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Abstract. An agent operating in a self-referential environment thinks the parameters
of his model might be time-varying. In response, he estimates two models, one with
time-varying parameters, and another with constant parameters. Forecasts are then
based on a Bayesian Model Averaging strategy, which mixes forecasts from the two
models. In reality, structural parameters are constant, but the (unknown) true model
features expectational feedback, which the agent’s reduced form models neglect. This
feedback allows the agent’s fears of parameter instability to be self-confirming. Within
the context of a standard linear present value asset pricing model, we use the tools of
large deviations theory to show that the agent’s self-confirming beliefs about parameter
instability exhibit Markov-switching dynamics between periods of tranquility and periods
of instability. However, as feedback increases, the duration of the unstable state increases,
and instability becomes the norm. Even though the constant parameter model would
converge to the (constant parameter) Rational Expectations Equilibrium if considered
in isolation, the mere presence of an unstable alternative drives it out of consideration.

JEL Classification Numbers: C63, D84

1. Introduction

Econometric model builders quickly discover their parameter estimates are unstable.1

It’s not at all clear how to respond to this. Maybe this drift is signalling model mis-
specification. If so, then by appropriately adapting a model’s specification, parameter
drift should dissipate over time. Unfortunately, evidence suggests that drift persists even
when models are adapted in response to the drift. Another possibility is that the un-
derlying environment is inherently and exogenously nonstationary, so there is simply no
hope of describing economic dynamics in models with constant parameters. Clearly, this
is a rather negative prognosis. Our paper considers a new possibility, one that is consis-
tent with both the observed persistence of parameter drift, and its heteroskedastic nature.
We show that in self-referential environments, where the agent’s own beliefs influence the
data-generating process (DGP), it is possible that persistent parameter drift becomes self-
confirming. That is, parameters drift simply because agents think they might drift. We
show that this instability can arise even in models that would have unique and determi-
nate equilibria if parameters were known. Self-confirming volatility arises here because

Date: June, 2015.
We thank Tom Sargent for helpful discussions, and Shirley Xia for expert research assistance.
1See, e.g., Cogley and Sargent (2005), Fernandez-Villaverde and Rubio-Ramirez (2007), and Inoue and
Rossi (2011) for evidence on parameter instability in macroeconomic models. Bacchetta and van Wincoop
(2013) discuss parameter instability in exchange rate models.
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agents are assumed to be unaware of their own influence over the DGP, and respond to it
indirectly by adapting parameter estimates.2

We consider a standard present value asset pricing model. This model relates current
prices to current fundamentals, and to current expectations of future prices. Agents
are assumed to be unaware of this expectational feedback. Instead, they posit reduced
form models, and update coefficient estimates as needed. If agents believe parameters are
constant, and update estimates accordingly using recursive Least-Squares, their beliefs will
eventually converge to the true (constant parameters) Rational Expectations equilibrium
(see, e.g., Evans and Honkapohja (2001) for the necessary stability conditions). On the
other hand, if they are convinced parameters drift, with a constant innovation variance
that is strictly positive, they will estimate parameters using the Kalman filter, and their
beliefs will exhibit persistent fluctuations around the Rational Expectations equilibrium.

A large recent literature argues that these so-called ‘constant gain’ (or ‘perpetual learn-
ing’) models are useful for understanding a wide variety of dynamic economic phenomena.3

Unfortunately, several nagging questions plague this literature - Why are agents so con-
vinced that parameters are time-varying? In terms of explaining volatility, don’t these
models in a sense “assume the result”? What if agents’ beliefs were less dogmatic, and
allowed for the possibility that parameters were constant? As in Kalai and Lehrer (1993),
wouldn’t this ‘grain of truth’ property cause the constant parameter model to eventually
dominate?

Our paper addresses these questions. We do so by extending an example presented
by Evans, Honkapohja, Sargent, and Williams (2013). They study a standard cobweb
model, in which agents consider two models. One model has constant parameters, and
the other has time-varying parameters (TVP). When computing foreasts of next period’s
price, agents hedge their bets by engaging in a traditional Bayesian Model Averaging
strategy. That is, forecasts are just the current probability weighted average of the two
models’ forecasts. Using simulations, they find that if expectational feedback is sufficiently
strong, the weight on the TVP model often coverges to one, even though the underlying
structural model features constant parameters. As in Gresham’s Law, ‘bad models drive
out good models’.4

We show that averaging between constant and TVP models generates a hierarchy of
four time-scales. The data operate on a relatively fast calendar time-scale. Estimates
of the TVP model evolve on a slower time-scale, determined by the innovation variance
of the parameters. Estimates of the constant-parameter model evolve even slower, on
a time-scale determined by the inverse of the historical sample size. Finally, the model
weight evolves on a variable time-scale, but spends most of its time in the neighborhood of
2Another possibility is sometimes advanced, namely, that parameter drift is indicative of the Lucas Critique
at work. This is an argument that Lucas (1976) himself made. However, as noted by Sargent (1999), the
Lucas Critique (by itself) cannot explain parameter drift.
3Examples include: Sargent (1999), Cho, Williams, and Sargent (2002), Marcet and Nicolini (2003), Kasa
(2004), Chakraborty and Evans (2008), and Benhabib and Dave (2014).
4Gresham’s Law is named for Sir Thomas Gresham, who was a financial adviser to Queen Elizabeth I. He
is often credited for noting that ‘bad money drives out good money’. Not surprisingly, ‘Gresham’s Law’
is a bit of a misnomer. As DeRoover (1949) documents, it was certainly known before Gresham, with
clear descriptions by Copernicus, Oresme, and even Aristophanes. There is also debate about its empirical
validity (Rolnick and Weber (1986)).
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either 0 or 1, where it evolves on a time-scale that is even slower than that of the constant
parameters model. This hierarchy of time-scales allows us to exploit standard time-scale
separation methods to simplify the analysis of the dynamics (Borkar (2008)).

Using these methods, we prove that if feedback is sufficiently strong, the weight on the
TVP model converges to one. In this sense, Gresham was right; bad models do indeed
drive out good models. With empirically plausible parameter values, we find that steady
state asset price volatility is more than 90% higher than it would be if agents just used the
constant parameters model. The intuition for why the TVP model eventually dominates is
the following - When the weight on the TVP model is close to one, the world is relatively
volatile (due to feedback). This makes the constant parameters model perform relatively
poorly, since it is unable to track the feedback-induced time-variation in the data. Of
course, the tables are somewhat turned when the weight on the TVP model is close to
zero. Now the world is relatively tranquil, and the TVP model suffers from additional
noise, which puts it at a competitive disadvantage. However, as long as this noise isn’t
too large, the TVP model can take advantage of its ability to respond to rare sequences of
shocks that generate ‘large deviations’ in the estimates of the constant parameters model.
In a sense, during tranquil times, the TVP model is lying in wait, ready to pounce on, and
exploit, large deviation events. These events provide a foothold for the TVP model, which
due to feedback, allows it to regain its dominance. It is tempting to speculate whether
this sort of mechanism could be one factor in the lingering, long-term effects of rare events
like financial crises.

The remainder of the paper is organized as follows. The next section presents our asset
pricing version of the model in Evans, Honkapohja, Sargent, and Williams (2013). We
first study the implications of learning with only one model, and discuss whether beliefs
converge to self-confirming equilibria. We then allow the agent to consider both models
simultaneously, and examine the implications of Bayesian Model Averaging. Section 3
contains our proof that the weight on the TVP model eventually converges to one. Section
4 illustrates our results with a variety of simulations. These simulations reveal that during
the transition the agent occasionally switches between the two models. Section 5 discusses
the robustness of the results to alternative definitions of the model space, and emphasizes
the severity of Kalai and Lehrer’s (1993) ‘grain of truth’ condition. Finally, the Conclusion
discusses a few extensions and potential applications, while the Appendix collects proofs
of various technical results.

2. To believe is to see

To illustrate the basic idea, let us start with a motivating example. This example is
inspired by the numerical simulations of Evans, Honkapohja, Sargent, and Williams (2013)
using a cobweb model. We argue that the findings of Evans, Honkapohja, Sargent, and
Williams (2013) can potentially apply to a broader class of dynamic models.

2.1. Motivating example. Consider the following workhorse asset-pricing model, in
which an asset price at time t, pt, is determined according to

pt = δzt + αEtpt+1 + σεt (2.1)
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where zt denotes observed fundamentals (e.g., dividends), and where α ∈ (0, 1) is a (con-
stant) discount rate, which determines the strength of expectational feedback. Empirically,
it is close to one. The εt shock is Gaussian white noise. Fundamentals are assumed to
evolve according to the AR(1) process

zt = ρzt−1 + σzεz,t (2.2)

for ρ ∈ (0, 1). The fundamentals shock, εz,t, is Gaussian white noise, and is assumed to be
orthogonal to the price shock εt. The unique stationary rational expectations equilibrium
is

pt =
δ

1 − αρ
zt + σεt. (2.3)

Along the equilibrium path, the dynamics of pt can only be explained by the dynamics of
fundamentals, zt. Any excess volatility of pt over the volatility of zt must be soaked-up
by the exogenous shock εt.

It is well known that Rational Expectations versions of this kind of model cannot explain
observed asset price dynamics (Shiller (1989)). Not only are prices excessively volatile, but
this volatility comes in recurrent ‘waves’. Practitioners respond to this using reduced form
ARCH models. Instead, we try to explain this persistent stochastic volatility by assuming
that agents are engaged in a process of Bayesian learning. Of course, the notion that
learning might help to explain asset price volatility is hardly new (see, e.g., Timmermann
(1996) for an early and influential example). However, early examples were based on least-
squares learning, which exhibited asymptotic convergence to the Rational Expectations
Equilibrium. This would be fine if volatility appeared to dissipate over time, but as noted
earlier, there is no evidence for this. In response, a more recent literature has assumed
that agents use so-called constant gain learning, which discounts old data. This keeps
learning alive. For example, Benhabib and Dave (2014) show that constant gain learning
can generate persistent excess volatility, and can explain why asset prices have fat-tailed
distributions even when the distribution of fundamentals is thin-tailed.

Our paper builds on the work of Benhabib and Dave (2014). The key parameter in
their analysis is the update gain. Not only do they assume it is bounded away from
zero, but they restrict it to be constant. Following Sargent and Williams (2005), they
note that a constant gain can provide a good approximation to the (steady state) gain of
an optimal Kalman filtering algorithm. However, they go on to show that the learning
dynamics exhibit recurrent escapes from this steady state. This calls into question whether
agents would in fact cling to a constant gain in the presence of such instability. Here we
allow the agent to effectively employ a time-varying gain, which is not restricted to be
nonzero. We do this by supposing that agents average between a constant gain and a
decreasing/least-squares gain. Evolution of the model probability weights delivers a state-
dependent gain. In some respects, our analysis resembles the gain-switching algorithm
of Marcet and Nicolini (2003). However, they require the agent to commit to one or the
other, whereas we permit the agent to be a Bayesian, and average between the two. Despite
the fact that our specification of the gain is somewhat different, like Benhabib and Dave
(2014), we rely on the theory of large deviations to provide an analytical characterization
of the Markov-switching escape dynamics.
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2.2. Learning with a correct model. Suppose the agent knows the fundamentals pro-
cess in eq. (2.2), but does not know the structural price equation in eq. (2.1). Instead,
the agent postulates the following state-space model for prices

pt = βtzt + σεt (2.4)
βt = βt−1 + σvvt (2.5)

where it is assumed that cov(ε, v) = 0. Note that the Rational Expectations equilibrium
is a special case of this, with σv = 0 and β = δ/(1− αρ). For now, let’s suppose the agent
adopts the dogmatic prior that parameters are constant.

M0 : σ2
v = 0.

Given this belief, he estimates the unknown parameter of his model using the following
Kalman filter algorithm

β̂t+1 = β̂t +
(

Σt

σ2 + Σtz2
t

)
zt(pt − β̂tzt) (2.6)

Σt+1 = Σt −
(ztΣt)2

σ2 + Σtz
2
t

(2.7)

where we adopt the common assumption that β̂t is based on time-(t − 1) information,
while the time-t forecast of prices, ρβ̂tzt, can incorporate the latest zt observation. This
assumption is made to avoid simultaneity between beliefs and observations.5 The process,
Σt, represents the agent’s evolving estimate of the variance of β̂t. Notice that given his
beliefs that parameters are constant, Σt converges to zero at rate t−1. This makes sense. If
parameters really are constant, then each new observation contributes less and less relative
to the existing stock of knowledge. On the other hand, notice that during the transition,
the agent’s beliefs are inconsistent with the data. He thinks β is constant, but due to
expectational feedback, his own learning causes β to be time-varying. This can be seen
by substituting the agent’s time-t forecast into the true model in eq. (2.1)

pt = [δ + ραβ̂t]zt + σεt (2.8)

= T (β̂t)zt + σεt

It’s fair to say that opinions differ as to whether this inconsistency is important. As long as
the T -mapping between beliefs and outcomes has the appropriate stability properties, the
agent’s incorrect beliefs will eventually be corrected. That is, learning-induced parameter
variation eventually dissipates, and the agent eventually learns the Rational Expectations
equilibrium. However, as pointed out by Bray and Savin (1986), in practice this conver-
gence can be quite slow, and one could then reasonably ask why agents aren’t able to
detect the parameter variation that their own learning generates. If they do, wouldn’t
they want to revise their learning algorithm, and if they do, will learning still take place?6

5See Evans and Honkapohja (2001) for further discussion.
6McGough (2003) addresses this issue. He pushes the analysis one step back, and shows that if agents start
out with a time-varying parameter learning algorithm, but have priors that this variation damps out over
time, then agents can still eventually converge to a constant parameter Rational Expectations equilibrium.
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In our view, this debate is largely academic, since the more serious problem with this
model is that it fails to explain the data. Since learning is transitory, so is any learning
induced parameter instability. Although there is some evidence in favor of a ‘Great Mod-
eration’ in the volatility of macroeconomic aggregates (at least until the recent financial
crisis!), there is little or no evidence for such moderation in asset markets. As a result,
more recent work assumes agents view parameter instability as a permanent feature of the
environment.

2.3. Learning with a wrong model. Now assume the agent has a different dogmatic
prior. Suppose he is now convinced that parameters are time-varying, which can be
expressed as the parameter restriction

M1 : σ2
v > 0.

Although this is a ‘wrong model’ from the perspective of the (unknown) Rational Expecta-
tions equilibrium, the more serious specification error here is that the agent does not even
entertain the possibility that parameters might be constant. This prevents him from ever
learning the Rational Expectations equilibrium (Bullard (1992)). Still, due to feedback,
there is a sense in which his beliefs about parameter instability can be self-confirming,
since ongoing belief revisions will produce ongoing parameter instability.

The belief that σ2
v > 0 produces only a minor change in the Kalman filtering algorithm

in eqs. (2.6)-(2.7). We just need to replace the Riccati equation in (2.7) with the new
Riccati equation

Σt+1 = Σt −
(ztΣt)2

σ2 + Σtz
2
t

+ σ2
v (2.9)

The additional σ2
v term causes Σt to now converge to a strictly positive limit, Σ̄ > 0.

As noted by Benveniste et. al. (1990, pgs. 139-40), if we assume σ2
v << σ2, which

we will do in what follows, we can use the approximation σ2 + Σtz
2
t ≈ σ2 in the above

formulas (Σt is small relative to σ2 and scales inversely with z2
t ). The Riccati equation in

(2.9) then delivers the following approximation for the steady state variance of the state,
Σ̄ ≈ σ · σvM

−1/2
z , where Mz = E(z2

t ) denotes the second moment of the fundamentals
process. In addition, if we further assume that priors about parameter drift take the
particular form, σ2

v = γ2σ2M−1
z , then the steady state Kalman filter takes the form of the

following (discounted) recursive least-squares algorithm

β̂t+1 = β̂t + γM−1
z zt(pt − β̂tzt) (2.10)

where the agent’s priors about parameter instability are now captured by the so-called
‘gain’ parameter, γ. If the agent thinks parameters are more unstable, he will use a higher
gain.

Constant gain learning algorithms have explained a wide variety of dynamic economic
phenomena. For example, Cho, Williams, and Sargent (2002) show they potentially ex-
plain US inflation dynamics. Kasa (2004) argues they can explain recurrent currency
crises. Chakraborty and Evans (2008) show they can explain observed biases in forward
exchange rates, while Benhabib and Dave (2014) show they explain fat tails in asset price
distributions.
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An important question raised by this literature arises from the fact that the agent’s
model is ‘wrong’. Wouldn’t a smart agent eventually discover this?7 On the one hand, this
is an easy question to answer. Since his prior dogmatically rules out the ‘right’ constant
parameter model, there is simply no way the agent can ever detect his misspecification,
even with an infinite sample. On the other hand, due to the presence of expectational
feedback, a more subtle question is whether the agent’s beliefs about parameter instability
can become ‘self-confirming’ (Sargent (2008))? That is, to what extent are the random
walk priors in eq. (2.5) consistent with the observed behavior of the parameters in the
agent’s model? Would an agent have an incentive to revise his prior in light of the data
that are themselves (partially) generated by those priors?

It is useful to divide this question into two pieces, one related to the innovation variance,
σ2

v , and the other to the random walk nature of the dynamics. As noted above, the
innovation variance is reflected in the magnitude of the gain parameter. Typically the
gain is treated as a free parameter, and is calibrated to match some feature of the data.
However, as noted by Sargent (1999, chpt. 6), in self-referential models the gain should
not be treated as a free parameter. It is an equilibrium object. This is because the optimal
gain depends on the volatility of the data, but at the same time, the volatility of the data
depends on the gain. Evidently, as in a Rational Expectation Equilbrium, we need a fixed
point.

In a prescient paper, Evans and Honkapohja (1993) addressed the problem of computing
this fixed point. They posed the problem as one of computing a Nash equilibrium. In
particular, they ask - Suppose everyone else is using a given gain parameter, so that
the data-generating process is consistent with this gain. Would an individual agent have
an incentive to switch to a different gain? Under appropriate stability conditions, one
can then compute the equilibrium gain by iterating on a best response mapping as usual.
Evans and Ramey (2006) extend the work of Evans and Honkapohja (1993). They propose
a Recursive Prediction Error algorithm, and show that it does a good job tracking the
optimal gain in real-time. They also point out that due to forecast externalities, the Nash
gain is typically Pareto suboptimal. More recently, Kostyshyna (2012) uses Kushner and
Yang’s (1995) adaptive gain algorithm to revisit the same hyperinflation episodes studied
by Marcet and Nicolini (2003). The idea here is to recursively update the gain in exactly
the same way that parameters are updated. The only difference is that now there is a
constant gain governing the evolution of the parameter update gain. Kostyshyna (2012)
shows that her algorithm performs better than the discrete, markov-switching algorithm
of Marcet and Nicolini (2003). In sum, σ2

v can indeed become self-confirming, and agents
can use a variety of algorithms to estimate it.

To address the second issue we need to study the dynamics of the agent’s parameter
estimation algorithm in eq. (2.10). After substituting in the actual price process this can
be written as

β̂t+1 = β̂t + γM−1
z zt

{
[δ + (αρ − 1)β̂t]zt + σεt

}
(2.11)

7Of course, a constant gain model could be the ‘right’ model too, if the underlying environment features
exogenously time-varying parameters. After all, it is this possibility that motivates their use in the first
place. Interestingly, however, most existing applications of constant gain learning feature environments in
which doubts about parameter stability are entirely in the head of the agents.
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Let β∗ = δ/(1 − αρ) denote the Rational Expectations equilibrium. Also let τt = t · γ,
and then define β̂(τt) = β̂t. We can then form the piecewise-constant continuous-time
interpolation, β̂(τ) = β̂(τt) for τ ∈ [tγ, tγ + γ]. Although for a fixed γ (and σ2

v) the paths
of of β̂(τ) are not continuous, they converge to the following continuous limit as σ2

v → 0
(see Evans and Honkapohja (2001) for a proof)

Proposition 2.1. As σ2
v → 0, β̂(τ) converges weakly to the following diffusion process

dβ̂ = −(1 − αρ)(β̂ − β∗)dτ + γM−1/2
z σdWτ (2.12)

This is an Ornstein-Uhlenbeck process, which generates a stationary Gaussian distri-
bution centered on the Rational Expectations equilibrium, β∗. Notice that the innovation
variance is consistent with the agent’s priors, since γ2σ2M−1

z = σ2
v . However, notice also

that dβ̂ is autocorrelated. That is, β̂ does not follow a random walk. Strictly speaking
then, the agent’s priors are misspecified. However, remember that traditional definitions
of self-confirming equilibria presume that agents have access to infinite samples. In prac-
tice, agents only have access to finite samples. Given this, we can ask whether the agent
could statistically reject his prior.8 This will be difficult when the drift in eq. (2.12) is
small. This is the case when: (1) Estimates are close to the β∗, (2) Fundamentals are
persistent, so that ρ ≈ 1, and (3) Feedback is strong, so that α ≈ 1.

These results show that if the ‘grain of truth’ assumption fails, wrong beliefs can be quite
persistent (Esponda and Pouzo (2014)). One might argue, however, that the persistence
of M1 is driven entirely by the fact that the agent’s beliefs fail to satisfy the grain of truth
assumption. If the agent were to expand his priors to include M0, it would eventually
dominate (Kalai and Lehrer (1993)).

We claim otherwise, and demonstrate that the problem arising from the presence of
misspecified models can be far more insidious. We do this by expanding upon the example
presented by Evans, Honkapohja, Sargent, and Williams (2013). We show that misspecified
models can survive the grain of truth assumption. The mere presence of a misspecified
alternative can disrupt the learning process.

2.4. Model Averaging. Dogmatic priors (about anything) are rarely a good idea. So
let’s now suppose the agent hedges his bets by entertaining the possibility that parameters
are constant. Forecasts are then constructed using a traditional Bayesian Model Averaging
(BMA) strategy. This strategy effectively ‘convexifies’ the model space. If we let πt denote
the current probability assigned to M1, the TVP model, and let βt(i) denote the current
parameter estimate for Mi, the agent’s time-t forecast becomes9

Etpt+1 = ρ[πtβt(1) + (1 − πt)βt(0)]zt (2.13)

Substituting this into the actual law of motion for prices implies that parameter estimates
evolve according to

βt+1(i) = βt(i)+
(

Σt(i)
σ2 + Σt(i)z2

t

)
zt{[δ+αρ[πtβt(1)+(1−πt)βt(0)]−βt(i)]zt+σεt} (2.14)

8In the language of Hansen and Sargent (2008), we can compute the detection error probability.
9To ease notation in what follows, we shall henceforth omit the hats from the parameter estimates.
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Note that the only difference between the two arises from their gain sequences, Σt(i), and
that these two gain sequences are independent of any model averaging. Still, it appears
things have become vastly more complicated. Not only are the βt(i)’s coupled, but they
appear to depend on the evolution of the model weights, πt. Fortunately, things are not as
bad as they look, thanks to a time-scale separation, and the following global asymptotic
stability result, which shows that the βt(i)’s converge to the same, unique, self-confirming
equilibrium values for all values of πt:

Proposition 2.2. If αρ < 1, then as t → ∞ and σ2
v → 0, βt(0)

w.p.1−−−→ δ
1−ρα and βt(1) ⇒

δ
1−ρα for all πt ∈ (0, 1).

Proof. See Appendix A. ut

This result is not too surprising, since both models are forecasting the same thing using
the same variable. However, it is quite useful, since it implies that all the action in the
dynamics lies in the evolution of the model weight, πt.

3. Model Averaging Dynamics

Since the decision maker is Bayesian, he updates πt according to Bayes rule, starting
from a given prior π0 ∈ (0, 1). Since we’re now assuming π0 > 0, the agent assigns a
positive weight to the REE model. His prior therefore satisfies the grain of truth condition.

Conversely, since M1 is assigned a positive probability, the agent’s model is misspecified.
The model is misspecified, not because it excludes a variable, but because it includes a
variable which is not in the true model (i.e., σ2

v). Normally, in situations where the data-
generating process is independent of the agent’s actions, this sort of practice of starting
from a larger model is rather innocuous. The data will show that any variables not in the
true model are insignificant. We shall now see that this is no longer the case when the
data-generating process is endogenous.

3.1. Odds ratio. The agent updates his prior πt = πt(1) that the data is generated
according to M1. After a long tedious calculation, the Bayesian updating scheme for πt

can be written as (see Evans, Honkapohja, Sargent, and Williams (2013) for a partial
derivation)

1
πt+1

− 1 =
At+1(0)
At+1(1)

(
1
πt

− 1
)

(3.15)

where

At(i) =
1√

σ2 + Σt(i)z2
t

e
− (pt−ρβt(i)zt)

2

2(σ2+Σt(i)z
2
t )

is the time-t predictive likelihood function for model Mi. To study the dynamics of πt it
is useful to rewrite eq. (3.15) as follows

πt+1 = πt + πt(1 − πt)
[

At+1(1)/At+1(0)− 1
1 + πt(At+1(1)/At+1(0)− 1)

]
(3.16)

which has the familiar form of a discrete-time replicator equation, with a stochastic, state-
dependent, fitness function determined by the likelihood ratio. Equation (3.16) reveals a
lot about the model averaging dynamics. First, it is clear that the boundary points
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π = {0, 1} are trivially stable fixed points, since they are absorbing. Second, we can also
see that there could be an interior fixed point, where E(At+1(1)/At+1(0)) = 1. Later,
as part of the proof of Lemma 3.2 we shall see that this occurs when π = 1

2ρα , which is
interior if feedback is strong enough (i.e., if α > 1

2ρ). However, we shall also see there
that this fixed point is unstable. So we know already that πt will spend most of its time
near the boundary points. This will become apparent when we turn to the simulations in
Section 4. One remaining issue is whether πt could ever become absorbed at one of the
boundary points.

Proposition 3.1. As long as the likelihoods of M0 and M1 have full support, the boundary
points πt = {0, 1} are unattainable in finite time.

Proof. This result is quite intuitive. With two full support probability distributions, you
can never conclude that a history of any finite length couldn’t have come from either of
the distributions. Slightly more formally, if the distributions have full support, they are
mutually absolutely continuous, so the likelihood ratio in eq. (3.16) is strictly bounded
between 0 and some upper bound B. To see why πt < 1 for all t, notice that πt+1 <
πt + πt(1− πt)M for some M < 1, since the likelihood ratio is bounded by B. Therefore,
since π + π(1− π) ∈ [0, 1] for π ∈ [0, 1], we have

πt+1 ≤ πt + πt(1− πt)M
< πt + πt(1− πt)
≤ 1

and so the result follows by induction. The argument for why πt > 0 is completely
symmetric. ut

Since the distributions here are assumed to be Gaussian, they obviously have full sup-
port, so Proposition 3.1 applies. Although the boundary points are unattainable, the
replicator equation for πt in eq. (3.16) makes it clear that πt will spend most of its time
near these boundary points, since the relationship between πt and πt+1 has the familiar
logit function shape, which flattens out near the boundaries. As a result, πt evolves very
slowly near the boundary points. In fact, we shall now show that it evolves even more
slowly than the t−1 time-scale of βt(0). This means that when studying the dynamics of
the coefficient estimates near the boundaries, we can treat πt as fixed.

3.2. Log Odds Ratio. Let us initialize the likelihood ratio at the prior odds ratio:
A0(0)
A0(1)

=
π0(0)
π0(1)

.

By iteration we get
πt+1(0)
πt+1(1)

=
1

πt+1
− 1 =

t+1∏

k=0

Ak(0)
Ak(1)

,

Taking logs and dividing by (t + 1),

1
t + 1

ln
(

1
πt+1

− 1
)

=
1

t + 1

t+1∑

k=0

ln
Ak(0)
Ak(1)

.
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Now define the average log odds ratio, φt, as follows

φt =
1
t

ln
(

1
πt

− 1
)

=
1
t

ln
(

πt(0)
πt(1)

)

which can be written recursively as the following stochastic approximation algorithm

φt = φt−1 +
1
t

[
ln

At(0)
At(1)

− φt−1

]
.

Invoking well knowing results from stochastic approximation, we know that the asymptotic
properties of φt are determined by the stability properties of the following ODE

φ̇ = E

[
ln

At(0)
At(1)

]
− φ

which has a unique stable point

φ∗ = E ln
At(0)
At(1)

.

Note that if φ∗ > 0, πt → 0, while if φ∗ < 0, πt → 1. Thus, the focus of the ensuing
analysis is to identify the sign of φ∗, rather than its value.

3.3. Benchmark time scale. We use the sample avergae time scale, 1/t, as the bench-
mark: ∀τ > 0, we can find the unique integer satisfying

K−1∑

k=1

1
k

< τ <

K∑

k=1

1
k
.

Let m(τ) = K and define

tK =
K∑

k=1

1
k

Therefore, tK → ∞ as K → ∞. We are interested in the sample paths over the tail
interval [tK , tK + τ) where we initialize φtK = φ0, when letting K → ∞. Since σ2

v > 0,
βt(1) evolves at the speed of a constant gain algorithm

lim
t→∞

t|βt(1)− βt−1(1)| = ∞,

while βt(0) evolves at the speed of a decreasing gain algorithm so that it evolves on the
same time scale as φt,

0 < lim
t→∞

t|βt(0)− βt−1(0)| < ∞.

3.4. Evolution of πt. The evolution speed of πt is state dependent. If πt is in the interior
of [0, 1], it evolves at much faster rate than if it’s near the boundary. To make things more
difficult, πt does not have a simple recursive form as do βt(i) (i = 1, 2) and φt. In principle,
we have to consider different cases, depending upon the speed of πt. As it turns out, every
case follows more or less the same logic, which greatly simplifies the analysis.

Let Π be the collection of all sample paths of {πt}, endowed with a probability distri-
bution. Consider

Π0 = {{πt} | there is no subsequence converging to 0 or 1 } .
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Lemma 3.2. Π0 is a null set.

Proof. See Appendix B ut

Therefore, without loss of generality, we can assume that π = {0, 1} are the only limit
points of {πt}. After renumbering a convergent subsequence, suppose πt → 1. Following
the same reasoning as in the proof of Lemma 3.2, we can prove that

βt(0) → δ

1 − αρ

with probability 1, and

βt(1) → δ

1 − αρ

weakly.
If α is significantly larger than 1/2ρ, and πt close to 1, then a simple calculation shows

that

E ln
At+1(0)
At+1(1)

< 0

which implies that

φt → E ln
At+1(0)
At+1(1)

< 0.

with probability 1. Given βt(0) = βt(1) = δ/(1 − αρ), πt → 1 with probability 1, proving
that πt = 1 is locally attracting.

Similarly, we can show that if πt is close to 0, then

E ln
At(0)
At(1)

> 0.

Following the same argument, we prove that πt = 0 is locally attracting.
In general, the speed of evolution of πt compared to βt(i) (i = 1, 2) is difficult to

compute. But, in the neighborhood of the boundaries, we can show that πt evolves on an
even slower time scale than βt(0).

Lemma 3.3. Suppose that φ∗ 6= 0. Then,

lim
t→∞

t(πt − πt−1) = 0.

Proof. See Appendix C ut

Lemma 3.3 asserts that in the neighborhood of the boundaries, the hierachy of time
scales is such that βt(1) evolves at a faster time scale than βt(0), while βt(0), which
evolves on the same time scale as φt, evolves at a faster time scale than πt. This time
scale hierarchy greatly facilitates the analysis of escape dynamics.
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3.5. Escape Dynamics. We have three endogenous variables (πt, βt(0), β1(1)), which
converge to one of the two locally stable points: (0, δ/(1− αρ), δ/(1− αρ)) or (1, δ/(1−
αρ), δ/(1 − αρ)). Let us identify a specific stable point by the value of πt at the stable
point. Similarly, let D0 be the domain of attraction to πt = 0, and D1 be the domain of
attraction to πt = 1. To calculate the relative duration times of (πt, βt(0), βt(1)) around
each locally attractive boundary point, we need to compute the following ratio

lim
σ2

v→0
lim
t→∞

P
(
∃t, (πt, βt(0), βt(1)) ∈ D0 | (π0, β0(0), β0(1)) =

(
1, δ

1−αρ , δ
1−αρ

))

P
(
∃t, (πt, βt(0), βt(1)) ∈ D1 | (π0, β0(0), β0(1)) =

(
0, δ

1−αρ , δ
1−αρ

))

We continue to use the time scale of βt(0) as the benchmark, which is slower than
that of βt(1) but faster than that of πt. We shall demonstrate that at this time scale, no
escape can occur from the neighborhood of πt = 1, whereas the escape probability from
the neighborhood of πt = 0 is of the order e−tr∗ for some positive r∗ < ∞. Thus, we
prove that we should observe escapes from πt = 0 much more frequently than escapes
from πt = 1.

Proposition 3.4. Let N1 be a small neighborhood near the boundary πt = 1, and let
µt(πt ∈ N1) be the empirical occupancy measure of πt in N1. Then as t → ∞ and t · σv

remains bounded, µt(πt ∈ N1) → 1.

Proof. The domains of attraction can be computed by comparing mean-squared errors. A
simple calculation shows that

D0 =

{
(π, β(0), β(1)) |

(
β(0)− δ

1 − αρ

)2

< (1 − 2αρπ)σ2
ξ

(
1 − αρπ

1 − αρ

)2
}

.

Recall that we are calculating the domain of attraction according to the time scale of
βt(0). Thus, βt(1) does not show up in D0, because it is already distributed around βt(0).
Note that

1− 2αρπ > 0

must hold, in order to have (π, β(0), β(1))∈ D0. Thus, in order to enter D0, it is essential
that

πt <
1

2αρ
.

In order to calculate the probability distribution of (πt, βt(0), βt(1)) in the long run
as t → ∞ and σ2

v → 0, we must compare probabilities of switching from one domain of
attraction to another domain of attraction. We first compute

P

(
∃t, (πt, βt(0), βt(1)) ∈ D0 | (π0, β0(0), β0(1)) =

(
1,

δ

1 − αρ
,

δ

1− αρ

))
.
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Since πt evolves at a slower time scale than βt(0),

P

(
∃t, (πt, βt(0), βt(1)) ∈ D0 | (π0, β0(0), β0(1)) =

(
1,

δ

1 − αρ
,

δ

1 − αρ

))

= P

(
∃t, (πt, βt(0), βt(1)) ∈ D0 | πt = 1, (π0, β0(0), β0(1)) =

(
1,

δ

1− αρ
,

δ

1 − αρ

))

≤ P

(
πt ≤

1
2αρ

| πt = 1, (π0, β0(0), β0(1)) =
(

1,
δ

1 − αρ
,

δ

1 − αρ

))
= 0.

Thus, we do not observe any escape from πt = 1 on the βt(0) time scale. If escape occurs,
it will happen at the time scale of πt, which is slower than that of βt(0). This result
explains why πt appears to be “stuck” at πt = 1, once it reaches a small neighborhood of
π = 1,

Next, let us compute the escape probability from πt = 0.

P

(
(πt, βt(0), βt(1)) ∈ D1 | (π0, β0(0), β0(1)) =

(
0,

δ

1 − αρ
,

δ

1 − αρ

))
.

Since βt(0) evolves on a faster time scale than πt,

P ((πt, βt(0), βt(1)) ∈ D1 | πt = 0) .

Note that D0 is a narrow “cone” in the space of (β(0), π), with its apex at (β(0), π) =(
δ

1−αρ , 1
2αρ

)
and its base along the line π = 0, where β(0) is in

[
δ

1−αρ − σξ

1−αρ , δ
1−αρ + σξ

1−αρ

]
.

Figure 1 plots D0 for the baseline parameter values used in the following simulations.
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1/(2α ρ)

δ /(1−α ρ) β
0

Figure 1. Domain of Attraction for π = 0

If (βt(0), π) is outside this interval, (πt, βt(0), βt(1)) ∈ D1, which is then driven by the
mean dynamics to another locally stable outcome where πt = 1. Thus,

P ((πt, βt(0), βt(1)) ∈ D1 | πt = 0) ≥ P

(
βt(0) 6∈

[
δ

1 − αρ
− σξ

1 − αρ
,

δ

1 − αρ
+

σξ

1 − αρ

]
| πt = 0

)
.
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Since βt(0) evolves according to (2.6), which satisfies the regularity conditions in Dupuis
and Kushner (1989), we know that βt(0) has a finite but strictly positive large deviations
rate function, which means that the right hand side is of order e−tr∗ , where 0 < r∗ < ∞.
Therefore,

lim
σ2

v→0
lim
t→∞

P
(
(πt, βt(0), βt(1)) ∈ D0 | (π0, β0(0), β0(1)) =

(
1, δ

1−αρ , δ
1−αρ

))

P
(
(πt, βt(0), βt(1)) ∈ D1 | (π0, β0(0), β0(1)) =

(
0, δ

1−αρ , δ
1−αρ

)) = 0

as claimed. ut

This result shows that the TVP model asymptotically dominates. It will be used ‘almost
always’. This is because it is better able to react to the volatility that it itself creates!
Although M1 is misspecified and Pareto suboptimal relative to the Rational Expectations
equilibrium, in practice this equilibrium must be learned via some adaptive process, and
what our result shows is that this learning process can be subverted by the mere presence
of misspecified alternatives, even when the correctly specified model would converge if
considered in isolation. This result therefore echoes the conclusions of Sargent (1993), who
notes that adaptive learning models often need a lot of ‘prompting’ before they converge.
Elimination of misspecified alternatives can be interpreted as a form of prompting. Our
result also offers an interesting counterpoint to Kalai and Lehrer (1993). Despite the
apparent satisfaction of their ‘grain of truth’ condition (since π0 < 1), Bayesian learning
converges to the ‘wrong’ model. We discuss this apparent contradiction in more detail in
Section 5.

One should keep in mind that, like all asymptotic results, the empirical relevance of this
result is certainly open to question. Although e−tr∗ remains positive for all t, it becomes
a very small number, very quickly. This means that M0 can survive for a long time,
especially if it has already withstood the test of time. In fact, since the escape probability
from M0 declines rapidly with respect to calendar time, if M1 is going to dominate on
any sort of realistic time scale, it must do so relatively quickly. However, we can only
address these finite sample issues via simulations, to which we now turn.

4. Simulations

As noted in Section 2, the present-value asset pricing model in eqs. (2.1)-(2.2) has been
subjected to a lot of previous empirical work, mostly with negative results. Perhaps its
biggest problem is its failure to generate sufficient volatility (Shiller (1989)). Our results
suggest that this negative assessment could be premature. To examine this possibility,
we calibrate the model using parameter values that have been used in the past, and see
whether this can generate the sort of self-confirming volatility that our analysis suggests
is possible.

Most of the parameters are easy to calibrate. We know observed fundamentals are
persistent, so we set ρ = .99. Remember, the agent is assumed to know this. Similarly, we
know discount factors are close to 1, so we set the feedback parameter to α = .96. Since
δ depends on units, we just normalize it by setting δ = (1 − αρ). This implies the self-
confirming equilibrium value, β = 1.0. In principle, the innovations variances, (σ2, σ2

z),
could be calibrated to match those of observed assets prices and fundamentals. However,
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since what really matters is the comparison between actual and predicted volatility, we
follow Evans, Honkapohja, Sargent, and Williams (2013) and just normalize them to unity
(σ2 = σ2

z = 1). That leaves one remaining free parameter, σ2
v . Of course, this is a crucial

parameter, since it determines the agent’s prior beliefs about parameter instability. If it’s
too big, then the TVP model will be at a big disadvantage during tranquil times, and
will therefore have a difficult time displacing the constant parameter model. On the other
hand, if it’s too small, self-confirming volatility will be empirically irrelevant.

Figures 2-5 report typical simulations for three alternative values, σ2
v = (.0005, , .0001, .00001).
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Figure 2. σ2
v = .0005
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Figure 3. σ2
v = .0005
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Figure 4. σ2
v = .0001
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Figure 5. σ2
v = .00001

Figures 2-3 are for the value σ2
v = .0005. When this is the case, steady-state price

volatility is 93.3% higher when π = 1 than when π = 0, which is quite significant, although
less than the excess volatility detected by Shiller (1989). The higher price volatility when
π = 1 is apparent. The implied steady-state gain associated with this value of σ2

v is
γ = .07, which is quite typical of values used in prior empirical work. These figures also
illustrate a typical feature of the sample paths when σ2

v is relatively high, i.e., convergence
to one or the other boundaries occurs relatively quickly, usually by around T = 500.
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Figures 4-5 use smaller values of σ2
v . Generally speaking, smaller values of σ2

v delay
convergence. In Figure 4, where σ2

v = .0001, convergence to π = 1 once again takes place,
but now its price volatility implications are not quite so dramatic. Volatility is only 41.7%
higher when π = 1. Once again, the implied steady-state gain (γ = .03) is typical of values
used in empirical work. Figure 5 uses a still smaller prior variance, σ2

v = .00001. Now the
two models do not differ by much. Steady-state price volatility is only 13% higher when
π = 1. Notice that because the two models are so similar, it becomes easier to escape the
π = 1 equilibrium. Since the TVP world is not that volatile, a constant parameter model
does not do that badly.10

The one feature that is perhaps not accurately portrayed by these figures is the fact that
on empirically relevant time-scales convergence to either boundary can occur. This fact was
emphasized by Evans, Honkapohja, Sargent, and Williams (2013). Although our previous
results imply that eventually the π = 1 equilibrium will dominate, our simulations indicate
that the π = 0 equilibrium can persist for a long time. For example, we conducted 10,000
simulations, each of length T = 2000, and counted the proportion of times convergence
to π = 1 occurred for various values of σ2

v . As above, the simulations were initialized at
π = 0.5, with small random perturbations of the coefficients around their self-confirming
equilibrium values. Figure 6 displays the results,
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Figure 6. Prob of Convergence to π = 1

Not surprisingly, the probability of convergence to π = 1 declines with σ2
v . For σ2

v =
.1 × 10−4, convergence occurs more than 80% of the time, whereas for the benchmark
value used above, σ2

v = 5 × 10−4, convergence to π = 1 occurs only about 60% of the
time.11 As our above analysis makes clear, however, one must exercise some caution when
interpreting results like these. In Figure 6, ‘convergence’ was simply defined as the value of
π at the end of each simulation run (i.e., at T = 2000). According to our large deviations
results, however, eventually π will escape from 1. What our theory actually predicts is
that as the sample length becomes infinitely long, the proportion of time spent near π = 1
goes to unity. It doesn’t imply that π never returns to 0. Although escapes from π = 1
are more likely to occur relatively early in the game, before βt(0) has settled down, as

10Notice that Figure 5 uses a T = 4000 sample length, while Figures 2-4 use T = 2000. As σ2
v decreases,

things evolve more slowly, so it becomes necessary to expand the simulation length.
11For σ2

v = 0 convergence should occur 50% of the time.
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σ2
v decreases, escapes can occur relatively late as well. Figure 5 nicely illustrates this

possibility. Hence, the results in Figure 6 are merely meant to convey the possibility that
on realistic time-scales, ‘convergence’ to either π = 1 or to π = 0 can occur.

The fact that convergence to either π = 0 or π = 1 can occur on relevant time-scales
is interesting, since it suggests that whether we live in a tranquil or volatile economy is
somewhat random and history-dependent. It also highlights a potentially adverse long-
term effect of ‘large deviation’ events, like financial crises. Although being alert to the
possibility of financial crises is probably a good thing on net, if it makes individuals living
in a less than fully understood self-referential environment more reactive, it could create
its own problems.

5. Discussion

The results thus far cast doubt on the ability of agents to adaptively learn Rational
Expectations Equilibria. Here we discuss the robustness of these results. We do so by
considering two modifications of the model space. The first narrows the domain of M0

by only considering a single constant parameter model, i.e., the rational expectations
equilibrium in eq. (2.3). The second convexifies the model space directly, by allowing the
agent to consider any arbitrary value of σ2

v , rather than just convex combinations of two
extreme values, as was done in the previous model averaging exercise.

5.1. Grain of truth? Kalai and Lehrer (1993) showed that Bayesian learning converges
to Nash equilibrium in repeated games as long as players’ priors concerning their rivals’
strategies contain a ‘grain of truth’. That is, as long as priors and the induced distribution
of play are mutually absolutely continuous. Although here there is only a single agent,
and no strategic interaction, Kalai and Lehrer’s (1993) result is still of some interest,
since as usual we can interpret model uncertainty as reflecting the unknown choice of
a fictitious player called ‘nature’. From this perspective, the above results may seem
puzzling. After all, M0 appears to be correctly specified, since it contains the rational
expectations equilibrium

β∗ =
δ

1− ρα

as an element. However, as was noted in Section 2.2, all constant parameter models are
misspecified during the transition, as they neglect feedback induced parameter variation.
It is only in the limit that they become correctly specified. This may seem like a techni-
cality, but it is central to our Gresham’s Law result. If the agent only entertains constant
parameter models, then learning does indeed converge to the Rational Expectations Equi-
librium (assuming the usual E-stability conditions). However, we showed above that if the
agent expands the initial model class only slightly, and in a very natural way, to consider
TVP alternatives, then the usual convergence and E-stability results evaporate. In a sense,
TVP models can exploit the transition dynamics, and eventually drive out the constant
parameter model.

Given this result, it is natural to ask the following question - What if we shut down the
misspecified transition dynamics by endowing the agent with more a priori knowledge?
Suppose he knows that the true model is either the single constant parameter model in
eq. (2.3), or a TVP alternative, which he adaptively updates as usual. He then bases his
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forecasts on a Bayesian model averaging strategy as before. Narrowing the initial model
space in this way produces the folowing result,

Proposition 5.1. Suppose that M0 consists of only the rational expectations equilibrium,
and assume αρ < 1. For given σ2

v > 0, the Bayesian learning dynamics of πt converge on
finite time intervals to either 1 or 0, but over infinite horizons we have

lim
σv→0

lim
t→∞

πt = 0.

Proof. See Appendix D ut

Interestingly, this is precisely the opposite of our Gresham’s Law result! Now Kalai-
Lehrer (1993) seems to ‘work’, and the agent eventually learns the true model. To see
why this happens, refer back to Figure 1, which depicts the basin of attraction for π = 0.
Before, when the constant parameter model had to be estimated, escapes to π = 1 could
occur ‘horizontally’, as estimates of βt(0) fluctuated. Indeed, since we saw that βt(0)
evolves much faster than πt in the neighborhood of π = 0, this is in fact the way escapes
occur (at least with very high probability). Now, however, with only a single constant
parameter model on the table, escapes to π = 1 must occur ‘vertically’. This is much more
difficult, since πt evolves so slowly. Somewhat ironically, although the size of the basin of
attraction shrinks to just a vertical line at βt(0) = δ/(1− αρ), its durability increases.

Although Proposition 5.1 predicts the asymptotic distribution of πt is degenerate, it
does make predictions about finite sample distributions as well. The constant parameter
model (π = 0) now dominates because its basin of attraction is now larger. Escapes from
each model occur along a vertical line determined by the (identical) self-confirming values
of the coefficients (i.e., β(i) = δ/(1 − αρ)). The threshold value of π determining the
boundary between the two basins of attraction is π∗ = 1/(2αρ). Note that π∗ > 1/2 as
long as αρ < 1. Hence, the basin of attraction of M0 is larger, and so it asymptotically
dominates. This result also suggests, however, that the rate at which this occurs depends
on the strength of expectational feedback, i.e., on the magnitude of α. As α increases,
the boundary of the basin of attraction moves away from π = 1, making it harder to
escape from the TVP model. Therefore, on finite time intervals, we should find that the
proportion of sample paths that appear to converge to π = 1 increases as α increases.

Figure 7 corroborates this prediction. We conducted 1200 simulations, each of length
T = 40, 000 periods, for five different values of the feedback parameter, ranging from
α = .56 to α = .96 in increments of 0.1. We set σ2

v = .0001 in all simulations. (All other
parameter values are the same as in the benchmark calibration discussed in the previous
section). Figure 7 reports the proportion of the 1200 simulation runs that end at π = 1
when T = 40, 000. Our large deviations analysis suggests that this proportion should
increase with α, and that is precisely what we find. Note, however, that the proportion is
always less than 0.5. Remember that in this asset-pricing context, empirically plausible
values of α are close to one. So even if the constant parameter model eventually prevails,
the TVP model can persist for a long time with reasonably high probability.
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Figure 7. Prob of Convergence to π = 1

In our view, Proposition 5.1 should offer little consolation to those wishing to base
Rational Expectations Equilibria on adaptive learning foundations, for two reasons: (1)
As emphasized by Nachbar (1997) and Young (2004), Bayesian learning only works here
because the agent’s prior is very informative.12 He must commit himself to ruling out a
priori many reasonable alternatives (i.e., any constant parameter model other than the
measure zero Rational Expectations Equilibrium). Where does this knowledge come from?
The whole idea behind learning is that if agents are initially open-minded, experience will
allow them to discard incorrect beliefs, and to eventually discover ‘the truth’. In contrast,
for learning to work here, agents must be initially closed-minded in just the right way.
(2) Given the usual adaptive learning convergence results, one might naively suspect that
the convergence to π = 0 observed in Proposition 5.1 occurs on a Law of Large Numbers
t−1 time-scale. Unfortunately, this is not the case. Since πt = 1 is locally stable, escapes
to πt = 0 occur on an exponentially long large deviations time scale. This time-scale is
orders of magnitude longer than the time-scale governing convergence to π = 1 in our
earlier Gresham’s Law result.

5.2. Convexification. Normally, with exogenous data, it would make no difference whether
a parameter known to lie in some interval is estimated by mixing between the two extremes,
or by estimating it directly. With endogenous data, however, this could make a differ-
ence. What if the agent convexified the model space by estimating σ2

v directly, via some
sort of nonlinear adaptive filtering algorithm (e.g., Mehra (1972)), or perhaps by estimat-
ing a time-varying gain instead, via an adaptive step-size algorithm (Kushner and Yang
(1995))? Although π = 1 is locally stable against nonlocal alternative models, would it
also be stable against local alternatives?

In this case, there is no model averaging. There is just one model, with σ2
v viewed as

an unknown parameter to be estimated. To address the stability question we exploit the
connection discussed in section 2.3 between σ2

v and the steady-state gain, γ. Because the
data are endogenous, we must employ the macroeconomist’s ‘big K, little k’ trick, which
in our case we refer to as ‘big Γ, little γ’. That is, our stability question can be posed
as follows: Given that data are generated according to the aggregate gain parameter Γ,
would an individual agent have an incentive to use a different gain, γ? If not, then γ = Γ

12In the language of Sargent (1993), we have provided the agent with a lot of ‘prompting’.
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is a Nash equilibrium gain, and the associated σ2
v > 0 represents self-confirming parameter

instability. The stability question can then be addressed by checking the (local) stability
of the best response map, γ = B(Γ), at the self-confirming equilibrium.

To simplify the analysis, we consider a special case, where zt = 1 (i.e., ρ = 1 and
σz = 0). The true model becomes

pt = δ + αEtpt+1 + σεt (5.17)

and the agent’s perceived model becomes

pt = βt + σεt (5.18)
βt = βt−1 + σvvt (5.19)

where σv is now considered to be an unknown parameter. Note that if σ2
v > 0, the agent’s

model is misspecified. As in Sargent (1999), the agent uses a random walk to approximate
a constant mean. Equations (5.18)-(5.19) represent an example of Muth’s (1960) ‘random
walk plus noise’ model, in which constant gain updating is optimal. To see this, write pt

as the following ARMA(1,1) process

pt = pt−1 + εt − (1− Γ)εt−1 Γ =
√

4s + s2 − s

2
σ2

ε =
σ2

1 − Γ
(5.20)

where s = σ2
v/σ2 is the signal-to-noise ratio. Muth (1960) showed that optimal price

forecasts, Etpt+1 ≡ p̂t+1, evolve according to the constant gain algorithm

p̂t+1 = p̂t + Γ(pt − p̂t) (5.21)

This implies that the optimal forecast of next period’s price is just a geometrically dis-
tributed average of current and past prices,

p̂t+1 =
(

Γ
1 − (1− Γ)L

)
pt (5.22)

Substituting this into the true model in eq. (5.17) yields the actual price process as a
function of aggregate beliefs

pt =
δ

1 − α
+

(
1 − (1 − Γ)L
1 − ( 1−Γ

1−αΓ)L

)
εt

1 − αΓ
(5.23)

≡ p̄ + f(L; Γ)ε̃t

Now for the ‘big Γ, little γ’ trick. Suppose prices evolve according eq. (5.23), and that an
individual agent has the perceived model

pt =
1 − (1 − γ)L

1 − L
ut (5.24)

≡ h(L; γ)ut

What would be the agent’s optimal gain? The solution of this problem defines a best
response map, γ = B(Γ), and a fixed point of this mapping, γ = B(γ), defines a Nash
equilibrium gain. Note that the agent’s model is misspecified, since it omits the constant
that appears in the actual prices process in eq. (5.23). The agent needs to use γ to
compromise between tracking the dynamics generated by Γ > 0, and fitting the omitted
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constant, p̄. This compromise is optimally resolved by minimizing the Kullback-Leibler
(KLIC) distance between equations (5.23) and (5.24)13

γ∗ = B(Γ) = argminγ

{
E[h(L; γ)−1(p̄ + f(L; Γ)ε̃t)]2

}

= argminγ

{
1
2π

∫ π

−π
[logH(ω; γ)+ σ2

ε̃ H(ω; γ)−1F (ω; Γ) + p̄2H(0)−1]dω

}

where F (ω) = f(e−iω)f(eiω) and H(ω) = h(e−iω)h(eiω) are the spectral densities of f(L)
in eq. (5.23) and h(L) in eq. (5.24). Although this problem cannot be solved with pencil
and paper, it is easily solved numerically. Figure 8 plots the best response map using the
same benchmark parameter values as before (except, of course, ρ = 1 now)14
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0
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Figure 8. Best Response Mapping γ = B(Γ)

Not surprisingly, the agent’s optimal gain increases when the external environment
becomes more volatile, i.e., as Γ increases. What is more interesting is that the slope of
the best response mapping is less than one. This means the equilibrium gain is stable. If
agents believe that parameters are unstable, no single agent can do better by thinking they
are less unstable. Figure 8 suggests that the best response map intersects the 45 degree
line somewhere in the interval (.10, .15). This suggests that the value of σ2

v used for the
benchmark TVP model in section 4 was a little too small, since it implied a steady-state
gain of .072.

13See Sargent (1999, chpt. 6) for another example of this problem.
14Note, the unit root in the perceived model in eq. (5.24) implies that its spectral density is not well defined.
(It is infinite at ω = 0). In the numerical calculations, we approximate by setting (1 − L) = (1 − ηL),
where η = .995. This means that our frequency domain objective is ill-equipped to find the degenerate
fixed point where γ = Γ = 0. When this is the case, the true model exhibits i.i.d fluctuations around a
mean of δ/(1−α), while the agent’s perceived model exhibits i.i.d fluctuations around a mean of zero. The
only difference between these two processes occurs at frequency zero, which is only being approximated
here.
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6. Conclusion

Parameter instability is a fact of life for applied econometricians. This paper has pro-
posed one explanation for why this might be. We show that if econometric models are
used in a less than fully understood self-referential environment, parameter instability can
become a self-confirming equilibrium. Parameter estimates are unstable simply because
model-builders think they might be unstable.

Clearly, this sort of volatility trap is an undesirable state of affairs, which raises questions
about how it could be avoided. There are two main possibilities. First, not surprisingly,
better theory would produce better outcomes. The agents here suffer bad outcomes be-
cause they do not fully understand their environment. If they knew the true model in
eq. (2.1), they would know that data are endogenous, and would avoid reacting to their
own shadows. They would simply estimate a constant parameters reduced form model. A
second, and arguably more realistic possibility, is to devise econometric procedures that
are more robust to misspecified endogeneity. In Cho and Kasa (2015), we argue that in
this sort of environment, model selection might actually be preferable to model averaging.
If agents selected either a constant or TVP model based on sequential application of a
specification or hypothesis test, the constant parameter model would prevail, as it would
no longer have to compete with the TVP model.
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Appendix A. Proof of Proposition 2.2

For any σv > 0, we know from our analysis in sections 2.2 and 2.3 that βt(1) evolves ‘faster’ than βt(0).
We want to exploit this time-scale separation when deriving asymptotic approximations. To do this, we
assume σv → 0 more slowly than t−1 → 0, so that t ·σv → ∞. In other words, we assume σv = O(t−(1−δ))
for some δ > 0. Given this, we can derive the following mean ODE for β(0) and the following diffusion for
β(1) (we do not provide the details here, since they are standard. See, e.g., Evans and Honkapohja (2001))

β̇(0) = δ + αρ[πβ(1) + (1 − π)β(0)] − β(0) (A.25)

dβ(1) = −(1 − αρπ)[β(1)− β̄(1)]dt + σvdW (A.26)

where

β̄(1) =
δ + αρ(1 − π)β(0)

1 − αρπ
(A.27)

is the long-run mean of β(1). Note that it depends on β(0). Also note that this system is globally stable

as long as αρ < 1. Now, since σv = O(t−(1−δ)), we can assume that β(1) has converged to its long-run
mean for any given value β(0). Therefore, we can simply substitute the long-run mean in eq. (A.27) into
(A.25) to derive the following autonomous ODE for β(0)

β̇(0) = (1 − αρπ)−1[δ − (1 − αρ)β(0)] (A.28)

Note that this converges to δ/(1−αρ) for all π ∈ (0, 1). Finally, if substitute β(0) = δ/(1−αρ) into (A.27)
we find β(1) = δ/(1 − αρ) also, again for all π ∈ (0, 1). �

Appendix B. Proof of Lemma 3.2

Fix a sequence {πt} in Π0. Since the sequence is a subset of a compact set, it has a convergent
subsequence. After renumbering the subsequence, let us assume that

lim
t→∞

πt = π∗ ∈ (0, 1)

since {πt} ∈ Π0. Depending upon the rate of convergence (or the time scale according to which πt converges
to π∗), we have to treat πt has already converged to π∗.15

We only prove the case in which πt → π∗ according to the fastest time scale, in particular, faster than
the time scale of βt(1). Proofs for the remaining cases follow the same logic.

Since πt evolves according to the fastest time scale, assume that

πt = π∗.

Under the assumption of Gaussian distributions,

ln
At(0)

At(1)
= − (pt − ρβt(0)zt)

2

2(σ2 + Σt(0)z2
t )

+
(pt − ρβt(1)zt)

2

2(σ2 + Σt(1)z2
t )

+
1

2
ln

[
σ2 + Σt(1)z

2
t

σ2 + Σt(0)z2
t

]
. (B.29)

Since the first two terms are normalized Gaussian variables,

E ln
At(0)

At(1)
= E

1

2
ln

[
σ2 + Σt(1)z

2
t

σ2 + Σt(0)z2
t

]
.

Recall (2.6), and note that Σt(0) → 0. On the other hand, Σt(1) is uniformly bounded away from 0, as
t → ∞, and the lower bound converges to 0, as σ2

v → 0. Thus, βt(1) evolves on a faster time scale than
βt(0). In calculating the limit value of (B.29), we first let βt(1) reach its own “limit”, and then let βt(0)
go to its own limit point.

Let pe
t (i) be the period-t price forecast by model i,

pe
t (1) = ρβt(1)zt.

Since

pt = αρ[(1− πt)βt(0) + πtβt(1)]zt + δzt + σεt,

15If πt evolves at a slower time scale than βt(0), then we fix πt while investigating the asymptotic properties
of βt(0). As it turns out, we obtain the same conclusion for all cases.
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the forecast error of model 1 is

pt − pe
t (1) = [αρ(1 − πt)βt(0) + (αρπt − 1)βt(1) + δ] zt + σεt.

Since βt(1) evolves according to (2.6),

lim
t→∞

E [αρ(1 − πt)βt(0) + (αρπt − 1)βt(1) + δ] = 0

in any limit point of the Bayesian learning dynamics.16 Since βt(1) evolves at a faster rate than βt(0), we
can treat βt(0) as a constant. Since πt = πs, we treat πt as constant also.17 Define

β(1) = lim
t→0

Eβt(1)

whose value is conditioned on πt and βt(0). Since

lim
Σt(1)

lim
t→0

[
αρ(1 − πt)βt(0) + (αρπt − 1)β(1) + δ

]
+ E(αρπt − 1)(βt(1) − β(1)) = 0.

Thus, as we found in the proof of Proposition 2.2,

β(1) = E
αρ(1 − πt)βt(0) + δ

1 − αρπt
.

Define the deviation from the long-run mean as

ξt = βt(1) − β(1).

Model 1’s mean-squared forecast error is then

lim
t→0

E(pt − pe
t (1))

2 = lim
t→0

Ez2
t (αρπt − 1)2σ2

ξ + σ2

Note that

lim
σ2

v→0
σ2

ξ = 0.

To investigate the asymptotic properties of βt(0), let us write

βt(1) =
αρ(1 − πt)βt(0) + δ

1 − αρπt
+ ξt

Then, we can write Model 0’s forecast error as

pt − pe
t (0) = zt

[
− 1 − αρ

1 − αρπt

(
βt(0) −

δ

1 − αρ

)
+ αρπtξt

]
+ σεt.

Since βt(0) evolves according to (2.6)

lim
t→∞

βt(0) =
δ

1 − αρ

with probability 1. Thus, the mean-squared forecast error satisfies

lim
t→∞

E(pt − pe
t (0))

2 = lim
t→∞

Ez2
t σ2

ξ(αρπt)
2 + σ2

Thus, once again as in the proof of Propostion 2.2, in the long run

lim
t→0

βt(1) =
δ

1 − αρ

in distribution, as Σt(1) → 0 or equivalently, σ2
v → 0. Note that

lim
t→∞

E(pt − pe
t (0))

2

E(pt − pe
t (1))

2
> 1 (B.30)

if and only if

lim
t→∞

(
αρπt

1 − αρπt

)2

> 1.

16Existence is implied by the tightness of the underlying space.
17If πt evolves on a slower time scale than βt(1), we treat πt as a constant, while investigating the asymptotic
properties of βt(1).
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Now, notice that
αρπt

1 − αρπt
< 1

if and only if

αρπt <
1

2
.

Hence, if (B.30) holds for some t ≥ 1, then it holds again for t + 1, and vice versa. Thus, πt continues to
increase or decrease, if the inequality holds in either direction. Recall that π∗ = limt→∞ πt. Convergence
to π∗ can occur only if (B.30) holds with equality for all t ≥ 1, which is a zero probability event. We
conclude that π∗ ∈ (0, 1) occurs with probability 0. �

Appendix C. Proof of Lemma 3.3

A simple calculation shows

t(πt − πt−1) =
t(e(t−1)φt−1 − etφt)

(1 + etφt)(1 + e(t−1)φt−1 )
.

As t → ∞, we know φt → φ∗ with probability 1. We also know t(φt − φt−1) is uniformly bounded. Hence,
we have

lim
t→∞

t(πt − πt−1) = lim
t→∞

t
(
e−φ∗

− 1
)

etφ∗

(1 + etφ∗ )(1 + e(t−1)φ∗)

= (e−φ∗
− 1) lim

t→∞

t

(1 + e−tφ∗ )(1 + etφ∗e−φ∗ )

Finally, notice that for both φ∗ > 0 and φ∗ < 0 the denominator converges to ∞ faster than the
numerator. �

Appendix D. Proof of Proposition 5.1

Recall that

φt =
1

t

t∑

k=1

log
Ak(0)

Ak(1)

where βt(0) is updated according to (2.6). Now let us fix βt(0) = β∗, and define the corresponding value
of φt as φe

t . Note that since βt(0) → β∗,

φ∗ = E log
At(0)

At(1)

is defined for βt(0) = β∗. Following the same logic as in the text,

φe
t = φe

t−1 +
1

t
(φ∗ − φe

t−1)

and
φe

t → φ∗

with probability 1, as t → ∞.
One can easily verify that φ∗ < 0 only if limt→∞ πt = 1, and φ∗ > 0 only if limt→∞ πt = 0. To

differentiate the two locally stable points of φe
t , let us write φ∗

+ > 0 and φ∗
− < 0 for the positive and

negative locally stable points of φe
t . Note that the domain of attraction for φ∗

− is D1, and similarly, the
domain of attraction for φ∗

+ is D0. A simple calculation shows that

φ∗
+ + φ∗

− > 0.

That is, φ∗
+ is further away from the boundary of its domain of attraction than φ∗

−.
We need to calculate

lim
t→∞

P
(
∃t, (πt, βt(0), βt(1)) ∈ D0 | (π0, β0(0), β0(1)) =

(
1, δ

1−αρ
, δ

1−αρ

))

P
(
∃t, (πt, βt(0), βt(1)) ∈ D1 | (π0, β0(0), β0(1)) =

(
0, δ

1−αρ
, δ

1−αρ

)) . (D.31)
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If the limit vanishes,the transition from D0 to D1 dominates the transition from D1 to D0, which implies
that as σ2

v → 0, the probability is massed at the stable point in D1, i.e., π = 1. On the other hand, if the
limit explodes, then the probability mass of πt converges to 1 at πt = 0.

Note

P

(
∃t, (πt, βt(0), βt(1)) ∈ D0 | (π0, β0(0), β0(1)) =

(
1,

δ

1 − αρ
,

δ

1 − αρ

))

= P (∃t, φe
t > 0 | φe

0 = φ∗ < 0)

and

P

(
∃t, (πt, βt(0), βt(1)) ∈ D1 | (π0, β0(0), β0(1)) =

(
0,

δ

1 − αρ
,

δ

1 − αρ

))

= P (∃t, φe
t < 0 | φe

0 = φ∗ > 0) .

The right hand side of both equations can be approximated as

lim
t→∞

−1

t
log P (∃t, φe

t < 0 | φe
0 = φ∗

+ > 0) = r∗0

and

lim
t→∞

−1

t
log P (∃t, φe

t > 0 | φe
0 = φ∗

− < 0) = r∗1 ,

where r∗0 and r∗1 are the values of the potential function of ODE at the boundary of the domain of the
attraction (i.e., φe = 0). Note that (D.31) explodes if r∗0 > r∗1 , from which the conclusion of the proposition
follows.

Since the dynamics of φe
t is approximated by a one-dimensional ODE

φ̇e = φ∗ − φe,

the potential function exists. Following Example 3.1 on page 121 of Freidlin and Wentzell (1998), we know
that the potential function is

U(τ) = −
∫ τ

0

E log φ∗ − φe(s)ds

where τ is the first exit time from the domain of the attraction with φe(0) = φ∗. Let us write U(τ)
∣∣
φ∗
+>0

and U(τ)
∣∣
φ∗
−<0

for the potential function around the neighborhood of π = 0 and π = 1, respectively. We

apply the same convention to other variables.
Since we assume that ρα < 1, one can easily show that

φ∗
+ + φ∗

− > 0.

Thus,
r∗0 = U(τ)

∣∣
φ∗
+>0

> U(τ)
∣∣
φ∗
+<0

= r∗1 > 0,

as desired. �
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