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Abstract

We propose two new indices that measure the evolution of housing market liquidity.
The key features of both indices are a) their ability to control for unobserved hetero-
geneity exploiting repeat listings, b) their use of censored durations (listings that are
expired and/or withdrawn from the market), and c) their computational simplicity.
The first index computes proportional displacements in the home sale baseline hazard
rate. The second estimates the relative change in median marketing time. The indices
are computed using about 1.8 million listings in 15 US urban areas. Results suggest
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key to measure housing market liquidity.
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1 Introduction

This paper estimates two new indices that measure the evolution of the time it takes a home

to sell or “time-on-the-market” (TOM). The first index is based on a proportional hazard

specification and applies an estimator developed by Ridder and Tunali (1989) to computes

proportional displacements in the home sale baseline hazard rate. The second index is

based on a novel procedure that accounts for censoring and unobserved heterogeneity in an

accelerated failure time model of TOM; it estimates relative changes in (quality adjusted)

median TOM over time. The key features of both indices are a) their ability to control

for unobserved heterogeneity exploiting repeat listings, b) their use of censored durations

(listings that are expired and/or withdrawn from the market), and c) their computational

simplicity.

Measuring the evolution of TOM in the housing market is important for several reasons.

First, the distribution of TOM is a key factor to assess housing liquidity risk (Lippman and

McCall, 1986; Lin and Vandell, 2007). Changes in the liquidity of housing can affect its

value and influence the optimal decisions of buyers, sellers and investors in the real estate

market. Second, even crude measures of housing liquidity can substantially improve home

price forecasts (Carrillo, de Wit, and Larson, 2015). The systematic production of measure-

ments of housing liquidity that account for censoring and unobserved housing heterogeneity

could be a valuable input to predict future housing market conditions. Third, despite the

obvious importance of housing to local markets and the macroeconomy, there are no official

indices that rigorously measure the evolution of TOM. While substantial efforts are made

to measure and monitor a wide array of indicators (home prices, housing starts, number of

sales, vacancy rates, interest rates, mortgage originations, among many others), we are not

aware of any attempt to measure housing marketing time. Our work takes a first step in

this direction.

The lack of official measures of TOM (and housing liquidity) is probably not due to data

constraints. In the U.S. and in many other developed countries, the marketing of real estate
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properties is centralized in a multiple listing system where sellers post their properties and

their asking prices. This system typically records the date when a property is listed and

the date when it is sold. This information allows one to compute the number of days that

any home stays on the market. In fact, many real estate associations in the U.S. provide

statistics such as median or mean TOM as part of their reports. However, these statistics fail

to account for two important features – censoring of TOM due to the expiration or delisting

of homes, and unobserved home heterogeneity.

If all properties that were listed were to find a buyer (i.e., if there were no censored obser-

vations), the same conventional approach used to compute repeat sale price indices could be

used to estimate a TOM index that accounts for unobserved heterogeneity. 1 Expired and

withdrawn listings are, however, a common feature of real estate markets. For instance, in

a suburb of Washington DC (Fairfax County, VA) as much as 60 percent of listings expired

and/or were withdrawn during the peak of the financial crisis. Similar patterns are found

in San Diego, Las Vegas, Miami and 11 other MSAs in the U.S. that we analyze.2 Descrip-

tive statistics suggest that censoring drastically changes with market conditions: it remains

low during housing booms and peaks during busts. Hence, conventional methods based on

repeat sales need to be modified to account for censoring. This is the main objective and

contribution of our paper.

Intuitively, censoring of home listings can severely impact estimates of the mean or me-

dian TOM. TOM durations are only observed for homes where this duration is no larger

than a censoring duration that represents the patience of the home seller. Not only does this

censoring lead to a downward bias in estimates of mean or median TOM, but an increase

in the distribution of TOM that is not matched by an increase in the distribution of sellers’

1The classical approach to compute housing price indices uses repeat sales and a simple linear regression
model to control for unobserved housing heterogeneity (Bailey, Muth, and Nourse, 1963). Influential exten-
sions to this method are described in Case and Shiller (1987) and Case and Shiller (1989). The repeat sales
approach has been used in recent studies to measure changes in income (Rosenthal, 2014) and changes in
rents (Ambrose, Coulson, and Yoshida, forthcoming).

2Our empirical analysis exploits individual residential real estate listing records in 15 separate US urban
areas. The dataset contain about 1.8 million observations. Details about the sample are provided in Section 3.
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patience will lead to a larger percentage of listings that expire or are withdrawn and hence

more severe censoring. To illustrate empirically the effects of ignoring censoring issues when

computing changes in TOM, we estimate (unconditional) median TOM with and without

accounting for censoring in each of our regions of interest. Results strongly suggest that ig-

noring censoring leads to significantly different assessments about changes in the distribution

of TOM. For example, the median TOM of properties that were listed in Fairfax County

during 2007 and sold thereafter was about 60 days. This number is almost 3 times lower

than the estimate of the median TOM of all 2007 listings when censored durations are in-

cluded in the estimation. In all areas, the variance of median TOM of completed durations is

much lower than the variance of median TOM when censored observations are accounted for.

In our view, any method developed to produce a TOM index should incorporate censored

observations.

Accounting for observed housing heterogeneity, such as home size, number of bathrooms,

and other home characteristics in a duration model is relatively straightforward. Applying

the re-weighting procedure suggested by DiNardo, Fortin, and Lemieux (1996), we esti-

mate quality adjusted TOM distributions and show that, in Fairfax County, controlling for

observed housing characteristics does not substantially change the estimate of the TOM

distribution. Controlling for unobserved heterogeneity, however, has been shown to be im-

portant when estimating home price indices (Wallace and Meese, 1997) and may also be

important when computing TOM indices. The unobserved heterogeneity in TOM, which is

assumed to be constant over time, represents features of a home that make it more or less

marketable.

We propose two models that can be used to correct for unobserved heterogeneity using

repeat listings. The main intuition is straightforward. Just as it is the case with repeat sales

home price indices (Bailey, Muth, and Nourse, 1963), one can use the TOM of properties

that have been on the market in more than one period to “difference out” the unobserved

heterogeneity. In the presence of random censoring, however, the conventional methods
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employed to construct a repeat sale index no longer apply, and need to be adapted for this

specific application.

Our first index amounts to a logit regression for whether the TOM corresponding to

the second listing exceeded the TOM corresponding to the first listing.3 We show that this

approach provides a natural analogue to the repeat sales regression used to construct a home

price index. The model underlying this construction assumes that the hazard rate evolves

proportionately over time, and that a home’s unobserved heterogeneity shifts its baseline

hazard by the same amount in all time periods. This assumption essentially implies that

unique features of a home make it always more (or less) likely to sell relative to the market’s

baseline hazard. This index controls for unobserved heterogeneity in a transparent man-

ner, incorporating censored durations in the estimation process and estimating the “repeat

proportional hazard index” using a computationally straightforward procedure.

The repeat proportional hazard index provides an estimate of the gross percentage in-

crease in the hazard rate relative to a base period. This index is estimated in all of our

15 areas of interest and results are reported in Section 5.1.4. The index provides valuable

insights about trends in housing liquidity and shows that liquidity is subject to substantial

variation over time. For example, in Fairfax County, the index increased by a factor of 5

between 1997 and 2000, and decreased by the same factor between 2004 and 2007. In San

Diego, the index was at its lowest levels in 2007 and steadily increased thereafter; by the

end of 2012, it was almost 8 times higher than in 2007. The other areas we study exhibit

similar levels of volatility. We compare our index with a simple hazard ratio computed us-

ing a Cox regression. While the overall trend of both indices is much alike, there are some

important differences. Generally, the RPHI is more volatile than the unconditional hazard

ratio, increasing faster during “booms” and decreasing faster during “busts”.

The second index we propose in this paper is based on a log-linear specification for the

TOM. This type of specification in a duration model is known as an accelerated failure time

3This logit regression is computed on a subsample of the homes. Conditioning on this subset of homes
turns out to be innocuous. See Section 5.1.3 for details.
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(AFT) model (see, e.g., Kalbfleisch and Prentice, 2011). The AFT specification models

the median of (log) TOM as a function of period-specific shifters as well as a home-specific

unobserved heterogeneity term, which is assumed to be time-invariant. The period-specific

shifters are used to construct the “repeat median TOM index.” The AFT model suggests

that, absent censoring, we could simply estimate a fixed effects regression using the difference

in the log TOM (i.e., a repeat sales regression). Instead we use the Kaplan-Meier procedure

(Kaplan and Meier, 1958) to first estimate the difference in the median4 log TOM between

two listings conditional on the home being listed in two particular periods. That is for each

pair of time periods, t and t + k, we select the set of repeat listings that were put on the

market in period t for the first time and in period t + k for the second time and, using

only this subset of observations, we estimate the median log TOM in each period using the

Kaplan-Meier correction for censoring and take the difference. We repeat these calculations

for every pair of periods in our sample. Then, in a second step, we run a simple OLS

regression to estimate the repeat median TOM index.

The repeat median TOM index (RMTI) measures the relative change in the median

TOM in the current period relative to a base period. Results, reported in Section 5.2.2,

are qualitatively similar to results of the first index: In all areas we study, liquidity is

highly volatile, but it is significantly lower during the housing bust period (2007 - 2008).

We compare the RMTI with a simple ratio of unconditional medians and find substantial

differences: it seems that controlling for unobserved heterogeneity affects the estimate of

median TOM. 5

This paper provides the first rigorous measures of liquidity in the housing market that

attempt to improve on the simple and conventional median time-on-the-market measure.

While unobserved heterogeneity alone could be accounted for using a repeat sales formula-

tion, as is common for home price indices, we find that it is also empirically important to

4We work with the median because the mean is typically not identified by the Kaplan Meier estimator.
5An increase in time on the market over time may reflect an increase in home prices. In this paper we

do not seek to disentangle these effects though this may be an interesting avenue for future research. Our
focus in this paper is on a measure of the unconditional median TOM that is easy to compute.
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account for observations of TOM that are censored when the home is withdrawn from the

market. We propose two methods which are both novel contributions as measures of liquidity.

The first index uses an econometric method, previously used to account for heterogeneity and

censoring in duration models in different contexts, in a novel application. The second index

uses a novel econometric procedure that contributes to the literature in econometrics that

attempts to relax the proportional hazards assumption. The combined empirical evidence

suggests that controlling for unobserved heterogeneity using repeat listings is important to

measure changes in housing marketing time.

The rest of the paper is structured as follows. The next section discusses the relationship

between our work and the literature. Section 3 describes the data and computed descriptive

statistics. In Section 4, we discuss the censoring problem and investigate observable hetero-

geneity among homes. In Section 5 we develop our two new indices that incorporate censored

observations as well and account for unobserved heterogeneity. In Section 6 we conclude.

2 Literature Review

The indices developed in this paper build on an extensive literature on unobserved het-

erogeneity in duration models. Duration models with unobserved heterogeneity have been

used in economics to model unemployment spells (Heckman and Borjas, 1980; Flinn and

Heckman, 1982), auto accidents (Abbring, Chiappori, and Pinquet, 2003), child mortality

(Ridder and Tunali, 1989; Olsen and Wolpin, 1983), and brand-switching behavior (Gönül

and Srinivasan, 1993), among other applications.6 This literature traditionally focused on

the distortions caused by unobserved heterogeneity when it takes the form of a random ef-

fect, independent of covariates (Lancaster, 1979; Heckman and Singer, 1984; Trussell and

Richards, 1983; Heckman and Honoré, 1989). A classical random effect model in our ap-

plication would assume that the distribution of unobserved housing heterogeneity does not

6Duration models have been used to study observed heterogeneity in housing time on the market (see,
e.g., Haurin, 1988; Glower, Haurin, and Hendershott, 1998).
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vary over time. But it is precisely the potential for the quality of the homes listed to vary

over time that we wish to control for in our analysis.

Instead the methods used in this paper assume a fixed effects model – where unobserved

heterogeneity may be correlated with covariates. Application of a standard fixed effects

regression (which would amount to a repeat sales regression in our context) is not possible

because of the presence of random censoring. There are two solutions proposed in the

literature that are relevant for our model. Ridder and Tunali (1999) propose a stratified

partial likelihood in a proportional hazards model.7 Their method has been applied in

studying child mortality with family fixed effects (Ridder and Tunali, 1999) and to study

spatial differences in unemployment duration using location fixed effects (Gobillon, Magnac,

and Selod, 2011). As shown by Lancaster (2000), the stratified partial likelihood approach

amounts to a logit regression for whether the TOM corresponding to the second listing

exceeded the TOM corresponding to the first listing. We extend this insight by showing that

in our model of repeat listings the method is equivalent to a repeat sales logit regression. This

is a novel contribution of our paper, which allows the estimation of the repeat proportional

hazard index.

Honoré, Khan, and Powell (2002) suggest adapting a method for fixed censoring (Honoré,

1992) by integrating over the distribution of the censoring variable. Both papers use an ac-

celerated failure time model as an alternative to the proportional hazards model. Their

approach however requires that the censoring variable be independent of all covariates. The

implication of this assumption in our context would be that the distribution of sellers’ pa-

tience does not vary over time, which is not a reasonable assumption. We avoid this because

the only covariates in our model are indicators for the time period in which each listing

occurred. We plug in conditional Kaplan-Meier estimates rather than a single unconditional

estimate. After an initial step that estimates the conditional median log TOM for each

listing pair we employ the standard repeat sales regression. Lindgren (1997) also takes a

7Ridder and Tunali (1999) extend an idea also discussed in Kalbfleisch and Prentice (1980), Chamberlain
(1985) and Lancaster (2000).
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conditional Kaplan-Meier approach but not in a repeated duration model and does not al-

low for unobserved heterogeneity. The present paper is apparently the first to apply such an

approach to a fixed effects model.

The methods developed in this paper can be readily applied to estimate operational

measures of housing liquidity in the literature (for example, Lippman and McCall, 1986;

Lin and Vandell, 2007).

3 Data and Conventional Descriptive Statistics

In most developed countries, including the U.S., real estate agents collect rich information

about the marketing process of housing sales. The data are collected in a database system

known in the U.S. as Multiple Listing Services (MLS). These data contain details about each

listing and each transaction. Besides the asking price, sale price and home characteristics,

the specific dates when the listing was posted and when the home was sold (or when the

listing was withdrawn from the market) are generally available. This allows researchers to

compute the time that a property stays on the market (time-on-the-market TOM).

Our data come from two sources. Metropolitan and Regional Information Systems

(MRIS) provided us with MLS data from Fairfax County, VA.8 Data contain information

for all housing listings in this county that were listed on the MLS between January 1, 1997

and December 31, 2010. Fairfax MLS data contain pricing, TOM as well as detailed char-

acteristics about the properties such as the number of rooms, bathrooms, age, type of home

and address. Because the location of each property is observed, one can compute aggregate

statistics at any level of geographic aggregation. More importantly, we can track if the same

property is listed and/or sold in multiple periods.

Our second source of data is CoreLogic Solutions, LLC (CoreLogic). CoreLogic collects

MLS data from more than 100 MSAs, verifies the consistency of the information and produces

8Fairfax County is part of the Washington, D.C. metropolitan statistical area and is located in northern
Virginia. According to the 2010 U.S. Census, Fairfax hosts more than one million residents and over 380,000
housing units. Fairfax also ranks as one of the richest and best-educated counties in the U.S.
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a series of indicators (available in its Real Estate Analytics Suite). Collecting MLS data

from different U.S. regions is not easy. Besides legal agreements with each MLS regional

association, a careful data validation process is needed because there are no set guidelines

about database structure (variable names, etc.). CoreLogic provides this service. CoreLogic

allowed us to work with their individual housing listings in 14 MSAs that were posted on the

MLS between January 2004 and February 2013. The MSAs in our sample include large and

medium urban areas in the East, Middle, and Western regions of the U.S.9 CoreLogic data

include information about pricing and the specific dates when the listing entered and exited

the market. While we do not observe any of the property’s characteristics, the data contain

a unique property identifier. This allows us to track listings/sales of the same property over

time.

We exclude from our two samples listings with unusually high or unusually low listing

prices (top and bottom 1 percent during each year), observations that stayed on the market

for more than two years, and observations with missing data. After this cleaning process,

we are left with about 0.3 million listings in Fairfax County, and 1.4 million listings in the

sample of 14 U.S. MSAs. A list of the urban areas, the number of listings, and a description

of the sample period is available in Table 1. About 58 percent of all listings in the overall

sample end up in a sale; the other listings either expire or are withdrawn from the market.

Many properties are listed on the MLS more than once. We call these cases repeat listings

and note that there are almost 1 million of them.

Before we present descriptive statistics, we need to discuss how time-on-the-market is

defined. Both data sets include the date when a listing is first posted on the MLS, the date

when the property was taken off the market (when the contract was signed) as well as the

date when the transaction was closed (which is typically between 4 and 12 weeks after the

contract agreement). We define TOM as the difference between the listing date and the

9The MSAs we analyze include Ann Arbor, MI, Boulder, CO, Durham, NC, Honolulu, HI, Las Vegas-
Paradise, NV, Medford, OR, Miami-Miami Beach-Kendall, FL, New Orleans-Metairie-Kenner, LA, Olympia,
WA, San Diego-Carlsbad-San Marcos, CA, San Luis Obispo-Paso Robles, CA, Santa Barbara-Santa Maria,
CA, Toledo, OH and Youngstown-Warren-Boardman, OH-PA.
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contract date.

We first show conventional descriptive statistics, that is, the kind of statistics that are

typically computed and published by MLS associations. These include the mean and median

TOM as well as the volume of sales. Importantly, the mean and median TOM are calculated

just for the sample of properties that have been sold. The top panels of Figures 1 and 2

present these statistics for Fairfax County, and five representative MSAs from our U.S. areas:

Las Vegas, San Diego, Miami, Honolulu and New Orleans.10 The statistics have been com-

puted for each quarter to illustrate within-year seasonality. The swings in expected duration

in Fairfax County clearly coincide with the housing market boom and bust. Expected TOM

in Fairfax decreased drastically in the late 1990s and remained rather low until the end of

2005. It increased back to the 1990’s levels in 2007 and slowly dropped thereafter. What

it is surprising is that, even during the midst of the financial crisis expected TOM is only

about two and a half months, and median duration does not exceed 60 days. The other

areas show similar patterns. For example, median TOM in San Diego increases about three

times between the first quarter of 2004 and 2010, but is never less than 120 days; in Miami,

median TOM after 2007 remains low (less than 4 months) and exhibits a decreasing trend;

and, expected duration in Honolulu peaks in 2009 but is never above 5 months.

While interesting, the patterns shown in the top panels of Figures 1 and 2 can be mis-

leading. The distribution of TOM of properties that are sold may be quite different than the

unconditional distribution. The bottom panels in these figures display the share of listings

that are withdrawn and/or expired in each of these areas. When the market is strong, most

listings find a buyer. When the market slows down, however, a higher fraction of listings

are withdrawn form the market. For example, in Fairfax County, while about 90 percent of

properties listed in 2003 found a buyer, over half of properties listed in 2006 were withdrawn.

Similar patterns are found in Las Vegas, San Diego and other areas we analyze. In the next

section, we compute TOM statistics using information from both listings that were sold and

10Descriptive statistics for other areas are available upon request.
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listings that were withdrawn and/or expired.

4 Censoring and Observed Heterogeneity

In this section, we begin with a formal setup for our problem. This setup will be used in all

sections hereafter. Then, we use the Kaplan-Meier estimator to compute the unconditional

distribution of TOM. Finally, we estimate quality adjusted TOM statistics, where the char-

acteristics of the housing stock are assumed to remain fixed at those from the properties

listed in a base period.

4.1 Basic setup

Let Yit denote the time home i would spend on the market before closing if listed in period

t for i = 1, . . . , n and t = 1, . . . , T . Our goal is to measure how the distribution of Yit varies

with t. Generally we only observe Y s
i := Yitsi for s = 1, . . . , Si where Si is the number of

times home i is listed for sale in the time frame observed and tsi is the period in which home i

was listed the sth time it was listed. Sometimes listings are removed without the home being

sold. As we noted in the previous section, during some periods the fraction of listings that

do not terminate in a sale is greater than 50%. To model this let Cs
i denote the censoring

time for the sth observed listing of home i, that is, the length of time after which the home

will be withdrawn if it has not been sold. Then for each listing we observe V s
i = min{Y s

i , C
s
i }

as well as dsi = 1(Y s
i < Cs

i ).

4.2 Unconditional TOM

First, rather than considering repeat listings of the same home we pool the data. Let

m = 1, . . . ,M :=
∑n

i=1 Si index each listing in the sample and let Ym denote the observed

time on the market for listing m and tm denote the time period associated with this listing.

If observation m is the sth listing for home i in the sample then tm = tsi . We first want to
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estimate the distribution of Ym | tm = t for each t = 1, . . . , T . If unobserved heterogeneity

across homes informs listing decisions then this will differ from the distribution of Yit.

In this section, the main difficulty that we address in estimating the distribution of

Ym | tm = t is that some listings are censored and hence we only observe (Vm, dm, tm) where

Cm is the censoring time for observation m, Vm := min(Ym, Cm) and dm = 1(Ym < Cm).

Censoring introduces a downward bias in median time on the market measures – homes that

are sold before being removed from the market are less likely to be in the right tail of homes

that take a long time to sell. Both the median of the distribution of Vm | dm = 1 and the

median of the distribution of Vm will be biased downward relative to the median of Ym.

To adjust for censoring we use the Kaplan-Meier estimator. It can be viewed as a

reweighting of the data based on the distribution of censored observations (Efron, 1967).

The procedure effectively splits each censored observation into two partial observations at

Cm and +∞ each receiving weights according to the probability that the censored observation

is above or below each given quantile.

Formally, if Cm is independent of Ym conditional on tm then Pr(Vm = y, dm = 1 | Vm ≥

y, tm) = Pr(Ym = y | Ym ≥ y, tm). The left-hand side of this equation is observed in the data

and the right-hand side is the hazard function for Ym | tm, hYm|tm(y | t). The distribution

function is identified since FYm|tm(y | t) = 1 − exp(−
∫ y

0
hYm|tm(s | t)ds). The Kaplan-Meier

estimator is based on this argument.

To account for censoring, we use the sample of all listings: those that were sold and those

withdrawn from the market. As we previously discussed, for units that are sold, we compute

TOM as the difference between the date when an offer was accepted and the date when the

listing was posted. When a listing is withdrawn from the market or it expires without a sale,

we compute the time between the initial listing and withdrawal, and treat it as a censored

observation. Then, for each quarter, we obtain an estimate of the median TOM from the

Kaplan-Meier estimate of the TOM distribution. In the top panels of Figures 3 and 4 these

estimates are compared to the median TOM among the homes that sold. Results strongly
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confirm our priors that accounting for censoring drastically affects the estimate of TOM

statistics. For example, the median TOM in Fairfax County in 2007 is close to 6 months,

about three times larger than the conventional estimate. In all other areas, the estimate of

median TOM increases substantially when withdrawn listings are accounted for.

The Kaplan-Meier approach described above assumes only that censoring is independent.

We could instead use the Cox (1972) partial likelihood estimator to estimate shifts over

time in the hazard function, rather than changes over time in the median TOM, under a

proportional hazard assumption. The Cox proportional hazard model makes no assumptions

about the functional form of the baseline hazard and its coefficients can be easily used to

compute displacement in the baseline hazard over time.

For each urban area in our sample, we estimate a Cox hazard model. The dependent

variable is TOM and the covariates are binary indicators that take the value of 1 if a home

was listed in a particular period (quarter) in the sample. We then choose a base period (2010

q1) and compute the hazard ratio between each period t and the base. A hazard ratio of 1.5

in period t would imply that the probability that a homeowner sells her home (given that

the home is still on the market) is 50 percent higher than in the base period. The model

is estimated both using only finished durations, and also incorporating censored observa-

tions. Results shown in the bottom panels of Figures 3 and 4 confirm that accounting for

censoring can substantially change our assessment about the evolution of housing liquidity.

For example, in Fairfax County, accounting for censoring leads to a less volatile estimate of

the hazard ratio; and, in most other areas, there are significant differences between the two

hazard ratio estimates.11

In sum, any statistic that measures the evolution of TOM should account for censored

observations.

11Notice that in all areas there is an increase in the unadjusted hazard ratio during the last sample period.
This is mechanically produced by the sampling procedure. Data were collected at the end of the sample
period. Hence, properties that are listed and sold during the last quarter in the sample (recent listings) must
have been sold quickly. These patterns are corrected when censored observations are accounted for.
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4.3 Conditional TOM

In the previous section no attempt was made to control for housing heterogeneity. That is,

the set of homes listed in one period could be much different than the set of homes listed

in another. Differences in TOM could reflect changes in the composition of homes for sale

rather than changes in market conditions. This is the same concern that motivates the use

of hedonic and repeat-sales methods to estimate housing price indices. In this section, we

follow the methods proposed by Carrillo and Pope (2012) to estimate changes in median

TOM and shifts in the hazard rate while controlling for observed housing heterogeneity.

Carrillo and Pope (2012) show how to compute (quality adjusted) time on the market

distributions and hazard functions using MLS data. In particular, the duration distribution

and hazard function during each period is simulated assuming that housing units have the

same characteristics as homes in a base period. The simulation is based on the decomposition

methods proposed by DiNardo, Fortin, and Lemieux (1996) and the Kaplan-Meier estimator

(Kaplan and Meier, 1958). This method permits estimation of the distribution of TOM

while controlling both for censoring and observed heterogeneity. To keep our exposition

self-contained, technical details of the method are provided in an appendix.

For each period t in Fairfax County, we simulate the distribution of time-on-the-market

assuming that the characteristics of housing units remain constant as those prevalent in the

first quarter of 2000 (the base period).12 We denote this counterfactual distribution as F̂t.

We then estimate the counterfactual median TOM in each period. Results are shown in

Figure 5. The dashed and solid lines display the median and counterfactual median, respec-

tively. Controlling for observed heterogeneity does not substantially change our estimate

of the median TOM. This is not surprising since previous studies have found that housing

characteristics do not explain much of the variation of housing marketing time.13

12The characteristics included in the model are the home’s age (9 categories), number of bathrooms,
bedrooms and indicators for the home’s type.

13Typically, the coefficient of determination in log-linear TOM regressions is typically very low (for exam-
ple, Levitt and Syverson, 2008), and structural models have a hard time predicting TOM (Horowitz, 1992;
Carrillo, 2012).
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5 Censoring and Unobserved Heterogeneity

We have shown so far that accounting for censoring affects TOM statistics by a large amount,

while controlling for observed housing characteristics does not. In this section, we estimate

changes in TOM while explicitly controlling for unobserved heterogeneity. As we mentioned

before, there is an extensive literature on unobserved heterogeneity in duration models where

it is generally assumed that the unobserved heterogeneity is a random effect (Heckman and

Singer, 1984; Trussell and Richards, 1983; Heckman and Honoré, 1989). This approach is

not appealing in our context for the following reasons. First, if we let unobserved hetero-

geneity be a random effect we would implicitly assume that its distribution does not vary

over time, a somewhat strong assumption in the context of the housing market. Second,

estimation results could be affected by the modeling choices (for example, parametric vs.

non parametric specifications of the unobserved heterogeneity). Finally, these methods tend

to be computationally intensive and may not work when the number of observations is very

large (hundreds of thousands of observations). Our goal in this section is to propose housing

liquidity indices that control for unobserved heterogeneity, account for censored durations

and, more importantly, are computationally easy to implement.

We propose below two models that can be used to correct for unobserved heterogeneity

using repeat listings. The main intuition is straightforward: Just as it is the case with repeat

sales home price indices (Bailey, Muth, and Nourse, 1963; Case and Shiller, 1987), one can use

the TOM of properties that have been on the market in more than one period to “difference

out” the unobserved heterogeneity. Because TOM is subject to random censoring, however,

the conventional methods employed to construct a repeat sale index no longer apply, and

need to be adapted for this specific application.
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5.1 The Repeat Proportional Hazard Index

A mixed proportional hazards model for the duration of time on the market is defined by

the following hazard function for home i if listed in period t.

λit(y) = exp(βt)λ0i(y) (5.1)

The first factor, exp(βt), allows the hazard function to vary proportionately depending on

the time period listed and λ0i(·) is a home-specific baseline hazard function. If we normalize

β1 = 0, λ0i(y) is the hazard function for home i if it is placed on the market in this initial

period. Thus, according to this model, fluctuations in the housing market contribute to

variation in time on the market through parallel shifts in the hazard functions.

The baseline hazard function is allowed to vary across homes. This represents unobserved

heterogeneity in homes. If Yit is observed for every (i, t) pair then this is a standard mixed

proportional hazards model and can be consistently estimated on pooled data using the Cox

(1972) partial likelihood estimator, as discussed briefly in Section 3.2. This estimator is also

valid under the sampling scheme assumed here if λ0i(·) and tsi are independent because in

that case the distribution of Y s
i | tsi = t is characterized by the hazard function λit. If λ0i(·)

and ti are correlated then the distribution of Y s
i | tsi = t is distorted by selection effects. In

this section we discuss an extension of Cox (1972) due to Ridder and Tunali (1989, 1999)

that uses variation among separate listings for the same home to eliminate the fixed effect,

λ0i(·).

5.1.1 No censoring

The structure of the proportional hazards model allows us to difference out the unobserved

heterogeneity using repeat listings of the same home. In this section we describe this differ-

encing solution when there is no censoring. We show how to account for censoring in Section

5.1.2. The hazard function in equation (5.1) is the hazard corresponding to the conditional
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distribution Y s
i | tsi = t, λ0i(·). Let Λ0i(y) :=

∫ y

0
λ0i(s)ds denote the baseline integrated

hazard function. It follows then that

− ln(Λ0i(Y
s
i )) = βtsi + εsi

where −εsi | tsi ∼ EV 1(0, 1). This is a standard result for the proportional hazard model. If

λ0i(y) = exp(αi)λ0(y) then we have − ln(Λ0(Y s
i )) = βtsi +αi + εsi suggesting that differencing

will remove the unobserved heterogeneity. However, the baseline hazard function is generally

not known so a standard fixed effects strategy is not feasible. Instead we obtain identifying

information from the order statistics since Y s
i ≥ Y s′

i if and only if ln(Λ0i(Y
s
i )) ≥ ln(Λ0i(Y

s′
i )).

Before deriving the result we state the following two conditions which are assumed.

Assumption 5.1.

For each pair of listings, s and s+ 1,

(i) Y s
i | tsi , ts+1

i , λ0i(·) =d Yitsi | λ0i(·) and Y s+1
i | tsi , ts+1

i , λ0i(·) =d Yits+1
i
| λ0i(·)

(ii) Y s
i , Y

s+1
i are independent conditional on tsi , t

s+1
i , λ0i(·)

The first condition is what is known as a strict exogeneity condition in panel data models.

It requires that both the listing date of a given listing and the date of the other listing in the

pair are exogenous. This assumption could potentially be problematic but is likely harmless

in our application.14 The second condition is innocuous as it states essentially that any

dependence between listings of the same home is accounted for by the home-specific hazard,

or “fixed effect”, λ0i(·).

Under the first condition εsi and εs+1
i are independent and under the second condition

14In particular, it is plausible that ts+1
i depends on Y s

i ; the longer the listing is on the market before it
sells, the later the next listing date will be. If this was a serious concern we would expect the results to be
sensitive to restrictions of the sample to exclude observations with ts+1

i − tsi < c, where c is an arbitrary
cutoff. In results not reported in the paper we have found that this is not the case.
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both −εsi and −εs+1
i are distributed EV 1(0, 1) conditional on tsi , t

s+1
i , λ0i. Therefore,

Pr(Y s+1
i ≥ Y s

i | tsi = ts, t
s+1
i = ts+1)

= Pr(ln(Λ0(Y s+1
i )) ≥ ln(Λ0(Y s

i )) | tsi = ts, t
s+1
i = ts+1)

= Pr(εs+1
i − εsi ≥ βts+1 − βts | tsi = ts, t

s+1
i = ts+1)

=
exp(βts)

exp(βts) + exp(βts+1)

This suggests that the βt can be estimated through a logit regression where the dependent

variable is 1(Y 2
i > Y 1

i ). This has been proposed by Lancaster (2000) and Chamberlain (1985)

and is based on an extension of Cox (1972) due originally to Ridder and Tunali (1989).

Ridder and Tunali (1989) show that the probability that a particular duration ends

after y days conditional on at least one at-risk duration ending after y days takes the same

form. The at-risk durations at time y are those which last at least y days. Specifically, the

probability that the sth listing ends after y days conditional on at least one of the listings

for home i that lasts at least y days ending after y days is given by

exp(βts)∑
s′∈Ri(Y s

i ) exp(βts′ )

where s′ ∈ Ri(y) if and only if Y s′
i ≥ y. This is the general form of the partial likelihood used

in Ridder and Tunali (1989), Ridder and Tunali (1999) and Gobillon, Magnac, and Selod

(2011). The partial log likelihood function is:

l(β) :=
n∑

i=1

Si∑
s=1

log

(
exp(βtsi )∑

s′∈Ri(Y s
i ) exp(βts′i

)

)

The partial likelihood estimator which maximizes this function, β̂, has been studied by

Ridder and Tunali (1999). They provide regularity conditions under which this estimator

is consistent and asymptotically normal. Note however that if we consider pairs of two
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listings for each home then these properties are inherited from standard results on maximum

likelihood as the estimator is equivalent to the logit estimator described above.

5.1.2 Accounting for censoring

This estimator is not feasible in the presence of censoring. If only homes with all listings

uncensored are used, the estimator is biased. To describe the estimator we use to construct

our RPHI index first recall that dsi is an indicator denoting whether the home is sold and V s
i

denotes the observed duration, that is, the minimum of the TOM and the censoring time.

To incorporate the censored observations and obtain an estimator that is (asymptotically)

unbiased, the likelihood is adjusted to:

l(β) :=
n∑

i=1

Si∑
s=1

dsi log

(
exp(βtsi )∑

s′∈R̃i(V s
i ) exp(βts′i

)

)

where s′ ∈ R̃i(v) if and only if V s′
i ≥ v.

As shown in Ridder and Tunali (1999), this new partial likelihood estimator is valid under

three conditions – independence of the multiple listings conditional on observed (tsi ) and

unobserved (λ0i(·)) heterogeneity, strict exogeneity of the regressors, {tsi}, and independent

censoring. As in the previous section we adapt Ridder and Tunali (1999) to a logit estimator

that works with pairs of listings. We assume the following three conditions.

Assumption 5.2.

For each pair of listings, s and s+ 1,

(i) Y s
i | tsi , ts+1

i , λ0i(·) =d Yitsi | λ0i(·) and Y s+1
i | tsi , ts+1

i , λ0i(·) =d Yits+1
i
| λ0i(·)

(ii) (V s
i , d

s
i ) ⊥⊥ (V s+1

i , ds+1
i ) conditional on tsi , t

s+1
i , λ0i(·)

(iii) Y s
i and Cs

i are independent conditional on tsi , λ0i(·)

The first condition is identical to the strict exogeneity condition in Assumption 5.1 and

the second condition is a slight generalization of the independence condition in Assump-

tion 5.1. The third condition is the standard assumption of independent censoring. In fact,
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condition (iii) may be viewed as even more innocuous than the independence assumption un-

derlying the Kaplan-Meier estimator as it assumes that censoring is independent conditional

on the home-specific unobserved heterogeneity.

Under Assumption 5.2, the probability that the sth listing is uncensored and ends after

y days conditional on one of the listings in R̃i(y) being uncensored and ending after y days

is given by

exp(βts)∑
s′∈R̃i(y) exp(βts′ )

Consider the case where there are only two listings. Evaluating the above for each s at

y = Y s
i produces one (non-trivial) likelihood contribution for each i corresponding to the s

with V s
i = min{V 1

i , V
2
i }. If dsi = 0 then the likelihood contribution is 0 and home i does not

contribute at all to the likelihood function. However, if dsi = 1 then home i contributes the

term

exp(βtsi )

exp(βt1i ) + exp(βt2i )

regardless of whether the other listing for home i is censored or not.

Thus, as Lancaster (2000) demonstrates in a brief remark, in the case where we use only

the first two listings for each home the partial likelihood function takes the form

n∑
i=1

Wi1(V 2
i > V 1

i ) log

(
exp(β′Xi)

1 + exp(β′Xi)

)
+Wi1(V 1

i > V 2
i ) log

(
1

1 + exp(β′Xi)

)

where Xi is a vector of dummy variables, Xit for t = 2, . . . , T , where Xit = 1 if t2i = t,

Xit = −1 if t1i = t and Xit = 0 otherwise and Wi is equal to 1 if neither duration is censored

or if only the smaller of the two durations is censored, and is equal to 0 otherwise. The

estimator β̂ which maximizes this partial likelihood function is identical to the coefficient

estimators from a logit regression of the binary indicator 1(V 2
i > V 1

i ) on Xi on the subsample
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of observations with Wi = 1.

5.1.3 Implementation: Proportional Hazard Index

The procedure to estimate the coefficients βt is straightforward and can be summarized as

follows.

• Step 1: Identify the relevant sample of repeat listings (observations where Wi = 1). We

focus first on listings that appear in more than one period. Among this set of repeat

listings, we select those properties with completed durations in both periods or if only

the smaller of the two durations is censored.

• Step 2: Calculate the dependent variable. Using the sample defined in the previous

step, we estimate an indicator that takes the value of 1 if Y 2
i ≥ Y 1

i , and zero otherwise.

• Step 3: Estimation of a logistic model. The dependent variable is the indicator com-

puted in the previous step, and the covariates are the variables in vector Xi.

5.1.4 Results: Repeat Proportional Hazard Index (RPHI)

In the proportional hazard model we take µt = exp(βt) as the repeat proportional hazard

index (RPHI) which can be interpreted as the gross percentage increase in the hazard rate

since the initial period. The index is pegged at µ0 = 1. In other words, if µt = 1.5 the

probability that a home listed in period t will sell on any given day, conditional on still being

on the market, is 50% larger than it would be if it had been listed in the base period. The

RPHI is estimated in all 15 MSAs in the sample and results are displayed in Table 2. In all

areas the index has been normalized so that it equals 1 in the first quarter of 2010. There is

significant variation in the RPHI both across areas and over time.

It is useful to compare the RPHI with the simple unconditional hazard ratio computed

in Section 4.2. The hazard ratio discussed in Section 4.2 has the same interpretation as the

RPHI and is estimated incorporating both censored and non-censored durations; however,

it does not account for unobserved heterogeneity. The evolution of both of these variables
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is displayed in the top panels of Figures 5 and 6. While the overall trend of both indices

is much alike, there are some important differences. For example, in Fairfax County, the

RPHI during a booming market (in 2000) is much higher than the unconditional hazard

ratio. Such patterns would arise if the types of homes that were listed in this particular

period were especially hard to sell (less liquid) due to their unique features. On the contrary,

in a slow market (2007), the unconditional hazard ratio is higher than the RPHI suggesting

that homes being listed during “bad times” were, due to their unobserved characteristics,

more liquid than the average home in the sample. This translates into a RPHI that is more

volatile that the unconditional hazard ratio. These patterns seem to be persistent in the

other urban areas.

In sum, just as it is the case with repeat-sales home price indices, controlling for unob-

served heterogeneity is key to measure the evolution of the baseline hazard rate.

5.2 A Repeat Median TOM Index

An alternative method is based on the accelerated failure time model log(Y s
i ) = βtsi + usi

with usi = αi + εsi . This generalizes a proportional hazards model with a constant hazard

function by allowing the distribution of εsi to be unrestricted. This suggests that

log(Y 2
i )− log(Y 1

i ) = β′Xi + ε̃i

where Xi is as defined in Section 4.1.2 and ε̃i = ε2
i − ε1

i . If E(ε̃i | Xi) = 0 and there is no

censoring then the usual fixed effects regression estimator will consistently estimate β.

A similar approach is still possible in the presence of censoring. First we make the

following assumption.

Assumption 5.3.

(i) Med(αi + εsi | tsi , ts+1
i ) = Med(αi + εs+1

i | tsi , ts+1
i )
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(ii) Y s
i and Cs

i are independent conditional on tsi , t
s+1
i and Y s+1

i and Cs+1
i are independent

conditional on tsi , t
s+1
i

The first condition combines something like the strict exogeneity condition of Assumption

5.2(i) and a stationarity condition. To see this, note that it follows if (i) εsi | αi, t
s
i , t

s+1
i =d

εsi | αi, t
s
i and εs+1

i | αi, t
s
i , t

s+1
i =d ε

s
i | αi, t

s+1
i and (ii) εsi | αi, t

s
i =d ε

s+1
i | αi, t

s+1
i . Under

condition (i) β is identified if Med(log(Y s
i ) | Xi) is identified because

Med(log(Y 2
i ) | Xi)−Med(log(Y 1

i ) | Xi) = β′Xi

Moreover, Med(log(Y s
i ) | Xi) will generally be identified under independent censoring (con-

dition (ii)), as described in Section 4.2. An important caveat is relevant if there is a value

ȳ such that all observations with durations exceeding ȳ are censored. In this case the u

quantile of the distribution is only identified for u ≤ ū where ū is the proportion of the

durations that exceed ȳ. If ū < 1/2 then the median is not identified. However, we do not

observe this problem in the housing markets we study in this paper.

5.2.1 Implementation: Median Index

The model is estimated in a two step procedure. First we select a set of repeat listings:

those that were put on the market in period t for the first time and in period t + k for

the second time. Using only this subset of observations (that includes both completed and

censored durations) we estimate the median log TOM separately in each period by carrying

out the Kaplan-Meier estimator. We can then compute the difference in the median log

TOM between periods t and t+ k. Note that unobserved heterogeneity dissapears when the

difference in median log TOM is computed (as long as assumption 5.3 holds.) We repeat

these calculations for every other pair of periods in our sample. Then, in a second step, we

run a simple OLS regression to estimate β. The procedure to estimate the repeat median

TOM index is summarized below:
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• Step 1: We estimate Med(log(Y 2
i ) | Xi) − Med(log(Y 1

i ) | Xi) by carrying out the

Kaplan-Meier procedure conditional on t1i , t
2
i = t1, t2 for each pair of t1, t2 such that

t1 < t2. For each observation i we then have an estimate δ̂M i of Med(log(Y 2
i ) |

Xi)−Med(log(Y 1
i ) | Xi).

• Step 2: We run an OLS regression of δ̂M i on Xi to estimate β.

As we mentioned in the introduction, this procedure can be viewed a as a repeat sales

quantile (median) regression that makes use of an the accelerated failure time (AFT) as-

sumption (see, e.g., Kalbfleisch and Prentice, 2011) and uses a conditional Kaplan-Meier

estimator to correct for censoring in a first stage.

5.2.2 Results: Repeat Median TOM Index

A repeat sales index for home prices, such as the Case-Shiller index, is created by taking

µ̂t = exp(β̂t). This transformation is natural in that context because exp(βt) represent the

gross market return between the initial period and period t. Here we will use the same

construction for the index though the interpretation as a gross return is less salient.

In the accelerated failure time model we take µt = exp(βt) and define it as the repeat

median TOM index (RMTI). Notice that a larger index value represents an increase in the

time on the market. For example, if µt = 1.5 then the median time on the market would

have been 50% larger in period t compared to the base period. The RMTI is estimated in

all 15 MSAs in the sample and results are displayed in Table 3. In all areas the index has

been normalized so that it equals 1 in the first quarter of 2010. As it was the case with the

RPHI, the RMTI exhibits significant variation both across areas and over time.

In the bottom panels of Figures 5 and 6 we show the inverse of the RMTI in selected

urban areas. We plot the inverse (rather than the level) of the RMTI to facilitate a direct

comparison with the RPHI above. These two indices can be compared as they both represent

rates at which the time on the market changes over time. As expected, in all areas the RMTI

and the RPHI seem extremely highly correlated. In fact, if the baseline hazard function is
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constant then the two models coincide and the two indices estimate the same thing.

We compare the RMTI with a simple ratio of unconditional medians. The unconditional

medians have been estimated using the Kaplan-Meier estimator and censored durations but

do not account for housing unobserved heterogeneity. The RMTI and the unconditional

median ratio follow a similar trend. In some areas, the trends are almost identical (Fair-

fax County) while in others there are substantial differences (Miami and New Orleans, for

example). As it was the case with the repeat proportional hazard index, controlling for

unobserved heterogeneity is important when measuring the evolution of the median TOM.

6 Conclusions

This paper develops the first measures of liquidity in the housing market that are based

on repeat listings. Important features of the two indices we propose are their ability to

control for unobserved heterogeneity exploiting repeat listings, and their use of censored

durations. The first index, the RPHI, computes proportional displacements in the home

sale baseline hazard rate. This index is based on an econometric model that has been

used on other contexts; the application of this method to the measurement of real estate

liquidity is one of the main contributions of our paper. The second index, the RMTI,

estimates the relative change in (quality adjusted) median TOM. The RMTI uses a novel

econometric procedure that contributes to the literature in econometrics that attempts to

relax the proportional hazards assumption. We compute the indices using listings data from

15 US urban areas including Miami, San Diego, Las Vegas, and a suburb of Washington

D.C. The combined empirical evidence suggests that to measure housing liquidity it is key

to account for observations that are censored when the home is withdrawn from the market

and to control for unobserved heterogeneity using repeat listings.

We also highlight the computational transparency and simplicity of both indices. The

RPHI can be estimated using a simple logistic regression, while the RMTI can be estimated
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with a simple two step procedure that combines the estimation of median TOM in each period

and an OLS regression. Given the availability of MLS data, we hope that the application of

our methods is a straightforward task. Periodic reporting of such indices should be useful

to investors, regulators, home buyers and home owners to assess housing market conditions

and make informed decisions.

References

Abbring, J. H., P.-A. Chiappori, and J. Pinquet (2003): “Moral hazard and dynamic
insurance data,” Journal of the European Economic Association, 1(4), 767–820.

Ambrose, B. W., N. E. Coulson, and J. Yoshida (forthcoming): “The Repeat Rent
Index,” The Review of Economics and Statistics.

Bailey, M. J., R. F. Muth, and H. O. Nourse (1963): “A Regression Method for
Real Estate Price Index Construction,” Journal of the American Statistical Association,
58(304), 933–942.

Carrillo, P. E. (2012): “An empirical stationary equilibrium search model of the housing
market,” International Economic Review, 53(1), 203–234.

Carrillo, P. E., E. R. de Wit, and W. Larson (2015): “Can Tightness in the Housing
Market Help Predict Subsequent Home Price Appreciation? Evidence from the United
States and the Netherlands,” Real Estate Economics, 43(3), 609–651.

Carrillo, P. E., and J. C. Pope (2012): “Are homes hot or cold potatoes? The distri-
bution of marketing time in the housing market,” Regional Science and Urban Economics,
42(1-2), 189–197.

Case, K. E., and R. J. Shiller (1987): “Prices of Single-Family Homes Since 1970: New
Indices for Four Cities,” New England Economic Review, p. 45.

(1989): “The Efficiency of the Market for Single-Family Homes,” The American
Economic Review, 79, 125.

Chamberlain, G. (1985): “Heterogeneity, omitted variable bias, and duration depen-
dence,” in Longitudinal Analysis of Labor Market Data, ed. by J. J. Heckman, and

B. Singer. Cambridge U. Press.

Cox, D. R. (1972): “Regression models and life-tables,” Journal of the Royal Statistical
Society. Series B (Methodological), pp. 187–220.

DiNardo, J., N. M. Fortin, and T. Lemieux (1996): “Labor Market Institutions and
the Distribution of Wages, 1973-1992: A Semiparametric Approach,” Econometrica, 64(5),
1001–1044.

27



Efron, B. (1967): “The two sample problem with censored data,” Proc. 5th Berkeley
Sympos. Math. Statist. Prob., Prentice-Hall: New York.

Flinn, C., and J. Heckman (1982): “New methods for analyzing structural models of
labor force dynamics,” Journal of Econometrics, 18(1), 115–168.

Glower, M., D. R. Haurin, and P. H. Hendershott (1998): “Selling time and selling
price: The influence of seller motivation,” Real estate economics, 26(4), 719–740.

Gobillon, L., T. Magnac, and H. Selod (2011): “The effect of location on finding a
job in the Paris region,” Journal of Applied Econometrics, 26(7), 1079–1112.

Gönül, F., and K. Srinivasan (1993): “Consumer purchase behavior in a frequently
bought product category: estimation issues and managerial insights from a hazard function
model with heterogeneity,” Journal of the American Statistical Association, 88(424), 1219–
1227.

Haurin, D. (1988): “The Duration of Marketing Time of Residential Housing,” Real Estate
Economics, 16(4), 396–410.

Heckman, J., and B. Singer (1984): “A method for minimizing the impact of distribu-
tional assumptions in econometric models for duration data,” Econometrica: Journal of
the Econometric Society, pp. 271–320.

Heckman, J. J., and G. J. Borjas (1980): “Does unemployment cause future unemploy-
ment? Definitions, questions and answers from a continuous time model of heterogeneity
and state dependence,” Economica, 47(187), 247–283.
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A Appendix

A.1 Derivation of Measures

We estimate quality-adjusted time-on-the-market distributions for each quarter-area combi-
nation in our sample. The method used to compute the distributions follow Carrillo and
Pope (2012), who combine the Dinardo, Fortin and Lemieux (1996) (DFL) with the Kaplan-
Meier (1958) estimator. This allows the DFL decomposition to work in cases where the
dependent variable is subject to random censoring. To keep our exposition self-contained,
we carefully review the decomposition method.

Let Y be our variable of interest (the time a listing stays on the market) and t0 and t1
refer to the two mutually exclusive periods (quarters) in each of the areas we analyze. The
cumulative probability function of Y in period t0 is defined as

F (y|T = T0) = Pr(Y ≤ y|T = t0) =

∫
F (y|x, T = t0)h(x|T = t0)dx (A.1)

where T is a random variable describing the period from which an observation is drawn
and x is a particular draw of observed attributes of individual characteristics from a random
vector of housing characteristics X. F (y|x, T = t0) is the (conditional) cumulative distribu-
tion of Y given that a particular set of attributes x have been picked, and h(x|T = t0) is
the probability density of individual attributes evaluated at x. The cumulative probability
function of Y in period t1 is defined similarly.

Suppose we would like to assess how the distribution of Y (marketing time) in period
t1 would look if the individual attributes x (number of bathrooms, bedrooms and age, for
example) were the same as in period t0 (the base quarter). We denote this counterfactual as
Ft1→t0 and express it symbolically as15

Ft1→t0 =

∫
F (y|x, T = t1)h(x|T = t0)dx (A.2)

Using Bayes’ rule, DFL recognized that

h(x|T = t0)

h(x|T = t1)
=

Pr(T=t0|X=x)
Pr(T=t0)

Pr(T=t1|X=x)
Pr(T=t1)

=

Pr(T=t0|X=x)
1−Pr(T=t0|X=x)

Pr(T=t0)
1−Pr(T=t0)

= τt1→t0(x) (A.3)

One may use Equation A.3 to substitute h(x|T = t0) in Equation A.2 and thereby obtain
Equation A.4.

Ft1→t0(y) =

∫
F (y|x, T = t1)h(x|T = t1)τt1→t0(x)dx (A.4)

Notice that this expression differs from Equation A.1 only by τt1→t0(x). DFL refer to
τt1→t0(x) as “weights” that should be applied when computing the counterfactual distribution

15The subscript t1 → t0 indicates that the attribute data from period t0 will be “replaced” by data from
period t1.
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of our variable of interest. However, given that the weights are unknown, they need to be
estimated.

Carrillo and Pope (2012) note that the DFL method described above cannot be directly
used in this application because marketing time is subject to random censoring; that is,
some properties are not sold and withdrawn from the market. Because the random variable
Y (marketing time) is subject to random censoring, the counterfactual distribution can be
computed using the Kaplan-Meier estimator, with sampling weights given by τt1→t0(x).

To be specific, we summarize the estimation algorithm for the counterfactual given that
a random sample of N0 and N1 observations for periods t0 and t1 is available. Notice that
in all steps described below the sample includes all censored and non-censored observations.

• Step 1: Estimate P (T = t0) using the share of observations where Ti = t0; that is,
compute: P̂r(Ti = t0) = N0/(N0 +N1) .

• Step 2: Estimate P (T = t0|X = x), by estimating a logit model using the pooled data.
The dependent variable equals one if Ti = t0 and explanatory variables include the
vector of individual attributes xi.

• Step 3: For the subsample of observations where Ti = t1, estimate the predicted values

from the logit P̂r(Ti = t0|X = xi) = exp(xiβ̂)/
(

1 + exp(xiβ̂)
)

, where β̂ is the parame-

ter vector from the logit regression. Then, compute the estimated weights τ̂t1→t0(x).

• Step 4: For the subsample of observations where Ti = t1, compute a weighted empirical
cumulative distribution function using the Kaplan-Meier estimator. Weights are given
by τ̂t1→t0(x).
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Figure 1:
Descriptive “Conventional” Statistics (part 1)
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Notes: This figure presents descriptive statistics of the sample. Panel A computes the mean and median number of days that a home stays on the
market (TOM). This is a “conventional” estimate that simply computes the mean and median TOM of finished durations (sold units). The second
panel shows the share of total listings that are withdrawn from the market.
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Figure 2:
Descriptive “Conventional” Statistics (part 2)
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Notes: This figure presents descriptive statistics of the sample. Panel A computes the mean and median number of days that a home stays on the
market (TOM). This is a “conventional” estimate that simply computes the mean and median TOM of finished durations (sold units). The second
panel shows the share of total listings that are withdrawn from the market.

33



Figure 3:
Adjusting for Censoring When Computing TOM Statistics (part 1)
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Notes: Panel A computes the median number of days that a home stays on the market (TOM). The “conventional” estimate simply computes the
median TOM of finished durations (sold units). To account for censoring, a Kaplan-Meier estimator is used. For units that are sold, TOM is defined
as the difference between the date when an offer was accepted and the date when the listing was posted. For censored observations, we compute
duration as the difference between the date when the listing was posted and the date when it was withdrawn. In Panel B, a COX proportional hazard
model is used to estimate changes in the baseline hazard relative to a base period (2010 q1). The “conventional” approach uses only the sample of
finished durations (sold units). To account for censoring, proportional hazard models are estimated using both finished and censored durations.
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Figure 4:
Adjusting for Censoring When Computing TOM Statistics (part 2)

0
20

0
40

0

2005q1 2007q1 2009q1 2011q1 2013q1
t

Accounting for Censoring Sold units

A. Median Number of Days on the Market

.5
1

1.
5

2
2.

5
3

2005q1 2007q1 2009q1 2011q1 2013q1
t

Accounting for Censoring Sold units

B. Proportional Shift in Baseline Hazard (Cox Regression)
2010q1 = 1

− Miami −

0
20

0

2004q1 2007q1 2010q1 2013q1
t

Accounting for Censoring Sold units

A. Median Number of Days on the Market

.5
1

1.
5

2
2.

5

2004q1 2007q1 2010q1 2013q1
t

Accounting for Censoring Sold units

B. Proportional Shift in Baseline Hazard (Cox Regression)
2010q1 = 1

− Honolulu −

0
10

0
20

0
30

0

2007q3 2009q1 2010q3 2012q1 2013q3
t

Accounting for Censoring Sold units

A. Median Number of Days on the Market

1
1.

5
2

2.
5

3

2007q3 2009q1 2010q3 2012q1 2013q3
t

Accounting for Censoring Sold units

B. Proportional Shift in Baseline Hazard (Cox Regression)
2010q1 = 1

− NewOrleans −

Notes: Panel A computes the median number of days that a home stays on the market (TOM). The “conventional” estimate simply computes the
median TOM of finished durations (sold units). To account for censoring, a Kaplan-Meier estimator is used. For units that are sold, TOM is defined
as the difference between the date when an offer was accepted and the date when the listing was posted. For censored observations, we compute
duration as the difference between the date when the listing was posted and the date when it was withdrawn. In Panel B, a COX proportional hazard
model is used to estimate changes in the baseline hazard relative to a base period (2010 q1). The “conventional” approach uses only the sample of
finished durations (sold units). To account for censoring, proportional hazard models are estimated using both finished and censored durations.
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Figure 5:
Controlling for Observed Heterogeneity: Conditional and Unconditional Median TOM
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Notes: This Figure plots the evolution of the unconditional and conditional median TOM in Fairfax County.
The unconditional median is computed using completed and censored durations and the Kaplan-Meier esti-
mator. The conditional median is calculated using the re-weighting approach proposed by Dinardo, Fortin
and Lemieux (1996). The conditional median TOM is simulated assuming that the characteristics of homes
(age, structure type, number of bedrooms and bathrooms) remain constant as in a base period (2000 q1).
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Figure 6:
Repeat Time-On-The-Market Indices (part 1)
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Notes: Panel A computes the Repeat Proportional Hazard Index (RPHI). The index measures relative shifts of the baseline hazard after controlling
for unobserved home’s heterogeneity. For example, and index value of 1.5 in period t reflects a 50 percent increase in the home sale baseline hazard
in period t relative to the base period (2010 q1). The RPHI is compared with a similar index based on a Cox- regression that does not correct for
unobserved heterogeneity. Panel B shows the (inverse of) the Repeat Median TOM Index (RMI). We report the inverse of the RMI to facilitate
comparison with the RPHI. The RPHI is compared with a simple index that compares the relative shift of the unconditional median TOM in period
t relative to the base period.
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Figure 7:
Repeat Time-On-The-Market Indices (part 2)
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Notes: Panel A computes the Repeat Proportional Hazard Index (RPHI). The index measures relative shifts of the baseline hazard after controlling
for unobserved home’s heterogeneity. For example, and index value of 1.5 in period t reflects a 50 percent increase in the home sale baseline hazard
in period t relative to the base period (2010 q1). The RPHI is compared with a similar index based on a Cox- regression that does not correct for
unobserved heterogeneity. Panel B shows the (inverse of) the Repeat Median TOM Index (RMI). We report the inverse of the RMI to facilitate
comparison with the RPHI. The RPHI is compared with a simple index that compares the relative shift of the unconditional median TOM in period
t relative to the base period.
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Table 1:
Geographic and Time Coverage of Sample

# Obs. All # Obs. All # Obs. Rep. Period
Urban Area Listings Home Sales Listings Begin End

01 Ann Arbor, MI 45,044 21,101 27,642 2004q1 2013q1
02 Boulder, CO 47,177 26,923 27,510 2004q1 2013q1
03 Durham, NC 59,234 34,125 31,112 2004q1 2013q1
04 Fairfax County, VA 357,515 244,961 232,382 2007q2 2010q4
05 Honolulu, HI 85,511 54,350 46,670 2004q1 2013q1
06 Las Vegas-Paradise, NV 262,267 153,577 140,181 2006q3 2013q1
07 Medford, OR 26,138 16,315 13,247 2004q1 2013q1
08 Miami-Miami Beach-Kendall, FL 219,210 112,069 96,982 2005q1 2013q1
09 New Orleans-Metairie-Kenner, LA 79,845 36,869 43,446 2007q3 2013q1
10 Olympia, WA 35,416 21,733 18,351 2004q1 2013q1
11 San Diego-Carlsbad-San Marcos, CA 367,122 207,162 228,676 2004q1 2013q1
12 San Luis Obispo-Paso Robles, CA 27,506 19,044 11,747 2004q1 2013q1
13 Santa Barbara-Santa Maria, CA 29,054 20,085 13,929 2004q1 2013q1
14 Toledo, OH 65,873 35,673 33,599 2004q1 2013q1
15 Youngstown-Warren-Boardman, OH-PA 52,825 27,098 26,099 2004q1 2013q1

Notes: This table tabulates the number of observations in each area we study. The first column shows the total number of real estate listings
reported on the MLS during the sample period. The second column shows the sale volume: the number of listings that end up in a sale. Column
three shows the number of repeat listings: the number of properties that were listed more than once during the sample period.
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Table 2:
Repeat Proportional Hazard Index (RPHI) in Selected US MSAs.

Geographic Area
Period 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

2002q1 3.062
2002q2 2.191
2002q3 1.355
2002q4 1.288
2003q1 2.291
2003q2 2.156
2003q3 1.851
2003q4 2.317
2004q1 1.425 0.844 1.442 4.064 2.870 2.930 1.636 6.199 3.040 3.878 2.829 1.146
2004q2 1.625 0.843 1.523 2.352 2.723 2.966 2.910 3.212 2.777 2.613 2.595 1.021
2004q3 1.409 0.830 1.376 1.885 2.345 3.317 2.625 1.745 1.708 2.111 1.852 1.094
2004q4 1.295 1.068 1.169 2.454 2.882 3.217 3.731 1.747 1.837 2.708 1.673 1.424
2005q1 1.696 1.300 2.133 3.388 4.122 3.956 0.987 4.228 2.585 2.242 1.967 2.568 1.488
2005q2 1.222 1.125 1.936 1.686 4.085 3.803 0.700 3.492 1.543 1.935 1.690 2.269 1.441
2005q3 0.781 1.020 1.463 0.665 2.833 2.344 0.763 3.682 1.042 1.673 1.278 2.058 1.066
2005q4 0.699 1.236 1.643 0.488 1.643 1.266 1.950 2.361 0.928 1.027 0.885 1.622 1.180
2006q1 0.734 1.208 2.171 0.481 2.052 1.690 2.384 2.897 0.914 1.035 0.950 2.132 1.406
2006q2 0.712 0.985 2.066 0.226 1.845 1.114 1.972 1.969 0.617 0.801 0.703 1.628 1.071
2006q3 0.495 0.843 1.646 0.245 1.020 1.078 0.759 1.619 1.693 0.556 0.870 0.610 1.244 0.938
2006q4 0.481 1.037 1.977 0.359 1.246 0.760 0.862 1.413 1.342 0.650 0.791 0.650 1.140 1.064
2007q1 0.534 1.511 2.270 0.443 1.767 0.276 1.152 1.030 1.774 0.670 1.108 0.748 0.947 1.110
2007q2 0.438 0.990 1.994 0.214 1.388 0.171 1.011 0.693 1.091 0.436 0.784 0.485 0.775 0.983
2007q3 0.561 0.883 1.154 0.135 0.968 0.169 0.580 0.523 1.356 0.945 0.321 0.579 0.465 0.564 0.871
2007q4 0.637 1.209 1.380 0.158 0.794 0.253 0.774 0.472 0.578 0.926 0.375 0.459 0.380 0.706 0.741
2008q1 0.756 1.324 1.318 0.215 0.812 0.417 0.487 0.636 0.692 1.096 0.528 0.637 0.651 0.942 0.968
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Continuation of Table 2:
Repeat Proportional Hazard Index (RPHI) in Selected US MSAs

Geographic Area
Period 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

2008q2 0.650 1.246 1.431 0.278 0.698 0.569 0.751 0.687 0.694 0.813 0.624 0.576 0.667 0.817 0.849
2008q3 0.688 0.914 1.119 0.328 0.527 0.597 0.887 0.865 0.620 0.875 0.811 0.689 0.699 0.777 0.836
2008q4 0.844 0.793 0.977 0.417 0.497 0.681 0.804 1.098 0.698 0.965 0.983 0.860 1.029 0.846 0.947
2009q1 0.917 0.870 1.145 0.623 0.627 0.894 0.688 1.155 0.942 0.937 0.772 0.910 0.787 1.143 0.944
2009q2 1.003 0.997 1.130 0.858 0.744 1.136 0.928 1.110 0.882 0.827 1.184 0.751 0.921 1.024 0.907
2009q3 1.249 1.064 1.250 0.930 1.033 1.235 1.039 0.972 0.752 1.127 1.216 1.099 0.862 0.942 0.937
2009q4 0.961 0.957 1.216 0.904 1.088 1.116 1.351 0.965 0.808 1.082 1.023 1.115 0.673 0.929 1.265
2010q1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2010q2 0.801 0.812 0.794 0.725 1.017 0.914 0.813 1.184 0.804 0.879 0.781 0.765 0.703 0.909 0.688
2010q3 0.779 0.572 0.713 0.645 0.872 0.840 1.078 1.474 0.802 1.052 0.635 0.905 0.595 0.766 0.657
2010q4 1.080 0.824 1.000 0.648 0.969 0.923 1.517 2.019 1.034 0.841 0.796 0.849 0.626 1.240 1.084
2011q1 1.019 1.030 0.879 1.120 1.157 1.350 2.404 1.430 1.071 0.952 0.977 0.639 1.308 0.990
2011q2 0.939 0.996 0.994 1.108 1.367 1.392 2.064 1.480 0.853 0.909 1.239 0.767 1.188 1.085
2011q3 1.065 0.785 1.091 1.080 1.449 1.419 2.236 1.377 0.869 0.982 1.128 0.885 1.054 0.869
2011q4 1.290 1.093 1.392 1.330 1.689 2.431 2.410 1.525 1.052 1.120 1.126 1.080 1.227 1.334
2012q1 2.002 2.252 1.520 1.453 2.515 2.437 3.072 2.170 1.472 1.643 1.922 1.126 2.018 2.254
2012q2 1.644 2.527 1.345 1.621 2.544 2.625 3.295 2.041 1.388 1.845 1.858 1.749 1.762 1.712
2012q3 1.821 1.805 1.530 2.036 2.168 2.371 3.457 2.114 1.041 1.924 1.864 2.044 1.675 1.516
2012q4 1.987 3.366 2.128 1.807 2.257 2.817 3.377 2.847 1.289 2.666 2.478 2.837 2.463 1.721
2013q1 1.730 3.903 2.485 3.684 2.685 3.101 2.954 2.342 2.515 3.495 3.255 3.193 3.001 1.774

Notes: Notes: The RPHI has been estimated in area 01: Ann Arbor, MI; 02: Boulder, CO; 03: Durham, NC; 04: Fairfax, VA; 05: Honolulu, HI;
06: Las Vegas, NV; 07: Medford, OR; 08: Miami, FL; 09: New Orleans; 10: Olympia, WA; 11: San Diego, CA; 12: San Luis Obispo, CA; 13: Santa
Barbara, CA; 14: Toledo, OH; and in area 15: Youngtown, OH. The index measures the (quality adjusted) shift in the baseline hazard relative to the
base period (2010q1).
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Table 3:
Repeat Median TOM Index (RMTI) in Selected US MSAs.

Geographic Area
Period 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

2002q1 0.278
2002q2 0.417
2002q3 0.827
2002q4 0.904
2003q1 0.444
2003q2 0.409
2003q3 0.496
2003q4 0.404
2004q1 0.565 0.942 0.841 0.212 0.500 0.572 0.666 0.089 0.318 0.275 0.476 0.893
2004q2 0.565 1.292 0.801 0.374 0.516 0.616 0.519 0.220 0.261 0.301 0.458 0.751
2004q3 0.804 1.403 0.867 0.488 0.551 0.511 0.605 0.450 0.478 0.447 0.724 0.905
2004q4 0.311 1.141 1.083 0.381 0.493 0.712 0.450 0.521 0.452 0.455 0.800 0.814
2005q1 1.139 0.982 0.772 0.228 0.396 0.453 0.893 0.504 0.347 0.413 0.466 0.582 0.806
2005q2 0.766 1.100 0.712 0.503 0.362 0.525 0.872 0.469 0.564 0.404 0.501 0.496 0.897
2005q3 1.097 1.180 0.918 1.553 0.469 0.644 0.602 0.454 0.856 0.549 0.669 0.582 1.001
2005q4 1.380 1.243 0.946 2.415 0.607 0.884 0.473 0.657 0.955 0.850 0.754 0.677 0.868
2006q1 1.093 1.026 0.767 2.697 0.586 0.793 0.333 0.561 1.031 0.859 1.040 0.722 0.869
2006q2 1.038 1.096 0.705 5.079 0.638 0.942 0.436 0.630 1.414 1.073 1.293 0.868 0.844
2006q3 1.367 1.346 0.885 5.336 0.926 0.933 1.168 0.556 0.624 1.561 1.104 0.908 0.738 1.084
2006q4 1.314 1.265 0.767 4.093 0.752 1.490 1.126 0.584 0.665 1.555 1.214 2.013 1.170 0.828
2007q1 1.271 0.915 0.694 3.429 0.698 2.866 0.980 0.857 0.634 1.633 0.842 1.411 1.414 0.986
2007q2 1.295 1.054 0.610 6.453 0.791 3.329 0.965 0.932 0.943 1.993 1.001 1.195 1.439 0.962
2007q3 1.390 0.982 0.768 7.973 0.988 3.705 0.914 1.279 0.815 0.700 2.672 1.389 1.589 0.991 1.048
2007q4 1.531 1.437 0.779 6.575 0.911 3.524 1.084 1.212 1.003 1.065 2.202 1.348 2.738 1.649 0.995
2008q1 1.507 1.027 0.867 6.252 1.057 3.337 0.811 1.285 1.025 0.806 2.060 1.125 1.720 0.844 1.104
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Continuation of Table 3:
Repeat Median TOM Index (RMTI) in Selected US MSAs

Geographic Area
Period 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

2008q2 1.128 0.976 0.607 5.371 1.096 2.654 0.901 1.145 0.977 0.858 1.715 1.254 1.188 0.958 1.019
2008q3 1.599 1.156 1.374 4.501 1.422 2.548 1.462 1.092 1.210 0.831 1.500 1.220 1.005 1.072 0.964
2008q4 0.762 1.217 0.928 3.545 1.191 2.030 1.911 1.049 1.223 0.802 1.143 0.954 1.095 1.066 1.026
2009q1 2.270 1.241 0.976 1.838 1.144 1.532 1.504 0.842 1.212 1.142 1.397 1.143 1.088 1.123 0.926
2009q2 1.220 1.035 1.011 1.228 1.124 0.935 1.112 0.981 1.207 0.937 1.010 1.063 1.013 1.010 0.919
2009q3 1.155 1.259 0.994 1.153 0.968 0.845 1.109 0.987 1.102 1.075 0.939 0.859 0.889 0.991 0.886
2009q4 1.952 1.267 1.255 1.202 0.889 0.979 1.037 0.931 1.214 1.044 1.049 0.807 1.679 1.001 1.206
2010q1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2010q2 1.324 0.887 1.044 1.427 1.061 1.192 1.167 0.995 1.169 0.832 1.343 1.084 1.291 0.923 1.107
2010q3 1.077 2.083 1.179 1.745 0.976 1.326 1.096 0.963 1.206 1.415 1.521 1.176 1.797 1.210 1.168
2010q4 2.074 1.082 1.179 1.414 0.746 1.086 1.064 0.678 0.871 1.054 1.343 1.463 1.432 0.983 1.015
2011q1 1.271 1.401 1.343 1.061 0.905 1.261 0.589 0.948 1.289 1.086 0.841 1.510 0.959 1.221
2011q2 1.154 1.240 1.121 1.012 0.806 1.170 0.587 0.974 1.273 1.177 0.764 1.311 1.004 1.044
2011q3 1.453 1.230 1.194 0.896 0.648 1.001 0.594 0.994 1.378 1.121 0.945 1.203 1.073 1.126
2011q4 1.120 1.510 1.137 0.796 0.533 0.952 0.507 0.812 1.293 0.882 1.166 1.105 1.028 1.116
2012q1 1.151 0.958 1.013 0.766 0.294 0.802 0.408 0.685 1.077 0.658 0.750 1.207 0.946 0.925
2012q2 0.931 0.724 1.031 0.772 0.289 0.732 0.354 0.739 0.861 0.497 0.545 0.646 0.950 0.911
2012q3 0.784 0.722 0.964 0.687 0.372 0.780 0.322 0.679 1.111 0.507 0.513 0.585 0.955 0.778
2012q4 0.970 0.928 1.174 0.685 0.363 0.623 0.314 0.574 1.283 0.335 0.553 0.502 0.809 0.914
2013q1 0.909 0.551 0.656 0.412 0.232 0.512 0.237 0.390 0.728 0.203 0.345 0.251 0.598 0.558

Notes: Notes: The RMTI has been estimated in area 01: Ann Arbor, MI; 02: Boulder, CO; 03: Durham, NC; 04: Fairfax, VA; 05: Honolulu, HI;
06: Las Vegas, NV; 07: Medford, OR; 08: Miami, FL; 09: New Orleans; 10: Olympia, WA; 11: San Diego, CA; 12: San Luis Obispo, CA; 13: Santa
Barbara, CA; 14: Toledo, OH; and in area 15: Youngtown, OH. The index measures the shift in the (quality adjusted) median TOM relative to the
base period (2010q1).
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