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Abstract

We show that conventional dynamic term structure models (DTSMs) estimated on re-

cent U.S. data severely violate the zero lower bound (ZLB) on nominal interest rates and

deliver poor forecasts of future short rates. In contrast, shadow-rate DTSMs account for

the ZLB by construction, capture the resulting distributional asymmetry of future short

rates, and achieve good forecast performance. These models provide more accurate esti-

mates of the most likely path for future monetary policy—including the timing of policy

liftoff from the ZLB and the pace of subsequent policy tightening. We also demonstrate

the benefits of including macroeconomic factors in a shadow-rate DTSM when yields are

constrained near the ZLB.
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1 Introduction

Divining the path of future monetary policy has been of special interest during the Great

Recession and its aftermath. Expectations of future monetary policy actions are commonly

obtained from the term structure of interest rates, which captures financial market partic-

ipants’ views regarding the prospective path of the short-term interest rate—the policy in-

strument of central banks. Gaussian affine dynamic term structure models (DTSMs) are the

standard representation in finance used to extract such short-rate expectations (e.g., Piazzesi,

2010). However, while these models have provided good empirical representations of yield

curves in the past, they are ill-suited to represent the dynamics of recent near-zero interest

rates that have prevailed in many countries. In particular, they do not recognize that in the

real world, with currency available as an alternative asset, interest rates are bounded below by

zero because negative nominal interest rates would lead to riskless arbitrage opportunities.1

The fact that Gaussian affine DTSMs ignore the zero lower bound (ZLB) was of little

consequence when interest rates were well above zero. However, as nominal interest rates

have fallen to near zero, the lack of an appropriate nonnegativity restriction in conventional

models has become a conspicuous theoretical deficiency. This paper presents evidence showing

that the theoretical failure of standard Gaussian affine DTSMs to account for the ZLB has

been an important practical deficiency in recent years in terms of fit, point and distributional

forecasting ability, and accuracy of estimated monetary policy expectations. Our benchmark

for comparison is an alternative model based on the shadow-rate concept proposed by Black

(1995). The shadow-rate representation replaces the affine short-rate specification of standard

DTSMs with an identical affine process for an unobserved shadow short rate. The observed

short rate is set equal to this shadow short rate when it is positive; otherwise, it is set to zero

(or some other near-zero minimum value). Shadow-rate models are therefore able to account

for the ZLB constraint, however, this comes at the cost of losing the convenient analytical

bond pricing of affine models, so that numerical solutions are required.

The focus of our paper is the estimation of monetary policy expectations at the ZLB.

To this end, we consider both yields-only and macro-finance shadow-rate models, where the

latter includes measures of economic activity and inflation as risk factors. There is now a

sizable literature arguing that a joint macro-finance approach is a very productive research

avenue for term structure modeling (e.g., Rudebusch, 2010), but this paper is the first to

1The value of the lower bound on nominal interest rates is not precisely zero due to institutional factors
including the size of costs associated with storing, transferring, and spending large amounts of currency. For
convenience, we will describe this constraint as a zero lower bound even though our model in principle allows
for a non-zero lower bound.
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include macroeconomic factors into a shadow-rate model. We show that when the nominal

term structure is constrained by the ZLB, the addition of macroeconomic variables to the

DTSM information set is useful for inference about the future evolution of the yield curve.

Intuitively, the ZLB limits the information content of the yield curve because its short end is

pinned at zero. In such a situation, macro variables provide important additional information

for forecasting future yields, particularly for predicting how long the policy rate will remain

near zero.2

We begin our analysis with an evaluation of affine and shadow-rate models during the past

near-decade of very low interest rates in the United States. Given the close proximity of interest

rates to the ZLB during this period, we find that shadow-rate DTSMs provide a statistically

significant and economically relevant improvement in fit and forecasting performance compared

with standard Gaussian affine DTSMs. Affine models frequently violate the ZLB, produce

substantial estimated probabilities of negative future short rates, and consequently produce

quite inaccurate short-rate forecasts at the ZLB. In contrast, we document that shadow-rate

models can accurately forecast prolonged near-zero policy rates in an out-of-sample forecast

exercise.

Shadow-rate models account for the substantial asymmetry in the distribution of future

short rates during periods of near-zero policy rates. This feature is especially valuable for

assessing monetary policy expectations embedded in the yield curve at the ZLB. For example,

one key question is how to estimate the anticipated timing of the liftoff of the policy rate from

the ZLB. A common approach among financial market researchers and investors is to use the

horizon at which forward rates cross a given threshold, say 25 basis points, as an estimate

of the expected date of liftoff. But forward rates correspond to (risk-neutral) expectations of

future short rates, and using this mean path to estimate liftoff is problematic because it ignores

the asymmetry of the distribution of future short rates near the ZLB. A more useful measure of

policy expectations is the modal path—the most-likely path for future short rate rates—which

is readily available from a shadow-rate model. Importantly, it appropriately accounts for the

distributional asymmetry of future short rates. The difference between the mean and modal

paths, which we term the “ZLB wedge,” reflects the asymmetry induced by the ZLB on the

distribution of future short rates, and hence reveals how tightly the ZLB constraint is binding.

We use the ZLB wedge between the ten-year yield and the corresponding shadow yield as a

measure of the tightness of the ZLB constraint, and document that it increased substantially

over the period from 2009 to 2012, and then gradually decreased over 2013 and 2014, a period

2The value of a macro-finance approach is also consistent with the many central bank statements that have
stressed that the timing of liftoff from the ZLB is dependent on the flow of incoming macroeconomic data.
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when macroeconomic conditions improved notably.

To measure monetary policy expectations at the ZLB, we focus on two key metrics: the time

until liftoff and the subsequent pace of tightening. We show that the date at which the modal

path escapes from near zero provides a forecast of the time until liftoff that is approximately

optimal under an absolute-error loss function. We compute the full forecast distribution

of the liftoff horizon in order to verify the modal-path-based liftoff estimate and to obtain

interval forecasts for liftoff. Model-based liftoff estimates based on a macro-finance yield curve

model closely accord with private-sector forecasts of the timing of monetary policy liftoff, and

are consistent with the Federal Open Market Committee’s (FOMC) calendar-based forward

guidance. Overall, the liftoff horizon can therefore serve as a useful univariate summary

of monetary policy at the ZLB.3 Our second metric, the initial pace of policy tightening is

calculated as the cumulative increase in the modal short rate path during the first two years

after liftoff. Our macro-finance term structure model forecasts a much more gradual increase

in the policy rate than in previous policy tightening cycles, which is consistent with statements

by Federal Reserve policymakers.

Overall, our analysis documents the empirical relevance of the ZLB constraint and the

importance of accounting for it when carrying out inference about interest rates and mon-

etary policy near the ZLB. Our paper is related to a number of recent studies that have

also used shadow-rate DTSMs. Bomfim (2003) employs a two-factor shadow-rate model to

estimate the probability of the future policy rate hitting the ZLB in the U.S. during the

2002–2003 period. Using Japanese yield curve data, Kim and Singleton (2012) estimate two-

factor models and demonstrate the good performance of shadow-rate models compared to

alternatives, and Christensen and Rudebusch (2015) document the sensitivity of shadow-rate

estimates to model specification in estimated one-, two- and three-factor models.4 Several

other studies have considered the recent U.S. experience, including Ichiue and Ueno (2013),

Christensen and Rudebusch (forthcoming), and Krippner (2015). Our study goes beyond

these works in several ways. In particular, we demonstrate how to capture various aspects

of monetary policy expectations at the ZLB using the modal path, incorporate information

both from the yield curve and from macroeconomic variables, and provide novel estimates and

results for the ZLB period in the United States.

3In contrast, model-implied shadow short rates, which some have advocated as measures of the policy
stance near the ZLB (Krippner, 2013; Wu and Xia, 2014), are highly sensitive to model specification and the
exact data at the short end of the yield curve. Their lack of robustness raises a warning flag about using
shadow short rates as a measure of monetary policy.

4Ueno et al. (2006) and Ichiue and Ueno (2007) also study Japanese yields, using one-factor and two-factor
models, respectively.
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2 Dynamic term structure models

In this section, we describe our model specifications, the role of the ZLB constraint in these

models, and our empirical implementation, which uses monthly U.S. data.

2.1 Affine models

The canonical affine Gaussian DTSM is based on three assumptions. First, the short-term

interest rate—the one-month rate in our context—is affine in the N risk factors Xt, i.e.,

rt = δ0 + δ′1Xt. (1)

Second, it is assumed that there exists a risk-neutral probability measure Q which prices

all financial assets—hence, there are no arbitrage opportunities—and that under Q the risk

factors follow a Gaussian vector autoregression (VAR),

Xt = µQ + φQXt−1 + ΣεQt , (2)

where Σ is lower triangular and ε
Q
t is an i.i.d. standard normal random vector under Q. Third,

under the real-world probability measure P, Xt also follows a Gaussian VAR,

Xt = µ+ φXt−1 + Σεt, (3)

where εt is an i.i.d. standard normal random vector under P.5 Note that these assumptions

imply the existence of a stochastic discount factor which is essentially-affine as in Duffee

(2002). The price of a bond with a maturity of m periods is determined by

Pm

t
= E

Q
t

[

exp

(

−
m−1
∑

i=0

rt+i

)]

. (4)

In an affine model, this expectation can be found analytically, and it is exponentially affine in

the risk factors. Model-implied yields therefore are affine functions of the factors. The details

are well-known, see Bauer and Rudebusch (2015a). Importantly, a Gaussian model implies

that interest rates can turn negative with non-zero probability.

5That is, as is standard, forecasts for the state variables can be calculated under two different probability
measures: the real-world P measure (also know as the physical or historical or objective measure) and the
risk-neutral Q measure that investors use to value assets because of their risk aversion. Specifically, investors
value assets just as a risk-neutral agent would if that agent believed that the dynamics of state variables were
characterized by the Q measure.
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2.2 Shadow-rate models

Following Black (1995), our shadow-rate DTSMs are closely similar to our affine models except

that the affine short-rate equation (1) is replaced by a shadow-rate specification:

rt = max(st, rmin), st = δ0 + δ′1Xt. (5)

The shadow short rate, st, is modeled as affine Gaussian, exactly as the short rate in affine

models. Equation (5) ensures that the short rate and all other model-implied interest rates

cannot go below rmin. Black (1995) set rmin = 0, and this is our choice as well. This ZLB

on nominal interest rates is typically motivated by the presence of physical currency. Since

the storage and use of large amounts of physical currency can incur significant transaction

costs, the ZLB has been violated at times in the past when interest rates have dipped into

slightly negative territory, which could justify a small negative value for rmin. On the other

hand, the federal funds rate, the key short-term interest rate managed by the Federal Reserve,

in practice typically remains above zero, which would be an argument in favor of a slightly

positive value for rmin. Different authors have made alternative choices, e.g., Wu and Xia

(2014) set rmin = 25 basis points, and Kim and Priebsch (2013) treat rmin as a parameter

and estimate it. We have found that our main results about policy expectations at the ZLB

remain essentially unaffected by the choice of rmin.

How useful are estimates of the shadow short rate st? Some have interpreted the shadow

short rate as an alternative indicator of the stance of monetary policy—see, in particu-

lar, Krippner (2014), Ichiue and Ueno (2013), and Wu and Xia (2014). However, estimated

shadow short rates are highly sensitive to different choices of rmin and to the model specifi-

cation.6 This sensitivity raises a warning flag and suggests that the use of shadow rates as

indicators of monetary policy at the ZLB is problematic.7 In this paper, we will generally

focus on expected future instead of current shadow short rates.

In addition to accounting for the ZLB, a key advantage of shadow-rate models is that away

from the ZLB, they behave exactly as the corresponding affine DTSM. Another advantage is

that in contrast to other tractable non-Gaussian models that respect the ZLB constraint, such

as square-root diffusion (Cox-Ingersoll-Ross) models and quadratic models, the probability

of a zero future short rate is non-zero. This becomes crucial when addressing the issue of

the duration of near-zero policy rates and the time of future liftoff, as we do in this paper.

6See Bauer and Rudebusch (2015a) and the references therein.
7More promising approaches have recently been suggested by Lombardi and Zhu (2014), who infer a shadow

short rate that is consistent with other observed indicators of monetary policy and financial conditions, and
Krippner (2015), who considers the area between shadow rates and their long-term level.
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The advantages of a shadow-rate model come at the cost that it does not lead to closed-form

solutions for yields and bond prices. Hence the need arises for approximative solution methods.

Priebsch (2013) compares different approaches in this context, and proposes a new method

based on second-order approximations that is fast and highly accurate. Here we use a discrete-

time adaption of the Priebsch method, which we describe in detail in Bauer and Rudebusch

(2015a).8

2.3 Macroeconomic variables as risk factors

A key modeling choice is which risk factors to include in the DTSM. We estimate both “yields-

only” models, where Xt reflects only information in the yield curve, and “macro-finance”

models, where Xt also includes macroeconomic variables.

We use yields-only affine and shadow-rate models with three risk factors, denoting the

affine model by YA(3) and the shadow-rate model by YZ(3). We use the canonical form

of Joslin et al. (2011). The risk factors are linear combinations of yields, with the weights

corresponding to the loadings of the first N principal components of observed yields. In the

affine model, the risk factors are linear combinations of model-implied yields—they correspond

to level, slope, and curvature of the yield curve.9 In the shadow-rate model, the yield factors

are linear combinations of shadow yields—the yields that obtain when the shadow short rate

is used for discounting payoffs—so that they can be interpreted as shadow level, shadow slope,

and shadow curvature.10

Macroeconomic variables are likely to be particularly informative when the yield curve is

constrained by the ZLB. To investigate this, we estimate macro-finance DTSMs that include

measures of inflation and economic activity in addition to the yield factors. Here, we use

the canonical form of Joslin et al. (2013b). We use affine and shadow-rate models with two

(L = 2) yield factors in addition to the two macro factors, and denote our models by MA(2)

and MZ(2).11 As in the case of yields-only models, the yield factors are linear combinations

of (model-implied/shadow) yields, with weights corresponding to principal components of

8An even simpler but somewhat less accurate approach was proposed by Krippner (2014), which is based
on an approximation of forward rates. Christensen and Rudebusch (2015) perform the necessary derivations
for the Krippner-method in an affine Nelson-Siegel model. In a discrete-time model, Wu and Xia (2014)
independently derive a bond-price approximation that is equivalent to the Krippner-method, as shown in
Krippner (2015).

9Our affine yields-only models correspond to the RKF model specification in Joslin et al. (2011).
10Shadow yields can be calculated by using the risk factors of a shadow-rate model in combination with

affine loadings.
11We have also considered models with two macro factors and only one yields factor, as in Joslin et al.

(2013b). We found that these models are not able to accurately fit observed yields, and hence focus on models
with two yields factors (which were also used in Joslin et al., 2013a).
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observed yields.

In our macro-finance models, the macroeconomic variables are spanned by the yield curve.12

An alternative is to use models with unspanned macro risks as in Joslin et al. (2014), where

the current short rate and yield curve depends only on the yield factors. Here we maintain

the assumption that macroeconomic conditions directly affect the current short-term interest

rate and yield curve, so that they are informative for inferring policy expectations under the

risk-neutral measure. This specification is consistent with the expressed view of the Federal

Open Market Committee (FOMC) that the short rate will be based on the unemployment

and inflation rates. For further discussion of this issue and a defense of spanned macro-finance

DTSMs see Bauer and Rudebusch (2015b).

2.4 Data, measurement error, and estimation

Our data consist of monthly observations of interest rates and macroeconomic variables from

January 1985 to December 2014. For the short end of the yield curve, we use three-month

and six-month T-bill rates. The remaining rates are smoothed zero-coupon Treasury yields

with maturities of one, two, three, five, seven, and ten years from Gürkaynak et al. (2007).

We measure economic activity by the unemployment gap, using the estimate of the natural

rate of unemployment from the Congressional Budget Office. Inflation is measured by the

year-over-year percent change in the consumer price index (CPI) for all items excluding food

and energy, i.e., by core CPI inflation. We include the inflation and gap measures because

these are closely linked to the target federal funds rate, the policy instrument of the Federal

Reserve (Rudebusch, 2006, 2009).

Denote the vector of J = 8 model-implied yields by Yt. For the affine models, we have

Yt = A+BXt, with J-vector A and J×N -matrix B containing the usual affine loadings. The

observed bond yields used for estimation and inference are Ŷt = Yt + et, where et is a vector

of iid normal measurement error. We include measurement error on yields because an N -

dimensional factor model cannot perfectly price J > N yields. In line with the large literature

on macro-finance DTSMs, we do not include measurement errors on macro variables.13

Estimation of the affine models is standard, both for yields-only and macro-finance models.

In the estimation we assume that the yield factors are observed, as in Joslin et al. (2011) and

Joslin et al. (2013b), so that µ and φ can be obtained using least squares and the remaining

12In the shadow-rate models, the macro factors are spanned by the (unobservable) shadow yields.
13We do not allow for measurement errors on the macro factors, because in that case “the likelihood function

largely gives up on fitting the observed macro factors in favor of more accurate pricing of bonds” (Joslin et al.,
2013b). Note that our affine macro-finance model corresponds to the TSf specification in Joslin et al. (2013b),
with the difference that we use L = 2 yield factors instead of just one.
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parameters are found by maximizing the likelihood function for given VAR parameters. This

is particularly advantageous for macro-finance models, which have many parameters. Our

estimation method delivers fast and reliable maximum likelihood estimates.14 Instead of es-

timating the shadow-rate models, we take a different approach in this paper. We estimate

parameters only for the affine models Y A(3) and MA(2), using the pre-ZLB sample ending

in December 2007. Over this period, affine and shadow-rate models are essentially indistin-

guishable, because yields are sufficiently far from the ZLB. Then, we use the same pre-ZLB

estimated parameters in the affine models and the corresponding shadow-rate models Y Z(3)

and MZ(2), and apply the models to the full sample period until December 2014.15

Hence, we use shadow-rate and affine models with the same parameters estimated from

the pre-ZLB sample to answer questions regarding the full sample. One important reason for

this approach is that estimation of shadow-rate models incurs high computational costs, as it

requires both numerical bond pricing and nonlinear filtering. This is particularly problematic

for our macro-finance models due to their many parameters. In contrast, estimation of affine

models is extremely fast and much more reliable. While one may be concerned about using

parameters in the shadow-rate models that are not the maximum likelihood estimates, we

show in Section 3 that in spite of this, shadow-rate models in fact perform very well in our

data along several dimensions, and much better than the affine models. Another advantage

to holding the parameters the same for each pair of affine and shadow-rate models is that

the effects of the ZLB constraint when comparing each pair can be clearly seen. In addition,

our approach guards against look-ahead bias from using full-sample estimates for analyzing

the ZLB period. More generally, we view our use of only pre-ZLB data for estimation as a

defensible compromise.

3 Model evaluation

From a theoretical perspective, shadow-rate models have a fundamental advantage over affine

models in that they impose the nonnegativity of nominal interest rates. But how relevant

is this in practice? In this section, we first evaluate affine and shadow-rate models during

a period of near-zero interest rates. Then, we discuss and measure how the ZLB constraint

affects current short rates and the distribution of future short rates.

14Denote by W the L × J matrix with the principal component loadings. The assumption that Xt is
observable, i.e., that the L linear combination of yields in W are priced exactly by the model, implies Xt =
WŶt = WYt and Wet = 0 so that there are effectively only J − L independent measurement errors.

15We use the Kalman filter for the affine models and the Extended Kalman filter for the shadow-rate models.
For details, see Bauer and Rudebusch (2015a).
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3.1 Cross-sectional fit

We first assess the cross-sectional fit of model-implied yields to observed yields for affine and

shadow-rate models. Table 1 shows the root mean-squared fitting errors (RMSEs) across

models for the whole cross section of yields and for each yield maturity separately. The top

panel reports RMSEs for the whole sample, while the bottom panel reports the fit for the ZLB

subsample, here and in the following taken as the period from December 2008 to December

2014.16 Overall, shadow-rate models fit yields better than their affine counterparts. The

bottom panel of Table 1 shows that improvements in RMSEs are very substantial during the

ZLB subsample. During this period, shadow-rate models have additional flexibility in fitting

the cross section of yields, which behaves in an unusual way due to the pronounced nonlinearity

at zero. The macro-finance models exhibit slightly worse yield fit than the yields-only models.

While these models have four risk factors, more than the yields-only models, only two of these

are yield factors—compared to the three yield factors in our yields-only models—hence they

are more constrained in fitting the cross section of yields. For our purposes here, however, the

cross-sectional fit of model MZ(2) is sufficient.

3.2 Violations of the ZLB by affine models

To understand the relevance of the ZLB for term structure modeling in recent U.S. data, it

is important to measure the extent to which affine models violate this constraint. One form

of violation of the ZLB occurs when model-implied paths of future short rates drop below

zero at some horizons. This can happen for either forward rates (i.e., expected future short

rates under Q) or for (real-world, P-measure) short-rate expectations.17 Table 2 shows the

number of months that forward rates or expected future short rates drop below zero in each

affine model. Also shown is the average length of horizon that the paths stay in negative

territory. Both affine models imply short-rate paths that frequently and severely violate the

ZLB constraint, and this holds for both forward curves and short-rate expectations.

Even when the expectation for the future short rate is positive, the model-implied prob-

ability distribution for the future short rate, which is Gaussian, may put nonnegligible mass

on negative outcomes. Figure 1 plots the time series of conditional probabilities of negative

future short rates at horizons of 6, 12, and 24 months in the future, for the period from 2000

16On December 16, 2008, the FOMC lowered the target for the federal funds rate to a range from 0 to 25
basis points, hence we choose December 2008 as the first month of the ZLB subsample.

17Throughout this paper, for simplicity we refer to Q-measure expectations of future short rates as forward
rates, although these of course differ from the actual forward rates by a convexity term. These short-rate
expectations, without convexity, are available in closed form even in shadow-rate models.
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to 2014. The top panel show these probabilities for model Y A(3), and the bottom panel

for model MA(2). Note that even during the extended period of monetary easing after the

2001 recession, the probability of negative future short rates was nonnegligible. For the more

recent period of near-zero short rates from 2008 to 2014, both affine models imply that these

probabilities are very high. The macro-finance model implies larger probabilities over this

period than the yields-only models. The reason is that the high unemployment and subdued

inflation toward the end of the sample imply paths of expected future short-term rates which

are very low, reflecting expectations of easier future monetary policy. This leads to even higher

probabilities of negative future short rates than for model Y A(3).

3.3 Forecasting at the ZLB

Affine models produce frequent and severe ZLB violations in the recent U.S. data. Does

this matter for forecasting interest rates? While affine models may imply negative forecasts

of future interest rates, a pragmatic solution is to simply set these forecasts to zero, and

“fixing” them in this way may lead to sufficiently accurate forecasts. A second question is

whether incorporating macroeconomic information improves interest-rate forecasts near the

ZLB, because of the limited information content of yields that are constrained.

To address these questions, we investigate the out-of-sample forecast accuracy of affine

and shadow-rate models during the ZLB period, focusing on the three-month T-bill rate as

the forecast target. For each month from December 2008 to December 2012, we calculate

model-based forecasts of this short rate for horizons up to 24 months. We use a fixed-window

forecast scheme, i.e., we do not re-estimate the models but instead use our baseline parameter

estimates, obtained over the estimation sample from January 1985 through December 2007.

For a given forecast date and horizon, we obtain model-based forecasts by first calculating

conditional expectations of the risk factors, Et(Xt+h), and then plugging these into the relevant

yield formulas, where for the affine models we replace negative forecasts by zeros. These

forecasts are not the conditional expectations of future yields, since we plug in the conditional

expectations of the risk factors into non-linear functions. However, while these forecasts

are not optimal under mean-squared-error loss, they are optimal under absolute error loss,

because they correspond to the median of the forecast distribution of future yields.18 We use

the median instead of the mean because the target distribution is highly asymmetric due to

18The reason is that the median goes through nonlinear functions. Note in particular that these forecasts
correspond to the target that is approximated by the following Monte Carlo simulation: First, simulate draws
from the (Gaussian) distribution of the risk factors Xt+h, given information at time t. Second, calculate the
model-implied three-month rate for each of these draws, replacing negative yields by zero for the affine model.
Third, obtain the point forecast as the median of this model-implied forecast distribution of the short rate.
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the ZLB, and the median is less affected by this asymmetry. The median is optimal under an

absolute-error forecast loss function (see also Section 5).

Table 3 shows in the top panel the mean absolute forecast errors in basis points for selected

forecast horizons across models. The bottom panel shows relative forecast accuracy (the ratio

of mean absolute errors) for four pairs of models, with asterisks indicating the significance

level of the test for equal accuracy of Diebold and Mariano (1995) and West (1996). Our

main result is that the shadow-rate models predict the short rate more accurately than the

affine models. The differences in forecast accuracy are very substantial, with the shadow-rate

models in several cases producing forecasts that are twice as accurate as those from the affine

models. In most cases, the null for equal forecast accuracy is rejected. Overall, shadow-rate

models are at least as accurate and typically much more accurate than affine models when

forecasting interest rates near the ZLB.

This evidence, together with the results above, demonstrates the importance of accounting

for the ZLB constraint when performing inference about the yield curve during a period of

near-zero short-term interest rates. While a sufficiently flexible affine model might be able

to satisfactorily fit the yield curve, any type of economic inference is prone to be misleading.

The ZLB has the effect that implied short-rate paths, forecasts, and term premia (which are

implied by short-rate forecasts), produced by conventional DTSMs are likely to be seriously

distorted and cannot be trusted.

The results in Table 3 also show the benefit of incorporating macroeconomic information

for forecasting at the ZLB. With only one exception, forecasts from macro-finance models

outperform those from yields-only models, and the improvements in forecast accuracy are

sizable. For example, at horizons longer than six months, the forecasts from the macro-finance

shadow-rate model MZ(2) have average errors that are almost an order of magnitude smaller

than those of the yields-only shadow-rate model Y Z(3). These dramatic differences in forecast

accuracy illustrate the importance of accounting for macroeconomic information at the ZLB. In

contrast, during normal times—away from the ZLB—the yield curve itself likely contains most

or all of the information necessary to predict the future course of interest rates (Duffee, 2013;

Bauer and Hamilton, 2015). But when the yield curve is constrained by the ZLB, yields cannot

fully incorporate all relevant information and cannot reflect information in other important

state variables. Hence it is particularly important to incorporate macroeconomic variables

when making inference about monetary policy expectations near the ZLB. For these reasons,

the macro-finance model MZ(2) is our preferred model for the remainder of this paper.
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4 The asymmetric distribution of future short rates

We now consider the model-implied distribution of future short rates. The ZLB leads to

an asymmetry in this distribution which reveals how strongly the ZLB is binding, i.e., how

relevant it is for the yield curve at a certain point in time. Figure 2 illustrates this asymmetry

by showing the probability densities for the distributions of the future short rate and the

future shadow (short) rate, as implied by model MZ(2) on December 31, 2012, for a horizon

of h = 48 months. The densities shown are for the risk-neutral (Q-measure) distribution,

and the same arguments apply to the real-world (P-measure) distribution. For the future

shadow rate, the density is Gaussian and centered around the conditional mean E(st+h|Xt).

The future short rate has a mixed discrete-continuous distribution: it has a point mass at

zero (indicated in the graph with a vertical line) and for positive values the density equals

that of the shadow rate. Therefore, its conditional mean is higher than that of the shadow

rate, E(rt+h|Xt) > E(st+h|Xt). For what follows, it will be useful to define the mode of the

short-rate distribution uniquely as max[0, E(st+h|Xt)] (as in Kim and Singleton, 2012). The

distribution of the future short rate is right-skewed, the mean being higher than the mode.

The probability of a zero future short rate corresponds to the probability of a non-positive

future shadow rate. During normal times, this probability is negligibly small, so that the

mean and the mode of the short rate distribution approximately coincide. The more relevant

the ZLB becomes, the larger the asymmetry of the distribution of future short rates, and the

larger the difference between mean and mode—the “ZLB wedge.” This wedge depends on the

distance of yields from zero and the second moments of yield curve distribution, and measures

how much the ZLB constrains the yield curve. It captures the cost of the optionality in

equation (5), i.e., the value of the option of holding physical currency, which restrains nominal

interest rates as they approach zero.

The modal path corresponds to the mode of the future short rate distribution across hori-

zons, i.e., the most-likely path of future short rates. It is identical to expectations of future

shadow rates when these are positive, and equal to zero when these are non-positive. The

modal path contrasts with the mean path, i.e., expectations of future short rates. Figure 3

displays mean and modal paths in December 2012 and in December 2013 under both the Q-

and P-measure. For the earlier date, the ZLB wedge between the mean and modal paths is

very large and it persists out to fairly long horizons. By the end of 2013, however, there is

a much smaller difference between these paths, and it becomes negligible for horizons longer

than about two years. Evidently, the ZLB constraint had a greater effect constraining the

12



yield curve in December 2012 than in December 2013.19

The paths under the risk-neutral measure Q are estimated using information in the cross

section of interest rates, and the mean path under Q essentially corresponds to fitted forward

rates. In contrast, the paths under the real-world probability measure P also take into account

the macroeconomic information, in addition to the current shape of the yield curve. In Decem-

ber 2012, policy expectations under P and Q were quite similar. However, in December 2013,

the Q-measure paths were notably flatter, implying a later liftoff from the ZLB and a more

gradual increase of short rates thereafter. This difference reflects a sluggish economic recovery

with low underlying inflation and persistent economic slack, which in the macro-finance model

results in an expectation of a very gradual easing of monetary policy.20

The ZLB wedge between long-term fitted and shadow interest rate measures how tightly

the ZLB constrains the entire term structure of interest rates, because it equals the cumula-

tive difference between the mean and modal paths (under Q). Figure 4 shows the evolution

over time of the fitted and shadow ten-year yields (top panel) and of the ZLB wedge between

them (bottom panel). Over the period from 2009 to 2012, the difference between observed and

shadow yields has increased substantially, indicating that the ZLB has increasingly constrained

interest rates (see also Christensen and Rudebusch, forthcoming). This finding is consistent

with Swanson and Williams (2014), who measure the tightness of the ZLB using the sensi-

tivity of different interest rates to macroeconomic news, and document that this sensitivity

has decreased for most yields over this period.21 Conversely, over 2013 and 2014 the ZLB

constraint evidently has become less restrictive, due to improving macroeconomic conditions

and a resulting higher level of the ten-year yield.

5 Forecasting monetary policy liftoff

A key consideration about monetary policy expectations at the ZLB is the timing of the

future policy liftoff. How can we use the information in the yield curve and macroeconomic

information to forecast liftoff, based on our estimated shadow-rate model?

19This figure also demonstrates the limited amount of information in shadow short rates, which are similar
on both dates despite very different economic situations and yield curves.

20Note, however, that inference about the VAR parameters µ and φ and about the real-world distribution of
future short rates is difficult (Bauer et al., 2012; Duffee and Stanton, 2012), so the paths under P are subject
to a substantial amount of uncertainty. In contrast, the parameters of the risk-neutral (Q) distribution are
estimated very precisely.

21Increases in the tightness of the ZLB often coincided with key Fed announcements of easier monetary
policy, such as the switch to more explicit forward guidance by the FOMC in fall 2011, which pushed long-
term interest rates closer to their lower bound, as evident also in the top panel of 4.
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A natural starting point for estimating monetary policy expectations at the ZLB is an

examination of the distribution of future policy liftoff. In a shadow-rate model, policy liftoff

corresponds to the initial time the shadow short rate rises above a given threshold. We set this

threshold at 25 basis points, which is consistent with 0 to 25 basis points range the Federal

Reserve has kept during the ZLB period. Then we obtain the liftoff distribution using Monte

Carlo simulation. Figure 5 shows the smoothed Kernel density of the liftoff distribution on

December 31, 2012, based on simulations from our preferred model MZ(2) under the risk-

neutral distribution.22 The figure also reports the mean, median, mode, and interquartile range

and alternative liftoff estimates based on the mean and modal paths that we will discuss below.

The liftoff distribution is strongly skewed to the right—even very distant horizons for policy

liftoff are not uncommon.

The optimal forecast of policy liftoff based on this distribution depends on the forecaster’s

loss function. We argue that the median, which is optimal under absolute-error loss, is the

appropriate forecast in this context, due to the strong asymmetry of the distribution. The

mean is too strongly affected by the long-horizon right tail of the distribution, and would lead

to unappealingly distant liftoff forecasts.23 Hence, to estimate future policy liftoff, our focus

will be on the median as the most natural choice for forecasting.

A crucial question is how the liftoff distribution relates to estimates of liftoff based on

the mean and modal paths. It is a common practice to base estimates of liftoff on the mean

path (under Q) obtained from forward rates or money market futures rates. The time until

liftoff is given by the horizon when this path rises above a certain threshold (e.g., 25 basis

points).24 At first glance, this approach may seem to be an attractive model-free approach.

However, by using the mean path, it ignores the asymmetry of the distribution of the future

short-term interest rate induced by the ZLB. Because of this asymmetry, the mean path does

not reflect the most likely value of the policy rate at a future point in time, as noted in

Section 4. Instead, we advocate using the modal path for calculating liftoff estimates, and

some professional forecasters estimate liftoff in exactly this way: They first construct their

22Starting from the current term structure at t, we simulate 10,000 sample paths for the shadow rate
using the risk-neutral dynamics of the risk factors in equation (2). For each simulation, the date of liftoff is
determined by the time that the shadow rate hits the threshold. Due to the erratic nature of the sample paths,
we also require that the shadow rate stays above the threshold for 12 months before we designate a policy
liftoff, which leads to better-behaved liftoff distribution.

23Ichiue and Ueno (2012) used the mode of the liftoff distribution, but this is unappealing for the problem
at hand because the skewness is completely ignored.

24For example, Ueno et al. (2006) take the horizon where Euroyen futures rates exceed a given threshold as
an estimate of future policy liftoff by the Bank of Japan, and there are many similar examples in U.S. financial
market commentary, including “Fed Likely to Push Back on Market Expectations of Rate Increase,” from the
June 13, 2013 issue of the Wall Street Journal.
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most likely path for the future policy rate and treat the first increase in this path above a

25 basis point threshold as an estimate of policy liftoff.25 Furthermore, liftoff estimates using

the modal path essentially coincide with the median of the liftoff distribution. For example,

Figure 5 shows that in December 2012, these two estimates were almost identical (33 vs. 34

months). This is true more generally, and the intuition for this concordance is the following:

When the modal path crosses the liftoff threshold, the (Gaussian) shadow short rate is equally

likely to be above or below the modal short-rate path. Hence, for this horizon, there is an

equal probability for liftoff to occur earlier or later, meaning that it is the median of the liftoff

distribution.26

Forecasting liftoff using the modal path is justified by the fact that this leads to an ap-

proximately optimal forecast, whereas forecasting liftoff using the mean path gives misleading

results. This is illustrated by 3, where horizontal lines at 25 basis points indicate the threshold

for liftoff. As the modal path is always below the mean path, the liftoff implied by the modal

path is always later than that implied by the mean path. In December 2012, the difference

is particularly pronounced, due to the strong asymmetry of the future short rate distribu-

tion. For the paths under the Q-measure, the modal-path liftoff forecast at that point was 34

months, while the estimate based on the forward curve was 22 months. The following section

will show the evolution of model-based liftoff forecasts over time.

6 Policy expectations over the recent ZLB period

The recent ZLB period started in December 2008 and at the time of this writing (November

2015) is still ongoing. In this section we report and discuss our model-based estimates of

monetary policy expectations over this period, considering both the forecasts of liftoff and the

expected subsequent pace of policy tightening.

The top panel of Figure 6 shows model-based estimates for liftoff based on the mean and

modal paths, as well as the median and the interquartile range (IQR) of the forecast distribu-

25The responses in the Primary Dealer Survey are consistent with the view that respondents base their liftoff
estimate on the modal path. Other examples of analysis in line with this approach include “Reading the Tea
Leaves of Rate Expectations,” Goldman Sachs US Economic Analyst from 7/3/2013.

26To be more precise, denote by h∗ the horizon where the modal path crosses the threshold. It is equally
likely for the shadow rate to be above or below the threshold at t + h∗. Since all paths that are above the
threshold at this horizon have lifted off already, the probability mass for the event of liftoff between t and
t+h∗ will be at least 0.5. Since most paths that are below the threshold have not lifted off yet, the probability
of liftoff after t + h∗ will be below but close to 0.5. A small discrepancy between these probabilities and 0.5
arises because in some cases the shadow rate path might rise above the threshold and then fall again below
it before t + h∗, but the chance of this happening will generally be small. Hence, the median of the liftoff
distribution will always be close to h∗.
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tion for the liftoff horizon. While we focus on the estimates under the Q-measure, the same

arguments apply to estimates under the P-measure. The median of the liftoff distribution is ex-

tremely close to the liftoff based on the modal path over the entire sample, demonstrating that

the modal path delivers an approximately optimal forecast of liftoff under a mean-absolute-

error loss function. In contrast, the liftoff forecasts based on the mean path—corresponding

to the common practice of estimating liftoff based on forward rates—imply liftoff that is much

earlier, often by more than a year. Differences between liftoff estimates from the mean and

modal path are particularly pronounced during 2011 and 2012, which was when the asymmetry

due to the ZLB was strongest. Our interval forecasts for future liftoff—the IQR of the target

distribution—illustrate the substantial uncertainty around the Q-measure point forecasts for

future policy liftoff, in particular in late in 2011 and in 2012.27

We now put the shadow-rate model forecasts of the time until liftoff in perspective by

comparing them to alternative estimates. The bottom panel of Figure 6 shows liftoff forecasts

based on the model-based modal paths under P and Q and two alternative calculations of

future liftoff dates by the private sector. The first is the median of modal forecasts for the

time of policy liftoff from the Survey of Primary Dealers (SPD) of the Federal Reserve Bank

of New York, which is publicly available going back to January 2011.28 The second alternative

source of liftoff estimates is from Macroeconomic Advisers (MA), based on their published

“policy call” and on their modal projections of the future path of the federal funds rate,

i.e., the most likely scenario for Fed policy in their view. The bottom panel of Figure 6

also displays the horizons corresponding to the FOMC’s calendar-based forward guidance—

the “mid-2013,” “late-2014,” and “mid-2015” language first used in September 2011, January

2012, and September 2012, respectively. The FOMC had indicated that it expected the period

of near-zero policy rates to last at least as long as these horizons, so that reasonable liftoff

estimates would have to be at least as large as the horizons corresponding to these calendar

dates.

Liftoff forecasts based on the modal path under Q reflect the views about policy liftoff

that were priced into the yield curve at each month in our sample. These estimates are

generally close to those from the SPD and MA (with the exception of 2009, where the MA

estimates imply substantially later liftoff). Both the outside estimates and the liftoff forecast

27The model does not have stochastic volatility; however, as noted by Christensen and Rudebusch
(forthcoming) shadow-rate models can capture some of the time variation in second moments about future
monetary policy at the ZLB.

28See http://www.newyorkfed.org/markets/primarydealer_survey_questions.html for the questions
and answers for each survey. In the survey, the respondents are asked to provide the “estimate for [the] most
likely quarter and year of [the] first target rate increase.” We use the middle month of the quarter to translate
these responses into monthly horizons.

16

http://www.newyorkfed.org/markets/primarydealer_survey_questions.html


based on the Q-modal path are also generally consistent with the FOMC’s forward guidance.

In particular, they responded to the introduction of calendar-based forward guidance by the

FOMC on August 9, 2011, when the Committee noted in its statement that it expected a near-

zero policy rate until at least mid-2013. This led to a substantial increase in the expected

liftoff horizon (see also Swanson and Williams, 2014).

Turning to the liftoff forecasts under the real-world measure P, we find that over the first

half of the ZLB period, from 2009 to about mid-2012, these imply later liftoff than the estimates

under Q. The reason is that the former include the information in macroeconomic variables,

whereas the latter are based solely on the information in the yield curve. The discrepancy

between the two is due to the substantially depressed macroeconomic situation during the

Great Recession and in the early years of the recovery. Our macro-finance model takes into

account the elevated unemployment gap and low inflation during this period, which informs

the P-measure forecasts for short rates and liftoff. The P-measure estimates of liftoff are

also generally later than the outside estimates (the only exception being the MA forecasts in

2009), and later than the FOMC’s forward guidance. It is noteworthy that the simple macro-

finance shadow-rate model gave substantially longer and (with the benefit of hindsight) more

reasonable estimates of liftoff during the early years of the ZLB period than most professional

forecasters anticipated at the time.

The liftoff forecast can summarize the stance of monetary policy at the ZLB. Notably, it is

highly correlated with the ZLB wedge in the ten-year yield—the correlation is 0.99 when using

the Q-measure modal path forecast liftoff. Intuitively, variation in the length of the expected

period of near-zero policy rates is the main reason for variation in yields that are constrained

by the ZLB.29 For example, based on the liftoff estimates in Figure 6, the stance of policy

became increasingly accommodative from 2009 to 2012. Federal Reserve forward guidance

announcements—including the changes in the statement language about the appropriate path

of the funds rate in 2008 and 2009, the explicit calendar-based forward guidance in 2011 and

2012, and the outcome-based forward guidance announcement in December 2012—typically

had a noticeable impact and lengthened the estimated liftoff horizon. Accordingly, the ex-

pected liftoff horizon appears to be a fairly comprehensive univariate summary of the stance

of monetary policy at the zero lower bound.

Another key dimension of monetary policy expectations at the ZLB is the expected pace

29In contrast, the connection between the ZLB wedge and the shadow short rate is much weaker, with a
correlation coefficient of -0.47. The shadow short rate contains a more limited amount of information, lacks
robustness and is hard to interpret. We also note that in contrast to estimated shadow short rates, our modal
paths, forecasts for liftoff, and expected pace of tightening estimated from model MZ(2) are very robust to
different choices of the numerical lower bound, rmin.
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of policy tightening after liftoff. For a given expected liftoff horizon, a faster expected pace

implies higher interest rates, and vice versa. Hence, the anticipated pace of tightening is a

crucial determinant of interest rates at medium and long maturities. To estimate the pace

of tightening, a first issue is what metric to use. One possibility would be the time from

liftoff until the policy rate reaches a certain higher threshold such as one or two percent.

Instead, we use the cumulative anticipated increase in the policy rate over the two years after

liftoff—a statistic that can easily be compared to previous monetary policy normalizations.

A second issue is how to use shadow-rate models to estimate the anticipated increase in the

policy rate after liftoff. We use the modal path for this purpose because again the modal path

correctly accounts for the asymmetry of the short-rate distribution near zero. The mean path,

in contrast, is always flatter than the modal path and would imply a slower pace of tightening.

Hence, we measure the expected pace of policy tightening as the increase in the modal path

over the two-year horizon after first crossing the 25 basis point liftoff threshold. Figure 7 shows

this measure for the modal path under both the Q and P measures. The first thing to note

is that the pace under Q has been very volatile, varying considerably from below 1.5 to over

3 percentage points. This is due to the fact that this measure mostly reflects information in

the cross section of interest rates, and any shift in the steepness of the yield curve translates

into changes in the estimated pace. In contrast, the pace under P is much more stable,

which reflects steadier model-based forecasts of future interest rates including macroeconomic

variables. This measure, which is our preferred measure of the pace of tightening, declines

over 2013 and 2014, and at the end of our sample, in December 2014, indicates an anticipated

increase in the policy path of slightly below 1.5 percentage points over two years.

Figure 7 also shows the anticipated pace of policy tightening that is implied by the SPD

modal policy paths. Both our model-based estimates imply a slower pace than is apparently

expected by the survey respondents. While our model-based estimates imply an increase of

about a 1.5 to 2 percentage points in the policy rate over the two years after liftoff, the

Primary Dealers have generally anticipated fairly steadily an increase in the range of 2 to 2.5

percentage points. It is noteworthy that our preferred model-based estimates have generally

implied both a later liftoff and a slower pace of tightening than outside estimates.

How do these estimates compare to historical episodes of policy tightening? During the

tightening cycle from February 1994 to February 1995, the Fed increased the policy rate from

3 to 6 percentage points, which corresponds to a pace of 6 percentage points over two years.

From June 1999 to May 2000 the increase was from 4.75 to 6.5 percent, at a pace of about 3.5

percentage points, and from June 2004 to June 2006 the policy rate was raised from 1 percent

to 5.25 percent, an increase at a pace of 4.25 percentage points. Clearly, in all three previous
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policy tightening cycles, the pace of tightening was substantially faster than it is expected

for the period after liftoff from the ZLB. This discrepancy may be explained by the unusual

situation of the U.S. economy at the ZLB. Some Fed policymakers also expected a slow pace

of policy tightening after liftoff (see, for example Dudley, 2014). In a speech in March 2015,

Fed Chair Yellen (see Yellen, 2015) indicated that the pace of tightening in past monetary

policy cycles may be a “highly misleading guide” to the course of monetary policy in 2015

and beyond because of perceived macroeconomic uncertainties, headwinds to the domestic

and global economic outlook, and a possibly slower rate of long-run growth.

7 Conclusion

Using U.S. data, we estimate Gaussian affine and shadow-rate DTSMs with a variety of risk

factors and elucidate some important issues about U.S. monetary policy at the zero bound.

We estimate mean and modal paths for future short rates, taking into account the asymmetric

probability distribution of future short rates at a range of projection horizons, and assess the

associated dates for monetary policy liftoff from the ZLB. We argue that forecasts of policy

liftoff using the term structure should be based on the modal path of future short rates, which

is a near-optimal forecast and performs well empirically. We find that the increasing model-

implied expectations of liftoff from 2009 to 2012 are very closely matched by private-sector

and survey forecasts. Furthermore, the expected duration of the ZLB period can provide a

useful measure of the stance of monetary policy and the tightness of the ZLB. Finally, we

document the benefits of including macroeconomic information in shadow-rate models, which

improves inference at the ZLB about future monetary policy.

An admitted shortcoming of our ZLB term structure model is the assumption of station-

arity across pre-ZLB and ZLB periods, which, however, is made by all ZLB models that we

are aware of. Given the unique character of a situation with near-zero policy rates, a useful

direction for future research would be to allow for different macro-finance dynamics depend-

ing on whether the ZLB is binding or not. Further promising extensions of our modeling

framework include imposing restrictions on the risk pricing to gain parsimony (Joslin et al.,

2014; Bauer, 2015), pinning down P-measure expectations more accurately using bias correc-

tion (Bauer et al., 2012) or survey-based interest rate forecasts (Kim and Orphanides, 2012),

or using Bayesian inference for DTSM estimation (Chib and Ergashev, 2009; Bauer, 2015) to

more accurately capture model and estimation uncertainty around shadow rates and estimates

of monetary policy expectations at the ZLB.
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Table 1: Cross-sectional fit

Model Total 3m 6m 1y 2y 3y 5y 7y 10y
Full sample

YA(3) 6.7 7.0 8.5 10.0 2.7 5.8 6.0 2.8 7.2
MA(2) 11.8 16.6 9.7 14.3 12.5 10.2 8.2 7.2 13.2
YZ(3) 6.5 6.8 8.5 9.5 3.0 5.6 6.2 3.1 6.5
MZ(2) 10.4 13.5 10.4 12.4 10.5 9.3 6.9 5.7 11.8
ZLB subsample

YA(3) 7.6 6.7 3.7 10.8 2.4 7.8 9.5 2.9 10.8
MA(2) 17.6 23.6 7.2 23.2 19.2 14.1 15.7 12.3 19.2
YZ(3) 6.8 5.5 4.5 9.2 3.4 6.8 9.7 4.3 8.2
MZ(2) 12.1 9.8 11.2 17.1 12.1 10.6 12.2 7.5 14.2

Notes: Root-mean-squared fitting errors of model-implied yields in basis points. Full sample:

January 1985 to December 2014. ZLB subsample: December 2008 to December 2014.

Table 2: Violations of the ZLB

Forward rates Short-rate expectations
Model frequency avg. length frequency avg. length
YA(3) 23 4.1 7 4.3
MA(2) 46 9.8 62 18.5

Notes: Number of months, between December 2008 and December 2014, in which some forward

rates (column two) or short-rate expectations (column four) drop below zero, and the average

length (in months) of horizon over which the forward curve/short-rate path stays negative.



Table 3: Out-of-sample forecast accuracy at the ZLB

Model(s) 6m 12m 18m 24m
Mean absolute forecast errors

YA(3) 18.4 48.2 85.6 122.1
MA(2) 9.5 8.4 7.4 22.9
YZ(3) 8.0 20.5 49.7 88.2
MZ(2) 9.2 8.1 6.2 12.2
Relative mean absolute forecast errors

YZ(3)/YA(3) 0.44∗ 0.43∗∗∗ 0.58∗∗∗ 0.72∗∗∗

MZ(2)/MA(2) 0.97 0.96 0.84∗∗ 0.54∗∗∗

MA(2)/YA(3) 0.52 0.17∗∗∗ 0.09∗∗∗ 0.19∗∗∗

MZ(2)/YZ(3) 1.15 0.39∗∗ 0.13∗∗∗ 0.14∗∗∗

Notes: Top panel shows the mean absolute forecast errors (in basis points) for out-of-sample

forecasts of the three-month T-bill rate at various forecast horizons. Bottom panel shows the

relative mean absolute forecast errors for different model pairs. *, **, and *** indicate significance

of the test for equal forecast accuracy at the 10%, 5%, and 1% level, respectively. Forecast period:

December 2008 to December 2012.



Figure 1: Affine model probabilities of negative future short rates
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Notes: Model-implied real-world (P) probabilities of negative future short-term interest rates at

horizons of six months, one year, and two years. Shaded areas correspond to NBER recessions.

Sample period: January 2000 to December 2014.



Figure 2: Distribution of future shadow rate and short rate
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Notes: Densities of future shadow rate and of future short rate, at horizon of 48 months, on

December 31, 2012. Vertical lines show the mode and mean of the distribution of the future short

rate. Model: MZ(2).



Figure 3: Policy paths
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Notes: Mean and modal paths of future short rates, under real-world (P) and risk-neutral (Q)

probability measure. The mean path under Q approximately corresponds to fitted forward rates.

Model: MZ(2).



Figure 4: Ten-year yield and ZLB wedge
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Notes: The top panel shows the fitted ten-year yield and the corresponding shadow yield. The

bottom panel shows the difference between these two yields. Model: MZ(2)



Figure 5: Distribution of liftoff horizon
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Notes: Density (under the risk-neutral probability measure) for the distribution of the liftoff

horizon (in months), on December 31, 2012. Model: MZ(2).



Figure 6: Liftoff
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Notes: The top panel compares liftoff estimates from MZ(2) based on the modal and mean paths,

and the median of the liftoff distribution (all under Q). The bottom panel compares modal-path

estimates under Q and P to liftoff estimates from the Survey of Primary Dealers (median response)

and from Macroeconomic Advisers, and to the FOMC’s calendar-based forward guidance. Shaded

areas are interquartile ranges of the liftoff distribution. Period: January 2008 to December 2014.



Figure 7: Pace of tightening
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Notes: Model-based estimates of the pace of tightening after policy liftoff, measured as the increase

in the modal path under the Q- and the P-measure during the subsequent two years, in percentage

points. Also shown is the pace of tightening implied by the policy path reported in the Survey of

Primary Dealers (median response). Model: MZ(2). Period: December 2008 to December 2014.
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