Tropical Lending:

International Prices, Strategic Default and Credit Constraints among Coffee Washing Stations

> Arthur Blouin *Toronto*

Rocco Macchiavello *Warwick*

April 2015

Motivation

Ability to enter into binding agreements is an essential ingredient of economic growth (Greif (2005)) and international trade (Rauch (2001))

• Distance, higher monitoring costs and different institutional regimes

Contractual parties limit opportunism by combining **formal** contract terms and **informal** relational mechanisms (e.g., reputation) (McLeod (2007))

Many models of opportunism/moral hazard – but limited empirical evidence (particularly on large firms)

This paper:

- 1. Can we detect (and distinguish) *a* form of moral hazard ?
- 2. How does it affect contract choice and efficiency ?

Two broad classes of MH

Ex-Ante MH

Credit

Loan Diversion

Holmstrom and Tirole (1997), Burkart and Ellingsen (2004)

Ex-Post MH

Strategic Default

Townsend (1979), Lacker and Weinberg (1989)

Commercial

Costly Quality Provision

Shapiro (1982)

Side-Selling Olstrom (1990)

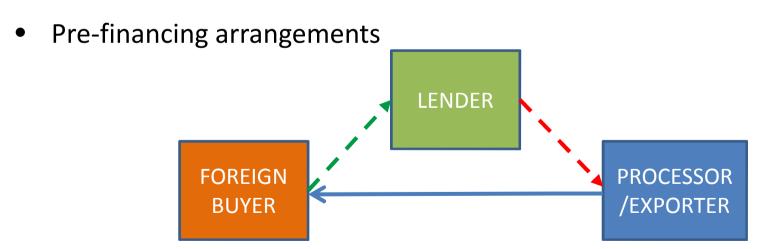
Why is it important to distinguish?

- 1. Optimal remedy depends on source of opportunism
 - Loan diversion \rightarrow Trade credit (Burkart and Ellingsen (2004))
 - Strategic Default \rightarrow Optimality of Debt (Townsend (1979))

- 2. Differently affected by changes in environment
 - E.g., market structure or technology

- **3.** Different welfare implications:
 - Direct: Deadweight loss vs. transfers
 - Indirect: Contract Choice \rightarrow Which Market is Missing

Why is it difficult to distinguish?


• We need:

1. Contract-level data with terms and default

2. Exogenous changes in incentives when unobserved action is taken

This Paper

- This paper provides evidence for strategic default (ex-post MH) and its consequences in the international coffee market.
- We use data on ≈800 sale and working capital loans contracts to ≈300 coffee mills in ≈25 developing countries
 - Intrinsic interest
 - Methodological advantages

• Sales contract (*fixed price* vs. *differential price*) used as **collateral**

Why is it difficult to distinguish?

• Advantages of our setting:

- **1.** Contract-level data with terms and default: data on
 - Loans contracts: default is observed
 - Sales contracts: *fixed price* vs. *differential contracts*

- 2. Exogenous changes in incentives when unobserved action is taken
 - Observed unanticipated fluctuations in international prices
 - a. When production decisions are made: **ex-ante MH**
 - b. At the time of contract execution: **ex-post MH**

Summary of Results

- 1. Test for strategic default:
 - Unanticipated 个 international coffee price 个 defaults (for fixed price contracts)
- 2. Strategic default implies a trade-off between *price* and *counterparty* risk:
 - High relationship value \rightarrow fixed price contract
 - Low relationship value \rightarrow differential contract
- 3. Strategic default is quantitatively important
 - RDD evidence of credit constraints
 - Additional funds used to purchase inputs (not substitute other loans)
 - Model Calibration
 - date consistent with strategic default being source of credit constraint

Related Literatures

(Relational) Contracts:

• Macchiavello and Morjaria (*forthcoming*), Banerjee and Duflo (2000), Antras and Foley (2014), McMillan and Woodruff (2000), Lerner and Schoar (2002)

Credit Constraints (on larger firms), Credit and Exports, Trade Credit, ...:

- Banerjee and Duflo (2015), Banerjee and Munshi (2004)
- Paravisini et al. (2011), Manova (2013a, 2013b), Amiti and Weinstein (2010)
- Klapper (2006), Klapper et al. (2011)
- Rampini and Viswanathan (2010, 2011)

Industrial Organization of Agricultural Sector:

 De Janvry et al. (2014), Dragusano and Nuun (2014), Macchiavello and Morjaria (2014), Casaburi and Reed (2013), Ghani and Reed (2014), Banerjee et al. (2001), Mullhainathan and Sukhatankar (2014), Fafchamps (et al., various)

Empirics of Contracts

• Chiappori and Salanié (2002), Karlan and Zimman (2010), Adams et al. (2009), Townsend (et al., various)

Contribution

Banerjee and Duflo (2000) and Antras and Foley (2014): reputational forces shape contract terms

 \rightarrow Direct test for moral hazard + Quantify inefficiency

Macchiavello and Morjaria (*forthcoming*): relational capital/reputation a quantitatively important determinant of trade

→ Interaction between formal and informal contracts enforcement, richer understanding of (endogenous) market failures

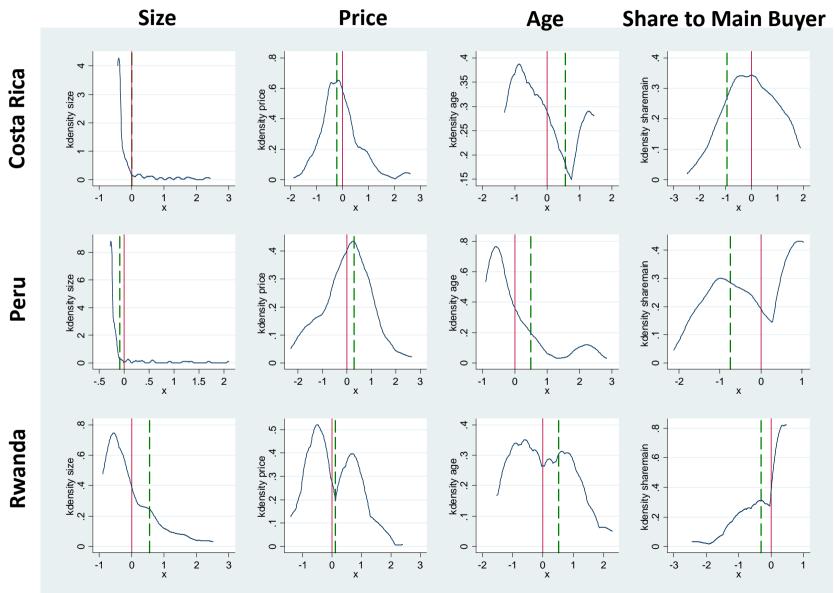
Banerjee and Duflo (2015): evidence of credit constraints on Indian SMEs

- Evidence of high/heterogeneous *F_κ* consistent with imperfect *credit* markets –mostly from *microenterprises* (De Mel et al. (2008, 2009), Fafchamps et al. (2011), Karlan et al. (2012, 2013), Kremer et al. (2011), Banerjee et al. (2015))
- \rightarrow Source of credit (and insurance) constraints

The Plan

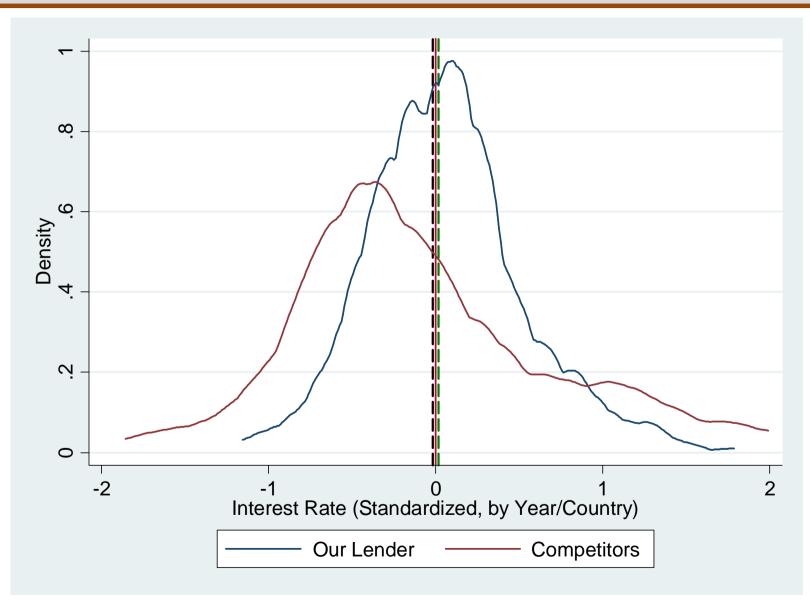
- 1. Context
- 2. Theoretical Framework
- 3. Strategic Default
- 4. Credit Constraints and Model Calibration
- 5. Discussion of Policy Implications & Conclusions

Context

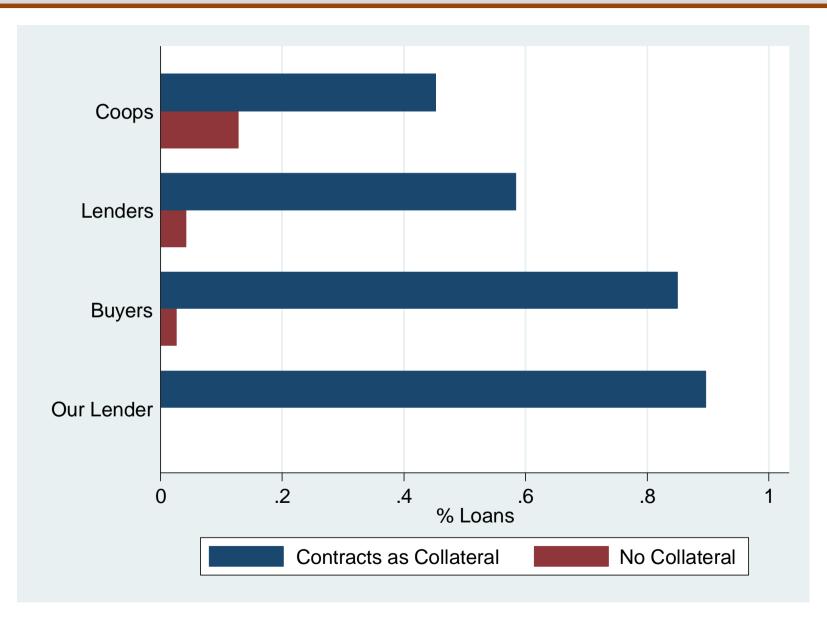

Data Source

Variable	Observations	Median	Mean	St. Dev.		
Panel A: Mills Characteristics						
Total Assets (in 1,000,000\$)	136	1.09	2.43	3.52		
Sales (in 1,000,000\$)	136	1.36	2.64	4.38		
Cherries Purchases (in 1,000,000\$)	136	1.01	2.20	3.90		
Sales / Cherries Purchases	136	0.66	0.71	0.39		
Permanent Employees	136	10	18	22		
Seasonal Emplyees	136	12	105	266		
Growers Supplying Coffee	136	434	1076	1575		
Number of Loans from Lender	136	5.00	5.38	2.82		
Loan Amount (in 1,000,000\$)	136	0.46	0.58	0.47		
Share Purchases Financed by Lender	136	0.46	0.59	0.47		
Number of Loans from Lender (full sample)	317	2.00	3.20	2.56		
Loan Amount (in 1,000,000\$) (full sample)	317	0.33	0.47	0.44		
Panel B: Contracts & Loan						
Loan Amount (in 1,000,000\$)	781	0.33	0.47	0.52		
Interest Rate	781	0.10	0.10	0.01		
Length Loan (days)	781	257	251	69.7		
Renewal (=1), First Loan (=0)	781	1.00	0.72	0.45		
Default (Write-Off, Restructured, Delay), %	781	0.00	0.04	0.17		
Price Surprise	781	1.05	1.09	0.29		
Africa	781	0.00	0.12	0.33		
Central America	781	0.00	0.36	0.48		
Latin America	781	0.00	0.49	0.51		
Fixed Price Contract	598	1.00	0.59	0.49		
Numerical Score	455	3.61	3.59	0.25		

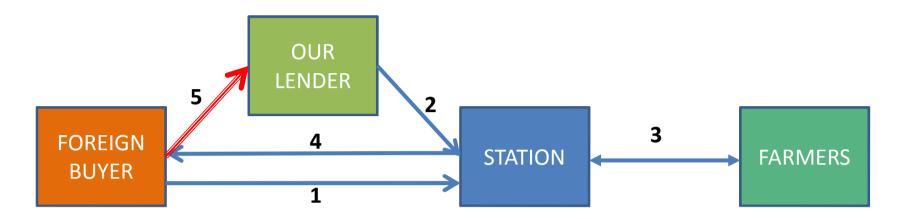
Lending Model

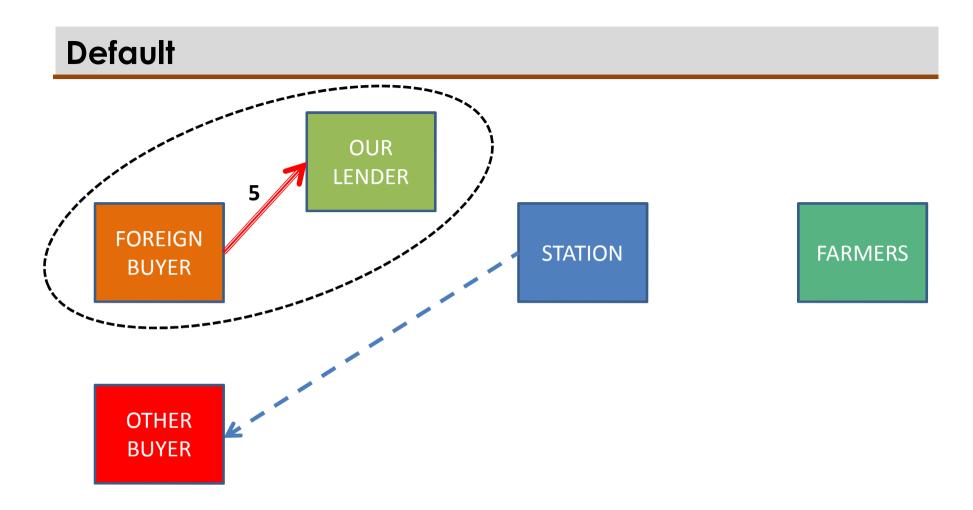

- 1. Similar to working capital loans based on account receivable:
 - Primary source of SME financing in US (Klepper (2004)) even more important in developing countries (Demirguc-Kunt and Maksimovic (2001))
- 2. Extremely common practice in this (and related) industry:
 - "Processors and exporters engage in pre-financing to secure future supplies of coffees" (*Coffee's Exporter Guide, ITC*)
 - "Exporters often enter into pre-financing arrangements with importers ... However, pre-financing credit arrangements tend to be very shortterm and restrict marketing options as well" (Larson and Varangis (2006), WB)
- 3. One of two main sources of working capital finance for:
 - **Rwandese** coffee washing stations (main source for $\approx 40\%$ of stations)
 - Peruvian coffee exporters (approx. 30% of export transactions)

Representativeness of Lender's Portfolio

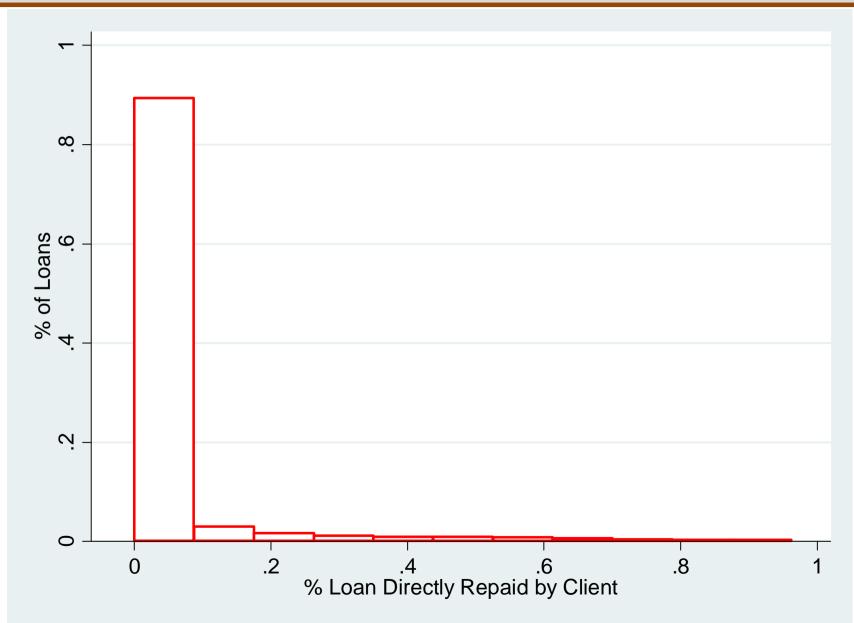


X

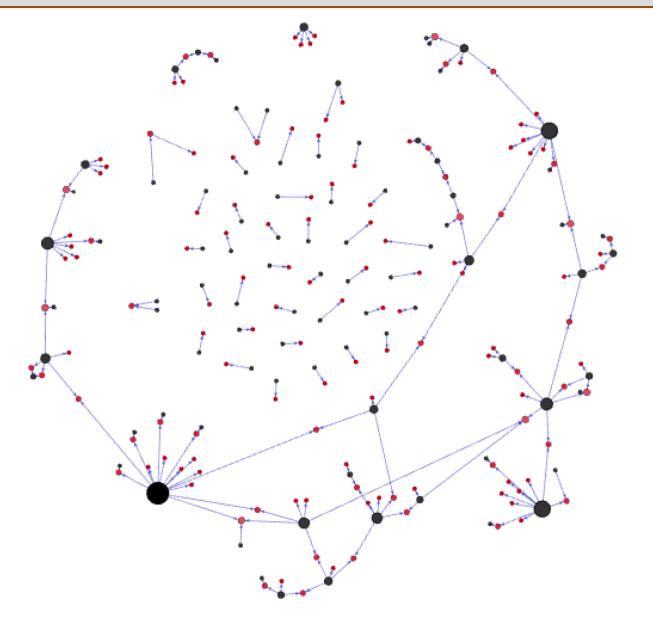

Representativeness of Lender's Interest Rates


Use of <u>Collateral</u>

Lending Model



- 1. Buyer and station negotiate a contract
- 2. Lender extends loan to station (formula + value of the contract)
- 3. Station purchases cherries during harvest time.
- 4. After harvest station delivers coffee to buyer
- 5. Lender is paid directly by buyer



• To default on the loan a client must default on the buyer (and vice-versa)

As per contract, most loans are indeed repaid by buyer

Buyer – Lender Relationships

Two goals:

- 1. Derive *qualitative* predictions
 - Test for (ex-post) moral hazard, other testable predictions

- 2. Guide *quantitative* exercise
 - Can ex-post moral hazard generate credit constraints?

Theoretical Framework: Set-Up

- A (risk-averse) washing station (station) and a risk-neutral buyer-lender
- Cost of producing *q* units of coffee

$$C(q) = q \times p_0 = q \times q^{\varepsilon}$$

Timing of Events

Negative Cash Flows: Ex-ante MH constraint Positive Cash Flows Ex-post MH constraint

t = 0	<i>t</i> = 1	<i>t</i> = 2	<i>t</i> = 3
Contract is negotiated	Loan disbursed, stations purchases	international price drawn from	Station repays or side-sells (default)
	inputs or diverts	F(p) is realized	

Theoretical Framework: Set-Up

- A (risk-averse) washing station (station) and a risk-neutral buyer-lender
- Cost of producing *q* units of coffee

$$C(q) = q \times p_0 = q \times q^{\varepsilon}$$

- Station has all ex-ante bargaining power and cash W
- Contract $C^{BL} \equiv \{q^c, p^c \lor \Delta^c, L, D\}$ maximizes expected utility s.t.
 - i. Buyer-Lender (expected) zero profit constraints
 - ii. Incentive constraints (if any)
 - iii. Limited Liability

Contracts (and zero profit constraints)

• **SALE CONTRACT**: two types

Fixed Price : p^c is fixed at time of contracting

 $[E[p|delivery] - p^c] \times q^c \ge 0$

Contracts (and zero profit constraints)

• **SALE CONTRACT**: two types

Fixed Price : p^c is fixed at time of contracting

 $[E[p|delivery] - p^c] \times q^c \ge 0$

Differential Price : $p^c = p + \Delta^c$ a differential over mkt. price at delivery

 $\left[E[p|delivery] - E[p^{c}|delivery]\right] \times q^{c} =$

 $= \Delta^c \times \Pr(delivery) \times q^c \ge 0$

Contracts (and zero profit constraints)

• **SALE CONTRACT**: two types

Fixed Price : p^c is fixed at time of contracting

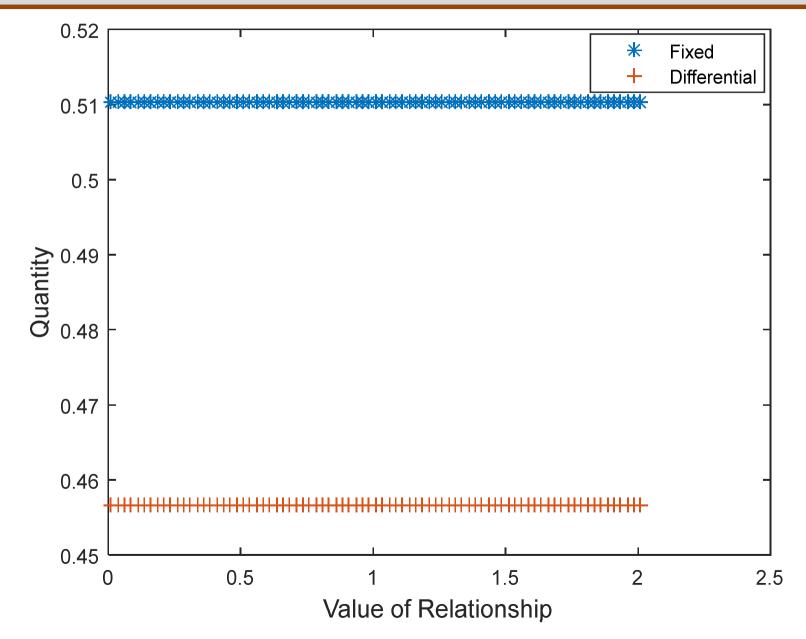
 $[E[p|delivery] - p^c] \times q^c \ge 0$

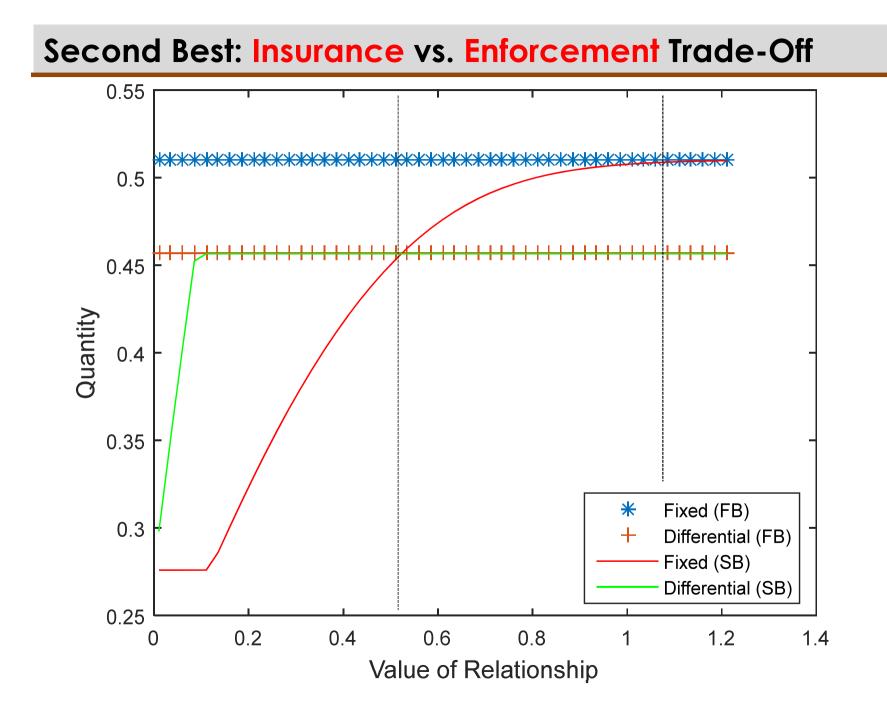
Differential Price : $p^c = p + \Delta^c$ a differential over mkt. price at delivery

$$[E[p|delivery] - E[p^c|delivery]] \times q^c =$$

 $= \Delta^c \times \Pr(delivery) \times q^c \ge 0$

• LOAN CONTRACT: standard debt contract


$$L \le \int_{p} \mathbf{I}[p] \times \min\{D, p^{c}q^{c}\} dF(p)$$


$$\begin{array}{ccc} q^{c}p^{c} - D + \delta \mathbf{V} \geq \mu [pq^{c} + \delta \mathbf{U}^{D}] + (1 - \mu) [q^{c}p^{c} - D + \delta \mathbf{U}^{L}] \\ \downarrow & \downarrow \\ \\ \text{Contract} & \begin{array}{c} \text{Continuation} \\ \text{Value if } repay \end{array} \quad \text{Value of } defaulting \\ \end{array} \quad \begin{array}{c} \text{Contract} & \begin{array}{c} \text{Continuation} \\ \text{Value if } late \end{array} \end{array}$$

Assumptions:
$$\mathbf{U}^{D} = \mathbf{U}$$
 and $\mathbf{U}^{L} = \sigma \mathbf{V} + (1 - \sigma)\mathbf{U}$

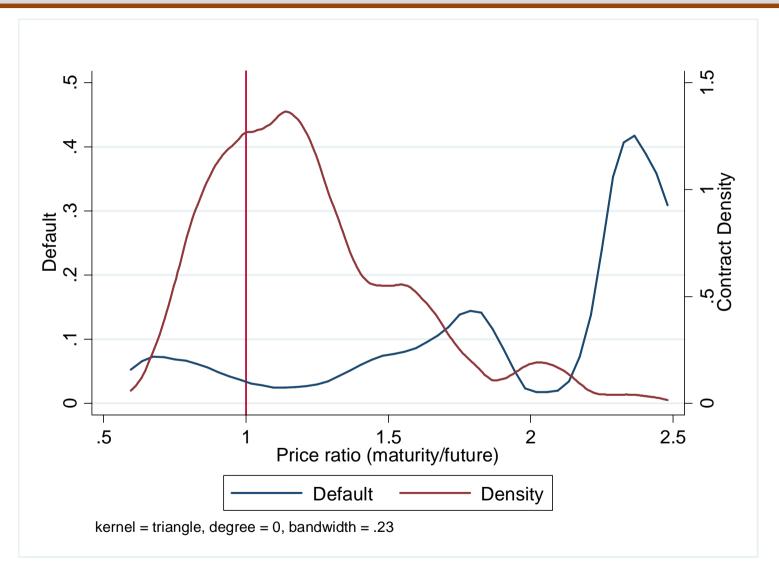
Let
$$\varphi = \frac{\mu}{1 - \sigma(1 - \mu)}$$

Rewrite as: $\delta(\mathbf{V} - \mathbf{U}) \ge \varphi \times (D + (p - p^c)q^c)$
Value of Informal
Enforcement \mathcal{V}
Temptation to Deviate

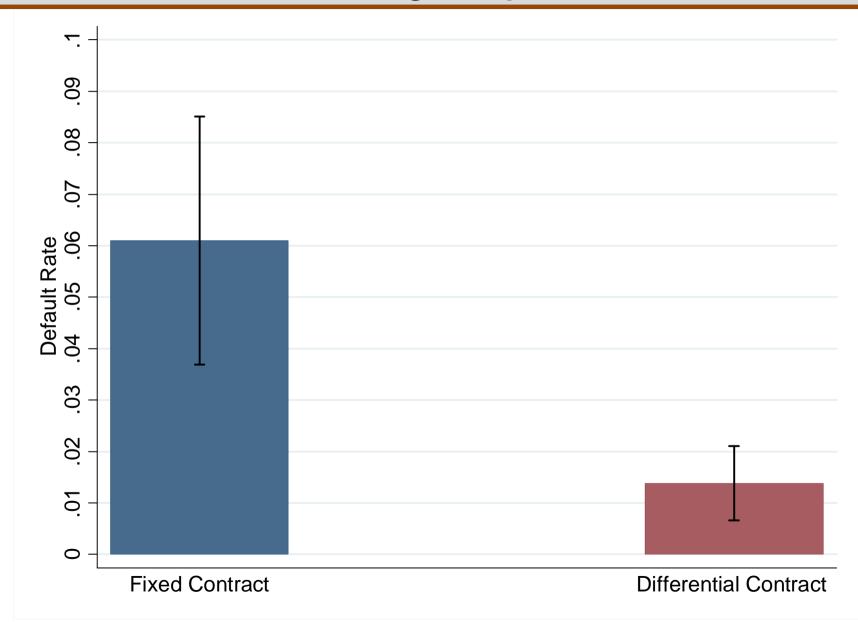
First Best: Perfect Contract Enforcement

Rewrite as:
$$V \ge \phi \times (D + (p - p^c)q^c)$$

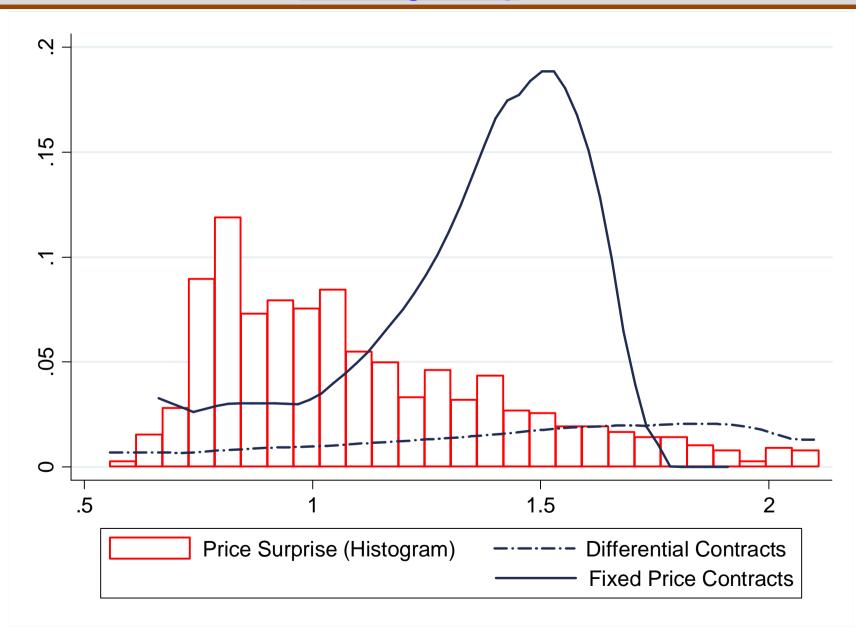
- 1. (ex-post MH) Unanticipated price increases lead to higher default:
 - a. for fixed price contracts
 - b. but *not* for differential price contracts

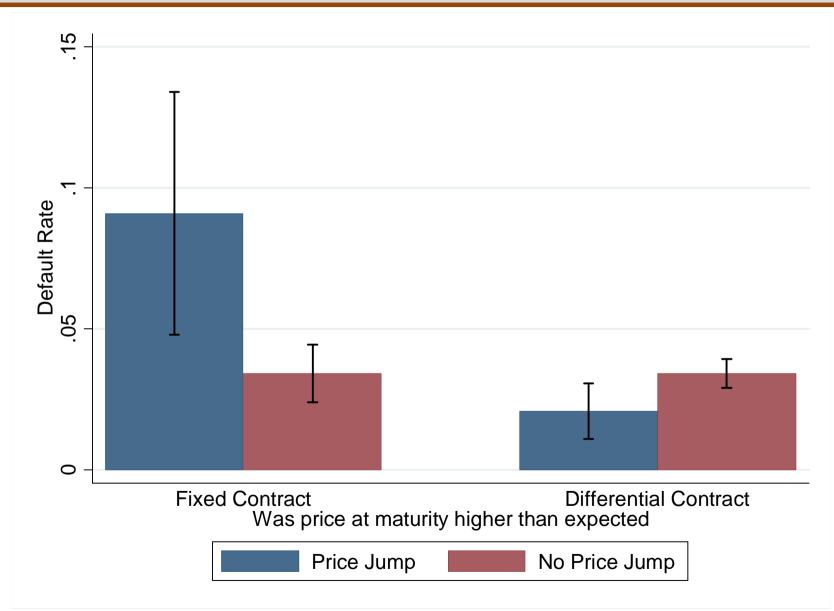

2. (Contract Sorting): clients with higher \mathcal{V} get fixed contracts

3. (ex-post MH, heterogeneity)


• More default with lower relationship value (*omitted*)

Detecting Strategic Default


Prices and **Default**


Prices and Default: Heterogeneity

Prices and Default: <u>Heterogeneity</u>

Prices and Default (event study): <u>Heterogeneity</u>

Selection into **Contract** Type

Strategic Default and Credit Constraints?

Quantitative implications

We have documented strategic default. Does it matter?

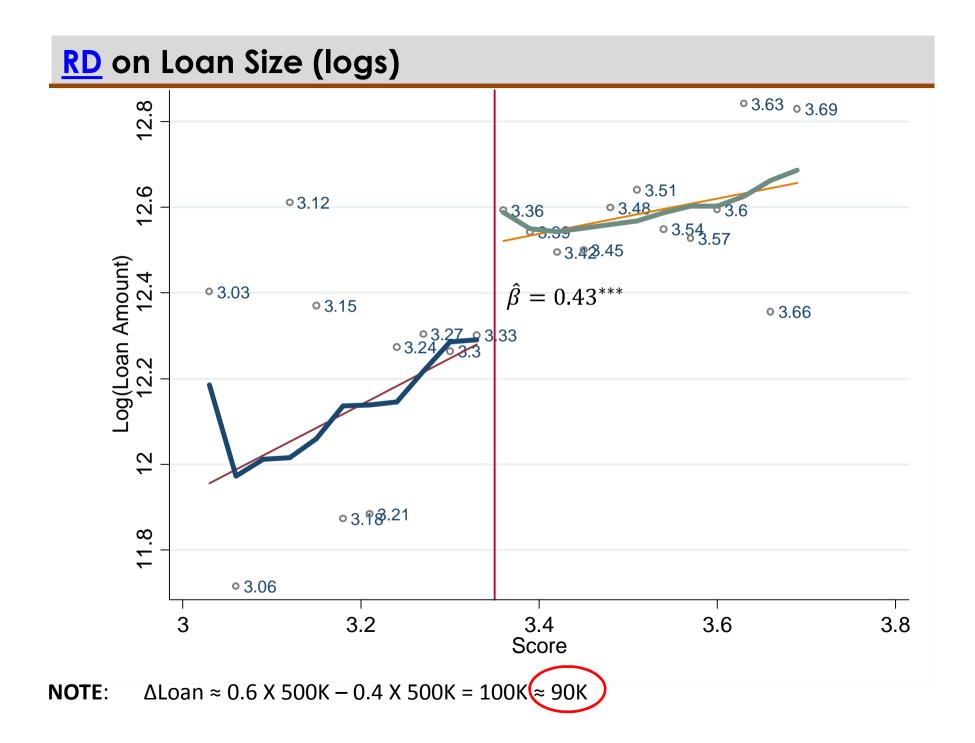
Step 1: RDD design to test for credit constraints

Step 2: Model's calibration

Credit Constraints: Definition, Strategy and <u>Test</u>

Test (Banerjee and Duflo (2012)**):** A firm is credit constrained if additional supply of loan (at same *r*)

- 1. *is used to expand input purchases and sales,*
- 2. without (completely) substituting for existing more expensive loans


Strategy

% of contract that is pre-financed (at the same *r*) depends on a score:

- A (score > 3.35): 60% of value of contract is pre-financed
- **B** (score < 3.35): 40% of value of contract is pre-financed

Remarks:

- Decision at the margin
- Other loans can be substituted.

RD on Loan Size, Interest Rate (and Other Loans)

	Loan increases by 85K	5	Other Loar are <i>not</i> redu	-	Same r	9		
Observations	575	199 (1997) (1997) 1997 (1997) (1997)	575	man management da a	575			
	(4,632)		(27,893)		(0.0109)			
125 % Optimal Bandy	width $88,017^{***}$		2,520		-0.0127			
	(41,027)		(114,677)		(0.00565)			
75% Optimal Bandwidth 113,709***			1,501		0.00534			
	(23,553)		(43, 916)		(0.00917)			
Optimal Bandwidth	84,383***		31,441		-0.00516			
	(1)	(2)	(3)	(4)	(5)	(6)		
	Loan Amou	nt	Other L	Interest Rate				
Table 7: Contract information associated with larger loan amounts								

RD on Cherries Purchases and Prices

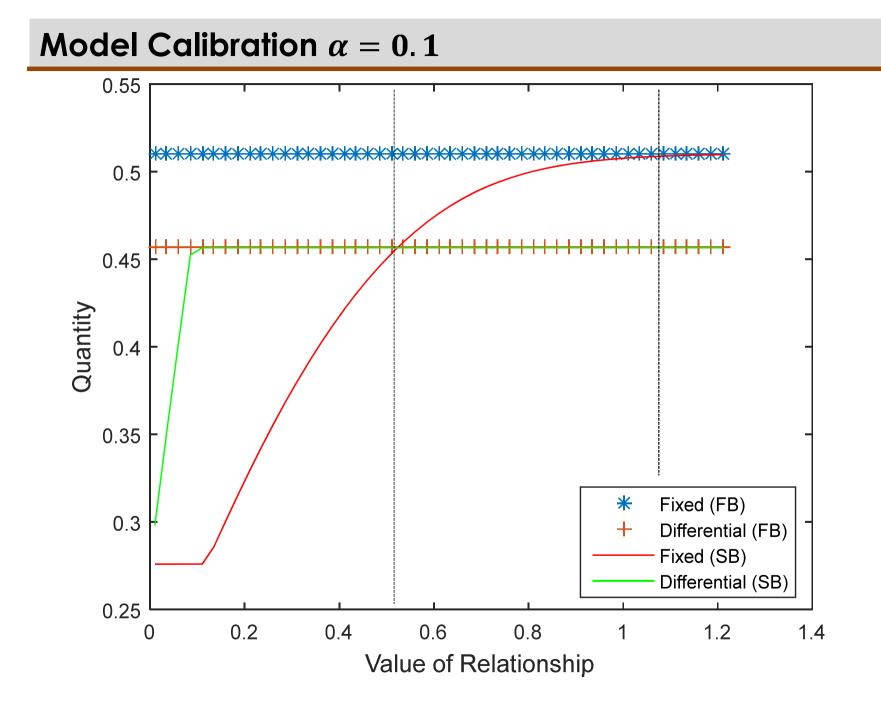
	Purchases		log(Purchases)		log(Purchase Volume)		log(Purchases Price)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Optimal Bandwidth	113,941**		0.110**		0.175**		0.0391**	
	(50,712)		(0.0473)		(0.0828)		(0.0195)	
75% Optimal Bandwidth	193,371		0.0882		0.0808***		0.0436^{*}	
	(140, 641)		(0.0649)		(0.0311)		(0.0247)	
125% Optimal Bandwidth	101,440**		0.202**		0.230**		0.0413**	
12.5	(48, 886)		(0.0916)		(0.101)		(0.0205)	

Cherry Purchases ↑ by 113K (≈85K), ≈11%

Prices paid to farmers \uparrow

RD on Sales and Pr	ofits				
Table 9: Retu	Irns associated w	ith larger l	oan amounts		
	$\log(Sa)$	ales)	$\log(\text{Profit})$		
	(1)	(2) (3)		(4)	
Optimal Bandwidth	0.136***		0.0821**		
	(0.0277)		(0.0324)		
75% Optimal Bandwid	1th 0.153 ***	0.115^{***}			
	(0.0578)		(0.0362)		
75% Optimal Bandwid	lth0.182***		0.0322		
	(0.0465)		(0.0506)		
Sales	个 by ≈13%	Im	plied MPK ≈2	0-30% >	

(Unreported):

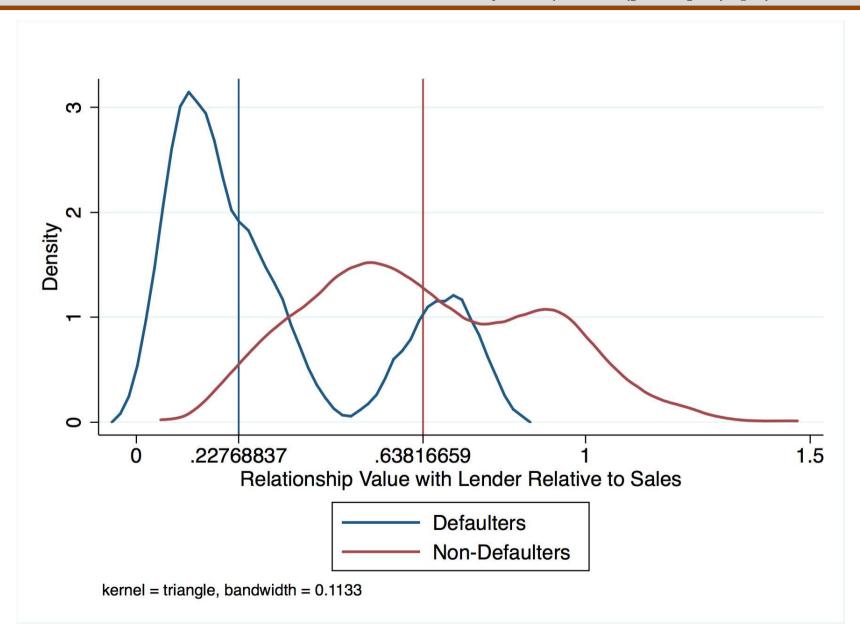

- 1. Sales to buyers other than those on the contract increase
- 2. Not much on sale prices

Could credit constraints be due to strategic default?

Step 1: **RDD** design to test for credit constraints

Step 2: model's calibration

Parameters		Source
World Prices	F(p)	Data
Local Supply	ϵ	RDD
Search & Punishment	μ, σ	Data
"Wealth"	W	% Financed (matched)
Risk Aversion	α	$\alpha \in [0.1, 0.9]$



Step 1: RDD design to test for credit constraints

Step 2: model's calibration

Parameters		Source
World Prices	F(p)	Data
Local Supply	ε	RDD
Search & Punishment	μ, σ	Data
"Wealth"	W	% Financed (matched)
Risk Aversion	α	$\alpha \in [0.1, 0.9]$
Value of Relationship	ν	Data (bounds)

Value of Informal Enforcement $\mathcal{V} \ge \phi \times (D + (p - p^c)q^c)$

Model Calibration

Conclusions

Policy Implications

- We have studied a **common** problem in a specific context.
- Many developing countries heavily rely on export revenues generated in few, highly volatile, mineral/agricultural markets. Yet access to risk-management tools is limited
- Counterparty risk one of the key constraints
 - → financing and risk management are linked: both involve promises to pay that are limited by collateral constraints
- In our context, collateral is Relational capital (V) → structure of formal contract → endogenous determination of which market is missing

Policy Implications

	Lack of Know how	Counter Party Risk	Intermed iation issues	Basis Risk	Lack of Local Price Discovery	Low Liquidity
Petroleum	Some cases	Maybe for some countries	No	No	No	No
Precious Metals	Some cases	Maybe for some countries	No	No	No	No
Base Metals	Some cases	Maybe for some countries	No	No (copper, alum.), possibly some basis risk with others	No	No (copper, alum.). Could be an issue for others
Agriculture: Mainly Exports	Moderate	Yes	Yes	For some (e.g. cotton) less for others (e.g. coffee, cocoa, sugar)	Moderate	moderate (less of an issue for coffee, cocoa, sugar)
Agriculture: for Local Markets	Yes	Yes	Yes	Yes	Yes	moderate (but not for grains and soybeans)

Table 6: Barriers to commodity price risk management in developing countries by commodity group

Policy Implications

• Can't exporters insure against price fluctuations buying **options**?

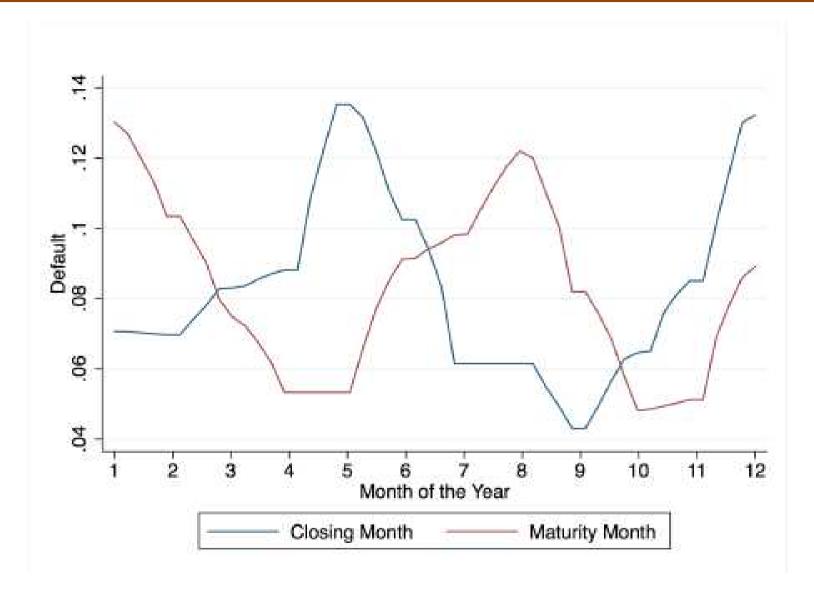
- Strategic default

 \rightarrow station can't credibly promise to pay back when price is high.

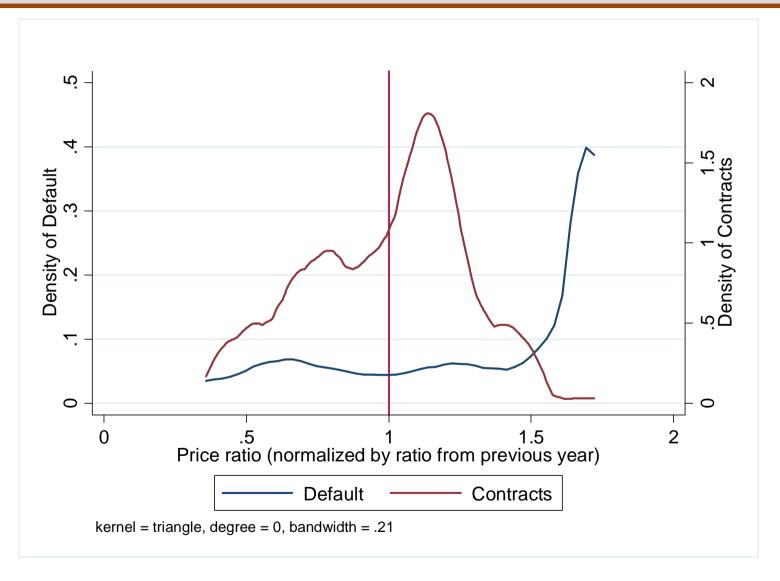
- OK. But, why not just buy a put option against low prices?
 → This already happens: *fair trade* contract
- However:

→ counterparty risk on the buyer side (see de Javry et al. (2014)) → willingness to pay should be low: due to limited liability the station's manager **likes risk** over low price realizations

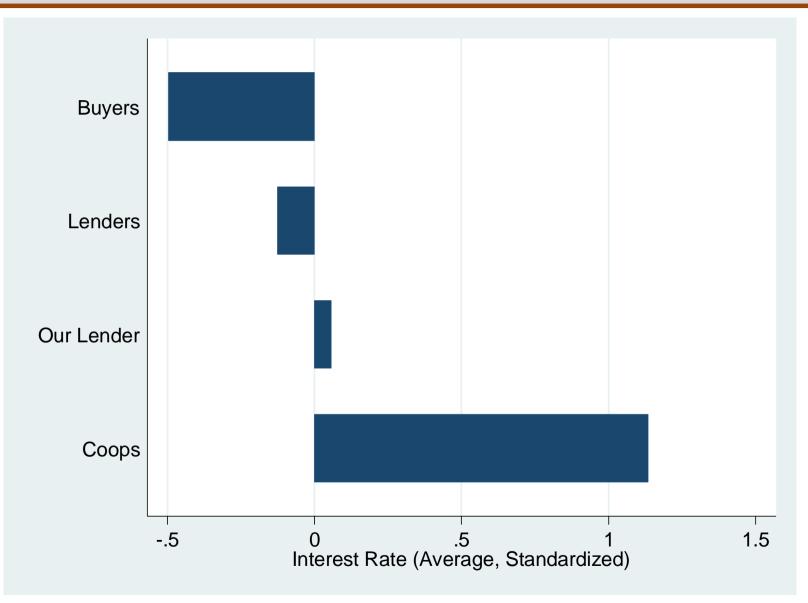
Conclusions: What have we learned?


- 1. This paper provided a test for strategic default (ex-post MH)
 - Strategic default implies a trade-off between *price* and *counterparty* risk (or between *insurance* and *enforcement*)

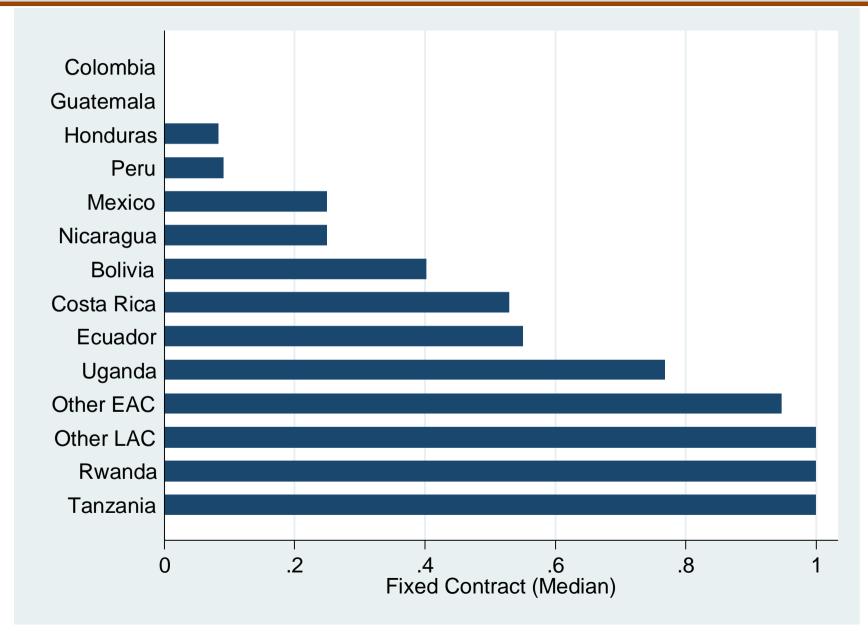
- 2. Friction is quantitatively important:
 - \rightarrow Large enough to generate credit (or insurance) constraints
 - \rightarrow Imposes externality on farmers upstream
 - \rightarrow Many valuable trade opportunity are lost


- 3. Scarce relational capital is leveraged to *adapt* formal contracts
 - \rightarrow Heterogeneity across firms on which markets are missing

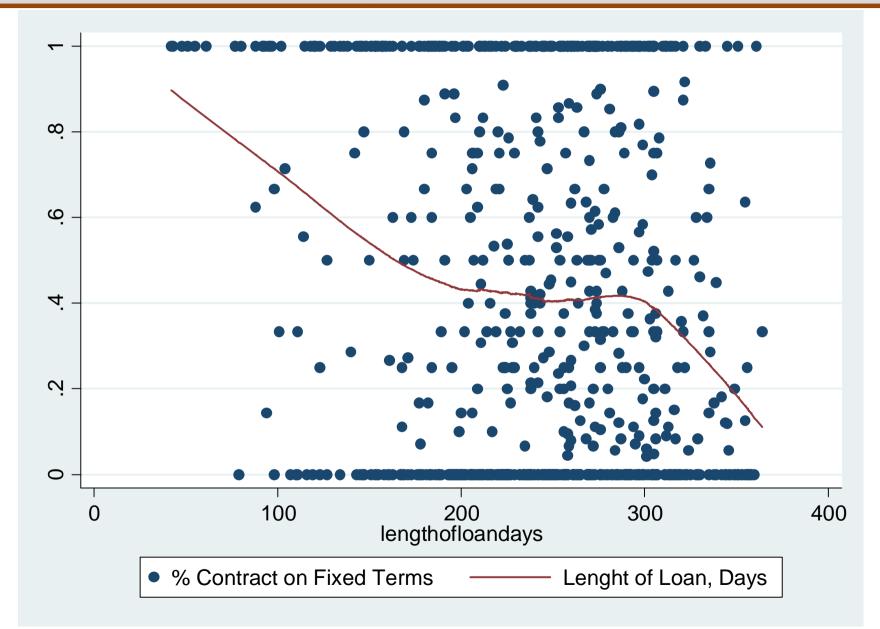
Appendix!

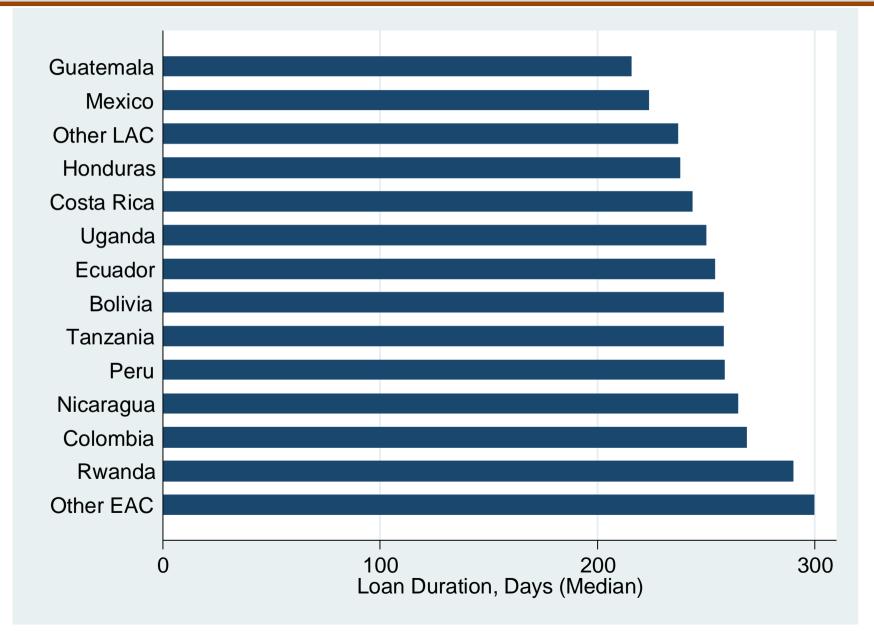

Timing of Contracts: Closing and Maturity Dates

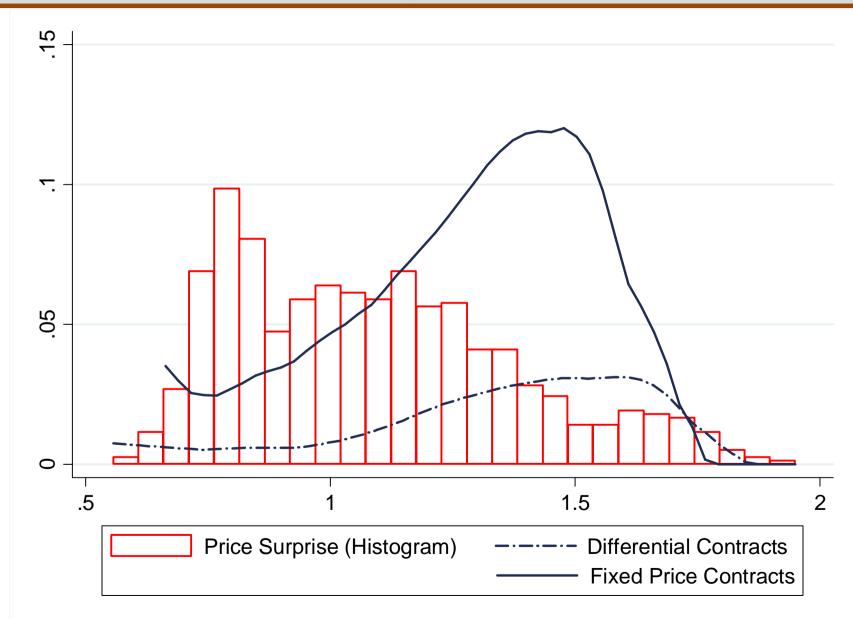
Prices and **Default**



Representativeness of Lender's Interest Rates




Contract Type by Country


Contract Type and Length

Contract Type

Prices and Default: <u>Heterogeneity</u>

Prices and Default: <u>Regression</u> Analysis

	(1)	(2)	(3)	(4)	(5)	(6)		
Dependent Variable:	Default							
Price Surprise	0.44*	0.62**	1.82**	2.81***	8.08***	0.045**		
File Sulpise	(0.23)	(0.25)	(0.78)	(0.86)	(3.13)	(0.021)		
Loan Controls	no	yes	yes	yes	yes	yes		
Month & Year of Closing FE	no	no	yes	yes	yes	yes		
Price at Closing	no	no	yes	yes	yes	yes		
Month & Year of Maturity FE	no	no	yes	yes	yes	yes		
Alternative Surprise Measure	no	no	no	yes	yes	no		
Numerical Score (Sample)	no	no	no	no	yes	no		
Probit vs. OLS	Probit	Probit	Probit	Probit	Probit	OLS		
Number of observations	781	781	781	781	455	781		

Prices and Default: An Event Study

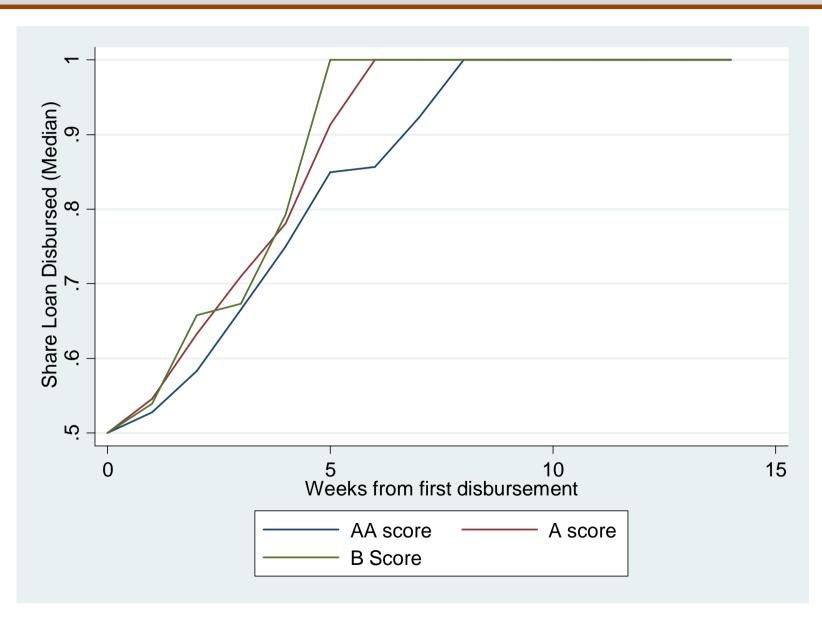
	(1)	(2)	(3)	
	Write-Off	Write-Off or Restructured	90 days Late	
t-test: 4 week wir	dow 0.0222*	0.0396**	0.0514*	
	(0.0152)	(0.0187)	(0.0228)	
Observations	539	539	322	
t-test: 6 week window 0.0234*		0.0399**	0.0509**	
	(0.0150)	(0.0183)	(0.0306)	
Observations	566	566	327	
t-test: 8 week wir	dow 0.0268**	0.0306*	0.0575**	
	(.0137)	(.0173)	(.0234)	
Observations	641	641	352	

Prices and Default: Further Heterogeneity

	Dep V	ariable: Defa	ult, Restructu	red or 90+ da	ys late	
	By Score			By Relationship		
	Below 1st thresh. (1)	Above 1st thresh. (2)	Above 2nd thresh. (3)	no rel. (4)	rel. (5)	
Optimal Bandwidth	0.143**	0.0463**	-0.0741	0.0665***	0.00475	
	(0.0701)	(0.0205)	(0.0654)	(0.0196)	(0.00341)	
75% Optimal Bandwidth	0.144**	0.0463**	-0.0291	0.0667***	0.000887	
	(0.0705)	(0.0205)	(0.0338)	(0.0196)	(0.000681)	
125% Optimal Bandwidth	0.143**	0.0459**	-0.0684	0.0664***	0.00668	
	(0.0700)	(0.0203)	(0.0620)	(0.0195)	(0.00474)	
Observations	69	347	434	483	146	

Prices and Default: Further <u>Heterogeneity</u>

	Dep. Varia	able: Default, I	Restructured of	or 90 days late
	Financial Development		Importance of Buye to Lender	
	High	High Low		Low
	(1)	(2)	(3)	(4)
Optimal Bandwidth	0.0969***	0.0475	0.0475	0.118**
	(0.0279)	(0.0337)	(0.0340)	(0.0576)
75% Optimal Bandwid	th 0.0972***	0.0476	0.0476	0.118**
	(0.0286)	(0.0336)	(0.0340)	(0.0571)
125% Optimal Bandwidth0.0965		0.0473	0.0474	0.117^{**}
	(0.0278)	(0.0337)	(0.0338)	(0.0569)
Observations	464	375	103	104


(No) Ex-Ante Moral Hazard

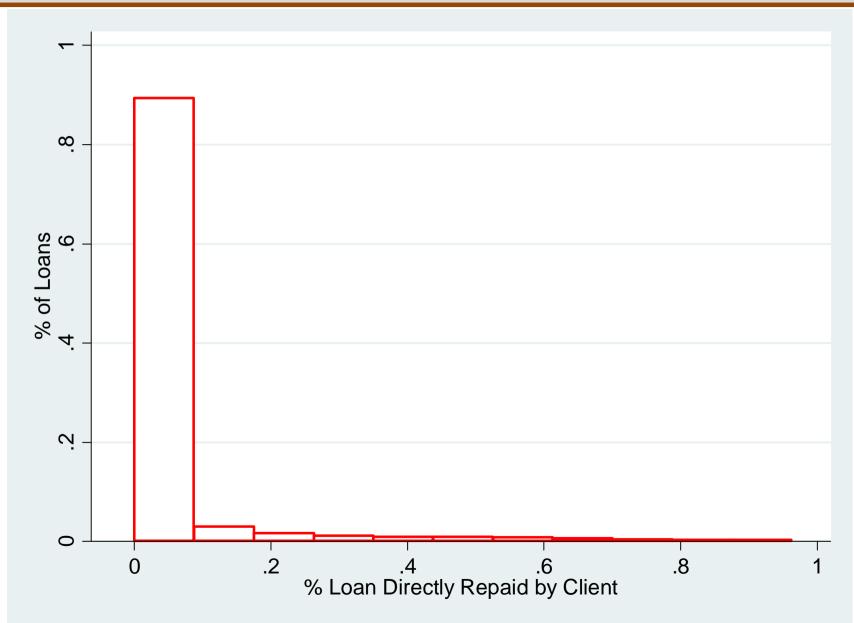
Prices and Default: Ex-Ante Moral Hazard

Table 13: Relationship between futures price at maturity changes during contract and default: Ex-Ante MH2

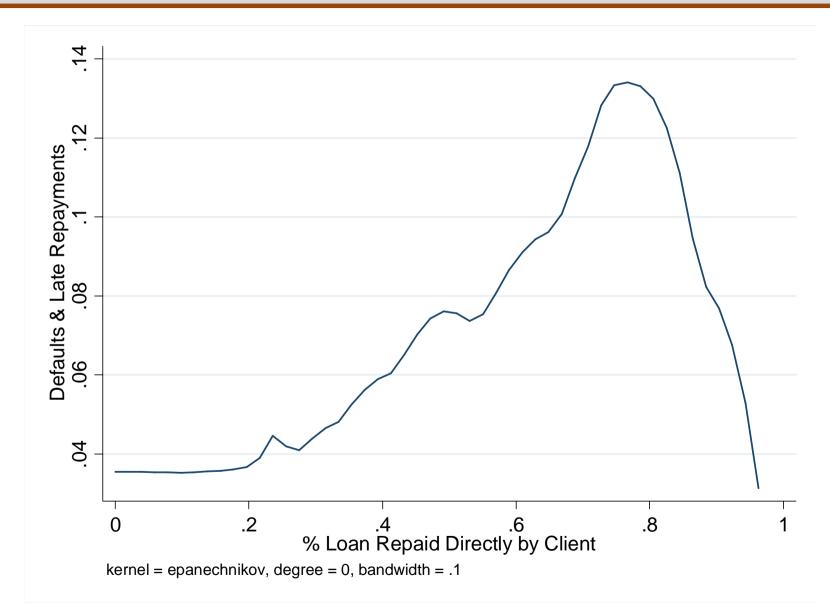
en de la complete de la complete de la centre	Dependant Variable: Default or lateness				
	Default	Restructured	90 Days Late		
	(1)	(2)	(3)	(4)	(5)
Futures Price 3 months after clo	sing-0.000126	-1.73e-06	-9.29e-05	-0.00507	-0.000325
	(0.000238)	(0.000275)	(0.000311)	(0.00312)	(0.000343)
Futures price At closing	Y	Y	Y	Y	Y
Closing Price	Y	Y	Y	Y	Y
Maturity Price	Y	Y	Y	Y	Y
Price Ratio $\left(\frac{Maturity}{Closing}\right)$	Y	Y	Y	Y	Y
Letter Score Fixed Effects	Y	Y	Y	Y	Y
Country Fixed Effects	Y	Y	Y	Y	Y
Closing Month Fixed Effects	Y	Y	Y	Y	Y
Model	OLS	OLS	OLS	Probit	OLS
Sample	Full	Full	Full	Full	Numerica
					Score Only
Observations	713	713	713	713	432
R^2	0.139	0.135	0.139		0.115

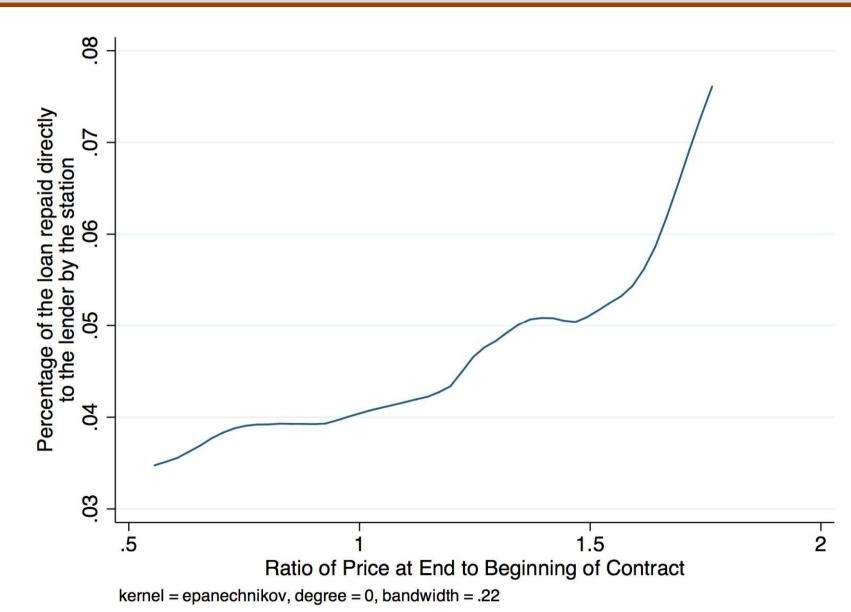
Prices and Default: Ex-Ante Moral Hazard

Buyer – Lender Relations and Seller's Behaviour

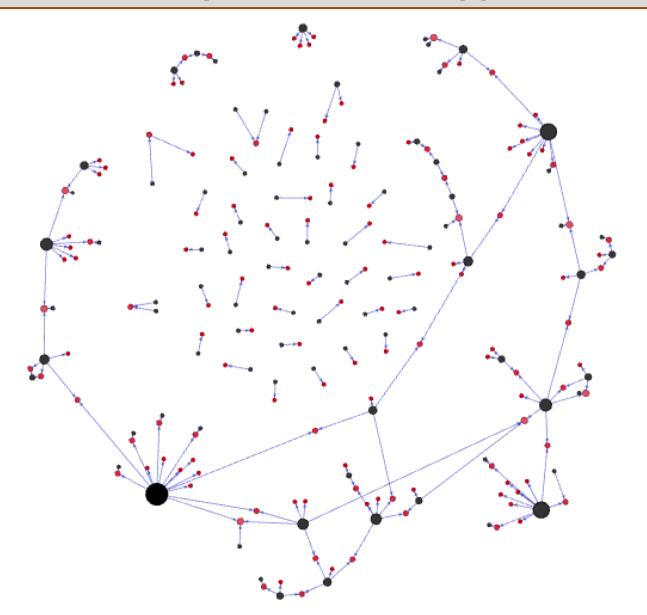

Relational enforcement rests on the idea that **buyer** and **lender** act together.

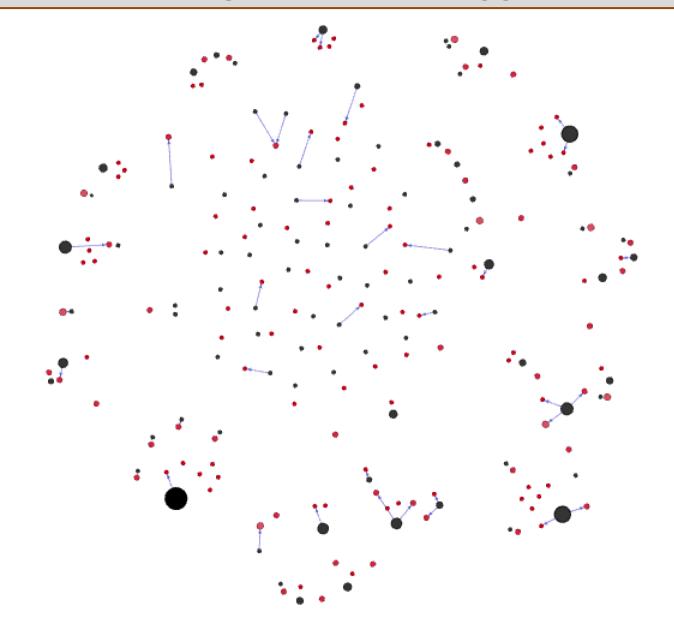
When relationship between buyer and the lender is weaker, seller/borrower might still default on the sale contract but not on the loan (and vice-versa).


When this happens, we should observe:

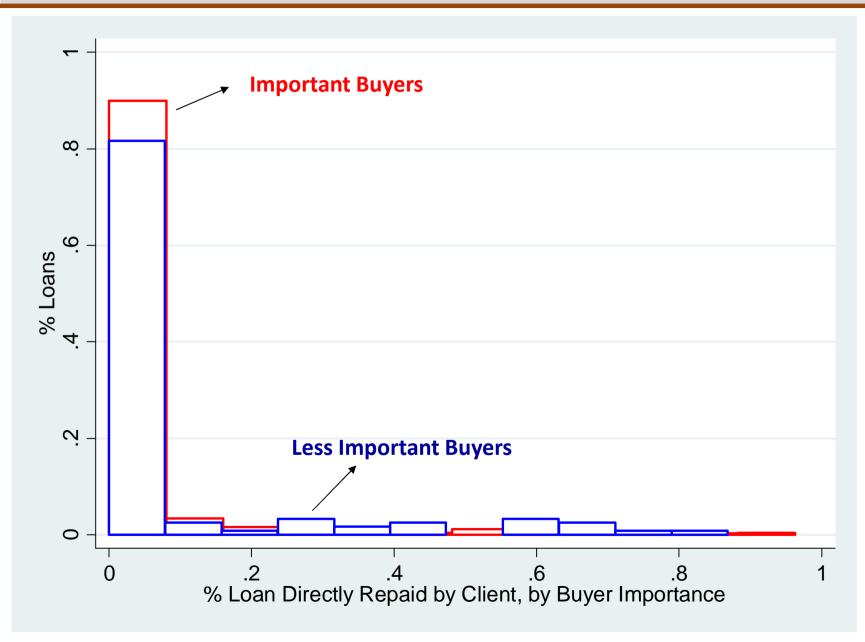

- 1. Repayment is made directly by the seller/borrower (not by the buyer as per contract)
- 2. Relationship between buyer and lender is compromised
- 3. Less likely to happen with important buyers (i.e., those with which lender has numerous relationships

As per contract, most loans are indeed repaid by buyer


Repayment from client is associated with default ...



... and with (unanticipated) price increases

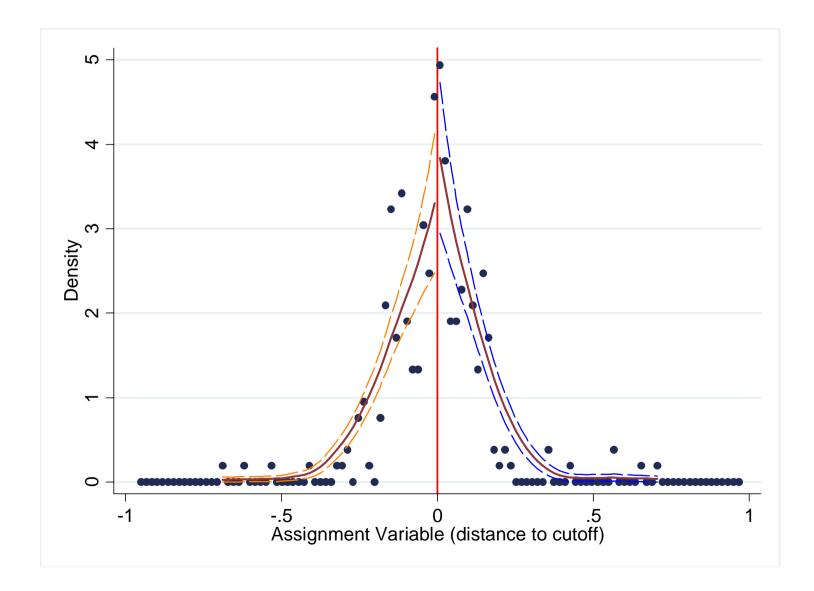

For which kind of buyers does this happen?

For which kind of buyers does this happen?

Buyer-Lender Relations & Borrower/Seller's Behaviour

Buyer-Lender Relations & Borrower/Seller's Behaviour

Station Paid Lender Directly (1)(2)(3)41(5)-0.0560** -0.0569** Price ratio x Buyer Importance (0.0222)(0.0243)Buyer Share of Lender Portfolio -0.0345*** -0.0443*** 0.01770.0187(0.00949)(0.0126)(0.0210)(0.0241)Price ratio maturity closing 0.225^{**} 0.0712^{**} 0.168^{*} 0.231^{**} (0.0324)(0.0916)(0.107)(0.104)Country Fixed Effects Y Y \mathbf{Y} \mathbf{Y} Y Month-Year Fixed Effects Y Y \mathbf{Y} \mathbf{Y} Y Y Y Y Y Y Price at Closing Y Y Y Y Y Futures price at maturity at closing Numerical Score N Ν \mathbf{Y} N Y Observations 283485218218218 R-squared 0.1990.1020.1760.1810.182

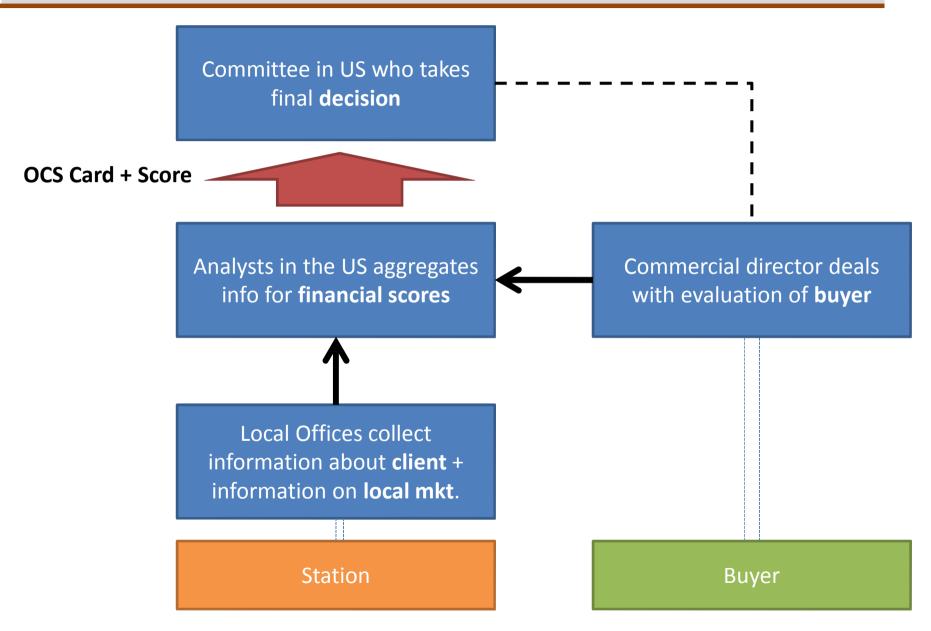

Table 6: Buyer-Lender relationship and Direct Payments to the Lender

	Buyer Returns in Sample		
	(1)	(2)	(3)
Station Paid Direct to Lender	-0.197***	-0.155**	-0.147*
	(0.0722)	(0.0737)	(0.0758)
Station Defaulted on Loan	0.85m tre 5200	-0.365***	-0.357***
		(0.0794)	(0.0789)
Unexpected Price Jump At Delivery			-0.0792
			(0.145)
Buyer Fixed Effects	Y	Y	Y
Year Fixed Effects	Y	Y	Y
Observations	684	684	684
R-squared	0.395	0.403	0.403

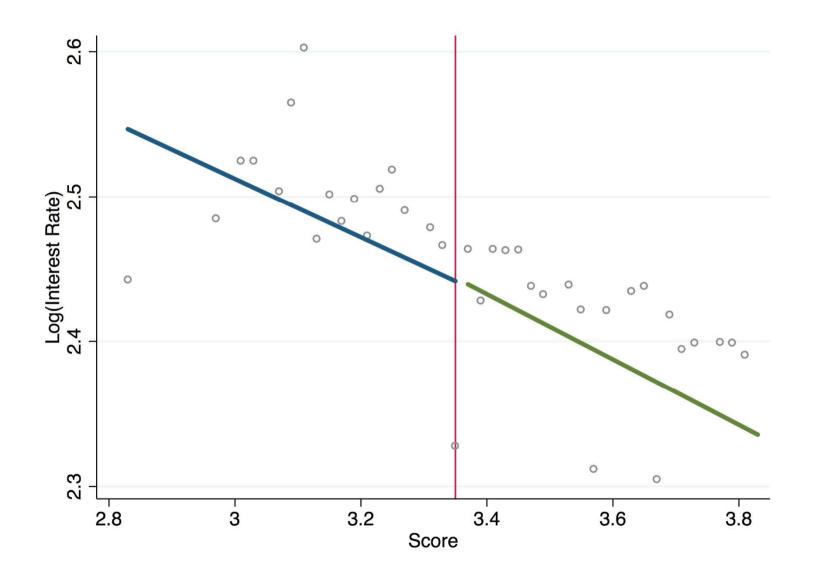
Defaults, Delays and Future Loans

	$\frac{\text{Default}}{(1)}$	Restructured (2)	90 Days Late (3)	
Differential Prob. of Future Loan	-0.520***	-0.460***	-0.329***	
	(0.130)	(0.0983)	(0.0575)	
Futures Price (mat.) at closing date	e Y	Y	Y	
Price at Closing	Y	Y	Y	
Letter Score Fixed Effects	Y	Y	Y	
Country Fixed Effects	Y	Y	Y	
Closing Month Fixed Effects	Y	Y	Y	
Observations	907	907	907	
R^2	0.334	0.331	0.323	

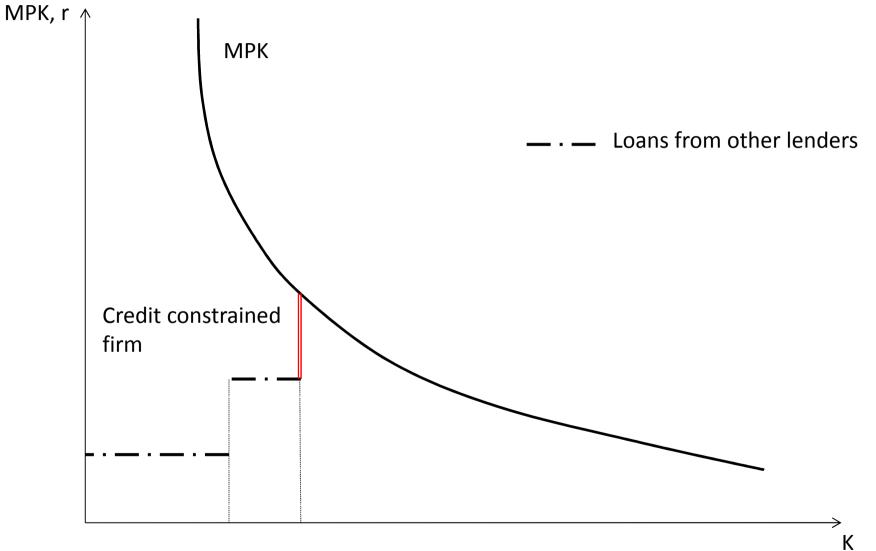
RD Design on Score: no sorting

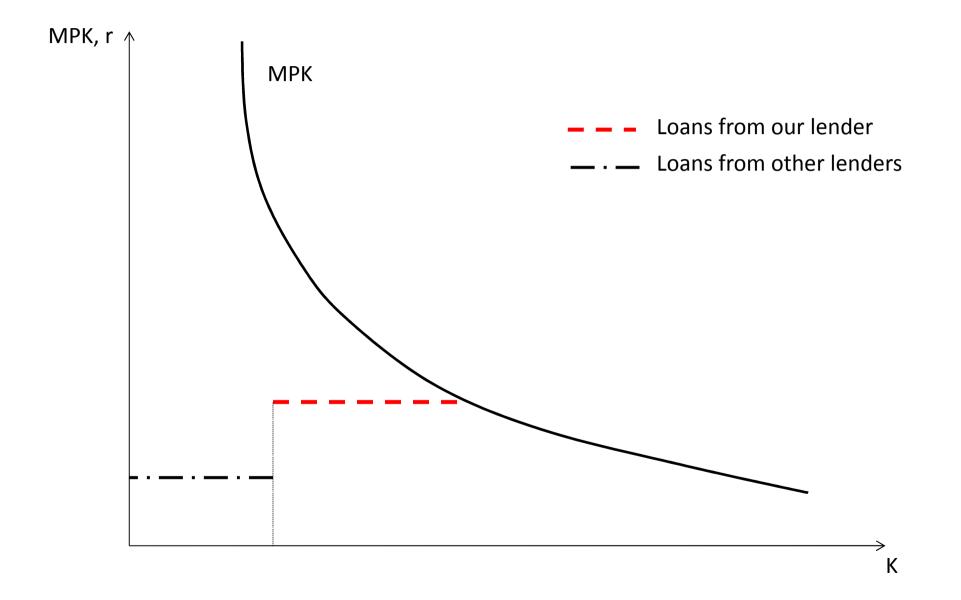


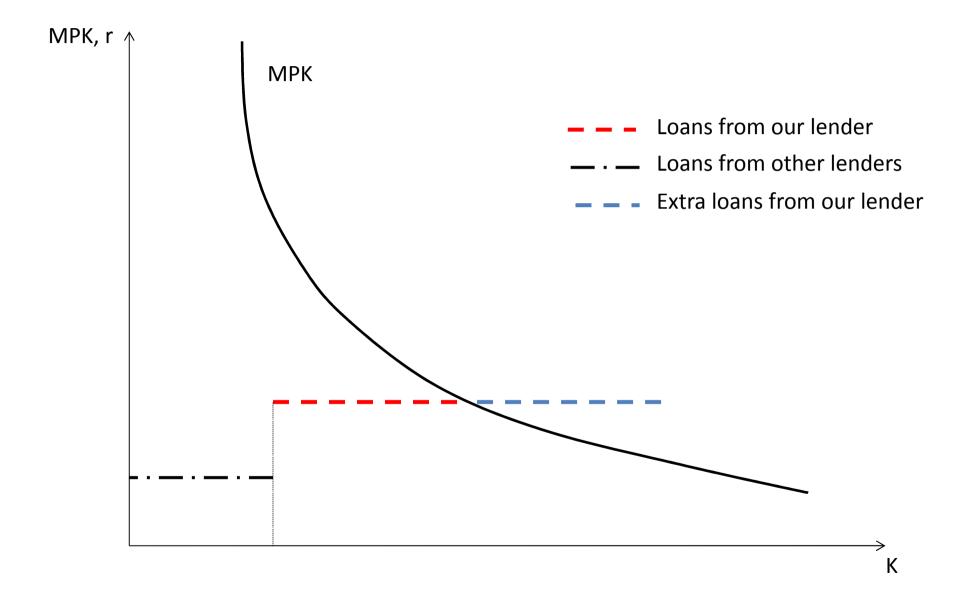
<u>RD</u> Design on Score: no manipulation


Dependent Variable	Estiamte	Standard Error	Observations
47			
Entity Score	0.108	(0.109)	315
Accounting Quality	0.221	(0.226)	315
Planning Systems	0.250	(0.156)	315
Liquidity Risk	-0.0561	(0.206)	315
Leverage	0.156	(0.178)	315
Profitability	0.0934	(0.189)	315
Credit History (RC)	0.155	(0.203)	312
Asset Quality	0.205	(0.168)	303
Product Score	0.0407	(0.0960)	315
Processing	0.156	(0.131)	315
Supply Security	-0.0630	(0.103)	315
Management Score	0.0176	(0.114)	315
General Manager	-0.0649	(0.168)	315
Finance Accounting	0.0795	(0.190)	315
Internal Controls	0.156	(0.169)	314
Marketing Sales	-0.132	(0.162)	315
Staff Retention	0.142	(0.170)	303
Report Quality	0.00691	(0.142)	314
Report Punctuality	0.00318	(0.151)	302
Email Promptness	0.130	(0.168)	314
Email Quality	0.0682	(0.158)	302
Buyer Score	0.116	(0.0901)	315
Buyer Quality	0.158	(0.119)	315
Buyer Relationship	0.170	(0.165)	315
Buyer Mix	0.607^{**}	(0.288)	315
Type of Contract	0.114	(0.160)	300
Context Score	-0.0328	(0.0473)	315
Weather	-0.0422	(0.146)	315
Country Stability	0.0621	(0.128)	314
Sales Price Volatility	0.0897	(0.222)	300

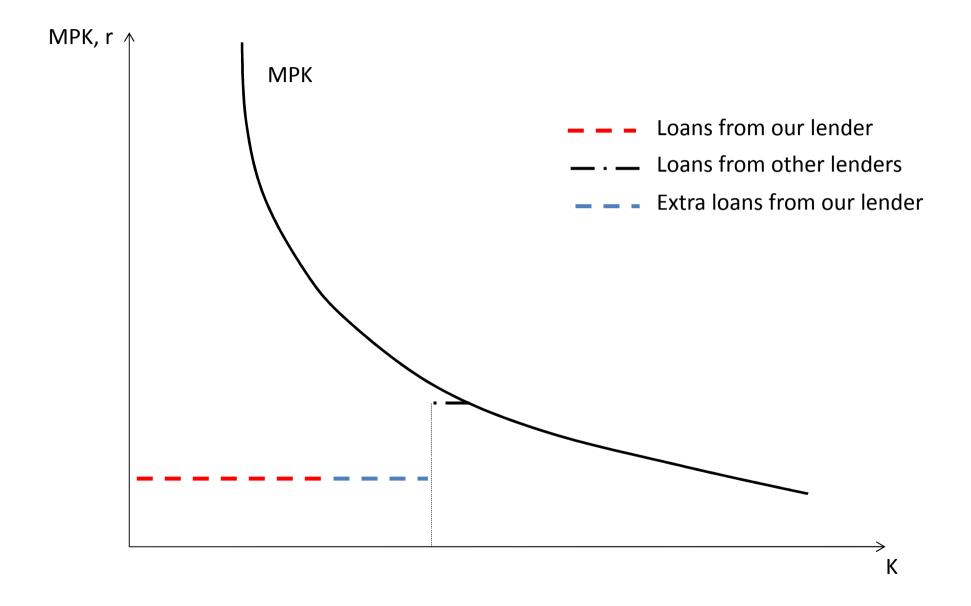
	No. of	sig. estimates for	score		
	10% significance	5% significance	1% significance		
	(1)	(2)	(3)		
	11 Station Characteristics				
3.25 threshold	0	0	0		
3.35 threshold (B-A)	1	1	0		
3.45 threshold	1	0	0		
3.71 threshold	1	1	0		
3.81 threshold (A-AA)	0	0	0		
3.91 threshold	1	1	0		
Observations per sub-score regression	575	575	575		
		34 Subscores			
3.25 threshold	1	0	0		
3.35 threshold (B-A)	5	3	0		
3.45 threshold	11	5	0		
3.71 threshold	1	0	0		
3.81 threshold (A-AA)	4	1	0		
3.91 threshold	5	1	0		
Observations per sub-score regression	575	575	575		

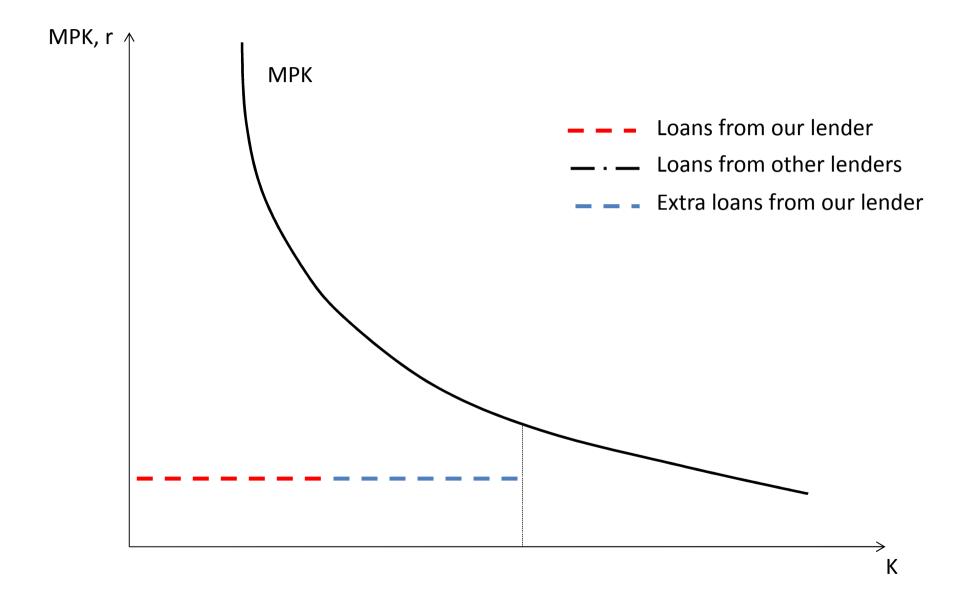

Decision Process

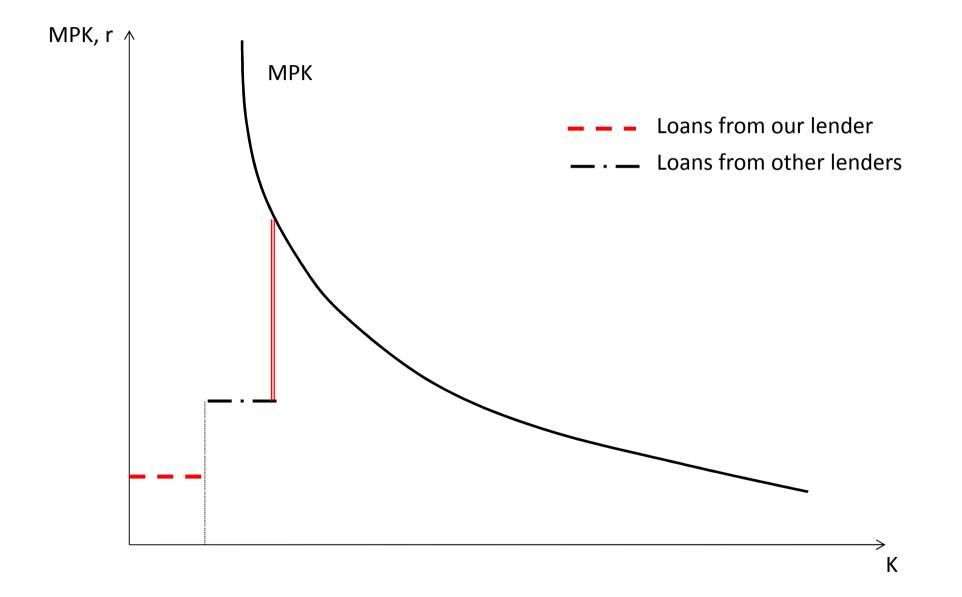

RD on interest rate

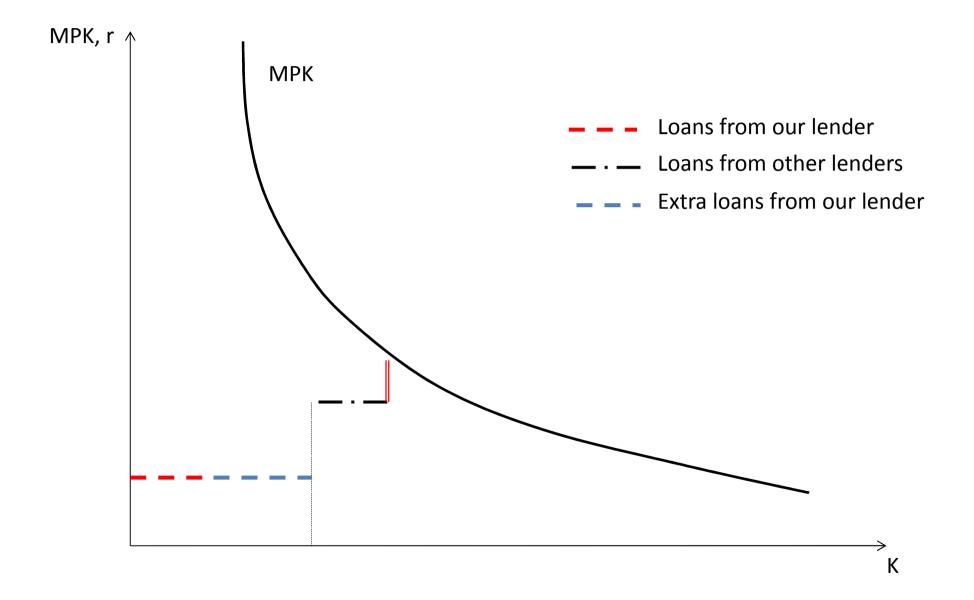

Are Firms Credit Constrained? **Definition**

Case 1: Our Lender is Mg.


Case 1: Our Lender is Mg.


Case 2: Our Lender is Infra-Mg.


Case 2: Our Lender is Infra-Mg.


Case 2: Our Lender is Infra-Mg.

A Credit Constrained Firm

A Credit Constrained Firm

