
College attrition and the dynamics of information

revelation ∗

Preliminary

Peter Arcidiacono † Esteban Aucejo‡ Arnaud Maurel§

Tyler Ransom ¶

October 2015

Abstract

This paper investigates the determinants of college attrition in a setting where

individuals have imperfect information about their schooling ability and labor market

productivity. We estimate a dynamic structural model of schooling and work decisions,

where high school graduates choose a bundle of education and work combinations. We

take into account the heterogeneity in schooling investments by distinguishing between

two- and four-year colleges and graduate school, as well as science and non-science

majors for four-year colleges. Individuals may also choose whether to work full-time,

part-time, or not at all. A key feature of our approach is to account for correlated

learning through college grades and wages, thus implying that individuals may leave

or re-enter college as a result of the arrival of new information on their ability and
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productivity. We use our results to quantify the importance of informational frictions

in explaining the observed school-to-work transitions and to examine sorting patterns.

JEL Classification: C35; D83; J24

1 Introduction

About half of students entering college in the United States do not earn a bachelor’s degree

within five years, a proportion that has been increasing since the 1970’s (Bound et al. 2010).

To the extent that there is a large wage premium to receiving a four-year college degree

(Heckman et al., 2006, Goldin & Katz, 2008, Bound & Turner, 2011), this suggests that

imperfect information and learning may be important to the decision to leave college. In

this paper, we focus on the role of learning about academic ability as well as labor market

productivity as an explanation for the rate of college attrition and re-entry that is observed

in the U.S. In the current environment where high college attrition rates are considered a

major issue, addressing these issues is important to understand (i) whether these attrition

rates should be a concern, and (ii) which type of policies would be effective in reducing

attrition rates.

In order to quantify the importance of information frictions in the decision to leave or

return to college, we estimate a dynamic model of schooling and work decisions where such

decisions depend on the arrival of information on schooling ability and work productivity.

A key feature of the model is that students have imperfect information about their ability

and productivity. After graduating from high school or receiving a GED, individuals decide

whether to attend college and/or work part-time or full-time, or engage in home production

in each period. When entering college, individuals have some beliefs about their ability and

productivity. At the end of each school year, they learn about their ability, using their grades

to update their beliefs. Since schooling ability and productivity will in general be correlated,

individuals will also use their grades to update their productivity belief. Likewise, employed

individuals update both their productivity and ability beliefs after receiving a wage (see

Miller 1984).

We estimate a richer model than previously possible by making use of recent innovations

in the computation of dynamic models of correlated learning. James (2011) shows that

(i) integrating out over actual abilities as opposed to the signals and (ii) using the EM

algorithm where at the maximization step ability is treated as known, results in models that

are computationally very fast. James (2011) builds on the results from Arcidiacono & Miller
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(2011) to show that estimation is computationally simple even in the presence of unobserved

heterogeneity that is known to the individual. Using this approach in our current context

makes estimation of our correlated learning model both feasible and fast. Importantly, it also

allows us to easily take into account heterogeneity in schooling investments by distinguishing

between two- and four-year colleges, as well as science and non-science majors for four-year

colleges.1

We then use our model estimates to quantify the importance of informational frictions in

explaining the observed school-to-work transitions, and to evaluate the value of information

in this context. We find that a sizable share of the dispersion in college grades and wages

is accounted for by the ability components that are initially unknown to the individuals.

Allowing for correlated learning is important in this context. Focusing on the ability com-

ponents which are unknown to the individuals at the time of high school graduation, we find

that schooling abilities are highly correlated across college types and majors (2-year college,

4-year college science, 4-year college non-science). The correlation between productivities in

the unskilled and skilled sectors is also large. On the other hand, schooling abilities are only

weakly correlated with productivity in both sectors, thus suggesting that grades earned in

college actually reveal little information about future labor market performance.

We also simulate our model under a counterfactual scenario where all individuals would

have perfect information on their abilities by the end of high school. We find that four-

year college graduation rates would increase substantially (by 40%) relative to the baseline

imperfect information scenario, mostly through a decrease in dropout rates. We further

provide evidence that imperfect information on ability has important implications regarding

the composition of college graduates, dropouts and stopouts in the different types of colleges

and majors. Simulations reveal that ability sorting would be much stronger in the perfect

information scenario. In particular, our results show that imperfect information on ability

significantly limits the extent to which individuals can pursue their comparative advantage.

Our analysis builds on seminal research by Manski & Wise (1983) and Manski (1989),

which argued that college entry can be seen as an experiment that may not lead to a college

degree. According to these authors, an important determinant of college attrition lies in the

fact that, after entering college, students get new information and thus learn about their

ability. More recently, several other papers in the literature on college completion stress

the importance of learning about schooling ability to account for college attrition (see, e.g.,

Altonji 1993, Light & Strayer 2000, Arcidiacono 2004, and Heckman & Urzua 2009). Of

1See the recent surveys by Altonji et al. (2015) and Altonji et al. (2012), who discuss the importance of

heterogeneity in human capital investments.
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particular relevance to us is the work by Stinebrickner & Stinebrickner (2012), who provide

direct evidence, using subjective expectations data from Berea College, that learning about

schooling ability is a major determinant of the college drop-out decision.

Much of the learning literature assumes that the labor market is an absorbing state,

implying that the decision to leave college is irreversible (Stange 2012, Stinebrickner &

Stinebrickner 2012). By relaxing this assumption, we are able to predict the substantial

college re-entry rates of over 25% which are observed in the data.2 This is an important step

towards a comprehensive analysis of school-to-work transitions, building on the insights of

Pugatch (2012) who provides evidence from South African data that the option to re-enroll

in high school is a key determinant of the decision to leave school and enter the labor market.

The remainder of the paper is organized as follows. Section 2 presents the data. Section 3

describes a dynamic model of schooling and work decisions, where individuals have imperfect

information about their schooling ability and labor market productivity, and update their

beliefs through the observation of grades and wages. Section 4 discusses the identification

of the model, with Section 5 detailing the estimation procedure. Section 6 presents our

estimation results. Finally, Section 7 concludes.

2 Data

The model is estimated using data from the National Longitudinal Survey of Youth 1997

(NLSY97). The NLSY97 is a longitudinal, nationally representative survey of 8,984 Amer-

ican youth who were born between January 1, 1980 and December 31, 1984. Respondents

were first interviewed in 1997 and have continued to be interviewed annually (for a total of

15 Rounds as of 2011, which corresponds to the most recent data used in the paper) on such

topics as labor force activities, education, and marriage and fertility, among many others.

Of particular importance for our analysis is the choice variable, dt, which is constructed

at each period as follows:

1. Any individual attending a college in the month of October is classified as being in

college for this year (either in a two- or a four-year college). For four-year colleges, our

definition of “Science” majors includes majors in Sciences, Technology, Engineering,

and Mathematics (STEM).3 See Table A.1 for details on the exact majors in each

2In our sample, 26% of the individuals leaving college before graduation are observed to re-enroll at some

point. Note that because of right-censoring, this underestimates the actual re-entry rate.
3Hereafter, we use “science” and “STEM” interchangeably.
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category.

2. Any individual reporting college attendance who also reports working at least four

weeks in October and at least 10 hours per week is classified as working part-time

while in school, with full-time work requiring at least 35 hours per week and four

weeks worked in October.

3. Any individual not in college (according to the criterion above) is classified as working

part-time or full-time according to the criteria above.4

4. Finally, all other cases are classified as home production.5

The other dependent variables in the analysis are college GPA and wages. College GPA

is measured on a four-point scale and calculated as the average GPA across all semesters in

the calendar year. Wages are calculated as follows:

1. We compute the hourly compensation (i.e. wage plus tips and bonuses) for the self-

reported main job, converted to 1996 dollars.

2. If a person does not report hourly compensation, we impute earnings as annual income

divided by annual hours worked (7.2% of our sample).

3. Finally, we top- and bottom-code the resulting earnings distribution at the 99.5 per-

centile and 2.5 percentile.

It is worth noting that GPA and college major are missing (or reported as “don’t know”)

quite frequently in our data. GPAs are missing for 28% of college students (50% of first-year

students), and majors are missing for 25% of four-year college students (48% of first-year

students). There is a high rate of missing data on these outcomes for two main reasons:

(i) Dropout rates are highest in the first year of college, and students interviewed after

dropping out are less likely to answer survey questions about their brief college tenure; and

(ii) Interviews primarily occur between October and March when academic outcomes have

yet to be realized.6 These two effects result in a significant fraction of students reporting

4These criteria for labor force participation resemble those of Keane and Wolpin (1997).
5Following this criterion, any individual who is unemployed in October is classified in the home production

sector. Our results do not appear to be sensitive to the inclusion of unemployment in the home production

alternative.
6The modal interview months are November and December. Data are collected for the period of time

between interviews, so if, for example, a respondent is interviewed in October 2004 and again in November

2005, college information related to the Fall 2004 and Spring 2005 semesters would both be reported in the

November 2005 interview. This lag in reporting is also likely to contribute to the missing data problem.
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college attendance but not answering college-specific questions. We address this missing data

issue as discussed in Section 5.

We estimate the model on males who have graduated high school and have valid Armed

Services Vocational Aptitude Battery (ASVAB) test scores. As measures of academic prepa-

ration, we use the SAT score where observed.7 If an individual did not take the SAT, we

predict the individual’s SAT score using each of his ASVAB component test scores.8 This

predicted SAT score is used synonymously with actual SAT score throughout. We drop all

current and future observations for any respondents missing wage observations while choos-

ing a work activity, or missing GPA or college major while enrolled in college. Our final

estimation subsample includes 20,882 person-year observations for 2,712 males. Table A.2

in Appendix section A gives further details on our sample selection.

Tables 1 through 10 present some descriptive statistics for our subsample, by college en-

rollment, major and completion status. Table 1 shows that individuals who attend college at

some point and start at a four-year institution have, on average, higher SAT test scores, with

science majors having higher scores than other majors. The proportion of blacks and His-

panics is also lower among four-year college attendees, with white males disproportionately

choosing science majors. Conversely, it is worth noting that those starting at a two-year

college tend to have a lower SAT score, and disproportionately come from minorities. Over-

all, this difference in composition between two and four-year colleges (and between majors

in four-year colleges) stresses the need to distinguish between college and major type when

modeling college enrollment decisions.

Table 2 reports the mean GPA (on a four-point scale) by type of college attended, major

and period of enrollment.9 Looking at the individuals enrolled in a four-year college with

a science major, the evolution of the GPA provides clear evidence of selection over time.

Individuals who leave college or switch to a two-year institution or other type of major tend

to have lower GPA than those who stay enrolled in a four-year college science major. We

find a similar pattern for two-year college enrollees, with the GPA being on average lower for

these students than for either type of four-year college enrollees. Overall, these descriptive

findings are consistent with two stories, which may not be mutually exclusive: (i) individuals

decide to leave or switch college/major as they learn about their schooling ability, or (ii)

7The distribution of raw SAT scores is standardized to be zero-mean and standard deviation 1 for the

NLSY97 population who took the SAT.
8Each ASVAB component test score is standardized to be zero-mean and standard deviation 1 for the

NLSY97 population. The sub-tests used are Arithmetic Reasoning, Mathematical Knowledge, Numerical

Operations, Paragraph Comprehension and Word Knowledge.
9Note that these periods of college enrollment may not be consecutive.
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those who leave or switch college/major tend to have a lower ability, that they observe

perfectly even before starting college. Telling apart these two explanations is a key objective

of our structural estimation, which will be discussed in the following section.

Table 3 lists the frequencies of continuous enrollment until graduation (either in four

or two-year colleges), stopping out (i.e. leaving college before graduation and returning to

school at some point) and dropping out (i.e. permanently leaving college, before four-year

graduation) in the NLSY97 full sample, our estimation subsample, and type of college/major

first enrolled in. Our subsample slightly understates dropping out because we discarded

observations in right-censored missing interview spells, and missing an interview is positively

correlated with dropping out of college. Also evident from Table 3 is the fact that dropping

out and stopping out are more common in two-year colleges than four-year colleges. Four-

year science majors have the lowest proportions of dropping out and stopping out. This

again points at the need to distinguish between these two types of colleges and majors in our

model. Due to the ongoing nature of the survey and the fact that some respondents are still

in college, Table 4 aims to identify the lower bound of the stopout rate. For example, of those

who had graduated with a four-year college degree by round 15 of the survey, 17.4% were

stopouts. For those beginning college in a four-year university science major, this number

is 11.0%, compared with 11.3% for humanities majors. For those originating in a two-year

college, the figure is 40.7%.

Table 5 shows that those who continuously complete college have higher SAT scores,

higher high school GPA, and come from families with higher income and mothers who are

more educated. It is also interesting to note that stopouts on average straddle the continuous

completion and dropout categories. This highlights the importance of studying stopping out

as a third category of college completion. The descriptive evidence presented in Table 5 also

points to the fact that family background variables are important to include in an analysis

of college completion.

Table 6 breaks out Table 2 by college completion status. Similar to Table 2, there is

evidence of selection over time and over (eventual) completion status. This further supports

the idea that those who leave college may do so because of a bad signal on ability in the

form of low grades. To illustrate this more fully, Table 7 presents differences between actual

and expected grades in period t of college broken out by t + 1 enrollment decision, where

expected grades are taken as a function of family background, race, SAT scores, work status,

and age. Interestingly, this shows that the selection patterns discussed above still hold after

controlling for this set of observed characteristics.

Table 8 shows the origin and destination majors and college types for those who stop
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out. Stopouts are most likely to return to their original major or college type, but they are

also likely to move to four-year humanities or two-year college upon returning to school.

Table 9 further describes the evolution of GPA over time by in-school work status. For

both major types in four-year colleges, average GPA is roughly decreasing in work intensity,

and increasing over time within each work intensity category. For two-year colleges, GPA

is decreasing in work intensity only in the first period. By periods 3 and 4, the opposite is

true. This illustrates a substitution effect between school and work intensity—those working

hardest take longer than two years to complete a two-year degree.

Finally, to illustrate learning on wages as a reason for stopouts to return to college, Table

10 lists the difference between actual and expected log wages for those who have stopped

out, broken out by next-period decision. Those who have left college for the labor force

and choose to return to school have 5% lower wages on average the year before returning to

school, even when controlling for a rich set of individual, family background, and schooling

and labor force experience characteristics. This provides suggestive evidence that learning

on wages contributes to the decision to return to college.

3 The model

3.1 Overview

After graduating from high school, individuals in each period make a joint schooling and

work decision. For those who have not graduated from a four-year college, their schooling

options include whether to attend a two-year institution, a four-year institution as a science

major, or a four-year institution as a non-science major. After graduating from a four-year

college, the schooling option includes whether or not to enroll in graduate school.

In addition to choosing among the different schooling options, individuals also choose

whether to work full-time, part-time, or not at all. All three of these decisions are avail-

able regardless of their schooling choice.10 Working while in college may be detrimental

to academic performance (see, e.g., Stinebrickner & Stinebrickner, 2003) but is also likely

to be a channel through which individuals learn about their productivity. Our framework

incorporates this tradeoff.

Individuals only have imperfect information about (i) their schooling ability and (ii)

10See also Joensen (2009) who estimates a dynamic structural model of schooling and work decisions

allowing for work while in college.
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their labor market productivity. If they attend college, they learn about their ability by

observing their schooling performance, as measured by their Grade Point Average (GPA)

at the end of the academic year. The gap between the observed and predicted GPA then

provides a noisy signal for their ability, which is used to update their belief in a Bayesian

fashion. Since schooling ability and productivity will in general be correlated, the GPA also

provides some information about labor market productivity. Individuals will therefore use

their GPA to update their productivity belief. Similarly, those who participate in the labor

market update their beliefs about their labor market productivity as well as their beliefs

about their schooling ability after receiving their wage.

Individuals are forward-looking and choose the sequence of actions yielding the highest

value of expected lifetime utility. Hence, when making their schooling and labor market

decisions, individuals take into account the option value associated with the new informa-

tion acquired on different choice paths. Individuals who choose to work while in college

will get two signals, through their GPA and their wage, on their ability and productivity.

Interestingly, without the need to invoke a credit constraint argument, the value of infor-

mation implies that working while in college may be optimal for some students in spite of a

detrimental impact on academic performance.

We now detail the main components of the model, namely the grade and wage equations,

together with the learning process and the flow utility functions for each alternative.

3.2 Grades

We denote by j ∈ {a, bs, bn} the type of college and major attended, where a (for Associate)

denotes a two-year college, bs (for Bachelor, Science) a four-year college Science major, and

bn (for Bachelor, non-Science) a four-year college non-Science major. We assume that grades

depend on Aij where Aij is the unobserved schooling ability about which individuals have

some beliefs initially given by the prior distribution N (0, σ2
Aj). Grades also depend on a set

of covariates, Xict, that are known to the individual and include observed ability measures

and past decisions.

Denoting by t calendar time and τ the period of college enrollment, grades in two-year

colleges and in the first two years of four-year colleges are given by:

Gijτ = γ0j + Xictγ1j + Aij + εijτ

The idiosyncratic shocks εijτ are distributed N (0, σ2
jτ ) and are independent from the other
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state variables. Define the type-j (college, major) academic index of i at time t, AIijt, as:

AIijt = γ0j + Xictγ1j + Aij

The academic index AIijt gives expected grades conditional on knowing Aij but not the

idiosyncratic shock εijτ .

For four-year colleges and periods τ > 2, we express grades relative to AIijt as follows:11

Gijτ = λ0j + λ1jAIijt + εijτ

Hence, the return to the academic index varies over period of college enrollment and across

majors. In particular, consistent with Hansen et al. (2004), our specification allows the effect

of latent ability on grades to vary with the number of years spent in college.

3.3 A two-sector labor market

Individuals who choose one of the work options (either full-time or part-time) receive an

hourly wage that depends on graduation status. We assume that there are two sectors in the

labor market, which are referred to in the following as skilled (four-year college graduates and

individuals with a graduate school degree) and unskilled (all other labor market participants,

including high school graduates or GED recipients, college dropouts and stopouts, as well

as two-year college graduates).

Wages in sector l depend on productivity Ail, a set of observed characteristics Xilt, time

dummies δlt, and idiosyncratic shocks εilt:

ln(Wilt) = δlt + Xiltγ1l + Ail + εilt

We account for nonstationarity in wages by including calendar year dummies, δlt, thus incor-

porating business cycle effects. The time dummies at t are observed in period t but individ-

uals must form expectations over this variable for periods t + 1 and beyond. We will come

back to this in Section 3.6.2. The idiosyncratic shocks, εlt, are assumed to be distributed

N (0, σ2
l ) and are independent over time and independent of the other state variables.

3.4 Flow utilities

We denote in the following by dit = (j, k) the choice for individual i at time t over school,

where j ∈ {a, bs, bn, 0} (respectively j ∈ {gs, 0}) before (resp. after) graduation from a four-

11See Arcidiacono (2004) for a similar ability index specification.
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year college, and work k ∈ {p, f, 0}, where gs refers to graduate school, and p and f refer

to part-time and full-time work. The choice dit = (0, 0) then indicates the home production

option: no work and no school.

Up to an intercept term and an idiosyncratic preference shock, we assume that the utility

of the choice (j, k) is additively separable. Let Z1it denote variables that affect the utility of

school and Z2it denote the variables that affect the utility of working. The flow payoff for

choice (j, k) is given by:

Uijkt(Zit, εijk) = αjk + Z1itαj + Z2itαk + εijkt (3.1)

= ujk(Zit) + εijkt (3.2)

where Zit includes characteristics such as SAT scores (Math and Verbal), race, and previous

choice. Controlling for the previous choice allows for switching costs, in a similar spirit as

in Keane & Wolpin (1997). The idiosyncratic preference shocks εijkt are assumed to follow

a (standard) Type-I extreme value distribution. Embedded in Z1it are the expected abilities

in sector j. The flow payoff for graduate school depends on the expected ability in four-year

college corresponding to the college major the individual has graduated from. Embedded in

Z2it are expected log-wages in sector k.12

Finally, the home production sector (dit = (0, 0)) is chosen as a reference alternative, and

we normalize the corresponding flow utility to zero. The flow utility parameters therefore

need to be interpreted relative to this alternative.

3.5 The optimization problem

Individuals are forward-looking, choosing the sequence of college enrollment and labor market

participation decisions yielding the highest present value of expected lifetime utility. The

individual chooses dit to sequentially maximize the discounted sum of payoffs:

E




T∑

t=1

βt−1
∑

j

∑

k

(ujkt(Zit) + εijkt)1{dit = (j, k)}




where β ∈ (0, 1) is the discount factor. The expectation is taken with respect to the distri-

bution of the future idiosyncratic shocks as well as the signals associated with the different

choice paths.

12Both of these covariates will vary given the choices. However, to conserve on notation we do not put jk

subscripts on the Z’s.
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Let Vt(Zit) denote the ex ante value function at the beginning of period t, the expected

discounted sum of current and future payoffs just before εt is revealed. The conditional value

function vijkt is given by:

vjkt(Zit) = ujkt(Zit) + βEt(Vt+1(Zt+1)|Zit, dit = (j, k))

Given the assumption that the ε’s are i.i.d. Type 1 extreme value,

vjkt(Zit) = ujkt(Zit) + βEt


 ln



∑

j

∑

k

exp(vjkt+1(Zit+1))




∣∣∣∣∣∣
Zit, dit = (j, k)


+ βγ

where γ denotes Euler’s constant.

3.6 Beliefs

Individuals are uncertain about (i) their future preference shocks, (ii) their schooling ability

and labor market productivity, and (iii) the evolution of the market shocks (the δlt’s). The

first components, which we have discussed as expectations over future preference shocks,

are encompassed in the ex ante value function. We next describe beliefs over abilities and

productivities as well as the market shocks.

3.6.1 Beliefs over schooling ability and labor market productivity

We denote Ai as the five dimensional ability vector, Ai ≡ (Aia, Aibs, Aibn, Ais, Aiu)′ (simply

referred to as ability in the following). Individuals update their beliefs in a Bayesian fashion.

Their initial ability beliefs are given by the population distribution of A, which is supposed

to be multivariate normal with mean zero and covariance matrix ∆. Importantly, we do

not restrict ∆ to be diagonal, thus allowing for correlated learning across the five different

ability components.13

Namely, at each period τ of college attendance, individuals use their GPA to update their

belief about their schooling ability in all college options (Aia, Aibs, Aibn), as well as their labor

market productivity in both sectors (Ais, Aiu). The GPA provides a noisy signal for their

ability, which is denoted by Sijτ for type-j college option and period of enrollment τ . For

two-year colleges and the first two years of four-year colleges, the signal is given by:

Sijτ = Gijτ − γ0j − Xictγ1j

13See also Antonovics & Golan (2012), James (2011) and Sanders (2010) who estimate occupational choice

models with correlated learning.
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For four-year colleges and subsequent periods (τ > 2), the index specification yields:

Sijτ =
Gijτ − λ0j − λ1j(γ0j + Xictγ1j)

λ1j

Similarly, individuals who participate to the labor market update their ability beliefs

after receiving their wages. The signal is given by, for sector l and period t:

Silt = ln(Wilt) − γ0l − Xiltγ1l

Finally, individuals may choose to work while in college, in which case they will receive two

ability signals (Sijτ , Silt).

It follows from the normality assumptions on the initial prior ability distribution and on

the idiosyncratic shocks that the posterior ability distributions are also normally distributed.

Specifically, denoting by Et(Ai) and Σt(Ai) the posterior ability mean and covariance at the

end of period t, we have (see DeGroot, 1970):

Et(Ai) = (Σ−1
t−1(Ai) + Ωit)

−1(Σ−1
t−1(Ai)Et−1(Ai) + ΩitS̃it) (3.3)

Σt(Ai) = (Σ−1
t−1(Ai) + Ωit)

−1 (3.4)

where Ωit is a (5 × 5) matrix with zeros everywhere except for the diagonal terms corre-

sponding to the occupations of the individual in period t (namely two-year college, four-year

college Science major, four-year college non-Science major, skilled or unskilled labor), which

are given by the inverse of the idiosyncratic shock variances (multiplied by λ2
1j for four-year

colleges in junior and senior years). S̃it a (5 × 1) vector with zeros everywhere except for the

elements corresponding to the occupations of the individual in period t, which are given by

the ability signals received in this period. Individuals then integrate out over the possible

signals they could receive for each possible decision.

3.6.2 Beliefs over market shocks

We finally need to specify how individuals form beliefs about the labor market. Individuals

observe the current values of δst and δut. We assume that the process governing the aggregate

sector-specific shocks δt’s is an AR(1):

δlt = φ0l + φ1δlt−1 + ζlt (3.5)

where the ζlt are assumed to be distributed N(0,σζ). The assumption that the aggregate

shocks follow an AR(1) process, or a discretized version of it (Markov process of order 1)
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is very common in the literature (see, e.g., Adda et al., 2010, Robin, 2011). Given the

realizations of the δlt’s, individuals then integrate over possible realizations of the ζlt’s when

forming their expectations over the future.

4 Identification

Before turning to the estimation procedure, we discuss below the identification of the model.14

As is common for these types of dynamic discrete choice models (see, e.g., Rust,1994, Magnac

& Thesmar, 2002, and Arcidiacono & Miller, 2013), identification of the flow utility param-

eters hinges on the distributional assumptions imposed on the idiosyncratic shocks, the

normalization of the home production utility and the discount factor β, which is set equal

to 0.9 in the following.

Let us consider the identification of the outcome equations (grades and log-wages). The

GPA Gijτ is only observed for the individuals who are enrolled in a type-j (college, major)

in their τ -th period of college enrollment. To the extent that college enrollment decisions

depend on the ability (Ai), this raises a selection issue. We show the identification of the

grade equation parameters by using, for each period τ , the prior ability at the beginning of

the period (Et−1(Aij)) as a control function in the grade equation (see Navarro, 2008, for an

insightful review of the control function approach). Specifically, we consider the following

augmented regression for j ∈ {bs, bn} and τ > 2:

Gijτ = λ0j + λ1j(γ0j + Xictγ1j) + λ1jEt−1(Aij) + νijτ

where it follows from the Bayesian updating rule (see Equation (3.3), p.14) that Et−1(Aij)

can be expressed as a weighted sum of all the past ability signals. Under the key assumption,

consistent with the specification of the flow utilities in Subsection 3.4, that college enrollment

decisions only depend on ability through the ability beliefs, application of ordinary least

squares to this equation identifies the parameters (λ0j, λ1j), with the ability index coefficients

(γ0j, γ1j) being identified from the first and second period grades.

Identification of the ability index coefficients also follows from the assumption that enroll-

ment decisions only depend on ability through the past ability signals. Specifically, grades

in the first two years of four-year college as well as in two-year colleges can be expressed as

14For the sake of exposition, we first consider the case of the model without type-specific unobserved

heterogeneity, before discussing the identification of the unobserved heterogeneity parameters.
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follows:

Gijτ = γ0j + Xictγ1j + Et−1(Aij) + νijτ

Application of ordinary least squares therefore directly identifies (γ0j, γ1j). Similar arguments

can be used for the identification of the log-wage equations in each sector.

Finally, the signal-to-noise ratios as well as the ability covariance matrix ∆ are identified

from the past ability signal coefficients. Of particular interest here are the correlations

between the different ability components, which are identified from individuals switching

occupations.

In our specification with latent heterogeneity types, one also needs to tell apart the type-

specific unobserved (to the econometrician only) heterogeneity components from the ability

beliefs. Initial choices made before the individuals learn about their ability are a key source of

identification. For instance, low-SAT individuals who choose to enroll in a four-year college

right after high school graduation would be predicted to have high unobserved preference

for four-year college. Besides, low-SAT individuals who are enrolled in college may decide

to leave college after receiving a high GPA. Individuals exhibiting these types of behavior

would be predicted to have a high type-specific schooling ability.

5 Estimation

We first detail the estimation procedure for the specification without type-specific unobserved

heterogeneity. Assuming that the idiosyncratic shocks are mutually and serially uncorrelated,

estimation proceeds in two stages, which consists of (i) estimation of the grade and log-wage

equations and (ii) estimation of the flow utility parameters. The validity of this sequential

approach follows from the key assumption that choices only depend on ability through the

(observed) sequence of signals. This results in the likelihood being separable in the outcome

and choice contributions.

5.1 Additive separability

Specifically, we consider the case of an individual i attending college during Tc periods, who

participate to the unskilled (resp. skilled) labor market during Tu (resp. Ts) periods and

for whom we observe a sequence of Td decisions. We write the individual contributions to
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the likelihood of the grades, log-wages and choices by integrating out the unobserved ability

terms A = (Aa, Abs, Abn, As, Au)′, which breaks down the dependence across the grades, log-

wages, choices and between all of these variables. The contribution to the likelihood writes,

denoting by Gi the grades, wiu (resp. wis) the unskilled (resp. skilled) log-wages and di the

decisions, as a five-dimensional integral:

l(di1, . . . , diTd
, Gi1, . . . , GiTc

, wiu1, . . . , wiuTu
, wis1, . . . , wisTs

)

=
∫

l(di1, . . . , diTd
, Gi1, . . . , GiTc

, wiu1, . . . , wiuTu
, wis1, . . . , wisTs

|A)l(A)dA

where l(A) is the pdf. of the ability distribution N (0, ∆).

From the law of successive conditioning, and using the fact that choices depend on A

only through the signals, we obtain the following partially separable expression:

l(di1, . . . , diTd
, Gi1, . . . , GiTc

, wiu1, . . . , wiuTu
, wis1, . . . , wisTs

) = Ldi
× LGi,wiu,wis

Where the contribution of the sequence of decisions is given by:

Ldi = l(di1)l(di2|di1, Gi1) . . . l(diTd
|di1, di2, . . . , diTd−1, Gi1, Gi2, . . . wiu1, wiu2, . . . , wis1, wis2, . . .)

This simply corresponds to the product over Td periods of the type-1 extreme value choice

probabilities obtained from the dynamic discrete choice model.

The contribution of the observed sequence of grades, unskilled and skilled log-wages is

given by:

LGi,wiu,wis
=

∫
l(Gi1|di1, A) . . . l(GiTc

|di1, di2, . . . , A)l(wiu1|di1, A) . . . l(wiuTu
|di1, di2, . . . , A)

×l(wis1|di1, A) . . . l(wisTs
|di1, di2, . . . , A)l(A)dA

Where l(wiut|di1, . . . , A), l(wist|di1, . . . , A), and l(Git|A) are Gaussian pdf of respectively, the

unskilled, skilled log-wage and GPA distributions.

5.2 Estimation of grade and wage parameters

Estimation of the parameters of the outcome equations proceeds as follows. Instead of di-

rectly maximizing the likelihood of the outcomes, which would be computationally costly

because of the ability integration, we compute the parameter estimates using the EM al-

gorithm (Dempster et al., 1977). The estimation procedure iterates over the following two

steps, until convergence:
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• E-step: update the posterior ability distribution from all the observed outcome data

(log-wages and grades), using the outcome equation parameters obtained from the

previous iteration. This follows from the Bayesian updating formulas (3.3)-(3.4), for

the posterior ability mean and covariance, given in Section 3.6.1. The (population)

variance of the ability distribution is then updated as follows, for each iteration k of

the EM estimation:

∆k =
1

N

N∑

i=1

(
Σk

i (A) + Ek
i (A)Ek

i (A)′
)

where N denotes the number of individuals in the sample, Ek
i (A) the posterior ability

mean (Ek
i (A)′ its transposed) and Σk

i (A) the posterior ability covariance computed at

the beginning of the E-step.

• M-step: given the posterior ability distribution obtained at the E-step, maximize the

expected complete log-likelihood of the outcome data, which is separable across sectors

(two-year college, four-year college Science major, four-year college non-Science major,

skilled or unskilled labor).

Namely, at the M-step of each iteration k of the EM estimation, denoting by lik(A) the

posterior ability distribution computed at the E-step, we maximize the expected complete

log-likelihood Elik:

Elik =
∫

ln(l(Gi1|di1, A) . . . l(GiTc
|di1, di2, . . . , A)l(wiu1|di1, A) . . . l(wuiTu

|di1, di2, . . . , A))lik(A)dA

= Elik,a + Elik,bs + Elik,bn + Elik,s + Elik,u

For instance, the parameters of the unskilled wage equation are updated by maximizing

the contribution Elik,u, which writes, denoting by lik(Au) the marginal posterior distribution

of Au:

Elik,u =
∫

(ln(l(wiu1|di1, Au)) + . . . + ln(l(wiuTu
|di1, di2, . . . , Au)))lik(Au)dAu

Note that this term is additively separable over time. For any given period τ of unskilled

labor market participation, it follows from the normality assumptions on the idiosyncratic

productivity shocks and the unobserved ability that:

∫
ln(l(wiuτ |di1, di2, . . . , Au))lik(Au)dAu =

−
1

2
ln(2πσ2

u) −
1

2σ2
u

(
Σk

iuu(A) + (wiuτ − Xiutγ1u − δut − Ek
iu(A))2

)
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where t refers to calendar time (which should be understood as individual-specific here),

Ek
iu(A) and Σk

iuu(A) denote respectively the posterior mean and variance of the ability in

the unskilled sector (computed at the E-step). This equality implies that the wage equation

parameters (γ1u, δut) can be simply updated by regressing (via OLS) the log-wages in the

unskilled sector on the set of observed characteristics, calendar time dummies, and the

posterior (unskilled) ability mean which plays the role of a selection correction term. The

idiosyncratic shock variance (σ2
u) is then updated as follows:

σ2
u,k+1 =

∑
i,τ

(
Σk

iuu(A) + (wiuτ − Xiutγ1u − δut − Ek
iu(A))2

)

Nobs
u

where Nobs
u is the total number of wage observations in the unskilled sector. Skilled wage

equation parameters are updated similarly.

The updating rule above needs to be adjusted to account for the ability index specification

of the grade equations along with the time-varying variances of the idiosyncratic shocks. For

instance, for four-year colleges (period of enrollment τ > 2), the contribution to the log-

likelihood writes:

∫
ln(l(Gijτ |di1, di2, . . . , Aj))lik(Aj)dAj =

−
1

2
ln(2πσ2

jτ ) −
1

2σ2
jτ

(
λ2

1jΣ
k
ijj(A) + (Gijτ − λ0j − λ1jAIk

ijt)
2
)

where j ∈ {bs, bn}, Σk
ijj(A) denotes the posterior variance of the college-j ability (computed

at the E-step), and AIk
ijt = γ0j + Xictγ1j + Ek

ij(A) is the posterior mean of the ability index

in college j. It follows that the parameters (γ0j, γ1j, λ0j, λ1j, (σ2
jτ )τ ) are updated by solving

the following minimization problem:

min
∑

i,τ

(
ln(σ2

jτ ) +
1

σ2
jτ

(
λ2

1jτ Σk
ijj(A) + (Gijτ − λ0jτ − λ1jτ AIk

ijt)
2
))

where (λ0jτ , λ1jτ ) = (0, 1) for τ ≤ 2, and (λ0jτ , λ1jτ ) = (λ0j, λ1j) otherwise.

5.3 Estimation of the flow payoffs

With the estimates of the grade and wage parameters taken as given, we estimate the flow

payoffs in a second stage. Following Arcidiacono & Miller (2011), we express the future

payoffs in such a way that avoids solving the full backwards recursion problem. Namely,

the expected value function at time t + 1 can be expressed relative to the conditional value
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function for one of the choices plus a function of the conditional choice probabilities. With

the assumption that the preference shocks are distributed Type 1 extreme value, the expected

value function can be expressed as:

Et [Vt+1 (Zit+1|dit = (j, k))] = Et [vj′k′t+1(Zit+1) − ln (pj′k′t+1(Zit+1)|dit = (j, k)])]

for any choice (j′, k′), where pj′k′t+1(Zit+1) is the conditional choice probability (CCP) of

choosing dit+1 = (j′, k′).

Recall that in estimation it is difference in the conditional value functions that are rele-

vant, not the conditional value functions themselves. Consider any choice (j′, k′) as well as

the choice (0, 0) (home). Given these initial choices, it is straightforward to show that there

exists a sequence of choices such that, in expectation, individuals will be in the same state

three periods ahead, namely:

Et [Vt+3(Zit+3)|dit = (0, 0), dit+1 = (j′, k′), dit+2 = (0, 0)] =

Et [Vt+3(Zit+3)|dit = (j′, k′), dit+1 = (0, 0), dit+2 = (0, 0)]

We can then reformulate the problem in terms of two-period ahead flow payoffs and condi-

tional choice probabilities and then estimate the conditional choice probabilities (CCPs) in

a first stage. The differenced conditional value function is then:

vjkt(Zit) − v00t(Zit) =




ujk(Zit) − βEt (ln [p00t+1(Zt+1)] |Zit, dit = (j, k))

+βEt (ln [pjkt+1(Zt+1)] − ujk(Zt+1)|Zit, dit = (0, 0))

+β2Et (ln [p00t+2(Zt+2)] |Zit, dit = (0, 0), dit+1 = (j, k))

−β2Et (ln [p00t+2(Zt+2)] |Zit, dit = (j, k), dit+1 = (0, 0))




Estimation of the flow utility parameters then involves the following steps:

1. Estimate the CCPs via a flexible multinomial logit model.15

2. Calculate the expected differenced future value terms along the finite dependence paths.

3. Estimate the flow utility parameters after expressing the future value function as a

function of the CCPs. Having estimated the CCPs in a first step, this simply amounts

to estimating a multinomial logit with an offset term.

15The CCPs are identified from the data and could in principle be estimated nonparametrically. However,

we choose to estimate them using a parametric specification to avoid the curse of dimensionality.
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5.4 Estimation with permanent unobserved heterogeneity

We account for permanent unobserved unobserved heterogeneity by assuming that individ-

uals are one of R types where type is orthogonal to the covariates at t = 1. Accounting for

type-specific unobserved heterogeneity breaks down the separability between the choice and

outcome components of the likelihood described above as our full likelihood function is:

∑

i

ln

[
R∑

r=1

πrLd,i|rLG,wu,ws,i|r

]
(5.1)

Following Arcidiacono & Miller (2011), we use an adaptation of the EM algorithm that

restores the additive separability of the likelihood function. Rather than updating the struc-

tural parameters of the decision process at each step, we use their two stage approach and

approximate the decision process with a reduced form. Specifically, let L∗
d,i|r give the reduced

form likelihood conditional on being of type r. The probability of i being the rth type follows

from Bayes rule:

qir =
πrL

∗
d,i|rLG,wu,ws,i|r

∑R
r′=1 πr′L∗

d,i|r′LG,wu,ws,i|r′

(5.2)

In the first stage we recover the parameters of the grade and wage processes, the (type-

specific) CCPs, and the conditional probabilities of being each type.

The second stage boils down to a weighted multinomial logit with an offset term. Note

that this is identical to the case without unobserved heterogeneity except that now the qir’s

are used as weights. Relative to full solution methods, this estimation procedure yields very

substantial computational savings, and only uses the CCPs two periods ahead. Thanks to

the latter feature, our estimates do not hinge on any behavioral assumptions of the model

far into the future.

5.5 Missing college majors and GPAs

In our data, college GPAs and four-year college majors are each missing at a fairly high

rate. This is especially true for the first period of college enrollment. We take this issue into

account within our estimation procedure, by treating the first instance of unobserved GPA

or major as another unobserved latent variable. We discretize the observed GPA distribution

into quartiles so that unobserved GPA can be treated as a discrete unobserved type. The

estimation procedure discussed above can be easily adjusted to allow for these additional

latent variables.
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Specifically, along with the type-specific unobserved heterogeneity distribution, the dis-

tribution of (unobserved) GPAs and majors, conditional on each heterogeneity type, is es-

timated within the first stage of our estimation procedure. The distribution of the unob-

served majors is then taken as given in the second stage of the estimation, which still corre-

sponds to a weighted multinomial logit where the weights are given by Pr(Type, Major|data),

Pr(Type, GPA|data), or Pr(Type, Major, GPA|data) (depending on which outcomes are miss-

ing) instead of Pr(Type|data). The log-likelihood which is maximized at the M-step is now

conditional on both the heterogeneity type as well as the major or GPA quartile.

6 Results

In this section, we present and discuss the estimation results. All of the results discussed

below were obtained assuming the existence of R = 2 unobserved heterogeneity types. Type

1 (respectively Type 2) individuals account for 50.3% (resp. 49.7%) of the overall population.

6.1 Grade parameters

The parameter estimates for the grade equations are presented in Table 11. All else equal,

blacks are found to have lower GPA than whites across the board, particularly so in 2-year

colleges. While both grades in high school as well as SAT scores are significant predictors of

grades, it is worth noting that high school GPA plays a particularly important role for all

types of schools and majors. SAT Math and Verbal play a similar role in predicting grades

in 4-year college science majors, while the returns to SAT Verbal are substantially larger

than the returns to SAT Math in 2-year colleges and, to a lesser extent, in 4-year college

non-science majors. This pattern contrasts with the wage returns to SAT scores (discussed in

Subsection 6.2), with the estimated returns to SAT Verbal being negative after controlling for

SAT Math. Working while in college is associated with lower grades for both types of colleges

and majors, although the effects are modest. Interestingly and consistent with Hansen et al.

(2004), returns to the ability index are found to be smaller after sophomore year for both

groups of majors in 4-year colleges. Finally, turning to the type-specific unobserved ability

(known to the agent), students in the Type 1 group have lower GPA in two-year colleges,

and higher GPA in four-year colleges.16

16These type-specific coefficients appear to be imprecisely estimated. However the standard errors, which

are currently estimated using bootstrap, are likely conservative here due to the existence of multiple local
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6.2 Wage parameters

Estimates of the wage equations are given in Table 12. All else being equal, blacks have

significantly lower wages in the unskilled sector. For both sectors we find significant and

sizeable returns to SAT math scores (6% and 11% in the unskilled and skilled sectors,

respectively). The returns to SAT verbal are negative for both sectors. The latter finding

echoes a number of other papers finding a negative effect of SAT verbal after controlling

for SAT math (see, e.g., Arcidiacono, 2004, Kinsler & Pavan, 2015 and Sanders, 2015).

Returns to experience are slightly larger in the skilled sector (8%) than in the unskilled

sector (6%), although both returns are of similar order of magnitude. Experience in the

unskilled sector does not translate into higher labor market earnings in the skilled sector. One

possible explanation is that, after graduating from college, individuals who have accumulated

more experience in the unskilled sector might also be more likely to end up working in a

relatively low-paying occupation. Investigating this issue would require modeling the choice

of occupation. This does highlight the importance of accounting for sector-specific labor

market experiences in this context, as both types of experiences are rewarded very differently

on the labor market. Returns to schooling in the unskilled sector are positive and significant,

even though they are quantitatively pretty small. Working while in school (as opposed to

working without being enrolled in college) results in a substantial wage loss, particularly

for part-time work in both two-year and four-year colleges. Turning to the skilled sector,

we find positive returns to graduate schooling. Besides, all else equal, graduating from a

science (as opposed to non-science) major increases the wage in the skilled sector by 14%. It

is interesting to note that the science premium, while significant and sizable, is on the low

side of the range of the premia which have been estimated in earlier studies on this question

(Altonji et al., 2015). This may be partly driven by the fact that we control for selection into

college majors in a more thorough way than most of these previous analyses. Finally, type

1 individuals have higher wages than type 2 individuals in the skilled sector (17% premium)

but lower wages in the unskilled sector (11% penalty), consistent with the existence of a

sector-specific comparative advantage.

optima of the objective function in the first step of the estimation procedure.
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6.3 Learning

Table 13 presents the correlation matrix for the unobserved abilities (initially unknown to the

individual) in each sector, along with their variances. Schooling ability is highly correlated

across college types and majors. The correlations across college types and majors range

from 0.703 (for four-year college science majors and two-year colleges) to 0.902 (for four-year

colleges non-science majors and four-year colleges science majors). A similar picture emerges

across skilled and unskilled sectors within the labor market, which are strongly correlated

(estimated correlation coefficient of 0.781).

The correlations between schooling abilities and labor market productivity are all pos-

itive, but markedly lower than the correlations across college types and majors. Notably,

the correlations between ability in four-year college non-science or science major, and pro-

ductivity in the skilled sector are very small (between 0.05 and 0.06). Correlations between

schooling abilities in four-year colleges and labor market productivity are larger for the un-

skilled sector, although both of them remain below 0.21. Taken together, these patterns

provide clear indication that grades earned in college, in science as well as in non-science

majors, reveal little information about future labor market performance.

Finally, it is worth noting that the unobserved ability variance is much larger for 4-

year sciences (even so after rescaling by the variance of the corresponding outcomes), which

suggests that the role played by unobserved ability is more important in those majors. Table

14 further shows that, even though our approach allows us to account for both types of

unobserved ability (known and unknown to the individuals), residual variation in log-wages

and GPA does remain sizeable. Our estimates also show that grades in 2-year colleges are

noisier signals of ability than in 4-year colleges. Finally, for all types of colleges and majors,

the ability signals are less precise in the initial relative to the subsequent periods of college

enrollment.

6.4 Flow payoffs

Finally, Table 18 reports the structural parameter estimates obtained from the procedure

described in Subsection 5.3. The results indicate that individuals with higher prior ability

have a higher utility for two and four-year colleges (relative to home production), with a

larger coefficient for non-Science majors. Similarly, individuals with higher SAT in Math

have a higher utility for all schooling options, particularly so in four-year college science
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majors. On the other hand, SAT verbal has a negligible effect on the utility of two-year

college as well as four-year college science majors.

The same holds true for high school grades, which are positively associated with the utility

for all (undergraduate) schooling options, especially so in four-year colleges. Overall, this

pattern is consistent with a cost of effort decreasing with these ability measures. Consistent

with the existence of higher monetary costs of attending a four-year college (as opposed

to a two-year college), individuals whose parents went to college also have a substantially

higher utility for four-year colleges relative to two-year colleges. As expected, individuals

with higher expected log-wages have a higher utility for work.17 Furthermore, the estimated

coefficients on previous activities point to the existence of large switching costs across types

of colleges and majors. Finally, Type-1 individuals are found to have higher preferences for

four-year colleges and a relative distaste for two-year colleges. Together with the estimation

results obtained for the grade equations, the latter estimates point to a positive correlation

between preferences and abilities for both types of colleges.

6.5 Model fit and Sorting

Tables 19 and 20 report the fit of the model in several relevant dimensions. Table 19 reports,

for each period, the empirical frequency (Data column) and the choice frequency computed

using the model (Model column) for four different events, namely college entry, college

attrition, college re-entry and graduation. The choice frequencies in the model column are

computed through forward simulation, using the structural parameter estimates presented

above along with the reduced-form CCPs. Overall, although there are some non-trivial

discrepancies in several cases, most of the predicted choice frequencies are reasonably close

to the empirical ones. Importantly, our model does a good job in predicting the dynamics

of these choices across all periods. Table 20 shows the fit of the model in terms of choice

frequencies, pooled across all periods. The fit is pretty good, with the predicted choice

frequencies being in most cases very close to the empirical frequencies.

Turning to the sorting patterns, Table 21 shows the posterior mean for each unobserved

ability for different choice paths. These results are obtained by forward simulating 100

times, for each individual in the sample, the outcomes (grades and log-wages) and sequences

of choices.18

17The expected log-wages utility coefficients are restricted to be the same for part-time and full-time work.
18Note that one could alternatively construct a similar table by using the learning estimates only and

then compute the average posterior abilities for those who chose particular paths. Using forward simulations
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Though sorting effects are relatively small, the signs are generally in the expected di-

rection. Those who go continuously to college and graduate with a degree in science have

relatively high (posterior) ability in science, but also, to a lesser extent, in non-science ma-

jors and two-year colleges. Individuals who are continuously enrolled in college and graduate

with a non-science degree also have larger abilities in all types of schools and majors than

dropouts and stopouts, as well as individuals who never attend college. However, it is in-

teresting to note that, among the group of individuals who do not work while in college,

science college graduates are on average not only better than non-science college graduates

in science, but they also have slightly higher posterior ability in non-science majors. This

pattern points to college graduates in sciences having an absolute advantage in both types

of majors.

Those who go continuously to college and work while in school at all periods have higher

unskilled (and skilled) labor market productivities than those who do not work while in

school at all periods. Individuals who stop out, but then graduate from college in science

have lower schooling ability in four-year sciences than the continuous enrollees who work two

years or less in college and obtain a degree in science. On the other hand, these individuals

have substantially larger schooling abilities, for all types of college and majors, than the

individuals who stopped out but then left college again without graduating. Individuals for

whom dropping out was an absorbing state have on average higher schooling abilities than

those who stopout and dropout from science or non-science majors, but substantially smaller

abilities than those who graduate after stopping out.

Table 22 reports the posterior ability variances for different choice paths, at the time

of (permanent) labor market entry. Focussing on the first two panels (continuous enrollees

graduating in science or non-science), the results show that a fair amount of ability learning

takes place while in college. On average among college graduates in science, the posterior

ability variance in science is about six times smaller upon graduation than when they grad-

uated from high school. Consistent with the existence of a smaller signal-to-noise ratio in

non-science majors, learning is somewhat slower but nonetheless sizable in non-science fields,

with the posterior ability variance being about five times smaller upon graduation. Individ-

uals also learn about their abilities in other types of colleges and majors than the one they

graduate from. For instance, the posterior non-science ability variance is three times and a

half smaller upon graduation from science major.

enables to work with larger cell sizes.
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Table 23 reports the counterfactual sorting patterns which are obtained by simulating the

model in a scenario where all the individuals would have perfect information on their abilities

from the initial period. Comparing how much ability sorting there is in this counterfactual

full information scenario with the baseline sorting patterns discussed above (Table 21) speaks

to the cost of imperfect information in this context. In most cases, the sorting effects go in the

same direction as the ones obtained earlier without assuming perfect information. However,

the magnitudes of these effects are generally much larger, and we find much stronger evi-

dence of sorting on comparative advantage in the perfect information scenario. For instance,

individuals who do not work while in school, are continuously enrolled and graduate from a

science major in a four-year college have on average a 0.86 standard deviation higher science

ability than those who never enroll in college. The ability differences are much smaller in the

baseline scenario, where the continuous enrollees in four-year science have a 0.21 standard

deviation higher science ability that those who never enroll in college.

It is also interesting to compare sorting on science and non-science abilities across both

types of majors, in the baseline and in the counterfactual scenario. In the full information

scenario, among those who do not work while in school, continuous enrollees in science majors

have a 0.21 standard deviation higher science ability than the continuous enrollees in non-

science majors. Those differences are much smaller in the baseline scenario (0.04 standard

deviation), which provides evidence that imperfect information severely limits the extent to

which individuals sort across college majors based on their comparative advantage.

Finally, Table 24 reports the college completion status frequencies in the baseline and

counterfactual full-information scenario. The predicted share of individuals graduating from

four-year college would increase by about 10 points (a 40% relative increase) if they had

perfect information on their ability by the end of high school. This substantial increase

in college graduation rates in the full information scenario is primarily driven by a 22%

decrease in dropout rates. On the other hand, the proportion of individuals who never

enroll in college remains very stable under both scenarios. Importantly the sorting estimates

discussed above show that, although the share of individuals enrolling in college would not

change much, providing high school students will full information on their ability would

significantly affect the composition of college enrollees.
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7 Conclusion

This paper examines the determinants of college attrition, in a situation where individuals

have imperfect information about their schooling ability and labor market productivity. Us-

ing longitudinal data from the NLSY97, we estimate a dynamic model of college attendance,

major choice and work decisions. A key feature of our framework is to account for corre-

lated learning about ability and productivity through college grades and wages. Estimation

results show that a sizable fraction of the dispersion in college grades as well as log-wages is

attributable to the ability components which are gradually revealed to individuals as they

accumulate more signals. These ability components are highly correlated across college types

and majors, and across the skilled and unskilled labor market. In contrast, grades earned

in college, in science as well as in non-science majors, turn out to reveal little information

about future labor market performance. To the extent that part of the mission of higher

education is to help prepare students for the labor market, this finding suggests that there is

room for improvement in the screening mechanisms in place in college. Finally, simulations

conducted under a counterfactual full information scenario indicate that four-year college

graduation rates would increase substantially relative to the baseline imperfect information

scenario, mostly through a decrease in dropout rates. Imperfect information on ability also

has significant implications regarding the composition of college graduates, dropouts and

stopouts. We find in particular evidence that imperfect information on ability acts as a

barrier to the pursuit of comparative advantage through schooling choices.

27



References

Adda, J., Dustmann, C., Meghir, C. & Robin, J.-M. (2010), Career progression and formal

versus on-the-job training. Working paper.

Altonji, J. (1993), ‘The demand for and return to education when education outcomes are

uncertain’, Journal of Labor Economics 11, 48–83.

Altonji, J., Arcidiacono, P. & Maurel, A. (2015), The analysis of field choice in college

and graduate school: Determinants and wage effects, in E. Hanushek, S. Machin &

L.Woessmann, eds, ‘Forthcoming in the Handbook of the Economics of Education’, Vol. 5,

Elsevier.

Altonji, J., Blom, E. & Meghir, C. (2012), ‘Heterogeneity in human capital investments: High

school curriculum, college majors, and careers’, Annual Review of Economics 4, 185–223.

Antonovics, K. & Golan, L. (2012), ‘Experimentation and job choice’, Journal of Labor

Economics 30, 333–366.

Arcidiacono, P. (2004), ‘Ability sorting and the returns to college major’, Journal of Econo-

metrics 121, 343–375.

Arcidiacono, P. & Miller, R. (2011), ‘Conditional choice probability estimation of dynamic

discrete choice models with unobserved heterogeneity’, Econometrica 79, 1823–1867.

Arcidiacono, P. & Miller, R. (2013), Identifying dynamic discrete choice models off short

panels. Working paper.

Bound, J., Lovenheim, M. & Turner, S. (2010), ‘Why have college completion rates declined?

an analysis of changing student preparation and collegiate resources’, American Economic

Journal: Applied Economics 2, 129–157.

Bound, J. & Turner, S. (2011), Dropouts and diplomas: The divergence in collegiate out-

comes, in E. Hanushek, S. Machin & L.Woessmann, eds, ‘Handbook of the Economics of

Education’, Vol. 4, Elsevier.

DeGroot, M. (1970), Optimal Statistical Decisions, New York: McGraw Hill.

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977), ‘Maximum likelihood from incomplete

data with the em algorithm’, Journal of the Royal Statistical Society, Series B 39, 1–38.

28



Goldin, C. & Katz, L. (2008), The Race Between Education and Technology, Belk-

nap/Harvard University Press, Cambridge, Mass.

Hansen, K., Heckman, J. & Mullen, K. (2004), ‘The effect of schooling and ability on achieve-

ment test scores’, Journal of Econometrics 121, 39–98.

Heckman, J., Lochner, L. & Todd, P. (2006), Earnings functions, rates of return and treament

effects: the Mincer equation and beyond, in E. Hanushek & F. Welch, eds, ‘Handbook of

the Economics of Education’, Vol. 1, Elsevier.

Heckman, J. & Urzua, S. (2009), The option value of educational choices and the rate of

return to educational choices. Working paper.

James, J. (2011), Ability matching and occupational choice. Working paper.

Joensen, J. (2009), Academic and labor market success: the impact of student employment,

abilities and preferences. Working paper.

Keane, M. & Wolpin, K. (1997), ‘The career decisions of young men’, The Journal of Political

Economy 105, 473–522.

Kinsler, J. & Pavan, R. (2015), ‘The specificity of general human capital: Evidence from

college major choice’, Forthcoming in the Journal of Labor Economics .

Light, A. & Strayer, W. (2000), ‘Determinants of college completion: School quality or

student ability?’, Journal of Human Resources 35, 299–332.

Magnac, T. & Thesmar, D. (2002), ‘Identifying dynamic discrete decision processes’, Econo-

metrica 70, 801–816.

Manski, C. F. (1989), ‘Schooling as experimentation: a reappraisal of the postsecondary

dropout phenomenon’, Economics of Education Review 8, 305–312.

Manski, C. & Wise, D. (1983), College Choice in America, Harvard University Press.

Miller, R. (1984), ‘Job matching and occupational choice’, The Journal of Political Economy

92, 1086–1120.

Navarro, S. (2008), Control functions, in S. Durlauf & L. Blume, eds, ‘The New Palgrave

Dictionary of Economics’, London: Palgrave Macmillan Press.

29



Pugatch, T. (2012), Bumpy rides: School to work transitions in south africa. IZA Discussion

Paper No. 6305.

Robin, J.-M. (2011), ‘On the dynamics of unemployment and wage distributions’, Econo-

metrica 79, 1327–1355.

Rust, J. (1994), Estimation of dynamic structural models, problems and prospects: Discrete

decision processess, in C. Sims, ed., ‘Advances in Econometrics: Sixth World Congress’,

Vol. 2, Cambridge University Press, New York, pp. 5–33.

Sanders, C. (2010), Skill uncertainty, skill accumulation, and occupational choice. Working

paper.

Sanders, C. (2015), Reading skills and earnings: Why do doing words good hurt you’re

wages? Working paper.

Stange, K. (2012), ‘An empirical investigation of the option value of college enrollment’,

American Economic Journal: Applied Economics 4, 49–84.

Stinebrickner, T. & Stinebrickner, R. (2003), ‘Working during school and academic perfor-

mance’, Journal of Labor Economics 21, 473–491.

Stinebrickner, T. & Stinebrickner, R. (2012), ‘Learning about academic ability and the

college drop-out decision’, Journal of Labor Economics 30, 707–748.

30



A Data

This appendix section details the criteria we use to define science majors, as well as how

we select our estimation subsample. Table A.1 lists the majors in each category. Table A.2

outlines each of the criteria used to construct our estimation subsample.

Table A.1: Major Definitions

Science (STEM) Majors Non-STEM Majors

Agriculture and natural resource sciences All other majors

Biological sciences

Computer/Information science

Engineering

Mathematics

Physical sciences

Nutrition/Dietetics/Food Science
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Table A.2: Sample Selection

Selection criterion Resultant persons Resultant person-years

Full NLSY97 sample 8,984 134,760

Drop females 4,599 68,985

Drop other race 4,559 68,385

Drop missing test scores, HS grades or Parental education 3,327 49,905

Drop HS Dropouts (or those not receiving GED) 2,959 44,385

Drop observations before HS graduation 2,843 31,573

Drop right-censored missing interview spells 2,841 29,749

Drop any who attend college at a young age or graduate college in 2 or fewer years 2,841 29,097

Drop any who are not in HS at age 15 or under or have other outlying data 2,841 29,061

Drop observations after someone has a missing 4-year college major 2,454 23,083

Drop observations after someone has a missing wage while working 2,245 18,665

Drop observations after someone has a missing GPA while in college 1,914 14,104

Final estimation subsample (descriptive statistics) 1,914 14,104

Final estimation subsample (structural estimation)a 2,713 21,343

a The structural estimation incorporates integration of missing GPA and major observations, as discussed in Section 5.
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Table A.3: Cell sizes of ability covariance matrix

Skilled Unskilled Science Humanities 2-year

Correlation matrix

Skilled 352 273 233 300 67

Unskilled 273 2,257 555 731 767

4 year Science 233 555 796 660 143

4 year Humanities 300 731 660 990 197

2 year 67 767 143 197 843

Note: Numbers reflect the number of individuals that ever participate in

the given combinations of sectors.
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Table 1: SAT scores and race, broken out by college enrollment status

(a) Full Descriptive Sample

Variable Obs Mean Std. Dev.

SAT math 1,913 -0.266 0.705
SAT verbal 1,913 -0.280 0.748

black 1,913 0.256 0.436
hispanic 1,913 0.187 0.390

(b) Start in four-year science

Variable Obs Mean Std. Dev.

SAT math 128 0.480 0.788
SAT verbal 128 0.195 0.783

black 128 0.141 0.349
hispanic 128 0.141 0.349

(c) Start in four-year humanities

Variable Obs Mean Std. Dev.

SAT math 235 0.130 0.743
SAT verbal 235 0.128 0.795

black 235 0.234 0.424
hispanic 235 0.098 0.298

(d) Start in two-year college

Variable Obs Mean Std. Dev.

SAT math 326 -0.266 0.587
SAT verbal 326 -0.251 0.647

black 326 0.212 0.409
hispanic 326 0.199 0.400

Note: Raw SAT scores are standardized to be

mean-zero unit-variance for the NLSY97 pop-

ulation. Predicted SAT scores (reported as

“SAT” throughout) are not mean-zero because

the population that takes the SAT is higher abil-

ity. The process used to construct predicted

SAT scores for non-test-takers is described in

the text.
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Table 2: GPA over time by type of college attended

(a) Four-year college Science

Variable Obs Mean Std. Dev.

year 1 128 2.891 0.899

year 2 98 3.069 0.571

year 3 76 3.156 0.556

year 4 81 3.174 0.561

(b) Four-year college Humanities

Variable Obs Mean Std. Dev.

year 1 235 2.936 0.751

year 2 183 3.047 0.544

year 3 163 3.139 0.511

year 4 131 3.155 0.477

(c) Two-year college

Variable Obs Mean Std. Dev.

year 1 326 2.881 0.895

year 2 189 3.006 0.656

year 3 83 3.081 0.653

year 4 21 2.811 0.813
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Figure 1: GPA over time by type of college attended
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Table 3: Outcomes of college enrollees

Estimation Starting College Type

Full Sample Subsample Two-Year Four-Year Sci Four-year Hum

Continuous completion (CC) 30.48% 33.38% 10.12% 57.03% 52.77%

Stopped out (SO) but graduated 6.26% 7.11% 7.36% 7.03% 6.81%

Stopped out (SO) then dropped out 11.16% 10.16% 15.03% 3.91% 6.81%

Dropped out (DO) 39.91% 37.45% 52.76% 20.31% 25.53%

CC right censored 4.53% 3.19% 1.53% 4.69% 4.68%

SO right censored 7.66% 8.71% 13.19% 7.03% 3.40%

Total N 2,428 689 326 128 235

Notes: Full sample refers to all males in the NLSY97. Estimation subsample refers to individuals included in the structural

estimation (however, completion status is still determined using the full data, so in the structural estimation some categories may

be underrepresented because of missing outcomes early in the college career). Students who begin two-year college but never enroll

in a four-year college are considered as dropouts.
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Table 4: Outcomes of college enrollees, conditional on having graduated

by Round 15 of NLSY97, by type of college first attended

Two-year Four-Year Sci Four-year Hum Any

N % N % N % N %

CC 35 59.3% 73 89.0% 125 88.7% 233 82.6%

SO 24 40.7% 9 11.0% 16 11.3% 49 17.4%

Total 59 100.0% 82 100.0% 141 100.0% 282 100.0%
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Table 5: Background characteristics of college enrollees

SAT math SAT verbal HS GPA Mother with BA Family Income ($1996) N

CC 0.33 0.26 0.68 44.44% 59,254 252

SO -0.03 -0.10 0.04 21.79% 39,140 179

DO -0.28 -0.29 -0.12 18.99% 38,887 258

Total 0.01 -0.04 0.21 29.03% 46,402 689

Note: SAT scores and high school GPA are each standardized to be mean-zero unit-variance for NLSY97 popu-

lation. See text for a description of how SAT scores are constructed.
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Table 6: Average GPA over time by college completion status

Four-Year Sci Four-Year Hum Two-Year

Period CC DO/SO CC DO/SO CC DO/SO

1 3.09 2.75 3.06 2.83 3.22 2.83

2 3.18 3.12 3.07 3.27 3.08 3.01

3 3.19 3.10 3.15 3.28 3.27 3.17

4 3.17 3.29 3.19 3.21 3.30 2.32
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Figure 2: Average GPA over time by college completion status
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Table 7: Difference between actual and expected period-t grades (by t + 1

period college decision)

(a) 4-year Science Majors

Mean diff T
Mean residual Std Dev N (p-val)

Drop out from 4-year college & science -0.203 0.629 28 1.87
Complement 0.014 0.593 411 (0.06)

Switch to 4-year college & humanities -0.021 0.535 42 0.24
Complement 0.002 0.604 397 (0.81)

Switch to 2-year college 0.189 0.794 8 0.90
Complement -0.004 0.593 431 (0.37)

(b) 4-year Humanities Majors

Mean diff T
Mean residual Std Dev N (p-val)

Drop out from 4-year college & humanities -0.104 0.686 99 2.00
Complement 0.014 0.530 722 (0.05)

Switch to 4-year college & science -0.140 0.659 35 1.54
Complement 0.006 0.547 786 (0.13)

Switch to 2-year college -0.108 0.498 13 0.71
Complement 0.002 0.553 808 (0.48)

(c) 2-year Students

Mean diff T
Mean residual Std Dev N (p-val)

Drop out from 2-year college -0.163 0.901 201 3.78
Complement 0.076 0.654 431 (0.00)

Switch to 4-year college (any major) -0.026 0.599 42 0.23
Complement 0.002 0.759 590 (0.82)

Switch to 4-year college & science -0.291 0.558 11 1.30
Complement 0.005 0.751 621 (0.19)

Switch to 4-year college & humanities 0.068 0.593 31 0.52
Complement -0.004 0.756 601 (0.60)

Note: regression covariates include race dummies, SAT scores, parental education, high school GPA,

age dummies, and work intensity dummies.
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Table 8: Major transition matrix for stopouts

Major when returned after stopping out

Major before stopping out science humanities 2-year college N

science 25.00% 25.00% 50.00% 8

humanities 9.09% 54.55% 36.36% 22

2-year college 15.00% 23.33% 61.67% 60

Total 14.44% 31.11% 54.44% 90

Note: Table only includes first instance of stopping out
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Table 9: Average GPA over time by college type and work intensity

(a) 4-year Sciences

Period
1 2 3 4

Work FT 2.72 3.29 3.07 3.21
N 15 8 9 19
Work PT 2.87 2.99 3.10 3.12
N 27 27 23 25
No Work 2.93 3.07 3.20 3.20
N 86 63 44 37

Total 2.89 3.07 3.16 3.17
N 128 98 76 81

(b) 4-year Humanities

Period
1 2 3 4

Work FT 2.78 3.08 3.22 3.02
N 22 30 28 19
Work PT 2.87 2.99 3.07 3.18
N 51 52 46 46
No Work 2.98 3.07 3.15 3.17
N 162 101 89 66

Total 2.94 3.05 3.14 3.15
N 235 183 163 131

(c) 2-year college

Period
1 2 3 4

Work FT 2.90 3.06 3.18 3.10
N 99 65 27 7
Work PT 2.79 3.04 3.01 2.60
N 99 55 30 7
No Work 2.93 2.93 3.06 2.73
N 128 69 26 7

Total 2.88 3.01 3.08 2.81
N 326 189 83 21
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Figure 3: Average GPA over time by college type and work intensity
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Table 10: Difference between actual and expected wages in time t for

stopouts (by t + 1 decision)

Mean diff T

Mean residual Std Dev N (p-val)

Stay in work 0.100 0.533 1,129 2.24

Return to school -0.054 0.346 61 (0.03)

Total 0.092 0.526 1,190

Note: Residuals do not average to zero here because we compute the residuals

using all wage observations in the estimation subsample of the data, but we

condition the table on those who have attended at least one year of college,

are currently working, and have not yet graduated from college. Regression

covariates include levels and interactions of the following variables: race and

year dummies; SAT scores; experience; age; in-school work dummies; and work

intensity dummies.
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Table 11: Estimates of 2- and 4-year GPA Parameters

4 year Science 4 year Humanities 2 year
Coeff. Std. Error Coeff. Std. Error Coeff. Std. Error

Constant 3.07 (0.168) 2.91 (0.133) 2.78 (0.144)
Black -0.14 (0.139) -0.07 (0.069) -0.20 (0.060)
Hispanic 0.01 (0.128) -0.09 (0.082) -0.03 (0.049)
SAT math 0.13 (0.077) 0.08 (0.048) 0.00 (0.038)
SAT verbal 0.12 (0.071) 0.12 (0.050) 0.09 (0.035)
Parent graduated college 0.01 (0.107) 0.07 (0.056) 0.02 (0.051)
HS Grades 0.21 (0.056) 0.21 (0.033) 0.17 (0.027)
Work FT -0.10 (0.073) -0.07 (0.040) -0.02 (0.053)
Work PT -0.04 (0.058) -0.05 (0.036) -0.08 (0.056)
Age 18 and under -1.00 (0.098) -0.65 (0.057) -0.39 (0.061)
Age 19 -0.59 (0.085) -0.30 (0.048) -0.25 (0.066)
Age 20 -0.25 (0.080) -0.19 (0.044) -0.33 (0.076)
Age 21 -0.11 (0.064) -0.14 (0.038) -0.09 (0.066)
Year 2+ 0.43 (0.041)
λ0 (ability index intercept) 0.12 (0.219) 0.25 (0.144) 0.00 ( — )
λ1 (ability index loading) 0.90 (0.070) 0.93 (0.047) 1.00 ( — )
Unobserved type 1 0.06 (0.249) 0.05 (0.217) -0.08 (0.218)

Person-years obs. 1,045 2,248 1,570

Notes: Bootstrapped standard errors in parentheses. Age 22 and older is the reference category for the age

dummies. Not working while in school is the reference category for the work intensity dummies.
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Table 12: Estimates of Skilled and Unskilled Wage Parameters

Skilled Unskilled
Coeff. Std. Error Coeff. Std. Error

Constant 2.08 (0.182) 1.98 (0.122)
Black 0.03 (0.052) -0.09 (0.020)
Hispanic -0.02 (0.052) -0.01 (0.018)
SAT math 0.11 (0.025) 0.06 (0.012)
SAT verbal -0.05 (0.026) -0.02 (0.012)
Parent graduated college -0.01 (0.039) 0.00 (0.016)
HS Grades 0.08 (0.028) -0.01 (0.009)
Age 0.00 (0.011) 0.01 (0.005)
Unskilled Experience 0.00 (0.011) 0.06 (0.003)
Skilled Experience 0.08 (0.008)
PT work -0.07 (0.039) -0.02 (0.010)
PT 2 year -0.11 (0.017)
PT 4 year -0.16 (0.024)
FT 2 year -0.05 (0.019)
FT 4 year -0.07 (0.020)
PT graduate school 0.00 (0.065)
FT graduate school -0.08 (0.039)
1 year graduate school 0.11 (0.045)
2 years graduate school 0.06 (0.057)
3 years graduate school 0.10 (0.089)
4+ years graduate school 0.09 (0.090)
1 year college 0.06 (0.012)
2 years college 0.06 (0.015)
3 years college 0.11 (0.021)
4+ years college 0.15 (0.020)
Science major 0.14 (0.048)
Unobserved type 1 0.17 (0.166) -0.11 (0.148)

person-years 1,700 12,372

Notes: Bootstrapped standard errors in parentheses. Full-time outside of school is

the reference category for the work intensity dummies. Controls for calendar year

dummies were also included.
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Table 13: Correlation Matrix and Variances for Unobserved Abilities

Skilled Unskilled Science Humanities 2-year

Correlation matrix
Skilled 1.000 0.781 0.057 0.053 0.321

(—) (0.054) (0.099) (0.071) (0.151)
Unskilled 0.781 1.000 0.212 0.163 0.180

(0.054) (—) (0.078) (0.064) (0.129)
4 year Science 0.057 0.212 1.000 0.902 0.703

(0.099) (0.078) (—) (0.058) (0.118)
4 year Humanities 0.053 0.163 0.902 1.000 0.883

(0.071) (0.064) (0.058) (—) (0.071)
2 year 0.321 0.180 0.703 0.883 1.000

(0.151) (0.129) (0.118) (0.071) (—)

Variances 0.127 0.074 0.235 0.165 0.085
(0.013) (0.005) (0.047) (0.023) (0.015)

Note: Bootstrapped standard errors in parentheses.

Table 14: Idiosyncratic Variances

Period Skilled Unskilled Science Humanities 2-year

1 0.148 0.161 0.646 0.670 0.897
(0.005) (0.002) (0.051) (0.035) (0.047)

2 0.160 0.212 0.352
(0.024) (0.016) (0.028)

3 0.140 0.135 0.372
(0.054) (0.025) (0.021)

4 0.120 0.111
(0.045) (0.021)

5+ 0.321 0.199
(0.107) (0.031)

Notes: Bootstrapped standard errors in parentheses. The third variance

in 2-year college is the same for all periods after period 3.
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Table 15: College wage premium

skilled wage unskilled wage ∆

Overall premium 2.31 2.08 0.23
Sheepskin effect 2.31 2.23 0.09

Note: Wages for a 22 year-old college graduate born in 1983 with no

work experience, and average background characteristics and test

scores.

Table 16: Wage market shock forecasting estimates

Parameter Coeff. Std. Error

Drift (common) 0.0334 (0.0201)

Drift (graduates) -0.0206 (0.0192)

Autocorrelation 0.6390 (0.1641)

SD of shock (non-graduates) 0.0428 (0.0095)

SD of shock (graduates) 0.0349 (0.0058)

Notes: Estimates come from a pooled AR(1) regression with

sector-specific drift and shock variance, but common autocor-

relation coefficient. Bootstrapped standard errors in parenthe-

ses.
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Table 17: Estimates of Probability of Graduation

Coeff. Std. Error

Constant -3.856 (0.250)
SAT math 0.083 (0.104)
SAT verbal 0.115 (0.094)
Black -0.679 (0.188)
Hispanic -0.664 (0.198)
HS grades 0.191 (0.078)
Parent college 0.038 (0.148)
Years in 2yr college 0.479 (0.060)
Years in 4yr college 0.867 (0.044)
Science major -0.302 (0.129)
Prior ability science × Science major 1.247 (0.229)
Prior ability hum. × Hum. major 0.994 (0.201)
Currently working part-time 0.090 (0.123)
Currently working full-time -0.296 (0.171)
Unobserved type 1 0.170 (0.163)

Person-year obs. 13,390

Notes: Parameter estimates from a logit predicting probability of gradu-

ating in the following period. Estimated only on students in their junior

year and above. Bootstrapped standard errors in parentheses
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Table 18: Flow Utility Estimates

2-year 4-year Sci 4-year Hum Work PT Work FT Grad Sch.

Constant -3.622 -6.621 -5.194 -4.332 -3.467 -3.571

SAT math 0.067 0.453 0.180 -0.077 -0.011 -0.002
SAT verbal 0.016 -0.004 0.207 0.103 -0.018 0.021
Black -0.023 0.107 0.159 -0.171 -0.188 0.146
Hispanic 0.071 0.015 -0.048 -0.066 -0.038 0.016
HS grades 0.098 0.436 0.324 0.038 0.020 0.012
Parent graduated college 0.215 0.552 0.611 0.097 -0.123 0.104

Prior Academic Ability 0.115 0.868 0.943 0.074
Expected Log Wage 0.471 0.471

Previous HS 1.595 2.791 2.234 1.131 0.888

Previous 2-year 2.932 1.769 1.487 0.321 0.307

Previous 4-year Sci 1.314 5.806 3.185 0.797 0.580 0.049
Previous 4-year Hum 0.608 2.671 4.426 0.664 0.616 0.324
Previous Work PT 0.084 0.224 0.206 1.869 1.443 0.116
Previous Work FT -0.214 -0.010 0.095 0.959 2.431 0.299
Previous Grad School 0.257 0.436 3.444

Graduated 4-year college -0.339 0.481
Work PT 0.519 -0.318 -0.136 -0.338
Work FT -0.866 -1.408 -1.426 -3.651

Unobserved type 1 -0.127 0.346 0.467 0.836 0.230 -0.085

Pr (Unobserved type = 1) 0.5028
Pr (Unobserved major = science) 0.3139
Pr (Unobserved GPA ∈ [0.0, 2.5]) 0.4660
Pr (Unobserved GPA ∈ (2.5, 3.0]) 0.2211
Pr (Unobserved GPA ∈ (3.0, 3.6]) 0.2223
Pr (Unobserved GPA ∈ [3.6, 4.0]) 0.0905

log likelihood -25,839
Person-year obs. 21,343

Notes: Bold indicates bootstrap statistical significance at the 5% level. Beliefs on labor market

productivity are included in the expected log wage term.
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Table 19: Model fit: College entry, attrition, re-entry, and graduation

rates by period

College Entry College attrition College re-entry Ever graduated

Period Data Model Data Model Data Model Data Model

1 43.27 46.01 0.00 0.00 0.00 0.00 0.00 0.00

2 8.51 4.52 8.71 11.81 0.00 0.00 0.00 0.00

3 4.03 3.77 8.37 8.66 1.34 1.04 0.00 0.00

4 3.04 3.23 7.17 6.85 2.33 1.61 0.19 2.92

5 1.80 2.88 6.26 5.69 2.57 2.00 7.39 7.57

6 1.48 2.54 6.02 4.85 2.14 2.23 12.65 12.98

7 1.93 2.27 2.93 4.14 2.63 2.44 16.50 17.43

8 2.23 2.13 3.29 3.84 1.92 2.41 18.55 20.38

9 1.74 1.96 2.47 3.59 1.27 2.47 20.29 22.32

10 1.52 1.74 2.58 3.53 1.44 2.44 21.56 23.85

11 1.16 1.58 1.90 3.37 1.90 2.45 21.48 25.19

12 1.15 1.49 2.30 3.32 1.64 2.48 22.70 26.43

13 0.61 1.40 1.23 3.20 0.61 2.44 21.78 27.54

14 0.00 1.30 1.27 3.07 1.27 2.56 32.91 28.57

15 0.00 1.20 0.00 3.10 0.00 2.48 32.91 29.58

Notes: Model rates are constructed using 100 simulations of the structural model for each

individual included in the estimation.
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Table 20: Model fit: Choice frequencies

Choice alternative Data Frequency (%) Model Frequency (%)

2yr & work FT 2.35 2.07

2yr & work PT 2.43 2.17

2yr only 2.57 2.09

4yr sci & work FT 0.68 0.54

4yr sci & work PT 1.39 0.96

4yr sci only 2.83 2.00

4yr hum & work FT 1.56 1.54

4yr hum & work PT 3.03 3.01

4yr hum only 5.94 4.96

work PT only 7.50 7.76

work FT only 46.35 49.26

home production 22.29 21.60

grad school & work FT 0.42 0.62

grad school & work PT 0.23 0.42

grad school only 0.43 0.99

Notes: Model frequencies are constructed using 100 simulations of the structural model

for each individual included in the estimation.
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Table 21: Average abilities for different choice paths

Choice Path Skilled Unskilled Science Humanities 2-year N

Continuous enrollment, graduate in science with x years of in-school work experience

x = 0 0.012 0.044 0.210 0.194 0.153 2,901

x = 1 -0.003 0.022 0.189 0.174 0.137 3,742

x = 2 0.023 0.053 0.187 0.170 0.136 2,989

x = 3 0.048 0.077 0.140 0.127 0.104 1,659

x = 4 0.111 0.151 0.081 0.063 0.052 663

x ≥ 5 0.092 0.119 0.063 0.060 0.058 285

Continuous enrollment, graduate in humanities with x years of in-school work experience

x = 0 0.012 0.032 0.174 0.189 0.167 5,854

x = 1 -0.013 0.000 0.164 0.181 0.159 10,420

x = 2 0.020 0.039 0.151 0.166 0.148 10,051

x = 3 0.045 0.068 0.147 0.160 0.146 5,652

x = 4 0.070 0.095 0.130 0.140 0.131 2,131

x ≥ 5 0.094 0.126 0.200 0.223 0.211 770

Stop out (SO)

SO, graduate in science 0.026 0.046 0.145 0.137 0.115 1,487

SO, graduate in humanities 0.000 0.004 0.130 0.148 0.137 6,062

SO then DO, start in 2yr -0.021 -0.033 -0.088 -0.093 -0.083 7,441

SO then DO, start in science -0.008 -0.046 -0.263 -0.253 -0.205 2,083

SO then DO, start in humanities -0.009 -0.031 -0.203 -0.221 -0.194 4,722

Drop out (DO) after x years of school

x = 1 -0.010 -0.015 -0.050 -0.053 -0.049 17,848

x = 2 -0.011 -0.024 -0.135 -0.144 -0.127 10,969

x = 3 -0.019 -0.041 -0.194 -0.208 -0.183 6,879

x = 4 -0.016 -0.039 -0.215 -0.228 -0.200 4,537

x ≥ 5 0.001 -0.025 -0.260 -0.272 -0.234 4,980

Never attended college

never attend college 0.000 0.000 0.000 0.000 0.000 78,514

Notes: This table is constructed using 100 simulations of the structural model for each individual included in the

estimation.
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Table 22: Average posterior variance after last year of college for different

choice paths

Choice Path Skilled Unskilled Science Humanities 2-year N

Continuous enrollment, graduate in science with x years of in-school work experience

x = 0 0.126 0.072 0.042 0.050 0.047 2,901

x = 1 0.097 0.045 0.040 0.049 0.046 3,742

x = 2 0.083 0.033 0.040 0.048 0.045 2,989

x = 3 0.077 0.026 0.038 0.046 0.044 1,659

x = 4 0.073 0.023 0.037 0.044 0.043 663

x ≥ 5 0.069 0.020 0.039 0.043 0.041 285

Continuous enrollment, graduate in humanities with x years of in-school work experience

x = 0 0.126 0.073 0.081 0.038 0.034 5,854

x = 1 0.097 0.045 0.079 0.036 0.033 10,420

x = 2 0.083 0.032 0.076 0.034 0.032 10,051

x = 3 0.076 0.026 0.072 0.031 0.031 5,652

x = 4 0.072 0.022 0.069 0.029 0.030 2,131

x ≥ 5 0.068 0.019 0.066 0.028 0.029 770

Stop out (SO)

SO, graduate in science 0.082 0.032 0.049 0.044 0.040 1,487

SO, graduate in humanities 0.080 0.030 0.077 0.035 0.032 6,062

SO then DO, start in 2yr 0.078 0.030 0.156 0.095 0.048 7,441

SO then DO, start in science 0.080 0.031 0.093 0.067 0.044 2,083

SO then DO, start in humanities 0.079 0.030 0.121 0.069 0.042 4,722

Dropout (DO) after x years of school

x = 1 0.113 0.062 0.209 0.145 0.075 17,848

x = 2 0.104 0.054 0.164 0.107 0.058 10,969

x = 3 0.098 0.048 0.129 0.079 0.046 6,879

x = 4 0.092 0.042 0.105 0.061 0.039 4,537

x ≥ 5 0.084 0.035 0.091 0.052 0.035 4,980

Never attended college

never attend college 0.071 0.020 0.227 0.162 0.083 78,514

Notes: This table is constructed using 100 simulations of the structural model for each individual included in the

estimation.
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Table 23: Average abilities for different choice paths in full-information

counterfactual scenario

Choice Path Skilled Unskilled Science Humanities 2-year N

Continuous enrollment, graduate in science with x years of in-school work experience

x = 0 0.034 0.015 0.607 0.474 0.381 6,131

x = 1 0.167 0.163 0.536 0.402 0.331 7,389

x = 2 0.237 0.277 0.500 0.368 0.300 5,275

x = 3 0.300 0.331 0.435 0.302 0.256 2,184

x = 4 0.358 0.368 0.328 0.192 0.191 664

x ≥ 5 0.516 0.541 0.391 0.246 0.250 204

Continuous enrollment, graduate in humanities with x years of in-school work experience

x = 0 0.026 -0.068 0.400 0.501 0.520 10,621

x = 1 0.144 0.080 0.358 0.451 0.484 14,623

x = 2 0.266 0.216 0.311 0.389 0.445 11,496

x = 3 0.345 0.288 0.284 0.350 0.424 5,065

x = 4 0.450 0.399 0.238 0.316 0.410 1,596

x ≥ 5 0.478 0.365 0.212 0.252 0.369 452

Stop out (SO)

SO, graduate in science 0.097 0.104 0.427 0.331 0.258 2,486

SO, graduate in humanities 0.120 0.062 0.264 0.345 0.378 6,998

SO then DO, start in 2yr -0.115 -0.090 -0.207 -0.197 -0.196 5,874

SO then DO, start in science -0.158 -0.050 0.080 0.020 -0.088 1,267

SO then DO, start in humanities -0.142 -0.065 -0.014 0.015 -0.034 2,828

Drop out (DO) after x years of school

x = 1 -0.064 -0.039 -0.217 -0.226 -0.226 14,922

x = 2 -0.133 -0.070 -0.125 -0.135 -0.175 7,597

x = 3 -0.130 -0.024 -0.057 -0.061 -0.131 4,575

x = 4 -0.143 -0.048 -0.029 -0.033 -0.103 2,637

x ≥ 5 -0.121 -0.078 -0.158 -0.162 -0.185 2,358

Never attended college

never attend college -0.067 -0.056 -0.263 -0.284 -0.275 78,626

Notes: This table is constructed using 100 simulations of the structural model for each individual included in the

estimation.
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Table 24: College completion status frequencies: baseline and counterfac-

tual

Baseline (%) Counterfactual (%)

Continuous completion (CC) 20.71 29.27

Stop out (SO) but graduated 3.15 3.96

Graduate from four-year college 23.86 33.23

Stop out (SO) then drop out 6.67 4.90

Drop out (DO) 29.65 23.42

Never went to college 28.94 28.95

N 271,300 271,300

Notes: Figures constructed using 100 simulations of the structural model for each

individual included in the estimation.
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Table 25: Average period-T posterior variances by demographic charac-

teristics

Choice Path Skilled Unskilled Science Humanities 2-year N

Race & Ethnicity

Black 0.069 0.024 0.173 0.116 0.063 61,900

Hispanic 0.065 0.020 0.173 0.117 0.062 47,900

White 0.058 0.022 0.144 0.095 0.054 162,000

Parental college status

Parent did not graduate 0.065 0.021 0.174 0.118 0.063 191,000

Parent graduated 0.053 0.025 0.111 0.070 0.043 80,300

SAT math quartile

1st quartile 0.068 0.022 0.185 0.126 0.066 81,100

2nd quartile 0.066 0.021 0.176 0.119 0.063 54,600

3rd quartile 0.060 0.022 0.146 0.096 0.054 69,600

4th quartile 0.051 0.024 0.111 0.072 0.045 66,000

SAT verbal quartile

1st quartile 0.067 0.022 0.180 0.123 0.065 76,800

2nd quartile 0.066 0.021 0.177 0.120 0.063 58,900

3rd quartile 0.060 0.022 0.145 0.096 0.054 67,800

4th quartile 0.053 0.023 0.119 0.076 0.046 67,800

High school GPA quartile

1st quartile 0.068 0.021 0.187 0.127 0.066 137,000

2nd quartile 0.061 0.022 0.147 0.096 0.054 54,900

3rd quartile 0.055 0.023 0.120 0.077 0.047 52,300

4th quartile 0.043 0.025 0.083 0.053 0.037 27,500

Notes: This table is constructed using 100 simulations of the structural model for each individual included

in the estimation.
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Table 26: Major switching probabilities: baseline and counterfactual

Baseline (%) Counterfactual (%)

Pr(Grad science | started science, grad 4yr) 54.76 59.73

Pr(Grad hum | started hum, grad 4yr) 89.51 85.84

Pr(Grad hum | started science, grad 4yr) 45.24 40.27

Pr(Grad science | started hum, grad 4yr) 10.49 14.16

Pr(Grad science | started 2yr, grad 4yr) 23.32 28.44

Pr(Grad hum | started 2yr, grad 4yr) 76.68 71.56

Pr(Grad science | grad 4yr) 24.39 31.32

Pr(Grad hum | grad 4yr) 75.61 68.68

N 271,300 271,300

Notes: Figures constructed using 100 simulations of the structural model for each individual

included in the estimation.
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Table 27: Difference in abilities at t = 2 for stopouts (by t = 3 decision)

(a) Posterior ability

Path Unskilled Sci Hum 2yr N

Stay in Work -0.019 -0.008 -0.005 -0.001 1,611

Return to school 0.007 -0.021 -0.022 -0.018 5,825

Total 0.002 -0.018 -0.018 -0.015 7,436

(b) True ability

Path Unskilled Sci Hum 2yr N

Stay in Work 0.016 0.007 0.013 0.035 1,611

Return to school 0.021 -0.031 -0.031 -0.024 5,825

Total 0.020 -0.023 -0.022 -0.011 7,436

(c) Counterfactual true ability

Path Unskilled Sci Hum 2yr N

Stay in Work 0.122 0.103 0.109 0.104 1,174

Return to school 0.138 0.021 0.034 0.036 3,485

Total 0.134 0.042 0.053 0.053 4,659

61


