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1 Introduction

Agents spend about 8% of their workday commuting to and from work.1 They make this significant

daily investment, to live and work in different locations, so as to balance their living costs and resi-

dential amenities with the wage they can obtain at their place of employment. The ability of firms in a

location to attract workers depends, therefore, not only on the ability to attract local residents through

migration, but also on the ability to attract commuters from other, nearby, locations. Together, the re-

sponse of migration and commuting to any local shock, including regulatory changes and infrastructure

investments, determine the local employment elasticity. This elasticity is of great policy interest since it de-

termines the effectiveness of local policy. Estimating its magnitude as a response to a variety of shocks

(such as aggregate industry shocks, the discovery of natural resources, financial crises and regression

discontinuities associated with state policy interventions) has been the main concern of a large empirical

literature. In this paper we explore its determinants and characteristics using a detailed quantitative

spatial equilibrium theory.

We develop a quantitative spatial general equilibrium model that incorporates spatial linkages be-

tween locations in both goods markets (trade) and factor markets (commuting and migration). We show

that there is no single local employment elasticity. Instead the local employment elasticity is an en-

dogenous variable that differs across locations depending on their linkages to one another in goods and

factor markets. Calibrating our model to county-level data for the United States, we find that the elas-

ticity of local employment with respect to local productivity shocks varies from close to zero to more

than three. Therefore an average local employment elasticity estimated from cross-section data can be

quite misleading when used to predict the impact of a local shock on any individual county and can

lead to substantial under or overprediction of the effect of the shock. We use our quantitative model to

understand the systematic determinants of the local employment elasticity and argue that a large part of

the variation results from differences in commuting links between a location and its neighbors. This al-

lows us to propose variables that can be included in reduced-form regressions to improve their ability to

predict the heterogeneity in local employment responses. Of course, the full general equilibrium model

is required to quantify the total impact of a shock and its implications for welfare. These counterfactuals

can be undertaken within the model using only the observed values of variables in an initial equilibrium.

Our theoretical framework allows for an arbitrary number of locations that can differ in productivity,

amenities and geographical relationship to one another. The spatial distribution of economic activity is

driven by a tension between productivity differences and home market effects (forces for the concentra-

tion of economic activity) and an inelastic supply of land and commuting costs (dispersion forces). Com-

muting allows workers to access high productivity employment locations without having to live there

and hence alleviates the congestion effect in such high productivity locations. We show that the resulting

commuting flows between locations exhibit a gravity equation relationship with a much higher distance

elasticity than for goods flows, suggesting that moving people is more costly than moving goods across
1See Redding and Turner (2015).
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geographic space. We discipline our quantitative spatial model to match these observed gravity equa-

tion relationships for goods and commuting flows as well as the observed cross-section distributions of

employment, residents and wages across U.S. counties. Given observed data on wages, employment

by workplace, commuting flows and land area, and a parameterization of trade and commuting costs,

we show that the model can be used to recover unique values of the unobserved location fundamentals

(productivity and amenities) that exactly rationalize the observed data as an equilibrium of the model.

We use our model to undertake three quantitative exercises that shed light on spatial linkages in

goods and factor markets. First, we provide evidence on the distribution of local employment elastic-

ities across counties. We do so by calculating 3,111 counterfactual exercises, each shocking one county

in the U.S. with a 5 percent productivity shock. We find substantial heterogeneity in local employment

elasticities across counties. This heterogeneity remains even when we aggregate counties into Commut-

ing Zones (CZ’s), that are intended to better approximate local labor market areas. We show that the

main determinant of this large heterogeneity is the observed patterns of commuting in the equilibrium

prior to the productivity shock. That is, the response of a county to a local shock depends crucially on

its observed commuting ties to other counties. Local employment elasticities estimated in a particular

location, that do not account for this dependence, will in general not apply in another region or context.

Taken together, these results highlight that locations within countries are not independent units in cross-

section regression relationships but are rather systematically linked to one another in goods and factor

markets in a quantitatively significant way.

Given that the heterogeneity in local employment elasticity depends crucially on commuting links,

our next step is to explore these links more thoroughly. We find that commuting intensities cannot eas-

ily be accounted for by standard measures of the size of economic activity in a county or its neighbors.

Therefore, to explore further the importance and determination of commuting, we undertake a second

exercise, in which we use our quantitative model to evaluate the welfare gains from commuting by con-

sidering a counterfactual with prohibitive commuting costs. The commuting technology facilitates a

separation of workplace and residence, enabling people to work in relatively high productivity locations

and live in relatively high amenity locations. Therefore eliminating commuting leads to a dispersal of

employment from locations that were net importers of commuters in the initial equilibrium (e.g. Man-

hattan) towards those locations that were initially net exporters (e.g. Brooklyn and parts of New Jersey).

We find that these reallocations are substantial, with Manhattan experiencing a decline in employment

of over 70 percent, while Brooklyn experiences an increase of more than 100%.

The above logic seems to suggest that commuting might be important only for areas that encompass

the larger cities in the U.S. This is, however, not the case. Although the changes in employment as a

result of eliminating commuting are well explained by initial commuting intensity, this intensity is not

well accounted for by either county or commuting zone size. The results underscore again the relevant

information embedded in commuting links. Overall, we find a welfare cost of eliminating commuting

of around 7.2 percent of real GDP, which is comparable to standard estimates of the welfare gains from
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international trade for a country of a similar size to the United States.

The previous literature in trade and economic geography has mostly abstracted from commuting

when analyzing reductions in the costs of trading goods between locations. However, given the impor-

tance of commuting links in shaping the distribution of economic activity across counties, it is natural to

expect that these links also determine the magnitude of the impact of reductions in trade costs. Hence,

in a third exercise we investigate the interaction between trade and commuting costs. We compare the

counterfactual effects of a 20 percent reduction of trade costs in the actual world with commuting to the

effects in a hypothetical world without commuting.

We find that the impact of a reduction in goods trade costs on the spatial distribution of economic

activity is sensitive to the costs of commuting. In a world without commuting, the ability of high pro-

ductivity locations to increase employment is limited by their ability to attract residents in the face of

congestion costs from an inelastic supply of land. In a world with commuting, these locations can in-

crease employment by attracting residents to neighboring locations, thereby alleviating congestion costs.

In general, reductions in trade costs lead to a more dispersed spatial distribution of economic activity in

the model. However, this dispersal is smaller with commuting than without commuting. Commuting

increases the ability of the most productive locations to serve the national market by drawing workers

from a suburban hinterland, without bidding up land prices as much as would otherwise occur. These

results demonstrate how abstracting from commuting can lead to distorted conclusions for the impact

of trade cost reductions and highlight the richness of the spatial linkages between locations.

Our paper is related to a number of empirical literatures. In international trade, our work relates to

quantitative theoretical models of costly trade in goods following Eaton and Kortum (2002) and exten-

sions. In economic geography, our research contributes to the literature on goods trade and factor mobil-

ity, including Krugman (1991), Hanson (1996, 2005), Helpman (1998), Fujita et al. (1999), Rossi-Hansberg

(2005), Redding and Sturm (2008), Redding (2012), Moretti and Klein (2014), Allen and Arkolakis (2014a),

Caliendo, et al. (2014) and Desmet and Rossi-Hansberg (2014).

In urban economics, our analysis builds on a long line of research on costly trade in people (commut-

ing), including Alonso (1964), Mills (1967), Muth (1969), Lucas and Rossi-Hansberg (2002), Desmet and

Rossi-Hansberg (2013), Behrens, et al. (2014), Ahlfeldt, et al. (2015), Monte (2015) and Allen, Arko-

lakis and Li (2015). In public finance and labor economics, our quantitative analysis connects with

an empirical literature that has estimated the local incidence of labor demand shocks, including Bartik

(1991), Blanchard and Katz (1992), Bound and Holzer (2000), Greenstone, Hornbeck and Moretti (2010),

Michaels (2011), Moretti (2011), Busso, Gregory and Kline (2013), Autor, Dorn and Hanson (2013), Dia-

mond (2013), Notowidigdo (2013) and Yagan (2014) among others.

Unlike most of the above studies, we develop a quantitative general equilibrium spatial model that

incorporates both costly trade in goods and costly mobility and commuting of people between locations.

Through incorporating these spatial linkages in both goods and factor markets, our theoretical and em-

pirical framework unifies research on systems of cities (with trade and migration between cities) and the
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internal organization of economic activity within cities (with commuting within cities). We discipline

our quantitative model to match the observed gravity equation relationships for goods trade and com-

muting flows and to rationalize the observed cross-section distribution of employment, residents and

wages across U.S. counties. The result is a quantitative framework that can be used to evaluate both lo-

cal effects of shocks and their spillovers to other counties through general equilibrium linkages in goods

and factor markets.

The remainder of the paper is structured as follows. Section 2 develops our theoretical framework.

Section 3 discusses the quantification of the model using U.S. data and reports summary statistics on

commuting between counties. Section 4 uses the model to undertake three sets of counterfactuals that

highlight the importance of spatial linkages in goods and factor markets. We examine the local incidence

of productivity shocks (local labor demand shocks), the effects of changes in commuting technology, and

the interaction between changes in trade and commuting costs. Section 5 summarizes our conclusions.

Appendix A contains the detailed derivations of theoretical results and the proofs of propositions, and

Appendix B a description of data sources and manipulations.

2 The Model

We consider an economy that consists of a set of locations n, i ∈ N. These locations are linked in goods

markets through costly trade and in factor markets through migration and costly commuting. The econ-

omy as a whole is populated by a measure L̄ of workers who are endowed with one unit of labor that is

supplied inelastically. Each location n is endowed with an inelastic supply of land (Hn).

2.1 Preferences and Endowments

Workers are geographical mobile and have heterogeneous preferences for locations. Each worker chooses

a pair of residence and workplace locations to maximize their utility taking as given the choices of other

firms and workers.2 The preferences of a worker ω who lives and consumes in region n and works in

region i are defined over final goods consumption (Cnω), residential land use (Hnω), an idiosyncratic

amenities shock (bniω) and commuting costs (κni), according to the Cobb-Douglas form,3

Uniω =
bniω

κni

(
Cnω

α

)α ( Hnω

1− α

)1−α

, (1)

where κni ∈ [1, ∞) is an iceberg commuting cost in terms of utility. The idiosyncratic amenities shock

(bniω) captures the idea that individual workers can have idiosyncratic reasons for living and working in

different locations. We model this heterogeneity in amenities following McFadden (1974) and Eaton and

2Throughout the following we use n to denote a worker’s location of residence and consumption and i to denote a worker’s
location of employment and production, unless otherwise indicated.

3For empirical evidence using U.S. data in support of the constant housing expenditure share implied by the Cobb-Douglas
functional form, see Davis and Ortalo-Magne (2011).

5



Kortum (2002).4 For each worker ω living in location n and working in location i, idiosyncratic amenities

(bniω) are drawn from an independent Fréchet distribution,

Gni(b) = e−Bnib−ε
, Bni > 0, ε > 1, (2)

where the scale parameter Bni determines the average amenities from living in location n and working in

location i, and the shape parameter ε > 1 controls the dispersion of amenities. This idiosyncratic ameni-

ties shock implies that different workers make different choices about their workplace and residence

locations when faced with the same prices and wages. All workers ω residing in region n and working

in region i receive the same wage and make the same consumption and residential land choices. Hence

we suppress the implicit dependence on ω except where important.

The goods consumption index in location n takes the constant elasticity of substitution (CES) or

Dixit-Stiglitz form and is defined over a continuum of varieties sourced from each location i,

Cn =

[
∑
i∈N

∫ Mi

0
cni(j)ρdj

] 1
ρ

, σ =
1

1− ρ
> 1. (3)

Equilibrium consumption in location n of each variety sourced from location i is

cni(j) = αXnPσ−1
n pni (j)

−σ , (4)

where Xn is aggregate expenditure in location n; Pn is the price index dual to (3), and pni (j) is the “cost

inclusive of freight” price of a variety produced in location i and consumed in location n.

We assume that land is owned by landlords, who receive income from residents’ expenditure on

land, and consume goods where they live. Therefore total expenditure on consumption goods equals

the fraction α of the total income of residents plus the entire income of landlords (which equals the

fraction (1− α) of the total income of residents):

PnCn = αv̄nLRn + (1− α) v̄nLRn = v̄nLRn

where Pn is the dual price index for consumption goods; v̄n is the average income of residents across

employment locations; and LRn is the measure of residents. Land market clearing determines the equi-

librium land price (Qn):

Qn = (1− α)
v̄nLRn

Hn
, (5)

where Hn is the inelastic supply of land.

2.2 Production

Production is modelled as in the new economic geography literature following Krugman (1991) and

Helpman (1998). Varieties are produced under conditions of monopolistic competition. To produce a

4A long line of research models location decisions using preference heterogeneity, as in Artuc, Chaudhuri and McClaren
(2010), Kennan and Walker (2011), Grogger and Hanson (2011), Moretti (2011) and Busso, Gregory and Kline (2013).
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variety, a firm must incur a fixed cost of F units of labor and a constant variable cost in terms of labor that

depends on a region’s productivity Ai.5 Therefore the total amount of labor (li(j)) required to produce

xi(j) units of a variety j in region i is6

li(j) = F+
xi(j)

Ai
. (6)

Profit maximization implies that equilibrium prices are a constant mark-up over marginal cost, namely,

pni(j) =
(

σ

σ− 1

)
dniwi

Ai
, (7)

where wi is the wage in region i. Profit maximization and zero profits imply that equilibrium output of

each variety is equal to

xi(j) = AiF (σ− 1) . (8)

A constant equilibrium output of each variety and labor market clearing then imply that the total mea-

sure of produced varieties (Mi) is proportional to the measure of employed workers (LMi),

Mi =
LMi

σF
. (9)

2.3 Goods Trade

The model implies a gravity equation for bilateral trade between regions. Using the CES expenditure

function, equilibrium prices (7) and the measure of firms in (9), the share of region n’s expenditure on

goods produced in region i is

πni =
Mi p1−σ

ni

∑k∈N Mk p1−σ
nk

=
LMi (dniwi/Ai)

1−σ

∑k∈N LMk (dnkwk/Ak)
1−σ

. (10)

Therefore trade between regions n and i depends on bilateral trade costs (dni) in the numerator (“bilateral

resistance”) and on trade costs to all possible sources of supply k in the denominator (“multilateral resis-

tance”). Trade balance then implies that total workplace income in each location equals total expenditure

on goods produced in that location, namely,7

wiLMi = ∑
n∈N

πniv̄nLRn. (11)

5We assume a representative firm within each location. However, it is straightforward to generalize the analysis to introduce
firm heterogeneity following Melitz (2003), where all firms entering in location i draw a productivity ϕ from an untruncated
Pareto distribution g (ϕ) that can be used to produce varieties in location i.

6We abstract from commercial land use, although it is straightforward to extend the model to consider the case where land
is used both for residential and commercial purposes.

7Although we refer to trade balance as total workplace income equals total expenditure on goods produced in a location,
total residential income need not equal total workplace income (because of commuting). Therefore total workplace income
need not equal total residential expenditure, which implies that total exports need not equal total imports. When we take the
model to the data, we also allow for the possibility that total residential expenditure need not equal total residential income.
Within the model, these two variables can diverge if landlords own land in different locations from where they consume. This
is how we interpret deficits in the empirical section.
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Using equilibrium prices (7) and labor market clearing (9), the price index dual to the consumption index

(3) can be expressed as

Pn =
σ

σ− 1

(
1

σF

) 1
1−σ

[
∑
i∈N

LMi (dniwi/Ai)
1−σ

] 1
1−σ

=
σ

σ− 1

(
LMn

σFπnn

) 1
1−σ dnnwn

An
. (12)

where the second equality uses (10) to write the price index (12) as in the class of models considered by

Arkolakis and Allen (2014b). This class of models includes increasing returns models such as Krugman

(1991) and constant returns models such as versions of Armington (1969) and Eaton and Kortum (2002).

One difference between the increasing returns model of new economic geography considered here

and the constant returns versions of Armington (1969) and Eaton and Kortum (2002) is that here the

measure of employed workers in each region (LMi) enters the trade share (πni) and price index (Pn). This

role for the measure of employed workers reflects consumer love of variety and the endogenous measure

of varieties. As more agents choose to work in a region, this increases the measure of varieties produced

in that region, which increases the share of consumer expenditure allocated to that region and reduces

the consumer price index (this is the pecuniary externality highlighted by the New Economic Geography

Literature). A similar role for the measure of employed workers arises in versions of Armington (1969)

and Eaton and Kortum (2002) augmented to include external economies of scale, as considered further

below.

2.4 Labor Mobility and Commuting

Workers are geographically mobile and choose their pair of residence and workplace locations to maxi-

mize their utility. Given our specification of preferences (1), the indirect utility function for a worker ω

residing in region n and working in region i is

Uniω =
bniωwi

κniPα
n Q1−α

n
. (13)

Indirect utility is a monotonic function of idiosyncratic amenities (bniω) and these amenities have a

Fréchet distribution. Therefore, the indirect utility for a worker living in region n and working in re-

gion i also has a Fréchet distribution given by

Gni(U) = e−ΨniU−ε
, Ψni = Bni

(
κniPα

n Q1−α
n

)−ε
wε

i . (14)

Each worker selects the bilateral commute that offers her the maximum utility, where the maximum of

Fréchet distributed random variables is itself Fréchet distributed. Using these distributions of utility, the

probability that a worker chooses to live in location n and work in location i is

λni =
Bni
(
κniPα

n Q1−α
n
)−ε wε

i

∑r∈N ∑s∈N Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

=
Φni

Φ
. (15)
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The idiosyncratic shock to preferences bniω implies that individual workers choose different bilateral

commutes when faced with the same prices (Pn, Qn, wi), commuting costs (κni) and location character-

istics (Bni). Other things equal, workers are more likely to live in location n and work in location i, the

lower the consumption goods price index (Pn) and land prices (Qn) in n, the higher the wages (wi) in i ,

the more attractive the average amenities for this bilateral commute (Bni), and the lower the commuting

costs (κni).

Summing these probabilities across workplaces i for a given residence n, we obtain the overall prob-

ability that a worker resides in location n (λRn). Similarly, summing across residences n for a given

workplace i, we obtain the overall probability that a worker works in location i (λMi). So,

λRn =
LRn

L̄
= ∑

i∈N
λni = ∑

i∈N

Φni

Φ
, and λMi =

LMn

L̄
= ∑

n∈N
λni = ∑

n∈N

Φni

Φ
, (16)

where labor market clearing corresponds to ∑n λRn = ∑i λMi = 1.

The average income of a worker living in n depends on the wages in all the nearby employment

locations. To construct this average income of residents, note first that the probability that a worker

commutes to location i conditional on living in location n is

λni|n =
Bni (wi/κni)

ε

∑s∈N Bns (ws/κns)
ε . (17)

Note that equation (17) implies that, as with trade flows, commuting flows exhibit a gravity equation

with an elasticity of commuting flows with respect to commuting cost (κni) given by −ε. The probabil-

ity of commuting to location i conditional on living in location n depends on the wage (wi), amenities

(Bni) and commuting costs for workplace i in the numerator (“bilateral resistance”) as well as the wage

(ws), amenities (Bns) and commuting costs (κns) for all other possible workplaces s in the denominator

(“multilateral resistance”).

Using these conditional commuting probabilities, we obtain the following labor market clearing con-

dition that equates the measure of workers employed in location i (LMi) with the measure of workers

choosing to commute to location i, namely,

LMi = ∑
n∈N

λni|nLRn, (18)

where LRn is the measure of residents in location n. Expected worker income conditional on living in lo-

cation n is then equal to the wages in all possible workplaces weighted by the probabilities of commuting

to those workplaces conditional on living in n, or

v̄n = ∑
i∈N

λni|nwi. (19)

Expected worker income (v̄n) is high in locations that have low commuting costs (low κni) to high-wage

employment locations.
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Finally, population mobility implies that expected utility is the same for all pairs of residence and

workplace and equal to expected utility for the economy as a whole. That is,

Ū = E [Uniω] = Γ
(

ε− 1
ε

)[
∑

r∈N
∑

s∈N
Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

] 1
ε

all n, i ∈ N, (20)

where E is the expectations operator and the expectation is taken over the distribution for the idiosyn-

cratic component of utility and Γ(·) is the Gamma function.

Although expected utility is equalized across all pairs of residence and workplace locations, real

wages differ as a result of preference heterogeneity. Workplaces and residences face upward-sloping

supply functions for workers and residents respectively (the choice probabilities (16)). Each workplace

must pay higher wages to increase commuters’ real income and attract additional workers with lower

idiosyncratic amenities for that workplace. Similarly, each residential location must offer a lower cost

of living to increase commuters’ real income and attract additional residents with lower idiosyncratic

amenities for that residence. Bilateral commutes with attractive characteristics (high workplace wages

and low residence cost of living) attract additional commuters with lower idiosyncratic amenities until

expected utility (taking into account idiosyncratic amenities) is the same across all bilateral commutes.

Our quantitative framework yields a simple expression for counterfactual changes in welfare in terms

of observable sufficient statistics, including each location’s domestic trade and commuting shares. From

expected utility (20) and commuting probabilities (15), welfare in any given location n can be expressed

as

Ū = Γ
(

ε− 1
ε

)
wn

κnn · Pα
n Q1−α

n

(
Bnn

λnn

) 1
ε

. (21)

Hence, the relative change in this common level of expected utility following a counterfactual change in

the model’s exogenous variables is given by

̂̄U =
1

κ̂nn

(
Ân

d̂nn

)α(
B̂nn

λ̂nn

) 1
ε ( 1

π̂nn

) α
σ−1
(

ŵn̂̄vn

)1−α L̂
α

σ−1
Mn

L̂1−α
Rn

. (22)

This equation identifies the mechanisms through which welfare can change in spatial equilibrium through

linkages in goods and factor markets.

2.5 General Equilibrium

The general equilibrium of the model can be referenced by the following vector of six variables {wn,

v̄n, Qn, LMn, LRn, Pn}N
n=1 and a scalar Ū. Given this equilibrium vector and scalar, all other endoge-

nous variables of the model can be determined. This equilibrium vector solves the following six sets

of equations: trade balance in each location (11), average residential income (19), land market clearing

(9), workplace choice probabilities ((16) for LMn), residence choice probabilities ((16) for LRn), and price

indices (12). The last condition needed to determine the scalar Ū is the labor market clearing condition,

L̄ = ∑n∈N LRn = ∑n∈N LMn.
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Proposition 1 (Existence and Uniqueness) If

1+ ε

1+ (1− α) ε
< σ

there exists a unique general equilibrium of this economy.

Proof. See appendix.

The condition for the existence of a unique general equilibrium in Proposition 1 is a generalization

of the condition in the Helpman (1998) model to incorporate commuting and heterogeneity in worker

preferences over locations. Defining α̃ = α/(1+ 1/ε), this condition for a unique general equilibrium

can be written as σ(1− α̃) > 1. Assuming prohibitive commuting costs (κni → ∞ for n 6= i) and taking

the limit of no heterogeneity in worker preference over locations (ε → ∞), this reduces to the Helpman

(1998) condition for a unique general equilibrium of σ(1− α) > 1.

We follow the new economic geography literature in modeling agglomeration forces through love

of variety and increasing returns to scale. But the system of equations for general equilibrium in our

new economic geography model is isomorphic to a version of Eaton and Kortum (2002) and Redding

(2012) with commuting and external economies of scale or a version of Armington (1969) model with

commuting and external economies of scale (as in Arkolakis and Allen 2014a and Arkolakis, Allen and

Li 2015), as summarized in the following proposition.

Proposition 2 (Isomorphisms) The system of equations for general equilibrium in our new economic geography

model with commuting and agglomeration forces through love of variety and increasing returns to scale is isomor-

phic to that in a version of the Eaton and Kortum (2002) model with commuting and external economies of scale

or that in a version of the Armington (1969) model with commuting and external economies of scale.

Proof. See appendix.

Following a long line of research in spatial economics, we focus on versions of these models that

capture congestion forces through residential land use and an inelastic supply of land. But the same

system of equations for general equilibrium can be generated by models that instead directly assume a

congestion force (e.g. by assuming that utility in each location depends negatively on the measure of

residents in that location).

2.6 Computing Counterfactuals

We use our quantitative framework to solve for the counterfactual effects of changes in the exogenous

variables of the model (productivity An, amenities Bni, commuting costs κni, and trade costs dni) without

having to necessarily determine the unobserved values of these exogenous variables. Instead in the Ap-

pendix we show that the system of equations for the counterfactual changes in the endogenous variables

of the model can be written solely in terms of the observed values of variables in an initial equilibrium

11



(employment LMi, residents LRi, workplace wages wn, average residential income v̄n, trade shares πni,

and commuting probabilities λni). This approach uses observed bilateral commuting probabilities to

capture unobserved bilateral commuting costs and amenities. Similarly, if bilateral trade shares between

locations are available, they can be used to capture unobserved bilateral trade frictions (as in Dekle,

Eaton and Kortum 2007). However, since bilateral trade data are only available at a higher level of ag-

gregation than the counties we consider in our data, we make some additional parametric assumptions

to solve for implied bilateral trade shares between counties, as discussed below.

In the model, we assume that trade is balanced so income equals expenditure. However, when

taking the model to the data, we allow for intertemporal trade deficits that are treated as exogenous in

our counterfactuals, as in Dekle, Eaton and Kortum (2007) and Caliendo and Parro (2015).

3 Data and Measurement

Our empirical analysis combines data from a number of different sources for the United States. From

the Commodity Flow Survey (CFS), we use data on bilateral trade and distances shipped for 123 CFS

regions. From the American Community Survey (ACS), we use data on commuting probabilities be-

tween counties. From the Bureau of Economic Analysis (BEA), we use data on employment and wages

by workplace. We combine these data sources with a variety of other Geographical Information Systems

(GIS) data.

We use our data on employment and commuting to calculate the implied number of residents and

their average income by county. First, from commuting market clearing (18), we obtain the number of

residents (LRn) using data on the number of workers (LMn) and commuting probabilities conditional on

living in each location (λni|n). Second, we use these conditional commuting probabilities, together with

county wages, to obtain average residential income (v̄n) as defined in (19).

3.1 Gravity in Goods Trade

One of the key predictions of the model is a gravity equation for goods trade. We observe bilateral trade

between 123 CFS regions but not bilateral trade between counties.8 To implement the model quantita-

tively at the county level, we use the trade balance condition (11),

wiLMi − ∑
n∈N

LMi (dniwi/Ai)
1−σ

∑k∈N LMk (dnkwk/Ak)
1−σ

v̄nLRn = 0, (23)

where we observe (or have solved for) wages (wi), employment (LMi), average residential income (v̄i)

and residents (LRi).

8Other recent studies using the CFS data include Caliendo et. al (2014), Duranton, Morrow and Turner (2014) and Dingel
(2015). The CFS is a random sample of plant shipments within the United States (foreign trade shipments are not included).
CFS regions are the smallest geographical units for which this random sample is representative, which precludes constructing
bilateral trade flows between smaller geographical units using the sampled shipments.
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Given the elasticity of substitution (σ), the observed data (wi, LMi, v̄i, LRi) and a parameterization of

trade costs (d1−σ
ni ), equation (23) provides a system of N equations that can be solved for a unique vector

of N unobserved productivities (Ai). We prove this formally in the next proposition.

Proposition 3 (Productivity Inversion) Given the elasticity of substitution (σ), the observed data on wages,

employment, average residential income and residents {wi, LMi, v̄i, LRi}, and a parameterization of trade costs

(d1−σ
ni ), there exist unique values of the unobserved productivities (Ai) for each location i that are consistent with

the data being an equilibrium of the model.

Proof. See the appendix.

The resulting solutions for productivities (Ai) capture unobserved factors (e.g. natural resources)

that make a location more or less attractive for employment conditional on the observed distribution of

wages, residents and average residential income and the parameterized values of trade costs. Having re-

covered these unique unobserved productivities (Ai), the model generates predictions for bilateral trade

between counties from (10), which we use in our counterfactuals for changes in the model’s exogenous

variables as discussed above. Aggregating trade between counties within pairs of CFS regions, we can

compare the model’s predictions for trade between CFS to the observed trade between CFS regions in

the data. We undertake this comparison below.

To parameterize trade costs (d1−σ
ni ), we use a central estimate for the elasticity of substitution from the

existing empirical literature: we assume σ = 4 based on the estimates using U.S. data in Bernard, et al.

(2003). We model bilateral trade costs as a function of distance. For bilateral pairs with positive trade,

we assume that bilateral trade costs are a constant elasticity function of distance and a stochastic error

(dni = distψ
ni ẽni). For bilateral pairs with zero trade, the model implies prohibitive trade costs (dni → ∞).

Taking logarithms in the trade share (10) for pairs with positive trade, we obtain that the value of bilateral

trade between source i and destination n (Xni) is given by

log Xni = ζn + χi − (σ− 1)ψ log distni + log eni, (24)

where the source fixed effect (χi) controls for employment, wages and productivity (LMi, wi, Ai) in the

source location i; the destination fixed effect (ζn) controls for average income, v̄n, residents, LRn, and

multilateral resistance (as captured in the denominator of equation (10)) in the destination location n;

and log eni = (1− σ) log ẽni.

Estimating the gravity equation (24) for all bilateral pairs with positive trade using OLS, we find a

regression R-squared of 0.83. In Figure 1, we display the conditional relationship between the log value

of trade and log distance, after removing source and destination fixed effects from both log trade and log

distance. We find that the log linear functional form provides a good approximation to the data, with a

tight and approximately linear relationship between the two variables. We estimate a coefficient on log

distance of − (σ− 1)ψ = −1.29. For our assumed value of σ = 4, this implies an elasticity of trade costs

with respect to distance of ψ = 0.43. The tight linear relationship in Figure 1, makes us confident in this

13
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Figure 1: Gravity in Goods Trade Between CFS Regions

parametrization of trade costs as d1−σ
ni = dist−1.29

ni as a way of solving the trade balance condition (23) for

unobserved productivities (Ai).

As an alternative check on our specification, Figure 2 displays the model’s predictions for bilateral

trade between CFS regions against the corresponding values in the data. The only way in which we used

the data on trade between CFS regions was to estimate the distance elasticity− (σ− 1)ψ = −1.29. Given

this distance elasticity, we use the goods market clearing condition (23) to solve for productivities and

generate the model’s predictions for bilateral trade between countries and hence CFS regions. Therefore,

the model’s predictions and the data can differ from one another. Nonetheless, we find a strong and

approximately log linear relationship between the model’s predictions and the data, which is tighter for

the larger trade values that account for most of aggregate trade.

3.2 The Magnitude and Gravity of Commuting Flows

We start by providing evidence on the quantitative relevance of commuting as a source of spatial link-

ages between counties and CZ’s. To do so, we use data from the American Community Survey (ACS),

which reports county-to-county worker flows for 2006-2010. To abstract from business trips that are not

between a worker’s usual place of residence and workplace, we define commuting flows as those of less

than 120 kilometers in each direction (a round trip of 240 kilometers).9 Table 1 reports some descriptive

statistics for these commuting flows.

9The majority of commutes are less than 45 minutes in each direction (Duranton and Turner 2011), with commutes of 120
minutes in each direction rare. In our analysis, we measure distance between counties’ centroids. We choose the 120 kilometers
threshold based on a change in slope of the relationship between log commuters and log distance at this distance threshold.
See the web appendix for further discussion.
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Figure 2: Bilateral Trade Shares in the Model and Data

We find that commuting beyond county boundaries is substantial and varies in importance across

locations. For the median county, around 27 percent of its residents work outside the county (first row,

third column) and around 20 percent of its workers live outside the county (second row, third column).

For the county at the 90th percentile, these two figures rise to 53 and 37 percent respectively (fifth column,

first and second rows respectively).

One might think that using commuting zones circumvents the need to incorporate commuting in the

analysis since these areas are designed to encompass most commuting flows between counties. Never-

theless, we find that CZ’s provide an imperfect measure of local labor markets, with substantial com-

muting beyond CZ boundaries that again varies in importance across locations. For the median county,

around 33 percent of the workers who commute outside their county of residence also commute outside

their CZ of residence (third row, third column), while around 37 percent of the workers who commute

outside their county of workplace also commute outside their CZ of workplace (fourth row, third col-

umn). For the CZ at the 90th percentile, these two figures rise to 79 and 73 percent respectively (fifth

column). Taken together, these results highlight the quantitative relevance of commuting as a source of

spatial linkages between counties and CZ’s within the United States.

A key prediction of the model is a gravity equation for commuting. Using land market clearing (5)

and the price index (12), the commuting probability (15) can be written as

λni −
Bniκ

−ε
ni

(
LMn
πnn

)− αε
σ−1 Aαε

n w−αε
n v̄−ε(1−α)

n

(
LRn
Hn

)−ε(1−α)
wε

i

∑r∈N ∑s∈N Brsκ
−ε
rs

(
LMr
πrr

)− αε
σ−1 Aαε

r w−αε
r v̄−ε(1−α)

r

(
LRr
Hr

)−ε(1−α)
wε

s

= 0. (25)

The commuting probabilities (25) provide a system of N × N equations that can be solved for a unique
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p10 p25 p50 p75 p90 Max Mean

Commuters from Residence 0.06 0.14 0.27 0.42 0.53 0.82 0.29

Commuters to Workplace 0.07 0.14 0.20 0.28 0.37 0.81 0.22

Outside CZ | Total (Res) 0.04 0.14 0.33 0.58 0.79 1.00 0.37

Outside CZ | Total (Work) 0.08 0.19 0.37 0.55 0.73 1.00 0.39

Note: Tabulations on 3,111 counties and 709 commuting zones; minimum is 0 for all. The first row shows fraction of residents
that work outside county. The second row shows fraction of workers who live outside county. The third row shows the fraction
of residents that work outside county who also work outside the county’s commuting zone. The fourth row shows the fraction
of workers that live outside county who also live outside the county’s commuting zone. p10, p25 etc refer to the 10th, 25th etc
percentiles of the distribution.

Table 1: Commuting Across Counties and Commuting Zones

matrix of N × N unobserved amenities (Bni). The next proposition shows this formally.

Proposition 4 (Amenities Inversion) Given the share of consumption goods in expenditure (α), the heterogene-

ity in location preferences (ε), the observed data on wages, employment, trade shares, average residential income,

residents and land area {wi, LMi, πii, v̄i, LRi, Hi}, and a parameterization of commuting costs (κ−ε
ni ), there exist

unique values of the unobserved amenities (Bni) for each pair of locations n and i that are consistent with the data

being an equilibrium of the model.

Proof. See the appendix.

The resulting solutions for amenities (Bni) capture unobserved factors that make a pair of residence

and workplace locations more or less attractive conditional on the observed wages, employment, trade

shares, average residential income, residents, and land area, as well as the parameterized commuting

costs (e.g. attractive scenery and differences in transport infrastructure that are not captured in the para-

meterized commuting costs). Together unobserved productivity (Ai) and amenities (Bni) correspond to

structural residuals that ensure that the model exactly replicates the observed data given the parameters

and our assumptions for trade and commuting costs.

We model bilateral commuting costs as a function of distance. For bilateral pairs with positive com-

muting, we assume that bilateral commuting costs depend on distance with elasticity φ and a stochastic

error (κni = distφ
ni g̃ni). For bilateral pairs with zero commuting, the model implies negligible ameni-

ties (Bni → 0) and/or prohibitive commuting costs (κni → ∞). Taking logarithms in the commuting

probability (15) for pairs with positive commuting, we obtain:

log λni = g0 + ηn + µi − φε log distni + log gni, (26)
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Figure 3: Gravity in Commuting Between Counties

where the constant g0 captures the denominator of λni; the origin fixed effect (ηn) controls for residence

characteristics (Pn, Qn); the destination fixed effect (µi) controls for workplace characteristics (wi); and

log gni = log Bni − ε log g̃ni.

Estimating the gravity equation (26) for all bilateral pairs with positive commuters using OLS, we

find a regression R-squared of 0.80. In Figure 3, we display the conditional relationship between log

commuters and log distance, after removing residence and workplace fixed effects from both log com-

muters and log distance. We find that the log linear functional form provides a good approximation to

the data, with a tight and approximately linear relationship between the two variables, with an estimated

coefficient on log distance of −φε = −4.43. To separately identify φ and ε, we use additional structure

from the model, which implies that the destination fixed effects µi capture variation in workplace wages:

log λni = g0 + ηn + ε log wi − φε log distni + log gni (27)

We estimate the gravity equation (27) imposing φε = 4.43 from our estimates above and identify ε

from the coefficient on wages. Estimating (27) using OLS is potentially problematic, because workplace

wages (wi) depend on the supply of commuters, which in turn depends on amenities (Bni) that appear

in the error term gni. Therefore we instrument log wi with the log productivities log Ai that we recov-

ered from the trade balance condition above, using the fact that the model implies that productivity

satisfies the exclusion restriction of only affecting commuting flows through wages. Our Two-Stage-

Least-Squares estimate of the Fréchet shape parameter for the heterogeneity of worker preferences is

ε = 3.30, which implies an elasticity of commuting costs with respect to distance of φ = 4.43/ε = 1.34.10

10We find that the Two-Stage-Least-Squares estimates are larger than the OLS estimates, consistent with the idea that bilateral
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These results are consistent with the view that transporting people is considerably more costly than

transporting goods (φ = 1.34 compared to ψ = 0.43 above), in line with the substantial opportunity cost

of time spent commuting. The tight fit shown in Figure 3, makes us confident that our parametrization

of commuting costs and amenities in terms of distance fits the data quite well.11

3.3 House Prices

We assume a central value for the share of housing in consumer expenditure from the Bureau of Eco-

nomic Analysis of 1− α = 0.40 percent. As discussed above, we calibrate productivities (Ai) and ameni-

ties (Bni) such that the model exactly replicates the observed data on commuting flows, wages, employ-

ment and land area and the implied values of residents, and average residential income for the assumed

parameters. As a check on our use of the Cobb-Douglas functional form to model residential land use,

Figure 4 displays the model’s predictions for land prices against median house prices in the data12. Al-

though the model is necessarily an abstraction, and there are a number of potential sources of differences

between land prices and house prices, we find a strong and approximately log linear relationship across

counties between the model’s predictions and the data. The slope of the relationship is 2.04 and the

R-squared is 0.26, which is quite large given the simplicity of equation (5).

4 Quantitative Exercises

We have now quantified the model to be consistent with gravity in goods trade, gravity in commuting

flows and the observed cross-section distribution of employment and wages. We next use the model to

undertake three quantitative exercises that shed light on spatial linkages in goods and factor markets.

First, we provide evidence on the local employment elasticity and demonstrate its heterogeneity across

counties. We show that commuting links are essential to explain this heterogeneity, so in a second ex-

ercise we set out to explain the role of commuting in determining the spatial distribution of economic

activity and welfare by considering a counterfactual with prohibitive commuting costs. Given the im-

portance of commuting links, in a third exercise we investigate their interaction with trade costs. We

compare the counterfactual effects of a reduction in trade costs in the actual world with commuting to

commutes with attractive amenities have a higher supply of commuters and hence lower wages. The first-stage F-Statistic for
productivity is 228.1, confirming that productivity is a powerful instrument for wages. Note that one could have estimated
jointly φ and ε from eq. (27) directly. Our approach however imposes only the minimal set of necessary restrictions at every
step: we estimate a flexible gravity structure to identify φε in (26), and a slightly less general specification (where destination
fixed effects are restricted to capture only variation in workplace wages) to identify ε. Estimating (27) directly would yield very
similar results: we find ε = 3.19, φε = 4.09, and φ = 1.28.

11Alternatively, we could use the commuting probability (15), to measure a composite of relative commuting costs and
bilateral amenities with the Head and Ries (2001) index:

(
λni
λnn

λin
λii

) 1
2

=

(
Bniκ

−ε
ni

Bnnκ−ε
nn

Binκ−ε
in

Biiκ
−ε
ii

) 1
2

.

12To measure house prices in the data, we use the county median housing value from the ACS (2010). To generate predicted
land prices in the model, we use total expenditure (income plus the trade deficit).
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Figure 4: Land Prices in the Model and House Prices in the Data

the effects in a hypothetical world without commuting.

4.1 Local Employment Elasticities

To provide evidence on local employment elasticities, we compute 3,111 counterfactual exercises where

we shock each county with a 5 percent productivity shock (holding productivity in all other counties and

holding all other exogenous variables constant).13 Figure 5 shows the estimated kernel density for the

distribution of the general equilibrium elasticity of employment with respect to the productivity shock

across these treated counties (black line). We also show the 95 percent confidence intervals around this

estimated kernel density (gray shading).

The mean estimated local employment elasticity of around 1.52 is greater than one because of the

home market effects in the model. Around this mean, we find substantial heterogeneity in the predicted

effects of the productivity shock, which vary from close to 0.5 to almost 2.5. This variation is surpris-

ingly large. It implies that taking a local employment elasticity estimated for one group of counties and

applying that elasticity to another group of counties can lead to substantial discrepancies between the

true and predicted impacts of a productivity shock.

To provide a point of comparison, Figure 6 also includes the general equilibrium elasticity of residents

in a county with respect to the same 5 percent productivity shock in that county (again holding other

parameters constant). Again we show the estimated kernel density across the 3,111 treated counties

(black line) and the 95 percent confidence intervals (gray shading). We find far more heterogeneity across

counties in the employment elasticity than in the residents elasticity (which ranges from around 0.2 to

13We have experimented with shocks of 1% and 10% as well, with essentially unchanged results.
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Figure 5: Kernel density for the distribution of employment elasticities in response to a productivity
shock across counties

1.2). Since employment and residents can only differ through commuting, this by itself suggests that the

heterogeneity in the local employment elasticity in response to the productivity shock is largely driven

by commuting links between counties. In Figures 18-22 in Appendix A.8, we show that we continue to

find substantial heterogeneity in local employment elasticities if we undertake the same analysis using

commuting zones (CZs) rather than counties, or if we shock counties with patterns of spatially correlated

shocks reproducing the industrial composition of the U.S. economy.

4.1.1 Explaining the Heterogeneity in Local Employment Elasticities

We use the model to provide intuition on the determinants of the general equilibrium local employment

elasticities, dLMn
dAn

An
LMn

. We also use the structure of the model to determine a set of variables that can

be used empirically to account for the estimated heterogeneity in the distribution of local employment

elasticities. To do so, we compute partial equilibrium elasticities of own wages and own employment

with respect to the productivity shock. These partial equilibrium elasticities capture the direct effect

of a productivity shock on wages, employment and residents in the treated location, holding constant

all other endogenous variables at their values in the initial equilibrium.14 Hence, although potentially

useful to provide intuition, or as empirical controls, they do not account for all the rich set of interactions

14See Section A.7 in the appendix for the derivation of these partial equilibrium elasticities.
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Figure 6: Kernel density for the distribution of employment and residents elasticities in response to a
productivity shock across counties

in the model captured by the general equilibrium elasticities presented in Figures 5.

If we hold constant all variables except for wn, LMn , and LRn in the treated county n, the local em-

ployment elasticity as a result of a productivity shocks is15

∂LMn

∂An

An

LMn
=

∂LMn

∂wn

wn

LMn
· ∂wn

∂An

An

wn
. (28)

From the trade balance condition (11), the partial elasticity of wages with respect to the productivity

shock is given by

∂wn

∂An

An

wn
=

(σ− 1)∑i∈N (1− πin) ξ in

[1+ (σ− 1)∑i∈N (1− πin) ξ in] + [1−∑i∈N (1− πin) ξ in]
∂LMn
∂wn

wn
LMn
− ξnn

∂LRn
∂wn

wn
LRn

. (29)

where ξ in = πinαv̄iLRi/wnLn is the share of expenditure from market i in location n’s income. The

intuition for this expression can be seen most clearly by evaluating it for small changes in employment

and residents ( ∂LMn
∂wn

wn
LMn

= ∂LRn
∂wn

wn
LRn

= 0). From the remaining terms in (σ− 1)∑i∈N (1− πin) ξ in, the

elasticity of wages with respect to productivity is high when location n accounts for a small share of

expenditure (small πin) in markets i that account for a large share of its income (high ξ in). In these

circumstances, the productivity shock reduces the prices of location n’s goods and results in only a

15Note that we use the partial derivative symbol, ∂LMn
∂An

An
LMn

, to denote the partial equilibrium elasticity when we allow wn,
LMn , and LRn to change but keep other variables in all other counties fixed.
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small reduction in the goods price indices (small πin) in its main markets (high ξ in).16 Therefore the

productivity shock leads to a large increase in the demand for location n’s goods and hence in its wages.

Thus ∑i∈N (1− πin) ξ in provides a measure of location n’s linkages to other locations in goods markets.

From the commuting market clearing condition (18), the partial elasticity of employment respect to

wages is
∂LMn

∂wn

wn

LMn
= ε ∑

i∈N

(
1− λin|i

)
ϑin+ϑnn

(
∂LRn

∂wn

wn

LRn

)
, (30)

where ϑin = λin|iLRi/LMn is the share of commuters from source i in location n’s employment. The in-

tuition for this expression again can be seen most clearly by evaluating it for small changes in residents

( ∂LRn
∂wn

wn
LRn

= 0). From the remaining term in ε ∑i∈N
(
1− λin|i

)
ϑin, the elasticity of employment with re-

spect to wages is high when location n accounts for a small share of commuters (small λin|i) from sources

i that supply a large fraction of its employment (high ϑin). In these circumstances, location n’s wage in-

crease makes it a more attractive workplace and results in only a small increase in commuting market

access (small λin|i) in its main sources of commuters (high ϑin).17 Therefore the increase in wages leads

to a large increase in commuters to location n and hence in its employment. Thus ∑i∈N
(
1− λin|i

)
ϑin

provides a measure of location n’s linkages to other locations through commuting markets.

From the residential choice probabilities (16), the partial elasticity of residents with respect to wages

is
∂LRn

∂wn

wn

LRn
= ε

(
λnn

λRn
− λMn

)
, (31)

which also has an intuitive interpretation. A higher wage in location n makes it a more attractive work-

place and increases its employment. Whether this increase in location n’s employment leads to an in-

crease in its share of residents depends on the fraction of residents who work locally (λnn/λRn) relative to

location n’s overall share of employment (λMn). Thus (λnn/λRn − λMn) provides a measure of location

n’s linkages to other locations through migration.

Using (31) in (30), and substituting the result into (29), we obtain closed-form solutions for the par-

tial equilibrium elasticities of wages, employment and residents to a productivity shock. These partial

equilibrium elasticities depend solely on the observed values of variables in the initial equilibrium: res-

idential employment shares (λRn), conditional commuting probabilities (λin|i), employment shares (ϑin),

trade shares (πin) and income shares (ξ in).

When we undertake our counterfactuals, we solve for the full general equilibrium effect of the pro-

ductivity shock to each county. But these partial equilibrium elasticities in terms of observed variables

have substantial explanatory power in predicting the impact of the productivity shock across locations.

In Table 2, we examine the determinants of the heterogeneity in the elasticity of employment with re-

spect to the productivity shock across the treated counties. In Column (1) we regress these elasticities on

16These price indices summarize the price of competing varieties in each market. Note that the elasticity of the price index
(12) in location i with respect to wages in location n is (∂Pi/∂wn) (wn/Pi) = πin.

17Commuting market access appears in the numerator of the residential choice probabilities (λRi in (16)) and summarizes
access to employment opportunities: Wi =

[
∑s∈N Bis (ws/κis)

ε]1/ε. Note that the elasticity of commuting market access in
location i with respect to wages in location n is (∂Wi/∂wn) (wn/Wi) = λin|i.
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a constant, which captures the mean employment elasticity across the 3,111 treated counties. In Columns

(2) through (4) we attempt to explain the heterogeneity in local employment elasticities using standard

county controls. In Column (2) we include log county employment as a control for the size of economic

activity in a county. In Column (3) we also include log county wages and log county land area. In Col-

umn (4) we also include the average wage and total employment in neighboring counties. Although

these controls are all typically statistically significant, we find that they are not particularly successful in

explaining the variation in employment elasticities. Adding a constant and all these controls yields an

R-squared of only about 0.5 in Column (4). Clearly, there is substantial variation not captured by these

controls.

In the remaining columns of the table we attempt to explain the heterogeneity in local employment

elasticities using the partial equilibrium elasticities derived above. In Column (5) we first use the intu-

ition (obtained by comparing the distributions in Figure 6) that commuting is essential to explain this

elasticity. As a summary statistic of the lack of commuting links of a county we use λnn|n, namely, the

probability that a worker lives and works in n. The weaker the commuting links of a county the higher

λnn|n, which should reduce the local employment elasticity of that county. This is exactly what we find

in Column (5). Furthermore, this variable alone yields an R-squared of 0.89, nearly double the R-squared

in the regression where we include all the standard controls.18 This result underscores the importance

of commuting links in explaining local employment elasticities.

The partial equilibrium local elasticities computed above allow us to do better than just adding a

summary measure of commuting links as the explanatory variable. In Column (6) we relate the vari-

ation in local employment elasticities to the measure of commuting linkages suggested by the model,

∑i∈N
(
1− λin|i

)
ϑin. We also add the measures of migration and trade linkages suggested by the model,

(λnn/λRn − λMn) and ∂wn
∂An

An
wn

. Including these partial equilibrium measures of linkages further increases

the R-squared to around 93 percent of the variation in the general equilibrium elasticity. Counties that

account for a small share of commuters (small λin|i) from their main suppliers of commuters (high ϑin)

have higher employment elasticities. In Column (7), we use the product of ∂wn
∂An

An
wn

and the first two terms

rather than each term separately. This restriction yields similar results and confirms the importance of

commuting linkages and, to a lesser extent, the interaction between migration and goods linkages. Fi-

nally, in the last two columns we combine these partial equilibrium elasticities with the standard controls

we used in the first four columns. Clearly, although all variables are significant, these standard controls

add little once we control for the partial equilibrium elasticities.

In sum, Table 2 shows that the heterogeneity in partial equilibrium elasticities is not well explained

by standard county controls. In contrast, adding a summary statistic of commuting, or the partial equi-

librium elasticities we propose above, can go a long way in explaining the heterogenous response of

counties to productivity shocks. The next subsection connects these results more tightly with the preva-

18To provide further evidence on the magnitude of these effects, Table 4 in Appendix A.8 reports the same regressions as in
Table 2 but using standardized coefficients. We find that a one standard deviation change in commuting (λnn|n) leads to around
a one standard deviation change in the local employment elasticity.
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lent estimation of treatment effects in the empirical literature.

1 2 3 4 5 6 7 8 9

Dependent Variable: Elasticity of Employment

log LMn -0.003 0.009* -0.054** 0.037** 0.033**
(0.005) (0.004) (0.005) (0.002) (0.002)

log wn -0.201** -0.158** -0.257** -0.263**
(0.028) (0.027) (0.009) (0.009)

log Hn -0.288** -0.172** 0.003 0.009**
(0.006) (0.009) (0.003) (0.003)

log LM,−n 0.118** -0.027** -0.027**
(0.007) (0.003) (0.003)

log w̄−n 0.204** 0.163** 0.207**
(0.047) (0.015) (0.015)

λnn|n -2.047**
(0.013)

∑r∈N

(
1− λrn|r

)
ϑrn 2.784** 2.559**

(0.092) (0.098)

ϑnn

(
λnn
λRn
− λMn

)
0.915** 0.605**
(0.090) (0.096)

∂wn
∂An

An
wn

-1.009** -0.825**
(0.046) (0.053)

∂wn
∂An

An
wn
·∑r∈N

(
1− λrn|r

)
ϑrn 1.038** 1.100**

(0.036) (0.048)
∂wn
∂An

An
wn
· ϑnn

(
λnn
λRn
− λMn

)
-0.818** -0.849**
(0.036) (0.047)

constant 1.515** 1.545** 5.683** 1.245** 2.976** 0.840** 1.553** 1.861** 2.064**
(0.007) (0.044) (0.275) (0.437) (0.009) (0.084) (0.035) (0.171) (0.152)

R2 0.00 0.00 0.40 0.51 0.89 0.93 0.93 0.95 0.95
N 3,111 3,111 3,111 3,081 3,111 3,111 3,111 3,081 3,081

In this table, LM,−n ≡ ∑r:drn≤120,r 6=n LMr is the total employment in n neighbors whose centroid is no more than 120km away;
w̄−n ≡ ∑r:drn≤120,r 6=n

LMr
LM,−n

wr is the weigthed average of their workplace wage. * p < 0.05; ** p < 0.01.

Table 2: Explaining the general equilibrium local employment elasticities to a 5 percent productivity
shock

4.1.2 Measuring the Incidence of Local Labor Demand Shocks

A large empirical literature is concerned with estimating the elasticity of local employment with re-

spect to local demand shocks. The central specification in this empirical literature is a “differences-in-

differences” specification across locations i and time t given by

∆ ln Yit = a0 + a1Iit + a2Xit + uit, (32)

where Yit is the outcome of interest (e.g. employment by workplace); Iit is a measure of the local de-

mand shock (treatment); Xit are controls; and uit is a stochastic error. The coefficient on the treatment

a1 corresponds to the log change in the outcome of interest with respect to the local demand shock.
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This specification has a differences-in-differences interpretation, because the first difference is over time

(before and after the shock), and the second difference is between treated and control counties.

This literature considers many sources of local labor demand shocks. Blanchard and Katz (1992)

and Bound and Holzer (2000) directly measure labor demand shocks using innovations in employment

and total hours worked respectively. To address the endogeneity of local labor input, many papers

follow Bartik (1991) and use instruments based on interactions between changes in aggregate industry

composition and the importance of industries in local employment. For example, Notowidigdo (2013)

examines the impact of such local labor demand shocks across metropolitan areas in the United States.

In related research, Greenstone, Hornbeck and Moretti (2010) exploit regression discontinuities between

winning and runner-up locations for million-dollar plants, while Michaels (2011) uses the discovery of

oil in the Southern United States. Although both of these papers use county-level data, a number of

other studies have used Commuting Zones (CZ’s), which are aggregations of counties that are intended

to better approximate local labor markets. For example, Autor and Dorn (2013) examines the automation

of routine tasks and the polarization of U.S. employment and wages; Autor, Dorn and Hanson (2013)

investigate rising Chinese import competition; and Yagan (2014) considers migration as insurance for

idiosyncratic shocks during the Great Recession. Moretti (2011) reviews this burgeoning literature on

local labor markets.

This empirical literature has discussed a number of potential concerns faced by the reduced-form

specification (32). First, to address endogenous assignment to the treatment, recent research has sought

exogenous variation in local labor demand. Second, emphasis has been placed on measurement of the

local labor demand shock (to interpret the magnitude of the treatment effect). Third, a widely-discussed

limitation of the regression specification (32) is that it abstracts from general equilibrium effects, be-

cause it focuses on relative comparisons between the treatment and control group. More generally, the

interpretation of the coefficient on the treatment is complicated if the control group is affected by the

treatment through spatial linkages in goods and factor markets. Finally, the treatment effect can be het-

erogeneous across locations, because of different linkages in goods and factor markets. In this case, the

estimates have an interpretation as a local average treatment effect (LATE), and a coefficient estimated

for one group of counties need not apply for another group of counties.

We now compare the general equilibrium elasticities of employment with respect to the productivity

shock in the model to the results of this type of reduced-form “differences-in-differences” estimates of the

local average treatment effects of the productivity shock. In particular, we construct a regression sample

including both treated and untreated countries from our 3,111 counterfactuals in which we shock each

county in turn with a 5 percent productivity shock (3, 1112 = 9, 678, 321 observations). We use these data

to estimate a “differences-in-differences” specification of a similar form to (32):

∆ ln Yit = a0 + a1Iit + a2Xit + a3 (Iit × Xit) + uit,

where i denotes the 3,111 counties and t indexes the 3,111 counterfactuals; ∆ ln Yit is the change in log

employment between the counterfactual and actual equilibria; Iit is a (0,1) indicator for whether a county

25



is treated with a productivity shock; and Xit are controls. We again consider two sets of controls (Xit):

the model-suggested measures of linkages in goods and factor markets and more standard econometric

controls (log employment, log wages and land area). We include both the main effects of these con-

trols (captured by a2) and their interactions with the treatment indicator to capture heterogeneity in the

treatment effects (captured by a3).

The key difference between this regression specification and the above results for the general equilib-

rium elasticities for the treated counties is that this regression specification differences relative to the un-

treated counties. The empirical literature has argued for the need to difference relative to untreated coun-

ties given the likely presence of other shocks or events, beyond the treatment, that can affect the treated

counties simultaneously and can confound the true treatment effect. Of course, our synthetic dataset

was generated without including any of these alternative shocks and so differencing is not needed in

order to calculate the correct treatment effects.

In a specification without the controls (a2 = a3 = 0), the average effect of the productivity shock on

the untreated counties is captured in the regression constant (a0), and the local average treatment effect

(a1) corresponds to the difference in means between the treated and untreated counties. We compare

estimating this regression specification including (i) a random untreated county in the control group,

(ii) only the nearest untreated county in the control group, (iii) only neighboring counties within 120

kilometers of the treated county in the control group, (iv) only non-neighboring counties located from

120-240 kilometers from the treated county, and (v) all untreated counties in the control group.

We compare the predicted treatment effect from the “differences-in-differences” specification to the

general equilibrium employment elasticity in the model by computing the following deviation term for

the treated county:

βi =
a1 + a3Xit

0.05
− dLMi

dAi

Ai

LMi
,

which corresponds to the difference between the predicted treatment effect, scaled by the size of the pro-

ductivity shock, and the general equilibrium employment elasticity in the model. In Figure 7 we show

kernel densities of the distribution of this deviation term across the 3,111 counterfactuals for productiv-

ity shocks to each county. We show the deviation term term using model-suggested controls (solid lines)

and reduced-form controls (dashed lines). We display these results for each of the alternative control

groups considered above ((i) to (v)).
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Figure 7: Distribution of the deviation term βi across counties i, for different estimations

As shown in the figure, none of the “differences-in-differences” specifications completely captures

the general equilibrium employment elasticity, as reflected in the substantial mass away from zero

in these distributions. However, taking into account commuting linkages with the model-suggested

controls substantially increases the predictive power of the “differences-in-differences” specification, as

shown by substantial reduction in the mass away from zero using model-suggested rather than reduced-

form controls. In general, we find similar results across the different control groups, with the results

using random counties ((i) above) and non-neighbors ((iv) above) visually indistinguishable in the right-

hand panel. However, we find a substantially larger deviation term using the nearest county as a control,

because employment in the nearest untreated county is typically negatively affected by the increase in

productivity in the treated county. While the use of contiguous locations as controls is often motivated

based on similar unobservables (as in regression discontinuity designs), this pattern of results highlights

that contiguous locations are also likely to be the most severely affected by spatial equilibrium linkages

in goods and factor markets.

Figure 8 shows that the deviation term for the “difference-in-differences” specification is systemati-

cally related to the size of the general equilibrium employment elasticity in the model. For the specifi-

cations using reduced-form controls (left panel) and model-generated controls (right panel), we display

the results of locally-linear weighted least squares regressions of the deviation term βi against the gen-

eral equilibrium employment elasticity dLMi
dAi

Ai
LMi

, along with 95% confidence intervals. In each panel, we

show the results of these regressions for each group of control counties, where the results using random

county ((i) above), non-neighbors ((iv) above) and all counties ((v) above) are visually indistinguishable.

Using reduced-form controls (left panel) and all definitions of the control group except for the closest

county (red line), we find that low elasticities are substantially over-estimated, while high elasticities

are substantially under-estimated. This pattern of results is intuitive: low and high elasticities occur
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where commuting linkages are weak and strong respectively. A reduced-form specification that ignores

commuting linkages cannot capture this variation and hence tends to overpredict for low elasticities

and underpredict for high elasticities. This effect is still present for the closest county control group

(red line), as reflected in the downward-sloping relationship between the deviation term and the general

equilibrium elasticity. However, the closest county tends to be negatively affected by the productivity

shock, which shifts the distribution of predicted treatment effects (and hence the distribution of the

deviation term) upwards.
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Figure 8: Average deviation term βi vs. actual Employment Elasticity

Using model-suggested controls (right panel) and all definitions of the control group except for the

closest county (red line), we find that the deviation term for the “differences-in-differences” predictions

is close to zero and has a much weaker downward-sloping relationship with the general equilibrium

elasticity in the model. The exception is the deviation term using the closest-county as a control, which

has an upward-sloping relationship with the general equilibrium elasticity in the model and becomes

large for high values of this elasticity. The reason is that the productivity shock to treated counties has

larger negative effects on the closest county for higher values of the general equilibrium elasticity in the

model, which leads to a larger upward shift in the distribution of the deviation term. This pattern of

results again highlights the potentially large discrepancies from the general equilibrium elasticity from

using contiguous locations as controls in the presence of spatial linkages in goods and factor markets.

Taken together, the results of this section show that our quantitative spatial general equilibrium

model implies substantial heterogeneity in local employment elasticities across counties; we find this

heterogeneity whether we use independent productivity shocks to each county (Figures 5-8) or spatially

correlated shocks reproducing the industrial composition of the U.S. economy (Figures 19-22 in Appen-

dix A.8); while the model incorporates several forms of spatial linkages (including trade and migration)
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we find that this heterogeneity in local employment elasticities is primarily explained by commuting

linkages; hence empirical measures of commuting linkages are successful in capturing the heterogene-

ity in the general equilibrium local employment elasticities; and these measures of commuting linkages

substantially outperform more standard econometric controls. While capturing the full general equilib-

rium effects of the productivity shocks requires solving the model-based counterfactuals, we find that

augmenting “difference-in-difference” regressions with measures of commuting linkages substantially

improves their ability to predict the heterogeneity in the estimated treatment effects. Finally, comparing

the results for counties in Figures 5-8 with the results for commuting zones (CZs) in Figure 18, we find

that including these measures of commuting linkages at the county level is more successful in capturing

the heterogeneity in the general equilibrium local employment elasticities than simply undertaking the

analysis at the CZ level.

4.2 The Role of Commuting Costs

The results in the previous section underscore the importance of commuting links to explain the mea-

sured heterogeneity in local employment elasticities. They also highlight that commuting patterns have

information about these links that cannot be accounted for with other county measures like employment,

wages, number of residents, or even measures of employment and wages in surrounding counties. To

provide further evidence on the quantitative relevance of commuting as a source of spatial linkages and

understand better its role in the spatial distribution of economic activity, we next undertake a counter-

factual for prohibitive commuting costs to other locations. That is, we let κni → ∞ for n 6= i and leave

κnn and all other exogenous parameters unchanged.

Commuting enables workers to access high productivity locations without having to pay the high

cost of living in those locations. Removing this technology restricts the opportunity set available to firms

and workers and hence reduces welfare. Locations that were previously net exporters of commuters

in the initial equilibrium become less attractive residences, while locations that were previously net

importers of commuters in the initial equilibrium become less attractive workplaces. The result is a

decline in the specialization of counties as residential or business locations. As the menu of potential

pairs of workplace and employment locations changes, agents relocate.

In the equilibrium with commuting, expected utility conditional on choosing a pair of workplace

and residence locations is the same across all bilateral pairs with positive commuting. In the equilib-

rium without commuting, only those bilateral pairs in which workers live and work in the same location

are feasible, and expected utility is equalized across these feasible pairs. From (22), the change in the

common level of expected utility as a result of increasing commuting costs to prohibitive levels can be

decomposed into the contributions of changes in the domestic commuting share (which equals one with-

out commuting) and real residential income, where the latter change can be further decomposed into the

contributions of changes in the domestic trade share, wages, expected residential income, residents and

29



N E W  J E R S E Y

N E W  Y O R K

N E W  Y O R K

C O N N E C T I C U TP E N N S Y LVA N I A

P E N N S Y LVA N I A

0.263 - 0.662
0.663 - 0.809
0.810 - 0.949
0.950 - 1.050
1.051 - 1.272
1.273 - 2.180
2.181 - 3.878

Figure 9: Ratio of employment to residents in the New York area in the initial equilibrium

workers. Namely,
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α
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L̂1−α
Rn

, (33)

where we have used the fact that {κnn, Bnn, An, dnn} are unchanged. Although the contributions of these

individual components of welfare can differ across locations, their net effect must be such as to deliver

the same common change in expected utility for the economy as a whole.

We find that increasing commuting costs to prohibitive levels reduces aggregate welfare by around

7.2 percent. This effect is comparable in magnitude to benchmark estimates of the welfare gains from

international trade for an economy of the size of the United States (as for example in Eaton and Kortum

2002 and Arkolakis, Costinot and Rodriguez-Clare 2012). These results suggest that observed commut-

ing flows are not only large and relevant for understanding the local effects of labor demand shocks, as

shown above, but also have important implications for aggregate welfare. Smaller values for the Fréchet

shape parameter (ε) imply more heterogeneity in preferences for pairs of residence and workplace loca-

tions and hence greater welfare losses from eliminating commuting conditional on the same observed

initial equilibrium in the data. For example, in a world with a 50% lower value of ε the welfare loses

from eliminating commuting amount to 10.93 percent.19

We also find substantial effects of commuting on the spatial distribution of economic activity. With

commuting, workers can live in suburban counties close to high productivity locations. In contrast,

without commuting, workers must either live in those high productivity locations or disperse to other

locations. As an illustration, Figures 9-12 show the impact of prohibitive commuting costs on economic

activity in the New York area. In each figure, deeper green colors show lower values, while deeper

19As shown in Section 3.2, commuting flows decline much more rapidly with distance than trade flows. Consequently, we
find that reductions in commuting costs generate substantial increases in welfare. Reducing commuting costs by 10%, 30%,
and 50%, for example, implies welfare gains of 2.7%, 12.5%, and 36.7%, respectively.
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Figure 10: Counterfactual relative change in employment (L̂M) from prohibitive commuting costs
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Figure 11: Counterfactual relative change in residents (L̂R) from prohibitive commuting costs

brown colors indicate higher values. To provide some context, Figure 9 shows the ratio of employment

to residents in the initial equilibrium in the observed data. Locations with ratios higher than one are

net importers of commuters, while locations with ratios lower than one are net exporters of commuters.

As apparent from the figure, Manhattan is initially the largest net importer, whereas other parts of the

tri-state area are initially large net exporters.

Figures 10, 11 and 12 show the counterfactual changes in employment, residents and real income,

respectively, from prohibitive commuting costs. Unsurprisingly, Manhattan experiences a substantial

reduction in employment in Figure 10, as it can no longer attract commuters from the surrounding tri-
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Figure 12: Counterfactual relative change in real income from prohibitive commuting costs
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Figure 13: Counterfactual relative change in county employment (L̂M) from prohibitive commuting
costs against initial employment to residents ratio (LM/LR)

state area. More notably, Manhattan also experiences a reduction in residents in Figure 11, and the

tri-state area as a whole experiences a reduction in real income in Figure 12. This part of the country is

one of the most intensive users of the commuting technology in the initial equilibrium. Therefore, the

loss of access to this technology reduces its attractiveness as a location of workplace and residence, and

leads to a dispersion of economic activity towards other locations that were less intensive users of the

commuting technology in the initial equilibrium.
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In Figure 13, we show the counterfactual change in employment from increasing commuting costs

to prohibitive levels for each county in our data. We display these counterfactual changes against each

county’s ratio of employment to residents in the initial equilibrium in the observed data. As employment

and residents converge towards one another, locations that were large importers of commuters (greater

than one on the horizontal axis) experience reductions in employment, while locations that were large

exporters of commuters (less than one on the horizontal axis) experience increases in employment. We

find that the relationship with initial patterns of importing and exporting of commuters is stronger for

changes in employment than for changes in residents, which suggests that most of the adjustment hap-

pens through employment changes rather than migration and changes in residence.

Figure 13 shows that the implications of the model for the change in employment as a result of shut-

ting down commuting are well explained by the commuting intensity LMn/LRn. Commuting intensity

is, however, not easy to explain with standard county-based measures of employment, residents, wages,

or surrounding county characteristics. Table 3 presents the results of regressions that try to account for

the cross-section of employment, residents, and the employment to residents ratio (a measure of county

commuting intensity). The first column shows that one can account for most of the variation in county

employment using the number of residents and wages. Column (2) shows a similar result for the num-

ber of residents and Columns (3) and (4) show that the results are not affected when we add employment

and wages in surrounding counties. So the first four columns show that it is relatively easy to explain

the variation in employment and residents with standard variables. The following four columns demon-

strate that this is not the case for commuting intensity. The level of residents, measures of wages, and

measures employment, residents and wages in surrounding counties do a poor job in accounting for the

variation in commuting intensity. None of the R-squareds in the last four columns of Table 3 amounts to

more than 0.3. Once again, we confirm that the variation in commuting patterns provides information

that cannot be easily replicated by other more standard variables. The commuting links revealed by this

information are, to a large extent, responsible for the impact of changes in commuting costs, as well as

for the heterogeneity in local employment elasticities discussed above.

Even though Table 3 shows that commuting intensity is not closely related to county size, the results

for the New York area described above together with those in Figure 13, suggest that maybe commut-

ing is particularly important in large cities (or large commuting zones). Thus, eliminating commuting

might affect particularly commuting zones with a large number of employees. In Figures 14-15, we ex-

amine the implications of this counterfactual change in commuting technology for economic outcomes

at the commuting zone (CZ) level. We aggregate our county data in both the initial equilibrium and

the counterfactual equilibrium to the CZ level and compute counterfactual changes for each CZ in our

data. In Figure 14, we show the counterfactual change in CZ employment from prohibitive commuting

costs against a measure of CZ dependence on commuting. This measure is the average share of workers

in a county within the CZ that live in the same county in which they work, which provides an inverse

measure of dependence on commuting.
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1 2 3 4 5 6 7 8

Dependent Variable: log LMn log LRn log LMn log LRn LMn/LRn LMn/LRn LMn/LRn LMn/LRn

log LRn 0.974** 1.001** -0.000 0.020**
(0.003) (0.004) (0.003) (0.004)

log wn 0.460** 0.480** 0.341** 0.331**
(0.018) (0.018) (0.018) (0.018)

log LMn 0.957** 0.922** -0.001 0.028**
(0.003) (0.004) (0.003) (0.003)

log v̄n 0.066** 0.019 0.171** 0.239**
(0.025) (0.026) (0.023) (0.025)

log Hn 0.015* 0.037** -0.011 -0.022**
(0.006) (0.006) (0.006) (0.006)

log LR,−n -0.020** 0.609** 0.389**
(0.005) (0.123) (0.112)

log w̄−n -0.330** 0.247 0.070
(0.032) (0.240) (0.218)

log LM,−n 0.084** -0.654** -0.435**
(0.005) (0.122) (0.111)

log v̄−n 0.044 -0.347 -0.238
(0.039) (0.242) (0.220)

Constant -4.667** -0.165 -1.485** -1.199** -0.881** -2.647** -0.057 -0.262
(0.174) (0.238) (0.301) (0.336) (0.223) (0.169) (0.338) (0.306)

R2 0.98 0.98 0.99 0.98 0.03 0.16 0.15 0.30
N 3,111 3,111 3,081 3,081 3,111 3,111 3,081 3,081

In this table, LM,−n ≡ ∑r:drn≤120,r 6=n LMr is the total employment in n neighbors whose centroid is no more than 120km away;
w̄−n ≡ ∑r:drn≤120,r 6=n

LMr
LM,−n

wr is the weigthed average of their workplace wage. Analogous definitions apply to LR,−n and v̄−n.
* p < 0.05; ** p < 0.01.

Table 3: Explaining employment levels and commuting intensity

We find that aggregating up to the CZ level does not eliminate the effects of the change in commuting

technology. Rather we find substantial changes in relative CZ employment from prohibitive commuting

costs, ranging from declines of around 0.2 log points to rises of around 0.4 log points. Consistent with our

earlier results for counties, we find that CZs that are more intensive users of commuting (smaller values

on the horizontal axis) experience larger declines in employment, whereas CZs that are less intensive

users of commuting (larger values on the horizontal axis) experience larger rises in employment.

Even though eliminating commuting affects the CZs that use commuting intensively, perhaps sur-

prisingly, the change in employment has only a weak relationship with the initial employment size of the

CZ. Figure 15 displays the same change in employment from prohibitive commuting costs (same vertical

axis) against initial CZ employment size (different horizontal axis). In line with our earlier findings for

local employment elasticities, we find that employment size is a imperfect measure for commuting link-

ages in factor markets. We find little relationship between relative changes in employment and initial

employment size in the CZ in Figure 15. Hence, the importance of commuting is by no means restricted

to large cities. This explains why commuting could not be simply approximated by measures of county

(or surrounding area) employment size in the previous section.
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Figure 14: Counterfactual relative change in commuting zone employment (L̂M) from prohibitive com-
muting costs and initial dependence on commuting

Taken together, the results in this section have shown that commuting linkages in factor markets

are not only important for understanding the incidence of local labor demand shocks but also matter

for the spatial distribution of economic activity and aggregate welfare. Increasing commuting costs

to prohibitive levels involves a deterioration in the technology for organizing the spatial distribution

of economic activity. This deterioration in technology implies less specialization across locations (in

residents versus employment) and hence a less efficient sorting of workers and residents across locations

in response to spatial variation in productivity and amenities. Furthermore, commuting links are not

easily explained by measures of employment size either at the county or the commuting zone level.

These results highlight further the importance of incorporating commuting data into regional analysis.

4.3 Interaction Between Trade and Commuting Costs

Most equilibrium models that feature geography, trade, and migration abstract from commuting (e.g.

Allen and Arkolakis, 2014a, Caliendo et al., 2014, or Redding, 2014). Given the demonstrated impor-

tance of commuting for the determination of employment levels across regions, it is natural to expect

that the effects of reductions in transport costs are affected by commuting as well. To provide evidence

on the interaction of spatial linkages in goods and factor markets, we compare the effects of reductions

in trade costs, both with and without commuting. We first undertake a counterfactual for a 20 percent

reduction in trade costs between locations (dni = 0.8 for n 6= i and dnn = 1) starting from the observed

initial equilibrium with commuting (using the observed bilateral commuting shares to implicitly reveal

the magnitude of bilateral commuting costs). We next undertake a counterfactual for the same 20 per-
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Figure 15: Counterfactual relative change in commuting zone employment (L̂M) from prohibitive com-
muting costs and initial employment size

cent reduction in trade costs between locations from a counterfactual equilibrium with no commuting

(starting from the observed equilibrium, we first undertake a counterfactual for no commuting, before

then undertaking the counterfactual for the reduction in trade costs).

Population mobility again implies that expected utility is equalized across locations. From (22), the

change in the common level of expected utility from the trade cost reduction can be decomposed as

before into the contributions of changes in the domestic commuting share and real residential income,

where the latter change can be further decomposed into the contributions of changes in the domestic

trade share, wages, expected residential income, residents and workers:

̂̄U =

(
1

λ̂nn

) 1
ε
(

1
π̂nn

) α
σ−1
(

ŵn̂̄vn

)1−α L̂
α

σ−1
Mn

L̂1−α
Rn

, (34)

where we have used the fact that {κnn, Bnn, An, dnn} are unchanged.

We find that trade and commuting are weak complements in terms of aggregate welfare, in the sense

that the welfare gains from reductions in trade costs are larger in the presence of commuting. Starting

from the observed equilibrium, we find aggregate welfare gains from the trade cost reduction of 11.66

percent. In contrast, starting from the counterfactual equilibrium without commuting, we find aggregate

welfare gains from the same trade cost reduction of 11.56 percent. Therefore the welfare gains from

reducing the friction in goods markets (trade costs) are larger for lower values of the friction in factor

markets (lower commuting costs).

We find substantially different effects of reductions in trade costs on the spatial distribution of eco-

nomic activity with and without commuting. Figure 16 shows the relative change in employment from
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a 20 percent reduction in trade costs in the New York region (without commuting in the left panel and

with commuting in the right panel). In general, reductions in trade costs lead to a more dispersed spatial

distribution of economic activity in the model. But this dispersal is smaller with commuting than with-

out commuting. As trade costs fall, commuting increases the ability of the most productive locations

to serve the national market by drawing workers from a suburban hinterland, without bidding up land

prices as much as would otherwise occur.

In the model lower trade costs and higher commuting costs are both forces for the dispersion of

economic activity. On the one hand, lower trade costs weaken agglomeration forces by reducing the in-

centive for firms and workers to locate close to one another. On the other hand, higher commuting costs

increase congestion forces by forcing workers to live where they work, thereby bidding up land prices

in congested locations. However, these two sets of forces interact with one another, so that the impact

of a reduction in trade costs depends on the level of commuting costs. While lower trade costs necessar-

ily redistribute employment away from the most congested locations, this redistribution is smaller with

commuting than without commuting.

without commuting with commuting
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Figure 16: Relative change in employment (L̂M) from a 20 percent reduction in trade costs (with and
without commuting) in the New York area

This exercise also illustrates more generally the role of commuting linkages in shaping the conse-

quences of a reduction in trade costs. Figure 17 shows changes in county employment and real income

following a reduction in trade costs in an economy without commuting (vertical axis) and with commut-

ing (horizontal axis), alongside a 45-degree line. We find a relatively low correlation between changes in

employment with and without commuting. In particular, commuting and trade tend to be complements

in expanding areas: whenever employment increases with the reduction in trade costs, the commut-

ing technology allows a larger expansion because it alleviates the increase in congestion (employment

changes are below the diagonal in the left panel of Figure 17). But trade and commuting tend to be local
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substitutes from the perspective of real income: whenever real income increases with trade, the increase

is larger without commuting because production is more spatially dispersed without commuting (real

income changes are above the diagonal in the right panel of Figure 17). These results further underscore

the prominence of commuting linkages in shaping the equilibrium spatial distribution of economic ac-

tivity, and the necessity of incorporating them in models of economic geography.
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Figure 17: Relative change in employment (L̂M) and real income (̂̄vn/
(

P̂αQ̂1−α
)
) from a 20 percent

reduction in trade costs (with and without commuting) across all counties

5 Conclusions

Local technology, regulation, or infrastructure shocks can have far reaching economic effects through

spatial linkages between locations. We have developed a spatial general equilibrium model that quanti-

fies these spatial linkages in both goods markets (trade) and factor markets (commuting and migration).

Our quantitative model uses the observed gravity equation relationships for goods and commuting

flows to estimate the two key parameters of the model and matches exactly the observed cross-section

distributions of employment, residents and incomes across U.S. counties.

We show that commuting flows are large and heterogeneous across counties and that commuting

zones are imperfect in capturing these flows. The resulting differences in patterns of commuting lead to

substantial variation across locations in elasticities of employment to productivity shocks, which have

a mean of 1.52, but range from close to 0.5 to almost 2.5. These results question the generalizability

of estimates of this elasticity that do not account for its large spatial heterogeneity. Furthermore, as our

theoretical model incorporates multiple spatial linkages between locations (trade in goods and migration

as well as commuting), it becomes an empirical question which of these linkages is more important given

the observed patterns in the data in the initial equilibrium. We show that simple measures of commuting,
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or partial equilibrium measures of the spatial linkages derived from the model, are empirically successful

in accounting for this variation in general equilibrium local employment elasticities.

We hope that our results are used to motivate the inclusion of these measures of commuting, and

the other partial equilibrium elasticities, in future empirical estimations of local employment elastici-

ties. Their inclusion is simple, as these measures depend only on observables in the initial equilibrium.

Furthermore, these terms are not well accounted for by the inclusion of other variables like measures of

employment or wages in the treated or neighboring locations. So including observed measures of these

linkages is essential. Our results also question the use of empirical difference-in-differences strategies

that use contiguous locations as the control group to measure the treatment effect of a policy or shock.

In our counterfactual exercises, the closest untreated locations tend to be significantly affected by the

shocks to the treated locations.

We find that commuting matters not only for the incidence of local shocks but also for aggregate wel-

fare and the spatial distribution of economic activity. Increasing commuting costs to prohibitive levels

reduces aggregate welfare by around 7.2 percent, which is comparable in magnitude to some estimates

of the welfare gains from international trade. Commuting enables workers to live close to high pro-

ductivity locations without having to pay the high land prices in those locations. Therefore increasing

commuting costs to prohibitive levels redistributes economic activity away from areas that use commut-

ing intensively (e.g. the New York region) towards areas that use commuting less intensively. At the

commuting zone level, these reallocations can lead to decreases and increases in employment of up to

0.2 and 0.4 log points respectively.

The theory we propose in this paper is, we believe, quite ambitious and rich. We view this theory as

a reasonable framework to quantify the heterogeneity in local employment elasticities, because it is able

to account for key observed relationships in the data (gravity in goods trade and commuting flows) and

rationalizes the observed cross-section distribution of employment, wages, commuting and international

trade flows in the initial equilibrium. In principle, the response to the economy to subsequent shocks

could be different from its behavior in the initial equilibrium to which we calibrate. But since this initial

equilibrium is itself the result of the accumulation of past shocks, we believe that it provides a reasonable

benchmark against which to calibrate the model. Furthermore, our approach enables us to use bilateral

patterns of goods trade and commuting flows in the initial equilibrium to capture the rich unobserved

patterns of trade and commuting costs between locations.

Finally, we have extended quantitative general equilibrium models of economic geography to in-

corporate an additional margin that is empirically relevant (commuting between locations). But we

acknowledge that there remain other margins that can also matter for local employment elasticities in

response to shocks (e.g. labor force participation and unemployment). We view the incorporation of

these additional margins into spatial general equilibrium models as an important part of the future re-

search agenda. However, given the quantitative magnitudes of commuting flows in the data, we believe

that commuting will continue to play an important role in shaping local employment elasticities even in
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such future models incorporating a wider range of adjustment margins.

A Appendix

A.1 Commuting Decisions

A.1.1 Distribution of Utility

From all possible pairs of residence and employment locations, each worker chooses the bilateral com-

mute that offers the maximum utility. Since the maximum of a sequence of Fréchet distributed random

variables is itself Fréchet distributed, the distribution of utility across all possible pairs of residence and

employment locations is:

1− G(u) = 1−
S

∏
r=1

S

∏
s=1

e−Ψrsu−ε
,

where the left-hand side is the probability that a worker has a utility greater than u, and the right-hand

side is one minus the probability that the worker has a utility less than u for all possible pairs of residence

and employment locations. Therefore we have:

G(u) = e−Φu−ε
, Ψ =

S

∑
r=1

S

∑
s=1

Ψrs. (35)

Given this Fréchet distribution for utility, expected utility is:

E [u] =
∫ ∞

0
εΨu−εe−Ψu−ε

du. (36)

Now define the following change of variables:

y = Φu−ε, dy = −εΨu−(ε+1)du. (37)

Using this change of variables, expected utility can be written as:

E [u] =
∫ ∞

0
Ψ1/εy−1/εe−ydy, (38)

which can be in turn written as:

E [u] = δΨ1/ε, δ = Γ
(

ε− 1
ε

)
, (39)

where Γ(·) is the Gamma function. Therefore we have the expression in the main text above:

E [u] = δΨ1/ε = δ

[
S

∑
r=1

S

∑
s=1

Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

]1/ε

. (40)
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A.1.2 Residence and Workplace Choices

Using the distribution of utility for pairs of residence and employment locations (14), the probability that

a worker chooses the bilateral commute from n to i out of all possible bilateral commutes is:

πni = Pr [uni ≥ max{urs}; ∀r, s] ,

=
∫ ∞

0
∏
s 6=i

Gns(u)

[
∏
r 6=n

∏
s

Grs(u)

]
gni(u)du,

=
∫ ∞

0

S

∏
r=1

S

∏
s=1

εΨniu−(ε+1)e−Ψrsu−ε
du.

=
∫ ∞

0
εΨniu−(ε+1)e−Ψu−ε

du.

Note that:
d

du

[
− 1

Ψ
e−Ψu−ε

]
= εu−(ε+1)e−Ψu−ε

. (41)

Using this result to evaluate the integral above, the probability that the worker chooses to live in location

n and commute to work in location i is:

λni =
Ψni

Ψ
=

Bni
(
κniPα

n Q1−α
n
)−ε

(wi)
ε

∑S
r=1 ∑S

s=1 Brs

(
κrsPα

r Q1−α
r

)−ε
(ws)

ε
. (42)

Summing across all possible workplaces s, we obtain the probability that a worker chooses to live in

location n out of all possible locations is:

λn =
LRn

L̄
=

Ψn

Ψ
=

∑S
s=1 Bns

(
κnsPα

n Q1−α
n
)−ε

(ws)
ε

∑S
r=1 ∑S

s=1 Brs

(
κrsPα

r Q1−α
r

)−ε
(ws)

ε
. (43)

Similarly, summing across all possible residence locations r, we obtain the probability that a worker

chooses to work in location i out of all possible locations is:

λi =
LMi

L̄
=

Ψi

Ψ
=

∑S
r=1 Bri

(
κriPα

r Q1−α
r
)−ε

(wi)
ε

∑S
r=1 ∑S

s=1 Brs

(
κrsPα

r Q1−α
r

)−ε
(ws)

ε
. (44)

For the measure of workers in location i (LMi), we can evaluate the conditional probability that they

commute from location n (conditional on having chosen to work in location i):

λni|i = Pr [uni ≥ max{uri}; ∀r] ,

=
∫ ∞

0
∏
r 6=n

Gri(u)gni(u)du,

=
∫ ∞

0
e−Ψiu−ε

εΨniu−(ε+1)du.

Using the result (41) to evaluate the integral above, the probability that a worker commutes from location

n conditional on having chosen to work in location i is:

λni|i =
Ψni

Ψi
=

Bni
(
κniPα

n Q1−α
n
)−ε

(wi)
ε

∑S
r=1 Bri

(
κriPα

r Q1−α
r

)−ε
(wi)

ε
,
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which simplifies to:

λni|i =
Bni
(
κniPα

n Q1−α
n
)−ε

∑S
r=1 Bri

(
κriPα

r Q1−α
r

)−ε . (45)

For the measure of residents of location n (LRn), we can evaluate the conditional probability that they

commute to location i (conditional on having chosen to live in location n):

λni|n = Pr [uni ≥ max{uns}; ∀s] ,

=
∫ ∞

0
∏
s 6=i

Gns(u)gni(u)du,

=
∫ ∞

0
e−Ψnu−ε

εΨniu−(ε+1)du.

Using the result (41) to evaluate the integral above, the probability that a worker commutes to location i

conditional on having chosen to live in location n is:

λni|n =
Ψni

Ψn
=

Bni
(
κniPα

n Q1−α
n
)−ε

(wi)
ε

∑S
s=1 Bns

(
κnsPα

n Q1−α
n

)−ε
(ws)

ε
,

which simplifies to:

λni|n =
Bni (wi/κni)

ε

∑S
s=1 Bns (ws/κns)

ε . (46)

These conditional commuting probabilities provide microeconomic foundations for the reduced-

form gravity equations estimated in the empirical literature on commuting patterns.20 The probability

that a resident of location n commutes to location i depends on the wage at i and the amenities and

commuting costs from living in n and working in i in the numerator (“bilateral resistance”). But it also

depends on the wage at all other workplaces s and the amenities and commuting costs from living in n

and commuting to all other workplaces s in the denominator (“multilateral resistance”).

Labor market clearing requires that the measure of workers employed in each location i (LMi) equals

the sum across all locations n of their measures of residents (LRn) times their conditional probabilities of

commuting to i (λni):

LMi =
S

∑
n=1

λni|nLRn (47)

=
S

∑
n=1

Bni (wi/κni)
ε

∑S
s=1 Bns (ws/κns)

ε LRn,

where, since there is a continuous measure of workers residing in each location, there is no uncertainty

in the supply of workers to each employment location.

Expected worker income conditional on living in location n is equal to the wages in all possible

workplace locations weighted by the probabilities of commuting to those locations conditional on living

20See also McFadden (1975). For reduced-form evidence of the explanatory power of a gravity equation for commuting
flows, see for example Erlander and Stewart (1990) and Sen and Smith (1995).
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in n:

v̄n = E [w|n] (48)

=
S

∑
i=1

λni|nwi,

=
S

∑
i=1

Bni (wi/κni)
ε

∑S
s=1 Bns (ws/κns)

ε wi,

where E denotes the expectations operator and the expectation is taken over the distribution for idio-

syncratic amenities. Intuitively, expected worker income is high in locations that have low commuting

costs (low κns) to high-wage employment locations.

Finally, another implication of the Fréchet distribution of utility is that the distribution of utility

conditional on residing in location n and commuting to location i is the same across all bilateral pairs

of locations with positive residents and employment, and is equal to the distribution of utility for the

economy as a whole. To establish this result, note that the distribution of utility conditional on residing

in location n and commuting to location i is given by:

=
1

λni

∫ u

0
∏
s 6=i

Gns(u)

[
∏
r 6=n

∏
s

Grs(u)

]
gni(u)du, (49)

=
1

λni

∫ u

0

[
S

∏
r=1

S

∏
s=1

e−Ψrsu−ε

]
εΨniu−(ε+1)du,

=
Ψ
Ψni

∫ u

0
e−Ψu−ε

εΨniu−(ε+1)du,

= e−Ψuε
.

On the one hand, lower land prices in location n or a higher wage in location i raise the utility of a worker

with a given realization of idiosyncratic amenities b, and hence increase the expected utility of residing

in n and working in i. On the other hand, lower land prices or a higher wage induce workers with lower

realizations of idiosyncratic amenities b to reside in n and work in i, which reduces the expected utility

of residing in n and working in i. With a Fréchet distribution of utility, these two effects exactly offset

one another. Pairs of residence and employment locations with more attractive characteristics attract

more commuters on the extensive margin until expected utility is the same across all pairs of residence

and employment locations within the economy.

A.2 Computing Counterfactuals Using Changes

We denote the value of variables in the counterfactual equilibrium by a prime (x′) and the relative change

of a variable between the initial and the counterfactual equilibrium by a hat (x̂ = x′/x). Given the

model’s parameters {α, σ, ε, δ, κ} and counterfactual changes in the model’s exogenous variables {Ân,

B̂n, κ̂ni, d̂ni}, we can solve for the counterfactual changes in the model’s endogenous variables {ŵn, ̂̄vn,
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Q̂n, π̂ni, λ̂ni, P̂n, L̂Rn, L̂Mn} from the following system of eight equations (using the iterative algorithm

outlined below):

ŵi L̂MiwiLMi = ∑
n∈N

πniπ̂nî̄vn L̂Rnv̄nLRn, (50)

̂̄vnv̄n = ∑
i∈N

λni B̂ni (ŵi/κ̂ni)
ε

∑s∈N λnsB̂ns (ŵs/κ̂ns)
ε ŵiwi, (51)

Q̂n = v̂n L̂Rn, (52)

π̂niπni =
πni L̂Mi

(
d̂niŵi/Âi

)1−σ

∑k∈N πnk L̂Mk

(
d̂nkŵk/Âk

)1−σ
, (53)

λ̂niλni =
λni B̂ni

(
P̂α

n Q̂1−α
n

)−ε
(ŵi/κ̂ni)

ε

∑r∈N ∑s∈N λrsB̂rs

(
P̂α

r Q̂1−α
r

)−ε
(ŵs/κ̂rs)

ε
, (54)

P̂n =

(
L̂Mn

π̂nn

) 1
1−σ d̂nnŵn

Ân
, (55)

L̂Rn =
L̄

LRn
∑

i
λniλ̂ni, (56)

L̂Mi =
L̄

LMi
∑
n

λniλ̂ni, (57)

where these equations correspond to trade balance (50), expected worker income (51), the land market

clearing condition (52), trade shares (53), commuting probabilities (54), price indices (55), residential

choice probabilities (56) and workplace choice probabilities (57).

We solve this system of equations using the following iterative algorithm for the counterfactual equi-

librium. Given the model’s parameters {α, σ, ε, δ, κ} and changes in the exogenous variables of the model

{Ân, B̂n, κ̂ni, d̂ni}, we can solve for the resulting counterfactual changes in the endogenous variables of

the model {ŵn, ̂̄vn, Q̂n, π̂ni, λ̂ni, P̂n, L̂Rn, L̂Mn} from the system of eight equations (50)-(57). We solve

this system of equations using the following iterative algorithm. We first conjecture changes in work-

place wages and commuting probabilities at iteration t, ŵ(t)i and λ̂
(t)
ni . We next update these conjectures

to ŵ(t+1)
i and λ̂

(t+1)
ni using the current guesses and data. We start by computing:

v̂
(t)
n =

1
vn

∑
i∈N

B̂niλni

(
ŵ(t)i /κ̂ni

)ε

∑s∈N B̂nsλns

(
ŵ(t)s /κ̂ns

)ε ŵ(t)i wi, (58)

L̂(t)Mi =
L̄

LMi
∑
n

λniλ̂
(t)
ni , (59)

L̂(t)Rn =
L̄

LRn
∑

i
λniλ̂

(t)
ni , (60)
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which are only a function of data and current guesses. We use (58) and (60) in (52) to compute:

Q̂(t)
n = v̂

(t)
n L̂(t)Rn. (61)

We use (59) and (53) to compute:

π̂
(t)
ni =

L̂(t)Mi

(
d̂niŵ

(t)
i /Âi

)1−σ

∑k∈N πnk L̂(t)Mk

(
d̂nkŵ(t)k /Âk

)1−σ
. (62)

We use (59), (62) and (55) to compute:

P̂(t)n =

(
L̂(t)Mn

π̂
(t)
nn

) 1
1−σ ŵ(t)n

Ân
. (63)

We use (58)-(63) to rewrite (50) and (54) as:

w̃(t+1)
i =

1

Yi L̂
(t)
Mi

∑
n∈N

πniπ̂
(t)
ni v̂

(t)
n L̂(t)RnYn, (64)

λ̃
(t+1)
ni =

B̂ni

(
P̂(t)αn Q̂(t)1−α

n

)−ε (
ŵ(t)i /κ̂ni

)ε

∑r∈N ∑s∈N B̂rsλrs

(
P̂(t)αr Q̂(t)1−α

r

)−ε (
ŵ(t)s /κ̂rs

)ε . (65)

Finally, we update our conjectures for wages and commuting probabilities using:

ŵ(t+1)
i = ζŵ(t)i + (1− ζ) w̃(t+1)

i , (66)

λ̂
(t+1)
i = ζλ̂

(t)
i + (1− ζ) λ̃

(t+1)
i , (67)

where ζ ∈ (0, 1) is an adjustment factor.

In Proposition 1, we provide conditions under which there exists a unique equilibrium in the model.

Under these conditions, the above algorithm converges rapidly to the unique counterfactual equilibrium.

A.3 Proof of Proposition 1

Assume balanced trade so wiLMi = ∑n∈N Xni, and so

wiLMi = ∑
n∈N

LMi
σF

(
σ

σ−1
dniwi

Ai

)1−σ

P1−σ
n

v̄nLRn. (68)

Using (12) to substitute for the price index, this balanced trade condition can be written as

wσ
i A1−σ

i = ∑
n∈N

πnn
d1−σ

ni

d1−σ
nn

LRn

LMn
wσ−1

n A1−σ
n v̄n. (69)

Note that balanced trade (68) also can be written as

wσ
i A1−σ

i = ∑
n∈N

1
σF

(
σ

σ− 1

)1−σ

d1−σ
ni Pσ−1

n v̄nLRn. (70)
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Note that the residential choice probabilities (16) can be written as

LRn

L̄
=

w̄ε
n

(Ū/δ)
ε Pαε

n Q(1−α)ε
n

, (71)

where w̄n is a measure of commuting market access

w̄n =

[
∑

s∈N
Bns (ws/κns)

ε

] 1
ε

. (72)

Rearranging the residential choice probabilities (71), we obtain the following expression for the price

index

Pαε
n =

w̄ε
n

(Ū/δ)
ε Q(1−α)ε

n (LRn/L̄)
. (73)

Using land market clearing (5), this expression for the price index can be re-written as

P1−σ
n =

(
w̄n

W̄

) 1−σ
α

v̄
−(1−σ)( 1−α

α )
n H

(1−σ)( 1−α
α )

n L
−(1−σ)( 1

αε+
1−α

α )
Rn , (74)

where

W̄ = (Ū/δ) (1− α)1−α L̄−1/ε.

Substituting price index expression (74) into (12), we obtain the following expression for the domestic

trade share

πnn = W̄
1−σ

α

(
σ

σ−1

)1−σ

σF
w̄

σ−1
α

n w1−σ
n LMnL

(1−σ)( 1
αε+

1−α
α )

Rn v̄
(1−σ)( 1−α

α )
n H

(σ−1)( 1−α
α )

n Aσ−1
n d1−σ

nn . (75)

Now substitute this expression for the domestic trade share in the wage equation (69) to obtain

wσ
n A1−σ

n = W̄
1−σ

α

(
σ

σ−1

)1−σ

σF

[
∑

k∈N
w̄

σ−1
α

k L
1−(σ−1)( 1

αε+
1−α

α )
Rk v̄

1−(σ−1)( 1−α
α )

k H
(σ−1)( 1−α

α )
k d1−σ

kn

]
. (76)

Now return to the price index (74) and use the definition of the price index from (12) and commuting

market clearing (18)

w̄
1−σ

α
n v̄

−(1−σ)( 1−α
α )

n H
(1−σ)( 1−α

α )
n L

−(1−σ)( 1
αε+

1−α
α )

Rn (77)

= W̄
1−σ

α

(
σ

σ−1

)1−σ

σF

{
∑

k∈N

[
∑

r∈N

Brk (wk/κrk)
ε

∑s∈N Brs (ws/κrs)
ε LRr

](
dnkwk

Ak

)1−σ
}

.

Together (76) and (77) provide systems of 2N equations that determine the 2N unknown values of {w,

LR}. Consider first the system (76). Define the nth element of the operator Tw by

Tw (w; LR)n ≡

W̄
1−σ

α
( σ

σ−1 )
1−σ

σF

[
∑k∈N w̄

σ−1
α

k L
1−(σ−1)( 1

αε+
1−α

α )
Rk v̄

1−(σ−1)( 1−α
α )

k H
(σ−1)( 1−α

α )
k d1−σ

kn

]
A1−σ

n


1
σ

.

Note that Tw (w; LR) satisfies the following properties:
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1. Homogeneity in LR. For any w, we have

Tw (w;λLR) = λ[1−(σ−1)( 1
αε+

1−α
α )]

1
σ Tw (w; LR)

2. Homogeneity in w. For any λ ≥ 0, we have

Tw (λw; LR) = λ[
σ−1

α +1−(σ−1)( 1−α
α )]

1
σ Tw (w; LR) .

For this result, simply note that w̄n (λwn) = λw̄n (wn) and v̄n (λwn) = λv̄n (wn) .

Note also that
[

σ−1
α + 1− (σ− 1)

( 1−α
α

)] 1
σ = 1.

3. Tw (w; LR) is monotone increasing in w, namely, that for w, w′ ∈ B (X), w ≤ w′ implies T (w) ≤
T (w′) . In fact:

dw̄n

w̄n
= ∑

s∈N

Bns (ws/κns)
ε

∑k∈N Bnk (wk/κnk)
ε

dws

ws
> 0,

which establishes that w̄ is monotonic in w. Now note that v̄n can be written as:

v̄n = ∑
s∈N

Bnsκ
−ε
ns w1+ε

s w̄−ε
n ,

so that:

dv̄n = (1+ ε) ∑
s∈N

Bnsκ
−ε
ns w1+ε

s w̄−ε
n

dws

ws
− ε ∑

s∈N
Bnsκ

−ε
ns w1+ε

s w̄−ε
n ∑

k∈N

(
dw̄n

dwk

wk

w̄n

)
dwk

wk
> 0.

Using dws/ws = d ln ws, this expression can be re-written as:

dv̄n = (1+ ε) ∑
s∈N

Kns ln ωs − ε ∑
s∈N

Kns ∑
k∈N

ξnk ln ωk,

where

Kns ≡ Bnsκ
−ε
ns w1+ε

s w̄−ε
n ,

ln ωs ≡ d ln ws = lim
h→0

ln (ws + h)− ln (ws) = lim
h→0

ln ((ws + h) /ws) ,

ξnk ≡
Bnk (wk/κnk)

ε

∑s∈N Bns (ws/κns)
ε ,

∑
k∈N

ξnk = 1.

Since ln ωs is concave in ωs, it follows that:

∑
s∈N

Kns ln ωs > ∑
s∈N

Kns ∑
k∈N

ξnk ln ωk,

Given Properties 2 and 3, the results in Fujimoto and Krause (1985) guarantee that there exists a

unique fixed point for w, up to a normalization, conditional on LR,

w =Tw (w; LR) .

Denote this fixed point by wFP (LR).
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4. Using the results from 1.-3. above, note that we can set wFP (λLR) = wFP (LR) for any λ with an

appropriate change in Ū; in fact, given the Property 1, and since Ū shifts Tw (w; LR) proportionally

by Ū
1−σ
σα , we can always find an appropriate Ū′, namely Ū′

1−σ
σα λ[1−(σ−1)( 1

αε+
1−α

α )]
1
σ = 1. We show

that there is a Ū that clears the market at the end of the proof.

Now consider the system (77). Define the nth element of an operator T̃L by

T̃L (LR; w)n ≡

 W̄
1−σ

α
( σ

σ−1 )
1−σ

σF

[
∑k∈N

[
∑r∈N

Brn(wn/κrn)
ε

∑s∈N Brs(ws/κrs)
ε LRr

] (
dnkwk

Ak

)1−σ
]
×

w̄−
1−σ

α
n v̄

(1−σ)( 1−α
α )

n H
−(1−σ)( 1−α

α )
n


1

−(1−σ)( 1
αε+

1−α
α )

.

Note that T̃L (LR; w) satisfies the following properties:

• Homogeneity in LR:

T̃L (λLR; w) = λ

1
−(1−σ)( 1

αε+
1−α

α ) T̃L (LR; w)

• Monotonicity in LR, immediate by inspection.

Define TL (LR) ≡ T̃L
(
LR, wFP (LR)

)
. Note that this operator satisfies the following properties:

5. Homogeneity:

TL (λLR) ≡ T̃L

(
λLR, wFP (λLR)

)
= λ

1
−(1−σ)( 1

αε+
1−α

α ) T̃L

(
LR, wFP (λLR)

)
=

= λ

1
−(1−σ)( 1

αε+
1−α

α ) T̃L

(
LR; wFP (LR)

)
where the first equality follows from the expression for T̃L (LR; w) and the second equality from

setting wFP (λLR) = wFP (LR), as implied by Property 4 of wFP (LR) = Tw
(
wFP; LR

)
above;

6. Monotonicity in LR : note that T̃L (LR; w) is homogeneous of degree 0 in w , since 1− σ − 1−σ
α +

(1− σ)
( 1−α

α

)
= 0. Hence, given any vector dLR, the total differential in T̃L

(
LR, wFP (LR)

)
induced

through changes in wFP (LR) sums to zero by Euler’s theorem. T̃L
(
LR, wFP (LR)

)
is then monotone

in LR by inspection of the expression of T̃L (LR; w) .

Then, if 1
−(1−σ)( 1

αε+
1−α

α )
∈ (0, 1], the results in Fujimoto and Krause (1985) guarantee then that there

is a unique fixed point LFP
R such that

LFP
R = TL

(
LFP

R

)
.

Since − (1− σ)
( 1

αε +
1−α

α

)
> 0 by assumption, the binding constraint is that

− (1− σ)

(
1

αε
+

1− α

α

)
> 1,

or

σ >
1+ ε

1+ ε− αε
. (78)
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Hence, under the condition imposed in the statement of the proposition, there exists a unique solution

to the system of equations (76) and (77).

The only remaining task is to use the labor market clearing condition to guarantee that there exists

a unique scalar Ū such that ∑n∈N LRn = L̄. First note that the above result and the definition of the

operator TL (LR) guarantees that for any λ > 0 and any Ū

LR;λŪ = TL
(
LR;λŪ ; λŪ

)
= TL

(
LR;λŪ ; Ū

)
λ

1−σ
ασ

−(1−σ)( 1
αε+

1−α
α ) = TL

(
LR;λŪ ; Ū

)
λ

1
−σ( 1

ε+1−α)

where we have used the definition of W̄. Then,

ΓLR;λŪ=TL
(
ΓLR;λŪ ; λŪ

)
Γ

1− 1
−(1−σ)( 1

αε+
1−α

α ) = T
(
ΓLR;λŪ ; Ū

)
Γ

1− 1
−(1−σ)( 1

αε+
1−α

α )λ

1−σ
ασ

−(1−σ)( 1
αε+

1−α
α )

and so LR;Ū = ΓLR;λŪ if

Γ = λ
σ−1
ασ (1−(σ−1)( 1

αε+
1−α

α )).

Note that since 1− (σ− 1)
( 1

αε +
1−α

α

)
< 0, LR;Ū is monotone decreasing in Ū through this power func-

tion. Hence, there exists a unique Ū such that ∑n∈N LRn = L̄.

A.4 Proof of Proposition 2

A.4.1 New Economic Geography Model

We begin by considering our new economic geography model with agglomeration forces through love

of variety and increasing returns to scale. The general equilibrium vector {wn, v̄n, Qn, LMn, LRn, Pn} and

scalar Ū solve the following system of equations. First, income equals expenditure on goods produced

in each location:

wiLMi = ∑
n∈N

LMi (dniwi/Ai)
1−σ

∑k∈N LMk (dnkwk/Ak)
1−σ

v̄nLRn. (79)

Second, expected worker income depends on wages:

v̄n = ∑
i∈N

Bni (wi/κni)
ε

∑s∈N Bns (ws/κns)
ε wi. (80)

Third, land prices depend on expected worker income and the measure of residents:

Qn = (1− α)
v̄nLRn

Hn
. (81)

Fourth, workplace choice probabilities solve:

LMn

L̄
=

∑r∈N Brn
(
κrnPα

r Q1−α
r
)−ε wε

n

∑r∈N ∑s∈N Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

. (82)

Fifth, residential choice probabilities solve:

LRn

L̄
=

∑s∈N Bns
(
κnsPα

n Q1−α
n
)−ε wε

s

∑r∈N ∑s∈N Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

. (83)
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Sixth, price indices solve:

Pn =
σ

σ− 1

(
1

σF

) 1
1−σ

[
∑
i∈N

LMi (dniwi/Ai)
1−σ

] 1
1−σ

. (84)

Seventh, expected utility satisfies:

Ū = δ

[
∑

r∈N
∑

s∈N
Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

] 1
ε

, (85)

where δ = Γ
(

ε−1
ε

)
and Γ (·) is the Gamma function.

A.4.2 Eaton and Kortum (2002) with External Economies of Scale

We consider an Eaton and Kortum (2002) with external economies of scale augmented to incorporate

heterogeneity in worker preferences over workplace and residence locations. Utility remains as specified

in (1), except that the consumption index (Cn) is defined over a fixed interval of goods j ∈ [0, 1]:

Cn =

[∫ 1

0
cn (j)

ρ dj
] 1

ρ

.

Productivity for each good j in each location i is drawn from an independent Fréchet distribution:

Fi (z) = e−Aiz−θ
, Ai = ÃiL

η
Mi, θ > 1,

where the scale parameter of this distribution (Ai) depends on the measure of workers (LMi) and η

parameterizes the strength of external economies of scale. The general equilibrium vector {wn, v̄n, Qn,

LMn, LRn, Pn} and scalar Ū solve the following system of equations. First, income equals expenditure on

goods produced in each location:

wiLMi = ∑
n∈N

ÃiL
η
Mi (dniwi)

−θ

∑k∈N ÃkLη
Mk (dnkwk)

−θ
v̄nLRn. (86)

Second, expected worker income depends on wages:

v̄n = ∑
i∈N

Bni (wi/κni)
ε

∑s∈N Bns (ws/κns)
ε wi. (87)

Third, land prices depend on expected worker income and the measure of residents:

Qn = (1− α)
v̄nLRn

Hn
. (88)

Fourth, workplace choice probabilities solve:

LMn

L̄
=

∑r∈N Brn
(
κrnPα

r Q1−α
r
)−ε wε

n

∑r∈N ∑s∈N Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

. (89)

50



Fifth, residential choice probabilities solve:

LRn

L̄
=

∑s∈N Bns
(
κnsPα

n Q1−α
n
)−ε wε

s

∑r∈N ∑s∈N Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

. (90)

Sixth, price indices solve:

Pn = γ

[
∑
i∈N

ÃiL
η
Mi (dniwi)

−θ

]− 1
θ

, (91)

where γ =
[
Γ
(

θ−(σ−1)
θ

)] 1
1−σ

and Γ (·) denotes the Gamma function. Seventh, expected utility satisfies:

Ū = δ

[
∑

r∈N
∑

s∈N
Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

] 1
ε

. (92)

The system of equations (86)-(92) is isomorphic to the system of equations (79)-(85) under the following

restrictions:

θEK = σNEG − 1,

ηEK = 1,

AEK
i =

(
ANEG

i

)σNEG−1
,

γEK =
σNEG

σNEG − 1

(
1

σNEGFNEG

) 1
1−σNEG

.

Under these parameter restrictions, both models generate the same general equilibrium vector {wn, v̄n,

Qn, LMn, LRn, Pn} and scalar Ū.

A.4.3 Armington (1969) with External Economies of Scale

We consider an Armington (1969) model with external economies of scale augmented to incorporate

heterogeneity in worker preferences over workplace and residence locations. Utility remains as specified

in (1), except that the consumption index (Cn) is defined over goods that are horizontally differentiated

by location of origin:

Cn =

[
∑
i∈N

Cρ
i

] 1
ρ

.

The goods supplied by each location are produced under conditions of perfect competition and external

economies of scale such that the “cost inclusive of freight” (cif) price of good produced in location i and

consumed in location n is:

Pni =
dniwi

Ai
, Ai = ÃiL

η
Mi.

The general equilibrium vector {wn, v̄n, Qn, LMn, LRn, Pn} and scalar Ū solve the following system of

equations. First, income equals expenditure on goods produced in each location:

wiLMi = ∑
n∈N

Aσ−1
i Lη(σ−1)

Mi (dniwi)
1−σ

∑k∈N Aσ−1
k Lη(σ−1)

Mk (dnkwk)
1−σ

v̄nLRn. (93)
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Second, expected worker income depends on wages:

v̄n = ∑
i∈N

Bni (wi/κni)
ε

∑s∈N Bns (ws/κns)
ε wi. (94)

Third, land prices depend on expected worker income and the measure of residents:

Qn = (1− α)
v̄nLRn

Hn
. (95)

Fourth, workplace choice probabilities solve:

LMn

L̄
=

∑r∈N Brn
(
κrnPα

r Q1−α
r
)−ε wε

n

∑r∈N ∑s∈N Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

. (96)

Fifth, residential choice probabilities solve:

LRn

L̄
=

∑s∈N Bns
(
κnsPα

n Q1−α
n
)−ε wε

s

∑r∈N ∑s∈N Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

. (97)

Sixth, price indices solve:

Pn =

[
∑
i∈N

Aσ−1
i Lη(σ−1)

Mi (dniwi)
1−σ

] 1
1−σ

. (98)

Seventh, expected utility satisfies:

Ū = δ

[
∑

r∈N
∑

s∈N
Brs

(
κrsPα

r Q1−α
r

)−ε
wε

s

] 1
ε

. (99)

The system of equations (93)-(99) is isomorphic to the system of equations (79)-(85) under the following

restrictions:

σAR = σNEG,

ηEK =
1

σNEG − 1
,

AAR
i = ANEG

i ,

1 =
σNEG

σNEG − 1

(
1

σNEGFNEG

) 1
1−σNEG

.

Under these parameter restrictions, both models generate the same general equilibrium vector {wn, v̄n,

Qn, LMn, LRn, Pn} and scalar Ū.

A.5 Proof of Proposition 3

Note that the goods market clearing condition (23) can be written as the following excess demand sys-

tem:

Di(Ã) = wiLMi − ∑
n∈N

ÃiLMi (dniwi)
1−σ

∑k∈N ÃkLMk (dnkwk)
1−σ

v̄nLRn = 0, (100)
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where Ãi = Aσ−1
i and {wi, LMi, v̄n, LRn, dni} have already been determined from the observed data or

our parameterization of trade costs. This excess demand system exhibits the following properties in Ãi:

Property (i): D(Ã) is continuous, as follows immediately from inspection of (100).

Property (ii): D(Ã) is homogenous of degree zero, as follows immediately from inspection of (100).

Property (iii): ∑i∈N Di
(
Ã
)
= 0 for all Ã ∈ <N

+ . This property can be established by noting:

∑
i∈N

Di
(
Ã
)
= ∑

i∈N
wiLMi − ∑

n∈N

∑i∈N ÃiLMi (dniwi)
1−σ

∑k∈N ÃkLMk (dnkwk)
1−σ

v̄nLRn,

= ∑
i∈N

wiLMi − ∑
n∈N

v̄nLRn,

= 0.

Property (iv): D(Ã) exhibits gross substitution:

∂Di
(
Ã
)

∂Ãr
> 0 for all i, r, 6= i, for all Ã ∈ <N

+ ,

∂Di
(
Ã
)

∂Ãi
< 0 for all i, for all Ã ∈ <N

+ .

This property can be established by noting:

∂Di
(
Ã
)

∂Ãr
= ∑

n∈N

LMr (dnrwr)
1−σ ÃiLMi (dniwi)

1−σ[
∑k∈N ÃkLMk (dnkwk)

1−σ
]2 v̄nLRn > 0.

and using homogeneity of degree zero, which implies:

∇D
(
Ã
)

Ã = 0,

and hence:
∂Di

(
Ã
)

∂Ãi
< 0 for all Ã ∈ <N

+ .

Therefore we have established gross substitution. We now use these five properties to establish that

the system of equations (100) has at most one (normalized) solution. Gross substitution implies that

D
(
Ã
)
= D

(
Ã′
)

cannot occur whenever Ã and Ã′ are two technology vectors that are not colinear. By

homogeneity of degree zero, we can assume Ã′ ≥ Ã and Ãi = Ã′i for some i. Now consider altering the

productivity vector Ã′ to obtain the productivity vector Ã in N− 1 steps, lowering (or keeping unaltered)

the productivity of all the other N − 1 locations n 6= i one at a time. By gross substitution, the excess

demand in location i cannot decrease in any step, and because Ã 6= Ã′, it will actually increase in at least

one step. Hence D
(
Ã
)
> D

(
Ã′
)

and we have a contradiction.

We next establish that there exists a productivity vector Ã∗ ∈ <N
+ such that D(Ã∗) = 0. By homo-

geneity of degree zero, we can restrict our search for this productivity vector to the unit simplex

∆ =
{

Ã ∈ <N
+ : ∑i∈N Ãi = 1

}
. Define on ∆ the function D+ (·) by D+

i

(
Ã
)
= max

{
Di
(
Ã
)

, 0
}

. Note

that D+ (·) is continuous. Denote α
(
Ã
)
= ∑i∈N

[
Ãi + D+

i

(
Ãi
)]

. We have α
(
Ã
)
≥ 1 for all Ã.

53



Define a continuous function f (·) from the closed convex set ∆ into itself by:

f
(
Ã
)
=
[
1/α

(
Ã
)] [

Ã+ D+
(
Ã
)]

.

Note that this fixed-point function tends to increase the productivities of locations with excess demand.

By Brouwer’s Fixed-point Theorem, there exists Ã∗ ∈ ∆ such that Ã∗ = f
(
Ã∗
)
.

Since ∑i∈N Di
(
Ã
)
= 0, it cannot be the case that Di

(
Ã
)
> 0 for all i ∈ N or Di

(
Ã
)
< 0 for all i ∈ N.

Additionally, if Di
(
Ã
)
> 0 for some i and Dr

(
Ã
)
< 0 for some r 6= i, Ã 6= f

(
Ã
)
. It follows that at the

fixed point for productivity, Ã∗ = f
(
Ã∗
)
, and Di

(
Ã∗
)
= 0 for all i. It follows that there exists a unique

vector of unobserved productivities (Ã) that solves the excess demand system (100).

A.6 Proof of Proposition 4

Note that the commuting probability (25) can be written as the following excess demand system:

Di(B) = λni −
Bniκ

−ε
ni

(
LMn
πnn

)− αε
σ−1 Aαε

n w−αε
n v̄−ε(1−α)

n

(
LRn
Hn

)−ε(1−α)
wε

i

∑r∈N ∑s∈N Brsκ
−ε
rs

(
LMr
πrr

)− αε
σ−1 Aαε

r w−αε
r v̄−ε(1−α)

r

(
LRr
Hr

)−ε(1−α)
wε

s

= 0, (101)

where {wi, LMi, v̄n, LRn, κni, πnn, An, Hn} have already been determined from the observed data or

our parameterization of commuting costs. Note that the excess demand system (101) exhibits the same

properties in B as the excess demand system (100) exhibits in Ã. It follows that there exists a unique

vector of unobserved productivities (Ã) that solves the excess demand system (100).

A.7 Partial Equilibrium Elasticities

Wage Elasticity: Totally differentiating the goods market clearing condition (11), we have:

dwn
wn

wnLMn +
dLMn
LMn

wnLMn = ∑r∈N (1− πrn)πrnv̄rLRr
dLMn
LMn
−∑r∈N ∑s∈N πrsπrnv̄rLRr

dLMs
LMs

− (σ− 1)∑r∈N (1− πrn)πrnv̄rLRr
dwn
wn
+ (σ− 1)∑r∈N ∑s∈N πrsπrnv̄rLRr

dws
ws

+ (σ− 1)∑r∈N (1− πrn)πrnv̄rLRr
dAn
An
− (σ− 1)∑r∈N ∑s∈N πrsπrnv̄rLRr

dAs
As

+∑r∈N πrnv̄rLRr
dv̄r
v̄r
+∑r∈N πrnv̄rLRr

dLRr
LRr

.

To consider the direct effect of a productivity shock in location n on wages, employment and residents in

that location, holding constant all other endogenous variables at their values in the initial equilibrium,

we set dAs = dws = dLMs = dLRs = 0 for s 6= n and dv̄r = 0 for all r, which yields:

dwn
wn

wnLMn +
dLMn
LMn

wnLMn = ∑r∈N (1− πrn)πrnv̄rLRr
dLMn
LMn
− (σ− 1)∑r∈N (1− πrn)πrnv̄rLRr

dwn
wn

+ (σ− 1)∑r∈N (1− πrn)πrnv̄rLRr
dAn
An
+ πnnv̄nLRn

dLRn
LRn

.

This implies:

dwn
dAn

An
wn
+ dLMn

dAn

An
LMn

= ∑r∈N (1− πrn)
πrn v̄r LRr
wn LMn

(
dLMn
dAn

An
LMn

)
− (σ− 1)∑r∈N (1− πrn)

πrn v̄r LRr
wn LMn

(
dwn
dAn

An
wn

)
+ (σ− 1)∑r∈N (1− πrn)

πrn v̄r LRr
wn LMn

+ πnn v̄n LRn
wn LMn

dLRn
dAn

An
LRn

,
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which can be re-written as:

dwn
dAn

An
wn
+
(

dLMn
dwn

wn
LMn

) (
dwn
dAn

An
wn

)
= ∑r∈N (1− πrn)

πrn v̄r LRr
wn LMn

(
dLMn
dwn

wn
LMn

) (
dwn
dAn

An
wn

)
− (σ− 1)∑r∈N (1− πrn)

πrn v̄r LRr
wn LMn

(
dwn
dAn

An
wn

)
+ (σ− 1)∑r∈N (1− πrn)

πrn v̄r LRr
wn LMn

+πnn v̄n LRn
wn LMn

(
dLRn
dwn

wn
LRn

) (
dwn
dAn

An
wn

)
,

where we have used the fact that productivity does not directly enter the commuting market clearing

condition (18) and the residential choice probabilities (16) and hence employment and residents only

change to the extent that wages change as a result of the productivity shock. Rearranging this expression,

we obtain the partial equilibrium elasticity in the main text above:

∂wn

∂An

An

wn
=

(σ− 1)∑r∈N (1− πrn) ξrn

[1+ (σ− 1)∑r∈N (1− πrn) ξrn] + [1−∑r∈N (1− πrn) ξrn]
dLMn
dwn

wn
LMn
− ξnn

dLRn
dwn

wn
LRn

, (102)

where ξrn = πrnv̄rLRr/wnLMn is the share of expenditure from location r in location n’s income and we

use the partial derivative symbol to clarify that this derivative is not the full general equilibrium one.

Employment Elasticity: Totally differentiating the commuting market clearing condition (18), we have:

dLMn

LMn
= ε ∑

r∈N

(
1− λrn|r

) dwn

wn

λrn|rLRr

LMn
− ε ∑

r∈N
∑
s 6=n

λrs|r
dws

ws

LMrn

LMn

+∑
r

dLRr

LRr

LMrn

LMn
.

To consider the direct effect of a productivity shock in location n on its employment and residents

through a higher wage in that location, holding constant all other endogenous variables at their val-

ues in the initial equilibrium, we set dws = dLMs = dLRs = 0 for s 6= n, which yields:

dLMn

LMn
= ε ∑

r∈N

(
1− λrn|r

) λrn|rLRr

LMn

dwn

wn
+

λnn|nLRn

LMn

dLRn

LRn
.

Rearranging this expression, we obtain the partial equilibrium elasticity in the main text above:

∂LMn

∂wn

wn

LMn
= ε ∑

r∈N

(
1− λrn|r

)
ϑrn + ϑnn

(
dLRn

dwn

wn

LRn

)
, (103)

where ϑrn = λrn|rLRr/LMn is the share of commuters from source r in location n’s employment and we

use the partial derivative symbol to clarify that this derivative is not the full general equilibrium one.

Residents Elasticity: Totally differentiating the residential choice probability (λRn in (16)), we have:

dLRn

LRn

LRn

L̄
= −εα (1− λRn) λRn

dPn

Pn
+ εα ∑

r 6=n
λRrλRn

dPr

Pr

−ε (1− α) (1− λRn) λRn
dQn

Qn
+ ε (1− α) ∑

r 6=n
λRrλRn

dQr

Qr

+ελnn
dwn

wn
− ελMnλRn

dwn

wn
− ε ∑

s 6=n
λMsλRn

dws

ws
.
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To consider the direct effect of a productivity shock in location n on its residents through a higher wage

in that location, holding constant all other endogenous variables at their values in the initial equilibrium,

we set dPr = dQr = 0 for all r and dws = 0 for s 6= n, which yields:

dLRn

LRn

LRn

L̄
= ε (λnn − λMnλRn)

dwn

wn
.

This implies:
∂LRn

∂wn

wn

LRn
= ε

(
λnn

λRn
− λMn

)
, (104)

which corresponds to the expression in the main text above and we use the partial derivative symbol

to clarify that this derivative is not the full general equilibrium elasticity. Using the residents elasticity

(104) in the employment elasticity (103), and using the residents and employment elasticities ((104) and

(103) respectively) in the wage elasticity (102), we obtain the following partial equilibrium elasticities for

the productivity shock,

∂LRn
∂wn

wn
LRn

= ε
(

λnn
λRn
− λMn

)
,

∂LMn
∂wn

wn
LMn

= ε ∑r∈N
(
1− λrn|r

)
ϑrn + ϑnnε

(
λnn
λRn
− λMn

)
,

∂wn
∂An

An
wn
= (σ−1)∑r∈N(1−πrn)ξrn

[1+(σ−1)∑r∈N(1−πrn)ξrn]+[1−∑r∈N(1−πrn)ξrn]
[
ε ∑r∈N(1−λrn|r)ϑrn+εϑnn

(
λnn
λRn
−λMn

)]
−ξnnε

(
λnn
λRn
−λMn

) .

A.8 Robustness

A.8.1 Commuting Zones

In Figure 18, we show that we continue to find heterogeneity in local employment elasticities if we use

commuting zones (CZs) rather than counties. We compute 709 counterfactual exercises where we shock

each CZ with a 5 percent productivity shock (holding productivity in all other CZs and holding all other

exogenous variables constant). We display the estimated kernel density for the distribution of the general

equilibrium elasticity of employment with respect to the productivity shock across these treated CZs

(black line). We also show the 95 percent confidence intervals around this estimated kernel density (gray

shading). Again we find substantial heterogeneity in the predicted effects of the productivity shock,

although less than for counties. Furthermore, this heterogeneity in predicted effects is markedly larger

for employment than residents. Since employment and residents can only differ through commuting,

this suggests that the use of CZs is an imperfect control for commuting patterns between locations.

A.8.2 Spatially Correlated Productivity Shocks

In Figures 19 to 22 we show that the heterogeneity in local employment elasticities persists if we sim-

ulate productivity shocks with a degree of spatial correlation based on observed industry composition.

We construct spatially correlated shocks using aggregate productivity growth in manufacturing and

non-manufacturing and the observed shares of these sectors within each county’s employment. In par-

ticular, we proceed as follows. Data from BLS shows that between 2004 and 2010 TFP grew 6.2% for

56



0
1

2
3

4
D

en
si

ty

0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8
Elasticity of C.Z. Employment and Residents to Productivity

Employment Residents

Eliminating bottom and top 0.5%; gray area: 95% boostrapped CI

Figure 18: Kernel density for the distribution of employment and residents elasticities in response to a
productivity shock across commuting zones

the manufacturing sector and 3.4% for the overall private business sector. Given a U.S. employment

share in manufacturing of about 11% in 2007 (computed from the County Business Pattern, see Data

Appendix below), we infer a growth in the non-manufacturing sector’s TFP of 3.1%. We use the County

Business Pattern 2007 to also compute the share of each county’s manufacturing employment over total

employment. Figure 19 shows a map of these shares across the United States.

We first show the consequences of a spatially correlated shock to manufacturing. We compute the

equilibrium change in employment and residents in a single counterfactual exercise where each county’s

productivity is changed by 6.1% times the share of manufacturing employment in that county: hence, the

spatial correlation in manufacturing shares induces a spatial correlation in productivity shocks. Figure

20 shows the resulting distribution of elasticities of employment and residents.

Figure 21 shows an analogous exercise for a shock to the non-manufacturing sector. Finally, Figure 22

shows the same elasticities when both sectors are shocked: in this case, each county’s shock is a weighted

average of the national increase in TFP in the manufacturing and non-manufacturing sectors, where the

weights are the corresponding employment shares in the county.

A.8.3 Standardized Regression on Employment Elasticities
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Figure 19: U.S. counties’ share of employment in manufacturing, 2007.
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Figure 20: Kernel density for the distribution of employment and residents elasticities in response to a
spatially correlated productivity shock in the manufacturing sector

B Data processing and details on figures and tables

B.1 Data sources and definition

In what follows we list the sources and the variable definitions that we use. We consider them under-

stood in the following section on data processing.

Earnings by Place of Work. This data is taken from the Bureau of Economic Analysis (BEA) website,

58



0
1

2
3

4
5

D
en

si
ty

-.5 -.25 0 .25 .5
Elasticity of Employment and Residents to Productivity

Employment Residents

Eliminating bottom and top 0.5%; gray area: 95% boostrapped CI

Figure 21: Kernel density for the distribution of employment and residents elasticities in response to a
spatially correlated productivity shock in the non-manufacturing sector

under Regional Data, Economic Profiles for all U.S. counties. The BEA defines this variable as "the sum of

Wages and Salaries, supplements to wages and salaries and proprietors’ income. [...] Proprietor’s income

[...] is the current-production income (including income in kind) of sole proprietorships and partnerships

and of tax-exempt cooperatives. Corporate directors’ fees are included in proprietors’ income, but the

imputed net rental income of owner-occupants of all dwellings is included in rental income of persons.

Proprietors’ income excludes dividends and monetary interest received by nonfinancial business and

rental incomes received by persons not primarily engaged in the real estate business." The BEA states

that earnings by place of work "can be used in the analyses of regional economies as a proxy for the

income that is generated from participation in current production". We use the year 2007.

Total Full-Time and Part-Time Employment (Number of Jobs). This data is taken from the BEA

website, under Regional Data, Economic Profiles for all U.S. counties. The BEA defines this series as an

estimate "of the number of jobs, full-time plus part-time, by place of work. Full-time and part-time jobs

are counted at equal weight. Employees, sole proprietors, and active partners are included, but unpaid

family workers and volunteers are not included. Proprietors employment consists of the number of sole

proprietorships and the number of partners in partnerships. [...] The proprietors employment portion

of the series [...] is more nearly by place of residence because, for nonfarm sole proprietorships, the

estimates are based on IRS tax data that reflect the address from which the proprietor’s individual tax
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Figure 22: Kernel density for the distribution of employment and residents elasticities in response to a
spatially correlated shock in the both sectors

return is filed, which is usually the proprietor’s residence. The nonfarm partnership portion of the

proprietors employment series reflects the tax-filing address of the partnership, which may be either the

residence of one of the partners or the business address of the partnership." We use the year 2007.

County-to-County Worker Flows. This data contains county-level tabulations of the workforce

"residence-to-workplace" commuting flows from the American Community Survey (ACS) 2006-2010 5-

year file. The ACS asks respondents in the workforce about their principal workplace location during

the reference week. People who worked at more than one location are asked to report the location at

which they worked the greatest number of hours. We use data for all the 50 States and the District of

Columbia.

County Land Area, County Centroids. This data comes from the 2010 Census Gazetteer Files. When

we need to aggregate counties (see below), the land area is the total land area of the aggregated counties,

and the centroid of the new county is computed using spatial analysis software.

County Median Housing Values. This data reports the county’s median value of owner-occupied

housing units from the American Community Survey 2009-2013 5-year file.

Commodity Flows among CFS Area. We use the 2007 Origin-Destination Files of the Commodity

Flow Survey for internal trade flows of all merchandise among the 123 Commodity Flow Survey areas

in the United States.
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1 2 3 4 5 6 7 8 9

Dependent Variable: Elasticity of Employment

log LMn -0.012 0.036* -0.217** 0.147** 0.132**
(0.018) (0.018) (0.019) (0.008) (0.008)

log wn -0.126** -0.100** -0.162** -0.166**
(0.018) (0.017) (0.006) (0.006)

log Hn -0.621** -0.372** 0.007 0.020**
(0.014) (0.019) (0.007) (0.007)

log LM,−n 0.429** -0.097** -0.097**
(0.027) (0.009) (0.010)

log w̄−n 0.090** 0.072** 0.091**
(0.021) (0.007) (0.007)

λnn|n -0.945**
(0.006)

∑r∈N

(
1− λrn|r

)
ϑrn 1.462** 1.343**

(0.048) (0.051)

ϑnn

(
λnn
λRn
− λMn

)
0.487** 0.322**
(0.048) (0.051)

∂wn
∂An

An
wn

-0.110** -0.090**
(0.005) (0.006)

∂wn
∂An

An
wn
·∑r∈N

(
1− λrn|r

)
ϑrn 0.544** 0.576**

(0.019) (0.025)
∂wn
∂An

An
wn
· ϑnn

(
λnn
λRn
− λMn

)
-0.428** -0.444**
(0.019) (0.025)

constant -0.000 -0.000 0.000 0.000 -0.000 0.000 -0.000 -0.006 -0.006
(0.018) (0.018) (0.014) (0.013) (0.006) (0.005) (0.005) (0.004) (0.004)

R2 0.00 0.00 0.40 0.51 0.89 0.93 0.93 0.95 0.95
N 3,111 3,111 3,111 3,081 3,111 3,111 3,111 3,081 3,081

In this table, LM,−n ≡ ∑r:drn≤120,r 6=n LMr is the total employment in n neighbors whose centroid is no more than 120km away;
w̄−n ≡ ∑r:drn≤120,r 6=n

LMr
LM,−n

wr is the weigthed average of their workplace wage. All variables are standardized. * p < 0.05; **
p < 0.01.

Table 4: Explaining the general equilibrium local employment elasticities to a 5 percent productivity
shock

Share of counties’ manufacturing employment. We use the County Business Pattern file for the year

2007. We use the information on total employment, and employment in manufacturing only. For some

counties, employment is suppressed to preserve non-disclousure of individual information, and em-

ployment is only reported as a range. In those cases, we proceed as follow. We first use the information

on the firm-size distribution, reported for all cases, to narrow the plausible employment range in the cell.

We run these regressions separately for employment in manufacturing and total employment. We then

use this estimated relation to predict the employment level where the data only reports information on

the firm size-distribution. Whenever the predicted employment lies outside the range identified above,

we use the employment at the relevant corner of the range.
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B.2 Initial data processing

We start by assigning to each workplace county in the County-to-County Worker Flows data, informa-

tion on the Earnings by Place of Work and the Number of Jobs. Note that the commuting data contains

3,143 counties while the BEA data contains 3,111 counties. This happens because, for example, some

independent cities in Virginia for which we have separate data on commuting are included in the sur-

rounding county in the BEA data. We make the two sources consistent by aggregating the relevant

commuting flows by origin-destination, and so we always work with 3,111 counties.

The ACS data reports some unrealistically long commutes, which arise for example for itinerant

professions. We call these flows "business trips" and we remove them as follow. We measure the distance

between counties as the distance between their centroids computed using the Haversine formula. We

start by assuming that no commute can be longer than 120km: hence, flows with distances longer than

120km are assumed to only be business trips, while flows with distances less than or equal to 120km

are a mix business trips and actual commuting. We choose the 120km threshold based on a change in

slope of the relationship between log commuters and log distance at this distance threshold. To split

total travellers into commuters and business travellers, we write the identity λ̃ij = ψB
ijλ̃

B
ij,where λ̃ij is

total travellers, λ̃
B
ij is business travellers, λ̃

C
ij is commuters, and ψij is defined as an identity as the ratio of

total travellers to business travellers:

ψij =
λ̃

C
ij + λ̃

B
ij

λ̃
B
ij

.

We assume that business travel follows the gravity equation λ̃
B
ij = Si MjdistδB

ij uij,where Si is a residence

fixed effect, Mj is a workplace fixed effect, distij is bilateral distance, and uij is a stochastic error. We

assume that ψij takes the following form:

ψij =

{
1 distij > d̄
γdistδC

ij distij ≤ d̄
,

where we expect γ > 1 and δC < 0. Therefore we have the following gravity equation for total travellers:

ln λ̃ij = ln Si + ln Mj + γIij +
(
δB + δCIij

)
ln distij + uij, (105)

where Iij is an indicator variable that is one if distij ≤ d̄ and zero otherwise. Estimating the above

equation for total travellers, we can generate the predicted share of commuters as:

ŝC
ij = 1−

̂̃λB
iĵ̃λij

= 1−
Ŝi M̂jdistδ̂B

iĵ̃λij

,

where ̂̃λij = exp
(

ln ̂̃λij

)
are the fitted values from gravity (105). Note that this predicted share satisfies

the requirements that (a) commuters are zero beyond the threshold d̄, (b) the predicted share of com-

muters always lies in between zero and one, (c) commuters, business travellers and total travellers all

satisfy gravity. Note also that since the regression cannot be run on flows internal to a county λ̃ii, we set

62



ŝC
ii = 1 (i.e., flows of agents who live and work in the same county are assumed to contain no business

trips). Therefore we can construct commuting flows as:

̂̃λC
ij = ŝC

ij λ̃ij.

The total business trips originating from residence i are then ∑j

(
1− ŝC

ij

)
λ̃ij. For any residence i, we

reimpute these business trips across destinations j in proportion to the estimated workplace composi-

tion of the residence i, ̂̃λC
ij / ∑i

̂̃λC
ij . The total employment (and average wage) in a county in the initial

equilibrium is taken from the BEA, while total residents (and average residential income) in a county are

reconstructed using the estimated residence composition of each workplace. Table 1, Figure 3, and all

the results in the paper are based on these "cleaned" commuting flows and initial equilibrium values.

Whenever necessary, we allow for expenditure imbalances across counties. We compute these im-

balances as follows. We start from the CFS trade flows. The total sales of a CFS area anywhere must

correspond, in a model with only labor (such as the one in this paper), to total payments to workers

employed in the area. We rescale the total sales from a CFS area to the value of the total wage bill from

the BEA data.21 For any origin CFS, we keep the destination composition of sales as implied by the CFS

bilateral flows. This procedure gives us, for any CFS, total expenditures and total sales consistent with

the total labor payments in the economy. We compute the deficit of any CFS area by subtracting total

sales from total expenditure. We apportion this deficit across all the counties in the CFS in proportion to

the total residential income of the county, as computed above. The total expenditure of the county in the

initial equilibrium is always total residential income plus deficit. In any counterfactual equilibrium, the

dollar value of the deficit is kept fixed.

B.3 Further information on figures and tables

For some figures in the paper, the main text does not report some technical details related to data ma-

nipulation. We report those details here.

Table 1. The table reports statistics on the out-degree distribution (first and third row) and in-degree

distribution of the fraction of commuters across counties. Commuting flows are cleaned with the pro-

cedure described above. The correspondence between counties and commuting zones is taken from the

Economic Research Service of the United States Department of Agriculture.22

Figure 1. This figure reports a scatterplot of the log trade flows among CFS areas against log distance

between these areas, after removing origin and destination fixed effects. The distance between CFS

areas is the average distance travelled by shipments, computed dividing the total ton-miles travelled

by the total tons shipped, as reported in the CFS data. Whenever this distance cannot be computed

(in about 1/3 of the flows) we supplement it with an estimated distance as follows. We compute the

centroids of CFS areas using the Freight Analysis Framework Regions shape-files provided by the Bureau

21For this step, we need a correspondence between CFS areas and counties that is provided by the Census at
http://www.census.gov/econ/census/help/geography/cfs_areas.html.

22See http://www.ers.usda.gov/data-products/commuting-zones-and-labor-market-areas.aspx.
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of Transportation Statistics23 and bilateral distances among these centroids using the Haversine formula.

We then regress the actual distance shipped on these centroid-based distances, in logs, and find strong

predictive power (slope of 1.012, R2 = 0.95). We use the predicted distances from this regression for

flows where the average distance shipped cannot be computed. If we restrict our sample to only flows

for which the distance can be computed directly, we find a slope of -1.23, and R2 of 0.82 (similar to the

ones used in the main text of -1.29 and 0.83, respectively).

Figure 2. This figure reports a scatterplot of expenditure shares across CFS areas in the data and the

model-implied expenditure shares after recovering the productivity of each county, with the procedure

described in the main text. Both the estimated productivities and the implied trade shares are calculated

using the expenditure of a county allowing for deficits computed as above.

Figure 3. This figure reports a scatterplot of log commuting flows against log distance between

county’s centroids after removing origin and destination fixed effects. The commuting flows used in the

regression are cleaned of the business trips as described above.

Figure 4. This figure reports a scatterplot of log of land price, as computed from the model, and

the County Median Housing Value from the ACS. To compute the price of land in the model we use

residents’ expenditure allowing for trade deficits. For counties that are aggregated at the BEA level (see

above), we compute the population weighted average of the median values.
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