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Abstract 

Rising obesity rates may contribute to greenhouse gas emissions both directly through increased food 

production and indirectly through higher passenger weights and increasingly sedentary lifestyles. Using 

panel data for the fifty US states over the period 1997 to 2011 we examine the relationship between the 

obesity rate and carbon dioxide emissions from energy use. Results indicate a positive and significant 

relationship, holding population, affluence, sectoral composition, and other factors constant. Specifically, 

we find that reversion to 1997 obesity rates (from 2013 levels) nationwide could reduce annual carbon 

dioxide emissions from energy use by 143 million metric tons, or approximately 2.8 percent of annual US 

emissions. This reduction yields annual climate benefits of between $5.7 and $8.9 billion using EPA 

estimates of the social cost of carbon. We suggest that policies directed toward obesity reduction have the 

potential to generate significant climate co-benefits alongside the well-known health benefits.  

JEL Classifications: Q54, I12,  

Keywords: climate change, obesity, co-benefits, health  



1. Introduction 

Global obesity prevalence has doubled since 1980. This has serious implications for public health, 

increasing the risk of cardiovascular disease, Type-2 diabetes, musculoskeletal disorders, and some cancers 

(WHO, 2015). While these risks are pronounced in OECD nations (OECD, 2010), the percentage of adults 

that are overweight or obese are on the rise in low- and middle-income nations, particularly in urban areas. 

In 2014, more than 1.9 billion adults (39%) were overweight worldwide, of which over 600 million (13%) 

were obese (WHO, 2015).  

While obesity prevalence has stabilized or grown only modestly in many developed nations over the past 

decade the prevalence remains elevated and retrenchment of the epidemic is unlikely (Ogden et al., 2014; 

OECD, 2014). In the United States, 64% of adults were overweight in 2013, of which 28% were obese 

(CDC, 2014). This prevalence of overweight and obesity generates significant economic costs: both direct 

and indirect. Direct medical costs of overweight and obesity combined, including preventative, diagnostic, 

and treatment services, is an estimated $114 billion annually, comprising approximately 5% to 10% of 

healthcare spending the United States according to a meta-analysis of 33 U.S. studies (Tsai et al., 2011). 

Indirect costs associated with morbidity and mortality include the value of income lost from reduced 

productivity, restricted activity, absenteeism, bed days, and the value of future income lost due to premature 

death (CDC, 2014). While more difficult to assess, these indirect morbidity and mortality costs account for 

over 50% of the total economic costs of obesity (Dee et al., 2014).  

The primary driver of obesity and overweight is an energy imbalance between calories consumed and 

calories expended. Globally, an increased intake of energy-dense foods that are high in fat and an increase 

in physical inactivity due to the increasingly sedentary nature of many forms of work, changing modes of 

transportation, and increasing urbanization are contributing to the prevalence of overweight and obesity 

(Ledikwe et al., 2006; Malik et al., 2013). These changes are likely the result of environmental and societal 

changes associated with development and need to be understood in that context (Wells, 2012). Alongside 

these changes in food production and consumption patterns, transportation, and urbanization the global 

atmospheric concentration of carbon dioxide (CO2), the most prevalent greenhouse gas, has increased from 

316 parts per million (ppm) in 1959 to over 400 ppm in 2014 (NOAA, 2015). These atmospheric 

concentrations are unprecedented in at least the last 800,000 years and anthropogenic emissions are the 

dominant driver of these changes and lead to global warming and climate change (IPCC, 2014). Since the 

1950s, the atmosphere and ocean have warmed, the amounts of snow and ice have diminished, and sea level 

has risen. Continued greenhouse gas emissions will cause further warming and long-lasting changes in all 

components of the climate system, increasing the likelihood of severe, pervasive, and irreversible impacts 

for people and ecosystems (IPCC, 2014) 



The implications of anthropogenic greenhouse gas emissions and climate change for global public health 

have long been recognized and may manifest themselves in varying ways in different parts of the world. In 

the United States, public health can be affected through disruptions of physical, biological, and ecological 

systems leading to increased cardiovascular and respiratory disease, injuries and premature deaths related 

to extreme weather events, changes in the prevalence and geographic distribution of food- and waterborne 

illnesses, and potential threats to mental health (Luber et al., 2014). An understanding of the immediate 

threats to human health resulting from ground-level air pollution, particularly ozone and particulate matter, 

coincidental with anthropogenic greenhouse gas emissions suggests that mitigation policies will lead to 

immediate improvements in health and generate significant co-benefits dramatically improving their cost-

effectiveness (Buonocore, 2014; Shaw et al., 2014). Both the drivers and impacts of climate change play a 

significant role in population health through a variety of direct and indirect channels (McMichael, 2013). 

What if the reverse is also true? 

It has been suggested that obesity and adiposity are associated with higher emissions and thus climate 

change (Edwards and Roberts, 2009; Michaelowa and Dransfeld, 2008; Squalli, 2014) and that strategies 

to reduce obesity may also lead to greenhouse gas mitigation and more sustainable patterns of development 

(Gryka etal., 2012; Lowe, 2014; Reisch and Gwozdz, 2011; Webb et al., 2014). However, the empirical 

evidence of this association is suggestive but not convincing for two reasons: 1) questionable assumptions 

regarding the lifestyle and consumption patterns of obese and/or overweight individuals and 2) 

methodological decisions preventing effective control of confounding and unobservable factors. In section 

2 we discuss these limitations and the existing theoretical explanations for and empirical evidence of this 

association. In section 3 we discuss our data and methodology. In section 4 we present results for the 

estimated obesity elasticity of emissions and discuss the potential for climate co-benefits of obesity 

reduction. Finally, in sections 6 and 7 we conclude with a discussion of the importance and relevance of 

the results.  

2. Theoretical Explanations and Empirical Evidence 

The hypothesized channels through which obesity leads to greenhouse gas emissions in excess of an 

otherwise ‘healthy’ population, as measured by BMI, are generally: 1) increased food production, especially 

animal-based products, and food waste generation due to higher caloric intake of obese and overweight 

individuals (Edwards and Roberts, 2009; Michaelowa and Dransfeld, 2008; Walpole et al., 2012); 2) higher 

fuel use from motorized transport due to increased passenger weight and the assumption that heavier 

individuals may use motorized travel more and choose larger fuel-inefficient vehicles (Edwards and 

Roberts, 2009; Michaelowa and Dransfeld, 2008; Goodman et al., 2012). 



2.1 Increased food production 

During the second half of the twentieth century, traditional plant-based diets have been replaced by high-

fat energy dense diets consisting of substantial amounts of animal-based foods, such as meat and dairy 

products (WHO, 2003). Per-capita meat consumption has increased 43% in industrialized nations and 50% 

worldwide since 1964 and this likely explains some of the increased prevalence of obesity given the 

association between higher meat consumption and a variety of adiposity measures (Wang and Beydoun, 

2009; WHO, 2003). The production of animal-based foods, especially ruminant meat, is associated with 

much higher greenhouse gas emissions than plant-based foods (Ripple et al., 2014; Scarborough et al., 

2014; Stehfest et al., 2009), so if obesity is associated with higher meat consumption which leads to higher 

greenhouse gas emissions, then this link is quite plausible. Edwards and Roberts (2009) find that an 

overweight population (with mean BMI of 29 and 40% obese) would require 19% more food energy for its 

total energy expenditure compared to a ‘normal’ population (with mean BMI of 24.5 and 3.5% obese). 

However, the method through which they attribute this to higher GHG emissions is crude, at best. 

Michaelowa and Dransfeld (2008) also find that emissions from food production have increased, but do not 

establish a causal pathway to higher prevalence of obesity. Walpole et al. (2012) find that if all countries 

had the BMI distribution of the United States, it would be equivalent to having an ‘extra’ 473 million adults 

living on earth. Therefore, it appears the energy requirements of a heavier population are substantial and 

require increased food production which already comprises around one-fifth of global greenhouse 

emissions.  

2.2 Higher transportation fuel use 

In 2013, the transportation sector accounted for about 27% of total U.S. greenhouse gas emissions and 

about 15% worldwide (EIA, 2014). Vehicle weight is necessarily associated with the fuel efficiency of 

miles traveled, thus increased passenger weight can undermine improvements in fuel efficiency. 

Dannenberg et al. (2004) found that the increase in the average weight of U.S. citizens during the 1990s led 

to an increase in fuel use of 2.4% and annual emissions from US air traffic by 3.8 million metric tons. Using 

driving and passenger information in the US and historical anthropometric data, Tom et al. (2014) estimate 

that since 1970 over 205 billion additional liters of fuel were consumed to support the extra weight of the 

U.S. population, equivalent to 1.1% of total fuel use for transportation systems, resulting in an extra 502 

million metric tons of CO2 emissions. Edwards and Roberts (2009) also assume that heavier people may 

use motorized travel more (based on the assumption that walking requires more effort for the obese) and 

that heavier people may choose larger (more fuel-inefficient) vehicles and as a result find that an overweight 

population (defined above) would generate 12% more transport CO2 emissions than a ‘normal’ population. 

Goodman et al. (2012) find that overweight and obese individuals generate approximately 14% more 



emissions than ‘normal’ weight individuals and that this is partially explained by reduced active travel and 

larger car size. The bulk of the effect is attributable to increased motorized travel distance. It is plausible 

that obesity is the result of increased commuting requirements (due to family or work) and is not itself a 

cause of increased travel as Edwards and Roberts (2009) suggest (Goodman et al., 2012). Due to these 

complexities in the relationship between driving behavior and obesity it is likely that the association 

between transport CO2 emissions and obesity is confounded by motorized travel distance making causal 

pathways difficult to establish (McCormack and Virk, 2014).  

To date and to our knowledge, only Squalli (2014) has investigated whether obesity prevalence (as 

measured by BMI) is associated with higher greenhouse gas emissions at the national or regional level. In 

other words, there is little empirical evidence to support the hypothesis that policies designed to reduce 

obesity will generate substantial climate co-benefits in form of reduced greenhouse gas emissions at the 

national or global level. Sqaulli (2014), using data for the fifty US states in 2010, estimates that a 10% 

reduction in the obesity rate reduces CO2 emissions by 0.7% and concludes that reversion to year 2000 

obesity rates in the US can reduce greenhouse gas emissions by at least 136 million metric tons. However, 

given the cross-sectional nature of the sample and the inability to account for likely unobserved 

heterogeneity and spatial dependence among the 50 states, these estimates are likely biased and 

inconsistent.  

Hersoug et al. (2012) suggest that increases in obesity and type-2 diabetes are due to increased atmospheric 

CO2 concentrations. In other words, the causality is reversed. This hypothesis is based on the notion that 

increased environmental CO2 reduces blood pH leading to an increased firing rate in the orexin neurons in 

the hypothalamus, wherein several key processes in the brain could be affected, leading to greater appetite 

and increased energy storage (Hersoug et al., 2012). Zheutlin et al. (2014) examine this possibility and 

determine that while the association between obesity and emissions is positive, it becomes insignificant 

when controlling for ambient particulate matter. This suggests that ground-level air pollution (such as ozone 

and particulate matter) may lead to higher prevalence of obesity but that the causal pathway suggested by 

Herzoug et al. (2012) (higher CO2 concentrations leading to greater prevalence of obesity) is unlikely. 

Therefore, the goal of this paper is to provide evidence for a possible causal relationship between obesity 

and emissions from energy use and generate empirical evidence to support the hypothesis that policies 

designed to reduce obesity may generate substantial climate co-benefits in the form of reduced greenhouse 

gas emissions. 

 

 



3. Data and Methods 

We construct a longitudinal data set of the fifty US states over the period 1997-2011 using data from the 

US Energy Information Administration (EIA), the US Census Bureau, the US Bureau of Economic Analysis 

(BEA), and the US Centers for Disease Control and Prevention (CDC) in order to estimate the relationship 

between obesity and CO2emissions from energy use.   

3.1 Emissions 

Energy-related CO2 constitutes over 80% of total emissions, thus the state energy-related CO2 emission 

levels provide a good indicator of the relative contribution of individual states to total greenhouse gas 

emissions in the United States (EIA, 2015). The EIA emissions estimates at the state level for energy-related 

CO2 are based on data contained in the State Energy Data System (SEDS) on energy consumption for 

several fuel types: coal (residential/commercial, industrial, and electric power sector), natural gas, and ten 

petroleum products1 (EIA, 2015).  

3.2 Overweight/Obesity 

Obesity and overweight prevalence data by state over the sample period were retrieved from the 

CDC Behavioral Risk Factor Surveillance System Survey (CDC, 2015).2 Body mass index (BMI), on which 

this study and the majority of prior studies (Edwards and Roberts, 2009; Michaelowa and Dransfeld, 2008; 

Walpole et al., 2012) are based does not directly measure fatness (adiposity). Individuals with BMI ≥ 30 

are considered obese, individuals with BMI ≥ 25 are considered overweight, and individuals with BMI < 

18.5 are considered underweight. The only information needed to calculate BMI is the individual’s height 

and weight, where 𝐵𝑀𝐼 = 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)/ℎ𝑒𝑖𝑔ℎ𝑡(𝑚)2, therefore its use is widespread due to the routine 

collection of this information in medical screenings. While BMI has been shown to be moderately 

correlated with other measures of adiposity (Wohlfahrt-Veje et al., 2014) it does not adequately capture the 

heterogeneity of obesity across groups and individuals (Green et al., 2015), especially with respect to body 

composition and gender, leading to somewhat arbitrary cut-points for classification (Shah et al., 2012). 

Despite these limitations of BMI as a measure of adiposity, it remains the mostly widely available metric, 

and to our knowledge, the only statistic with valid state-level estimates over the entire sample period. Using 

this CDC data on the percent of the state overweight (BMI > 30) and obese (25 ≤ BMI ≤ 29.9), we generated 

our variable of interest, 𝑜𝑏𝑒𝑠𝑖𝑡𝑦 = 𝑜𝑣𝑒𝑟𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑜𝑏𝑒𝑠𝑒, measuring the percent of the state overweight or 

                                                      
1 These include: asphalt and road oil, aviation gasoline, distillate fuel, jet fuel, kerosene, hydrocarbon gas liquids 

(HGL), lubricants, motor gasoline, residual fuel, and other petroleum products. 
2 Centers for Disease Control and Prevention (CDC). Behavioral Risk Factor Surveillance System Survey 

Data. Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control and 

Prevention (2015).  



obese (BMI ≥ 25). Only Idaho in 2004 did not conduct surveillance leading to missing obesity values, 

therefore to obtain a balanced panel values for overweight and obese were imputed using a Gaussian normal 

regression imputation method (Schenker and Taylor, 1996).  

3.3 Control Variables 

Based on well-established literature regarding the human drivers of greenhouse gas emissions we control 

for urbanization (as measured by population density), affluence (as measured by real GDP per capita, and 

sectoral composition (as measured by the share of GDP devoted to the most carbon intensive industries) 

(Rosa and Dietz, 2012; Jorgenson and Clark, 2012; Jorgenson et al., 2014; Liddle, 2014). Due to a lack of 

data availability we are unable to control for household size to account for the potential of household scale 

economies, yet given the relationship between household size, urbanization, and affluence the bias 

introduced by this omission is likely small (Underwood and Zahran, 2015).  

3.4 Model Specification 

Despite the inclusion of the control variables mentioned above we expect some time-constant unobserved 

heterogeneity, such as weather, climate, access to fossil fuels, access to waterways, and other geographic 

features, to exist among the fifty states that may explain some of the differences in both obesity and 

emissions. Likewise we expect that states will respond similarly to nationwide factors such as technological 

change, policy change, and demographic change, so we also account for time-variant unobserved effects. 

Therefore, we begin generally with a two-way unobserved effects model for the 50 US states over the 15 

year period 1997-2011, a fully balanced short-panel with N > T where the dependent variable is CO2 

emissions (millions of metric tons), CO2 emissions per capita (metric tons of CO2), or the CO2 intensity of 

GDP (metric tons of CO2 per dollar of real GDP). We include state fixed effects, year fixed effects (as year 

dummies with 1997 as the reference year), several control variables: population density (measured in 

millions of people per 100 square kilometers), real GDP per capita (measured in chained 2009 US dollars), 

several variables denoting the share (as a percent) of state GDP devoted to the most carbon intensive sectors 

(agriculture, mining, utilities, construction, and manufacturing), and our variable of interest: the obesity 

rate. The data are summarized in Table 1. 

Based on the nature of the data, several estimation strategies are plausible, most of which control out 

between state variation in favor of estimating within state effects, here we focus on two: 1) a static fixed 

effects model with clustered standard errors which are robust to serial correlation and heteroskedasticity 

but assume cross-sectional independence (observations across states are uncorrelated); or 2) a dynamic 

Prais-Winsten (PW) regression including a lagged dependent variable with panel-corrected standard errors  

 



Table 1. Summary Statistics 

VARIABLES 

State-Year 

Observations 
Mean Std. Dev. Min Max 

total CO2 emissions 750 114.769 114.584 5.699 724.097 

CO2 emissions per capita 750 25.316 19.868 8.113 132.268 

CO2 intensity of GDP 750 584.197 430.846 132.142 2746.661 

population density 750 0.00722 0.00975 0.00004 0.04639 

real GDP per capita 750 44682.21 8315.24 28919.48 71475.69 

obesity rate 750 59.8 4.5 46.4 70.3 

%agriculture 750 1.32 1.44 0.11 8.89 

%mining 750 3.02 6.05 0.00 40.31 

%utilities 750 2.14 0.63 0.60 4.43 

%construction 750 5.52 1.47 2.89 14.80 

%manufacturing 750 12.44 5.52 1.54 31.37 

 

(including state dummies to account for unobserved heterogeneity and year dummies) which are robust to 

cross-sectional dependence, AR(1) serial correlation within each state, and heteroskedasticity. If cross-

sectional dependence is present the fixed effects estimator is still consistent (but inefficient), if the 

unobservables generating this (spatial) dependence are uncorrelated with the other explanatory variables in 

the model (Hoechle, 2007). If however, these unobservables are correlated with the explanatory variables, 

then the fixed effects estimator is both biased and inconsistent (De Hoyos and Sarafidis, 2006). In this case 

given the likely strong spatial dependence among states in similar regions with respect to geography and 

commerce the fixed effects estimator is likely inappropriate. A Pesaran test for cross-sectional dependence 

(De Hoyos and Sarafidis, 2006) is implemented for total CO2 emissions, per capita CO2 emissions, and CO2 

intensity and the null of cross-sectional independence is rejected in each case (𝑝 = 0.015) so there is 

significant evidence of cross-sectional dependence, a result confirmed by Frees’ test (Frees, 1995). 

Therefore, the FE estimates are likely bias and inconsistent. Additionally, a certain degree of path 

dependence is expected in state-level emissions so we consider a dynamic PW model with panel-corrected 

standard errors which assumes idiosyncratic errors which are first-order serially correlated within panels 

(states) and heteroskedastic and contemporaneously correlated across panels. This model would be an 

improvement over the static fixed effects model. However, the inclusion of a lagged value of the dependent 

variable introduces the possibility of a unit-root in some panels and the potential inconsistency resulting 

from the likely correlation between the unobserved effects and the lagged dependent variables, often 

referred to as Nickell bias (Nickell, 1981). Typically, the inclusion of this lagged dependent variable would 

warrant the use of dynamic panel estimators, such as Arellano and Bond (1991) or Blundell and Bond 

(1998). However, these estimators assume cross-sectional independence so we would be trading one source 

of bias and inconsistency for another.  



4. Results 

Given the potential for substantial bias generated by spatial dependence in the fixed effect model, we 

continue with a dynamic specification of the Prais-Winsten model, following Beck and Katz (1996). In 

order to test for a unit-root we implement the robust Hadri Lagrange multiplier test designed for serially 

correlated heteroskedastic short panels (with N > T) and confirm that some panels may contain a unit-root 

in (logged) total CO2 emissions, per capita CO2 emissions, and the CO2 intensity of real GDP.3 To account 

for the presence of this unit-root in some panels we assume that the AR(1) parameters are unique to each 

panel. The results of this dynamic PW model are summarized in Table 2.  

Table 2. Dynamic Prais-Winsten 

 (1) (2) (3) 

VARIABLES ln(total CO2) ln(per capita CO2) ln(CO2 intensity) 

ln(obesity) 0.127** 0.122** 0.080 

 (0.056) (0.057) (0.063) 

ln(population density) 0.098 -0.233*** -0.240*** 

 (0.065) (0.052) (0.062) 

ln(real GDP per capita) 0.094** 0.075* -0.440*** 

 (0.042) (0.044) (0.056) 

ln(%agriculture) 0.028*** 0.026*** 0.030*** 

 (0.008) (0.008) (0.009) 

ln(%mining) 0.014* 0.014* 0.016* 

 (0.007) (0.007) (0.009) 

ln(%utilities) 0.0003 0.008 0.024 

 (0.023) (0.022) (0.024) 

ln(%construction) 0.077*** 0.070*** 0.084*** 

 (0.018) (0.019) (0.022) 

ln(%manufacturing) 0.012 0.015 0.008 

 (0.012) (0.012) (0.013) 

lagged dependent variable 0.669*** 0.663*** 0.551*** 

 (0.062) (0.062) (0.063) 

Constant -0.500 0.716 1.932*** 

 (0.550) (0.564) (0.662) 

    

Observations 699 699 699 

R-squared 0.9997 0.9993 0.9998 

Number of States 50 50 50 

State FE YES YES YES 

Year FE YES YES YES 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

The obesity elasticity is equal to 0.127 or 0.122 and significant for both total CO2 emissions and per capita 

CO2 emissions (𝑝 = 0.02 and 𝑝 = 0.03) respectively, while the obesity elasticity is equal to 0.08 and 

                                                      
3 For logged total CO2, 𝐿𝑀 = 12.795, 𝑝 = 0.00; for logged per capita CO2, 𝐿𝑀 = 21.724, 𝑝 = 0.00; and for logged 

CO2 intensity, 𝐿𝑀 = 28.290, 𝑝 = 0.00. 



insignificant (𝑝 = 0.20) for CO2 intensity of real GDP. Therefore, there is significant evidence that obesity 

and CO2 emissions are correlated which provides support for the hypothesized causal relationship.  

However, if higher obesity actually increases the CO2 intensity of GDP (and thus total CO2 emissions), then 

total CO2 emissions should be more responsive to changes in real GDP when obesity rates are higher. In 

other words, higher obesity last period should increase the income (real GDP per capita) elasticity of 

emissions. To test this hypothesis, we estimate the following Prais-Winsten regression with panel-corrected 

standard errors with an AR(1) parameter common to all panels: 

∆ ln 𝐶𝑡 = 𝛼 + 𝛽ln (𝑜𝑏𝑒𝑠𝑖𝑡𝑦)𝑡−1 + 𝛾∆ln (𝑟𝑒𝑎𝑙𝐺𝐷𝑃𝑝𝑐)𝑡 + 𝛿(ln(𝑜𝑏𝑒𝑠𝑖𝑡𝑦)𝑡−1 ∗ ∆ ln(𝑟𝑒𝑎𝑙𝐺𝐷𝑃𝑝𝑐)𝑡) + 𝑢𝑡 

where 𝐶𝑡 is total CO2 emissions. The dependent variable is therefore the growth rate of total CO2 emissions. 

The results of this regression are presented in Table 3. Here we are primarily interested in 𝛿, the coefficient 

on the interaction term between the obesity rate last period and the growth rate of real GDP per capita. If 

this coefficient is positive it provides support for our hypothesis that obesity is acting to amplify the total 

Table 3. PW growth rate model  

 (1) (2) 

VARIABLES Δln(total CO2) 

ln(obesity)t-1 -0.129*** -0.143** 

 (0.049) (0.068) 

ln(obesity)t-1 * Δln(real GDP per capita) 2.897** 2.922** 

 (1.319) (1.265) 

Δln(real GDP per capita) -11.36** -11.50** 

 (5.399) (5.170) 

ln(population density)  -0.085 

  (0.057) 

Constant 0.523*** 0.973*** 

 (0.202) (0.309) 

   

Observations 700 700 

R-squared 0.170 0.270 

Number of States 50 50 

State FE NO YES 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

CO2 emissions response to economic growth (or decline). This coefficient is positive and significant (𝑝 =

0.052) confirming our hypothesis. This result is relatively robust to the inclusion of other control variables 

and state fixed-effects, as presented in column 2 of Table 3. The coefficient remains positive and significant 

(𝑝 = 0.066). Thus it appears that obesity does indeed have an effect on total CO2 emissions. 

From Table 2 we obtain an obesity elasticity of 0.13 for total CO2 emissions, a small but not irrelevant 

impact. The prevalence of overweight and obese adults in the United States increased from 51.4% in 1995 

to 64.3% in 2013 (CDC, 2014), an increase of 25.1% and total annual CO2 emissions from energy use have 



increased by 73 million metric tons (EIA, 2014); our results imply that over this time period 3.3% of this 

increase in total CO2 emissions from energy use (around 2.4 million metric tons per year) is attributable to 

the increased prevalence of obesity. To put this into perspective, about one metric ton of CO2 is produced 

to the meet the average monthly energy demand of the typical American household for heating, cooling, 

cooking, electricity use, and other energy needs; therefore increased prevalence of obesity is similar to the 

effect of having an additional 160,833 households, or nearly half a million additional people, in United 

States every year.4   

5. Climate Co-benefits of Obesity Reduction 

These results suggest that policies designed to reduce obesity may produce direct health benefits and climate 

co-benefits in the form of reduced CO2 emissions. Using the results from the dynamic PW model just 

discussed we calculate that reversion to 1997 obesity rates in every state nationwide in 2014 would reduce 

annual U.S. CO2 emissions from energy use by 143 million metric tons, or 2.7% below 2013 emission 

levels. Using estimates of the social cost of carbon (SCC) from the U.S. Environmental Protection Agency 

(EPA) of $40 or $62 per metric ton, for discount rates of 3% and 2.5% respectively, this reduction yields 

annual climate benefits of between $5.7 and $8.9 billion (in 2014 dollars). These benefits are not 

inconsequential. The EPA estimates that direct climate benefits from implementation of the Clean Power 

Plan (using the same SCC estimates and discount rates just discussed) are between $2.9 and $4.3 billion in 

2020 and between $10.5 and $15.8 billion in 2025 (in 2014 dollars) for annual emission reductions of 63 

and 211 million metric tons, respectively.5 Therefore, the potential for climate co-benefits of obesity 

reduction in the United States is substantial and can provide additional incentive for obesity reduction at 

the individual, community, and national level.  

6. Discussion 

The various channels through which this association occurs were not investigated here and warrant 

additional research, but our results are suggestive of a mutually-reinforcing relationship between policies 

designed to improve public health (via reduced obesity) and climate change mitigation. Single-use zoning 

                                                      
4 The percent change in the obesity rate from 1995-2013 is 25.1, our estimated elasticity (in the total CO2 emissions 

model) is equal to 0.127, so an increase in the obesity rate of this amount yields an increase in emissions of 2.65%. 

Therefore, 2.65% of the total increase in annual emissions of 73 million metric tons (from 5323 to 5396 million 

metric tons) is 1.93 million metric tons. According to the EPA, the average American household generates 12 metric 

tons of CO2 per year, therefore these additional emissions are the equivalent to the effect of having (=1,930,000/12) 

160,833 additional households, or approximately (=160,833*2.6) 418,167 additional people, assuming the average 

US household size of 2.6 persons in 2010, according to the US Census Bureau.  
5 Using EPA estimates derived using rate-based approach, as described in the Regulatory Impact Analysis for the 

Clean Power Plan Final Rule (EPA, 2015). Estimates, reported in 2011 US dollars, were converted to 2014 dollars 

using a CPI conversion factor of 1.05.  



and the resulting transportation emissions are some of the leading contributors to unsustainable suburban 

sprawl (Ewing and Hamidi, 2015) and the sedentary nature of automobile commuting is often cited as a 

contributing factor in rising obesity prevalence (Malik et al., 2013). Policies designed to reduce sprawl via 

mixed-use zoning in suburban areas can reduce miles traveled and time spent commuting, reducing both 

fuel use and obesity rates. This has the potential for direct and indirect climate benefits. Policies designed 

to promote active transport, such as improving walkability in cities, can reduce fuel use and emissions 

alongside improvements in public health leading to direct and indirect climate benefits. Policies designed 

to improve the geographic availability of supermarkets and eliminate food deserts can both reduce fuel use 

from transportation and reduce obesity through improved access to fresh food. While carbon pricing 

certainly remains the most effective climate change mitigation strategy, the indirect climate co-benefits 

resulting from obesity reduction have the potential to further improve the cost-effectiveness of potential 

carbon pricing policies. For example, if higher meat (especially ruminant) consumption contributes to 

obesity prevalence and meat consumption is carbon intensive, then potentially higher meat prices resulting 

from a carbon price would generate reductions in meat consumption (providing direct climate benefits) and  

reductions in obesity (providing indirect climate benefits). These co-benefits have the potential to provide 

needed cost-effectiveness as the goals of sustainable development, along its many dimensions, are pursued.  

7. Conclusion 

Our results demonstrate the importance of the built environment for both public health and sustainable 

development. “Where people live, how they get around, how much they eat and are physically active—all 

contribute to the epidemics of obesity and chronic disease” (Jackson et al., 2013). The same could be said 

for anthropogenic climate change. The potential for mutually-reinforcing policy outcomes is significant, 

while carbon pricing remains a more effective mitigation strategy, obesity reduction has its place in a 

movement to a low-carbon future.  
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