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Abstract 

We estimate a model for the term structure of discounted risk-adjusted 

dividend growth using dividend derivative prices for four major stock markets. 

A two-state model capturing short-term mean reversion within a year and a 

medium-term component which reverts at business-cycle horizon is superior 

over a single-state model. The dividend term structure extrapolates to an 

implied price-dividend ratio. This model-implied ratio, combined with current 

dividends, captures most of the daily stock index return variation, despite the 

fast mean reversion to long-run growth. Hence, investors update their 

valuation of dividends beyond the business cycle horizon only to a limited 

degree.  
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"Since the level of the market index must be consistent with the prices of the future dividend 

flows, the relation between these will serve to reveal the implicit assumptions that the market 

is making in arriving at its valuation. These assumptions will then be the focus of analysis 

and debate.", (Brennan, 1998). 

 

Dividends are a key ingredient for valuing stocks. Investors attach a present value to 

expected dividends and sum them to arrive at the value of a stock. As Campbell and Shiller 

(1988) have shown, stock prices thus vary because of changes in expected dividends, changes 

in interest rates, and changes in risk premiums. However, these elements may be horizon-

dependent. For interest rates this is obvious as they can be readily observed. But also the 

expectations of dividends paid in the short run may at least partly be driven by other 

considerations than those of dividends paid in the distant future. Equally, risk premiums are 

likely to differ for various maturities, see for example van Binsbergen et al. (2012). Hence, 

investors will not only change the price of expected dividends from moment to moment, they 

may also change them for various maturities relative to each other, similar to a term structure 

of interest rates. In this paper, we focus on this term structure of the prices of expected 

dividends. 

Given that the stock price is simply the sum of the present values of all dividends 

expected, Michael Brennan called in the late nineties for the development of a market for 

dividend derivatives. His wish came to life at the beginning of this century, with the 

introduction of derivatives referring to future dividend payments. These products exchange 

uncertain future dividends of an underlying stock or stock index for cash at the time of 

expiry. As such, they are forward looking in nature as they contain price information about 

expected dividends corrected for their risk. More precisely, the price of a single dividend 

future or OTC swap is the expected dividend for a given maturity discounted at the risk 

premium for this maturity. Finding present values of expected dividends only requires 

discounting these prices at the risk-free rate. 

In this paper, we use data on these new dividend derivatives to study the dividend term 

structure for four major stock markets. A key starting point of our analysis is that we show 

that modelling the dynamics of a single variable is sufficient to describe the entire term 
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structure of discounted dividend derivative prices, and to obtain a fairly accurate total value 

for the stock index. This variable is equal to the difference between dividend growth and the 

sum of risk-free rate and a variable capturing the risk premium. We call this variable 

discounted risk-adjusted dividend growth. Hence, we do not need to separately assume 

processes for interest rates, risk premiums and dividend growth rates, the simplicity of which 

is a major advantage of our approach.  

Inspired by the affine models often used for modelling the term structure of interest rates, 

we show how to set up a standard affine model for discounted risk-adjusted dividend growth. 

Specifically, our model resembles the interest rate model of Jegadeesh and Penacchi (1996), 

who use a two factor model, where the first factor reverts to a second factor, which in turn 

reverts to a long run constant. This model thus distinguishes a short-term component, a 

medium-term component and constant asymptotic growth. We cast this model in state space 

form and apply the Kalman filter Maximum Likelihood approach to estimate it using 

dividend derivative prices of one to ten years. The resulting discounted risk-adjusted dividend 

growth term structure describes the maturity curve of dividend present values in full, 

including an estimate for long-term growth. 

Our key contributions are as follows. First, we find evidence that the two factor affine 

model describes the term structure of dividends well. It captures the dynamics of measured 

growth rates and it delivers an estimate for infinite growth that is economically sensible. 

Second, we find that the factors driving this term structure have rather strong mean 

reversion. The first factor has a half-life of 6 months to one year (for reversion to the second 

factor) and thus captures short-term movements in expected dividends. The second factor 

reverts to a constant at a horizon of business-cycle proportion. Then, given the good fit to the 

aggregate stock market, our results show that most of the variation in stock prices is captured 

by short-term and business-cycle movements in discounted risk-adjusted dividends. As the 

estimate for infinite growth is fixed, our results suggest that investors update their day-to-day 

valuation of dividends beyond the business cycle horizon only to a limited degree. 

Apparently, depicting long term investor expectations to be fixed is not a major impediment 

to capturing most of the observed stock market volatility. These empirical results thus differ 

from the typical calibrations in long-run risk models (Bansal and Yaron (2004)). In these 
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calibrations shocks to expected dividend growth are very persistent. This directly implies that 

risk-adjusted dividend growth implied by long-run risk models is also very persistent. In 

contrast, our estimates of risk-adjusted dividend growth imply rather strong mean reversion 

for this key variable. 

Third, we perform a relative pricing exercise, comparing the calibrated prices of future 

dividends to the observed value of the total stock index. Dividend derivatives have maturities 

up to ten years, but using our term structure model the extrapolated growth rates beyond that 

are summed to arrive at a model based estimate of the price-dividend ratio. Together with a 

market price for current dividends, a comparison is made to the actual stock market. This can 

be interpreted as an out of sample test of our model, since the model is estimated using 

dividend derivatives only, and not the stock index value. At an R2 of over 50%, we find that 

most of the variation in the stock market is explained by current dividends and our model 

implied price-dividend ratio. This demonstrates that the stock market can be understood quite 

well in terms of the market for dividend derivatives.  

We use data for four markets of dividend derivatives and contracts that extend out to 

horizons of up to ten years. Dividend derivative products exist in the shape of futures listed 

on stock exchanges and as swaps traded over the counter (OTC) between institutions. 

Minimum criteria for liquidity and transparency restrict the application of daily data in the 

estimation procedures to listed futures referring to the Eurostoxx 50 and the Nikkei 225 

indices. Daily prices of OTC dividend swaps for the FTSE 100 and the S&P 500 indices are 

available as well, but they are illiquid and their representativeness of daily variation in 

dividend expectations is questionable. We therefore perform the same tests for these data 

using a monthly frequency. 

This paper adds to a recent literature that uses dividend derivatives in asset pricing. Our 

work builds on and complements Binsbergen et al. (2013). They introduce the concept of 

equity yields, which is related to our discounted risk-adjusted growth measure. However, 

they do not estimate a pricing model for the term structure of discounted risk-adjusted 

dividend growth nor price the stock market using this model. Instead, they focus on an 

empirical decomposition of dividend prices into dividend growth rates and risk premiums. 

They do this by predicting future dividend growth from current dividend prices, and solving 
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for the term structure of risk premiums implied by this model. They conclude that the term 

structure for risk premiums is pro-cyclical, whereas expected dividend growth is 

countercyclical. Related to this, various authors (Binsbergen et al., 2012, Cejnek and Randl, 

2014, Golez 2014) focus on realized returns of short and long-term horizon dividend 

derivatives or forward dividend prices derived from stock index futures and options, and find 

evidence for a downward sloping term structure of risk premiums. Wilkens and Wimschulte 

(2010) compare dividend derivative prices with dividend prices implied by index options. 

Suzuki (2014) assumes risk premiums are proportional to dividend volatility and then models 

the dividend growth curve implied by derivative prices using a Nelson-Siegel approach.  

In the present value literature, expectations about the growth in dividends are often 

estimated by an econometric dividend model given past returns and dividend data. One of the 

earliest and best known examples is given by Campbell and Shiller (1988), who use vector 

autoregressive methods to predict returns based on past dividends, and use this to decompose 

returns into discount rate news and cash flow news. Many other attempts at decomposition of 

dividend growth and risk premiums have since followed (see Cochrane (2011) for an 

overview). Our approach could be a stepping stone towards a similar decomposition, but 

making use of forward looking information about expectations instead. These are the implicit 

assumptions Brennan hinted at revealing in 1998. Furthermore, the emphasis on the shape of 

the dividend term structure may open an approach to other finance questions. It may help to 

evaluate various asset pricing models such as long run risk models (Bansal and Yaron, 2004).  

The remainder of this paper is organized as follows. The next section deals with the theory 

of dividend expectations and their fit into the present value model. It lays out the state space 

model which parameterizes the dividend term structure. The empirical results are discussed in 

the subsequent section and the paper summarizes its conclusions in section four. The data of 

dividend derivatives are discussed in an appendix as they are quite involved. 

 

I. Theory 

This section starts by proposing the base model for discounted risk-adjusted dividend 

growth, represented in terms of a stochastic discount factor. The section continues to lay out 

the state space approach to capturing time- and horizon-varying dividend growth. 
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A. The base model 

We propose using a term structure model of the type familiar in the interest rate literature.  

We define 𝑔𝑡+1 as the realized dividend growth rate for period 𝑡 to 𝑡 + 1, so that the dividend 

payable at maturity 𝑛 is: 𝐷𝑡+𝑛 = 𝐷𝑡 𝑒𝑥𝑝(∑ 𝑔𝑡+𝑖
𝑛
𝑖=1 ). We then apply the standard asset pricing 

equation to price this payoff for maturity 𝑛, where its current present value 𝑃𝑡,𝑛 equals the 

expected product of the pricing kernel and the payoff: 

 

𝑃𝑡,𝑛 = 𝐸𝑡 [⁡𝐷𝑡𝑒𝑥𝑝 (∑𝑚𝑡+𝑖

𝑛

𝑖=1

) ⁡𝑒𝑥𝑝 (∑𝑔𝑡+𝑖

𝑛

𝑖=1

)], (1) 

 

and where 𝑚𝑡+1 is the log pricing kernel for period 𝑡 to 𝑡 + 1. The pricing kernel consists of 

the one-period risk-free rate 𝑦𝑡 and an additional term 𝜃𝑡+1 that captures the dividend risk 

premium: 

 

𝑚𝑡+1 = −(𝑦𝑡 + 𝜃𝑡+1), (2) 

 

where 𝑦𝑡 is observed at time 𝑡 and reflects the period 𝑡 to 𝑡 + 1. We aim to model a 

combined growth variable for the present value of future dividends and rewrite the pricing 

formula (1) accordingly: 

 

𝑃𝑡,𝑛 = 𝐷𝑡 [⁡𝐸𝑡𝑒𝑥𝑝 (∑𝜋𝑡+𝑖

𝑛

𝑖=1

)]. (3) 

 

Equation (3) shows that the basic building block of the term structure model is what we 

denote discounted risk-adjusted dividend growth: 

 

𝜋𝑡+1 = 𝑔𝑡+1 − 𝑦𝑡 − 𝜃𝑡+1 (4) 
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In our data we observe dividend futures or swap prices. The relation of dividend present 

values to the prices of these dividend derivatives is achieved by merely discounting the 

futures prices at the n-period risk-free rate 𝑦𝑡,𝑛: 

 

𝑃𝑡,𝑛 = 𝐹𝑡,𝑛𝑒𝑥𝑝(−𝑛𝑦𝑡,𝑛), (5) 

 

which demonstrates that dividend present values are observable directly from market data 

𝐹𝑡,𝑛 and 𝑦𝑡,𝑛. 

If the growth rate 𝜋𝑡 follows a lognormal distribution, equation (3) can be rewritten as: 

 

𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝐷𝑡 ⁡= 𝐸𝑡 (∑𝜋𝑡+𝑖

𝑛

𝑖=1

) +
1

2
𝑉𝑎𝑟𝑡 (∑𝜋𝑡+𝑖

𝑛

𝑖=1

). (6) 

 

The left-hand-side variable is related to the key modelling variable of Binsbergen et al. 

(2013). Specifically, Binsbergen et al. (2013) refer to −(𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝐷𝑡 ⁡)/𝑛 as the equity yield. 

The crucial question is how to model the evolution of growth rates 𝜋𝑡+1. The approach 

that we advocate in the next subsection is decomposition of 𝜋𝑡+1 by horizon. Its growth rates 

differ by maturity, the pattern of which is the object of this paper.  

Before doing so, it is briefly explained why we choose to model 𝜋𝑡+1, rather than to 

assume separate models for its elements dividend growth, risk premium and risk-free 

discount rates. Decomposition of stock prices into dividend growth and risk premiums knows 

many attempts, seminal among which is the VAR based approach by Campbell and Shiller 

(1988). Information from dividend derivatives is also used in the VAR model of Binsbergen 

et al. (2013). We choose to do the exact opposite of decomposition and instead amalgamate 

the three variables into one; the proposed model variable is the growth rate of present values 

of expected dividends 𝜋𝑡+1. This amalgamation facilitates to focus on the term structure of 

the discounted growth trajectory alone. Connecting these growth rates via the present value 

identity to the stock market allows for a judgment call on the relevance of the horizon 

decomposition without being side tracked by additional assumptions on the constituent 
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variables. In fact, since we aim to value the stock market as the sum of dividend present 

values, a decomposition is not needed.  

Furthermore, the components of 𝜋𝑡+1 are likely to be correlated. For example, Bekaert & 

Engstrom (2010) calculate the correlation between 10 year nominal bond yields and dividend 

yields in the US over a 40 year period at no less than 0.77. Binsbergen et al. (2013) perform a 

principal components analysis of equity yields based on dividend derivatives prices. They 

show that the first two principal components of nominal yields explain about 30% of 𝑔 − 𝜃 

movements. Taken together into a single variable 𝜋𝑡+1, it should be possible to model it with 

a limited number of factors due to the high correlation among its components. 

 

B. The state space model 

In order to build a full term structure of discounted risk-adjusted dividend growth, we 

model it in state space form. We discuss the state equations and the measurement equations. 

 

B.1. State equations 

Our modelling approach to execute the decomposition by horizon closely follows 

Jegadeesh and Pennacchi (1996), who propose a model for estimating Libor futures with an 

aim to construct a term structure of interest rates based on three horizons. Their set up is a 

state space model in which the short-term interest rate is a latent variable. The prices of the 

Libor futures of different horizons are estimated by an equation consisting of the interest rates 

growth for the three horizons. Instantaneous growth and medium-term growth are both 

factors, infinite growth is a constant. 

In this paper, we model discounted risk-adjusted dividend growth according to the same 

horizons. We specify most of the model in discrete time, following the approach in Campbell, 

Lo and MacKinley (1997). Specifically, we model 𝜋𝑡+1 as the sum of a time-varying 

conditional mean  𝑝𝑡 and a stochastic shock: 

 

𝜋𝑡+1 = 𝑝𝑡 + 𝜈𝑡+1, (7) 

 



9 
 

where 𝜈𝑡+1 is normal i.i.d. with zero mean. The factor 𝑝𝑡 follows a mean reverting process to 

a medium-term factor 𝑝𝑡 which itself is mean reverting to a long-term constant 𝑝, where for 

convenience we first define their processes in continuous time: 

 

𝑑𝑝𝑡 = 𝜑(𝑝𝑡 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑊𝑝, (8) 

𝑑𝑝𝑡 = 𝜓(𝑝 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝̃𝑑𝑊𝑝̃. (9) 

 

𝑑𝑊𝑝 and 𝑑𝑊𝑝̃ are Wiener processes, with 𝜎𝑝 and 𝜎𝑝̃ scaling the instantaneous shocks to the 

factors. The horizon at which investors adjust their growth expectation from one state to the 

next is captured by mean reversion parameters 𝜑 and 𝜓. This two-state system results in the 

state equations for discrete intervals2: 

 

(
𝑝𝑡+1
𝑝𝑡+1

) = (
1 − 𝑒−𝜑 −

𝜑

𝜑 −𝜓
(𝑒−𝜓 − 𝑒−𝜑)

0 1 − 𝑒−𝜓
)(
𝑝

𝑝
) + (

𝑒−𝜑
𝜑

𝜑 − 𝜓
(𝑒−𝜓 − 𝑒−𝜑)

0 𝑒−𝜓
)(
𝑝𝑡
𝑝𝑡
) + 𝜀𝑡+1. (10) 

 

Finally, we model correlation between the innovation in the growth rate 𝜈𝑡+1 and the 

errors 𝜀𝑡+1 in these state equations as 𝜈𝑡+1 = 𝛽′𝜖𝑡+1, where 𝛽 = (𝛽𝑝, 𝛽𝑝̃)′ is a 2-by-1 vector.3 

In terms of the mathematical structure, this setup resembles the approach of Campbell, Lo 

and MacKinley (1997). They derive affine term structure models in discrete time by 

modelling the log-pricing kernel, 𝑚𝑡+1 = −(𝑦𝑡 + 𝜃𝑡+1), in a similar way as we model the 

discounted risk-adjusted growth rate 𝜋𝑡+1 = 𝑔𝑡+1 − 𝑦𝑡 − 𝜃𝑡+1. The key difference is that our 

growth variable depends both on the pricing kernel and the dividend growth rate. As 

discussed above, we only model the aggregate variable 𝜋𝑡+1 and do not need to make specific 

assumptions on its components. This is important for the interpretation of the results. For 

example, when modelling interest rates, Campbell, Lo and MacKinley (1997) show that the 𝛽 

vector captures the risk premiums on long-term bonds. In our setup, the vector 𝛽 could 

represent dividend risk premiums, but can also be the result of correlation of current dividend 

                                                           
2 Refer to Appendix 2 for further details. 
3 One could incorporate an independent shock to the growth rate, but this does not have an important effect on 

the term structure of dividend prices or the dynamics of these prices. 
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growth and the factors driving future dividend growth. Again, for pricing dividend 

derivatives there is no need to specify the source of the correlation between shocks to 𝜋𝑡+1 

and the factors (as determined by 𝛽). 

 

B.2. Measurement equations 

Given the dynamics of 𝜋𝑡+1, it follows that the average growth rate of dividend present 

values from time 𝑡 to its expiry date at time 𝑛 corresponds to a function of 𝑝𝑡 and 𝑝𝑡. 

Specifically, as shown in Appendix B, filling in the dynamics of 𝜋𝑡+1 in the pricing equation 

(6) and adding i.i.d. measurement error 𝜂𝑡,𝑛 for each derivatives maturity n, the measurement 

equations for the state space model are: 

 

𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝐷𝑡 ⁡= 𝑛𝑝̅ + 𝜑𝑛(𝑝𝑡 − 𝑝̅) +
𝜑

𝜑 − 𝜓
(𝜓𝑛 − 𝜑𝑛)(𝑝̃𝑡 − 𝑝̅)

+
1

2
∑(𝜎𝑝

2(𝛽𝑝 + 𝜑𝑖)
2
+ 𝜎𝑝̃

2 (𝛽𝑝̃ +
𝜑

𝜑 − 𝜓
(𝜓𝑖 − 𝜑𝑖))

2

)

𝑛

𝑖=1

+ 𝜂𝑡,𝑛, 

(11) 

 

in which 𝛽𝑝 and 𝛽𝑝̃ are the covariance betas of the errors of the first and second factor and 𝜎𝑝
2 

and 𝜎𝑝̃
2 are their variances. We define 𝜑𝑛 and 𝜓𝑛 as follows: 

 

𝜑𝑛 =
(1 − 𝑒−𝑛𝜑)

(1 − 𝑒−𝜑)
, 

𝜓𝑛 =
(1 − 𝑒−𝑛𝜓)

(1 − 𝑒−𝜓)
, 

 

with 𝜑0 = 0 and 𝜓0 = 0. 
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C. The single-state model 

We benchmark the ability of the two-state model to fit the dividend term structure by a 

state space model with a single factor. In essence, the medium-term factor is set to the long-

term constant estimate4, rendering the same estimation equations as a Vasicek model:  

 

𝑑𝑝𝑡 = 𝜑(𝑝 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑊𝑝. (12) 

 

Its state equation and measurement equations are: 

 

𝑝𝑡+1 = 𝑝 + (𝑝𝑡 − 𝑝)𝑒
−𝜑 + 𝜀𝑡+1, (13) 

 

𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝐷𝑡 = ⁡𝑛𝑝 + 𝜑𝑛(𝑝𝑡 − 𝑝̅) +
1

2
∑(𝛽 + 𝜑𝑖)

2𝜎2
𝑛

𝑖=1

+ 𝜂𝑡,𝑛. (14) 

 

II. Empirical Results 

A. Dividend derivatives data 

The estimation methodology uses prices of dividend derivatives referring to four major 

stock markets: Eurostoxx 50 and Nikkei 225 dividend futures and S&P 500 and FTSE 100 

OTC dividend swaps. Dividend futures were introduced in 2008 to the European market and 

in 2010 in Japan. Maturities extend out to ten years with annual intervals. Price data are 

available on a continuous basis from the relevant stock exchanges. Liquidity of European 

dividend futures is good with Euro billions of notional outstanding for maturities up to three 

years and hundreds of millions for the longest maturities. The market for Nikkei dividend 

futures is smaller with maturities up to two years featuring notionals of over half a billion ($-

equivalent) and tens to hundreds of millions for longer maturities (Mixon and Onur, 2014). 

All maturities normally trade on a daily basis and we apply the estimation procedure to daily 

prices in the case of dividend futures. 
                                                           
4 Alternatively, this model can be described as a nested two-state model with medium-term mean reversion 

parameter 𝜓 constraint to infinity. 
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Liquidity and transparency of OTC dividend swaps is less developed with days passing by 

without a single trade taking place across all maturities more often than not (Mixon and Onur, 

2014). We limit the analysis to monthly data as a consequence. The data are described in 

Appendix A in detail. We first discuss the results using the two dividend futures datasets. 

We estimate a cross section of measurement variables for up to 8 periods5 on the 

discounted risk-adjusted dividend growth term structure. The base for the growth rates would 

be 𝐷𝑡, but current dividends are not observable. In view of the daily data that we deploy, 

current dividends are not well described by the realized dividend index to which the 

derivatives refer. These indices capture dividends paid in the 12 months preceding 

observation date 𝑡, whereas we are in fact looking for a value that reflects dividends as if they 

had to be paid on 𝑡 itself. The data section in Appendix A contains more detail on this topic. 

Consequently, we remove the unobserved current dividend 𝐷𝑡 from equation (11) and 

instead subtract the first discounted derivatives price 𝑃𝑡,1 from the longer maturity prices to 

arrive at growth rate measurements. The term structure then consists of a present value that is 

observed for the first period and growth rates that are modelled for all subsequent periods. 

Subtracting the first period present value gives the following measurement equation for 

growth rates and replaces equation (11): 

 

𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝑃𝑡,1 = (𝑛 − 1)𝑝̅ + 𝜑𝑛(𝑝𝑡 − 𝑝̅) +
𝜑

𝜑 − 𝜓
(𝜓𝑛 − 𝜑𝑛)(𝑝̃𝑡 − 𝑝̅)

+
1

2
∑(𝜎𝑝

2(𝛽𝑝 + 𝜑𝑖)
2
+ 𝜎𝑝̃

2 (𝛽𝑝̃ +
𝜑

𝜑 − 𝜓
(𝜓𝑖 − 𝜑𝑖))

2

)

𝑛−1

𝑖=1

+ 𝜂𝑡,𝑛. 

(15) 

 

State equations (10) and measurement equations (15) together form the system of which 

the variables are estimated by maximum likelihood. The procedure is recursive by means of a 

Kalman filter (Jegadeesh and Pennacchi, 1996). 

                                                           
5 We interpolate between 10 annual derivatives expiry dates to arrive at prices of derivatives with constant 

maturities. These 9 prices of derivatives with a constant maturity of 1 to 9 years provide 8 growth rates. See the 

data section in the appendix for further details. 
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The error variance terms are assumed to be the same for all measurement equations (𝜎𝜂), 

except for the first one (which we denote 𝜎𝜂
1). This is because the definition of the first 

derivative to expire (set to a constant maturity of one year following the observation date) 

differs slightly from subsequent derivative prices due to an alternative weighting scheme for 

finding constant maturity values as explained in Appendix A. 

 

B. Estimation results 

Tables I and II provide the results of the two-state model and a benchmark single-state 

model for Eurostoxx 50 and Nikkei 225 dividend markets – the two markets for which listed 

futures data with sufficiently long horizons of 10 years exist. Estimations are performed on 

daily data6.  

 

B.1. Pricing errors 

Before we discuss the parameters of the growth rate model, we first establish that the two-

state model fits the data well7. To this end, we calculate mean absolute errors for the 

measurement equations (15). Given that they are specified for log prices of dividend futures, 

these mean absolute errors can be interpreted as relative pricing errors.8 The first 

measurement equation produces a mean absolute pricing error of 0.015 (1.5%) and pricing 

errors of subsequent expiries are between 0.0025 and 0.005 (Figures 3 and 4). The error 

levels are clearly small, confirming a good fit of the model to the data. 

 

B.2. Mean reversion estimates 

The mean reversion towards medium-term growth 𝜑 attains levels which translate to a 

half-life of less than a year. The Eurostoxx 50 mean reversion at 1.51 is twice as fast as for 

the Nikkei 225 (𝜑=0.74), which is due to the global credit crisis in 2008/09 being included in 

                                                           
6 For robustness, we perform the same tests with monthly data (not shown here). None of the parameter 

estimates and test coefficients change meaningfully relative to the daily dataset. 
7 The short term beta 𝛽𝑝is set to zero, as discussed further below. 
8 These errors are thus not annualized. Transformed to annual growth rates, the errors are even smaller. 
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the Eurostoxx 50 data period and not in the Nikkei 225 data period.9 Mean reversion towards 

the long run constant 𝜓 is broadly measured in half-lives of 3 to 4 years10 in both markets, a 

space of time that comes close to that of a business cycle. All mean reversion parameters are 

significant at the 1% level. The estimates for 𝜑 and 𝜓 are positive, which implies that the 

growth rate is stationary and thus tends to a long-term constant. 

The model imposes the long-run growth rate to be constant, while the speed at which 

medium-term growth adjusts to it is estimated from the data. The interpretation from these 

results is that investors change their opinion about growth only as far ahead as the anticipated 

business cycle. We do not formally link an economic interpretation to the three growth 

stages, but given the estimates of the mean reversion parameters some intuition can be 

provided. Instantaneous growth can be thought of as the expectation of the immediate future. 

Shocks to risk aversion and to the volatility of the current business climate are likely to 

influence investors’ valuations of dividends several months ahead, but perhaps not much 

further. Developments in the business cycle, on the other hand, such as credit conditions, 

investment growth and monetary policy set the stage for the business cycle influencing 

dividend expectations over a longer period ahead, measured in several years. Structural 

factors such as population growth and technological progress determine how investors 

perceive the long run, extending from the business cycle horizon into the infinite future. 

Structural developments should be slow moving, if at all, and are approximated by 

imposing asymptotic constancy. Thus, at horizons extending well beyond business cycles, 

investors have opinions of economic and financial variables, but they do not change them 

once taken together. This means that any rise in long-maturity interest rates is exactly offset 

by a rise in long-term dividend growth or a fall in long-term risk premiums. Mean reversion 

towards such a constant implies therefore that a horizon exists at which investors never 

change their opinion about present value growth. 

 

 

                                                           
9 Estimating the model for the Eurostoxx 50 data over a partial data period that coincides with the Nikkei 225 

data period yields mean reversion parameters that are closer to those found for the Nikkei 225: 𝜑 = 0.88 and 

𝜓 = ⁡0.09. 
10 Jegadeesh and Penacchi (1996) apply the two-state model to interest rates and find the opposite pattern; short 

mean reversion is slower than medium-term mean reversion. 
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B.3. Discounted risk-adjusted dividend growth rates 

Given the mean reversion estimates, the instantaneous factor reflects short-term 

movements in risk-adjusted growth, the medium-term factor reflects an assessment of the 

business cycle, while 𝑝̅ depicts a structural level which can be linked closely to the dividend 

yield. Figures 5 to 8 provide estimates of expected growth rates by recalculating the factors 

by means of the measurement equations (15) into 1-year growth and 1-year forward 4-year 

growth of discounted risk-adjusted dividends. Forward growth rates imply the level of growth 

expected after the 1 year growth rate has materialized11. 

1-Year growth is mostly determined by the instantaneous factor. Figure 5 shows that it is 

highly volatile for the Eurostoxx 50, with the global credit crisis in 2008/09 showing a 

decline by nearly half and during the Eurozone sovereign debt crisis in 2011 by a quarter. 

Outside these periods, it moves between broadly – 10 and + 5 percent. Nikkei 225 1-year 

growth rates move in the same range until late 2012 (Figure 7). The period following the 

announcement of “Abenomics” in 201212 portrays high optimism with 1-year growth rates 

attaining 10 percent and more. 

Given the values found for the mean reversion parameters, the medium-term factor largely 

determines 1-year forward 4-year growth depicted in Figures 6 and 8. In Europe forward 

growth circles around the long run constant between – 2 and – 6 percent. The sovereign debt 

crisis in 2011 shows a somewhat more negative rate than the global credit crisis. Investors 

apparently expected that the serious short-term blow to dividends in 2008/09 would not be 

corrected or reversed (by positive growth) afterwards. However, the less negative blow in 

2011 would be followed by a period more negative than the long run constant (Figure 6), 

implying that investors expected that the European sovereign debt crisis would bear 

consequences for the business cycle.  

The volatility of forward growth rates provides further insight into the relation between the 

risk and the maturity of dividends. Both the Eurostoxx 50 and the Nikkei 225 dividend 

markets portray declining volatility in growth rates as maturities increase (Figure 9). 

                                                           
11 As discussed later, the short term beta is set to zero for these data, but different fixed levels do not materially 

change growth rates. 
12 Late 2012 the government of Shinzo Abe proclaimed a policy of monetary and fiscal expansion combined 

with economic reform. The two main consequences for financial markets were a substantial weakening of the 

Japanese Yen and a rise in the stock market. 
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B.4. Long-term growth and dividend yields 

The economic interpretation of the long-term discounted risk-adjusted dividend growth 

constant is briefly recapitulated. The present value identity for stock prices 𝑆𝑡 is recalled as: 

 

𝑆𝑡 = ∑𝑃𝑡,𝑛

∞

𝑛=1

= 𝐷𝑡∑𝑒𝑥𝑝⁡(𝑛𝜋𝑡,𝑛

∞

𝑛=1

), (16) 

 

where 𝜋𝑡,𝑛 is the observed annualized discounted risk-adjusted growth rate of dividends 

payable at maturity 𝑛, 𝜋𝑡,𝑛 = (𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝐷𝑡)/𝑛, which is the negative of what Binsbergen et 

al. (2013) call the equity yield. The dividend-price ratio is found by rearranging identity (16) 

to: 

 

𝐷𝑡
𝑆𝑡
=

1

∑ 𝑒𝑥𝑝⁡(𝑛𝜋𝑡,𝑛
∞
𝑛=1 )

, (17) 

 

For the sake of interpretation, if both factors in the two-state model are equal to the mean, 

𝜋𝑡,𝑛 is a horizon invariant constant and identity (17) simplifies to: 

 

𝐷𝑡
𝑆𝑡
= −𝑝̅∗. (18) 

 

The dividend yield equals the negative of long-term growth for which the state space 

approach thus provides an estimate. Combined with the constant convexity term, the estimate 

for 𝑝̅ constitutes a measure of long-term growth 𝑝̅∗. On an annual basis, this measure is given 

by: 

 

𝑝̅∗ = 𝑝̅ +
1

2
(𝜎𝑝

2(𝛽𝑝 + 𝜑𝑖→∞)
2
+ 𝜎𝑝̃

2 (𝛽𝑝̃ +
𝜑

𝜑 − 𝜓
(𝜓𝑖→∞ − 𝜑𝑖→∞))

2

), (19) 
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in which the values for 𝜑𝑖→∞ and 𝜓𝑖→∞ are set for 𝑖 approaching infinity. The second factor 

sigma 𝜎𝑝̃
2 is small, so the term 𝜎𝑝

2(𝛽𝑝 +𝜑𝑖→∞)
2
 delivers most of the impact. 

For longer horizons, the convexity term on the right hand side of measurement equations 

(15) approaches constancy. It includes the betas and the factor sigmas. While the sigmas are 

identified by means of the state equations, the betas are only present in the measurement 

equations. The long-term growth parameter 𝑝̅ balances out the betas under the optimization 

procedure. As a result, the estimates for long-term growth 𝑝̅ as well as of both covariance 

betas 𝛽𝑝 and 𝛽𝑝̃ come out unstable with sizeable standard errors. The estimation technique of 

the Kalman filter thus finds optimal solutions for various combinations of 𝑝̅ and betas, a fact 

which indicates multicollinearity. 

Finding a relevant and well identified value for long-term growth requires fixing the short 

term beta 𝛽𝑝 while solving the model for the other variables. In Figure 2, the results of this 

exercise is shown. There is a consistent parabolic trade-off between the long-term growth 

constant and the short term beta, which is as expected in view of the quadratic nature of the 

convexity term. 

The difference between 𝑝̅∗ and 𝑝̅ is smallest for values of 𝛽𝑃 equal to −𝜑𝑖→∞. For these 

values, the inverted parabola in Figure 2 reaches its maximum. The interdependence between 

𝛽𝑃 and 𝑝̅ in the output of the estimation procedure is such that different combinations along 

the parabola render very little influence on the value of 𝑝̅∗. 

In Tables I and II the parameters are shown of a single estimation in which 𝛽𝑝 is set to 

zero. Long-term growth obtains reasonable levels, a discussion of which follows below. 

Standard errors show the estimates are (close to) significant at the 5% level. The mean 

reversion estimates and the variance estimates do not change materially when the short term 

beta is fixed. This is as expected since they have only a small impact in the long run, 

approaching zero impact at the limit. The medium term beta 𝛽𝑝̃ remains large but 

insignificant. For the purpose of all of the subsequent discussion, the short term beta is thus 

set to zero. 

Seen in this light, there is an economic rationale in the estimates from the state space 

model for the long-term growth constant 𝑝̅∗. The levels found equal – 2.6 percent in Japan 



18 
 

and Europe, which appears reasonable relative to dividend yields. Table III contains some 

metrics for comparison. The average dividend yield in Europe was 4.3 percent and in Japan it 

was 1.9 percent during the short data period. The average 1 year forward 4 year growth rate 

also deviates less than 1 percent from the average dividend yield, but the average short-term 

growth rate deviates substantially more. A tentative conclusion is that the business cycle 

stood close to the long-term average during the data period, but sentiment was more negative 

in Europe and more positive in Japan13. Overall, the estimates for long-term growth seem a 

fair assessment of the long-term cash run rate of the stock market. It is noteworthy that the 

estimates are produced without input from the stock market itself.  

It is also important to observe that the state space model estimates discounted long-term 

growth to be negative as present value theory requires stock valuations to be finite. The 

flexibility of the model would allow for positive values, but the estimates correctly imply that 

dividend present values decline at a horizon that is sufficiently long. 

  

B.5. The Dividend Term Structure 

Equipped with model estimates for the growth parameters, a Dividend Term Structure 

(DTS) can be calibrated. The DTS depicts the present values that investors attach to expected 

dividends per horizon 𝑛⁡expressed as a proportion of the total present value: 

 

𝐷𝑇𝑆𝑛 =
𝑃̂𝑡,𝑛

∑ 𝑃̂𝑡,𝑛
∞
1

. (20) 

 

The value for 𝑃̂𝑡,1 is the calibrated discounted price of the derivative expiring one year 

from 𝑡. The values for subsequent expiries 𝑛 ≥ 2 are calibrated from the estimated growth 

parameters. Figure 10 shows that the average term structure of the Nikkei 225 starts sloping 

upwards, and then becomes downward sloping as the horizon increases. The transition is 

slow given the low mean reversion and the moderate levels of the estimated averages for 

instantaneous and medium-term growth. The Eurostoxx 50 DTS, by contrast, is strongly 

negatively sloping at the outset, but adjusts to the long-term growth path rather quickly. The 

                                                           
13 In fact, in particular in Japan it turned more positive during the data period. 
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first dividend point on the Eurostoxx 50 DTS is therefore high, which translates into an 

equally high current dividend yield. The Nikkei 225 first dividend points are lower on 

average, which fits with the positive slope at the start of their DTS. It is also in line with the 

fact that the estimate for long-term growth is somewhat higher than the first dividend point. 

Its DTS indicates that the fundamental value of the European stock market is more front 

loaded, or more heavily weighted towards the near future, than that of the Japanese stock 

market. The surface below the calibrated DTS equals one by definition. The relative present 

values of dividends of Japan cross over the European values after about thirty years into the 

future. Relative to the European stock market, the present value of Japanese dividends 

beyond the cross over makes up for their lower contribution before it. 

 

B.6. Other long-term growth estimates 

Giglio, Maggiori and Stroebel (2014) compare prices of houses of different contractual 

ownership to arrive at a very long-term discount rate. Leased housing reverts to the owner of 

the land after the lease expires, while freehold housing remains with the owner of the house 

indefinitely. The difference in price between the two for comparable properties equals 

today’s present value put to ownership once the lease has expired. At lease expiries of over 

one hundred years, this provides an interesting comparison to the estimates for long-term 

discounted risk-adjusted dividend growth. 

The discounts Giglio et al. (2014) find in the data equate to a value for infinite growth of 

around – 2% for periods of 100 years and more. This level makes sense economically and is 

also reasonably close to the long-term discounted risk-adjusted dividend growth estimates14.  

 

C. Reconciliation to the stock market 

The second part of our research agenda is to analyze the implications of the model for the 

value of the stock market. Given that we estimate the model using dividend derivative data 

                                                           
14 It is clear that not the level of the rents 𝐷, but only the growth of rents (being part of 𝑝) matters for 

establishing the lease discount. We can therefore consider growth in rents with or without maintenance cost, 

depreciation and taxes assuming they stay constant in proportion to rents over the very long-term considered. 

Another aspect is the convenience provided to the occupier of a house. Growth comparisons should be made 

only for sufficiently remote horizons. Since the notion of convenience yield is that there is a benefit to the 

current user that a future user cannot currently enjoy, nearer horizon comparisons are distorted. 
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only, this constitutes an out-of-sample test of the model. Alternatively, if one takes the model 

assumptions for granted, it can be seen as a relative pricing exercise of the dividend 

derivative prices versus stock market levels. 

 

C.1. The empirical approach 

The present value model incorporates expected index dividends which can be extrapolated 

from the estimated dividend term structure. This provides the following estimate for the stock 

market: 

 

𝑆̂𝑡 = 𝐷𝑡∑𝑒𝑥𝑝⁡(𝑛𝜋̂𝑡,𝑛

∞

𝑛=1

) = 𝐷𝑡𝑃𝐷̂𝑡, (21) 

 

with the summation of fitted growth rates 𝜋̂𝑡,𝑛 equal to the estimated dynamic price-dividend 

ratio 𝑃𝐷̂𝑡, and where the fitted growth rates satisfy:  

 

𝑛𝜋̂𝑡,𝑛 = 𝑛𝑝̅ + 𝜑𝑛(𝑝𝑡 − 𝑝̅) +
𝜑

𝜑 − 𝜓
(𝜓𝑛 − 𝜑𝑛)(𝑝̃𝑡 − 𝑝̅)

+
1

2
∑(𝜎𝑝

2(𝛽𝑝 + 𝜑𝑖)
2
+ 𝜎𝑝̃

2 (𝛽𝑝̃ +
𝜑

𝜑 − 𝜓
(𝜓𝑖 − 𝜑𝑖))

2

)

𝑛

𝑖=1

. 15 

(22) 

 

It is a well-known and critical problem of the present value model that it depends on a 

reasonable estimate for the expected growth and the risk premium of dividends. Historical 

analysis of dividend growth followed by risk premium decomposition provides such 

estimates (Campbell and Shiller, 1988). Binsbergen et al. (2013) execute the decomposition 

by making use of the price data of dividend derivatives. 

                                                           
15 Subtracting the first growth rate 𝜋𝑡,1 from equation (22) provides an alternative representation which can be 

directly applied to the present value identity in equation (23); 

𝑛𝜋̂𝑡,𝑛 − 𝜋̂𝑡,1 = 𝑛𝑝̅ + 𝜑𝑛(𝑝𝑡 − 𝑝̅) +
𝜑

𝜑 − 𝜓
(𝜓𝑛 − 𝜑𝑛)(𝑝𝑡 − 𝑝̅)

+
1

2
∑(𝜎𝑝

2(𝛽𝑝 + 𝜑𝑖)
2
+ 𝜎𝑝

2 (𝛽𝑝 +
𝜑

𝜑 − 𝜓
(𝜓𝑖 − 𝜑𝑖))

2

)

𝑛

𝑖=2

. 
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A key contention in this paper is that for the purpose of the present value model 

reconciliation, without decomposition of dividend expectations into growth and risk 

premiums, decomposition of risk-adjusted discounted dividend growth by horizon alone is 

very informative. Nonetheless, successful reconciliation of dividend derivative price 

information to the stock market is uncommon in the literature. For example, Suzuki (2014) 

builds a Nelson Siegel model of the Eurostoxx 50 dividend growth term structure and makes 

assumptions about the level for longer dated values. These include a fixed level imposed at 

4% for discounted growth after 25 years. Under these conditions, Eurostoxx 50 dividends 

reconcile well with the stock market dynamically.  

In contrast to Suzuki (2014), we do not impose a fixed level as the state space model itself 

renders an estimate for the long-term growth path of the present value of dividends 

independent from stock market information, while it captures the shape and the dynamics of 

the term structure up to the medium-term at the same time. The entirety of the present value 

term structure is thus described by a handful of variables from two markets16 in a single 

estimation procedure. The fit of the reconciliation to the observed stock market acts as a joint 

check on the validity and the robustness of the two-state model and the present value identity. 

To that end, equation (22) is used to calculate the fitted dividend growth rates and present 

values as implied by the estimated state space model. 

All variables are taken as estimated by the state space model applied to dividend 

derivative data. Current dividends in (21) are approximated by the value of the first constant 

maturity derivative 𝐹𝑡,1, which is discounted at the risk-free rate. This is a better 

approximation for investors’ estimate of current dividends than twelve month historical 

dividends. We thus get for the model implied stock market level: 

 

𝑆̂𝑡 = 𝐹𝑡,1 𝑒𝑥𝑝(−𝑦𝑡,1) (1 +∑𝑒𝑥𝑝(𝑛𝜋̂𝑡,𝑛 − 𝜋̂𝑡,1)

∞

𝑛=2

) = 𝐹𝑡,1 𝑒𝑥𝑝(−𝑦𝑡,1) (1 + 𝑃𝐷̂𝑡
1), (23) 

 

                                                           
16 The bond market and the dividend derivative market. 
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in which 𝑛𝜋̂𝑡,𝑛 − 𝜋̂𝑡,1 are the fitted values of the measurement variables in equations (15) and 

𝑃𝐷̂𝑡
1 represents the estimate for the price-dividend ratio as implied by the sum of exponential 

growth rates, where growth starts from the present value of the dividend derivative expiring 

one year following the observation date17. 

 

C.2. Stock market level reconciliation 

We now discuss the empirical results of the reconciliation with stock market levels18. In 

the European market, the two-state model estimates applied to equation (23) cause the stock 

index to be overestimated at a reasonably constant level distance to the actual stock index for 

most of the data period (Figure 11). There is no clear trend among the factors driving the 

estimated valuation away or towards the stock index. The historical dividend yield (4.3%) is 

somewhat higher than the negative of the long-term estimate (–2.6%) and the index is 

overestimated at some 20 to 30 percent except during the outbreak of the global credit 

crisis19. The level estimate of the stock index is highly sensitive to the long-term growth 

parameter. For the mean squared errors of this level comparison to be minimized, the 

estimate for long-term discounted growth would have to be closer to the historical dividend 

yield, or about 0.7% higher. 

Dividend present values underestimate the Nikkei 225 index level at the beginning of the 

data period, but the gap closes from 2012 onwards. Short-term growth ranges between – 0.20 

and + 0.05 percent initially, but at the onset of Abenomics in late 2012, it turns strongly 

positive (Figure 12). At – 2.6 percent, long-term growth is more pronounced than the average 

Japanese dividend yield (1.9%), which contributes to the underestimation. 

 

 

                                                           
17 The stock index estimate is approached by numeric summation, which is approximated by: 

𝑆̂𝑡 ≈ 𝐹𝑡,1
𝐶𝑀 𝑒𝑥𝑝(−𝑦𝑡,1) [1 +∑𝑒𝑥𝑝(𝑛𝜋̂𝑡,𝑛 − 𝜋̂𝑡,1)

𝑛̅

𝑛=2

+
𝑒𝑥𝑝(𝑛̅𝜋̂𝑡,𝑛̅)

−𝑝̅∗̂
]. 

In the estimations 𝑛̅ is set at 50 years. Unless reduced to single digits, the number of years which 𝑛̅ is set to is 

not material to the stock index estimates. 
18 The state space model estimations are produced setting the short term beta to zero. 
19 Market participants consider Eurostoxx dividend derivatives prices around the turn of 2008/09 as 

unrepresentative of dividend expectations due to one-sided interests. 
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C.3. Dynamic reconciliation 

Following the present value model, stock returns are the consequence of investors 

changing their valuation of future dividends. The dynamics of stock indices can be retrieved 

from the present value model estimate as provided in equation (23). The present value of the 

first dividend amount to be paid over the year to come is the starting point of the growth term 

structure. The first dividend is observable and the growth path of discounted risk-adjusted 

dividends starting after it is a model implied estimate. The dynamic fit as well as the relative 

importance to stock returns of the first derivative on the one hand and the growth path on the 

other requires testing. For this reason the estimated returns of the stock market is split into its 

drivers. Equation (23) is repeated with logs denoted in lower case as a regression equation: 

 

∆𝑙𝑛(𝑆𝑡) = 𝛼 + 𝛽𝐹∆𝑙𝑛⁡(𝐹𝑡) + 𝛽𝑦∆𝑦𝑡 + 𝛽𝑃𝐷̂∆𝑙𝑛(𝑃𝐷̂𝑡
1) + 𝜀𝑡. (24) 

 

Stock index log returns are regressed by OLS on the log return of the first constant 

maturity derivative 𝐹𝑡, changes in the 1 year risk-free rate ∆𝑦𝑡 and the log returns of the 

estimated price-dividend ratio 𝑃𝐷̂𝑡
1, which is the sum of the normalized dividend present 

values of the state space model. The betas20 of the returns of the first dividend and the price-

dividend ratio are predicted to be close to + 1, while the beta of the risk-free rate is expected 

at – 1. Data are daily. 

Eurostoxx 50 and the Nikkei 225 index returns respond well to the prediction of the 

present value model, shown in Table IV. The model is quite capable of explaining variation 

in stock returns, reaching an R2 of above 50 percent. Although we cannot benchmark this 

explanatory power, it appears substantial given that the model does not incorporate any direct 

information of the stock market. Each of the regressors add considerably to the explanatory 

power, while the constant is close to zero. Both stock markets appear highly sensitive to 

changes in the first constant maturity derivative. The daily betas are in the order of 0.85 for 

the Nikkei 225 to 0.90 for the Eurostoxx 50. The beta of the price-dividend ratio is close to 

0.86 and 0.66 respectively. In the case of Japan, most of the explanatory power comes from 

                                                           
20 Coefficients of 𝑃𝐷̂𝑡

1 are expected below 1 due to the errors in the regressor estimates increasing their variance. 
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the price-dividend ratio, in Europe it is more evenly divided between short-term dividends 

and the price-dividend ratio.  

The 1 year zero interest rate brings the price of the first derivative to its present value. Its 

relevance seems limited and the expected beta is – 1. It is highly significant in the estimates 

for the Eurostoxx 50, but reaches values of 0.15 to 0.20. In Japan, the risk-free beta is closer 

to zero and not significantly different from it.21 

The interpretation of the assumption that long run discounted risk-adjusted dividend 

growth is constant is not that investors do not change their opinion about what value to attach 

to dividend present values far into the future. The value ascribed to dividends expected ten 

years and twenty years from today is influenced by the estimate of present values in the near 

term and medium-term. But the value of the twenty year dividend does not change relative to 

that of the ten year dividend regardless of changes in near and medium-term expectations – 

the relationship between them is (approximately) fixed. Therefore, long-run constancy 

excludes mean reversion to levels. Dividend levels attained in the past are not a target for 

investors to project their long-term expectations onto. Only long-term growth is. 

 

D. Robustness 

D.1. The single-state model  

The two-state model distinguishes instantaneous from medium-term growth. Its ability to 

fit the dividend present value term structure is benchmarked by a state space model with a 

single factor, in which the medium-term factor is set to a long-term constant22:  

 

𝑑𝑝𝑡 = 𝜑(𝑝 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑊𝑝, (25) 

 

Figures 3 and 4 show estimation errors of the single-state model in comparison to the two-

state model. While still not substantial, single-state estimation errors are larger. Table I 

                                                           
21 The impact of short-term dividends and the price dividend ratio is mitigated by negative coefficients found 

once lags are added to the set of regressors (not shown here). This suggests that either the stock market 

overreacts to shocks to dividends, which is corrected in the following day, or that dividend prices may partly 

follow stock prices by at least a one day lag. 
22 Alternatively one can depict this model as a nested two-state model with medium-term mean reversion 

parameter 𝜓 constraint  to infinity. 
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contains the estimated parameters and Figures 5 to 8 depict the forward discounted risk-

adjusted dividend growth rates as delivered by the single-state model. Overall, the parameter 

estimates are significant and attain reasonable levels, but the two-state model is superior. 

The Eurostoxx 50 estimate for mean reversion at 1.73 is even higher than the short-term 

mean reversion in the two-state model, its standard error is larger. This adjustment speed 

implies a half-value time of instantaneous growth of only 5 months. Long-term growth is 

slightly lower and its standard error is smaller than in the two-state model. The 1 year growth 

rate is less volatile, which mirrors the quick fading of the instantaneous growth factor. 

For the Nikkei 225, the picture is rather different. Mean reversion attains a value in the 

middle ground of the two parameters in the two-state model. Long-term growth is somewhat 

lower, but again economically sensible. Standard errors are smaller for both parameters. The 

1 year growth rate largely overlaps with that of the two-state model. 

The fit of the models measured by estimation errors is reduced in the single-state variation 

relative to the two-state model. The absolute measurement errors are on average always 

bigger in the single-state model than in the two-state model, in most cases by a factor of 2 to 

3 (Figures 3 and 4). The better fit of the model is also indicated by the log likelihood 

statistics. Per observation the log likelihood contribution is a third higher in the two-state 

model than it is in the single-state variation. Benchmarking against the single-state model 

indicates that it appears plausible to distinguish between investors gauging the immediate 

future on the one hand and their considerations about the business cycle on the other, as 

catered for in the two-state model. 

 

D.2. An alternative model 

Our modelling approach focuses directly on discounted risk-adjusted dividend growth 

𝜋𝑡+1 = 𝑔𝑡+1 − 𝑦𝑡 − 𝜃𝑡+1. We thus incorporate discounting at the risk-free rate when valuing 

future dividends. An obvious alternative to this approach would be to model 𝑧𝑡+1 = 𝑔𝑡+1 −

𝜃𝑡+1 using a term structure model to value dividend derivatives, and subsequently discount it 

at observed interest rates to calculate present values. This latter step requires the assumption 

that interest rates and 𝑔𝑡+1 − 𝜃𝑡+1 are independent. In addition, we assume the expectations 

hypothesis holds for bonds, so that bond risk premiums equal zero and long-term interest 
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rates equal expected future short rates. Given these assumptions we can rewrite equation (3) 

as: 

 

𝑃𝑡,𝑛 = 𝐷𝑡 [⁡𝐸𝑡𝑒𝑥𝑝(∑𝑔𝑡+𝑖 − 𝑦𝑡

𝑛

𝑖=1

− 𝜃𝑡+1)] = 𝐷𝑡 [⁡𝐸𝑡𝑒𝑥𝑝 (∑−𝑦𝑡+𝑖

𝑛

𝑖=1

)] [⁡𝐸𝑡𝑒𝑥𝑝(∑𝑧𝑡+𝑖

𝑛

𝑖=1

)]

= 𝐷𝑡𝑒𝑥𝑝⁡(−𝑛𝑦𝑡,𝑛) [⁡𝐸𝑡𝑒𝑥𝑝 (∑𝑧𝑡+𝑖

𝑛

𝑖=1

)]. 

(26) 

 

and the derivatives price equals: 

 

𝐹𝑡,𝑛 = 𝐷𝑡 [⁡𝐸𝑡𝑒𝑥𝑝(∑𝑧𝑡+𝑖

𝑛

𝑖=1

)]. (27) 

 

This shows that, to fit the futures price data, only a model for 𝑧𝑡+1 is needed. To reconcile 

this model with the stock index level, the independence assumption and expectations 

hypothesis for bonds are necessary and equation (26) can be used to calculate present values 

of dividends and the stock index value. Using this pricing equation, one can again specify a 

two-state model, in this case for one period growth 𝑧𝑡+1, and estimate it using the Kalman 

filter in the same way as described for the base model.  

As mentioned, this model assumes independence of interest rates and risk-adjusted growth 

rates. In the real world, however, correlation between the risk-free rate, dividend growth and 

the dividend risk premium is expected since often the same drivers apply: economic growth, 

the investment cycle, slack in the labor market and other economic variables will affect all of 

them. For estimating the term structure model, such correlation is not a problem if 𝑧𝑡+1⁡is the 

subject of state space estimation instead of 𝜋𝑡+1, but it will cause misestimation of the 

implied stock market levels. It is easy to show that this separation of the two correlated 

variables would produce overestimation of the stock index in equation (23) if the actual 

correlation is positive. 
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Turning to the results, the long-term estimate for risk-adjusted growth 𝑧̅ is estimated rather 

high, at 0.3 percent for the Eurostoxx 50 and – 1.0 percent for the Nikkei 225, which 

translates to 1.9 percent and 0.1 percent once 𝑧̅ is corrected for the convexity term (Table V). 

Standard errors are larger than in the case of the base model. The mean reversion parameters 

obtained remain reasonable and significant. However, reconciling the dividend market to the 

stock market based on these estimates overstates the stock market by a large margin and 

reduces the fit of the dynamic return reconciliation (Table VII). Compared to the base model, 

the coefficient of the estimated price-dividend ratio maintains its presence in the Japanese 

data with a coefficient of 0.78. In the data period considered, yen interest rates were close to 

zero and showed less variation than in the European market. The reduction to the explanatory 

power when modelling growth without discounting is relatively small for the Nikkei 225. In 

Europe, the picture is quite different due to the steep drop in interest rates in the period of 

2008 to 2015. The coefficient of the estimated price-dividend ratio is almost negligibly small 

for the Eurostoxx 50 market. Therefore, the European data set in particular demonstrates the 

correlation among the three elements of 𝜋𝑡+1, which confirms the advantage of estimating 

risk-adjusted dividend growth after discounting at the risk-free rate.  

 

D.3. OTC data 

We retain price data of dividend swaps from several investment banks23 for the dividend 

futures markets under investigation, and also for the S&P 500 and the FTSE 100. These data 

extend back to December 2005. Over-the-Counter (OTC) prices for dividend derivatives are 

not readily observable as are, for example, interest rate swaps, money market derivatives or 

foreign exchange derivatives which are posted on information systems such as Reuters. 

Mixon and Onur (2014) provide insight into the OTC market for dividend swaps. They 

investigated data from a Swap Data Repository to which participants in swap markets must 

report at transaction-level. It is shown that OTC swaps trade infrequently; even for the S&P 

500, which is the largest OTC dividend market, they trade less than daily between dealers and 

once every few weeks between a dealer and a non-dealer end-user. 

                                                           
23 Deutsche Bank, Goldman Sachs and Credit Suisse. 
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Investment banks update their pricing sheets on a daily basis, but often prices remain stale 

and extended periods go by without a single trade taking place. The data set of OTC prices 

for dividend swaps, therefore, is impacted by the model investment banks use for pricing 

them. We find price differences for same maturity transactions among the pricing sheets of 

investment banks of on average 3% with a standard deviation of 3%. 

Since the OTC market does not trade regularly, it seems likely that fitting the state space 

model to its price data is akin to mimicking the pricing models used by the investment banks. 

We nonetheless perform the same set of estimations and reconciliations as above on the OTC 

price data of dividend swaps referring to the S&P 500 and the FTSE 100 indices. The results 

shown are restricted to monthly frequencies, as the daily data are stale. The results are shown 

in Tables VI and VIII. 

The two-state model produces a high estimate for the long run growth constant 𝑝̅∗ of S&P 

500 dividends. Indeed, at – 1.3 percent for this constant, the S&P 500 present value as 

estimated by the model (equation (23)) overestimates its observed values by a factor of more 

than 2. Both mean reversion parameters attain reasonable levels, but they attract fairly large 

standard errors. In the case of the FTSE 100, the two-state model estimate for long run 

growth equals – 5.3 percent, with a standard error even exceeding that level in absolute terms. 

At the same time, the second mean reversion parameter comes out low at 0.04, which 

translates into a half-value time running into decades. At such slow moving mean reversion, 

the role of the long run constant is essentially taken over by the medium-term factor. The 

single-state estimate for long run growth is more reasonable at – 3.3 percent.  

We then turn to the reconciliation regressions (equation (24)). The variation in the 

modelled price-dividend ratio produced by the estimates does not depend on the long run 

constant and the dynamic reconciliation to the stock indices demonstrates that it has 

meaningful explanatory power. Table VIII shows that the model produces a coefficient of 

around 0.2 for the price-dividend ratio, with reasonable significance for both the S&P 500 

and the FTSE 100. Overall explanatory power is high for the S&P 500 with the adjusted R2 

reaching 0.58. However, most of it stems from the observed first dividend price 𝐹𝑡 ⁡rather than 
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the modelled price-dividend ratio.24 The same applies to the FTSE 100, albeit with the 

adjusted R2 at a lower level of explanatory power. In both markets variation in the price-

dividend ratio accounts for  8%, against 28% and 43% for the Eurostoxx 50 and Nikkei 225. 

 

III. Conclusion 

This paper proposes a method to extract information about the expectations that investors 

entertain of stock dividends from dividend derivatives. We show that modeling a single 

variable is sufficient to describe the dynamics and term of structure of dividend values. This 

variable is equal to the dividend growth minus the risk-free rate and a term capturing the risk 

premium. We propose a two-factor model for this discounted risk-adjusted growth variable, 

capturing the dynamics of short-term and medium-term dividend growth. The two factors 

shape a term structure of dividend growth which fits the data well and they determine the 

dynamics of the price-dividend ratio. Applied to the Eurostoxx 50 and the Nikkei 225, most 

of the variation of the stock market can be traced back to the model and short-term dividends 

together. We conclude that dividend derivatives and stock prices line up well enough to 

consider the information contained in one market for use of understanding the other. Several 

inferences from these findings can be drawn. 

 

Short-term and medium-term dynamics 

The distance into the future considered by investors affects the fit of dividend derivatives. 

At the extreme, a model which assumes a constant discount rate would show poor fit and 

explanatory power. But even a model where short-term variation in growth expectations is 

described by a single factor is significantly outperformed by a two-state model. The short-

term factor reflects a horizon of under one year and the medium-term factor a horizon of 

several years. Deploying two states next to each other allows some distinction between 

sudden occurrences and those at business cycle proportions. Pursuing different explanations 

for the two states, or in other words, finding different determinants of how investors think of 

the short and the medium-term, seems an appropriate research avenue. 

 

                                                           
24 Similar regressions based on daily estimates and stock index data produce R2 of less than 5 percent. 
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Long-term growth is stable 

The state space model imposes the return to a constant mean level of growth in the long 

run. This assumption is loosely interpreted as that investors do not change their opinion about 

the sequence of present values of dividends in the long run, which seems very restrictive 

intuitively. Nevertheless, small estimation errors, the explanatory power of the reconciliation 

of the model to stock returns and the near unity of the coefficients of the short-term dividend 

and the price-dividend ratio in the regressions of stock returns on these determinants, add 

credence to the imposition that long run growth is no major source of stock market variation. 

Interest rates are a part of discounted risk-adjusted dividend growth, and they are observable 

to investors. Under the assumption that they do not change their opinion about discounted 

risk-adjusted dividend growth 𝑝̅ in the long run, then our results suggest that most interest 

rate variation is balanced by risk-adjusted dividend growth expectations 𝑔 − 𝜃 at these long 

horizons. 

 

The importance of risk-free discounting of risk-adjusted dividend growth 

The estimation of the dividend term structure improves when we directly discount risk-

adjusted dividend growth for the time value of money. An alternative approach, which does 

not discount dividends at the risk-free rate and assumes independence between interest rates 

and risk-adjusted growth, implies estimates of dividend growth that are not economically 

sensible and which reconcile poorly to the stock market. Hence, jointly modeling interest 

rates, dividend growth and risk premium is strongly preferred. 

 

Listed data are preferred 

We perform the estimations using prices of OTC dividend swaps as well as of listed 

dividend futures. The prices produced by the OTC market are relevant, but generate less 

precise results and much lower explanatory power, while dividend futures provide intuitive 

and highly significant results. Not only do the long run estimates come out poorly, also the 

added value of the two-state model is not confirmed by OTC prices. It seems that stale prices, 

large price discrepancies among investment banks and infrequent trading cautions their 
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interpretation when applied in present value analysis. Fortunately, the set of listed data will 

only expand as time passes. 

 

Shiller’s “Stock Prices Move Too Much” assertion 

Robert Shiller contends that realized dividends are not volatile enough to justify the 

observed volatility of stock markets, if discount rates are assumed to be constant over time 

and maturities (Shiller, 1981). 

The approach we take constructs a rationally expected price for stocks in a different way. 

Rather than a model of future realized dividends, the term structure contains both actual 

expectations of future dividends and risk-adjusted discount rates. While Shiller finds 

observed stock return volatility to be five to thirteen times larger than modelled volatility, we 

find that the model produces about as much stock market volatility as is observed, regardless 

of the stock market that we consider.  

Any model limited to using realized dividends as a proxy for expectations of dividends 

will fail to pick up the variation in discount rates that the market applies to those future 

dividends, as well as estimation error of those expectations which may well display 

substantial volatility of their own. The approach taken by Shiller confirms that dividends turn 

out much less volatile than the stock market. But it does not confirm that the volatility of the 

present value of dividends is too high, only because the drivers of such valuations aren’t 

observed. 

 

Follow up 

It would be interesting to study to which fundamental variables the variation of short-term 

and medium-term growth in discounted risk-adjusted dividends can be ascribed. Armed with 

such linkages, the ability to understand stock market dynamics will improve. At the same 

time, Cochrane (2011) is clear in his assertion that: “We do not have to explain discount rates 

– relate expected returns to betas and understand their deep economics – in order to use 

them.”. Opportunities are plentiful. 
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Appendix A: Dividend derivatives data 

 

Deriving the observed growth path of discounted risk-adjusted dividends from derivatives 

prices calls for several processes to make them suited for use in the state space approach. 

This section describes dividend derivatives, the data and these processes. 

 

A.1. Dividend derivatives 

Dividend derivatives exchange the value of a dividend index for cash at set expiry dates. 

The price of the derivative is set at the transaction date 𝑡 and settled at the expiry date 𝑛. The 

difference between the transaction price and the amount of dividends actually paid is the 

amount settled between buyer and seller. 

The transaction price reflects the growth path expected from the current level of dividends 

and the premium required for the risk of the actual payment differing from what is expected. 

It is a risk-adjusted price and equals the present value of a dividend once the time value of 

money is accounted for. 

The dividend index measures the amount of dividends paid by the companies constituent 

to a stock index during a calendar year25. At the end of the year, the index is the fixing at 

which the dividend derivative is settled. Manley and Mueller-Glissmann (2008) provide an 

overview of the market for dividend derivatives and its mechanisms. 

 

A.2. Dividend derivatives data 

Listed futures on dividends paid by the companies in the Eurostoxx 50 and the Nikkei 225 

indices are the subject of this paper. These indices are widely accepted as representative for 

large cap firms based in Europe and Japan. They are chosen as dividend futures have been 

traded on them for a meaningful period with reasonable liquidity and good transparency.  

Dividend futures are available for other markets as well. They are referenced to dividends 

of the FTSE 100, Hang Seng and Hang Seng China Enterprises and several other less liquid 

markets, although not the S&P 50026. They started trading in 2008 on the Eurostoxx 50 and 

                                                           
25 Derivatives relating to dividends paid by individual companies exist as well. 
26 It is not clear why no exchange has opened up to listing futures on dividends of a US stock index. 
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have expanded in region and horizon since then. Nonetheless, only for the Eurostoxx 50 and 

the Nikkei 225 dividend indices futures are traded with a maturity range of up to ten years. 

The other markets extend out to no longer than four years. The purpose of this paper is to 

estimate a term structure of dividend risk-adjusted growth, for which longer dated maturities 

are required. We therefore exclude the shorter maturity dividend futures markets from the 

dataset. 

Before 2008, dividend derivatives existed as dividend swaps traded over-the-counter 

(OTC) only. They date back to 2002, well before the onset of listed futures. Maturities extend 

out to ten years and more for Eurostoxx 50, Nikkei 225, FTSE 100 and the S&P 500. We 

obtained dividend swap price data from several investment banks for all four stock indices 

mentioned27, but there are problems. Before 2005, prices are stale and, throughout the data 

period prices, not always consistent which each other among suppliers. Moreover, turnover is 

very low (Mixon and Onur, 2014)28. 

We nonetheless perform the estimations with datasets both of listed dividend futures at 

daily frequency and OTC dividend swaps at monthly frequency. The main conclusion from 

these results is that it shows that OTC price data originate from pricing models and may or 

may not reflect market prices. Table AI contains a detailed description of the data. 

 

A.3. Constant maturities 

Dividend derivatives usually expire at a fixed date near the end of the calendar year29 and 

therefore their time to maturity shortens by one day for each day that passes. For application 

in the state space model, growth rates of a constant horizon are required. The horizons of the 

measurement equations regard annual increments, the state equations regard one day 

increments. To obtain growth rates from prices with constant maturities, we interpolate 

derivatives with adjacent expiry dates. The interpolation is weighted by a scheme which 

reflects the uneven distribution of dividends through the year. For example, in the spring 

season 60% of the Eurostoxx 50 dividends of a full index year are paid in a matter of a few 

weeks (Figure A1). 

                                                           
27 Deutsche Bank, Goldman Sachs and Credit Suisse. 
28 Dividend swaps are said not to trade daily, “sometimes not even for months”. Turnover figures are not public. 
29 The Nikkei 225 dividend index runs until the last trading day in March. 
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Derivatives prices which have a constant horizon from any observation date are 

constructed from observed derivatives prices. Such Constant Maturity (CM) derivative prices 

𝐹𝑡,𝑛
𝐶𝑀 take the following shape, attaching the seasonal pattern of the dividend index as weights 

to the observed derivatives prices 𝑤𝑖, with 𝑖 standing for the day in the dividend index year, i 

= 1 being the first day of the count of the dividend index30:  

 

𝐹𝑡,𝑛
𝐶𝑀 = (1 − 𝑤𝑖)𝐹𝑡,𝑛 + 𝑤𝑖𝐹𝑡,𝑛+1. (A.1) 

 

The weight 𝑤𝑖 of the dividend index reflects the cash dividend amount paid as a 

proportion of the total amount during a dividend index year. The average of the years 2005 to 

2013 is taken. 𝐹𝑡,𝑛 is the observed price of the derivative which expires 𝑛𝑡ℎ in line into the 

future from the observation date onwards, 𝐹𝑡,𝑛+1 expiring the following year. This weighting 

scheme reduces the impact of the 𝑛𝑡ℎ derivative to expire on the constant maturity derivative 

as time passes by the proportion 𝑤𝑖 of dividends that have actually been declared. Its 

complement (1 − 𝑤𝑖) is the proportion that remains to be declared until the expiry date and is 

therefore an expectation of undeclared dividends for year 𝑛 at the observation date. In order 

to produce a derivative price with constant maturities, this undeclared amount is balanced by 

the proportion of the price of the derivative expiring the year after. In so doing, the constant 

maturity price reflects no seasonal pattern, while still accounting for the seasonal shift in 

impact from the 𝑛𝑡ℎ derivative to the next. For example, during the dividend season in 

Spring, the weight is shifted more quickly from the first to the second derivative31 than in 

other parts of the year32. 

 

A.4. The first to expire constant maturity derivative 

The weighting scheme in equation (A.1) will be applied to obtain all CM derivatives 

prices, except for the first CM derivative, because the proposed approach carries 

                                                           
30 which is the first trading day following the expiry date of a dividend derivatives contract. 
31 First and second derivatives is shorthand for the derivatives that are first and second to expire. 
32 A linear weighting scheme would reflect the adjacent derivative prices unevenly. For example, half way 

through the dividend index year already 80% of annual dividends is declared and paid. Linear weighting would 

then overemphasize the information contained in the price of the derivative in equation (A.1) that is the soonest 

to expire. 
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measurement problems for it. At time 𝑡 the expected dividend to be delivered at the 

expiration of the first derivative 𝐸𝑡(𝐷1) is the sum of the dividend index 𝐷𝐼𝑡 as it accretes 

throughout the year and its unknown complement 𝐸𝑡(𝑈𝐷1): 

 

𝐸𝑡(𝐷1) = 𝐷𝐼𝑡 +⁡𝐸𝑡(𝑈𝐷1). (A.2) 

 

For CM derivatives with horizons longer than the first, the weight⁡𝑤𝑖 is the average 

seasonal pattern in the preceding decade, which may not necessarily resemble that of a 

particular dividend index year 
𝐷𝐼𝑡

𝐸𝑡(𝐷1)
⁄ . The difference between the two is shown in 

Figure A2; for example in April 2013 the payments of Eurostoxx 50 dividends had already 

reached 33% of the annual total, while on average in the years 2005 to 2013 it stood at 20%. 

This advance dropped below ten percent not until a month later. In general, dividend 

payments in 2012 and 2013 seem to have taken place earlier in the calendar year than usual in 

the preceding years. 

Weighting the first derivative by the average of the preceding decade when dividends 

realize sooner in the year than the average, as was the case in April 2013, overemphasizes the 

importance of that first derivative to the one year CM derivative. This first CM derivative 

will then contain backward looking information as well underemphasize the unrealized 

proportion of the contemporaneous dividend index both to the tune of the difference between 

the historical average and the realized dividend index. To avoid this issue, the first CM 

derivative is construed by defining the weight as the proportion of the dividend index that has 

been realized of the total expected dividend for that year only: 

 

𝐹𝑡,1
𝐶𝑀 = 𝐹𝑡,1 − 𝐷𝐼𝑡 +⁡

𝐷𝐼𝑡
𝐷1
𝐹𝑡,2. (A.3) 

 

For building a first CM derivative with a constant one year horizon as a stochastic 

variable, we include unknown 𝐸𝑡(𝑈𝐷1) and exclude known 𝐷𝐼𝑡. The expectation of full year 

dividends is proxied by the equivalent observation. Later CM derivatives do not weight 

variables which have already been partly realized, hence the weighting issue of the first CM 
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derivative does not reoccur. For 𝑛 ≥ 2, the prices of CM derivatives remain constructed as in 

the weighting equation (A.1).  

 

A.5. Calculating seasonal weights for different dividend index years 

Expiry years do not have the same number of trading days every year or across markets. 

Not only do trading holidays differ, also the expiry date is set to the third Friday in December 

in every expiry year. This day falls anywhere between the 15th and the 21st of December33 and 

the number of trading days fluctuates accordingly. 

In order to establish a seasonal pattern for 𝑤𝑖 that is correct for the actual number of 

trading days in each expiry year, realized dividends are normalized and averaged. First, the 

amount of dividends paid on a given day is expressed as a percentage of the total dividends 

paid in the matching dividend index year. Next, for each expiry year these percentages are 

normalized to a set number of trading days. Finally, they are averaged. For calculating the 

values in the weighting equation, they are rescaled to the actual number of trading days in the 

dividend index year in question. This approach guarantees that in every expiry year, weight 

𝑤𝑖 starts at zero and ends the year at 100%, regardless of the number of trading days. 

 

A.6. Current dividends 

At the heart of the present value model are the discounted values of risk-adjusted 

dividends. These present values 𝑃𝑡,𝑛 take current dividends 𝐷𝑡 as the starting point from 

which growth is projected forward at growth rate 𝜋𝑡+𝑖 (equation (3)). It is sometimes 

assumed34 that current dividends can be reasonably approximated by realized dividends. For 

daily data as applied in this paper, however, this assumption causes issues. 

The asset underlying dividend derivatives is the amount of cash dividend thrown off by a 

stock or a stock index during the year in which the derivative expires. The index companies 

pay dividends throughout the calendar year35 which implies that taking realized dividends as 

                                                           
33 With exception of the Nikkei 225. 
34 E.g. Binsbergen et al. (2013), Cejnek and Randl (2014). 
35 In fact, the dividend index year usually runs from the first working day following the third Friday in 

December until and including the third Friday in December of the following year. Dividend derivatives also 

apply the third Friday of December as the expiry date. 
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current dividends at a certain day of the year would require looking back for twelve months. 

The dividend paying capacity of index companies are unlikely to stay constant for a year, 

however. 

To take a strong example, around the days of the Lehman bankruptcy on the 15th of 

September 2008, the one year dividend history of Eurostoxx 50 companies amounted to 154. 

Due to the bankruptcy, investors would have changed their opinion strongly downwards 

about the dividend that companies would pay if they would have had to pay on these days. 

Even if dividends reflect the past year of earnings, company management is likely to reduce 

dividends if their near term outlook changes for the worse by precautionary motive. After 

Lehman, taking a dividend history of twelve months would then overestimate the 

approximation of current dividends as they stood in the fall of 2008. In the weeks following 

the default, the Eurostoxx 50 dividend future expiring in 2009 dropped from 140 to 100. 

Therefore, if twelve month realized dividends are used as current dividends, the shortest 

horizon observation for growth from 2008 to 2009 on the dividend curve would attain a 

strongly negative figure even though the actual growth expectation, starting from a level that 

would have been revised downwards, could be flat or even positive. 

This problem rules out considering the dividend index itself, or a rolling twelve month 

estimate of it, as a starting point from which to calculate the growth rate until the first 

derivative to expire. The first derivative to expire, of course, does contain investor 

expectations about dividends to be paid in the remaining period until the first expiry date. But 

this information regards the period from the observation date until the expiry date; it is not a 

reflection of dividend expectations on the observation date itself. 

To avoid these data difficulties, we propose an alternative base. In lieu of an estimate for 

current dividends, we use dividend derivatives with one year remaining life to expiry 𝐹𝑡,1 

discounted at the one year risk-free rate 𝑦𝑡,1 as the base from which to calculate growth rates: 

 

𝑃𝑡,1
𝐶𝑀 = 𝐹𝑡,1

𝐶𝑀 𝑒𝑥𝑝(−𝑦𝑡,1), (A.5) 

 

and the first year of growth is deducted accordingly. Discounted risk-adjusted dividend 

growth rates are then given by: 
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𝑛𝜋𝑡,𝑛 − 𝜋𝑡,1 = 𝑙𝑛(𝐹𝑡,𝑛
𝐶𝑀) − 𝑛𝑦𝑡,𝑛 − (𝑙𝑛(𝐹𝑡,1

𝐶𝑀) − 𝑦𝑡,1). (A.6) 

 

As a consequence of estimating 𝑛𝜋𝑡,𝑛 − 𝜋𝑡,1 as a single variable, we do not account for the 

first year of discounted dividend growth as part of the dividend term structure. At the same 

time, the one year dividend present value 𝑃𝑡,1
𝐶𝑀 includes short-term derivatives prices which 

encompass investor expectations extending from the observation date until a year later. 

Although growth for the first year is not observed, the one year discounted derivative price is 

included in the present value identity ensuring that no information is lost when reconciling 

the model estimates to the stock market as in equations (23) and (24). 
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Appendix B: Measurement equations 

 

In this appendix the details of the derivation of the measurement equations are described. 

We rewrite the state equations (8) and (9) in vector form and then derive the discrete-time 

implications of the model. Denote 𝑄𝑡 = (
𝑝𝑡
𝑝𝑡
) the 2 × 1 vector of the factors and 𝑄̅ = (

𝑝

𝑝
) as 

the 2 × 1 vector of the constant infinite growth rate. In a two equation matrix format, the 

system becomes:  

 

𝑑𝑄𝑡 = (
𝑑𝑝𝑡
𝑑𝑝𝑡
) = [(

−𝜑 𝜑
0 −𝜓)(

𝑝𝑡
𝑝𝑡
) + (

0
𝜓𝑝
)] 𝑑𝑡 + [

𝜎𝑝 0

0 𝜎𝑝̃
] (
𝑑𝑊𝑝
𝑑𝑊𝑝̃

). (B.1) 

 

This system of differential equations in matrix notation is: 

 

𝑑𝑄𝑡 = 𝐶[𝑄𝑡 − 𝑄]𝑑𝑡 + 𝛴𝑑𝑊, (B.2) 

 

which has the general solution: 

 

𝑄𝑡+1 = 𝑄 + 𝛷(𝑄𝑡 − 𝑄) + 𝜀𝑡+1, (B.3) 

 

and of which the eigenmatrix solves to: 

 

𝛷 = (
𝑒−𝜑

𝜑

𝜑 − 𝜓
(𝑒−𝜑 − 𝑒−𝜓)

0 𝑒−𝜓
). (B.4) 

 

Substituting the expression for the eigenmatrix into (B.3) delivers state equations (B.5): 

 

(
𝑝𝑡+1
𝑝𝑡+1

) = (
1 − 𝑒−𝜑 −

𝜑

𝜑 − 𝜓
(𝑒−𝜓 − 𝑒−𝜑)

0 1 − 𝑒−𝜓
)(
𝑝

𝑝
) + (

𝑒−𝜑
𝜑

𝜑 − 𝜓
(𝑒−𝜓 − 𝑒−𝜑)

0 𝑒−𝜓
)(
𝑝𝑡
𝑝𝑡
) + 𝜀𝑡+1. (B.5) 
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We model correlation between the innovation in the growth rate 𝜈𝑡+1 and the errors 𝜀𝑡+1 

in these state equations as 𝜈𝑡+1 = 𝛽′𝜖𝑡+1, where 𝛽 = (𝛽𝑝, 𝛽𝑝̃)′ is a 2-by-1 vector. Next we 

use this process to write the n-period ahead growth rate as a function of the factors: 

 

𝜋𝑡+𝑛 = 𝛼′(𝑄̅ + 𝛷
𝑛−1(𝑄𝑡 − 𝑄̅)) + 𝛼′∑𝛷𝑛−𝑖𝜀𝑡+𝑖

𝑛−1

𝑖=1

+ 𝛽′𝜀𝑡+𝑛, (B.6) 

 

in which 𝛼′ = (1⁡⁡0). This can be substituted into the pricing equation: 

 

𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝐷𝑡 ⁡= 𝐸𝑡 (∑𝜋𝑡+𝑖

𝑛

𝑖=1

) +
1

2
𝑉𝑎𝑟𝑡 (∑𝜋𝑡+𝑖

𝑛

𝑖=1

), (B.7) 

 

The right hand side can be worked out as follows: 

 

𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝐷𝑡 ⁡= 𝛼′(𝑛𝑄̅ + 𝐵𝑛(𝑄𝑡 − 𝑝̅)) +
1

2
𝑉𝑎𝑟𝑡 (∑(𝛼′∑𝛷𝑛−𝑗𝜀𝑡+𝑗

𝑖−1

𝑗=1

+ 𝛽′𝜀𝑡+𝑖)

𝑛

𝑖=1

), (B.8) 

 

which in turn implies: 

 

𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝐷𝑡 = 𝛼′(𝑛𝑄̅ + 𝐵𝑛(𝑄𝑡 − 𝑝̅)) +
1

2
∑(𝛽′ + 𝛼′𝐵𝑖)𝛴(𝛽 + 𝐵𝑖

′𝛼)

𝑛

𝑖=1

, (B.9) 

 

where matrix 𝐵𝑖 is an expression constructed from the eigenmatrix: 

 

𝐵𝑖 = (𝐼 + 𝛷 +⋯+𝛷
𝑖−1) = (𝐼 − 𝛷)−1(𝐼 − 𝛷𝑖). (B.10) 

 

The equations are written without vector notation. By the definition of 𝛷, 𝐵𝑛 is worked out 

as: 



43 
 

𝐵𝑛 =

(

 
 

(1 − 𝑒−𝑛𝜑)

(1 − 𝑒−𝜑)

𝜑

𝜑 − 𝜓
(
(1 − 𝑒−𝑛𝜓)

(1 − 𝑒−𝜓)
−
(1 − 𝑒−𝑛𝜑)

(1 − 𝑒−𝜑)
)

0
(1 − 𝑒−𝑛𝜓)

(1 − 𝑒−𝜓) )

 
 
= (

𝜑𝑛
𝜑

𝜑 − 𝜓
(𝜓𝑛 − 𝜑𝑛)

0 𝜓𝑛

). (B.11) 

 

with shorthand notation: 

 

𝜑𝑛 =
(1 − 𝑒−𝑛𝜑)

(1 − 𝑒−𝜑)
 (B.12) 

𝜓𝑛 =
(1 − 𝑒−𝑛𝜓)

(1 − 𝑒−𝜓)
. (B.13) 

 

An expression which consists of scalars only is obtained by substituting all elements of the 

above in the measurement equation: 

 

𝑙𝑛𝑃𝑡,𝑛 − 𝑙𝑛𝐷𝑡 = (1⁡⁡0)⁡(𝑛 (
𝑝̅
𝑝̅
) + (

𝜑𝑛
𝜑

𝜑 − 𝜓
(𝜓𝑛 − 𝜑𝑛)

0 𝜓𝑛

)(
𝑝𝑡 − 𝑝̅
𝑝𝑡 − 𝑝̅

)) + 

1

2
∑((𝛽𝑝⁡𝛽𝑝̃) + (1⁡⁡0) (

𝜑𝑖
𝜑

𝜑 − 𝜓
(𝜓𝑖 − 𝜑𝑖)

0 𝜓𝑖

))(𝜎
2 0
0 𝜎̃2

)((
𝛽𝑝
𝛽𝑝̃
)

𝑛

𝑖=1

+ (

𝜑𝑖 0
𝜑

𝜑 − 𝜓
(𝜓𝑖 − 𝜑𝑖) 𝜓𝑖

)(
1
0
)) + 𝜂𝑡,𝑛 

(B.14) 

 

= 𝑛𝑝̅ + 𝜑𝑛(𝑝𝑡 − 𝑝̅) +
𝜑

𝜑 − 𝜓
(𝜓𝑛 − 𝜑𝑛)(𝑝̃𝑡 − 𝑝̅)

+
1

2
∑(𝜎𝑝

2(𝛽𝑝 + 𝜑𝑖)
2
+ 𝜎𝑝̃

2 (𝛽𝑝̃ +
𝜑

𝜑 − 𝜓
(𝜓𝑖 − 𝜑𝑖))

2

)

𝑛

𝑖=1

+ 𝜂𝑡,𝑛, 

(B.15) 

 

which is the same as equation (11) in the main text. The right hand term on the right hand 

side is referred to in the paper as the “convexity term”. 
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Tables and Figures 

 

Table I 

Base model of Discounted Risk-adjusted Dividend Growth: 

𝜋𝑡+1 = 𝑔𝑡+1 − 𝑦𝑡 − 𝜃𝑡+1 
Estimates using listed Dividend Futures of the Eurostoxx 50 Index 

Sample period: 4 August 2008 – 16 February 2015 
 

 Two-state  Single-state 

 
𝑑𝑝𝑡 = 𝜑(𝑝𝑡 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑊𝑝 

𝑑𝑝𝑡 = 𝜓(𝑝 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝̃𝑑𝑊𝑝̃ 
 𝑑𝑝𝑡 = 𝜑(𝑝 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑊𝑝 

      

𝑝 -0.0586 -0.0404   -0.2067 -0.0435 
 (9.5339) (0.0197)   (28.777) (0.0144) 

𝜑 1.5130 1.5132   1.7297 1.7292 
 (0.3160) (0.3158)   (0.4894) (0.4894) 

𝜓 0.2433 0.2434       
 (0.1089) (0.1088)       

𝛽𝑝 0.1553 Set to 0   0.6246  Set to 0 
 (67.007)     (69.2935)   

𝛽𝑝̃ -2.6695 -2.6693       
 (6.2539) (6.2523)       
           

𝜎𝑝 0.5701 0.5704   0.7033 0.7033 
 (0.7876) (0.7870)   (1.2245) (1.2245) 

𝜎𝑝̃ 0.0437 0.0437       
 (0.0947) (0.0946)       

𝜎𝜂
1 0.0219 0.0219   0.0177 0.0177 
 (0.0295) (0.0294)   (0.0071) (0.0071) 

𝜎𝜂 0.0063 0.0063   0.0441 0.0441 
 (0.0025) (0.0025)   (0.0806) (0.0806) 

Log Likelihood 

per contribution 
24.57 24.57   18.35 18.35 

Maximum Likelihood estimates are based on daily prices of dividend futures and interest rates. 

Measurement equations capture discounted dividend growth starting one year following the observation 

date. The estimates include eight measurement equations: from one to eight years, except for its begin 

until 13th May 2009 in which the number is five due to a lack of data. 𝜎𝜂 measures the standard deviations 

of the second until the eight measurement equations, 𝜎𝜂
1 of the first. This distinction is made to reflect that 

the base from which growth rates are determined is calculated by applying an alternative weighting 

scheme between first and second derivatives to expire. See the Data section. Standard errors in 

parentheses. 
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Table II 

Base model of Discounted Risk-adjusted Dividend Growth: 

𝜋𝑡+1 = 𝑔𝑡+1 − 𝑦𝑡 − 𝜃𝑡+1 
Estimates using listed Dividend Futures of the Nikkei 225 Index 

Sample period: 17 June 2010 – 16 February 2015 
 

 Two-state  Single-state 

 
𝑑𝑝𝑡 = 𝜑(𝑝𝑡 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑊𝑝 

𝑑𝑝𝑡 = 𝜓(𝑝 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝̃𝑑𝑊𝑝̃ 
 𝑑𝑝𝑡 = 𝜑(𝑝 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑊𝑝 

      

𝑝 -0.0320 -0.0371   -0.0719 -0.0487 
 (1.3833) (0.0264)   (3.8264) (0.0304) 

𝜑 0.7381 0.7381   0.2837 0.2837 
 (0.2360) (0.2345)   (0.0306) (0.0306) 

𝜓 0.1784 0.1784       
 (0.0539) (0.0537)       

𝛽𝑝 -1.5513  Set to 0   -7.6306 Set to 0  
 (92.822)     (211.137)   

𝛽𝑝̃ -3.4234 -3.4229       
 (16.191) (16.1862)       
           

𝜎𝑝 0.1531 0.1531   0.0630 0.0630 
 (0.2193) (0.2193)   (0.1189) (0.1186) 

𝜎𝑝̃ 0.0251 0.0251       
 (0.0731) (0.0730)       

𝜎𝜂
1 0.0147 0.0147   0.0137 0.0137 
 (0.0197) (0.0197)   (0.0041) (0.0041) 

𝜎𝜂 0.0040 0.0040   0.0170 0.0170 
 (0.0015) (0.0015)   (0.0285) (0.0285) 

Log Likelihood 

per contribution 
29.37 29.36   22.04 22.04 

Maximum Likelihood estimates are based on daily prices of dividend futures and interest rates. 

Measurement equations capture discounted dividend growth starting one year following the observation 

date. The estimates include eight measurement equations: from one to eight years. 𝜎𝜂 measures the 

standard deviations of the second until the eight measurement equations, 𝜎𝜂
1 of the first. This distinction is 

made to reflect that the base from which growth rates are determined is calculated by applying an 

alternative weighting scheme between first and second derivatives to expire. See the Data section. 

Standard errors in parentheses. 
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Table III 

Key results from two-state space model and sample period averages 

  Eurostoxx 50 Nikkei 225 

Sample period  
4 August 2008 – 

16 Feb 2015 

17 June 2010  – 

16 Feb 2015 

Estimated LT growth (𝛽𝑝 = 0) 𝑝̅ – 4.0 % – 3.7 % 

Estimated convexity term for 𝑖 → ∞1)  1.4% 1.1% 

Estimated LT growth plus convexity 

term1) 
𝑝̅∗ – 2.6% – 2.6%  

Average dividend yield 
𝐷𝑡
𝑆𝑡

 4.3 % 1.9 % 

Average estimated 1 year growth 𝑝𝑡 – 9.8 % 1.1 % 

Average estimated 1 year forward 

4 year growth 
𝑝𝑡 – 3.7 % – 1.6 % 

Average calibrated first dividend point 
𝑃̂𝑡,1

∑ 𝑃̂𝑡,𝑛
∞
1

 3.1 % 2.1 % 

 

 

1)Refer to equation (19) in the main text: 

𝑝̅∗ = 𝑝̅ +
1

2
(𝜎𝑝

2(𝛽𝑝 + 𝜑𝑖→∞)
2
+ 𝜎𝑝̃

2 (𝛽𝑝̃ +
𝜑

𝜑 − 𝜓
(𝜓𝑖→∞ − 𝜑𝑖→∞))

2

) 
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Table IV 

Reconciliation of the Base Present Value Model (two-state) constituent returns to stock 

market returns: listed Dividend Futures 
 

          
          

 Eurostoxx 50  Nikkei 225 

          
          

Constant 0.0005 0.0002 0.0006 -0.0001  -0.0002 0.0002 0.0005 0.0002 
 (0.0003) (0.0003) (0.0004) (0.0003)  (0.0003) (0.0004) (0.0004) (0.0003) 

∆𝑙𝑛𝐹𝑡 0.8978 1.0009    0.8488 0.6582   
 (0.0337) (0.0426)    (0.0508) (0.0719)   

∆𝑦𝑡 0.1446  0.2022   0.0751  -0.0081  
 (0.0127)  (0.0178)   (0.0619)  (0.0912)  

∆𝑙𝑛⁡(𝑃𝐷̂)𝑡 0.6587   0.6893  0.8619   0.8156 
 (0.0216)   (0.027)  (0.0251)   (0.0278) 

𝐴𝑑𝑗. 𝑅2 0.540 0.248 0.071 0.280  0.540 0.068 0.000 0.429 
          

The modelled present values of dividends are tested for their explanatory power of the dynamics of the stock 

market. The OLS regression estimates equation (24) ∆𝑙𝑛𝑆𝑡 = 𝛼 + 𝛽𝐹∆𝑙𝑛𝐹𝑡 + 𝛽∆𝑦∆𝑦𝑡 + 𝛽𝑃𝐷̂∆𝑙𝑛⁡(𝑃𝐷̂)𝑡 + 𝜀𝑡, 

in which 𝑆𝑡 is stock index, 𝐹𝑡 is the first constant maturity dividend derivative price, ∆𝑦𝑡 is the change in the 

one year zero swap rate and 𝑃𝐷̂𝑡 is the sum of the normalized present value of dividends as estimated in the 

two-state space model. 𝛽𝑝 is fixed at zero. Daily data for periods as in Tables I and II. Standard errors in 

parentheses. 
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Table V 

Alternative Model of Undiscounted Risk-adjusted Dividend Growth: 

𝑧𝑡+1 = 𝑔𝑡+1 − 𝜃𝑡+1 
Estimates using listed Dividend Futures. 

 

 Two-state  Single-state 

 
𝑑𝑧𝑡 = 𝜑(𝑧̃𝑡 − 𝑧𝑡)𝑑𝑡 + 𝜎𝑧𝑑𝑊𝑧 
𝑑𝑧̃𝑡 = 𝜓(𝑧 − 𝑧̃𝑡)𝑑𝑡 + 𝜎𝑧𝑑𝑊𝑧 

 𝑑𝑧𝑡 = 𝜑(𝑧 − 𝑧𝑡)𝑑𝑡 + 𝜎𝑧𝑑𝑊𝑧 

 Eurostoxx 50 Nikkei 225  Eurostoxx 50 Nikkei 225 

      

Sample period 
4 August 2008 

– 16 Feb 2015 

17 June 2010 – 

16 Feb 2015 
 

4 August 2008 

– 16 Feb 2015 

17 June 2010 – 

16 Feb 2015 
      

𝑧 0.0027 -0.0104  -0.0147 -0.0406 
 (0.0241) (0.0416)  (0.0212) (0.0549) 

𝜑 1.4108 0.6547  1.4142 0.2944 
 (0.2552) (0.1874)  (0.4588) (0.0350) 

𝜓 0.1860 0.2006    
 (0.0779) (0.0591)    

𝛽𝑧 Set to 0 Set to 0  Set to 0 Set to 0 
      

𝛽𝑧 -3.0428 -3.6131    
 (6.8937) (35.6244)    
      

𝜎𝑧 0.5125 0.1335  0.4858 0.0794 
 (0.6433) (0.1814)  (1.0167) (0.1830) 

𝜎𝑧 0.0362 0.0286    
 (0.0687) (0.0810)    

𝜎𝜂
1 0.0233 0.0138  0.0259 0.0144 
 (0.0311) (0.0183)  (0.0136) (0.0042) 

𝜎𝜂 0.0060 0.0038  0.0569 0.0183 
 (0.0023) (0.0014)  (0.1331) (0.0336) 

Log Likelihood 

per contribution 
24.78 29.64  15.75 21.58 

Maximum Likelihood estimates are based on daily prices of dividend futures and interest rates. 

Measurement equations capture discounted dividend growth starting one year following the observation 

date. The estimates include eight measurement equations: from one to eight years, except for its begin 

until 13th May 2009 in which the number is five due to a lack of data. 𝜎𝜂 measures the standard deviations 

of the second until the eight measurement equations, 𝜎𝜂
1 of the first. This distinction is made to reflect that 

the base from which growth rates are determined is calculated by applying an alternative weighting 

scheme between first and second derivatives to expire. See the Data section. Standard errors in 

parentheses. 
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Table VI 

Base model of Discounted Risk-Adjusted Dividend Growth: 
𝜋𝑡+1 = 𝑔𝑡+1 − 𝑦𝑡 − 𝜃𝑡+1 

Estimates using OTC Dividend Swaps (monthly) 
 

 Two-state  Single-state 

 
𝑑𝑝𝑡 = 𝜑(𝑝𝑡 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑊𝑝 

𝑑𝑝𝑡 = 𝜓(𝑝 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝̃𝑑𝑊𝑝̃ 
 𝑑𝑝𝑡 = 𝜑(𝑝 − 𝑝𝑡)𝑑𝑡 + 𝜎𝑝𝑑𝑊𝑝 

 S&P 500 FTSE 100  S&P 500 FTSE 100 

      

Sample period 
Dec 2005 – 

June 2014 

Dec 2005 – 

June 2014 
 

Dec 2005 – 

June 2014 

Dec 2005 – 

June 2014 
      

𝑝 -0.0188 -0.0841  -0.0186 -0.0430 
 (0.0231) (0.1513)  (0.0108) (0.0093) 

𝜑 1.0651 1.6347  0.3537 1.7702 
 (0.7296) (0.5865)  (0.0583) (0.5828) 

𝜓 0.1809 0.0371    
 (0.1431) (0.1422)    

𝛽𝑝 Set to 0 Set to 0  Set to 0 Set to 0 

      

𝛽𝑝̃ -2.5935 -2.1624    

 (10.4524) (8.5798)    
      

𝜎𝑝 0.1756 0.5865  0.0584 0.6770 
 (0.2975) (0.9707)  (0.0674) (1.1518) 

𝜎𝑝̃ 0.0293 0.0173    
 (0.0642) (0.035)    

𝜎𝜂
1 0.0167 0.0199  0.0138 0.0141 
 (0.0072) (0.0326)  (0.0044) (0.0056) 

𝜎𝜂 0.0078 0.0054  0.0261 0.0298 
 (0.0021) (0.0026)  (0.0167) (0.0687) 

Log Likelihood 

per contribution 
22.62 23.79  19.79 19.29 

Maximum Likelihood estimates are based on daily prices of dividend futures and interest rates. 

Measurement equations capture discounted dividend growth starting one year following the observation 

date. The estimates include eight measurement equations: from one to eight years. 𝜎𝜂 measures the 

standard deviations of the second until the eight measurement equations, 𝜎𝜂
1 of the first. This distinction is 

made to reflect that the base from which growth rates are determined is calculated by applying an 

alternative weighting scheme between first and second derivatives to expire. 𝛽𝑝 is fixed at zero. See the 

Data section. Standard errors in parentheses. 
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Table VII 

Reconciliation of the Alternative Model of Undiscounted Risk-Adjusted Dividend Growth 

(two-state) constituent returns to stock market returns: 

          
          

 Eurostoxx 50  Nikkei 225 

          
          

Constant 0.0006 0.0002 0.0006 0.0000  -0.0002 0.0002 0.0005 0.0002 
 (0.0003) (0.0003) (0.0004) (0.0004)  (0.0003) (0.0004) (0.0004) (0.0003) 

∆𝑙𝑛𝐹𝑡 0.9555 1.0009    0.8781 0.6582   
 (0.0419) (0.0426)    (0.0572) (0.0719)   

∆𝑦𝑡 0.1693  0.2022   0.1448  -0.0081  
 (0.0163)  (0.0178)   (0.0694)  (0.0912)  

∆𝑙𝑛⁡(𝑃𝐷̂)𝑡 0.0725   -0.0113  0.7800   0.7121 
 (0.0157)   (0.0179)  (0.0293)   (0.0318) 

𝐴𝑑𝑗. 𝑅2 0.293 0.248 0.071 0.000  0.424 0.068 0.000 0.305 
          

The modelled present values of dividends are tested for their explanatory power of the dynamics of the stock 

market. The OLS regression estimates equation (24) ∆𝑙𝑛𝑆𝑡 = 𝛼 + 𝛽𝐹∆𝑙𝑛𝐹𝑡 + 𝛽∆𝑦∆𝑦𝑡 + 𝛽𝑃𝐷̂∆𝑙𝑛⁡(𝑃𝐷̂)𝑡 + 𝜀𝑡, 

in which 𝑆𝑡 is stock index, 𝐹𝑡 is the first constant maturity dividend derivative price, ∆𝑦𝑡 is the change in the 

one year zero swap rate and 𝑃𝐷̂𝑡 is the sum of the normalized present value of dividends estimated in the two-

state space model. 𝛽𝑝 is fixed at zero. Daily data for periods as in Tables I/ II. Standard errors in parentheses. 

 

Table VIII 

Reconciliation of the Base Present Value Model (two-state) constituent returns to stock 

market returns: OTC Dividend Swaps (monthly data) 

          
          

 S&P 500  FTSE 100 

          
          

Constant -0.0019 -0.0016 0.0065 0.0038  0.0005 0.0005 0.0032 0.0016 
 (0.0029) (0.0028) (0.0042) (0.0040)  (0.0034) (0.0035) (0.0040) (0.0039) 

∆𝑙𝑛𝐹𝑡 1.1677 1.1901    0.5812 0.6273   
 (0.1118) (0.1073)    (0.1111) (0.1033)   

∆𝑦𝑡 -0.0041  0.0514   0.0047  0.0320  
 (0.0158)  (0.0221)   (0.0163)  (0.0173)  

∆𝑙𝑛⁡(𝑃𝐷̂)𝑡 0.1869   0.2561  0.1190   0.1428 
 (0.0600)   (0.0881)  (0.0410)   (0.0459) 

𝐴𝑑𝑗. 𝑅2 0.582 0.552 0.051 0.078  0.307 0.269 0.033 0.088 
          

The modelled present values of dividends are tested for their explanatory power of the dynamics of the stock 

market. The OLS regression estimates equation (24) ∆𝑙𝑛𝑆𝑡 = 𝛼 + 𝛽𝐹∆𝑙𝑛𝐹𝑡 + 𝛽∆𝑦∆𝑦𝑡 + 𝛽𝑃𝐷̂∆𝑙𝑛⁡(𝑃𝐷̂)𝑡 + 𝜀𝑡, 

in which 𝑆𝑡 is stock index, 𝐹𝑡 is the first constant maturity dividend derivative price, ∆𝑦𝑡 is the change in the 

one year zero swap rate and 𝑃𝐷̂𝑡 is the sum of the normalized present value of dividends estimated in the two-

state space model. 𝛽𝑝 is fixed at zero. Daily data for periods as in Table 6. Standard errors in parentheses. 
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Table AI      

  Eurostoxx 50 S&P 500 FTSE 100 Nikkei 225 

      

Number of 

companies in the 

index 

 50 500 100 225 

Currency  Euro US$ GBP JPY 

Market capitalization 

in US$ per 7th May 

2014 

 US$ 3.3 trillion US$ 17.2 trillion US$ 3.1 trillion US$ 2.7 trillion 

Data 

period 

Dividend 

swaps 
 N/A 

19 December 2005 

– 13 June 2014 

19 December 2005 

– 13 June 2014 
N/A 

Dividend 

futures 
 

4 August 2008 – 

16 February 2015 
N/A N/A 

17 June 2010 – 

16 February 2015 

Source 

of the 

data 

Dividend 

swaps 
 N/A OTC OTC N/A 

Dividend 

futures 
 Eurex N/A Liffe 

Singapore 

exchange 

Average number of 

trading days 
 256 252 253 245 

Liquidity  Good Poor Poor Reasonable 

Expiry 

horizon 

Dividend 

swaps 
 N/A 10 years 10 years N/A 

Dividend 

futures 
 10 years N/A 4 years 10 years 

Expiry date  
3rd Friday of 

December 

3rd Friday of 

December 

3rd Friday of 

December 

Last trading day in 

March 

Data frequency  Daily Daily Daily Daily 

Stock index ticker  SX5E SPX UKX NKY 

Dividend index 

ticker 
 DKESDPE SPXDIV F1DIVD JPN225D 
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Figure 1. Eurostoxx 50 Dividend Futures Prices 

Price curve of dividend futures and of discounted dividend futures on an arbitrary day, for 

purpose of illustration. The discounted dividend futures equal the present value of expected 

dividends (equation (5)). Expiries occur on the third Friday in December of each expiry year. 

 

 
 

Dividend futures 𝐹𝑡,𝑛   Discounted dividend futures 𝑃𝑡,𝑛 

 

 

Figure 2. Values of 𝑝̅ for a given value of 𝛽𝑝. 

Values of 𝛽𝑝 are set to 0 to arrive at values for 𝑝̅. See Tables I/II for an example of estimation 

results. Values found for other parameters do not change materially when 𝛽𝑝 is varied. 
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Mean absolute estimation errors 

Figures 3 and 4 depict the average of the absolute estimation error of the two-state and the 

single state base model. The measurement variables are discounted risk-adjusted dividend 

growth rates of 1 to 8 years. 

 

 

Figure 3. Eurostoxx 50 

 

 
 

 

Figure 4. Nikkei 225 
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Calibrated growth rates 

Figures 5 to 8 show calibrated growth rates of discounted risk-adjusted dividends. Figures 5 

and 7 contain the 1 year growth rate. Figures 6 and 8 contain average annual growth rates of 

the 4 years following the first year of growth: 𝑝𝑡,𝑡+1→𝑡+5. 

 

 

Figure 5. Eurostoxx 50: 1 year growth        Figure 6. Eurostoxx 50: 1 year forward 4 year 

growth 

 

  

 

 

Figure 7. Nikkei 225: 1 year growth    Figure 8. Nikkei 225: 1 year forward 4 year 

growth 
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Figure 9. Discounted Risk-adjusted Dividend Growth Volatility Term Structure 

𝑝𝑖→𝑖+1 = volatility from 𝑛 = 𝑖 to 𝑛 = 𝑖 + 1 (= single period forward growth rates). 

 

 
 

 

Figure 10. Calibrated average Dividend Term Structure 

The average of calibrated present values of dividends per expiry year 𝑃̅𝑡,𝑛 is divided by the 

sum of the averages. This represents the average dividend yield per expiry year in present 

value terms. 
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Stock level reconciliation 

Figures 11 & 12 portray the present value model estimates for the level of stock indices as 

described in 𝑆̂𝑡 = 𝐹𝑡,1 𝑒𝑥𝑝(−𝑦𝑡,1) (1 + ∑ 𝑒𝑥𝑝(𝑛𝜋̂𝑡,𝑛 − 𝜋̂𝑡,1)
∞
𝑛=2 ) (equation (23)) in relation 

to stock market observations 𝑆𝑡.  
 

 

Figure 11. Eurostoxx 50 level reconciliation 

 
 

Figure 12. Nikkei 225 level reconciliation 
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Figure A1. Proportion of dividend payments throughout the Eurostoxx 50 dividend index 

year. The first trading day of a dividend index year is the Monday following the third Friday 

of December. The chart depicts the average of the years 2005 to 2013. 

 

 
 

 

Figure A2. The difference between the proportion of annual dividends paid out at a given 

date and their average over the period 2005 to 2013 (Eurostoxx 50).  
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