it is natural to rule out missed
sales (by assuming sufficiently high shopping costs).

Given the fee structure announced by the platform at stage 1, the merchant at stage 2
chooses a retail price p and a card surcharge τ so as to maximize

(1−G (V (p, f + τ
a
, 0))) · (p− TS(m, f, 0, τ)) ,

where, similarly to the case of cash discounts, the threshold V (p, f + τ
a
, 0) is evaluated at the

anticipated card surcharge τ
a (rather than at the actual card surcharge practiced by the mer-

chant). This again reflects the fact that consumers do not observe the merchant’s cash/card
policy before visiting the store. Because consumers have rational expectations, in equilibrium,
the card surcharge anticipated by consumers will coincide with the actual card surcharge prac-
ticed by the merchant.

The equilibrium card surcharge, τ∗(m, f), then minimizes the expected transaction costs
faced by the merchant:

τ
∗(m, f) ∈ argmin

τ
{TS(m, f, 0, τ)} .

The next proposition characterizes the solution to this problem.

Proposition 5 (equilibrium card surcharge) In any equilibrium where card surcharging is allowed,
and assuming no missed sales:

1. The equilibrium card surcharge is τ∗(m, f) = 0 if and only if

m ≤ M
s(f) ≡ bS − 1−H(f)

h(f)
,

where the threshold M
s(f) is weakly increasing in f .

2. If m > M
s(f), the equilibrium card surcharge τ∗(m, f) > 0 is the unique solution of the follow-

ing equation in τ :

τ − 1−H(τ + f)

h(τ + f)
= m− bS . (14)

The equilibrium card surcharge is strictly increasing in m, and weakly decreasing in f .

3. In the case of an open payment system, let m̂s solve m̂s = M
s(c− m̂

s). Then

τ
∗(m, f) = max {m− m̂

s
, 0} .
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Accordingly, the equilibrium card surcharge is positive, and varies one-for-one with the merchant
fee, whenever m ≥ m̂

s.

Missed sales indeed do not occur in equilibrium if and only if s ≥ S
s(m, f), where the threshold

S
s(m, f) satisfies condition (3) evaluated at σ = 0 and τ = τ

∗(m, f) with equality.

According to Proposition 5, card surcharges are positive if and only if the merchant fee
is not too low relative to the convenience benefit bS . In particular, card surcharges arise even
when the tourist test is satisfied. When positive, card surcharges are characterized by first-order
condition (14). This condition balances two effects. First, marginally increasing the surcharge
raises the platform’s revenue from infra-marginal consumers (i.e., those who strictly prefer to
pay by card at the surcharge τ

∗(m, f)). Second, marginally increasing the surcharge steers
the marginal consumer towards cash, generating a loss to the platform (which consists of the
foregone surcharging revenue plus the net benefit of a card transaction, bS−m). Only when the
merchant fee is sufficiently low, the platform does not surcharge. Thus, a necessary condition
for the absence of card surcharges is that the tourist test be satisfied.

Interestingly, when the payment system is open, there is a complete pass-through of mer-
chant fees into card surcharges. That is, the card surcharge varies one-for-one with the mer-
chant fee (and therefore with the interchange fee). Moreover, for both open and closed sys-
tems, surcharges increase if the distribution H increases in the sense of hazard-rate dominance.
Accordingly, one should expect higher surcharges for credit than for debit cards.

For any fee structure (m, f), allowing for card surcharges does not lead to the welfare-
maximizing outcome (as discussed in Lemmas 2 and 3). As revealed by (14), at the optimum,
the effective merchant fee, m − τ

∗(m, f), is too low relative to the convenience benefit of card
transactions, bS . Accordingly, for any fee structure (m, f), card surcharges necessarily lead to
an underuse of cards (relative to first best). The reason is that merchants use card surcharges
as a price discrimination device (screening consumers with different costs of cash payments).
As such, the merchant always “overshoots” in the surcharge, and surcharges consumers more
than what efficiency would dictate.

Finally, the card surcharge τ
∗(m, f) generates no missed sales if and only if the shopping

cost is high enough. In this case, those consumers who find themselves with high inconve-
nience costs of cash payments will pay by card even when subject to a large surcharge (rather
than refrain from buying the good).

4.4 Comparison: cash discount or card surcharge?

Merchant associations often lobby for the right to surcharge card transactions. By contrast,
merchants are usually allowed to discount for cash payments, but rarely do so. The next corol-
lary combines the two previous propositions to compare cash discounts and card surcharges.
In accordance with recent antitrust litigation, it shows that merchants unambiguously prefer
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Tourist test satisfied Tourist test violated

Ms( f ) bS Md( f )

merchant
discount

m

Cash discount (σ)? No
(σ∗ = 0)

Yes
(σ∗ = m − Md( f ))

Card surcharge (τ)? No
(τ∗ = 0)

Yes
(τ∗ = m − Ms( f ))

Figure 3: Discount and surcharge behavior in an open system

surcharges to discounts. Thus, if both surcharges and discounts are allowed, merchants will
always employ the former and never the latter.

Corollary 2 (comparison between cash discounts and card surcharges) Fix the fee structure (m, f).
In any equilibrium with no missed sales:

1. On a stand-alone basis, surcharges are always larger than discounts: τ∗(m, f) ≥ σ
∗(m, f),

2. The merchant prefers surcharges to discounts (and so set discount σ = 0 if both are allowed).

Moreover, missed sales are more likely to occur under card surcharges than under cash discounts.27

The intuition for this comparison is straightforward. Because consumers imperfectly ob-
serve the merchant’s cash/card policy, surcharges are a rent extraction device (due to hold-up),
while discounts are a giveaway. As a consequence, steering consumers to use cash rather than
card is always more costly for the merchant under discounts than under surcharges. There-
fore, for a given fee structure (m, f), surcharges are always larger than discounts, and generate
higher profits for the merchant. An immediate consequence is that missed sales are more likely
to occur under surcharges than under discounts, in the sense that the range of shopping costs
such that missed sales do not occur is larger under discounts than under surcharges. Figure 3
summarizes the relationship between discounts and surcharges on the one hand, and compli-
ance with the tourist test on the other hand (the specific passthrough formulae for σ∗(m, f) and
τ
∗(m, f) apply only for an open system).

We are now in a position to study whether, for a given fee structure (m, f), society is best
served by allowing or prohibiting surcharging (in Section 6, we will consider finer modes of
regulation). To get intuition, consider the case of an open system. As implied by Proposition 5,
the effective merchant fee under surcharging is equal to min {m, m̂

s}. The quasi-convexity of
transaction costs around the minimizer bS , and Lemma 3, then yield the following result.

27In the sense that, for every shopping cost s, if missed sales do not occur under card surcharges, then they do
not occur under cash discounts.
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Corollary 3 (unconstrained card surcharging vs. uniform pricing) Consider a platform that op-
erates as an open system. For a given fee structure (m, f), there exists a threshold m̄

s
> bS such

that:

1. If m ≤ m̂
s, prohibiting surcharges has no impact on welfare.

2. If m̂s
< m < m̄

s, prohibiting surcharges strictly increases welfare.

3. If m̄s
< m, allowing surcharges strictly increases welfare.

By contrast, allowing for cash discounts always weakly increases welfare.

The result above assumes an exogenous fee structure (m, f). As such, its welfare statements
are most useful for short-run analyses or in environments where the fee structure is rigid (due
to long-term contracts or direct regulation). Arguably, the platform should adjust its fee struc-
ture in response to a regulatory intervention allowing merchants to price discriminate. This is
the topic of the next section.

5 Platform’s choice of merchant fee

How does the platform adjust its fee structure in response to laws allowing merchants to dis-
count cash transactions or to surcharge card transactions? To answer this question, we will now
derive a perfect Bayesian equilibrium of the game described in Figure 1. As before, we adopt
the equilibrium refinement of Proposition 2, which selects the Pareto-superior equilibrium of
the game defined from stage 2 onwards.

When discriminatory pricing is allowed, the platform in its choice of fee structure must ac-
count not only for its effect on retail prices, but also for its impact on the cash discount/card
surcharge practiced by the merchant (that, together with the cardholder fee f , determines the
share of card transactions). To study the two forms of discriminatory pricing in a unified man-
ner, let us define the functions

V
∗(m, f) ≡ V (p∗(m, f,σ

∗(m, f), τ∗(m, f)), f + τ
∗(m, f),σ∗(m, f))

and
H

∗(m, f) ≡ H(τ∗(m, f) + σ
∗(m, f) + f),

which describe the equilibrium threshold valuation and the share of cash transactions, as a
function of the fee structure (m, f). Obviously, by setting τ

∗ ≡ 0 or σ
∗ ≡ 0, we recover the

scenarii in which only cash discounts or only card surcharges are permitted.
A platform that operates as an open system therefore solves
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max
{m,f}

(1−G (V ∗(m, f))) · (1−H
∗(m, f)) , (15)

subject to the zero-profit constraint, m + f = c, and, in the case of cash discounts, the card
acceptance constraint, m ≤ Md(f). The next proposition derives the platform’s optimal fee
structure when merchants practice discriminatory pricing.

Proposition 6 (equilibrium under discriminatory pricing) Consider an open system that maxi-
mizes the number of card transactions.

1. When cash discounts are allowed, the equilibrium effective merchant fee is

m̂
d = min

�
m̃

d
,m

u

�
.

In particular, the effective merchant fee strictly violates the tourist test: m̂
d
> bS . Relative to

uniform pricing, the effective merchant fee weakly decreases, m̂d ≤ m
u, the effective cardholder

fee weakly increases, f̂d ≥ f
u, and social welfare weakly increases.

2. When card surcharges are allowed, and assuming the absence of missed sales (s ≥ S
s(m̂s

, c−m̂
s)),

the equilibrium effective merchant fee is m̂
s. In particular, the effective merchant fee strictly

satisfies the tourist test: m̂s
< bS . Relative to uniform pricing, the effective merchant fee strictly

decreases, m̂s
< m

u, and the effective cardholder fee strictly increases, f̂ s
> f

u. Social welfare
strictly decreases if mu

< m̄
s, and strictly increases if mu

> m̄
s.

Proof (sketch). Let us consider first the scenario of card surcharges. It is convenient to think
of the platform as choosing effective merchant fees (as opposed to nominal merchant fees), and
then mapping the optimal effective merchant fee into its nominal counterpart. In the absence
of missed sales, Proposition 5 reveals that, in equilibrium, the effective merchant fee m̂ satisfies
m̂ ≤ m̂

s. In particular, this condition is satisfied as a strict inequality if the nominal merchant
fee satisfies m < m̂

s (in which case surcharges do not happen and m̂ = m), and as an equality if
m ≥ m̂

s (in which case surcharges are weakly positive). Intuitively, the merchant’s surcharging
behavior imposes an upper bound on the effective merchant fee that the platform can imple-
ment.

From Lemmas 2 and 3 the volume of consumers visiting the store is an inverse-U-shaped
function of m̂ with strict maximum at m̂ = bS . Because increasing m̂ also increases the share
of card transactions (as f̂ = c − m̂ goes down), it follows that the volume of card transactions
is maximized at the effective merchant fee m̂ = m̂

s
< bS . Setting the nominal merchant fee to

satisfy m ≥ m̂
s obviously implements the effective merchant fee m̂

s (by part 3 of Proposition
5).

Finally, that s ≥ S
s(m̂s

, c− m̂
s) guarantees that no missed sales happen on the equilibrium

path. The proof contained in the Appendix completes the arguments above by showing that
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no fee structure that generates missed sales can be optimal for the platform. We also relegate to
the Appendix the proof of claim 1, pertaining to cash discounts, as the arguments in this proof
are analogous to the ones for card surcharging. �

As the proof sketch reveals, allowing for card surcharges has the same effect as that of an
upper bound on the effective merchant fee that the platform can implement. The reason is that the
merchant, by surcharging card transactions, has full control over his effective fee, m − τ , and
the effective cardholder fee, f + τ . As the merchant “overshoots” in surcharges relative to
efficiency (in order to extract more rents from consumers), the platform is unable to implement
an effective merchant fee at or above the tourist test level. As a consequence, allowing for card
surcharges leads to an inefficiently low volume of card transactions.

As a result, lifting the no-surcharge rule substitutes one inefficiency (underuse of cards due
to inefficiently high card surcharges) for another (overuse of cards due to low merchant resis-
tance under uniform pricing). Therefore, welfare can either decrease or increase, depending on
how m

u compares with the threshold m̄
s, identified in Corollary 3.

By contrast, allowing cash discounts is unambiguously welfare-enhancing. As in the case
of card surcharges, allowing cash discounts has the same effect as that of an upper bound on
the effective merchant fees that the platform can implement. Because merchants “undershoot”
in discounts relative to efficiency, this upper bound, m̃d, is strictly above the tourist test level.
As a result, cash discounts reduce, but do not eliminate, an inefficiently high volume of card
transactions. Welfare strictly increases with cash discounts if the upper bound m̃

d is binding
for the platform’s problem in a world of uniform pricing. If this upper bound is slack, allowing
for cash discounts affects neither the platform nor the behavior of the merchant (who does not
find profitable to practice cash discounts).

Remark 4 (no card surcharging on the equilibrium path). Proposition 6 shows that, under
discriminatory pricing, the platform’s effective fee structure is uniquely determined in equi-
librium. However, the platform’s nominal fee structure is not uniquely pinned down, as, for
instance, in the case of card surcharges, any (m, f) with m ≥ m̂

s and f = c − m maximizes
the volume of card transactions. Yet, if surcharges involved any additional (unmodelled) costs
to the merchant, the platform should select the fee structure (m, f) = (m̂s

, c − m̂
s), which

maximizes the volume of card transactions and generates no card surcharges on the equilibrium
path. This consideration is likely to be relevant in explaining why card surcharges are rarely
observed when allowed.28

Finally, the case of a closed system can be treated similarly to that of an open system. For
brevity, consider the case of card surcharges. In this case, the platform chooses a fee structure

28Similarly, if cash discounts involved (unmodelled) practical inconveniences to the merchant, the platform
should select the fee structure (m, f) = (m̂d

, c− m̂
d), which maximizes the volume of card transactions and gener-

ates no cash discounts on the equilibrium path.
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(m, f) so as to maximize profit:

max
{m,f}

(1−G (V ∗(m, f))) · (1−H
∗(m, f)) · (m+ f). (16)

Let, as before, c̃ denote platform’s aggregate fee at the optimum. From Proposition 5, the effec-
tive merchant fee satisfies

m̂ ≤ M
s(c̃− m̂),

as implied by the merchant’s surcharging behavior. This constraint is the same as that for an
open system, after replacing the total cost c by the aggregate fee c̃ (which accounts for the
platform’s markup).

It then follows from the same arguments in the proof sketch that the equilibrium effective
merchant fee has to strictly satisfy the tourist test, and that card usage is inefficiently low.
The welfare comparison relative to uniform pricing is however ambiguous, as, (i) relative to
efficiency, surcharging leads to underuse of cards, while uniform pricing generates overuse of
cards, and (ii) the platform’s markup over each card transaction decreases in the presence of
card surcharging.

6 Surcharge regulation

The analysis above shows that allowing merchants to practice cash discounts is unambiguously
welfare-improving relative to uniform pricing. The same conclusion does not hold, however,
in the case of card surcharges, which can be welfare-enhancing or detrimental depending on
the magnitude of the “card-underuse” distortion that surcharging generates.

In the case of uniform pricing, one natural (and widely practiced) regulatory intervention
is to cap interchange fees (or equivalently, merchant fees). It is worth pointing out that, if
the no-surcharge rule is lifted, direct regulation of merchant fees is not an effective tool for
increasing welfare. To understand why, consider an open-system platform that maximizes
the number of card transactions. Even in the absence of caps on merchant fees, the merchant’s
surcharging behavior prevents the platform from inducing an effective merchant fee at or above
the tourist test, and results in under-provision of card services. Therefore, further constraining
the platform’s choice of fee structure (by means of a binding cap on merchant fees) can only
magnify the under-provision of card services. As a consequence, when surcharging is allowed,
capping interchange fees (or, equivalently, merchant fees) is unambiguously detrimental to welfare.29

This observation suggests that, once the no-surcharge rule is lifted, regulation should focus
on merchants’ behavior rather than on the platform’s behavior. In what follows, we discuss two

29More precisely, it is strictly detrimental if regulation caps the merchant fee at some m̊ < m̂
s, and neutral

otherwise.
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forms of merchant regulation that have received much attention in the policy debate regarding
surcharges.

6.1 Surcharging caps

A simple, and warmly debated, regulatory intervention is to impose by law an upper bound on
the surcharge that merchants can practice. In Denmark, for example, where merchants are al-
lowed to surcharge credit card transactions, the government capped surcharges by 3.75% of the
retail price. As discussed in the introduction, the US, the UK and Australia all have or will have
rules that limit the surcharge to a level set at or above m (depending on the interpretation).30

In light of Proposition 6, one should expect caps on surcharges to reduce the downward
pressure on equilibrium effective merchant fees. Setting the “right” cap seems therefore a cru-
cial component of a successful regulatory intervention. The next proposition shows that the
welfare-maximizing outcome can be attained if surcharges are capped by the “net merchant
fee”, m− bS .

Proposition 7 (optimal surcharging cap regulation) Consider a platform that operates as an open
system, and assume that card surcharges are allowed. Let the regulator constrain the merchant’s ability
to surcharge according to the following cap regulation:

τ ≤ max {m− bS , 0} . (17)

Then the social welfare achieved in equilibrium is maximal.

Recall from Proposition 5 that, absent a cap, merchants choose inefficiently high surcharges
in order to extract rents from consumers with high inconvenience of cash payments. The idea
behind the cap regulation from Proposition 7 is precisely to eliminate the surcharge “over-
shooting” by merchants. To see how it works, note that, for any m > bS , merchants choose
the maximal allowed surcharge, leading to an effective merchant fee that exactly satisfies the
tourist test:

m− (m− bS) = bS .

30Since March 2013, the Reserve Bank of Australia (RBA) empowered card platforms to limit a merchant’s sur-
charge to “the reasonable cost of acceptance”. In the UK, the Office of Fair Trading promulgated a ban on excessive
credit and debit card charges that came into force on April 2013. Merchants are now forbidden to charge customers
more than what it costs them to process the payment. The European Consumer Rights Directive 2011/83/UE (arti-
cle 19) similarly states that above-cost surcharges will be prohibited for all payment methods. In the US, Visa and
MasterCard agreed in November 2012 to alter their rules concerning “check-out fees”. Namely, these platforms
must allow surcharging for credit cards (but not for debit cards), but can limit surcharging to the cost incurred by
the merchant from a card payment (and never above 4%). Systems such as Amex are not directly affected by this
rule, but merchants who surcharge on Visa or Master Card must apply an equivalent surcharge on all credit cards
that charge equal or higher merchant fees.
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Figure 4: Effective merchant fee as a function of the nominal merchant fee under unconstrained
surcharging and cap regulation

As a consequence, at a fee m > bS , the effective card fee faced by consumers is at its efficient
level:

f + (m− bS) = c− bS ,

where the equality follows from the platform’s zero-profit condition. By preventing surcharges
from exceeding the net merchant fee m − bS , the regulator eliminates surcharge overshooting,
and achieves the welfare-maximizing outcome. In particular, under cap regulation, setting m =

bS is optimal for the platform, in which case surcharges would not happen on the equilibrium
path. Moreover, this choice of merchant fee is the unique optimum if surcharges involve any
additional (unmodelled) costs to the merchant. This logic is illustrated in Figure 4.

There is an obvious caveat to the applicability of surcharging caps. Setting the “right” sur-
charge cap, at m − bS , requires that the regulator knows the merchant’s convenience cost of
cash benefits, bS . Knowledge of bS , however, is not easily available to regulators, and its mea-
surement is subject to debate, as the recent experience of interchange fee regulation according
to the tourist test attests.

Finally, in the case of a closed system, the use of surcharging caps entails an effect that is
absent in the open-system case. Namely, when surcharging is constrained, the platform has an
incentive to increase its aggregate fee, m + f , over each card transaction (double marginaliza-
tion). The market power enjoyed by the card platform then generates a countervailing effect
that moves the equilibrium away from first best. In this case, determining the optimal cap
on surcharges is more difficult, as it requires making assumptions about the degree of market
power enjoyed by the card platform vis-a-vis cardholders and merchants. If the platform is
subject to a high degree of competition, though, a surcharging cap close the net merchant fee,
m− bS , is likely to produce large welfare gains.
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6.2 Mandated transparency

We assumed so far that, before incurring the shopping cost s, the consumer observes the retail
price p, but does not observe the merchant’s cash/card policy. We argued that this is a rea-
sonable assumption in a number of contexts (for example, when markets are characterized by
one-time or infrequent shopping, or when consumers are rationally inattentive). This assump-
tion also fits well with the “hold-up” narratives that have led authorities around the world to
reconsider their policies toward surcharging. Most importantly, we showed that, due to “hold-
up” at the point of sale, merchants are able to impose high card surcharges. This naturally
impacts the equilibrium fee structure: In response to the possibility of card surcharges, in equi-
librium, the effective merchant fee decreases and the effective cardholder fee increases (relative
to uniform pricing).

In the last subsection, we argued that properly chosen surcharging caps are an effective
tool for achieving first best, as they eliminate the inefficiently high surcharges imposed by mer-
chants. Antitrust authorities are contemplating an alternative antidote to excessive surcharges,
“mandated transparency”, in which the merchant would be obliged to post the level of sur-
charge together with the price.

To understand the effects of transparency, we will now study the merchant’s problem in a
setting of perfect consumer information. Because consumers observe surcharges together with
price, the volume of consumers who visit store is sensitive to the actual (as opposed to the
anticipated) surcharge practiced by the merchant. Accordingly, in the absence of missed sales,
the merchant chooses a retail price p and a surcharge τ to maximize

(1−G (V (p, f + τ, 0))) · (p− TS(m, f, 0, τ)) . (18)

The next proposition, a variant of Rochet and Tirole (2002), shows that mandated transparency
leads to efficient card usage.

Proposition 8 (mandated transparency) Consider a platform that operates as an open system, and
assume that card surcharges are allowed. Let the regulator oblige merchants to post the card surcharge
jointly with the retail price. Then, in equilibrium, card usage is efficient.

Transparency regulation gives the merchant the ability to commit to a card surcharge. This
commitment technology enables the merchant to implement the following pricing strategy:
He employs the card surcharge to minimize the aggregate transaction costs, and employs the
retail price to extract rents from buyers. As a result, card usage is efficient (but, of course,
retail prices display the usual market-power distortion). This result echoes, in our payment-
choice application, the classical insight of Spence (1975), according to which “quality” (in our
case, payment choice) is efficiently provided when “marginal” and “infra-marginal” consumers
have similar tastes for quality (payment choice).
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The independence between the consumers’ valuations for the good and their inconvenience
costs of cash payments is crucial to the efficiency result of Proposition 8. Arguably, one would
expect richer consumers (i.e., those with a less elastic demand curve, and therefore a higher
valuation) to also be on average those who have the highest opportunity cost of fetching and
managing cash. This suggests that, under positive correlation, card surcharges can be used by
the merchant as an instrument to capture consumer surplus (even with transparency). The next
proposition analyzes an interesting tractable case that confirms this intuition.

Proposition 9 (Spencian distortions and transparency regulation) Assume that consumers’ valu-
ations are perfectly positively correlated with their inconvenience costs of cash payments, and consider an
equilibrium where both payment methods are used. Transparency regulation then results in inefficiently
high card surcharging and inefficiently low card usage.

The understand the result above, note that that, under perfect positive correlation between
v and bB , the lowest-valuation consumers to visit the store strictly prefer paying by cash than
by card (as they have the lowest bB among all those who purchase). As a consequence, at the
optimum, card surcharges do not affect the volume of consumers visiting the store, but only the
fraction of high-valuation consumers who decide to pay by card. By raising card surcharges
above the efficient level, the merchant can therefore extract more rents from high-valuation
consumers (who consider cash payments way too inconvenient).31

More generally, whenever “marginal” consumers choose cash payments more often than
the “infra-marginal” ones, card surcharging cum transparency regulation will lead to ineffi-
ciently low use of cards.32 In addition, the magnitude of the distortion relative to first best can
only be assessed with precise knowledge of the joint distribution of v and bB .

The limits of voluntary and mandated transparency

Interestingly, Proposition 8 implies that if the merchant could costlessly communicate the card
surcharge to consumers (before visiting choices are made), he would find profitable to do so.
Indeed, by committing not to surcharge abusively, the merchant is able to attract more con-
sumers to the store and increase profit. By contrast, in reality merchants rarely communicate
surcharges before the point of sale.

There are several reasons for this discrepancy. The existence of unaware consumers, who do
not factor in card surcharges when deciding whether or not to visit the store, is likely to be an
important one. Disclosing card surcharges works as an “eye-opener” to unaware consumers,
who, following disclosure, make store visiting decisions with correct expectations about effec-

31We introduced correlation between v and bB in order to qualify the efficiency result of Proposition 8. It should be
noted that the qualitative insights from the baseline model (pertaining cash discounts, card surcharges, equilibrium
fees and surcharging caps) are robust to the distributions G and H being positively correlated.

32For brevity, Proposition 9 considered the case where the correlation between v and bB is positive and perfect.
Under appropriate regularity conditions, this result can be easily extended to the case of imperfect correlation.
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tive cardholder fees. As studied in section 7, disclosure is likely to reduce demand and profits
for the merchant.

Another prominent reason for why voluntary disclosure of surcharges is rare (as well as for
for why mandated transparency regulation might have limited effects) is the existence of con-
siderable menu costs for the merchant, who needs to post next to the price, or more realistically
as a general policy displayed prominently in the store, the surcharges for the different types
of cards he accepts (debit/credit, various card associations and proprietary systems). Further-
more, inattentive consumers may overlook the card surcharging announcement, or be over-
loaded by its information. For instance, consumers may enter the shop thinking of a purchase
for which they have enough cash and then discover that they want to buy a more expensive or
an additional item.

Another issue is that price publicity may not come from the merchant. For example, the
product manufacturer may run a national advertising campaign, where it is infeasible to dis-
close the policies of all retailers carrying the product. A similar issue arises when the consumer
learns the retailer’s price through a price-comparison engine; as is well-known, such compar-
isons are multidimensional as they depend on the type of purchase/consumer. So, if websites
pick the price for the bare-bones product (including a payment by cash) as they often do, there
is still an element of hold-up in the retailer’s choice of surcharge. In the end, neither surcharge
capping nor mandatory transparency is a perfect regulatory response to the inefficiencies at-
tached to surcharging, and we therefore can think of the two regulations as complements.

7 Discussion

In this section, we investigate how our conclusions are affected by (i) alternative assumptions
about consumer rationality, and (ii) the possibility that consumers adjust their choice of cash
holdings in response to cash/card policy anticipated from the merchant. For brevity, we shall
restrict attention to the card surcharge scenario in an open system.

7.1 Unaware Consumers

The results of this paper were derived under the strong assumption that consumers correctly
anticipate the cash discount/card surcharge practiced by the merchant. This modeling choice
was deliberate, as regulatory interventions under rational expectations are less likely to be
needed than under weaker forms of consumer rationality.

We now investigate how the insights of our analysis change if we assume that consumers
are unaware of card surcharges. Formally, this means that consumers make their decisions to
visit the store assuming that card surcharges are always zero, i.e., τa ≡ 0. To simplify the
technical exposition, let us assume in this subsection that the distribution G has a constant
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hazard rate λ
g
> 0.33

Unlike in the case of rational expectations, unaware consumers misperceive their effective
cardholder fee, as they do not factor in surcharges and mistake the nominal cardholder fee for
its effective counterpart. This generates an incentive for the merchant to conceal surcharges
before the point of sale, and for the platform to set low nominal cardholder fees, so as to attract
a large volume of consumers to visit the store.

In particular, the platform unambiguously gains by decreasing nominal cardholder fees at
any fee structure that induces no missed sales. To understand why, note that, in the absence
of missed sales, the merchant’s optimal card surcharge is the same as in the case of rational
expectations (characterized in Proposition 5).34 Therefore, absent missed sales, the effective fee
structure is independent of the nominal fee structure, and equals (m̂s

, f̂
s) . This implies that

the share of card transactions is constant in the nominal cardholder fee, as it only depends on
the effective cardholder fee f̂

s that consumers face once in the store. By reducing the nominal
cardholder fee, the transactions costs anticipated by consumers strictly decrease. Because retail
prices remain constant at

p
� = TS(m̂

s
, f̂

s
, 0, 0) +

1

λg
,

the number of consumers visiting the store, and the volume of card transactions, strictly in-
creases as the nominal cardholder fee decreases.

As consequence, no fee structure (m, f) such that the no-missed-sales constraint (3) is slack
can be optimal for the platform. This implies that the platform-optimal nominal cardholder fee
satisfies f ≤ f̄ , where the threshold f̄ is such that the no-missed-sales constraint (3) is satisfied
with equality:

s+ E
�
min

�
bB − f̄ , 0

��
= 0.

For f < f̄ , the merchant incurs missed sales, and the effective cardholder fee f̂
s is strictly

increasing in the nominal fee f (i.e., the pass-through is imperfect). As a result, at any f < f̄ ,
the platform faces a genuine trade-off between increasing the share of card transactions (by
means of a lower effective cardholder fee), and decreasing the volume of consumers visiting
the store (as retail prices increase as the transaction costs faced by merchants increase).35

Therefore, relative to rational expectations, the welfare-detrimental effects of hold-ups are
magnified (as too many consumers visit the store). The case for surcharging caps is therefore
stronger when consumers are unaware of card surcharges than under rational expectations.

33This is equivalent to G being an exponential distribution with mean 1
λg . A constant hazard rate guarantees that

aware and unaware consumers have the same demand semi-elasticity as long as the missed-sales constraint is not
binding.

34This results from the fact that, because consumers do not observe the merchant’s cash/card policy before
visiting the store, card surcharges are chosen to minimize the merchant’s transactions costs per sale. As a conse-
quence, the optimal card surcharge for the merchant is independent of how consumers form expectations about his
cash/card policy.

35We cannot however rule out a kink solution at f̄ .
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7.2 Endogenous Cash Holdings

We have assumed that the distribution of costs bB of cash payments is exogenous. In fact, it
results from consumer choice, at least for brick-and-mortar purchases: Consumers can decide
how much cash to hoard in their wallet or whether to carry a checkbook. More interestingly,
that decision hinges on the anticipated cash/card policy of the merchant. Intuitively, if the
merchant is expected to levy steep card surcharges, consumers are more likely to carry cash,
which will limit the merchant’s ability to impose surcharges.

To formalize the consumers’ cash-holdings decision, let us assume that consumers select an
intensity θ of cash-holdings attention, which determines the ex-post distribution of the incon-
venience cost of cash transactions, denoted by H̃(bB|θ). We let h̃(bB|θ) be the density of H̃(bB|θ)
and assume that its hazard rate h̃(bB |θ)

1−H̃(bB |θ) is continuously differentiable and strictly increasing
in θ. Accordingly, a larger cash holding intensity leads to a decrease in the distribution of the
inconvenience cost of cash transactions in the sense of hazard-rate dominance (and therefore
also in the sense of first-order stochastic dominance). A cash holding attention intensity θ gen-
erates a nuisance costs I(θ) to consumers. The function I is strictly increasing, weakly convex,
and continuously differentiable with I

�(0) = 0.

We assume that consumers take the decisions of whether to visit the store and of how much
cash to hold simultaneously. An equilibrium with endogenous cash holdings adds to the equilib-
rium definition of Section 2 the requirement that the consumers’ cash holdings decision and
the merchant’s cash/card policy constitute mutual best responses.

To simplify the exposition, let us consider the case where missed sales do not occur (which
is assured to hold provided the shopping cost s is large enough). Accordingly, when consumers
anticipate the card surcharge τ

a, they choose θ so as to solve

max
θ

�
−I(θ)−

ˆ
f+τ

a

b
B

bBdH̃(bB|θ)−
�
1− H̃(f + τ

a|θ)
�
· [f + τ

a]

�
.

The objective above is continuously differentiable in θ and exhibits strictly increasing differ-
ences with respect to (θ, f + τ

a). Therefore, the optimal choice of cash holdings, denoted by
θ
∗(f + τ

a), is strictly increasing in the effective consumer fee anticipated by consumers, f + τ
a.

In turn, as established in Proposition 5, the merchant optimal card surcharge is

τ
‡ (m, f, θ

a) = max {m− m̌
s(θa), 0} ,

where the threshold m̌
s(θa) solves

m̌
s(θa) = bS − 1− H̃(c− m̌

s(θa)|θa)
h̃(c− m̌s(θa)|θa)

.
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Because m̌
s(θa) is strictly increasing in θ

a, card surcharges are weakly decreasing in the
anticipated cash holding intensity θ

a. In equilibrium, the consumers and the merchant correctly
anticipate each others’ choices: θa = θ

∗(f + τ
‡ (m, f, θ

a)). It is straightforward to show that as
the cost of cash holding intensity decreases (as captured, for instance, by a decreasing α in the
parametrized cost function αI(θ)), consumers hold larger cash holdings and merchants levy
smaller card surcharges.36

Most importantly, the effective merchant fee prevailing in any equilibrium with endoge-
nous cash holdings is, as before, strictly below the tourist test level bS . Accordingly, the anal-
ysis of Proposition 6 and the regulatory prescriptions of Section 6 hold unchanged, modulo
the qualification that the distribution the inconvenience cost of cash transactions is now en-
dogenous. In particular, as access to cash becomes easier, the merchant’s ability to hold up
consumers at the point of sale is diminished. As a consequence, the welfare loss generated by
hold up at the point of sale is reduced.

8 Predictions and policy implications

Our analysis unveils a rich set of predictions that are consistent with evidence, as well as policy
insights that question current regulatory practices. This overview particularly emphasizes sur-
charging, both because the theory predicts that cash discounts will be infrequent if surcharging
is prohibited and inexistent if surcharging is allowed, and because surcharging, unlike dis-
counting, is a hotly debated policy concern.

Consequences of the no-surcharge rule

1) Missed-sales concerns generate must-take cards. That is, merchants will accept the card even
when the merchant fee exceeds their convenience benefit of card payments. This must-take-cards channel,
which relies on consumers being imperfectly informed, is novel and complements that based on the
merchants’ attractiveness concerns, which requires that consumers are well-informed about individual
merchants’ card-acceptance policy.

The importance of missed sales is underscored by the analysis of Bolt et al (2010), who,
using survey data from the Netherlands, document that 5% of consumers reported leaving a
merchant’s store without purchasing when faced with card refusal or steep card surcharges.
Given the relative magnitude of markups and merchant fees, such a fraction is likely to raise a
significant concern for merchants.

2) There is less merchant resistance (the card acceptance threshold increases) when cards are more
valuable to consumers relative to cash. Therefore, for a given fee structure, there is less merchant resis-
tance to credit than to debit cards.

36Note that there might be multiple equilibria with endogenous cash holdings. The comparative statics above
holds for each equilibrium.
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3) Under weak conditions, the payment platform optimally sets the merchant fee at the merchants’
acceptance threshold, thereby making cards must-take cards. Moreover, as a result of lower merchant
resistance, the platform charges a merchant fee higher for credit than for debit cards.

This prediction is in line with the fact that Visa’s and MasterCard’s interchange fees (and
therefore the merchant fee) have always been higher under the no-surcharge rule for credit
than for debit.

Consequences of discriminatory pricing

4) Merchants always opt for a card surcharge (a levy) over a cash discount (a giveaway).

Bolt et al (2010) provide empirical support to this prediction. Using consumer and retailer
survey data from the Netherlands (where both cash discounts and card surcharges are legal),
they show that around 22% of Dutch retailers practice card surcharges, while no retailers in
their sample practice cash discounts. They also provide empirical support for abusive sur-
charges by reporting an average debit card surcharge of 2.3% among merchants who surcharge.
As merchant fees are around 1% for debit cards, the effective merchant fee faced by these mer-
chants is on average negative.

5) Surcharging always generates too few card transactions, both from the point of view of the pay-
ment platform, which therefore prefers to prohibit surcharging, and from the point of view of the social
planner.

Cash/card steering effects are crucial for this conclusion. Using payment data from Dutch
merchants, Bolt et al (2010) provide evidence of significant cash/card steering: They estimate
that removing card surcharges should increase the share of card payments on average from
36% to 44%.

6) Card surcharging is more frequent when cards are more valuable to consumers.

Prediction 6 is broadly consistent with available evidence.37 First, credit card surcharges are
more frequent than debit card surcharges. Second, Internet transactions, for which card alter-
natives are costly to the consumer, are prone to surcharging. Card surcharges are for instance
commonplace for low-cost online bookings, in which customers sink a substantial time cost
only to find out in the last (payment) step that a surcharge is levied. A dramatic illustration is
provided by eDreams, which used to surcharge up to 18% for customers paying by card. Third,
transactions that involve customers on business cards (who therefore have a deflated personal
cost of surcharges and a cost of cash payments inflated by the need to obtain reimbursement)
are also conducive to surcharging.

Moreover, the industries where credit card surcharges are most often experienced are air
travel, holiday travel, restaurants, taxis and gas stations (see Bolt et al (2010) and Choice (2014)
for empirical evidence of this point in the Netherlands and Australia, respectively). These

37Much is this evidence concerns Australia, which authorized surcharging for debit and credit cards in 2003. See,
e.g., Bagnall et al (2011), Evans (2011), and Choice (2014).
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industries exhibit one-time or infrequent shopping, and appear to fit well the assumption that
consumers have imperfect information regarding the merchant’s cash/card policy.

7) In response to laws allowing card surcharging, effective merchant fees decrease and effective card-
holder fees increase. Moreover, if surcharges involve any extra convenience cost for merchants, the
payment platform should optimally choose merchant and cardholder fees in a way that surcharges do
not occur. Consequently, public regulations authorizing card surcharging do not generate much actual
surcharging.

Prediction 7 sheds light on the puzzling fact that surcharging is rather rare when allowed.38

The model with homogenous merchants predicts no surcharging at all; merchant heterogeneity
would deliver some surcharging, but still a limited amount of it. This suggests that the (some-
what sparse) evidence of card surcharging is only the “tip of the iceberg”, and that it therefore
understates the global impact of card surcharging in the payment system.

Relatedly, interchange fee regulation and authorization of surcharging are substitute in-
struments. Take the 2003 reduction in the interchange fee mandated by the Reserve Bank of
Australia (RBA). For credit cards, the three bank associations, which had set the interchange
fee at around 0.95 percent of the transaction value, were forced to reduce their interchange fee
to around 0.55 percent.39 This reduction was concomitant with a regulation authorizing sur-
charging. Our theory predicts that, up to some caveats, a partial decrease in the interchange
fee might have occurred anyway in reaction to the introduction of surcharging.40

Policy Implications

Finally, our policy conclusions challenge received wisdom concerning regulation:

8) Surcharging authorization cum regulation is redundant if the merchant fee is regulated at its
tourist test level, namely the merchant’s convenience benefit from card payments bS .

9) Allowing card surcharging increases social welfare if and only if the merchant fee under uniform
pricing much exceeds the tourist test level.

10) If the no-surcharge rule is lifted, interchange fee (or merchant fee) regulation is detrimental to
welfare. Regulation should focus on merchants’ behavior, rather than on the platform’s behavior.

11) If surcharging is to be allowed, the optimal cap is equal to the merchant fee minus the merchant’s
convenience benefit from card payments: τ ≤ m − bS . Recent cost-based regulations are more lenient,
as they require that τ ≤ m or that τ ≤ m+X , with X > 0;

38See Evans (2011, page 23).
39See Evans (2011, chapter 3) for a detailed analysis of the impact of the interchange fee reduction in Australia.
40We are cautious in this statement for two reasons. First, the 0.95 percent rate probably was lower than the

associations’ desired interchange fee as they may have (unsuccessfully) tried to avoid regulation. Second, merchants
in Australia often demand a “blended surcharge”. As Amex and Diners Club charge substantially higher merchant
fees, the level of the interchange fee has less impact on the surcharge than is predicted by our theory. Overall, only
5% of transactions in Australia involve a surcharge. Also consistent with the theory is the fact that reward cards
have become less attractive in Australia.
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12) Mandated transparency regulation eliminates hold-ups for attentive consumers; however, it (i)
may not be feasible (as when the consumer learns price through a national advertising campaign or a
price comparison engine), (ii) may involve transaction costs for the merchant, (iii) does not address the
existence of inattentive consumers, and (iv) does not prevent inefficient surcharging if the consumer’s
willingness to pay is correlated with his desire to use the card (as we argue is likely to be the case). Thus
transparency is not a perfect regulatory response to the inefficiencies attached to surcharging, and the
two regulations may well be complementary.
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Appendix: Omitted Proofs

The appendix collects all proofs omitted in the text.

Proof of Lemma 2. Using the definition of m̂ and f̂ , it follows that

T (m, f,σ, τ) =

ˆ
f̂

b
B

(bB + bS) dH(bB) + [1−H(f̂)] · [m̂+ f̂ ].

Let us fix the platform’s aggregate fee: m + f = ĉ. Therefore the effective cardholder fee that
minimizes T (m, f,σ, τ) solves

min
f̂

ˆ
f̂

b
B

(bB + bS) dH(bB) + [1−H(f̂)] · ĉ.

Fixing f̂ , the objective above is strictly increasing in ĉ, what implies that aggregate transaction
costs decrease with the platform’s aggregate fee. The derivative of the objective above with
respect to f̂ is

h(f̂) ·
�
f̂ − ĉ+ bS

�
,

which is strictly positive if f̂ − ĉ = m̂ > bS , strictly negative if f̂ − ĉ = m̂ < bS and zero if
f̂ − ĉ = m̂ = bS . Therefore, any quadruple (m, f,σ, τ) satisfying (7) is a global minimizer of (6).
Note that Assumption 1 guarantees that missed sales do not happen whenever (7) holds.
The argument above then establishes that condition (7) leads to minimal aggregate transac-
tion costs among all quadruples (m, f,σ, τ) such that missed sales do not happen. Because
V (p, f + τ

a
,σ

a) > p, any quadruple (m, f,σ, τ) such that missed sales happen leads to aggre-
gate transactions that are no less than T (bS , c − bS , 0, 0). It then follows that any quadruple
(m, f,σ, τ) satisfying (7) is a global minimizer of aggregate transaction costs. �

Proof of Lemma 3. Using (2) and the fact that missed sales do not occur, let us rewrite the
merchant’s profit function as

(1−G (s+ p+ TB (∞, f + τ,σ))) · (p− TS(m, f,σ, τ))

= (1−G (s+ pB)) · (pB − T (m, f,σ, τ)) ,

where the equality from the first to the second line follows from defining the buyer effective
price pB ≡ p + T

B
(∞, f + τ,σ). The optimum buyer effective price p

∗
B

can then be written as
a univariate function of T (m, f,σ, τ). Moreover, that G has a weakly increasing hazard rate

implies that
dp

∗
B

dT
∈ (0, 1]. Therefore, the threshold valuation

V (p∗(m, f,σ, τ), f + τ,σ) = s+ p
∗
B (T (m, f,σ, τ))
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is a univariate and strictly increasing function of the aggregate transaction costs T (m, f,σ, τ).
It is then obvious from (9) that social welfare is a univariate and strictly decreasing function of
T (m, f,σ, τ). �

The proof of the Proposition 1 uses the following convenient mathematical fact.

Lemma 5 Let Φ be an absolutely continuous distribution with support [v,∞) and density ϕ. For any
x > 0, define the distribution Φx, with support [v,∞), according to

Φx(v) ≡
Φ(v + x)− Φ(x+ v)

1− Φ(x+ v)
.

Then the distribution Φ dominates Φx according to first-order stochastic dominance if

ϕ(v)

1− Φ(v)

is weakly increasing in v.

Proof. Because Φ0(v) = Φ(v), it suffices to show that Φx(v) is weakly increasing in x. A
straightforward computation shows that the derivative of Φx(v) with respect to x is weakly
positive if and only if

ϕ(v + x)

1− Φ(v + x)
≥ ϕ(v + x)

1− Φ(v + x)

for all v ≥ v. That the inequality above holds is implied by the increasing hazard rate
property, as stated. �

Proof of Proposition 1. 1. Consider retail prices p and p
� such that p� > p. We will show that

∆π(p,m, f) ≥ 0 implies that ∆π(p�,m, f) > 0. To this end, note that

∆π(p�,m, f) =

ˆ ∞

V (p,f,0)

�
p
� − TS(m, f, 0, 0)−H(ṽ − p) · (p� − bS)

�
dG(ṽ + (p� − p)),

after the change of variables ṽ ≡ v − (p� − p). Therefore,

∆π(p�,m, f) >

ˆ ∞

V (p,f,0)
[p− TS(m, f, 0, 0)−H(ṽ − p) · (p− bS)] dG(ṽ + (p� − p)),

where the inequality follows from the fact that H(ṽ − p) < 1. Together with the fact that the
integrand above is strictly decreasing in ṽ, Lemma 5 implies that

∆π(p�,m, f)

1−G (V (p, f, 0) + (p� − p))
>

´∞
V (p,f,0) [p− TS(m, f, 0, 0)−H(ṽ − p) · (p− bS)] dG(ṽ)

1−G (V (p, f, 0))
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=
∆π(p,m, f)

1−G (V (p, f, 0))
.

Therefore, ∆π(p,m, f) ≥ 0 implies that ∆π(p�,m, f) > 0. As such, for each (m, f), there exists
P

u(m, f) such that a card acceptance equilibrium exists if and only p ≥ P
u(m, f). Inspecting

the definition of ∆π(p,m, f) reveals that P u(bS , f) = bS for all f . That P u(m, f) is strictly
increasing in m follows from the fact that ∂∆π

∂m
(p,m, f) < 0.

2. In a card refusal equilibrium, all consumers with valuation v ≥ V (p,∞, 0) go to the
store, where the threshold V (p,∞, 0) is given by (2). Moreover, merchants have to find prof-
itable to refuse cards given the consumers expectations of card refusal. Equivalently, the profit
differential

∇π(p,m, f) ≡
ˆ ∞

V (p,∞,0)
{H(v − p) · (p− bS)− (p− TS(m, f, 0, 0))} dG(v) ≥ 0,

where TS(m, f, 0, 0) is the merchant’s expected transaction cost per sale under uniform pricing
(as defined in (5)).

Consider retail prices p and p
� such that p� < p. We will show that ∆π(p,m, f) ≥ 0 implies

that ∆π(p�,m, f) > 0. To this end, note that

∇π(p�,m, f) =

ˆ ∞

V (p,∞,0)

�
H(ṽ − p) · (p� − bS)−

�
p
� − TS(m, f, 0, 0)

��
dG(ṽ + (p� − p)),

after the change of variables ṽ ≡ v − (p� − p). Therefore,

∇π(p�,m, f) >

ˆ ∞

V (p,∞,0)
[H(ṽ − p) · (p− bS)− (p− TS(m, f, 0, 0))] dG(ṽ + (p� − p)),

where the inequality follows from the fact that H(ṽ − p) < 1. Together with the fact that the
integrand above is strictly increasing in ṽ, Lemma 5 implies that

∇π(p�,m, f)

1−G (V (p,∞, 0) + (p� − p))
>

´∞
V (p,∞,0) [H(ṽ − p) · (p− bS)− (p− TS(m, f, 0, 0))] dG(ṽ)

1−G (V (p,∞, 0))

=
∇π(p,m, f)

1−G (V (p,∞, 0))
.

Therefore, ∇π(p,m, f) ≥ 0 implies that ∇π(p�,m, f) > 0. As such, for each (m, f), there exists
Q

u(m, f) such that a card acceptance equilibrium exists if and only p ≤ Q
u(m, f). Inspecting

the definition of ∇π(p,m, f) reveals that Q
u(bS , f) = bS for all f . That Q

u(m, f) is strictly
increasing in m follows from the fact that ∂∇π

∂m
(p,m, f) > 0.

3. First note from (2) that V (p,∞, 0) > V (p, f, 0), which implies that the card accep-
tance equilibrium Pareto dominates the card refusal equilibrium. We will now show that
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P
u(m, f) ≤ Q

u(m, f). Because the integrand in ∆π(p,m, f) is strictly decreasing in v, it fol-
lows that ∇π(P u(m, f),m, f) > 0. As a result, P u(m, f) ≤ Q

u(m, f), as claimed. �

Proof of Corollary 1. Consider first the card acceptance equilibrium. As the distribution
of consumers’ inconvenience of cash payments shifts from H to Ĥ , the valuation threshold
V (p, f, 0) and the seller transaction costs T

S
(m, f, 0, 0) remain constant, as H(bB) = Ĥ(bB)

for all bB ∈ [bB, f ]. Because H(v − p) ≥ Ĥ(v − p) for all bB ∈ (f,+∞), it follows that the
profit differential ∆π(p,m, f) is higher under Ĥ than under H . This immediately implies that
P

u(m, f) ≤ P̂
u(m, f). The arguments for the card refusal are analogous and therefore omitted.

�

Proof of Proposition 2. Let us define

π(p,m, f,σ, τ) ≡ (1−G (V (p, f + τ,σ))) · (p− TS(m, f,σ, τ))

to be the merchant’s profit when the retail price is p, the fee structure is (m, f) and the cash/card
policy is (σ, τ). Notice that, by construction

π(p∗(m, f, 0, 0),m, f, 0, 0) ≥ π(p,m, f, 0, 0)

for any p ≥ P
u(m, f). So consider deviations to a retail price p < P

u(m, f). The most profitable
deviation of this kind achieves a profit

π̄ ≡ max
p

ˆ ∞

V (p,∞,0)
H(v − p) · (p− bS)dG(v),

where the threshold V (p,∞, 0) is given by equation (2).
Note that

π(p∗(bS , f, 0, 0), bS , f, 0, 0) > π̄,

as V (p, f, 0) < V (p,∞, 0), TS(m, bS , 0, 0) = bS , and H(v − p) < 1.
Let Mu(f) be the unique solution to the following equation in m:

π(p∗(m, f, 0, 0),m, f, 0, 0) = π̄.

That the equation above has a unique solution follows from the fact that its left-hand side
is strictly decreasing in m and that it converges to zero as m → ∞. Clearly, Mu(f) > bS .
Accordingly, no deviation involving a retail price different from p

∗(m, f, 0, 0) is profitable if
and only if m ≤ Mu(f). To conclude our equilibrium construction, note that p∗(m, f, 0, 0) ≥
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P
u(m, f) (as implied by the definition of P u(m, f)). �

Proof of Proposition 3. For the case of a closed system, let cu ≡ m
u + f

u. It then follows that
the pair (mu

, f
u) has to solve

max
{m,f}

(1−G (V (p∗(m, f, 0, 0), f, 0))) · (1−H(f))

subject to c
u − f = m ≤ Mu(f). The problem above is that of an open system with cost cu. The

arguments in the proof sketch (regarding open systems) then establish the claim. �

Proof of Lemma 4. 1. Because consumers do not observe the merchant’s cash/card policy be-
fore visiting the store, the optimal cash discount, denote it σ∗, is independent of the retail price
p. Therefore, for a fixed fee structure (m, f), a card acceptance equilibrium can be constructed
identically as in Proposition 1, after one replaces bB by its effective counterpart, bB +σ

∗, and bS

by its effective counterpart, bS−σ
∗. Therefore, there exists a threshold P

d(m, f) such that a card
acceptance equilibrium exists if and only if p ≥ P

d(m, f). That P d(m, f) ≤ P
u(m, f) follows

from the fact that the merchant’s profits when cash discounts are possible are weakly larger
than the profits under uniform pricing. The same arguments used in the proof of Proposition
2 then imply the existence of Md(f) > bS such that the merchant accepts cards if and only if
m ≤ Md(f). That Md(f) ≥ Mu(f) follows from (i) P d(m, f) ≤ P

u(m, f), and (ii) that having
the possibility to use cash discounts weakly increases the merchant’s profit, relative to uniform
pricing, at any fee structure (m, f).
2. When card surcharges are allowed, it is a weakly dominant strategy for merchants to accept
cards, as they can always set τ = m− bS to recover any losses from card transactions. �

Proof of Proposition 4. The merchant chooses σ to solve:

min
{σ≥0}

{H(σ + f)[σ + bS ] + [1−H(σ + f)] ·m} .

The latter objective function is quasi-concave, and so a necessary and sufficient condition for
σ
∗(m, f) = 0 is

h(f)(m− bS)−H(f) ≤ 0,

which holds if and only if m ≤ M
d(f), as announced in the proposition. Otherwise, σ∗(m, f)

is given by the first-order condition (13).
In the case of an open system, m + f = c. Therefore, cash discounts occur if and only if

m ≥ M
d(c−m), which is equivalent to m ≥ m̃

d. In this case, we have that

m− σ
∗(m, f)− H(c− (m− σ

∗(m, f)))

h(c− (m− σ∗(m, f)))
= bS ,
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which follows from (13). The equation above implies that, whenever m ≥ m̃
d, m− σ

∗(m, f) is
(i) independent of m, and (ii) equals m̃d, as we wanted to show. �

Proof of Proposition 5. The merchant chooses τ to solve:

min
{τ≥0}

{H(τ + f)bS + [1−H(τ + f)] · [m− τ ]} .

The latter objective function is quasi-concave, and so a necessary and sufficient condition for
τ
∗(m, f) = 0 is

1−H(f)− h(f)(bS −m) ≤ 0,

which holds if and only if m ≤ M
s(f), as announced in the proposition. Otherwise, τ∗(m, f) is

given by the first-order condition (14).
In the case of an open system, m + f = c. Therefore, card surcharges occur if and only if

m ≥ M
s(c−m), which is equivalent to m ≥ m̂

s. In this case, we have that

bS − (m− τ
∗(m, f)) =

1−H(c− (m− τ
∗(m, f)))

h(c− (m− τ∗(m, f)))
,

which follows from (14). The equation above implies that, whenever m ≥ m̂
s, m − τ

∗(m, f) is
(i) independent of m, and (ii) equals m̂s, as we wanted to show. �

Proof of Corollary 2. Claim 2 follows from the comparison of

min
{σ≥0}

{H(σ + f)[σ + bS ] + [1−H(σ + f)] ·m}

and
min
{τ≥0}

{H(τ + f)bS + [1−H(τ + f)] · [m− τ ]} .

The seller can always select τ = σ
∗(m, f) (the optimal cash discount) and do at least as well as

under a surcharge than under a discount. That the optimal card surcharges are weakly greater
than the optimal cash discounts follows from the statements of Propositions 4 and 5. �

Proof of Corollary 3. The proof follows immediately from the quasi-convexity of T (m, c −
m, 0, 0) around bS . �

Proof of Proposition 6. 1. It is convenient to think of the platform as choosing effective merchant
fees (as opposed to nominal merchant fees), and then mapping the optimal effective merchant
fee into its nominal counterpart. In the absence of missed sales, Proposition 4 reveals that,
in equilibrium, the effective merchant fee m̂ satisfies m̂ ≤ m̃

d. In particular, this condition
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is satisfied as a strict inequality if the nominal merchant fee satisfies m < m̃
d (in which case

discounts do not happen and m̂ = m), and as an equality if m ≥ m̃
d (in which case discounts

are weakly positive).
Consider first the case where m

u
< m̃

d. In this case, cash discounts do not happen under
the merchant fee m

u, and the constraint m̂ ≤ m̃
d is slack. Accordingly, the possibility of cash

discounts plays no role in the platform’s problem.
Now consider the case where m

u
> m̃

d. In this case, the quasi-concavity of the objective
(10) implies that the volume of card transactions is maximized at the effective merchant fee m̃

d.
That total welfare goes up follows from the fact that aggregate transaction costs are weakly
lower at the effective fee structure (m̂d

, c − m̂
d) than at (mu

, c − m
u). Finally, missed sales do

not happen on the equilibrium path because f̂
d
< c− bS and Assumption 1.

The argument above establishes that (m̂d
, f̂

d) maximizes the platform’s objective among
all effective fee structures such that missed sales do not happen. Because V

∗(m, f) > p, any
effective fee structure (m̂, f̂) such that missed sales happen leads to aggregate transactions that
are no less than T (bS , c− bS , 0, 0). Therefore, relative to (bS , c− bS), a fee structure that leads to
missed sales induces a smaller number of consumers visiting the store, and, because m+f = c,
a smaller share of card transactions. Because the effective fee structure (m̂d

, f̂
d) produces more

card transactions than the efficient fee structure (bS , c − bS), we conclude by transitivity that
(m̂d

, f̂
d) is a global maximum, as stated.

2. Because s ≥ S
s(m̂s

, c− m̂
s), the argument in the text establishes that (m̂s

, f̂
s) maximizes

the platform’s objective among all effective fee structures (m̂, f̂) such that missed sales do not
happen. As a consequence of V ∗(m, f) > p, any effective fee structures (m̂, f̂) such that missed
sales happen leads to aggregate transactions that are no less than T (m̂s

, f̂
s
, 0, 0). Therefore,

relative to (m̂s
, f̂

s), a fee structure that leads to missed sales induces a smaller number of con-
sumers visiting the store, and, because m+ f = c, a smaller share of card transactions. We then
conclude that (m̂s

, f̂
s) is a global maximum, as stated. �

Proof of Proposition 7. The proof follows immediately from the arguments in the text. �

Proof of Proposition 8. Let us fix some fee structure (m, f), with m > bS , and assume (to be
verified later) that missed sales do not happen on the equilibrium path. Define the buyer price
pB according to

pB ≡ p+ TB(∞, f + τ, 0).

The merchant’s problem can then be recast as

max
pB ,τ

(1−G (s+ pB)) · (pB − T (m, f, 0, τ)) .

Therefore, the merchant-optimal card surcharge is independent of the equilibrium price, and
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solves
min
τ

T (m, f, 0, τ).

Lemma 2 then implies that
τ
†(m, f) = m− bS .

Therefore, for any fee structure (m, f) that violates the tourist test, it follows from Lemma 3
that card usage is efficient and the social welfare is maximal.

In equilibrium, by the same arguments of Proposition 6, the platform is indifferent between
any fee structure such that m ≥ bS . As a result of the merchant’s surcharging behavior, the
effective merchant fee satisfies the tourist test with equality. Assumption 1 then implies that
missed sales do not happen on the equilibrium path. �

Proof of Proposition 9. For simplicity, let bB = εv, where 1 > ε > 0. The willingness to pay
v is as earlier distributed according to distribution G. A consumer of type v then purchases
whenever:

v ≥ p+min {f + τ, εv} .

Thus, there are two cutoffs v
∗ and v

∗∗
> v

∗, such that consumers in [v∗, v∗∗) purchase by cash
and those with v ≥ v

∗∗ pay by card.
The merchant solves:

Max
{p,τ}

�
[p− (m− τ)]

�
1−G

�
f + τ

ε

��
+ [p− bS ]

�
G

�
f + τ

ε

�
–G

�
s+ p

1− ε

���
,

yielding first-order conditions:

p− bS

1− ε
=

1−G

�
s+ p

1− ε

�

g

�
s+ p

1− ε

� ,

and

m− τ = bS − ε

1−G

�
f + τ

ε

�

g

�
f + τ

ε

� .

The equation above reveals that the effective merchant fee has to strictly satisfy the tourist test
in equilibrium, establishing the result. �
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