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Abstract

This paper studies a regime change model in which, when a rebel leader mobilizes supporters,

he faces a trade-off between increase the size of the rebel group and the risk of information

leaks. I find that when the authority implement collective punishment to repress the rebellion,

in which both rebel participants and those who knew about but did not report the rebellion

are punished, it may result in a smaller rebel group size compared to targeted punishment, in

which only the rebel participants are held accountable for their actions. Meanwhile, choosing

collective punishment comes at a price, by forcing many to side with the insurgency, which may

decrease the authority’s survival chances. My findings also indicate that targeted punishment is

more useful to prevent a revolution by ordinary citizens, while collective punishment should be

adopted to prevent a coup staged by the politicians. Furthermore, when both authorities and

rebel leaders compete for support by threatening retribution against the non-supporters, both

parties tend to prefer the use of harsh methods to force civilians to choose sides.

Key words: Regime change, Coordination game, Rebellion, Collective Punishment, Targeted

Punishment, Coalition size, Survival probability

1 Introduction

Coordination games have been widely used to study collective decisions under individuals’ un-

certainty about other players’ private information. This model type is established based on an
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underlying assumption that the more players take the same action, the easier it is for that action to

succeed.1 The regime change model is one of its applications. The model focuses on what conditions

or mechanisms can the insurgency motivate more participants (Bueno de Mesquita (2010)).2 How-

ever, a rebel group always faces a dilemma during the process of achieving a successful insurgency.

On the one hand, rebel leaders want to motivate as many supporters as possible to participate

in rebellions. On the other hand, maintaining confidentiality prior to taking action is crucial to

success. As the number of people involved in an action increases, the probability of information

leak also increases. A famous example in China is the failure of the Wu Hsu Reform in 1898, as

the revolutionary party members were betrayed by Yuan Shikai, a potential supporter of a coup.

As such, I present a model to study the trade-off between increasing the number of supporters

and the growing risk of information leaks faced by rebel leaders. This article advances the literature

on the coordination game by allowing rebel leaders to choose their coalition size endogenously.

This leeway makes it different from existing models in the sense that the players make decisions by

inferring other players’ actions according to the signals that each individual receives. In the current

model, the individuals need to consider not only the signals they receive but also how the coalition

size can affect other players’ actions. The model provides a way to study the optimal coalition size

that the rebel leaders should form under different environments.

The basic model can be used to answer another natural question in the regime change model,

namely, how to prevent an insurgency in advance from the government’s perspective. In this article,

I focus on comparing two widely adopted ex ante punishment rules: collective punishment and

targeted punishment. Collective punishment is favored because it takes advantage of people’s fears

to instill mistrust in the target population and encourages people to monitor each other’s behaviour,

which helps the authorities gather more information to prevent potential threats. Nevertheless, this

harsh punishment has been gradually abandoned and replaced by targeted punishment, under which

only those who participate in illegal actions are punished. Such abandonment is due to the idea

that contemporary society upholds the idea of human rights. However, the effectiveness of these two

punishments varies (in Section 2, I discuss historic and political evidence). In this article, I calculate

the optimal rebel coalition size under these two punishment rules and identify the conditions under

which punishment rule is more likely to prevent insurgencies.

In the model, a rebel leader wants to mobilize civilians to join a rebellion. Each player has a

private type that represents individual anti-government sentiments. Given that the players dislike

the government, they suspect that other players do too, although they are uncertain of their peers’

1In a 2×2 game, two players need to take the same action to achieve a goal (Carlsson and Van Damme (1993)).

In a game with an infinite number of players, a threshold exists such that only a certain number of players need to

take one action to achieve the goal. This condition is true in such models as the pricing debt model (Morris and Shin

(2004)) and the currency crisis model (Morris and Shin (1998))
2Other examples: Boix and Svolik (2013); Edmond (2011); Egorov et al. (2009); Persson and Tabellini (2009);

Tyson and Smith (2013), and Angeletos et al. (2007) and Little (2014)addresses a dynamic global game in regime

change.
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exact views. Once the leader decides to stage a rebellion, he can endogenously choose the coalition

size by sharing his private type with coalition members.3 Each member has three choices: i) to

participate in the rebellion, ii) to maintain neutrality (i.e., be a free rider), or iii) to alert the

government. The rebellion succeeds if and only if the number of participants is sufficiently large

and the number of people who alert the government is sufficiently small. This model assumes two

incentives that drive the civilians to desire a regime change. The first one is the regime change

incentive, which measures how much an individual values the regime change through the personal

anti-government types. The second, the pecuniary incentive, represents a direct financial benefit.

Two interesting results are obtained. First, under collective punishment, the optimal coalition

size is small and fixed, and it is independent from the rebel leader’s type. Intuitively, the rebel

leader wants to maximize the coalition size to guarantee the participation rate within the limits of

potential betrayal. Moreover, no one wants to remain neutral under collective punishment, because

free riders share the same risk as participants, but obtain fewer rewards if the rebellion succeeds.

Owing to the lack of free riders, the optimal rebel group size should be fixed to satisfy the successful

conditions of a rebellion. Conversely, a free riding problem may exist under targeted punishment

because some players wish to remain neutral to avoid taking any risk regardless of the outcome.

Given the free riding problem, a weak leader will find it hard to motivate others. Consequently, he

needs to recruit more people to obtain a more sufficient number of participants than that under

collective punishment. However, when the leader is strong enough to convince others that the

rebellion has a high chance of success, the free riding problem can be eliminated and the optimal

coalition size can remain as small as that under collective punishment.

Second, from the government’s perspective, choosing collective punishment comes at a cost be-

cause forcing neutral citizens to pick a side might negatively affect the regime’s survival probability.

When the incentives are considerable, free riding motivates citizens to remain neutral to avoid risk.

By choosing targeted punishment and thereby tolerating the existence of free riders, the author-

ities can reduce the number of people joining the rebellion. However, the collective punishment

rule forces free riders to choose sides, potentially pushing more neutrals to side against authority

because of the considerable incentives that the success of the rebellion offers. On the contrary, when

the incentives to be a free rider are low, pushing free riders to choose sides by collective punishment

may bring more people on the government’s side, increasing the survival probability of the regime.

This framework provides valuable insights into the endogenous institution choice problem.

When an authority faces a rebellion from civilians who are primarily driven by anti-government

sentiment rather than any desire for pecuniary reward, targeted punishment may be effective in

quelling the rebellion. In this case, being a free rider might provide a citizen with a regime change

3In the collective action literature, a common theme is sending public signals to motivate people to join the actions,

such as Angeletos et al. (2006); Bueno de Mesquita (2010); Egorov et al. (2009); Chwe (2000, 2013)). Baliga and

Sjostrom (2012), Bueno de Mesquita (2010) and Ginkel and Smith (1999), allow the signal can be manipulated which

is different with this article.
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incentive if the rebellion succeeds, and could enable the citizen to avoid risk if it fails. Therefore,

using targeted punishment prompts citizens to become free riders and lowers the rebellion’s success

probability.4 However, when a ruler faces a threat from the people who are driven primarily by

direct pecuniary reward or by their ambitions for power, collective punishment is more effective

than that of targeted punishment.5 Intuitively, using targeted punishment to encourage free riders

does not work well in this scenario because free riders can only obtain regime change incentives,

which hold less importance in this case.6

Another extension of the model is the strategic competition between rebel leaders and the

government. Assuming the leader can also threaten to punish the free riders when the rebellion

succeeds, this harsh threat can eliminate free riders even under targeted punishment. In particular,

when the authority prefers targeted punishment to encourage free riders, the rebel leader will use

the harsh threat to push free riders into joining the rebellion. Therefore, the government must

switch to collective punishment to defeat the rebellion. This explanation demonstrates why an

equivalent retaliation strategy between governments and rebel groups is frequently observed.7

Finally, I consider a special case in which a rebel leader threatens to punish traitors severely

once the rebellion succeeds. In this case, collective punishment also results in a free rider problem

because this severe threat to punish traitors increases citizens incentives to be free riders to avoid

punishment from the rebel leader. This effect offsets the effect of eliminating free riders caused

by the use of collective punishment. Therefore, for the leader, threatening traitors with severe

punishment is more effective in reducing betrayal than recruiting participants.

The article proceeds as follows. Section 2 discusses the historical and political evidence. Section

3 indicates the model setup and solve the equilibria under collective punishment. Section 4 solves

the equilibria under targeted punishment. Section 5 compares the regime’s survival probabilities

under two punishment rules. Section 6 is the comparative static analysis and the endogenous

institution choice problem. Section 7 considers the strategic competition between rebel leaders

and authorities. Section 8 studies the case that rebel leaders prefer using severe threat to punish

traitors to avoid betrayal, and Section 9 is the conclusion.

4For example, in the Jasmine Revolution in Tunisia and Lotus Revolution in Egypt, young people were motivated

by anger over corruption and dictatorship. The direct monetary reward is relatively small for individual participants.
5This situation is observed more often in coups as exemplified by Sophia Alekseyevna who led the rebellion of the

Streltsy to seize the highest power of Russia in 1682 (Hughes (1985)).
6Some works under the regime-change topic emphasize the risk for coups to fail, and treat the military as a unitary

actor (Galetovic and Sanhueza (2000); Svolik (2009); Svolik (2013); Besley and Robinson (2010); Acemoglu et al.

(2010)).
7One example is the civil war caused by the rebellion of the Liberation Tigers of Tamil Eelam (LTTE) in Sri

Lanka. During the war, both LTTE and Sri Lankan military committed war crimes, including attacks on civilians

and civilian buildings. Equivalent retaliation between the governments and rebel groups derived in this article is

not the unique reason for war crimes in many similar situations. However, equivalent retaliation provides a possible

explanation for civilians being harmed because of cruel competition when both sides want to obtain support from

civilians.
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2 Historical and Political Evidence
{sec: evidence}

Little empirical evidence is available on the direct measurement of the size of the rebel coalition.

In contrast, the effectiveness of collective punishment has gained much attention in the academe.

The adoption of this harsh punishment rule is based on the logic that ”collective sanctions mobilize

groups to monitor and control the conduct of their members” (Levinson (2003)), which is exactly

the problem encountered by every rebel group leader in maintaining secrecy.

Academic views on the effectiveness of collective punishment are mixed. Advocates of collective

sanctioning strategies claim that collective sanctions not only leverage but also build group solidar-

ity (Levinson (2003)). Arguably, punishments are likely to be most effective when the right actors

or interest groups are affected; in many cases however, the optimal targets may be bystanders

rather than the perpetrators of the objectionable deeds (Kaempfer and Lowenberg (1988); Major

and McGann (2005)). Other scholars take an opposing view and argue that collective punishment

is likely to be counterproductive in many settings. For example, in the contexts of counterinsur-

gency and counterterrorism, tactics involving indiscriminate coercion have backfired because they

induced moral outrage (DeNardo (2014)). Generally, collective punishments in a wide variety of

contexts may increase solidarity of the targeted group (Galtung (1967); Khawaja (1993)).

Recent studies on the Baojia system in the history of mainland China and Taiwan provide

more details that can help link the punishments from the government and the problem of main-

taining secrecy among rebel groups. After Japan took Taiwan from China in 1895, the Japanese

encountered intense anti-Japanese activities from the Taiwanese. Governor-General Kodama Gen-

taro (1898− 1906) began to implement the Baojia system to suppress the uprisings in 1898.8 The

primary purpose of Baojia was to prevent local residents from sheltering criminals and concealing

crimes by applying the rule of collective responsibility. The Baojia system successfully suppressed

the uprisings of the Taiwanese. By 1902, the police and Baojia network were perfected and support

from the people for the guerrillas was completely cut off (Chen (1975)).

The deterrent potential of the system further demonstrated itself in the 1910s. When the rev-

olutionary party overthrew the Qing government in 1911, a number of Taiwanese Liberals sought

Chinese revolutionary assistance in overthrowing the Japanese regime. Six major incidents oc-

curred between 1912 and 1915 as a result of the renewed anti-Japanese movement. However, locals

reported all of these incidents to the Japanese authority through the Baojia system, and thus, the

Japanese were able to prevent four of the incidents from transpiring (Chen (1975)). The largest

of these anti-Japanese uprisings was the Tapani incident in 1915. During the early stage of the

uprising, the leader, Yu Qingfang, attempted to motivate many participants through local religious

activities without any effort to control information leaks. Consequently, several local residents

from the Baojia system alerted the Japanese police on the potential uprising. The uprising failed;

nevertheless, more than 3200 villagers were massacred(Xue (2005), Katz (2005)).

8the Hoko Law and the Regulations Governing the Execution of the Hoko Law were promulgated in August 1989.
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Another example indicates the failure of collective punishment. During the latter years of the

Republic of China era, Chiang Kai-shek pressed for the reintroduction of the Baojia system to

suppress the uprising in Jianxi led by the communist party in 1934. After temporary success, the

Baojia system was extended to the entire country, particularly in rural areas. However, this system

became one of the instruments that propelled young peasants to join the communist party army

after the World War II, which ultimately ended the regime of Chiang Kai-shek (Li and Ran (2005),

Xue (2005)).

The difference between the Baojia system in Taiwan and China provides consistent evidence

for our theoretical model. In Taiwan, the Japanese authorities used the Baojia system not just to

suppress insurgency but also to improve local administration and economic development, such as

building infrastructure, retaining sanitation, and preparing for natural disasters. As the economy

and social security improved, the ordinary Taiwanese lost the incentive to join the uprising to

change the regime. Therefore, when the exogenous shock from China came to Taiwan in the

1910s, collective punishment drew more residents who were against the uprisings to the side of

the Japanese authorities. By contrast, the Baojia system implemented by Chiang Kai-shek only

brutally suppressed the people. The system contributed nothing to improving the living conditions

in rural China, and the years of civil wars only worsened the economic situation of the country.

Therefore, given the choice between the government and the rebels, collective punishment forced a

number of people to join the communist party’s revolution.

3 Collective Punishment
{sec:set up}

3.1 Model Setup
{subsec:basic set up}

Players: There are two types of player: a rebel leader who plans to instigate a rebellion to

overthrow the government; and a unit mass of population member, called followers, indexed by

i ∈ [0, 1].

Timeline: Stage 1: the leader receives his private type x0 = θ + ε0, and each follower receives

his/her type xi = θ + εi.

x represents personal anti-government sentiments, which also measures how much an individual

values regime change. θ is the common underlying state variable drawn by nature from a normal

distribution N(mθ, σ
2
θ). This value represents the true situation of the country such as the status of

economic development or human rights. The larger θ is, the worse the situation. ε is an individual

idiosyncratic variable drawn from a normal distribution N(0, σ2
ε ). The players only observe x, not

θ or ε, but the distributions are known by all players.

Stage 2: The leader chooses the coalition size L ∈ [0, 1] (L = 0 represents that no rebellion is

staged). Then L members are randomly picked from [0, 1] to form rebel coalition.
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Join Remain neutral Turn in the leader

Succeed Txi + t vxi sxi − q + I

Fail −b −b I

Table 1: The follower’s payoff under collective punishment {table:payoff}

Stage 3: Each coalition member i learns the leader’s type x0 and coalition size L. Subse-

quently, i decides from three options: join the rebellion, remain neutral or turn in the leader to the

government.

Stage 4: The rebellion occurs and payoffs are realized.

A rebellion can succeed if and only if two conditions are satisfied:

Participation condition: Lc > C;

Maintaining secrecy condition: Ls < E.

Lc and Ls denote the number of players who join the rebellion and turn in the leader respectively.

C and E are constants, with 1 > C > E > 0 and E+C ≤ 1. The participation condition indicates

that a successful rebellion requires sufficient supporters (greater than C) to join the action. The

maintaining secrecy condition implies that there cannot be too many the players (less than E) who

turn in the leader.

Payoffs: When a rebellion succeeds, the leader receives a lump sum payment R, which rep-

resents the value of the entire country. When a rebellion fails, the payoff to the leader is −b as

punishment from the government, with b > 0 (i.e., imprisonment, exile, or execution).

The follower’s payoffs are summarized in Table 1. When a rebellion succeeds, the payoff to

a participant is Txi + t. Txi is the regime change reward representing how many he/she values

the regime change, where T is the multiplier. t is the lump sum pecuniary reward for rebellion

participants. If a rebellion fails, the payoff to a participant is −b.
The payoff to a neutral follower is vxi when a rebellion succeeds. This payoff indicates that a

free rider can still benefit from the regime change but not with a direct pecuniary reward.9 When

a rebellion fails, the payoff to a neutral follower is −b
The player who turns in the leader receives the lump sum reward I from the government whether

a rebellion succeeds or not, given that betrayal always occurs before the rebel group takes action.

If a rebellion fails, a traitor keeps the reward I. If a rebellion succeeds, the payoff to a traitor is

sxi − q + I, where sxi is the payoff from the regime change and −q as the punishment from the

rebel leader, with q > I.

I assume the multipliers have T > v > s > 0, which means that for a given xi, the regime change

benefits from directly involving the rebellion, indirectly involving, and siding the government follow

9Followers who are not in the rebel coalition can also receive vxi if a rebellion succeeds. However, they are ignored

because they cannot take any action during the game.
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a decrease order. Meanwhile I also assume that t
T−v ≥

q−I
v−s .

10 This assumption means that the

leader who attracts supporters relies primarily on their desire for reward not on their fear of

punishment. The case t
T−v <

q−I
v−s is discussed in Section 8.

3.2 Discussion {subsec:discussion}
Before proceeding with the analysis, it is necessary to discuss some assumptions in the model.

When the leader forms the coalition, I assume he randomly chooses L member from [0, 1] without

targeting specific individuals. In reality, although revolutionary vanguards may start to mobilize

those they trust the most, they still cannot ascertain people’s credibility. When people face choices

involving high risk actions, such as revolutions or coups, betrayal can happen among even a close-

knit group. This assumption in the model can be interpreted as meaning that the population in

[0, 1] is the leader’s most trusted group, such as the residents of their home town or their tribe,

however, the leader cannot further distinguish the credibility of individual coalition members, which

is related to their types but cannot be observe by the leader directly.

The model assumes the leader shares his true type with the coalition members without any

cheap talk or signal manipulation (Baliga and Sjostrom (2012),Bueno de Mesquita (2010)). This is

a technical assumption, because this article focuses on the scale of the rebel group, rather than the

communication strategy. The truth-telling assumption represents the key concept that the larger

the leader’s type, the easier it is to mobilize a large group of followers. In reality, even if a rebel

leader provides misleading information to motivate civilians, his communication skills, personality,

and other factors can affect the efficacy of communications. Therefore, when the players receive a

noisy signal from the leader, as long as that signal is distributed as a mean preserving spread from

the leader’s type, it does not change the main purpose of this paper, but increases the computational

complexity.

One condition for a successful rebellion is Ls < E, with E > 0. E can be viewed as the

monitoring threshold chosen by the government exogenously. This assumption can be shown in the

statement that the government only begins to suppress a rebellion if sufficient evidence is collected.

It reflects the facts that rumors about revolutions or coups always exist in any regime. Authorities

cannot afford to take action with every single rumor, instead they set up a threshold of quantity

of evidence, beyond which they begin serious investigations and suppression activities. The details

of choosing a value for E are discussed in Section 6.

This model is different with global game, because it includes the individual type into the utility

function, which violates the two-sided limit dominance property(Carlsson and Van Damme (1993),

10This assumption indicates that when the rebellion succeeds, the ratio of the monetary increment to the regime

change reward increment is higher when a follower switches from a free rider to a participant( t
T−v ) than the ratio

when he/she switches from turning in the leader to a free rider ( q−I
v−s ).
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Morris and Shin (2003)).11 The model in this paper develops the idea that no matter how anti-

government a citizen, it is never a dominant strategy to rebel. This is because, if a citizen believes

no one else will attack the regime, he is certain the regime will not fall, so he does not want to

rebel (Bueno de Mesquita (2010), Baliga and Sjostrom (2012)).12

3.3 Beliefs and Equilibrium Concept:
{subsec:belief}

Applying Bayes’ rule for the case of normal prior and normal signals, the leader, after observing

his own signal, acquires a posterior belief about θ that is distributed normally with mean m0 =

λx0 + (1− λ)mθ and variance σ2 = λσ2
ε , where λ =

σ2
θ

σ2
θ+σ2

ε
. Intuitively, the more anti-government a

leader is, the more anti-government he believes others are likely to be. Similarly, i, after observing

his/her own type and the leader’s type x0, acquires a posterior belief about θ that is distributed

normally with mean m̄i = ψx0 + (1 − ψ)λxi + (1 − ψ)(1 − λ)mθ and variance σ̄2 = ψλσ2
ε , where

ψ = λ
1+λ .

A pure strategy for the leader is a mapping L(x0) : R → [0, 1]; from the personal type into a

decision of the size of rebellion coalition L, in which L = 0 represents the case that the leader does

not stage a rebellion. A pure strategy for follower i ∈ G is a mapping s(xi, x0, L) : R× R× (0, 1]→
{−1, 0, 1}; from the personal type, the leader’s type and the coalition size into a decision of turning

in the leader (-1), remaining neutral (0) or joining a rebellion (1). The solution concept is a pure

strategy Perfect Bayesian Equilibrium (PBE), and I focus on those pure strategies PBE of the full

game in which the followers follow cutoff rules.

The first result in the following proposition indicates that when a follower believes no one else

will join a rebellion, the best strategy for his/her is to turn in a leader always. During this scenario,

a leader will not stage a rebellion.
{PA:trivialeq}

Proposition 1. There is always an equilibrium of the game that all followers in the coalition turn

in the leader, and the leader does not stage a rebellion.

Next, I focus on analyzing the decisions of followers with finite cut-off rules through backward

induction, then I revert to the decision of the leader.

11The limit dominance implies that participating the rebellion is a dominant strategy for the sufficiently high type

players and turning in the leader is a dominant strategy for the sufficiently low type players
12Another example: the player with xi <

−q+I−t
T−s always want to side the government no matter the regime

change probability. This example reflect some phenomenon in the reality that even if a government will definitely be

overthrown, it will still gain some support from officials’ relatives, or some religious factions, or the residents from

the dictators home town.
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3.4 Followers’ decisions: {subsec:PA_follower}
In the situation in which a type x0 leader stages a rebellion with a coalition size L, the expected

payoff for a type xi follower to join the rebellion is expressed as follows:

uci (xi, x0, L) = P (Lc > C ∩ Ls < E|xi, x0, L, s−i)(Txi + t+ b)− b,

where P (Lc > C∩Ls < E|x0, xi, L, s−i) is a follower’s assessment of the probability of regime change

given his/her own type xi, the leader’s type x0, the coalition size L, and the strategies of the other

followers s−i. Similarly, the expected payoff for being neutral is uni (xi, x0, L) = P (vxi + b) − b,
while that for turning the leader in is ubi(xi, x0, L) = P (sxi − q) + I.

These expected payoffs indicate that when xi > − t
T−v , then uci > uni . This scenario implies that

acting as a free rider is not a wise choice for the followers with xi > − t
T−v as they must share the

same risk as the participants, despite obtaining a smaller reward. When xi < − q−I
v−s , then ubi > uni .

This scenario implies that followers who like the current regime should side with the government

rather than wait for a regime change. Therefore, remaining neutral is a weakly dominated strategy

for followers according to the assumption that t
T−v >

q−I
v−s , and I assume that followers either join

the rebellion or turn the leader in.

There may exist cutoff equilibria with positive participants, in which followers switch strategies

according to a finite threshold k(x0, L). If such a threshold exists, the equilibrium strategy for

followers should be:

s(xi, x0, L) =

1 if xi ≥ k(x0, L),

−1 else.

Next, I perform the following steps to discuss the existence of finite k(x0, L): 1. It is first

necessary to derive the equilibrium conditions to solve the finite k(x0, L) for a given x0 and L. 2.

Then the conditions related to x0 and L that are necessary for the existence of finite k(x0, L) must

be computed.

Step 1. First, the subject belief of the regime change probability need to be calculated for

follower i. From the perspective of i, the total participants are Lc = L(1 − Φ(k−θσε )), where Φ is

the standard normal CDF. Therefore, the participation condition Lc > C should be equivalent to

θ > k − σεΦ
−1(1 − C

L ).13 Similarly, the maintaining secrecy condition Ls < E is equivalent to

θ > k − σεΦ−1(EL ). Given that the conditions for a successful rebellion are Lc > C and Ls < E,

13From the perspective of i, when all other players follow the same cutoff rule, then the number of followers with

xi > k ⇒ εi > k − θ should join the rebellion. Since ε follows N(0, δε) and the coalition size is L. This grouping

is expressed as Lc = L(1 − Φ( k−θ
σε

)). Since the participation strictly increases in θ (i.e., the worse the underlying

situation of the country is, the more participants are recruited).The right-hand side of the inequality represents the

minimum θ, in which the participation condition is maintained.
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θ must be greater than both k − σεΦ−1(EL ) and k − σεΦ−1(1 − C
L ) to ensure the success of the

rebellion. The minimum level of θ that is required for regime change can be referred to as

θ̄ ≡ max{k − σεΦ−1(1− C

L
), k − σεΦ−1(

E

L
)}. (1)

Recall that i believes θ is normally distributed as N(m̄i, σ̄
2) derived in Section 3.3. Therefore i’s

subjective belief of the regime change probability is

P (Lc > C ∩ Ls < E) = P (θ > θ̄(x0, L))

= 1− Φ(
θ̄(x0, L)− (1− ψ)λxi − ψx0 − (1− ψ)(1− λ)mθ

σ̄
). (2) {e8}

It is worth to point out that when L ≤ E + C, θ̄ = k − σεΦ−1(1 − C
L ) with k − σεΦ−1(1 − C

L ) ≥
k−σεΦ−1(EL ). Intuitively, followers care more about whether the number of participants is adequate,

rather than maintaining secrecy during decision-making when the coalition size is small. In other

words, the participation condition dominates the maintaining secrecy condition in this scenario.

On the contrary, when L > E +C, θ̄ = k− σεΦ−1(EL ). It means that the maintenance of secrecy is

more important than recruiting a sufficient number of participants to mobilize followers when the

coalition size is large (i.e., the maintaining secrecy condition dominates the participant condition).

Follower i’s subjective belief must be consistent on the equilibrium path, i.e. k, must be applied

by all followers. Given the monotonicity of the payoff functions in xi, the follower whose type is

equal to k would be indifferent to both joining the rebellion and turning in the leader. Therefore,

with a given x0 and L, the equilibrium condition for a finite k should be:

uci (xi, k, x0, L)|xi=k = ubi(xi, k, x0, L)|xi=k. (3)

By plugging in equation (2), this equilibrium condition can be rewritten as

(1− Φ(αk −M(x0, L)− β))((T − s)k + b+ q + t)− b− I = 0, (4) {PA:eq cond}

where α = 1−(1−ψ)λ
σ̄ , β = (1−λ)(1−ψ)

σ̄ mθ; and M = σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x0, when L ≤ E + C; and

M = σε
σ̄ Φ−1(EL ) + ψ

σ̄x0, when L > E + C.

Step 2. M(x0, L) in equation (4), exclusively includes the information shared by the leader,

i.e. x0 and L. It can be referred as the ”influence” exerted by the leader on followers. Then, the

relationship between x0, L and the existence of the finite k can be derived by analysing influence M .

Here it is necessary to introduce a new notation to denote the left hand side of (4): û(k,M(x0, L)) ≡
(1− Φ(αk −M(x0, L)− β))((T − s)k + b+ q + t)− b− I.

The next lemma describes the shape of û(k,M), which is illustrated in Figure 1.
{u_hat property}

Lemma 1. For all parameter values:

1. For a given M , û(k,M) is single peaked of k; lim
k→+∞

û(k,M) = −(I + b);
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and lim
k→−∞

û(k,M) = −∞.

2. For a given k, û(k,M) increases in M .

(All proofs are in the appendix)

The shape of û signifies that there are generically two finite cutoff rules (the curve of û(k,M)

in Figure 1). Given M(x0, L), I label the low kl(x0, L) and the high kh(x0, L) (for low and high).

Since û(k,M) increases in M , it implies a knife-edge case that a minimal Mmin exists such that

finite k can be solved from equation (4) for any M ≥ Mmin. In this knife-edge scenario, only one

finite threshold exists, that is, kl = kh (the curve of û(k,Mmin) in Figure 1). For any M ′ < Mmin,

no finite k can be solved from the equilibrium condition (the curve of û(k,M ′) in Figure 1).

From Lemma 1, it is easy to find that Mmin represents the minimal influence level that the leader

must possess to motivate positive participants. By the definition of M(x0, L), it is an increasing

function of x0, hence there exists a xmin
0 which represents the least type of leader who can exert

the influences on the followers above Mmin. In other words, when the leader’s type is sufficiently

weak (x0 < xmin
0 ), no positive participants can be convinced to join the rebellion regardless of L.

When x0 > xmin
0 , for any small coalition size (L < E +C), the influence M = σε

σ̄ Φ−1(1− C
L ) + ψ

σ̄x0

increases with L because the participation condition dominates the maintaining secrecy condition.

Consequently, as long as the leader chooses L such that Mmin ≤ σε
σ̄ Φ−1(1− C

L )+ ψ
σ̄x0 for a given x0,

positive amount of followers will join the rebellion. When the coalition is large (L ≥ E + C), the

maintaining secrecy condition dominates the participation condition. Moreover, M = σε
σ̄ Φ−1(EL ) +

ψ
σ̄x0 decreases with L. For a given x0, the selected L must satisfy Mmin ≤ σε

σ̄ Φ−1(EL ) + ψ
σ̄x0 to

recruit positive participants. The above discussion can be displaced in Figure 2 and the results are

summarized in the next lemma.

û
û(k,M)

kl kh

û(k,Mmin)

û(k,M ′)

0 k

-(I+b)

Figure 1: M ′ < Mmin < M {fig:u}

{PA:le:mininal M}
Proposition 2. There exist a xmin

0 and a constant Mmin such that:

1. For any x0 < xmin
0 , there is no finite k which is consistent with the cutoff equilibrium.

2. For any x0 ≥ xmin
0 , finite k(x0, L), which is consistent with equilibrium, exists if and only if either

(i) L ≤ E+C and Mmin ≤ σε
σ̄ Φ−1(1− C

L ) + ψ
σ̄x0; or (ii) L > E+C and Mmin ≤ σε

σ̄ Φ−1(EL ) + ψ
σ̄x0.
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L

x0 L = 1

Mmin = σε
σ̄ Φ

−1(1− C
L ) +

ψ
σ̄ x0

Mmin = σε
σ̄ Φ

−1(EL ) +
ψ
σ̄ x0

xmin
0

L = E + CL = C

Figure 2: Any point (L, x0) in the shadow region represents that the finite cutoff k(x0, L) can be solved from

equation (4). When L ≤ E + C, i.e. the participation condition dominates the maintaining secrecy, curve Mmin =
σε
σ̄

Φ−1(1−C
L

)+ψ
σ̄
x0 represents the boundary composed of x0 and L such that condition (4) holds. When L > E+C, i.e.

the maintaining secrecy condition dominates the participation condition, curve Mmin = σε
σ̄

Φ−1(E
L

) + ψ
σ̄
x0 represents

the boundary composed of x0 and L such that condition (4) holds. {fig:PA}

Since k solved from the equilibrium condition (4) are not unique, I follow the equilibrium selec-

tion criterion applied by Bueno de Mesquita (2010) to assume that no follower adheres to threshold

kh, in which the followers’ strategies are unstable from the perspective of a dynamic learning pro-

cedure.14 Moreover, the strategy with kh is also counter-intuitive: fixing all other parameters,

when the reward from turning in the leader, I, increases, rebellion participation increases, i.e., kh

decreases.

Assumption 1. (Equilibrium Selection) Followers do not adopt the strategy using kh(x0, L). {ass2}

Based on Assumption 1, I employ k(x0, L) instead of kl(x0, L) by dropping superscript ’l’ here-

after to prevent confusion. k(x0, L) is a function of x0 and L. x0 exerts only one effect on k. When

x0 increases, the followers believe that anti-government sentiments are high. As a result, participa-

tion is high. In other words, a high-type leader can persuade many followers to join the rebellion. L

induces two varied effects on k depending on its scale. When L is small, the participation condition

dominates the maintaining secrecy condition; an increase in L causes followers to believe that par-

ticipation increases as a result. Consequently, the cutoff threshold k decreases. When L is large,

the maintaining secrecy condition dominates the participation condition. Therefore, k increases

when L increases beyond E + C. As a result, participation is low. These facts are summarized as

follows:
{PA: L prop}

14Details are cited in Bueno de Mesquita (2010) Assumption 2
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Corollary 1. 1. ∂k(x0,L)
∂L < 0 when L < E + C, ∂k(x0,L)

∂L > 0 when L ≥ E + C.

2. ∂k(x0,L)
∂x0

< 0.

3.5 Leader’s decision: {PA: subsec leader decision}
For a given x0 and under Assumption 1, if the leader selects the coalition size L > 0, his expected

payoff is

u0(x0, L) = (1− Φ(
θ̄(x0, L)− λx0 − (1− λ)mθ

σ
))(R+ b)− b, (5) {eq:PA_leader utility}

where 1−Φ( θ̄(x0,L)−λx0−(1−λ)mθ
σ ) represents the leader’s subjective belief of the probability of regime

change.

When the leader decides to plot a rebellion, his optimal choice of L is to minimize the cutoff

threshold k(x0, L), through which he can recruit more participants. More precisely, when L < E+C,

the participation condition dominates the maintaining secrecy condition. In this case, enlarging

L can attract more participants by decreasing k (Lemma 1), therefore u0(x0, L) increases with

L. When L > E + C, the maintaining secrecy condition dominates the participation condition.

As a result, reducing L is more effective in recruiting participants, and u0(x0, L) decreases with

L. Therefore, the best choice for a leader is E + C, which helps the leader achieve the maximal

influence over followers by balancing the participation and maintaining secrecy conditions. This

result is summarized as follow.
{PA: best L}

Lemma 2. For given x0, u0(x0, L) increases with L when L < E+C and decreases when L > E+C.

Therefore, the optimal coalition size is L∗ = E +C at which u0(x0, L) achieves the maximal value.

Lemma 2 suggests that L∗ is independent of x0 under collective punishment. This is because

if L∗ changes with x0, the effect of the change in L∗ offsets the effect from the change of x0

concerning either an increasing number of participants or a decreasing number of traitors. This

result provides us an interesting finding that the rebel group size should be always kept small

under collective punishment no matter how strong the non-government motivation is. Intuitively,

the optimal choice for the leader is to maximize the coalition size under the tolerance of potential

betrayal. Meanwhile, since collective punishment does not leave rooms for free riders. Any follower

who is approached by the rebel leader has to choose a side. From the leader’s perceptive, any

coalition size smaller E + C can undermine the opportunity of recruiting sufficient supporters, on

the other hand, any coalition size greater than E+C increases the risk of betray beyond too much.

Therefore, the leader should choose the coalition size slight larger than the necessary scale C by

adding additional E followers which is the threshold he can afford for the betrayal.
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Join Remain neutral Turn in the leader

Succeed Txi + t vxi sxi − q + I

Fail −b 0 I

Table 2: The follower payoffs under targeted punishment {table:payoff2}

Since the leader’s expected utility function for staging a rebellion is a monotone increasing

function of his type x0, i.e. it is easy for a leader with a high type to persuade followers to join a

rebellion. Therefore, a unique threshold x∗0 exists for a rebel leader to decide whether to stage one.
{PA: start rebellion threshold for the leader}

Proposition 3. There exists a unique x∗0 such that the leader does not start a rebellion when

x0 < x∗0, and starts a rebellion with the coalition size E + C when x0 ≥ x∗0.

4 Targeted Punishment
{sec:pp}

Borrowing the method developed in the previous section, the discussion can be extended to analyse

targeted punishment. In this case, the government only punishes the participants if the rebellion

fails, and the player who remains neutral (free rider) receives zero payment (Table 2). The rest of

the model setup is the same as collective punishment in Section 3.

4.1 Followers’ decision {subsec:PP_follower}
Since the free rider will not be punished when the rebellion fails, remaining neutral is not always a

weakly dominated strategy under the targeted punishment rule. Two potential cutoff strategies may

be considered on the equilibrium path. First, a one cutoff threshold k(x0, L) may be generated such

that a follower joins a rebellion if his/her type is greater than k, and betrays the leader otherwise

(referred to as the one-cutoff strategy).

Second, a two cutoff thresholds pair (kc, ks) with kc > ks may be generated. In this case, a

follower joins the rebellion if his/her type is greater than kc; he/she betrays the leader if his/her

type is less than ks; and he/she remains neutral if his/her type is between kc and ks (referred to

as the two-cutoff strategy).

Next, I focus on determining under what conditions of x0 and L, finite thresholds k, and/or

(kc, ks) exist which are consistent with the cutoff equilibrium.15 Similar as the discussion under

collective punishment, whether the leader can motivate positive participants is determined by the

influence he can exert on the followers, which is a function of x0 and L. For a given x0, when a

small L is chosen, the participation condition dominates the maintaining secrecy condition in the

15Finding the equilibrium conditions for both the one-cutoff strategy and the two-cutoff strategy follows a similar

procedure developed in Section 3. The technical details to solve the equilibrium conditions can be found in Appendice.
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followers’ decision-making, then the influence M = σε
σ̄ Φ−1(1−C

L )+ψ
σ̄x0. A lower bound Mmin

C can be

drawn for the leader’s influence such that when Mmin
C ≤ σε

σ̄ Φ−1(1− C
L )+ ψ

σ̄x0, positive followers will

join the rebellion. Similarly, when a large L is chosen, the maintaining secrecy condition dominates

the participation condition, then M = σε
σ̄ Φ−1(EL ) + ψ

σ̄x0, meanwhile, a lower bound Mmin
E can be

found such that when Mmin
E ≤ σε

σ̄ Φ−1(EL ) + ψ
σ̄x0, the leader can recruit positive participants.

When the leader’s influence is low but enough to motivate positive participants, some followers

will choose to remain neutral to avoid the risk of rebellion failure. In this scenario, two cutoff

thresholds, ks and kc can be found which are consistent with the equilibrium. Furthermore, the

number of free riders shrinks when the leader’s influence increases.16 It is because that the marginal

benefit of switching from a free rider to a participant is large than that of switching from a traitor

to a free rider, when the followers believe that regime will change with a high probability. Con-

sequently, free riders are eliminated (one-cutoff strategy) when the leader’s influence is sufficiently

large. Natural, a threshold Mmed for the leader’s influence should exist, beyond which only one

cutoff threshold k can be found i.e. no free rider. These results are summarized in the next lemma

and illustrated in Figure 3
{PP:le:eq exist lemma}

Proposition 4. 1. There exists a constant Mmed such that, for any given x0 and L, one cutoff

threshold k(x0, L) exist, which is consistent with the equilibrium, if and only if Mmed ≤ σε
σ̄ Φ−1(1−

C
L ) + ψ

σ̄x0 and Mmed ≤ σε
σ̄ Φ−1(EL ) + ψ

σ̄x0.

2. There exist constant Mmin
C and Mmin

E with Mmin
C ,Mmin

E ≤Mmed such that, for any given x0

and L, two cutoff thresholds (ks(x0, L), kc(x0, L)) exist, which is consistent with the equilibrium,

if and only if (1) Mmin
C ≤ σε

σ̄ Φ−1(1 − C
L ) + ψ

σ̄x0 and Mmin
E ≤ σε

σ̄ Φ−1(EL ) + ψ
σ̄x0, and (2) either

Mmed > σε
σ̄ Φ−1(1− C

L ) + ψ
σ̄x0, or Mmed > σε

σ̄ Φ−1(EL ) + ψ
σ̄x0.

Since Lemma 4 indicates the existence of the lower bounds of the leader’s influence to motivate

positive participants (Mmin
C andMmin

C ), then it also implies that when the leader’s type is sufficiently

low, no participant can be recruited regardless the coalition size. Furthermore, since Mmed is the

lower bound of the leader’s influence to eliminate the free riders, it implies that if the leader’s type

is not sufficiently high, he cannot get rid of the free riding problem.
{cor:min and med}

Corollary 2. There exist xmin
0 and xmed0 such that when x0 < xmin

0 , no positive participant can be

motivated by the leader regardless L; when xmin
0 < x0 < xmed0 , no one-cutoff strategy exists for the

followers.

Similar as the case under collective punishment, when the finite cutoff rules exist on the equi-

librium path, they are not unique. I follow the same equilibrium selection criterion (Bueno de

Mesquita (2010)) to assume that when finite cutoff rules exist, followers do not adopt any strategy

associated with the large thresholds.17

16More precisely, for a given coalition size L, the number of free riders shrinks when x0 increase. For a given x0,

the number of free riders shrinks when the influence increases by choosing different L
17More precisely, in the one-cutoff strategy, given a x0 and L, when the finite threshold exists, k solved from the
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L

x0 L = 1

Mmed = σε
σ̄ Φ

−1(1− C
L ) +

ψ
σ̄ x0

Mmin
C = σε

σ̄ Φ
−1(1− C

L ) +
ψ
σ̄ x0

Mmed = σε
σ̄ Φ

−1(EL ) +
ψ
σ̄x0

Mmin
E = σε

σ̄ Φ
−1(EL ) +

ψ
σ̄ x0

L∗

xmed0

xmin
0

L = E + CL = C

L∗

Figure 3: 1. Any point (L, x0) in the dark shadow region represents the finite cutoff k(x0, L) existing. 2. Any point

(L, x0) in the light shadow region represents the finite cutoff pair (kc, ks) existing. 3. L∗ represents the balance points

for the participation and maintaining secrecy conditions. 4. MminC and MminE represent the influence thresholds

separating the two-cutoff strategy and no finite cutoff case when the participation condition is the dominant condition

and when the maintaining secrecy condition is the dominant condition respectively. 5. Mmed represents the influence

threshold separating the one-cutoff strategy and the two-cutoff strategy. {fig:PP eq}

4.2 Leader’s decision: {PP: subsec leader decision}
For a given x0, the optimum coalition size chosen by a leader balances the participation and

maintaining secrecy conditions if he wants to plot a rebellion. Corollary 2 shows that when x0 >

xmed0 , the leader can achieve an influence level greater than Mmed to eliminate free riders. Therefore,

the balance point for the participation and maintaining secrecy conditions can be achieved with

L∗(x0) = E + C, which is exactly the same as that under collective punishment. When xmin
0 <

x0 < xmed0 , the maximum influence the leader can exert cannot reach Mmed any longer. Because

the leader knows some coalition members will be free riders in this situation, he has to recruit more

followers to satisfy the participation condition than the case when no free rider exist. Furthermore,

as x0 decreases, it becomes harder for the leader to persuade people join the rebellion, which leads

to the increase of free riders, as a consequence, the leader has to enlarge the coalition sizes further.
{PP: leader’s best L}

Proposition 5. Under targeted punishment, the leader’s optimal coalition size is L∗(x0) = E +C

if x0 ≥ xmed0 ; and L∗(x0) > E + C and decreases in x0, if xmin
0 ≤ x0 < xmed0 .

equilibrium conditions is entirely the same as it is solved from (4) in Section 3. So there exist two thresholds, kl and

kh with kl ≤ kh. Similarly, in the two-cutoff strategy, when finite threshold pair (kc, ks) exists, there are two pairs

of solutions that satisfy the equilibrium conditions, (kcl, ksl) and (kch, ksm) with kcl ≤ kcm and ksl ≤ ksm. This

assumption means followers do not adopt any strategy using threshold kh or pair (kch, ksh).
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Proposition 5 implies that different punishment rule does not affect a high type leader’s choice

of the coalition size. Large coalition size occurs only when the leader is weak. Since a high type

leader also implies a high chance for the regime change, it indicates that a small scale rebel group

maybe a more vital threat to the government. Finally, it is easy to show that a starting point x∗0
exists for the leader to stage a rebellion under the targeted punishment rule.

{PP: leader decision}
Proposition 6. A unique x∗0 exists such that the leader would not start a rebellion when x0 < x∗0,

and start a rebellion with the coalition size L∗(x0) when x0 ≥ x∗0.

5 Survival Probability Analysis
{sec:survival}

After calculating equilibria under two punishment rules, the question of which rule is more likely

to prevent a rebellion should be addressed.

Recall that θ̄(x0, L) is the minimum level of the underlying situation variable θ required for

regime change. On the equilibrium path, for a given θ, once a rebellion is staged by a type x0

leader with the optimal coalition size L∗(x0), the rebellion succeeds if and only if θ > θ̄(x0, L
∗(x0)).

Since θ̄ is clearly a monotonic decreasing function of x0, a x̂0 exists such that θ̄(x̂0, L
∗(x̂0)) = θ.

Intuitively, x̂0(θ) is the minimum leader’s type to implement a successful rebellion. x̂0(θ) is a

decreasing function of θ because when the underlying situation of the government worsens, the

leader can use a smaller x0 to motivate followers. Therefore, a rebellion is staged and succeeds

if and only if the leader’s type x0 is greater than both x∗0 and x̂0(θ). Now the regime’s survival

probability can be written as:

Psur(θ) = 1− P (x0 > max{x∗0, x̂0(θ)})

To avoid confusion when we discuss different punishment rules, hereafter we employ CP and

TP as superscribes to refer the collective and targeted punishment respectively. Under targeted

punishment, when the rebellion starting point x∗TP0 is greater than xmed0 , followers only use the

one-cutoff strategy on the equilibrium path, which is exactly the same as the equilibrium strategy

under the collective punishment rule. Consequently, two punishment rules have the same effect in

preventing a rebellion.18

I then focus on the case when x∗TP0 < xmed0 . The next two propositions indicate that when the

underlying situation of a government is good, both the collective and targeted punishment rules

have the same effect in preventing rebellions, whereas when the underlying situation worsens, they

might result in disparate survival probabilities for a government. In the first case, when the regime

change incentive T and v are sufficiently large with relatively small difference, targeted punishment

has a higher survival probability than that of collective punishment. Intuitively, although a large

18Intuitively, x∗TP0 > xmed0 means that the leader’s starting point for a rebellion is high, in other words, leading a

rebellion is unattractive to the leader. Then, both punishments provide the regime with the same survival probability.
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T makes joining a rebellion attractive, a large v implies that being a free rider is an equally good

choice, without taking risk. However, given that no free rider problem exists under collective

punishment, this harsh punishment forces those followers who could be free riders under targeted

punishment to choose a side. The collective punishment rule could urge more followers to the side

opposing the government when both T and v are large and the underlying situation θ is poor. This

result is summarized as:
{Sur:prop: PP>PA}

Proposition 7. When T − v = g where g is a constant, and v is greater than a constant v̂, then

there exists a θ̂ such that when θ ≤ θ̂, both collective and targeted punishment rules have the same

survival probability, i.e., PCPsur (θ) = P TPsur (θ); when θ > θ̂, targeted punishment has a higher survival

probability, i.e., PCPsur (θ) < P TPsur (θ).

The next proposition indicates that if v−s is small enough, and v−s and q−I are proportional,

collective punishment is more effective in preventing a rebellion. Intuitively, when remaining neutral

is unattractive to followers in comparison to turning in a leader, and the threat from a leader (q)

is not significantly large than the government reward (I), collective punishment is a better choice

for a government.
{Sur:prop: PP<PA}

Proposition 8. When q − I = (v − s)h where h is a constant, and v − s is less than a constant

v′, then there exists θ̂′ such that when θ < θ̂′, both collective and targeted punishment rules have

the same survival probability, i.e., PCPsur (θ) = P TPsur (θ); and when θ > θ̂′, collective punishment has

a higher survival probability, i.e., PCPsur (θ) > P TPsur (θ).

Proposition 7 and 8 indicate that targeted punishment allows institutions some flexibility by

allowing free riders when the underlying situation worsens. Therefore, targeted punishment provides

two paths for the prevention of a rebellion. The first is a direct method for increasing traitors, and

the second is an indirect method for allowing free riders, which use the people’s hesitation to

join a risky action. However, collective punishment employs only the direct method to prevent a

rebellion by attracting traitors. The flexibility offered by targeted punishment is not functional

when the incentive for being a free rider is small. However, targeted punishment is more likely to

prevent rebellion than collective punishment when joining a rebellion and being a free rider are

both attractive.

6 Comparative Static and Endogenous Institution Choice
{sec: comparative static}

I begin with a discussion of t, the pecuniary reward for rebellion participants. Joining a rebellion

becomes increasingly attractive as t increases. As a consequence, more participants and fewer

traitors are expected under both the collective and targeted punishments. However, the increase in

t has disparate effects on the participants and free riders under targeted punishment. The former

can benefit both from the increases in the direct monetary reward and the rebellion’s probability of
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success, while the latter can only benefit from the increase in the rebellion’s probability of success.

Therefore, as t increases under targeted punishment, the role of the free rider problem decreases,

and thus the difference between two punishment rules reduces.
{CS: Prop: t large}

Proposition 9. For a given θ, when t is sufficiently large, there is no free rider under targeted pun-

ishment; and both the collective and targeted punishment rules provide the same survival probability

for the government, i.e., PCTsur (θ) = P TPsur (θ).

Proposition 9 implies that the leader can attract more supporters by sharing his return. This

proposition accords with historic facts, particularly regarding small coups during which the leader

promises a huge reward to recruit key supporters. However, recruiting by increasing reward t also

creates other problems that are beyond the scope of this paper, but are interesting to mention for

future research.19 First, promising huge rewards to supporters reduces the payoff for a leader, which

decreases the incentive for a leader to stage a rebellion. Meanwhile, a huge reward also presents an

issue of commitment; the leader might renege on his promise once he assumes the highest power.

Second, a constraint for increasing t might exist. For example, the Chinese Communist Party

promised land reform to attract farmers to join a revolution. However, natural local constraints

and a large population drew an upper bound for rewards to village families.

Another interesting parameter is the monitoring threshold, E. When E decreases, it implies

that a government enhances the monitoring of the targeted population, which makes it harder for a

rebel group to achieve success.20 The discussion can be extended to the question about the optimal

choice of E from the government’s perspective. Assume the government is subject to a cost function,

B(N,E), when monitoring a targeted population, where N is the exogenous population size and

E is the monitoring threshold that the government sets up. It is also reasonable to assume that B

increases with the size of the target population (N), and decreases with the monitoring threshold

(E). When the primary threat to a government is an insurgency begun by a large population, for

whom the regime change incentive is more important than the direct monetary reward (large T and

v, small t). According to Proposition 7, selecting targeted punishment provides a higher survival

probability for the government than selecting collective punishment because the former allows free

riders. Considering that monitoring the entire population is costly (large N), adopting targeted

punishment can also allow the government to select a high E to save on costs. This scenario can be

used to explain revolutions instigated by ordinary civilians. In general, when an ordinary citizen

decides to join a risky revolution that aims to overthrow a dictator, the regime change incentive

is more important than the direct monetary reward. An example of such a case is the Jasmine

Revolution in Tunisia, during which young men were motivated to join protests because of anger

19I thank Scott Gehlbach and Mehdi Shadmehr for raising this issue.
20It is easy to find k and x∗CP0 under collective punishment and k, kc, ks, and x∗CP0 under targeted punishment

all increase when E decreases. Briefly, selecting a small E is effective in preventing a rebellion.
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that spread through social networks. The dictatorship of Ben Ali was overthrown in a month.21

Under this circumstance, a collective punishment rule does not help maintain the regimes stability,

owing to a lack of tolerance for protests.22

On the contrary, when a government faces a potential rebellion plotted by a small population

primitively driven by ambitions for power or direct monetary reward (large t, small v, and s), such

as palace coups, collective punishment might be a good choice for the government, according to

Propositions 8. The government might also afford to select a small E to prevent the rebellion. This

scenario can explain why dictators prefer using secret police to monitor officials to prevent coups.

In addition, punishment can be implemented frequently without transparently enforcing the rule

of law.

7 Cruel Competition
{sec:competition}

In the previous sections, I focus on the case in which the leader punishes only those who betray

him once a rebellion succeeds. In reality, a rebel group leader can employ rewards and threats to

recruit coalition members, so I extend the discussion to a case in which the leader can also threaten

to punish free riders when a rebellion succeeds.

When the leader punishes followers who remain neutral once a rebellion succeeds, the payoff

for a free rider is vxi − q. I call this scenario the harsh threat scenario to distinguish it from the

previous case, referred to as the easy threat scenario hereafter, in which the leader punishes only

traitors. When the government chooses collective punishment, being a free rider is a dominated

strategy, and the harsh threat from the leader does not change the results presented in Section 3.

When a leader switches from an easy threat to a harsh threat under targeted punishment,

the original free riders with high types join a rebel group because being a free rider becomes less

attractive than joining a rebellion when they think the probability of a rebellion’s success is high.

However, free riders with low types betray the leader because such actors feel the probability of

success is low, and thus would rather turn in the leader to gain some reward from the government

than wait for the punishment from a leader as free riders. These changes imply that the size of free

riders decreases under a harsh threat scenario. On the equilibrium path, free riders do not exist

when the punishment q is large enough. The following lemma summarizes this result.
{CC: le: free riders shrink}

Lemma 3. Under targeted punishment and a leader chooses a harsh threat, if q is large enough,

then free rider does not exist.

21More details about the Arab Spring can be found in Anderson (2011). The effect and role of social media during

the Arab Spring Revolution can be found in Howard et al. (2011).
22Another authority with a low tolerance for protests is China, which is subject to a large cost. Although no

evidence shows that the color revolution can happen in China (Swartz (2011)), the cost of stability maintenance

(Weiwen), such as managing social protest or Internet sanction, continuously increases from CNY 549 billion in 2010

to CNY 769 billion in 2013. This cost increases faster than China’s military expenditure (Benney (2013))
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Now, I assume that the condition for Lemma 3 holds. Consider a 2 by 2 game played by

a government and a rebel leader. The government can choose either the collective or targeted

punishments, and the leader can choose either the easy or harsh threat. I assume that: 1) the

leader always wants to start a rebellion;23 and 2) the government’s payoff is −b when the regime

is changed. For a given θ, the payoff table is listed below. The first payoff in each cell is the

expected payoff for the leader, and the second payoff is for the government. P 1
sur(θ) and P 2

sur(θ)

are the survival probabilities for the government when remaining neutral is a dominated strategy

and when it is not, respectively.24

Leader\King Collective Targeted

Easy R− P 1
sur(R+ b), P 1

sur(R− b) + b R− P 2
sur(R+ b), P 2

sur(R− b) + b

Harsh R− P 1
sur(R+ b), P 1

sur(R− b) + b R− P 1
sur(R+ b), P 1

sur(R− b) + b

For a given θ, the government prefers Collective to Targeted when P 1
sur(θ) < P 2

sur(θ). In this

case, the leader prefers Harsh to Easy , because when the government does not want to use collective

to force potential free riders to choose sides, a leader must urge free riders to choose sides because

most would join the side of the leader when they cannot remain neutral. (Harsh, Collective) and

(Harsh, Targeted) are two pure strategy equilibria. If P 1
sur(θ) > P 2

sur(θ), then (Easy, Collective)

and (Harsh, Collective) are two pure strategy equilibria because the leader is indifferent between

these two choices when the government prefers Collective.

From the preceding discussion, it is simple to find that the use of a harsh way to oppose the

other side is always an option for one side on the equilibrium path. Moreover, for any θ, (Harsh,

Targeted) is always an equilibrium. This result provides a possible explanation for why we often

observe an equivalent retaliation strategy between governments and rebel groups in reality. The

Liberation Tigers of Tamil Eelam in Sri Lanka and the Revolutionary Armed Forces of Colombia

are two cases that fit this explanation.

8 Threat More Than Reward
{sec:threat more than reward}

In this section, I focus on the condition t
T−v < q−I

v−s in comparison to the assumption stated in

Section 3. This inequality implies that a leader prefers threat to reward when recruiting supporters

to join a rebellion. When t
T−v <

q−I
v−s , remaining neutral may not be weakly dominated strategy

under collective punishment. Similarly to Section 4, there may also exist one-cutoff strategy or the

two-cutoff strategy for the followers.

In the case that only traitors are punished by the leader when the rebellion succeeds, the

leader’s threat is more useful in reducing traitors than increasing participants. When the leader’s

23When the leader always starts a rebellion, I assume when his type is less than xmin
0 under both punishment

rules, he can choose any coalition size, because the rebellion will fail for sure. Also the regime’s survival probability

becomes Psur(θ) = 1− P (x0 > x̂0(θ)). Proposition 7 and Proposition 8 still hold.
24Actually, P 1

sur(θ) = PCPsur (θ) and P 2
sur(θ) = PTPsur (θ).
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type increases, the followers believe that the rebellion has a high chance to win. Consequently,

more followers would like to switch from being traitors to free riders to avoid the treat from the

leader than those who switch from free riders to participants. As a result, the number of free riders

increases with the leader’s type, meanwhile, the leader will increase the coalition size to not only

increases the participants but also deduce the rate of traitors. However when the coalition size

increases, some traitors always exist, therefore increasing a coalition’s size is limited by an upper

bound to avoid breaking the maintaining secrecy condition. These results are summarized as follow:
{TR:balance point}

Proposition 10. 1. There exist a constant xmin
0 such that When x0 < xmin

0TR, no finite cutoff

equilibrium exist.

2. There exist a constant xmed0TR
with xmed0 ≥ xmin

0TR
, such that When xmin

0TR
≤ x0 < xmed0TR

, only one-

cutoff strategy for the followers exists on the equilibrium path, and the optimal coalition size for the

leader is L∗TR = E + C.

3. When x0 ≥ xmed0TR
, only two-cutoff strategy for the followers exists on the equilibrium path; and

the optimal coalition size for the follower is L∗TR(x0) > E + C which increases with x0

4. lim
x0→+∞

L∗TR(x0) ≤ 1

L

x0 L = 1

Mmed
TR = σǫ

σ̄ Φ
−1(1− C

L ) +
ψ
σx0

Mmin
TR = σǫ

σ̄ Φ
−1(1− C

L ) +
ψ
σ x0

Mmed
TR = σǫ

σ̄ Φ
−1(EL ) +

ψ
σ x0

Mmin
TR = σǫ

σ̄ Φ
−1(EL ) +

ψ
σ x0

LTR

L = Lmax
TR

xmed0TR

xmin
0TR

L = E + CL = C

Figure 4: 1. Any point (L, x0) in the dark shadow region represents the finite cutoff k(x0, L) existing. 2. Any

point (L, x0) in the light shadow region represents finite cutoff (kc, ks) existing. 3. L∗TR is the optimal coalition size

which represents the balance points for the participation and maintaining secrecy conditions. 4. Mmin
TR represents

the influence threshold separating the one-cutoff strategy and no finite cutoff case. 5. Mmed
TR represents the influence

threshold separating the one-cutoff strategy and the two-cutoff strategy. {fig:last eq}

Under targeted punishment, the results about the equilibrium strategies and optimal coalition

sizes are very similar to Proposition 10. Only one fact is worth pointing out: the optimal coalition
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size under targeted punishment is greater than that under collective punishment. It is because

when the rebellion fails, free riders will not be punished by the government; therefore, the marginal

benefit of being a free rider is larger under targeted punishment than under collective punishment.

Consequently, the leader needs to recruit more followers to satisfy the participation condition in

this case.

9 Conclusion
{sec:conclusion}

In this article, I present a coordination model in which a rebel leader forms a rebel group to

overthrow an incumbent. This model is different with the existing literature in three aspects:

First, I model a trade-off, faced by a rebel leader, between trying to mobilize more supporters and

preventing information leaks. In such a scenario, rebellions are not necessarily likely to succeed

because of the increased number of involved players. Second, this model, to my knowledge, is the

first coordination game that allows the player to endogenously select the coalition size. Third,

this model tests two widely adopted punishment rules to determine which one is more useful in

preventing a rebellion.

I identify equilibria under two punishment rules and find that the rebel group size is smaller

under collective punishment than that under targeted punishment because the latter is subject to

a free-rider problem. From the perspective of institutional design, targeted punishment is more

effective in preventing a rebellion when social anti-authority sentiment is high and being a free

rider is attractive because an authority can become flexible and make people hesitate joining a

risky rebellion. Thus, participation is lowered.

The model suggests several valuable implications. When the primary threat to authority comes

from citizens who are driven by the anti-government sentiment, targeted punishment should be

used to prevent rebellions. However, when the primary threat comes from a rebellion staged by

people driven by monetary rewards, collective punishment should be adopted. This model also

addresses the case when a leader can select whether to punish free riders if the rebellion succeeds;

in this instance, both the authority and the rebel leader may use harsh methods to push free riders

to choose sides.

This model sheds light on future research in regime change and coordination models. First,

following the majority corroboration game, this study assumes that a single individuals decision will

not affect the equilibrium result because of the continuity of the players’ set. However, a discrete set

of players should also be considered, such as a small scale coup, in which each individuals decision

may be pivotal in the game. Second, when the coalition size is endogenously determined, trust

among rebel group members is another important issue, which can lead the regime change model

to a multidimensional case. Finally, another possible extension is to endogenize the reward sharing

rule among rebel group members by considering the commitment problem.
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Appendix:

Proof of Proposition 1. :

If a follower plays a strategy that turn in the leader for sure regardless the type xi, x0 and size

L, i.e. s(xi, x0, L) = −1, then no rebellion can succeed. Therefore each follower has no incentive

to deviate given other followers’ strategies. Given the followers’ strategies, It is obvious the best

response for the leader is to choose L = 0.

Proof of Lemma 1. :

1. Let f = αk − M − β. û(k,M) is increasing in k if and only if 1−Φ(f)
φ(f) is greater than

the finite positive constant α(k + b+q+t
T−s ). Since f is increasing in k and 1−Φ(f)

φ(f) is decreasing

monotonically in k by the monotone hazard rate property of the normal density function. It

implies that 1−Φ(f)

φ(f)(k+ b+q+t
T−s )

is decreasing monotonically in k for k > − b+q+t
T−s . Thus we need to show

that 1−Φ(f)

φ(f)(k+ b+q+t
T−s )

passes through α. First we have lim
k→− b+q+t

T−s

1−Φ(f)

φ(f)(k+ b+q+t
T−s )

= +∞, it is because

1−Φ(f)
φ(f) is finite when k = − b+q+t

T−s .

lim
k→+∞

1− Φ(f)

φ(f)(k + b+q+t
T−s )

= lim
k→+∞

−φ(f)fk

φ(f)− φ(f)ffk(k + b+q+t
T−s )

= lim
k→+∞

fk

ffk(k + b+q+t
T−s )− 1

= 0

The first equality is due to l’Hopital’s rule and the fact that φ′(x) = −xφ(x), the second equality

is algebra, and the last equality uses the fact that fk = α and f is increasing in k. Therefore, û is

single peaked,

When k approaches +∞, 1 − Φ(f) goes to 0, therefore, lim
k→+∞

û(k.M) = −(I + b). Similarly k

goes to −∞, 1− Φ(f) approaches 1, Therefore lim
k→−∞

û(k.M) = −∞.

2. It is straightforward when take derivative with respect to M .

Proof of Proposition 2. :

Since û is single peaked and increases in M , therefore there exists a Mmin, such that the peak

of û tangent to zero, i.e max
k

(1− Φ(αk −Mmin − β))((T − s)k + q + t+ I)− b− I = 0.

1. If L ≤ E + C, M = σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x0 and increases with L. Therefore, when x0 <

σ̄
ψ (Mmin − σε

σ̄ Φ−1(1− C
E+C )), no matter what L is chosen, M cannot exceed Mmin. If L > E + C,

M = σε
σ̄ Φ−1(EL ) + ψ

σ̄x0 and decreases with L. Consequently when x0 <
σ̄
ψ (Mmin − σε

σ̄ Φ−1( E
E+C )),

M cannot exceed Mmin either. In summary, when x0 < xmin
0 ≡ σ̄

ψ (Mmin − σε
σ̄ Φ−1( E

E+C )), no finite

k can be solved from equation (4).
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2. Sufficiency: When L ≤ E + C, M = σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x0, then when Mmin ≤ σε

σ̄ Φ−1(1 −
C
L ) + ψ

σ̄x0 , we have max
k

û ≥ 0. i.e. there exist finite k satisfying equation (4). Similarly, when

L > E +C, M = σε
σ̄ Φ−1(EL ) + ψ

σ̄x0, then when we have Mmin ≤ σε
σ̄ Φ−1(EL ) + ψ

σ̄x0. Therefore there

exist finite k satisfying (4).

Necessity: When the finite k satisfying (4) exists, then we must have max
k

û ≥ 0. When

L ≤ E+C, M = σε
σ̄ Φ−1(1− C

L ) + ψ
σ̄x0, then we must have σε

σ̄ Φ−1(1− C
L ) + ψ

σ̄x0 ≥Mmin. Similarly,

when L > E + C, we must have σε
σ̄ Φ−1(EL ) + ψ

σ̄x0 ≥Mmin.

Proof of Corollary 1. :

1. By implicit function theory,

∂k

∂L
= −

∂û
∂x0

∂û
∂k

=


− φ̃τ(Φ−1

c )′ C
L2

−φ̃α((T−s)k+t+2b+I)+(1−Φ̃)(T−s) < 0, if L ≤ E + C,

φ̃τ(Φ−1
E )′ E

L2

−φ̃α((T−s)k+t+2b+I)+(1−Φ̃)(T−s) > 0, if L > E + C,

where Φ−1
C = Φ−1(1 − C

L ), Φ−1
E = Φ−1(EL ), φ̃ = φ( θ̄(x0,L)−(1−ψ)λk−ψx0−(1−ψ)(1−λ)mθ

σ̄ ), Φ̃ =

Φ( θ̄(x0,L)−(1−ψ)λk−ψx0−(1−ψ)(1−λ)mθ
σ̄ ) and τ = ψ

σ̄ .

2.
∂k

∂x0
= −

∂û
∂x0

∂û
∂k

=
φ̃(1− ψ)((T − s)k + t+ 2b+ I)

−φ̃α((T − s)k + t+ 2b+ I) + (1− Φ̃)(T − s)
< 0.

Proof of Lemma 2.

∂u0

∂L
=

−
(R+b)
σ (∂k(x0,L)

∂L − σε(Φ−1
c )′ C

L2 )φ( θ̄(x0,L)−λx0−(1−λ)mθ
σ ) > 0 if L ≤ E + C

− (R+b)
σ (∂k(x0,L)

∂L + σε(Φ
−1
E )′ E

L2 )φ( θ̄(x0,L)−λx0−(1−λ)mθ
σ ) < 0 if L > E + C

By, Corollary 1, u0 is increasing with L when L ≤ E+C, and decreasing with L when L > E +C.

Therefore L = E + C can let u0(x0, L) achieve the maximal value.

Proof of Proposition 3. :

From Lemma 1, u0 increases with x0 because ∂u0(x0,E+C)
∂x0

= −φ(∂k(x0,E+C)
∂x0

− λ) 1
σ > 0. When

x0 → −∞, we have u0(x0, E + C) → −∞; and when x0 → +∞, u0(x0, E + C) → +∞. Therefore

there exists unique x∗0, such that u0(x∗0, E + C) = 0.

Define the following notations:

u′c(k,M) ≡ (1− Φ(αk −M − β))(Tk + t+ b)− b,
u′n(k,M) ≡ (1− Φ(αk −M − β))vk,

u′b(k,M) ≡ (1− Φ(αk −M − β))(sk − q) + I,

∆u′cn(k,M) ≡ u′c(k)− u′n(k) = (1− Φ(αk −M − β))((T − v)k + t+ b)− b,
∆u′nb(k,M) ≡ u′n(k)− u′b(k) = (1− Φ(αk −M − β))((v − s)k + q)− I.

26



I describe the intuition of proof of Proposition 4 first. When M → +∞, the smaller root of

∆u′cn(k,M) converges to − t
T−v which is less than the smaller root of ∆u′nb(k,M) converging to

− q−I
v−s . It implies that when M is large, kc solved from ∆u′cn(k,M) is less than ks solved from

∆u′nb(k,M), therefore two-cutoff strategy does not exists, only one-cutoff strategy exists. When

M decreases until u′c(k,M) = u′n(k,M) = u′b(k,M), then two-cutoff strategy begin to replace

one-cutoff strategy.

Proof of Proposition 4. :

First, we prove some properties for the notations defined above. Similar as Lemma 1, u′cn is also

single peaked, and increases with M . Then there exists a Mmin
C such that ∆u′cn(k,Mmin

C ) = 0

has one finite root. For any M > Mmin
C , ∆u′cn(k,M) = 0 has two roots. For any M < Mmin

C ,

∆u′cn(k,M) = 0 has no finite root.

We use kl and kh to denote the small and large root respectively, for ∆u′cn(k) = 0, when they

exist. Since we only care about small root kl, I only focus on kl, kh has the similar properties. By

the Implicate Function Theory, it is easy to should kl is a decreasing function of M.

Next, we can find that u′c(k
l(M),M) decreases with M. It is because ∂u′n(kl,M)

∂M = φ(vkl+b)[(−α+
1−Φ
φkl

) ∂k
l

∂M + 1]. Since u′c(k
l(M),M) = u′n(kl(M),M), take derivative w.r.t M on both side, we have

∂kl

∂M = 1/(α− 1−Φ
φ

1
kl+ t+b

T−v
). Plug this form into ∂u′n(kl,M)

∂M , we have ∂u′n(kl,M)
∂M = −φvkl(

α− 1−Φ

φkl

α− 1−Φ
φ

1

kl+ t
T−v

−

1). Similar as the proof in Lemma 1, we have αkl < 1−Φ
φ , when − t

T−v < k < 0, we have α− 1−Φ
φkl

> 0

and α− 1−Φ
φ

1
kl+ t

T−v
< 0, so ∂u′n(kl(M),M)

∂M < 0. When k > 0, we have α− 1−Φ
φkl

< 0, α− 1−Φ
φ

1
kl+ t

T−v
< 0

and
α− 1−Φ

φkl

α− 1−Φ
φ

1

kl+ t
T−v

− 1 > 0. Therefore ∂u′n(kl(M),M)
∂M < 0.

Similarly there exists a Mmin
E such that ∆u′nb(k,M

min
E ) = 0 has one finite root. For any M >

Mmin
E , ∆u′nb(k,M) = 0 has two roots. For any M < Mmin

E , ∆u′nb(k,M) = 0 has no finite root.

We use k
′l to denote the small root for ∆u′nb(k) = 0, if it exists. It is easy to show that k

′l is a

decreasing function of M and u′c(k
′l(M),M) is decreasing with M .

Let Mmed be the M such that u′c(k,M), u′n(k,M) and u′b(k,M) intersect at the same point, i.e.

kl(Mmed) = k
′l(Mmed). We have u′c(k

l(Mmed),Mmed) = u′n(kl(Mmed),Mmed) = u′b(k
∗(Mmed),Mmed).

Since T > v > s we can wisely choose α and β which are functions of σε, σε0 , σθ and mθ to guarantee

the existence of Mmed, and it is easy to see that Mmed > Mmin
E and Mmed > Mmin

C .

Since when M approaches +∞, we have kl → − t
T−v and k

′l → − q−I
v−s . By t

T−v >
q−I
v−s , we have

kl < k
′l. Then we can find that

∂u′n(kl)−u′b(kl)
∂M = −φ((v − s)kl + b + t)(

α− 1−Φ
φ

1

kl+ b+I
v−s

α− 1−Φ
φ

1

kl+ b+t
T−v

− 1) < 0,

and u′b(k
l) > u′b(k

′l) so kl(M) − k′l(M) decreases with M . Since u′c(k,M
med) = u′n(k,Mmed) =

u′b(k,M
med), then we have

M > Mmed ⇒ kl < k
′l, and M < Mmed ⇒ kl > k

′l (6) {appd:property}
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.

Let (xmin
0 , Lm) be the pair satisfying σε

σ̄ Φ−1(1− C
Lm )+ ψ

σx
min
0 = Mmin

C and σε
σ̄ Φ−1( E

Lm )+ ψ
σx

min
0 =

Mmin
E . In other words, (xmin

0 , Lm) is the intersection of σεσ̄ Φ−1(1−C
L )+ψ

σ̄x0 = Mmin
C and σε

σ̄ Φ−1(EL )+
ψ
σ̄x0 = Mmin

E .

We next proof the first part of the proposition.

1. Sufficiency: For any (x0, L) such that σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x0 > Mmed and L ≤ E + C, then

M = σε
σ̄ Φ−1(1− C

L ) + ψ
σ̄x0. Since M > Mmed, then equation (4) does have finite solutions, we only

consider the smaller solution which is denoted as k. Also (1−Φ(αk− σε
σ̄ Φ−1(1− C

L )− ψ
σ̄x0−β))vk <

(1 − Φ(αk − σε
σ̄ Φ−1(1 − C

L ) − ψ
σ̄x0 − β))(Tk + b + t) − b, which is because M > Mmed. Similar

conclusions are hold when σε
σ̄ Φ−1(EL ) + ψ

σ̄x0 > Mmed and L > E + C.

Next, we will show that there does not exist two thresholds pair (ks, kc) which is consistent

with the cutoff equilibrium in this case. If there exists a pair (ks, kc) which is consistent with the

equilibrium for given (x0, L), it must satisfies:

(1−Φ(αkc −M(x0, L)− β))((T − v)kc + b+ t)− b = 0, (7) {PP:two-cut eq cond1}
(1−Φ(ρkc − ηks −M(x0, L)− β))((v − s)ks + q)− I = 0, (8) {PP:two-cut eq cond2}

kc − σεΦ−1(1− C

L
) ≥ ks − σεΦ−1(

E

L
), (9) {PP:two-cut eq cond3}

kc ≥ ks, (10) {PP:two-cut eq cond4}

where ρ = 1
σ̄ , η = (1−ψ)λ

σ̄ and M = σε
σ̄ Φ−1(1− C

L ) + ψ
σ̄x0;25 or

(1−Φ(ρks − ηkc −M(x0, L)− β))((T − v)kc + b+ t)− b = 0, (11) {PP:two-cut eq cond5}
(1−Φ(αks −M(x0, L)− β))((v − s)ks + q)− I = 0, (12) {PP:two-cut eq cond6}

kc − σεΦ−1(1− C

L
) < ks − σεΦ−1(

E

L
), (13) {PP:two-cut eq cond7}

kc ≥ ks, (14) {PP:two-cut eq cond8}

where M = σε
σ̄ Φ−1(EL ) + ψ

σ̄x0.
26

25These system of equations are based on the assumption that θ̄ = kc−σεΦ−1(1− C
L

), i.e. the maintaining secrecy

condition dominates the participation condition, the equilibrium conditions should be: Equation (7) indicates a type

kc follower should be indifferent between joining the rebellion and remaining neutral. Equation (8) indicates that a

type ks follower must be indifferent between remaining neutral and turning in the leader. Inequality (9) indicates

that kc and ks solved from (7) and (8) must be consistent with the assumption that the participation condition

dominates the maintaining secrecy condition. Inequality (10) is needed to indicate that kc should be the threshold

that separates the acts of joining a rebellion and of remaining neutral, whereas ks must be the threshold that isolates

the actions of remaining neutral and of turning the leader in.
26These system of equations are based on the assumption that θ̄ = ks − σεΦ−1(E

L
), i.e. the maintaining secrecy

condition dominates the participation condition, the equilibrium conditions should be:
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Without loss of generality, we assume (ks, kc) satisfies (7)-(10) with M = σε
σ̄ Φ−1(1− C

L ) + ψ
σ̄x0.

(7) indicates that u′c(k
c,M) = u′n(kc,M). Now we use kc replace ks in (8), then we have

(1− Φ(αkc − σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β))((v − s)kc + q)− I > 0,

it is because the left hand side of (8) is a increasing function of ks and kc > ks. Then we have

u′n(kc,M) > u′b(k
c,M) which is a contradiction when σε

σ̄ Φ−1(1 − C
L ) − ψ

σ̄x0 > Mmed. Therefore,

there is no (kc, ks) with kc−σεΦ−1(1− C
L ) ≥ ks−σεΦ−1(EL ) satisfying (7)-(10). Similarly it is easy

to show that there is no (ks, kc) satisfying (11)-(14).

Necessity: When one cutoff threshold k(x0, L) exist, then equation (4) must hold. Similar

as the proof in Proposition 2, we have Mmed < σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x0 when L ≤ E + C and

Mmed < σε
σ̄ Φ−1(EL ) + ψ

σ̄x0 when L > E + C.

Next, we focus on the second part of the proposition.

2. Sufficiency: For any (x0, L) with σε
σ̄ Φ−1(1− C

L )+ ψ
σ̄x0 > Mmin

C and σε
σ̄ Φ−1(EL )+ ψ

σ̄x0 > Mmin
E ,

let kc(x0, L) and ks(x0, L) be the solutions for equation (7) and (12) respectively.

For this fixed x0, if kc − σεΦ
−1(1 − C

L ) > ks − σεΦ
−1(EL ), then when we choose a larger L,

the solution ks(x0, L) will increase and kc(x0, L) will decrease, therefore the left hand side of this

inequality will decrease and the right hand side of this inequality will increase. We continuously

increase L until L = L′ such that kc − σεΦ−1(1 − C
L′ ) = ks − σεΦ−1( EL′ ). That L′ exists because

Φ−1(1− C
L ) approaches +∞ and Φ−1(EL ) approaches −∞, and both kc(x0, L) and ks(x0, L) exists

with finite value when L is sufficiently large.

Similarly, when kc − σεΦ−1(1− C
L ) < ks − σεΦ−1(EL ), we can decrease L to reach the equality,

and let L′′ be the solution to hold the equality.

We must have L′(x0) = L
′′
(x0), it is because any kc(x0, L) satisfying (7) is monotonously

decreasing with L, and ks(x0, L) satisfying (12) is monotonously increasing with L, therefore

(kc(x0, L), ks(x0, L)) satisfying (7), (12) and kc − σεΦ−1(1 − C
L ) = ks − σεΦ−1(EL ) is unique for

a given x0.

For a given x0 and L, first, we focus on the case when Mmin
C < σε

σ̄ Φ−1(1 − C
L ) + ψ

σ̄x0 < Mmed

and L < L′(x0).
{claim2}

Claim 1. For given (x0, L) When Mmin
C < σε

σ̄ Φ−1(1−C
L )+ψ

σ̄x0 < Mmed and the pair (kc(x0, L), ks(x0, L))

satisfies (7)-(9), it must satisfies (10).

Proof of Claim 1: When Mmin
C < σε

σ̄ Φ−1(1− C
L ) + ψ

σ̄x0 < Mmed. Let kc be the solution solved

from (7). For a given kc solved from (7), let ks be the solution solved from (8), assume (10) is not

satisfied.

When (kc, ks) satisfies kc − σεΦ−1(1− C
L ) ≥ ks − σεΦ−1(EL ), we have
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(1− Φ(
kc − (1− ψ)λkc

σ̄
− σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β))vkc

= u′n(kc)

> u′b(k
c)

= (1− Φ(
kc − (1− ψ)λkc

σ̄
− σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β))(skc − q) + I. (15)

The first equality comes from that kc is solved from (7) and the definition of u′n. The second

inequality comes from that M = σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x0 < Mmed and (6). The last equality is the

definition of u′b. Since

(1− Φ(
kc − (1− ψ)λks

σ̄
− σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β))((v − s)ks + q).

is an increasing function of ks, and we have

(1− Φ(
kc − (1− ψ)λkc

σ̄
− σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β))((v − s)kc + q) > I.

Therefore we have ks solved from (8) is less than kc solved from (7), which is a contradiction. �,

Define xmed0 satisfies Mmed = σε
σ̄ Φ−1(1− C

L ) + ψ
σ̄x

med
0 = σε

σ̄ Φ−1(EL ) + ψ
σ̄x

med
0 .

{claim3}
Claim 2. For any (x0, L), when Mmin

C < σε
σ̄ Φ−1(1− C

L ) + ψ
σ̄x0 < Mmed, x0 > xmed0 , and kc(x0, L),

ks(x0, L) satisfying (7)-(8), we have kc − σεΦ−1(1− C
L ) > ks − σεΦ−1(EL ).

Proof of Claim 2: Assume we have kc− σεΦ−1(1− C
L ) ≤ ks− σεΦ−1(EL ). Since σε

σ̄ Φ−1(1− C
L ) +

ψ
σ̄x0 < Mmed, then we can find La with La > L such that σε

σ̄ Φ−1(1− C
La ) + ψ

σ̄x0 = Mmed. Then we

have k(x0, L
a) = kc(x0, L

a) = ks(x0, L
a) satisfying

(1− Φ(αk − σε
σ̄

Φ−1(1− C

La
)− ψ

σ̄
x0 − β))((T − s)k + q + b+ t)− I − b = 0 (16)

(1− Φ(αkc − σε
σ̄

Φ−1(1− C

La
)− ψ

σ̄
x0 − β))((T − v)kc + b+ t)− b = 0 (17)

and

(1− Φ(αks − σε
σ̄

Φ−1(
E

La
)− ψ

σ̄
x0 − β))((v − s)ks + q)− I = 0 (18)

with kc(x0, L
a)− σεΦ−1(1− C

La ) > ks(x0, L
a)− σεΦ−1( ELa ).

By the continuity of the solution, there must exist a Lb such that ks(x0, L
b), kc(x0, L

b) satisfy

(7) and (8) with kc(x0, L
b) − σεΦ−1(1 − C

Lb
) = ks(x0, L

b) − σεΦ−1( E
Lb

) and L ≤ Lb < La. We also

have that Lb < E+C, therefore we must have that kc(x0, L
b) < ks(x0, L

b) which is a contradiction

with Claim 1. Therefore the claim is proved. �

Now we can claim that for any given x0 and L with x0 > xmed0 and Mmin
C < σε

σ̄ Φ−1(1 −
C
L ) + ψ

σ̄x0 < Mmed, then two cutoff thresholds (ks(x0, L), kc(x0, L)) exist. It is because, when
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Mmin
C < σε

σ̄ Φ−1(1− C
L ) + ψ

σ̄x0, finite kc and ks can be solved from (7) and (8), and these solutions

are consistent with the condition (9) and (10) due to Claim 1 and Claim 2.

Next, define xmin
0 satisfies Mmin

C = σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x

min
0 = Mmin

E = σε
σ̄ Φ−1(EL ) + ψ

σ̄x
min
0 . For

any (x0, L), when xmin
0 < x0 < xmed0 , we have the following claim:

{claim4}
Claim 3. For any (x0, L), when Mmin

C < σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x0 < Mmed, xmin

0 < x0 < xmed0 , and

kc(x0, L), ks(x0, L) satisfying (7) and (8), then we have kc − σεΦ−1(1− C
L ) > ks − σεΦ−1(EL ).

Proof of Claim 3: For the given x0 with xmin
0 < x0 < xmed0 , we know there exists a L′(x0) such

that (ks(x0, L
′(x0)), kc(x0, L

′(x0))) satisfy (7) and (12) with kc(x0, L
′(x0)) − σεΦ−1(1 − C

L′(x0)) =

ks(x0, L
′(x0))− σεΦ−1( E

L′(x0)).

kc−σεΦ−1(1−C
L ) = ks−σεΦ−1(EL ) is not possible, because L < L′(x0) and L′(x0) is the unique L

satisfying satisfy (7) and (12) with kc(x0, L
′(x0))−σεΦ−1(1− C

L′(x0)) = ks(x0, L
′(x0))−σεΦ−1( E

L′(x0)).

Now assume kc − σεΦ−1(1 − C
L ) < ks − σεΦ−1(EL ). By the continuity of the solution, we can

choose a Lc with L′ − Lc < εc such that the solution kc(x0, L
c) and ks(x0, L

c) solved from (7)

and (8) has the following property that kc(x0, L
c)− kc(x0, L

′(x0)) > ks(x0, L
c)− ks(x0, L

′(x0)). It

means that we choose Lc smaller than but close enough to L′(x0) such that the increase of kc is

larger than the increase of ks. Then we have kc(x0, L
c)− σεΦ−1(1− C

Lc ) > ks(x0, L
c)− σεΦ−1( ELc ).

Next, we need to show that this Lc can be found.

∂ks(x0, L)

∂L
=

1−Φ̂
φ̂

1
kc+ t+b

T−v
+ (1−ψ)λ

σ̄

1−Φ̃
φ̃

1
ks+ q

v−s
+ (1−ψ)λ

σ̄

∂kc(x0, L)

∂L

where Φ̂ = Φ(αkc − σε
σ̄ Φ−1(1− C

La )− ψ
σ̄x0 − β), φ̂ is Φ̂’s density function and Φ̃ = Φ(k

s−(1−ψ)λkc

σ̄ −
σε
σ̄ Φ−1(1− C

L )− ψ
σ̄x0 − β) and Φ̃’s density function.

At x0, L
′(x0), Φ̂ = Φ̃ and φ̂ = φ̃. We also know kc(x0, L

′(x0)) + t+b
T−v > ks(x0, L

′(x0)) + q
v−s > 0.

Therefore |∂ks(x0,L)
∂L | < |∂kc(x0,L)

∂L | at (x0, L
′(x0)), furthermore, it means there exists an εc such that

any L satisfies 0 < L′(x0)− L < εc can be our Lc.

After that, since kc(x0, L
c)−σεΦ−1(1− C

Lc ) > ks(x0, L
c)−σεΦ−1( ELc ) and kc(x0, L)−σεΦ−1(1−

C
L ) < ks(x0, L

c) − σεΦ
−1(EL ), by the continuity, we must have a Ld such that ks(x0, L

d) and

kc(x0, L
d) satisfy (7) and (8) with kc(x0, L

d) − σεΦ−1(1 − C
Ld

) = ks(x0, L
d) − σεΦ−1( E

Ld
). It is a

contradiction with the uniqueness of L′(x0).

Therefore we have kc(x0, L)− σεΦ−1(1− C
L ) > ks(x0, L)− σεΦ−1(EL ). �

So far, we prove that when Mmin
C < σε

σ̄ Φ−1(1− C
L ) + ψ

σ̄x0 < Mmed and L ≤ L′(x0), there exist

(ks(x0, L), kc(x0, L)), which is consistent with the cutoff equilibrium.

The case that when Mmin
E < σε

σ̄ Φ−1(EL ) + ψ
σ̄x0 < Mmed and L > L′(x0) is similar with the

discussion above.

Necessity: When two cutoff thresholds (ks(x0, L), kc(x0, L)) exist, then x0 and L must satisfy

either σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x0 < Mmed or σε

σ̄ Φ−1(EL ) + ψ
σ̄x0 < Mmed, otherwise, there only exist one

cutoff threshold case.
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Also, for any x0 and L with Mmin
C < σε

σ̄ Φ−1(1 − C
L ) + ψ

σ̄x0 but Mmin
E > σε

σ̄ Φ−1(1 − C
L ) + ψ

σ̄x0,

then kc and ks can only be solved from (7) and (8), however, these solutions cannot satisfy (9).

Similarly, for any x0 and L with Mmin
E < σε

σ̄ Φ−1(1 − C
L ) + ψ

σ̄x0 but Mmin
C > σε

σ̄ Φ−1(1 − C
L ) + ψ

σ̄x0,

then kc and ks can only be solved from (11) and (12), however, these solutions cannot satisfy (13).

Finally, when Mmin
C > σε

σ̄ Φ−1(1− C
L ) + ψ

σ̄x0 but Mmin
E > σε

σ̄ Φ−1(1− C
L ) + ψ

σ̄x0, then no finite kc and

ks can be solved.

Proof of Corollary 2. It is straightforward from the proof of Proposition 4.

Define some notations:

Φ1 = Φ(αkc − σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β),

and φ1 is Φ1’s density function.

Φ2 = Φ(αks − σε
σ̄

Φ−1(
E

L
)− ψ

σ̄
x0 − β),

and φ2 is Φ2’s density function.

Φ3 = Φ(αk − σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β),

and φ3 is Φ3’s density function.

On the equilibrium path, kc is solved from

(1− Φ(αkc − σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β))((T − v)kc + t+ b)− b = 0

By Implicit Function Theory,

∂kc

∂x0
= − 1

1−Φ1
φ1

1
kc+ t+b

T−v
− α

(
σε
σ̄

Φ′−1
c

C

L2

∂L

∂x0
+
ψ

σ̄
)

≡ − 1

B1
(
σε
σ̄

Φ′−1
c

C

L2

∂L

∂x0
+
ψ

σ̄
)

where B1 ≡ 1−Φ1
φ1

1
kc+ t+b

T−v
− α

ks is solved from

(1− Φ(αks − σε
σ̄

Φ−1(
E

L
)− ψ

σ̄
x0 − β))((v − s)ks + q) = I

By Implicit Function Theory,

∂ks

∂x0
= − 1

1−Φ2
φ2

1
ks+ q

v−s
− α

(−σε
σ̄

Φ′−1
E

E

L2

∂L

∂x0
+
ψ

σ̄
)

≡ − 1

B2
(−σε

σ̄
Φ′−1
E

E

L2

∂L

∂x0
+
ψ

σ̄
)
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where B2 ≡ 1−Φ2
φ2

1
ks+ q

v−s
− α

k is solved from

(1− Φ(αk − σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β))((T − s)k + t+ b+ q) = b+ I

By Implicit Function Theory,

∂k

∂x0
= − 1

1−Φ3
φ3

1

k+ t+b+q
T−s

− α
(
σε
σ̄

Φ′−1
c

C

L2

∂L

∂x0
+
ψ

σ̄
)

≡ − 1

B3
(
σε
σ̄

Φ′−1
c

C

L2

∂L

∂x0
+
ψ

σ̄
)

where B3 ≡ 1−Φ3
φ3

1

k+ t+b+q
T−s

− α.

Proof of Proposition 5. For any given x0 > xmed0 , if there exist L such that (ks(L, x0), kc(L, x0)),

by Proposition 4 we must have either kc− σεΦ−1(1− C
L ) > ks− σεΦ−1(EL ) or kc− σεΦ−1(1− C

L ) <

ks − σεΦ−1(EL ).

When kc − σεΦ−1(1− C
L ) > ks − σεΦ−1(EL ), we have σε

σ̄ Φ−1(1− C
L ) + ψ

σ̄x0 < Mmed

we know barθ(x0, L) = kc − σεΦ
−1(1 − C

L ), therefore the leader’s utility u0 is an increasing

function of L. When L increases such that σε
σ̄ Φ−1(1 − C

L ) + ψ
σ̄x0 = Mmed, then by the continuity

of the solutions we have ks = kc = k. After that, when L continuously increasing, there only

exists one cutoff threshold k(x0, L) which is consistent with the cutoff equilibrium and θ̄(x0, L) =

k − σεΦ−1(1− C
L ), then u0 is still an increasing function of L until L = E + C.

Similarly, when kc−σεΦ−1(1− C
L ) < ks−σεΦ−1(EL ), we have σε

σ̄ Φ−1(EL ) + ψ
σ̄x0 < Mmed. When

θ̄(x0, L) = ks − σεΦ−1(EL ), the leader’s utility is an decreasing function of L. When L decreases

such that σε
σ̄ Φ−1(EL ) + ψ

σ̄x0 = Mmed, then by the continuity of the solutions we have ks = kc = k.

After that, when L continuously decreasing, there only exists one cutoff threshold k(L, x0) which

is consistent with the cutoff equilibrium and θ̄(x0, L) = k − σεΦ−1(EL ), then the leader’s utility is

still an decreasing function of L until L = E + C.

Therefore the best choice of L is E + C.

For a given x0 with xmin
0 < x0 < xmed0 , we know there is no L such that one-cutoff strategy exists.

Therefore, the optimal coalition size under two-cutoff case is L such that kc(x0, L) − σε(Φ−1(1 −
C
L )) = ks(x0, L(x0)) − σεΦ

−1(EL ), through which θ̄(L, x0) can reach the minimal point and the

leader’s utility achieves the maximal point.

On the equilibrium path, since kc−σεΦ−1(1− C
L ) = ks−σεΦ−1(EL ), we rewrite the equation as

kc−ks = σε(Φ
−1(1− C

L )−Φ−1(EL )) which is greater than 0. It implies L > E+C when x0 > xmed0 .

Since when x0 = xmed0 , the best L is E + C on the equilibrium path, and L′(x0) is continuous

and differential with respect to x0 when x0 < xmed0 , then we know ∂L′(x0)
∂x0

< 0 in a small interval

(xmed0 − ε, xmed0 ].
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Assume ∂L(x0)
∂x0

< 0 is not always true, then there exists x′0 such that ∂L′(x0)
∂x0

= 0. Furthermore
∂kc−ks
∂x0

= ∂
∂x0

(σε(Φ
−1(1− C

L )− Φ−1(EL ))) = 0 at x′0. Also we have ∂kc

∂x0
= − 1

B1
β and ∂ks

∂x0
= − 1

B2
β.

However, since kc > ks, we have 1−Φ1
φ1

< 1−Φ2
φ2

, then B1 < B2. So at x′0, ∂kc−ks
∂x0

6= 0. It is a

contradiction.

Proof of Proposition 6. Similar as Proposition 3, it is because leader’s utility function increases

in x0.

When x0 < xmed0 in TP, the leader would select L∗(x0) to stage a rebellion and the threshold for

the followers would be ks(L∗(x0), x0) and kc(L∗(x0), x0) on the equilibrium path. The thresholds

satisfy the following equations:

(1−Φ(αkc(L∗, x0)− τΦ−1(1− C

L∗
)− ψ

σ̄
x0 − β))((T − v)kc(L∗, x0) + b+ t) = b, (19) {PP: eq cond10}

(1−Φ(αks(L∗, x0)− τΦ−1(
E

L∗
)− ψ

σ̄
x0 − β))((v − s)ks(L∗, x0) + q) = I, (20) {PP: eq cond11}

kc(L∗, x0)− σεΦ−1(1− C

L∗
) = ks(L∗, x0)− σεΦ−1(

E

L∗
). (21) {PP: eq cond12}

When x0 = xmed0 , the leader chooses L∗ = E + C and we have kc(L∗, x0) = ks(L∗, x0). With

the same x0 = xmed0 in CP, the leader would also choose L∗ = E + C to stage a rebellion and the

cutoff threshold for the followers satisfies the following equation.

(1− Φ(αk(L∗, x0)− τΦ−1(1− C

L∗
)− ψ

σ̄
x0 − β))[(T − s)k(L∗, x0) + t+ b+ q] = I + b, (22)

we have kc(E + C, xmed0 ) = ks(E + C, xmed0 ) = k(E + C, xmed0 ).

Proof of Proposition 7. On the equilibrium path, when T − v = a, for any given ε0, there exist

a T1 and a v1 such that when v > v1, then −σε
σ̄ Φ(EL )′−1 E

(E+C)2
∂L
∂x0

> ε0 > 0. It is because for given

T and v, ∂L
∂x0

> 0 at x0 < xmed0 ; and when v increases ks decreases, and kc− ks increases, therefore
∂L
∂x0

is an increasing function of v on the equilibrium path when x0 < xmed0 . Furthermore when

x0 = xmed0 , ∂L
∂x0∂v

> 0.

When v > v1, we have

1

B2
(−σε

σ̄
Φ′−1
E

E

L2

∂L

∂x0
+
ψ

σ̄
)− 1

B3

ψ

σ̄
;

>
1

B2
(ε0 +

ψ

σ̄
)− 1

B3

ψ

σ̄
;

=
1

B2
ε0 + (

1

B2
− 1

B3
)
ψ

σ̄
; (23) {Sur:eq: PP>PA}

There exists a v2 such that when v > v2 we have 0 < ( 1
B3
− 1

B2
) < ε and 1

B2
ε0 + ( 1

B2
− 1

B3
)ψσ̄ >

1
B2
ε0 − εψσ̄ > 0
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Therefore when v > v̄ ≡ max{v1, v2}, we have that ∂ks

∂x0
< ∂k

∂x0
< 0 at xmed0 . By the continuity,

we have ks > k at least in a small interval (xmed0 − ε′, xmed0 ].

Start from any x0 < xmed0 with ks(x0, L
∗(x0)) > k(x0, E + C), we have ks(x0, L

∗(x0)) −
σΦ−1( E

L(x0)) > k(x0, E + C) − σΦ−1( E
E+C ) and αks(x0, L

∗(x0)) − σε
σ̄ Φ−1( E

L∗(x0)) − ψ
σ̄x0 − β >

αk − σε
σ̄ Φ−1( E

E+C ) − ψ
σ̄x0 − β. Therefore 1−Φ2

φ2
< 1−Φ3

φ3
and B2 < B3 (under the condition v > v2

and T − v = a > 0). As a results ∂ks

∂x0
< ∂k

∂x0
. It means once x0 < xmed0 , ks > k always. Furthermore

θ̄TP = ks(x0, L
∗(x0))−σΦ−1( E

L∗(x0)) > θ̄CP = k(x0, E+C)−σΦ−1( E
E+C ) Therefore the leader has

a higher starting point in TP i.e. x∗CP0 < x∗TP0 .

Since when x0 > xmed0 , equilibrium results are the same in CP and TP, so x̂CP (θ) and x̂TP (θ)

are identical when they are above xmed0 . Let θ̂ be the point such that x̂TP0 (θ̄) = xmed0 . When θ > θ̂,

since for any given x0 with x∗CP0 < x∗TP0 < xmed0 , ks(x0, L
∗(x0)) − σΦ−1( E

L(x0)) > k(x0, E + C) −
σΦ−1( E

E+C ), it means x̂CP0 (θ) < x̂TP0 (θ).

Therefore, TP has higher survival probability in this case when θ > θ̂.

Proof of Proposition 8. The proof is similar as the proof of Proposition 7, we just give a sketch

as follow. Let t + I and v − s smaller enough to guarantee 1
B1
− 1

B3
smaller enough, then since

σε
σ̄ Φ′−1

C
C
L2

∂L
∂x0

+ ψ
σ̄ <

ψ
σ̄ . Then we have ∂kc

∂x0
< ∂k

∂x0
at xmed0 . q−I

v−s = h is to guarantee ∂L
∂x0

has a uniform

low bound which is greater than 0, when q − I and v − s are smaller enough. By the continuity,

we have kc < k at least in a small interval (xmed0 − ε′′, xmed0 ]. Start from any x0 < xmed0 with

kc(x0, L
∗(x0)) < k(x0, E+C), we have kc(x0, L

∗(x0))−σΦ−1(1− C
L(x0)) < k(x0, E+C)−σΦ−1(1−

C
E+C ) and αkc(x0, L

∗(x0))− σε
σ̄ Φ−1(1− C

L∗(x0))−ψ
σ̄x0−β < αk− σε

σ̄ Φ−1(1− C
E+C )−ψ

σ̄x0−β. Therefore
1−Φ1
φ1

> 1−Φ3
φ3

and B1 > B3. As a results ∂kc

∂x0
< ∂k

∂x0
. It means once x0 < xmed0 , kc < k always.

Furthermore θ̂TP = kc(x0, L
∗(x0)) − σΦ−1(1 − C

L∗(x0)) < θ̄CP = k(x0, E + C) − σΦ−1(1 − C
E+C ).

Consequently, the leader has a higher starting point in CP i.e. x∗CP0 > x∗TP0 .

Since when x0 > xmed0 , equilibrium results are the same in CP and TP, so x̂CP (θ) and x̂TP (θ)

are identical when they are above xmed0 . Let θ̂′ be the point such that x̂TP0 (θ̄′) = xmed0 . When

θ > θ̂′, since for any given x0 with x∗TP0 < x∗CP0 < xmed0 , kc(x0, L
∗(x0)) − σΦ−1(1 − C

L(x0)) <

k(x0, E + C)− σΦ−1(1− C
E+C ), it means x̂CP0 (θ) > x̂TP0 (θ).

Therefore, CP has higher survival probability in this case when θ > θ̂′.

Proof of Proposition 9. In TP, by Proposition 4, Mmed is the M such that u′c(k,M), u′b(k,M),

and u′b(k,M) intersect at the same point. Since u′c(k,M) is an increasing function of t, therefore

Mmed is an decreasing function of t. It means xmed0 decreases with t. When t is larger enough,

then there will be a intersection of u′c(k,M), u′n(k,M) and u′c(k,M). It means in the large t

case, when M decrease, u′n(k,M) and u′b(k,M) will separate before the intersection of u′c(k,M),

u′n(k,M) bypass the intersection of u′n(k,M), u′b(k,M). Therefore there is only one threshold which

is consistent with the cutoff equilibrium.
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Proof of Lemma 3. In this case, the type xi follower’s expected payoffs for remaining neutral

under TP is

(1− Φ(
θ̄TP (x0, L)− (1− ψ)λxi − ψx0 − (1− ψ)(1− λ)mθ

σ̄
))(vxi − q).

The equilibrium strategy for the supporters can be calculated using the same way in Proposition 4.

Let ks3(x0, L) and kc3(x0, L) be the two thresholds which are consistent with the cutoff equilibrium

for the two-cutoff strategy. For a given x0 on the equilibrium path, ks3(x0, L), kc3(x0, L) and the

optimal L3(x0) chosen by the leader must satisfy the following equations:

(1− Φ(αkc − σε
σ̄

Φ−1(1− C

L
)− ψ

σ̄
x0 − β))((T − v)kc + b+ t+ q)− b = 0 (24) {eq8}

(1− Φ(αks − σε
σ̄

Φ−1(
E

L
)− ψ

σ̄
x0 − β))(v − s)ks − I = 0 (25) {eq9}

kc(x0, L)− σεΦ−1(1− C

L
) = ks(x0, L)− σεΦ−1(

E

L
). (26) {eq10}

Then we have that ks3(x0, L3(x0)) > ks(x0, L
′(x0)), kc3(x0, L3(x0)) < kc(x0, L

′(x0)) and L3(x0) <

L′(x0).

Let Mmax
3 be the M such that u′c(k,M), u

′′
n(k,M) ≡ (1−Φ(αk−M −β))(vk− q) and u′b(k,M)

intersect at the same point. We haveMmax
3 > Mmed because u

′′
n(k,M) < u′n(k,M). Therefore, when

xmed
′

0 satisfy σε
σ̄ Φ−1(1− C

L ) + ψ
σx

med′
0 = σε

σ̄ Φ−1(EL ) + ψ
σx

med′
0 = Mmax

3 , then we have xmed
′

0 < xmed0 .

Furthermore, we have xmin′
0 > xmin

0TP
, where xmin′

0 is the minimal x0 to make the finite threshold

exist which is consistent with the cutoff equilibrium. It is easy to find when q increases, xmed
′

0 will

decrease, and xmin
0TP

will increase. Therefore, there exists a threshold q̄ such that when q > q̄, then

there is no two cutoff thresholds which is consistent with the cutoff equilibrium.

Proof of Proposition 10. The proof is very similar to Lemma 4, instead of repeating the whole

procedure, I describe the intuition of the proof here. Since t
T−v < q−I

v−s . When M → +∞, the

smaller root of ∆u′nb(k,M) converge to − q−I
v−s which is less than the smaller root of ∆u′cn(k,M)

converging to − t
T−v . It implies that when M is large, there only exist two-cutoff strategies, and

when M is small, there only exist one-cutoff strategies.

1. Let Mmed
TR satisfy u′c(k,M

med
TR ) = u′c(k,M

med
TR ) = u′c(k,M

med
TR ), which represent the leader’s

influence threshold between the one-cutoff strategy and two-cutoff strategy. Let xmed0TR
satisfies

Mmed
TR = σε

σ̄ Φ−1(1− C
E+C ) + ψ

σx
med
0TR

.

Since (1−Φ(αk−M − β))((T − v)k+ t+ b+ q)− b− I is single peaked and increases with M ,

so there exist a Mmin
TR such that (1−Φ(αk −M − β))((T − v)k + t+ b+ q)− b− I = 0 has unique

root for k. Let xmin0TR
satisfies Mmin

TR = σε
σ̄ Φ−1(1− C

E+C ) + ψ
σ̄x

min
0TR

.

For a given x0 and L, to guarantee the existence of one-cutoff strategy, we must have Mmin
TR ≤

M < Mmed
TR . Where, M = σε

σ̄ Φ−1(1− C
L ) + ψ

σ̄x0 when L < E +C and M = σε
σ̄ Φ−1(EL ) + ψ

σ̄x0 when
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L > E + C. So, M increases with L when L < E + C, decreases with L when L > E + C, and

increases with x0. Therefore, when x0 < xmin
0TR

, M is less than Mmin
TR for sure and no finite cutoff

equilibrium exist.

2. When xmin
0TR
≤ x0 < xmed0TR

, the influence M can never achieve Mmed
TR regardless of L, therefore

only one-cutoff strategy exists. Furthermore, in one-cutoff strategy, the optimal coalition size is

E + C which balance the participation and maintaining secrecy conditions.

3. When xmed0TR
≤ x0, the influence M can exceed Mmed

TR , which lead to the existence of two-cutoff

strategy. For any given x0 in this case, if L is chosen such that kcTR and ksTR exist which satisfy

(7)-(10), then we can enlarge L to solve kcTR and ksTR such that (24)-(26) are satisfied. Similarly,

when a given x0 and L leading to kcTR and ksTR satisfying (11)-(14), then we can reduce L to solve

kcTR and ksTR such that (24)-(26) are satisfied. Part 3 is proved.

4. Using the method to prove Proposition 5, it is easy to find that optimal L∗TR(x0) increases

with x0. When x0 > xmed0TR
, since the lower bound of ks(x0, L) is q−I

v−s and the lower bound of

kc(x0, L) is t
T−v , there exists a upper bound of the optimal coalition size which is LmaxTR and less

than or equal to 1.
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