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 Measuring the Accuracy of Engineering Models in Predicting Energy 

Savings from Home Retrofits: Evidence from Monthly Billing Data 1 

Joe Maher2 

Buildings account for 42 percent of energy use and 38 percent of carbon dioxide 

emissions in the United States, making building energy efficiency a key component of 

broader energy and climate goals (US Green Building Council 2011). In recent years, 

state and federal governments have increased funding programs that subsidize energy-

efficient retrofits to existing buildings. For example, the American Recovery and 

Reinvestment Act of 2009 included $17 billion for energy efficiency programs, which 

helped initiate $54 billion in energy-related home improvements in 2009 (von Schrader 

2010). And in 2013, President Obama announced a new goal: “Let’s cut in half the 

energy wasted by our homes and businesses over the next 20 years. We’ll work with the 

states to do it.”3 

Despite the widespread implementation of retrofit rebate programs and calls for 

increased investment in demand-side management programs, surprisingly little is known 

about whether energy efficiency retrofits are an effective way to reduce energy 

consumption. Engineering simulations provide most of the evidence, but simulated 

predictions, even if based on sound models, do not account for installation quality or 

                                                           
1 This draft has been recently updated with new results for presentation at the 2016 ASSA meetings. I 

apologize for any inconsistences in referencing results that I may have missed. This paper draws upon the 

first chapter of my dissertation. I gratefully acknowledge funding for this work from a University of 

Maryland graduate fellowship and the Resources for the Future Postdoctoral Fellows Program. 
2 Postdoctoral Fellow, National Socio-Environmental Synthesis Center (SESYNC), University of 

Maryland. 
3 Statement delivered on February 12, 2013, in a State of the Union Speech. Obama continues to promise 

that “Those states with the best ideas to create jobs and lower energy bills by constructing more efficient 

buildings will receive federal support to help make that happen.” 
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behavioral responses (Allcott and Greenstone 2012). Hence, there is an important and 

timely need for empirical research that uses field data to evaluate more fully the effects of 

energy efficiency retrofits on energy consumption.  

This paper answers a basic question, How much do energy efficiency investments 

reduce energy use? Next, it compares the estimated energy savings with engineering 

models to answer the question, How do engineering model biases contribute to the energy 

efficiency gap?  

 EMPIRICAL SETTING AND DATA COLLECTION 

A central barrier for research in this field is the difficulty of obtaining data to 

better understand energy efficiency investment behavior and its implications for energy 

use. Furthermore, empirical assessments are context specific. Generalizing the findings 

from one energy use and energy user context to other uses and users may have limited 

validity.  

Yet empirical ex post assessments of energy savings from efficiency investments 

present a tremendous opportunity to improve demand-side management policies. 

Quantifying the size and nature of energy savings in different energy uses and user 

contexts is critical to understanding the social benefits of efficiency investments. 

Understanding the heterogeneity of such benefits helps reveal which policy interventions 

are effective in achieving program goals. Putting this information to action by targeting 

policies toward specific energy uses and energy users will improve policy effectiveness.  

This paper develops empirical estimates of energy savings from a wide range of 

energy efficiency investments and housing contexts using data on household energy 

consumption and efficiency investments for Gainesville, Florida. The econometric 
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approach uses a difference-in-difference method. The purpose is to evaluate retrofit-

specific residential rebate programs based on observed household-level consumption 

data. Energy savings from nine retrofit rebate programs in Gainesville are detailed in a 

panel data set of electricity and natural gas consumption and building characteristics for 

30,000 residences. The difference-in-difference method compares changes in energy use 

in a residence before and after an energy-saving retrofit intervention (treatment group) 

with changes in energy use in residences that will become program participants in the 

future. The monthly billing data are combined with time-variant and time-constant 

characteristics of each residence.  

The paper tests two hypotheses to identify variations in energy savings. First, it 

examines seasonal variation in energy savings, testing whether energy savings for each 

technology vary across seasons. Second, it looks at the dynamics of energy use over time, 

testing whether the energy savings of a technology persist through time. Results suggest 

that ex post assessments provide rich and valuable information about the heterogeneity of 

size and timing of energy savings across different technologies and energy users. 

This work makes general contributions to the literature assessing energy 

efficiency programs. First, this is among the first assessments of a retrofit rebate program 

to apply the difference-in-difference method to link billing data and housing 

characteristics. Second, by assessing ten retrofit programs, it explores heterogeneity 

across a diverse range of retrofit options using actual billing data.   

 The Energy Efficiency Rebate Programs 

Gainesville Regional Utilities (GRU) is a municipal utility and exclusive supplier 

of electricity and natural gas for more than 30,000 households in Gainesville, Florida, and 
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is the state’s fifth-largest electric utility. GRU is responsible for almost all of the 

electricity generation for the city, as well as transmission and distribution. GRU is also an 

award-winning national leader in energy conservation with the ability to demonstrate the 

potential of well-designed retrofit rebate programs.4 

GRU’s Gainesville Residential Energy-Efficiency Incentives (GREEN) provided 

rebates and low-cost loans for the purchase of energy-efficient products. Established in 

2008, GREEN was primarily a rate-payer funded utility program, that also received 

modest federal funding under the American Reinvestment and Recovery Act of 2008 

(ARRA). In 2013, all GREEN subsidy programs were terminated after the expiration of 

ARRA funding coupled with GRU’s decision to build new power plants. Despite this 

short life, shared by dozens of utility-run subsidy programs funded by ARRA, the 

GREEN program spurred investment across more than a dozen retrofit products, thus 

creating opportunity for quasi-experimental analysis of retrofit programs. 

For a utility-level program, GREEN had a large number of participants. By 

December 2012, GREEN had provided subsidies for approximately 25,000 residential 

energy efficiency interventions. In total, more than 14,000 households participated in the 

program, many qualifying for subsidies for multiple retrofit products. Program take-up 

was unusually high, with approximately half of eligible GRU customers participating in 

GREEN over the five-year program lifetime. Most rebate programs were available to all 

GRU customers. 

                                                           
4 Awards include the 2005 Green Power Beacon Award, presented by the U.S. Environmental Protection 

Agency, the U.S. Department of Energy, and the Center for Resource Solutions 

(http://www.epa.gov/greenpower/documents/2005awards.pdf; 

https://www.gru.com/AboutGRU/NewsReleases/Archives/Articles/news-2005-10-28.jsp). 

http://www.epa.gov/greenpower/documents/2005awards.pdf
https://www.gru.com/AboutGRU/NewsReleases/Archives/Articles/news-2005-10-28.jsp
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GREEN reimbursement required submission of original billing receipts with 

rebate application forms. GRU recorded the exact date of installation, total project costs, 

company name, and details of equipment and materials. Participants were required to hire 

GRU-certified professional contractors to be eligible for rebates, ensuring a basic level of 

quality assurance and accurate reporting by reputable businesses. The precise and 

accurate treatment dates permit a clean timing for a difference-in-difference model.  

Each rebate program issued rebates based on a formula that reflected treatment 

intensity and provided both fixed cash rebates and sliding, capped rebates. All programs 

had a maximum rebate level. Exact formulas, rebate rates, and maximum caps varied 

from year to year with each program. Program inception dates and program termination 

dates varied across retrofit types. Households could accept rebates as a cash subsidy or as 

a credit to future utility bills. Program participants were reimbursed for the subsidy about 

one month after the file was completed. Funding for specific programs varied from year 

to year, and rebates were issued on a first-come-first-served basis until annual funding 

was exhausted. 

 Data 

The rebate programs collected unusually detailed information about program 

participants, linked to natural gas and electricity billing data, building characteristics, and 

home improvement permits. Monthly natural gas and electricity bills are available for all 

houses in the GRU service area between years 2000 and 2015.  Program participant data 

include the date, rebate amount, company name, and technical details of retrofit 

intervention, in-house engineering estimates, and total cost of installation.  
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Table 1 provides descriptive statistics for 10 rebate programs that focus on 8 

technologies: super-SEER (seasonal energy efficiency ratio) central air-conditioner 

replacement, SEER-15 central air-conditioner replacement, room air-conditioner 

replacement, pool pump replacement, refrigerator removal, attic insulation improvement, 

duct leakage repair, and air-conditioner maintenance.  The final two programs – low-

income grants and home performance – often involve the installation of multiple retrofits.  

Table 1 includes summary statistics of ex-ante engineering estimates of energy 

savings, rebates paid to participants, and the project cost. Each retrofit includes energy-

saving predictions based on GRU engineering simulations. These predictions, which were 

used for program evaluation purposes, allow comparisons between observed energy 

savings with engineering predictions.   

Detailed technical specifications characterize each retrofit installation. For most 

retrofit programs, variables include continuous measures of the energy efficiency ratings, 

which approximate treatment intensity. For example, attic insulation includes the R-value 

of added insulation, square footage of coverage, and type of insulation material. For 

equipment replacements, such as air-conditioners, data include the brand, model number, 

capacity, certification number, and SEER rating of the installed equipment.5 

Engineering estimates are specific to each technology.  For example, different 

energy savings estimates are reported for a SEER-15 air-conditioner a SEER-16 air-

conditioner.  In some cases, engineering estimates are project-specific and based on 

house energy audits, particularly for low-income grants and whole home performance 

                                                           
5 Data do not generally include information about the old equipment that is replaced. The refrigerator 

buyback program is an exception that includes data about removed equipment.  
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programs. For more straightforward retrofits, technology-specific ex-ante estimates based 

on engineering formulas are used in lieu of house energy audits.   

 Empirical Methods 

A difference-in-difference model estimates the effect of retrofits on household energy 

consumption. To evaluate average energy savings of DSM programs using quasi-

experimental techniques, I employ a two-way fixed effect model, where a panel of 

monthly energy bills is used to eliminate time-constant features of each residence.  As a 

further innovation, I exploit differences in the timing of retrofit installation during the 

five-year rebate program.  To identify treatment effects for early retrofits installed at time 

t, I use a control group made of future program participants that have not yet installed 

retrofits at time t.  By using only treated households, I eliminate bias introduced from 

participant self-selection.  

The simple case of a single retrofit per household would entail estimating the 

following two-way fixed effects model:  

 𝑦𝑖𝑡 =  𝜆𝑡 + 𝑐𝑖𝑚 + 𝑊𝑖𝑡𝜏 + 𝜀𝑖𝑡                  𝑡 = 1, … , 𝑇          (1) 

where 𝑦𝑖𝑡 is electricity consumption for house 𝑖 in month 𝑡; 𝜆𝑡 is a month-specific effect 

for time 𝑡 that is introduced with time-period indicator variables to capture city-wide 

trends that affect electricity consumption over time, such as weather fluctuations; 𝑐𝑖𝑚 is a 

household-by-month-of-year fixed effect for house 𝑖 and month-of-the-year m, where 

M=12, that is introduced with house indicator variables to capture all time-constant 

factors of a house that affect seasonal electricity consumption; 𝑊𝑖𝑡 = [𝑤𝑖𝑡1, … , 𝑤𝑖𝑡𝐽] is a 

row vector of retrofit-specific treatment indicators variables associated with observation 
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𝑦𝑖𝑡, where each element 𝑤𝑖𝑡𝑗 is equal to 1 for all months 𝑡 after a retrofit of type 𝑗 is 

installed in house 𝑖 and equal to 0 otherwise; 𝜏 is a 𝐽-vector of retrofit-specific treatment 

effect coefficients that represent the average monthly energy savings from each retrofit 

type 𝑗, which is assumed to persist over time; 𝑇 is a constant equal to the total number of 

billing months; 𝐽 is a constant equal to the total number of rebate programs; and 𝜀𝑖𝑡 is an 

error term clustered by house and represents unmeasured time-variant factors affecting 

electricity consumption.   

In addition, the sample of households is restricted in several ways. First, the 

analysis is restricted to single-family households that have a single customer account 

during the four-year period. Second, all treatment households have at least 24 months of 

billing data pre-retrofit and post-retrofit to ensure consistent estimation of treatment 

effects. Third, the treatment group includes only households that receive a single retrofit 

intervention; households that receive rebates from multiple retrofit programs are excluded 

from the analysis.  This final restriction reduces the sample size substantially, to include a 

total of 5,165 participating households. 

 EMPIRICAL ANALYSIS OF ENERGY SAVINGS 

Results confirm expectations: most retrofits reduce total combined energy use. At 

the upper extreme, a retrofit can save up to 223 kWh per month, or 13 percent of the 

average household energy consumption of 1,700 kWh per month.6 Five programs have 

results significant at the 1 percent level (monthly combined energy savings reported in 

                                                           
6 The average pre-treatment energy consumption for the houses with Super-SEER central air-

conditioning replacements was ~1,700 kWh across all months. Energy consumption varies 

seasonally.  
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parentheses): super-SEER air-conditioner replacement (223 kWh), SEER-15 air-

conditioner replacement (151 kWh), refrigerator removal (47 kWh), and attic insulation 

improvement (88 kWh).  Monthly energy savings for pool pump replacement (99 kWh) 

and low-income grants (67 kWh) are significant at the 5 percent and 10 percent levels 

respectively.  

Four programs yield coefficients that are not different from zero at any reasonable 

level of statistical significance using any energy consumption measure, including: room 

air-conditioner replacement, duct leakage repair, air conditioning maintenance, and whole 

home performance.   

Comparison of results across panels in Table 2 shows that different technologies 

provide energy savings across different fuel types.  For example, central air-conditioner 

replacement reduces both electricity and natural gas consumption.  This may suggest that 

central systems have efficiency gains for summer cooling, which draws electricity, as 

well as winter heating, which can draw from either electricity or natural gas.  In contrast, 

pool pump replacements and refrigerator removals only reduce electricity consumption, 

as these are appliances that never use natural gas.  On the other hand, attic insulation 

seems to most strongly affect natural gas consumption, perhaps because insulation is 

most effective at containing heat during winter months.  An alternative explanations 

might be that the effect of insulation on natural gas may be identified more easily than 

electricity, since natural gas is primarily used for heating homes while electricity is used 

or many purposes unrelated climate control. 
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 Seasonal Variation in Energy Savings 

Retrofit technologies offer varying energy services, and some services vary with 

weather but others do not. Retrofits related to climate control should yield seasonally 

variable energy savings, whereas retrofits related to all-season appliances should yield 

constant levels of energy savings throughout the year. Results in Table 3 test this 

hypothesis by including an interaction between posttreatment and a seasonal indicator 

variable equal to one for electricity bills in May through October. Seasonal interactions 

indicate the time of year that different retrofits provide energy savings, which is useful 

information for managing peak demand loads. 

Energy savings are constant for products with year-round energy services, 

confirming that reductions in energy use are caused by retrofit installation. The seasonal 

interaction coefficient is not significant for refrigerator and pool pumps—products with 

year-round energy services—suggesting constant energy savings during warm and cool 

seasons.8   

On the other hand, energy savings vary seasonally for products that provide 

climate control services.  Efficient central air conditioners provide double the energy 

savings during warmer seasons, consistent with a humid tropical climate associated with 

extremely hot summers and mild winters.  Seasonal results further suggest that attic 

insulation provides energy savings mostly in cooler months.  

                                                           
8 Pool pumps filter water to prevent algae growth and need to be operated more 

intensively during summer than in winter. So single-speed pumps have oversized motors 

that waste energy during winter months. In contrast, high-efficiency pool pump motors 

have variable speeds and programmable timers, features that save energy by reducing 

hours of operation and lowering motor speeds in winter. 
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 Energy savings from climate control services shifts across fuel types based on 

seasons.  For example, central air-conditioners provide nearly all of their electricity 

savings during summer months, and a majority of their natural gas savings during winter 

months.   Similarly, attic insulation provides almost exclusively natural gas savings 

during winter months.  In addition, duct leakage repair may provide some electricity 

savings, but only during summer months, suggesting the gains come from reduced air 

conditioning demand. 

 Inferring Causality via the Timing of Retrofit Installation 

Panel data techniques inherently identify effects based on changes in treatment 

status over time.  In the case of multiple experiments, where retrofits are installed at 

different points in time, panel analyses can also provide insights on whether retrofit 

effectiveness evolves over time. 

The difference-in-difference estimates in equation (1) provide no sense of the 

dynamics of retrofit installation and energy savings: how quickly energy savings occur 

after a technology is installed and whether this effect accelerates, stabilizes, or reverts to 

a mean. If past reductions in energy consumption spurs a homeowner to invest in 

retrofits, rather than vice versa, the previous estimates would obscure this reverse 

causality.  On the other hand, if a temporary surge in utility bills prompts homeowners to 

adopt energy efficiency measures, then previous estimates would obscure this reversion 

to the mean. To explore these dynamics, table 4 provides estimates a model with leads 

and lags of retrofit installations.  Specifically, I add indicator variables for years 1, 2, and 
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3 before designation, years 0-3 after designation, and year 4 forward.9  Of these eight 

indicator variables, the first seven are equal to one only for only 12-billing cycles, while 

the final variable is equal to one in each billing cycle starting beginning fourth years after 

the date of the retrofit installation.  

Figure 4 (table 4, model 2) shows the change in treatment effects leading up to, 

and following the installation of Super-SEER air conditioner systems. The coefficients on 

the one, two, and three year lags are close to zero, showing little evidence of energy 

reducing trends leading up to a retrofit investment.  In the year of retrofit installation, 

total energy consumption drops by an average of 200 kWh per month within the first 12-

months, an effect that is significant at the 1-percent level.  This considerable energy 

savings occurring precisely at the time of installation provides powerful causal evidence 

that the observed energy savings are, in fact, attributed to the new technology.  

Furthermore, the energy saving effects persist over time, showing no evidence of a 

rebound effect over time, or diminishing effectiveness in the years immediately following 

installation.  Figure 4 (table 4, model 2) shows that SEER-15 air conditioner retrofits 

follows a similar pattern, albeit less pronounced and with weaker statistical significance. 

Figures 5 and 6 (table 4, models 4 and 5) also show a strong decline in electricity 

consumption in the 12-month period immediately following a pool pump replacement 

and refrigerator removal, effects that are statistically significant at the 10-percent level in 

                                                           
9 1-year encompasses 12-monthly billing cycles.  The first seven indicator variables equals 1 for 

12-monthly electricity bills, either before the date of installation (leads) or after the date of 

installation (lags).  

Additional models were estimated with additional leads and lags, including eleven indicator 

variables for 1, 2, 3, and 4 years before designation, years 0-5 after designation, and year 6 

forward.  Alternative estimates are similar in sign, significance, and magnitude to the estimates 

presented in the model with eight indicator variables representing leads and lags and so are not 

included here.  
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both models.  Prior to removal energy consumption is very stable around zero, and the 

treatment effect stabilizes at a constant level for all years after the technology change.  

Figure 2 (table 4, model 6) shows the effect of attic insulation on natural gas 

consumption, which follows a similar pattern, with a reduction of 2.5 therms in the year 

of installation that is significantly different from zero at the 5 percent level.  Each of 

these technology changes follows a similar pattern using the total combined energy 

consumption as the dependent variable, although with some loss of statistical 

significance.  The models presented in table 4 are recreated using each of the three energy 

consumption measures in Appendix 1.1, 1.2, and 1.3.  

 VALIDATION OF ENGINEERING ESTIMATES 

A central debate in the energy efficiency literature concerns how energy savings 

should be measured. Most policies rely on engineering simulations. Homeowners rely on 

ex ante energy audits to guide investment decisions. Policymakers, in turn, apply the 

same engineering estimates to conduct ex ante program evaluations. As a result, policies 

continue to be justified based on engineering estimates of the savings that the 

technologies could deliver. 

Such predictions may be prone to bias from several sources. Faulty assumptions 

create a gap between realized and predicted energy savings. For example, engineering 

simulations tend to assume perfect installation and maintenance of energy efficiency 

upgrades, thereby overstating the projected energy savings. Second, even if based on 

sound models, simulations fail to account for behavioral responses. In some cases, this 

can arise from failure to account for interactions between energy uses. For example, 
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efficient light bulbs radiate less heat than incandescent bulbs, and as a result efficient 

lighting upgrades may increase use of heating systems. 

Typical engineering models also assume constant use of energy services before 

and after efficiency investments. Higher efficiency reduces the marginal price of the 

energy services provided by a product and, consequently, may lead to increased 

consumption of these energy services, a response called the rebound effect. For example, 

a new, more efficient air-conditioner will lower the marginal price of cool air, possibly 

leading homeowners to set thermostats at a lower temperature. If so, model bias may 

have implications for an energy efficiency paradox and related cost-effectiveness. 

More than 30 years of research finds that engineering simulations relying on 

faulty assumptions create a gap between realized and predicted energy savings. For 

example, Metcalf and Hassett (1999) find that engineering simulations overpredict the 

energy savings from attic insulation by more than 500 percent when compared with 

actual savings in household energy bills. More recently, Davis et al. (2014) find that 

aggregate engineering figures overestimate effects of refrigerator replacements by 250 

percent or more.  

The large magnitude of engineering bias for residential retrofits is surprising, 

especially considering that validations in similar settings, such as residential building 

codes and commercial lighting retrofits, find engineering estimates are quite accurate 

(Jacobsen and Kotchen 2013; Lang and Siler 2013). 

One explanation may be that residential retrofit validation studies represent 

apples-to-oranges comparisons, whereby engineering bias may be exaggerated because of 

poorly defined retrofit parameters that differ from the retrofits actually installed.  Metcalf 
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and Hassett (1999) and Davis et al. (2014), both validation studies of residential retrofits, 

compare empirical estimates with a priori engineering estimates based on a hypothetical 

scenario of technology adoption; neither study compares ex ante engineering models 

calibrated to estimate energy savings from the actual sample of households and 

technologies used for empirical estimates. A priori engineering estimates have limited 

policy relevance; in fact, most ex ante program evaluations use predictions from 

engineering models parameterized according to the precise technology improvements and 

building characteristics as the true sample of adopters. Hence, a timely and policy-

relevant need exists for empirical validations of technology-specific ex ante engineering 

estimates of energy savings from retrofits compared with ex post empirical estimates 

using billing data. 

 Empirical Comparison with Engineering Estimates 

Figures 1 and 2 visually compares the empirical results with ex-ante engineering 

estimates of energy savings recorded by GRU. Red triangles denote average engineering 

estimates of energy savings (table 1, row 1).  Black dots denote coefficients of energy 

savings from the difference-in-difference models (table 2).  In Figure 1, coefficients 

correspond to total energy savings (table 2, panel A); while in Figure 2, coefficients 

correspond to electricity savings only (table 2, panel B). Vertical black bars represent 95-

percent confidence intervals around point-estimates.  When the engineering estimate of 

energy savings  
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If engineering estimates of energy savings fall within confidence intervals of 

empirical estimates, then the difference-in-difference models fail to reject equality among 

ex-ante and ex-post estimates.  Based on prior literature, one might expect that most 

engineering estimates of energy savings fall well above the bounds of the confidence 

intervals, which would support the claim overestimation bias from engineering models. 

Contrary to expectations, in figure 1, a large majority of engineering estimates fall 

within the confidence intervals of the difference-in-difference models. Engineering 

estimates are impressively accurate for retrofits novel to this study and, in some cases, 

too conservative. Engineering estimates for eight of the 10 programs fall within, or very 

nearly within, the 95 percent confidence surrounding difference-in-difference estimates 

derived from observational data. . Energy savings estimates for SEER-15 air-conditioner 

replacements are very conservative—underpredicting energy savings. Similarly, 

engineers also underpredict energy savings from Super-SEER central air conditioning 

systems. Ex ante engineering models must forecast future weather conditions, which are 

inherently unpredictable; thus it is surprising to find accurate modeling of climate-

dependent energy systems, such as air cooling and pool circulation. 

 Figure 2, that reports difference-in-differenence estimates using only electricity, 

underscores the importance of considering both natural gas and electricity with validating 

engineering estimates.  When only considering electricity, engineering energy 

simulations overestimate actual electricity savings about half of the time – in five out of 

10 programs.  However, it is important to recognize that this may be a poor validation for 

technologies, such as attic insulation, that derive most of their energy savings from 

natural gas.  
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Results confirm an upward bias in engineering estimates for three technologies 

previously studied in empirical literature: attic insulation, refrigerator replacement, and 

room air-conditioners. However, on average, the magnitude of engineering bias appears 

to be smaller than some prior studies suggest, at least after adjusting for confidence 

intervals. Engineers overestimate energy savings from attic insulation by 50 percent—a 

substantial bias. However, even this large bias appears modest compared with a bias of 

more than 500 percent reported in past literature (Metcalf and Hassett 1999). However, in 

the case of refrigerators, estimates are in line with recent studies. Engineers overestimate 

energy savings from refrigerator buybacks by 100 to 300 percent, which is comparable to 

the bias of 250 percent reported for a similar program in Mexico (Davis et al. 2014).10 

Although engineers estimate energy savings from room air-conditioners, estimates in this 

study find no statistically significant or economically important energy savings but do not 

suggest that room air-conditioner replacements increase energy consumption, as reported 

in Mexico (Davis et al. 2014). It is worth noting, however, that comparison of the 

magnitude of engineering bias across studies is difficult because of idiosyncratic 

differences in climate, program regulations, and other confounding factors that 

complicate generalizations about the accuracy of engineering models. Hence, when 

compared with previous literature, these estimates should be viewed as additional 

evidence rather than an improved assessment of engineering bias.  

                                                           
10 Some of the difference in engineering overestimates for refrigerator programs may be due to 

differences in specific program requirements in Mexico and Gainesville. In particular, the 

Mexican refrigerator replacement program issues rebates at the time of a new refrigerator 

purchase, whereas the GRU refrigerator buyback program only required removal of an old 

refrigerator. Because of differences in refrigerator replacement requirements, and possibly in how 

engineering estimates are calculated, valid comparisons between these programs may be limited. 
 



   18 
 

In sum, the accuracy of engineering models varies across retrofit programs, with a 

tendency to modestly overpredict energy savings. However, inasmuch as this study 

measures actual performance of retrofits as implemented by residential energy users, the 

results likely have more relevance for assessing the benefits of policies designed to foster 

residential energy retrofits than engineering studies. 

 CONCLUSIONS 

Despite the many retrofit rebate programs and calls for increased investment in 

demand-side management programs, surprisingly little is known about whether energy 

efficiency retrofits are an effective way to reduce energy consumption. Engineering 

simulations provide most of the evidence, but simulated predictions, even if based on 

sound models, do not account for installation quality or behavioral responses. Empirical 

research that uses field data can evaluate more fully the effects of energy efficiency 

retrofits on energy consumption.  

This paper has evaluated retrofit-specific residential rebate programs by using 

observed household-level consumption data. The results identify the energy savings from 

nine retrofit rebate programs in Gainesville, Florida, using a panel data set of electricity 

and natural gas consumption and building characteristics for 30,000 residences. The 

difference-in-difference method compares changes in energy use by a residence before 

and after an energy-saving retrofit intervention (the treatment group) with changes in 

energy use by future participants that have not yet received improvements (the control 

group). The monthly billing data are linked to time-variant and time-constant 

characteristics of each residence.  
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This study makes three contributions to the literature assessing energy efficiency 

programs. First, it is the first assessment of a retrofit rebate program to apply a 

difference-in-difference method linking billing data and housing characteristics for every 

customer within a utility service area. Second, by assessing nine retrofit programs, it 

explores heterogeneity across a range of retrofit options. Third, it uses technology-

specific data on engineering predictions and rebate levels to identify retrofit-specific 

estimates of simulation bias.  

The primary contribution is the evaluation of retrofit-specific residential rebate 

programs based on actual billing data. Results show that engineering simulations are 

surprisingly accurate compared with empirical estimates, in stark contrast to previous 

studies. For a majority of retrofit programs, engineering models predicted energy savings 

within the 95 percent confidence interval of actual energy reductions. For the remaining 

programs, engineering biases are modest relative to previous studies. Beyond providing 

new confidence in technology-specific engineering models, the results also shed light on 

variation in engineering bias across retrofit types.  

These findings provide new policy insights about the effectiveness and cost-

effectiveness of specific retrofits. First, results inform policymakers about the relative 

efficacy of different retrofit rebates, allowing inefficient programs to be terminated and 

efficient programs to be expanded. Second, results provide new empirical evidence about 

the bias of engineering models, suggesting a need for future research to explain the cause 

of variation in model accuracy across retrofit types. Third, these evaluations empower 

homeowners to make informed decisions about energy efficiency investments, using 

credible information on the expected cost savings from various retrofit options 
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Table 1 Descriptive Statistics for Gainesville Residential Energy Efficiency Incentives [mean, (standard deviation)] 

Variable 

Super-SEER 

Central Air 

Conditioner 

SEER-15 

Central Air 

Conditioner 
Room Air 

Conditioner 
Pool 

Pump 
Refrigerator 

Removal 
Attic 

Insulation 

Duct 

Leakage 

Repair 

Air 

Conditioning 

Maintenance 

Low-

Income 

Grants 
Whole Home 

Performance 

Ex-Ante Energy Savings 160.6 46.0 19.5 146.7 127.4 129.5 107.8 37.6 93.7 207.4 
(kWh per month) (44.0) (9.7) (0.0)  (13.0) (33.1) (3.7) (7.0) (2.9) (68.1) (83.3) 

           
Project Cost $7,291 $5,672 - $1,452 - $761 $863 $97 - - 

 
($1,467) ($1,412) - ($505) - ($501) ($913) ($94) - - 

           
Rebate $555 $295 $162 $284 $72 $199 $359 $55 $2,138 $867 

 
($62) ($44) ($21) ($97) ($12) ($77) ($100) ($4) ($1,564) ($418) 

           
Treated Houses 623 297 234 394 1,160 577 365 1,216 210 89 

 Descriptive statistics of rebate participants for each retrofit program. Average project costs, average rebate amounts, average engineering estimates of energy 

savings by rebate program are calculated from project-level cost and rebate data and technology-specific energy saving estimates. Numbers in parentheses report 

standard deviations. Sample includes houses participating in only a single rebate program during 2005-2012. Low-income and home performance rebate programs 

often involve installation of multiple retrofit measures. 
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Table 2 Estimates of the Electricity Savings from Energy Efficiency Investments 

Variables 

Super-SEER 

Central Air 

Conditioner 

SEER-15 

Central Air 

Conditioner 
Room Air 

Conditioner Pool Pump 
Refrigerator 

Removal 
Attic 

Insulation 

Duct 

Leakage 

Repair 

Air 

Conditioner 

Maintenance 

Low-

Income  

Grants 
Whole 

Home 

 
A. Total energy consumption (kwh per month)  

Treatment  -222.9 *** -151.2 *** -23.9 
 

-98.7 ** -46.6 *** -87.6 *** -39.5 
 

1.2 
 

-67.2 * -101.3 
 Effect (27.6) 

 
(38.7) 

 
(47.4) 

 
(46.9) 

 
(17.5) 

 
(28.4) 

 
(33.8) 

 
(18.6) 

 
(40.6) 

 
(70.2) 

 Constant 1,677 *** 1,360 *** 1,267 *** 2,575 *** 1,479 *** 1,369 *** 1,444 *** 1,724 *** 1,281 *** 1,654 *** 

 
(48.2) 

 
(26.9) 

 
(31.7) 

 
(37.9) 

 
(12.3) 

 
(23.8) 

 
(30.3) 

 
(13.6) 

 
(42.6) 

 
(59.4) 

 Observations 114,415 
 

51,173 
 

38,645 
 

65,606 
 

195,337 
 

98,570 
 

62,108 
 

201,670 
 

35,306 
 

15,128 
 R-squared 0.72 

 
0.72 

 
0.58 

 
0.65 

 
0.66 

 
0.65 

 
0.68 

 
0.67 

 
0.558 

 
0.677 

 
                     

 

B. Electricity consumption (kWh per month) 

Treatment -138.9 *** -81.0 *** -26.5 
 

-125.4 *** -49.8 *** -28.2 
 

-14.9 
 

5.0 
 

-96.8 *** -46.3 
 Effect (18.6) 

 
(28.2) 

 
(32.1) 

 
(30.3) 

 
(12.5) 

 
(18.8) 

 
(23.9) 

 
(12.7) 

 
(27.5) 

 
(42.2) 

 Constant 1,262 *** 1,035 *** 961 *** 1,764 *** 1,106 *** 1,121 *** 1,194 *** 1,114 *** 935 *** 993 *** 

 
(34.1) 

 
(17.1) 

 
(30.3) 

 
(24.8) 

 
(8.4) 

 
(11.8) 

 
(18.6) 

 
(9.3) 

 
(38.5) 

 
(34.2) 

 Observations 114,156 
 

51,046 
 

38,332 
 

65,483 
 

194,544 
 

97,837 
 

61,923 
 

201,004 
 

35,114 
 

15,053 
 R-squared 0.77 

 
0.74 

 
0.59 

 
0.71 

 
0.67 

 
0.68 

 
0.69 

 
0.68 

 
0.608 

 
0.666 

 
                     

 

C. Natural gas consumption (therm per month)  

Treatment -4.0 *** -3.5 *** -1.0 
 

0.7 
 

-0.1 
 

-2.8 *** -1.3 
 

-0.2 
 

1.9 
 

-2.5 
 Effect (0.8) 

 
(1.1) 

 
(1.6) 

 
(1.1) 

 
(0.5) 

 
(0.8) 

 
(0.9) 

 
(0.5) 

 
(1.5) 

 
(1.9) 

 Constant 33.3 *** 23.3 *** 22.6 *** 30.5 *** 28.9 *** 23.4 *** 21.6 *** 25.4 *** 23.8 *** 28.3 *** 

 
(0.5) 

 
(1.0) 

 
(1.7) 

 
(2.4) 

 
(0.4) 

 
(0.7) 

 
(1.2) 

 
(0.5) 

 
(1.1) 

 
(1.7) 

 Observations 75,974 
 

26,677 
 

19,583 
 

44,584 
 

126,233 
 

59,913 
 

38,886 
 

128,741 
 

19,907 
 

11,248 
 R-squared 0.80   0.80   0.68   0.75   0.77   0.76   0.80   0.80   0.649   0.771   

Each column is a separate model. All models include individual house-by-month fixed effects and billing period fixed effects. In Panel A the dependent variable is 

total energy consumption (electricity and natural gas combined) measured in kilowatt hours per month. In Panel B the dependent variable is electricity 

consumption (kWh per month). In Panel C the dependent variable is natural gas consumption (therms per month). The variable treatment effect is a retrofit specific 

treatment indicator equal to 1 for billing months after retrofit installation for houses participating in that specific program and equal to 0 otherwise.  Coefficients 

represent the monthly electricity use changes after retrofit installation.  Numbers in parentheses report standard errors clustered by house. Asterisks denote 

significance at levels of 1, 5, and 10 percent (***, **, *).   
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Figure 1 Comparison of empirical and engineering estimates of total energy savings.  Red triangles denote average ex-ante engineering energy savings estimates 

(table 1, row 1).  Black dots denote coefficients of total energy savings from both electricity and natural gas (table 2, panel A). Vertical black bars represent 95-

percent confidence intervals around point-estimates.   
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Figure 2 Comparison of empirical and engineering estimates of electricity savings.  Red triangles denote average ex-ante engineering energy savings estimates 

(table 1, row 1).  Black dots denote coefficients of energy savings from electricity (table 2, panel B). Vertical black bars represent 95-percent confidence intervals 

around point-estimates.    
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Table 3 Seasonal Estimates of the Electricity Savings from Energy Efficiency Investments 

Variables 

Super-SEER 

Central Air 

Conditioner 

SEER-15 

Central Air 

Conditioner 
Room Air 

Conditioner Pool Pump 
Refrigerator 

Removal 
Attic 

Insulation 

Duct 

Leakage 

Repair 

Air 

Conditioner 

Maintenance 

Low-

Income  

Grants 
Whole 

Home 

 
A. Total energy consumption (kwh per month)  

Treatment Effect -147.3 *** -106.0 ** -11.4 
 

-100.1 * -23.3 
 

-116.5 *** -23.9 
 

14.5 
 

-21.8 
 

-12.2 
 

 

(36.0) 
 

(43.8) 
 

(61.6) 
 

(53.9) 
 

(22.1) 
 

(34.7) 
 

(41.1) 
 

(23.2) 
 

(56.4) 
 

(93.4) 
 Treatment Effect 

X May-October  

-148.8 *** -90.1 ** -24.8 
 

2.9 
 

-46.2 ** 57.3 * -31.3 
 

-29.5 
 

-86.7 
 

-168.5 ** 
(32.0) 

 
(35.8) 

 
(48.6) 

 
(45.1) 

 
(19.1) 

 
(29.5) 

 
(39.4) 

 
(23.5) 

 
(53.0) 

 
(84.7) 

 Observations 114,415 
 

51,173 
 

38,645 
 

65,606 
 

195,337 
 

98,570 
 

62,108 
 

201,670 
 

35,306 
 

15,128 
 R-squared 0.72 

 
0.72 

 
0.58 

 
0.65 

 
0.66 

 
0.65 

 
0.68 

 
0.67 

 
0.559 

 
0.677 

 
                     

 

B. Electricity consumption (kWh per month) 

Treatment Effect -1.8 
 

24.6 
 

-28.3 
 

-114.6 *** -32.8 *** -10.5 
 

18.6 
 

9.3 
 

-106.4 *** 59.9 
 

 

(17.5) 
 

(25.4) 
 

(34.3) 
 

(27.1) 
 

(11.9) 
 

(16.8) 
 

(20.6) 
 

(13.0) 
 

(28.4) 
 

(38.7) 
 Treatment Effect 

X May-October  

-269.6 *** -210.3 *** 3.6 
 

-21.2 
 

-33.6 *** -35.2 * -67.6 *** -9.6 
 

18.2 
 

-200.7 *** 
(17.3) 

 
(26.7) 

 
(30.8) 

 
(25.8) 

 
(11.2) 

 
(18.3) 

 
(23.8) 

 
(14.0) 

 
(31.3) 

 
(55.7) 

 Observations 114,156 
 

51,046 
 

38,332 
 

65,483 
 

194,544 
 

97,837 
 

61,923 
 

201,004 
 

35,114 
 

15,053 
 R-squared 0.77 

 
0.74 

 
0.59 

 
0.71 

 
0.67 

 
0.68 

 
0.69 

 
0.68 

 
0.608 

 
0.667 

 
                     

 

C. Natural gas consumption (therm per month)  

Treatment Effect -6.6 *** -6.4 *** -1.2 
 

-0.2 
 

0.2 
 

-5.3 *** -2.4 
 

-0.1 
 

5.3 ** -3.3 
 

 

(1.4) 
 

(1.7) 
 

(3.0) 
 

(1.7) 
 

(0.8) 
 

(1.4) 
 

(1.5) 
 

(0.8) 
 

(2.7) 
 

(3.3) 
 Treatment Effect 

X May-October  

5.2 *** 5.7 *** 0.3 
 

1.7 
 

-0.6 
 

4.9 *** 2.2 
 

-0.2 
 

-6.5 *** 1.4 
 (1.3) 

 
(1.5) 

 
(2.9) 

 
(1.5) 

 
(0.7) 

 
(1.2) 

 
(1.4) 

 
(0.8) 

 
(2.4) 

 
(2.9) 

 Observations 75,974 
 

26,677 
 

19,583 
 

44,584 
 

126,233 
 

59,913 
 

38,886 
 

128,741 
 

19,907 
 

11,248 
 R-squared 0.80   0.80   0.68   0.75   0.77   0.76   0.80   0.80   0.649   0.771   

Each column is a separate model. All models include individual house-by-month fixed effects and billing period fixed effects. In Panel A the dependent variable is 

total energy consumption (electricity and natural gas combined) measured in kilowatt hours per month. In Panel B the dependent variable is electricity 

consumption (kWh per month). In Panel C the dependent variable is natural gas consumption (therms per month). The variable May to October is an indicator 

variable equal to 1 for billing months during the warm season between May and October, and equal to zero otherwise; the interaction term (treatment effect * May 

to October) represents the additional treatment effect during warmer months. Coefficients represent the monthly electricity use changes after retrofit installation.  

Numbers in parentheses report standard errors clustered by house. Asterisks denote significance at levels of 1, 5, and 10 percent. 



28 
 

 

Table 4 Estimated Effects of Retrofit Installation on Energy Consumption: Temporal Dynamics Using Leads and Lags 

    (1) (2) (3) (4) (5) (6) (7) (8) 

    

Super-SEER 

Central Air 

Conditioner 

SEER-15 

Central Air 

Conditioner 

Room Air 

Conditioner 

Pool 

Pump 

Refrigerator 

Removal 

Attic 

Insulation 

Duct 

Leakage 

Repair 

Air 

Conditioner 

Maintenance 

Retrofit installation leads and lags: 

                

 

Technology change t+3  -19.3 

 

-20.4 

 

19.2 

 

7.8 

 

4.5 

 

-0.4 

 

27.6 

 

54.0 * 

  

(23.3) 

 

(31.4) 

 

(40.2) 

 

(26.3) 

 

(13.2) 

 

(0.7) 

 

(28.6) 

 

(28.8) 

 

 

Technology change t+2 -9.8 

 

18.7 

 

50.4 

 

1.1 

 

6.1 

 

-0.9 

 

49.1 

 

61.1 

 

  

(30.8) 

 

(45.3) 

 

(59.6) 

 

(40.2) 

 

(17.7) 

 

(0.9) 

 

(41.4) 

 

(46.0) 

 

 

Technology change t+1 -20.1 

 

18.3 

 

28.6 

 

4.8 

 

1.1 

 

-1.0 

 

49.4 

 

106.0 

 

  

(39.9) 

 

(64.7) 

 

(72.7) 

 

(54.0) 

 

(22.0) 

 

(1.3) 

 

(54.2) 

 

(65.5) 

 

 

Technology change t0 -204.7 *** -126.0 

 

29.8 

 

-120.4 * -49.8 * -3.5 ** -1.6 

 

100.9 

 

  

(49.4) 

 

(80.5) 

 

(90.1) 

 

(69.9) 

 

(25.8) 

 

(1.7) 

 

(61.4) 

 

(75.7) 

 

 

Technology change t-1 -257.5 *** -131.4 

 

-37.1 

 

-135.2 

 

-52.1 * -3.6 * 12.3 

 

100.4 

 

  

(63.2) 

 

(96.2) 

 

(115.1) 

 

(86.8) 

 

(29.7) 

 

(2.0) 

 

(74.8) 

 

(83.0) 

 

 

Technology change t-2 -288.5 *** -124.2 

 

-87.7 

 

-149.3 

 

-59.4 * -3.8 * 20.4 

 

107.7 

 

  

(77.7) 

 

(110.9) 

 

(143.9) 

 

(102.6) 

 

(35.0) 

 

(2.3) 

 

(93.3) 

 

(92.6) 

 

 

Technology change t-3 -326.8 *** -112.3 

 

-118.2 

 

-159.3 

 

-60.2 

 

-4.0 

 

-0.8 

 

107.3 

 

  

(94.2) 

 

(124.3) 

 

(174.2) 

 

(118.8) 

 

(41.8) 

 

(2.6) 

 

(124.2) 

 

(103.3) 

 Retrofit installation t-4 forward -354.9 *** -5.8 

 

-114.1 

 

-162.3 

 

-90.2 

 

-3.6 

 

-26.8 

 

58.8 

 

  

(120.7) 

 

(150.5) 

 

(231.9) 

 

(143.1) 

 

(56.6) 

 

(3.1) 

 

(177.9) 

 

(106.5) 

 
                  H0: designation(t0-t4) = 0 0.002 

 

0.015 

 

0.293 

 

0.512 

 

0.307 

 

0.112 

 

0.875 

 

0.389 

 R
2
  0.72 

 

0.71 

 

0.58 

 

0.71 

 

0.67 

 

0.76 

 

0.68 

 

0.67 

 Observations 106,440   50,394   38,645   65,126   194,888   59,600   62,280   201,670   
Dependent variable(s): total combined energy consumption (models 1-3 and 7-8), or electricity consumption only (models 4 and 5), or natural gas consumption 

only (model 6). Each column is a separate model. All models include individual house-by-month fixed effects and billing period fixed effects.  All models include 

indicator variables for years 1, 2, and 3 before designation, years 0-3 after designation, and year 4 forward.  Of these eight indicator variables, the first seven are 

equal to one only for 12-months, while the final variable is equal to one in each month starting with the fourth year after retrofit installation. Standard errors in 

parentheses are clustered by house to allow for arbitrary correlation of residuals within each house. Asterisks denote significance at levels of 1, 5, and 10 percent 

(***, **, *).  All models include individual house-by-month fixed effects and billing period fixed effects. See appendicies for additional models using alternate 

dependent variables.  
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Figure 3 Estimated effects of Super-SEER central air conditioner installation for years before, during, and after retrofit installation. (See table 4, model 1). 

Dependent variable is total energy consumption (electricity and natural gas combined). 
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Vertical bands represent ±1.96 times the standard error of each point estimate 
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Figure 4 Estimated effects of SEER-15 central air conditioner installation for years before, during, and after retrofit installation. (See table 4, model 2).  Dependent 

variable is total energy consumption (electricity and natural gas combined). 
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Vertical bands represent ±1.96 times the standard error of each point estimate 
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Figure 5 Estimated effects of high-efficiency pool pump installation for years before, during, and after retrofit installation. (See table 4, model 4).  Dependent 

variable is electricity consumption (kWh per month). 
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Vertical bands represent ±1.96 times the standard error of each point estimate 



32 
 

 

 

Figure 6 Estimated effects of refrigerator removal for years before, during, and after removal event. (See table 4, model 5).  Dependent variable is electricity 

consumption (kWh per month). 
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Figure 7 Estimated effects of attic insulation for years before, during, and after retrofit installation. (See table 4, model 6).  Dependent variable is natural gas 

consumption (therms per month). 
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Appendix 1.1 Estimated Effects of Retrofit Installation on Total Combined Energy Consumption: Temporal Dynamics Using Leads and Lags 

    

Super-SEER 

Central Air 

Conditioner 

SEER-15 

Central Air 

Conditioner 

Room Air 

Conditioner 

Pool 

Pump 

Refrigerator 

Removal 

Attic 

Insulation 

Duct 

Leakage 

Repair 

Air 

Conditioner 

Maintenance 

Retrofit installation leads and lags: 

                

 

Technology change t+3  -19.3 

 

-20.4 

 

19.2 

 

-8.0 

 

9.9 

 

-16.0 

 

27.6 

 

54.0 * 

  

(23.3) 

 

(31.4) 

 

(40.2) 

 

(41.2) 

 

(18.7) 

 

(27.0) 

 

(28.6) 

 

(28.8) 

 

 

Technology change t+2 -9.8 

 

18.7 

 

50.4 

 

-43.1 

 

-0.4 

 

-37.2 

 

49.1 

 

61.1 

 

  

(30.8) 

 

(45.3) 

 

(59.6) 

 

(59.9) 

 

(25.5) 

 

(35.7) 

 

(41.4) 

 

(46.0) 

 

 

Technology change t+1 -20.1 

 

18.3 

 

28.6 

 

-7.8 

 

-17.6 

 

-6.7 

 

49.4 

 

106.0 

 

  

(39.9) 

 

(64.7) 

 

(72.7) 

 

(79.3) 

 

(31.1) 

 

(47.5) 

 

(54.2) 

 

(65.5) 

 

 

Technology change t0 -204.7 *** -126.0 

 

29.8 

 

-122.9 

 

-62.1 * -83.5 

 

-1.6 

 

100.9 

 

  

(49.4) 

 

(80.5) 

 

(90.1) 

 

(104.0) 

 

(36.8) 

 

(57.9) 

 

(61.4) 

 

(75.7) 

 

 

Technology change t-1 -257.5 *** -131.4 

 

-37.1 

 

-143.2 

 

-59.8 

 

-93.8 

 

12.3 

 

100.4 

 

  

(63.2) 

 

(96.2) 

 

(115.1) 

 

(128.1) 

 

(42.8) 

 

(67.9) 

 

(74.8) 

 

(83.0) 

 

 

Technology change t-2 -288.5 *** -124.2 

 

-87.7 

 

-214.3 

 

-69.0 

 

-97.5 

 

20.4 

 

107.7 

 

  

(77.7) 

 

(110.9) 

 

(143.9) 

 

(153.1) 

 

(51.1) 

 

(77.8) 

 

(93.3) 

 

(92.6) 

 

 

Technology change t-3 -326.8 *** -112.3 

 

-118.2 

 

-235.9 

 

-48.5 

 

-50.5 

 

-0.8 

 

107.3 

 

  

(94.2) 

 

(124.3) 

 

(174.2) 

 

(175.1) 

 

(62.1) 

 

(90.0) 

 

(124.2) 

 

(103.3) 

 Retrofit installation t-4 forward -354.9 *** -5.8 

 

-114.1 

 

-273.1 

 

-105.2 

 

-23.6 

 

-26.8 

 

58.8 

 

  

(120.7) 

 

(150.5) 

 

(231.9) 

 

(212.3) 

 

(84.8) 

 

(115.5) 

 

(177.9) 

 

(106.5) 

 
                  H0: designation(t0-t4) = 0 0.002 

 

0.015 

 

0.293 

 

0.581 

 

0.033 

 

0.026 

 

0.875 

 

0.389 

 R
2
  0.72 

 

0.71 

 

0.58 

 

0.65 

 

0.66 

 

0.64 

 

0.68 

 

0.67 

 Observations 106,440   50,394   38,645   65,249   195,681   98,043   62,280   201,670   
Dependent variable is total combined electricity and natural gas consumption (kwh per month). Each column is a separate model. All models include individual 

house-by-month fixed effects and billing period fixed effects.  All models include indicator variables for years 1, 2, and 3 before designation, years 0-3 after 

designation, and year 4 forward.  Of these eight indicator variables, the first seven are equal to one only for 12-months, while the final variable is equal to one in 

each month starting with the fourth year after retrofit installation. Standard errors in parentheses are clustered by house to allow for arbitrary correlation of 

residuals within each house. Asterisks denote significance at levels of 1, 5, and 10 percent (***, **, *).  All models include individual house-by-month fixed 

effects and billing period fixed effects. See appendix for additional models using alternate dependent variables.  
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Appendix 1.2 Estimated Effects of Retrofit Installation on Electricity Consumption: Temporal Dynamics Using Leads and Lags 

    

Super-SEER 

Central Air 

Conditioner 

SEER-15 

Central Air 

Conditioner 

Room Air 

Conditioner Pool Pump 

Refrigerator 

Removal 

Attic 

Insulation 

Duct 

Leakage 

Repair 

Air 

Conditioner 

Maintenance 

Retrofit installation leads and lags: 

                

 

Technology change t+3  -21.7 

 

-32.9 

 

36.4 

 

7.8 

 

4.5 

 

-10.2 

 

20.4 

 

29.9 

 

  

(16.4) 

 

(24.9) 

 

(32.3) 

 

(26.3) 

 

(13.2) 

 

(19.0) 

 

(19.8) 

 

(20.2) 

 

 

Technology change t+2 -14.0 

 

0.8 

 

81.7 * 1.1 

 

6.1 

 

-23.4 

 

44.8 

 

25.7 

 

  

(22.2) 

 

(35.4) 

 

(44.6) 

 

(40.2) 

 

(17.7) 

 

(24.5) 

 

(27.8) 

 

(31.2) 

 

 

Technology change t+1 -1.0 

 

-5.6 

 

86.8 

 

4.8 

 

1.1 

 

9.7 

 

55.8 

 

58.6 

 

  

(28.7) 

 

(49.6) 

 

(54.6) 

 

(54.0) 

 

(22.0) 

 

(32.7) 

 

(37.4) 

 

(46.0) 

 

 

Technology change t0 -141.2 *** -88.5 

 

76.4 

 

-120.4 * -49.8 * -15.3 

 

30.6 

 

58.2 

 

  

(36.2) 

 

(61.6) 

 

(66.9) 

 

(69.9) 

 

(25.8) 

 

(38.8) 

 

(42.8) 

 

(53.3) 

 

 

Technology change t-1 -153.1 *** -88.2 

 

33.0 

 

-135.2 

 

-52.1 * -28.9 

 

38.8 

 

58.1 

 

  

(44.3) 

 

(71.5) 

 

(82.4) 

 

(86.8) 

 

(29.7) 

 

(45.4) 

 

(52.0) 

 

(58.0) 

 

 

Technology change t-2 -163.6 *** -79.3 

 

6.3 

 

-149.3 

 

-59.4 * -35.6 

 

44.4 

 

61.1 

 

  

(54.1) 

 

(80.0) 

 

(99.8) 

 

(102.6) 

 

(35.0) 

 

(52.9) 

 

(63.3) 

 

(64.1) 

 

 

Technology change t-3 -178.6 *** -64.7 

 

-25.2 

 

-159.3 

 

-60.2 

 

-6.9 

 

46.9 

 

62.6 

 

  

(64.8) 

 

(90.1) 

 

(118.1) 

 

(118.8) 

 

(41.8) 

 

(61.2) 

 

(82.7) 

 

(71.3) 

 Retrofit installation t-4 forward -196.1 ** -1.3 

 

-0.1 

 

-162.3 

 

-90.2 

 

25.3 

 

59.7 

 

35.3 

 

  

(82.7) 

 

(110.2) 

 

(156.5) 

 

(143.1) 

 

(56.6) 

 

(77.9) 

 

(119.5) 

 

(73.6) 

 
                  H0: designation(t0-t4) = 0 0.003 

 

0.012 

 

0.034 

 

0.512 

 

0.307 

 

0.061 

 

0.980 

 

0.495 

 R
2
  0.77 

 

0.73 

 

0.59 

 

0.71 

 

0.67 

 

0.67 

 

0.69 

 

0.68 

 Observations 106,191   50,267   38,332   65,126   194,888   97,310   62,087   201,004   
Dependent variable is electricity consumption (kWh per month). Each column is a separate model. All models include individual house-by-month fixed effects and 

billing period fixed effects.  All models include indicator variables for years 1, 2, and 3 before designation, years 0-3 after designation, and year 4 forward.  Of 

these eight indicator variables, the first seven are equal to one only for 12-months, while the final variable is equal to one in each month starting with the fourth 

year after retrofit installation. Standard errors in parentheses are clustered by house to allow for arbitrary correlation of residuals within each house. Asterisks 

denote significance at levels of 1, 5, and 10 percent (***, **, *).  All models include individual house-by-month fixed effects and billing period fixed effects. See 

appendix for additional models using alternate dependent variables.  
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Appendix 1.3 Estimated Effects of Retrofit Installation on Natural Gas Consumption: Temporal Dynamics Using Leads and Lags 

    

Super-SEER 

Central Air 

Conditioner 

SEER-15 

Central Air 

Conditioner 

Room Air 

Conditioner 

Pool 

Pump 

Refrigerator 

Removal 

Attic 

Insulation 

Duct 

Leakage 

Repair 

Air 

Conditioner 

Maintenance 

Retrofit installation leads and lags: 

                

 

Technology change t+3  0.3 

 

0.5 

 

-1.1 

 

-0.1 

 

-0.1 

 

-0.4 

 

0.2 

 

0.7 * 

  

(0.6) 

 

(0.9) 

 

(0.9) 

 

(0.9) 

 

(0.4) 

 

(0.7) 

 

(0.7) 

 

(0.4) 

 

 

Technology change t+2 0.3 

 

1.1 

 

-2.6 

 

-1.0 

 

-0.8 

 

-0.9 

 

0.5 

 

1.0 

 

  

(0.8) 

 

(1.2) 

 

(1.6) 

 

(1.4) 

 

(0.6) 

 

(0.9) 

 

(1.0) 

 

(0.8) 

 

 

Technology change t+1 -0.4 

 

1.9 

 

-4.8 ** 0.0 

 

-1.2 

 

-1.0 

 

0.5 

 

1.5 

 

  

(1.1) 

 

(1.7) 

 

(2.4) 

 

(1.9) 

 

(0.7) 

 

(1.3) 

 

(1.2) 

 

(1.1) 

 

 

Technology change t0 -2.5 * -1.2 

 

-5.1 

 

0.6 

 

-1.0 

 

-3.5 ** -0.8 

 

1.4 

 

  

(1.4) 

 

(2.1) 

 

(3.1) 

 

(2.5) 

 

(0.9) 

 

(1.7) 

 

(1.5) 

 

(1.5) 

 

 

Technology change t-1 -4.3 *** -1.6 

 

-7.2 * -0.1 

 

-1.2 

 

-3.6 * -0.6 

 

1.5 

 

  

(1.7) 

 

(2.6) 

 

(3.9) 

 

(3.1) 

 

(1.1) 

 

(2.0) 

 

(1.7) 

 

(1.8) 

 

 

Technology change t-2 -5.0 ** -0.9 

 

-9.0 * -2.1 

 

-1.1 

 

-3.8 * -0.5 

 

1.6 

 

  

(1.9) 

 

(3.1) 

 

(4.7) 

 

(3.6) 

 

(1.3) 

 

(2.3) 

 

(2.1) 

 

(2.1) 

 

 

Technology change t-3 -5.3 ** -1.0 

 

-10.7 * -2.1 

 

-0.9 

 

-4.0 

 

-1.0 

 

1.8 

 

  

(2.2) 

 

(3.6) 

 

(5.6) 

 

(4.2) 

 

(1.5) 

 

(2.6) 

 

(2.4) 

 

(2.4) 

 Retrofit installation t-4 forward -5.7 ** 0.6 

 

-11.4 * -1.3 

 

-1.8 

 

-3.6 

 

-2.0 

 

1.7 

 

  

(2.6) 

 

(4.1) 

 

(6.4) 

 

(5.0) 

 

(1.7) 

 

(3.1) 

 

(2.8) 

 

(2.9) 

 
                  H0: designation(t0-t4) = 0 0.024 

 

0.222 

 

0.524 

 

0.141 

 

0.412 

 

0.112 

 

0.725 

 

0.910 

 R
2
  0.80 

 

0.80 

 

0.68 

 

0.75 

 

0.77 

 

0.76 

 

0.80 

 

0.80 

 Observations 70,822   26,252   19,583   44,522   126,233   59,600   39,195   128,741   
Dependent variable is natural gas consumption (therms per month). Each column is a separate model. All models include individual house-by-month fixed effects 

and billing period fixed effects.  All models include indicator variables for years 1, 2, and 3 before designation, years 0-3 after designation, and year 4 forward.  Of 

these eight indicator variables, the first seven are equal to one only for 12-months, while the final variable is equal to one in each month starting with the fourth 

year after retrofit installation. Standard errors in parentheses are clustered by house to allow for arbitrary correlation of residuals within each house. Asterisks 

denote significance at levels of 1, 5, and 10 percent (***, **, *).  All models include individual house-by-month fixed effects and billing period fixed effects. See 

appendix for additional models using alternate dependent variables.  

 

 


