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ABSTRACT

We show that the convex incentives of institutional investors like hedge funds can explain

their failure to trade against mispricing. The standard mean-variance and hedging com-

ponents that make up the portfolio often imply opposite stances against mispricing. The

first component represents the manager’s bets against overpriced securities. By contrast, the

manager’s hedge against the risk of forfeiting an end-of-period performance fee can result

in substantial over-investment in overpriced securities. This “bubble-riding” component is

more likely to drive the manager’s portfolio as overpricing increases. We show that this

rationale holds in equilibrium and can substantially exacerbate mispricing.
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1 Introduction

The role of institutional investors in enhancing financial markets efficiency has come under in-

creased scrutiny following recent episodes of prolonged—perceived—mispricing. Indeed, several

empirical studies document that mutual funds, and especially hedge funds, were heavily invested

in technology stocks during the “tech bubble” of the late 1990s.1 Such over-investment in over-

valued securities, or “bubble-riding”, has often been associated with herd behavior resulting

from career concerns. Yet, some authors argue that career concerns should be substantially

lessened by the use of short-term incentive contracts.2 Bubble-riding by institutional investors

thus seems particularly puzzling in light of the widespread use of pay-for-performance and the

high power of the incentives commonly observed in the asset management industry.

In this paper, we show the opposite effect: high-power incentives of money managers can

lead to the bubble-riding behavior observed in the literature. Using a dynamic investment

model with no career concerns, we show that short-term contracts can induce bubble-riding

when they include “convex” incentives, i.e. those that reward good performance more than

they penalize poor outcomes. In the model, convex incentives induce large changes in effective

risk aversion as a function of the manager’s performance relative to the benchmark specified

in the fee contract. Excess investment—with respect to the case of no convex incentives—in

an overpriced asset arises as the manager either increases the portfolio exposure to the asset

(“risk shifting”) or mimics the benchmark (“indexing”) in response to the changes in effective

risk aversion. Whereas risk-shifting and indexing have been previously studied in the literature,

we argue that under mispricing both behaviors can precisely imply investing less aggressively

against mispriced securities than in the absence of convex incentives. We further argue that

this bubble-riding behavior can worsen with the level of mispricing. In turn, we show that this

behavior exacerbates the equilibrium mispricing with respect to the case in which there are no

convex incentives.

Convex incentives are ubiquitous in the money management industry. Among hedge funds,

an explicit convexity arises from their typical fee structure. This structure includes a flat manage-

ment fee plus a “bonus” performance fee—typically, several times larger than the management

fee—over profits in excess of a hurdle performance rate or a high-water mark. In the mutual

fund industry, an implicit convexity in manager’s incentives results from the asymmetric relation

between a fund’s performance and its clients’ share purchases and redemptions, as documented

by Chevalier and Ellison (1997) and Sirri and Tufano (1998)).3

We explore the consequences of this type of non-linear incentives in a dynamic equilibrium

1 See, e.g., Brunnermeier and Nagel (2004), Greenwood and Nagel (2009), and Griffin, Harris, Shu, and
Topaloglu (2011).

2 See, e.g., Scharfstein and Stein (1990) and Dass, Massa, and Patgiri (2008).
3 A further source of convexity in mutual fund managers’ incentives is created by the prevalence of bonus

payments in their end-of-year compensation packages (see, e.g., Farnsworth and Taylor (2006), and Ma, Tang,
and Gomez (2015)).
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setting. Our model features risk averse money managers and retail investors. The represen-

tative money manager is subject to convex incentives. This convexity follows from a “bonus”

component, contingent on good performance relative to a given benchmark. Whereas the man-

ager has complete information about asset fundamentals, retail investors are “uninformed”, in

the sense that they do not observe fundamentals but learn about them from the realization of

asset dividends over time. The informational asymmetry between the money manager and retail

investors in our setup implies that the manager has superior information, an assumption con-

sistent with the empirical findings in Brunnermeier and Nagel (2004) and Hendershott, Livdan,

and Schurhoff (2014). In addition, superior information can be interpreted as a short-cut for

the higher ability of at least some money managers, as argued in a strand of the literature (e.g.

Berk and Green (2004)).

Since the optimal asset allocation in equilibrium does not have an analytic expression, we first

study the interaction among the different components of the manager’s allocation in a partial

equilibrium setting. Rather than adopting arbitrary dynamics for security prices we assume

that mispricing arises from the trading of the retail investors, whose aggregate asset holdings

represent the market portfolio. In this simplified setting, we solve for the informed manager’s

trading strategies in closed-form. Depending on the uninformed traders’ up-to-date inference of

the underlying asset parameters, prices can be higher or lower than “fundamental value,” i.e.

the corresponding prices in a full-information economy—as observed by the informed manager.

Thus, time-varying learning by the uninformed traders leads to time-variation in the level of

asset mispricing, potentially resulting in periods of large overpricing (as well as underpricing)

of securities. As a particular example of mispricing that has received plenty of attention in the

literature, we associate episodes of large overpricing with bubbles.4

Under these price dynamics, we first solve for how much an informed direct trader—one who

has the same information and risk aversion as the manager but faces no convex incentives—

optimally invests in mispriced assets. This case provides us with a standard or, following Basak,

Pavlova, and Shapiro (2007), “normal” policy against which we can assess the effects of convex

incentives. For the short investment horizon we consider in this paper, we show that (i) the

normal portfolio overweights underpriced assets and underweights overpriced assets relative to

the market portfolio, (ii) the size of these positions increases with the extent of mispricing

and (iii) the normal policy can result in substantial short-sale positions for largely overvalued

securities.

Next, we examine the extent to which convex incentives can make the money manager

trade more or less aggressively against mispricing than in the absence of these incentives—i.e.,

under the normal policy. The manager’s optimal dynamic trading strategy includes a mean-

variance component that summarizes the manager’s bets against mispricing, but also a hedging

component against the risk of underperforming or, equivalently, of forfeiting the performance-

4 A detailed characterization of the emergence and dynamics of bubbles is beyond the scope of this paper. See,
for example, Brunnermeier and Oehmke (2013) for such a characterization.
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linked bonus payment. This hedging component features well-known risk-shifting and indexing

behaviors when the manager is under- or outperforming the benchmark, respectively. Our main

contribution is to show that, under mispricing, both behaviors (i) can lead the manager to over-

invest in overvalued assets relative to the case of no convex incentives, and (ii) can distort the

manager’s investment policy further as mispricing worsens.

Although convex incentives induce similar distortions on the trading against mispricing across

the different types of money managers (e.g., hedge fund and mutual fund managers), these

distortions are particularly pronounced in the case of hedge fund managers. The high degree

of convexity in hedge fund incentive fees leads managers to overweight the overpriced stock

more than the uninformed investors with high probability. This outcome is due to the risk-

shifting component, and results from the combination of three factors. First, a hedge fund

“underperforms” until it meets the hurdle that triggers the performance fee. But meeting

this hurdle can take an extended period of time, and the stock overvaluation can persist or

even worsen during this time. The small to moderate underperformance that prevails during

these time “activates” the risk-shifting component in the manager’s portfolio. Second, the high

power of the incentive fees drastically reduces the risk aversion of the manager and magnifies

the absolute value of the risk-shifting component. Third, the benchmark associated with the

incentive fees in the hedge fund industry drives risk-shifting towards overweighting, rather than

underweighting, the overpriced asset in the manager’s portfolio. This last result is not trivial,

as this factor needs not work in the direction that exacerbates overpricing for all types of money

managers even under convex incentives. In particular, the manager of a mutual fund shifts risk

by underweighting instead the same overpriced stock, even under a positive excess expected

return.

As the price of the overvalued stock keeps rising, the long position in the stock pays off and

the prospects to secure the performance fees improve. To lock-in the interim outperformance

that warrants the performance fee payment, the optimal policy becomes more conservative and

tilts the portfolio towards the indexing component. This results in substitution of the risk-free

security for the overpriced stock as overpricing worsens. When the overpricing is so severe that

the stock expected excess return turns negative, the normal policy sells the overpriced stock

short, whereas the indexing component limits the extent of short selling below the normal pol-

icy. The resulting difference drives the manager’s over-investment in the overpriced stock with

negative risk premium. This endogenous constraint on short selling limits the manager’s bets

against overvalued assets even in the absence of explicit portfolio constraints. The resulting con-

servative behavior contrasts with the common view of hedge funds as absolute-return investment

vehicles.

Next, we consider the equilibrium setting in which both hedge funds and retail investors

have positive weights in the market and their investment decisions have price impact. We

show that the existence of convex incentives for the fund manager exacerbates the mispricing of

the asset with respect to the normal case—in the terminology of Basak, Pavlova, and Shapiro

(2007)—without convex incentives. Moreover, we show that with high probability hedge funds
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can exacerbate mispricing even beyond the levels prevailing in an economy populated by unin-

formed investors only. Finally, we find a limited role for sophisticated investors in stabilizing

financial markets in situations of large overpricing. These findings lead us to conclude that,

when managers face convex incentives, their optimal investment strategy can often be incon-

sistent with the common wisdom that bets against mispricing should increase as mispricing

worsens, or that they would help prices correct back to “fundamental values.”

An interesting aspect of our analysis is that we can justify some “puzzles” regarding the trad-

ing strategy of presumably sophisticated investors without recurring to behavioral arguments,

and only using incentives documented in the literature—although not standard in financial mod-

els. In particular, we argue that informed hedge funds may find optimal to invest in overpriced

stocks in a proportion even higher than the market portfolio, as documented by Brunnermeier

and Nagel (2004). This result is also consistent with evidence from the experimental work in

Holmen, Kirchler, and Kleinlercher (2014), who find that trading at inflated prices is ratio-

nal for subjects with convex incentives. Also, we provide an incentive-based—as opposed to

financial constraint-based—explanation for the low short interest during overpricing periods as

documented by, e.g., Stein and Lamont (2004).

From a methodological perspective, our paper is closest to the literature on money managers’

risk taking in response to incentives. In particular, we build on Basak, Pavlova, and Shapiro

(2007) and extend their analysis to a setup in which risky assets can be potentially mispriced

due to an information wedge between managers and other investors in the economy. This allows

us to interpret the risk-shifting and indexing effects in Basak, Pavlova, and Shapiro (2007) in

terms of trading either against or in the direction of mispricing under different levels of over- and

undervaluation. Our equilibrium model with hedge funds is based on the setting of Cuoco and

Kaniel (2011). In a career concerns model with risk-neutral agents, Makarov and Plantin (2014)

show that managers chasing investors’ flows can invest in securities with negative expected

returns and tail risk. In general equilibrium models with symmetric information about asset

fundamentals, Vayanos and Woolley (2013) and Buffa, Vayanos, and Woolley (2014) find that

money managers subject to time-varying investors’ flows, or perceiving fees that depend linearly

on relative performance, can push prices away from fundamental value. Malamud and Petrov

(2014) further study the effects of convex incentives on price informativeness and volatility in a

general equilibrium model with asymmetrically informed and risk-neutral managers.

Our paper also contributes to the theoretical literature on rational explanations of limits to

arbitrage. Allen and Gorton (1993) argue that unskilled fund managers with limited liability

buy overvalued assets in order to appear skilled. Our analysis shows that also skilled managers

may choose to buy overvalued assets. Shleifer and Vishny (1997) show that managers trade less

aggressively than expected in presence of an arbitrage opportunity when they face the risk of in-

vestors’ capital withdrawals. Liu and Longstaff (2004) prove that capital-constrained risk-averse

arbitrageurs can trade conservatively in the presence of arbitrage opportunities and even lose

money in the process. Stein (2009) suggests that sophisticated investors can buy an overvalued

asset due to an unawareness of the aggregate capital involved in eliminating the mispricing.
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Sato (2009) shows that the synchronization problem identified by Abreu and Brunnermeier

(2003) can exacerbate the persistence of bubbles when traders are portfolio managers subject

to relative performance concerns. Investors’ strategies in our model are not limited by financial

constraints, and our simple asset pricing setup leaves out synchronization and “crowded-trade”

risks. Therefore, our explanation complements the existing rationalizations of bubble-riding

behavior using only the type of compensation arrangements for money managers commonly

observed in practice.

The paper is structured as follows. In Section 2 we describe the economic setting. We

derive the optimal investment strategies of the informed money manager in partial equilibrium

in Section 3. In Section 4 we examine the price impact of these strategies in general equilibrium.

We close the paper with some conclusions in Section 5.

2 Economic Setting

We are interested in the effects of convex compensation on the trading of informed—i.e., sophisticated—

institutional investors against security mispricing and, in turn, in how these decisions affect secu-

rity mispricing.5 We concentrate our analysis on the behavior of money managers such as hedge

funds for which explicit or implicit option-like compensation structures have been extensively

reported in the literature.6 We introduce the financial markets, the agents, the information

structure and the agents’ problems in our economy in the next subsections.

2.1 Financial Markets

We consider a pure exchange economy over the finite period t ∈ [0, T ]. Financial markets consist

of one risk-less asset with price β and one risky asset (henceforth, a “stock”) with price S. The

risk-less asset pays a constant interest rate r per unit of time, whereas the stock represents a

claim to the dividend DT at t = T .DT is the terminal value of a dividend process with initial

value d0 and dynamics given by:

dDt = Dt(ρdt+ δdBt). (1)

The dividend mean growth rate ρ and volatility δ are positive constants, and B is a standard

Brownian motion process under the probability measure P that explains the dynamics of this

economy. Everyone observes δ; however, as we describe later, only a money manager with

superior information observes ρ. The constant ρ is the unobserved realization at t = 0 of a

random variable with normal distribution N(ρ0, v0), for given constant prior ρ0 and variance

v0 ≥ 0.

5 See Brunnermeier and Nagel (2004) and Hendershott, Livdan, and Schurhoff (2014) for evidence of superior
information on the part of institutional investors.

6 See references in the introduction.
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We assume that the risk-less asset is in zero net supply, while the stock is in unit supply.

The stock price satisfies the following dynamics:

dSt = St(µtdt+ σtdBt), (2)

with mean rate of return µt and volatility σt > 0 to be determined in equilibrium.

2.2 Investors

There are two types of investors in the financial markets: money managers and retail investors.

Investors of each type can be seen as belonging to a large pool (a continuum) of identical investors

with no individual price impact. Following standard aggregation results and our competitive

assumption, we refer indistinctly to the investors and the representative investors within each

type. All investors have constant relative risk aversion (CRRA) preferences with the same

coefficient γ > 1 and maximize expected utility from final wealth only.7 As in Basak and

Pavlova (2013), the representative money manager and retail investor in our economy are initially

endowed with fractions θ ∈ [0, 1] and 1− θ of the stock.

What differentiates money managers from retail investors in our model is (i) their access to

information about fundamentals, and (ii) their incentives.

2.2.1 Money Managers

Money managers have superior information over other investors in the economy because they

observe the realization of the dividend drift ρ at t = 0. The representative money manager has

no initial wealth but receives an end-of-period compensation WM
T , which is the product of a fee

rate f and assets under management (AUM) W at T . In principle, the amount of AUM and the

managers’ compensation could be determined by delegating investors, but we leave this decision

outside of the model.8 The manager dynamically chooses the time-t fraction φt of Wt (t ∈ [0, T ])

that is allocated to the stock. Given W0 = w0, the value of the portfolio (AUM) follows:

dWt = Wt (r + φt(µt − r)) dt+WtφtσtdBt. (3)

The compensation fee fT is a function of the manager’s performance relative to a benchmark

index Y (henceforth just “benchmark”). For an arbitrary initial value Y0, this benchmark

represents a long-only fixed-weight portfolio investing a fraction φY ∈ [0, 1] of its value in the

stock and the remaining fraction in the risk-free asset:

dYt = Yt
(
r + φY (µt − r)

)
dt+ Ytφ

Y σtdBt. (4)

7 We also discuss the case γ = 1 (log preferences) in Section 3.
8 This is in the spirit of Basak and Pavlova (2013). For an equilibrium model endogenizing the contract

between institutions and their investors, or the amount of AUM, see Buffa, Vayanos, and Woolley (2014) and
Vayanos and Woolley (2013).
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The fee rate fT is specified as the following 2-piece function of performance relative to the

benchmark:

fT = k

(
RT

ζ̄RYT

)α1

1{RT<ζ̄RYT } + k

(
RT

ζ̄RYT

)α2

1{RT≥ζ̄RYT }, (5)

where k, ζ̄ > 0, 0 ≤ α1 ≤ α2, RT ≡ WT /W0, and RYT ≡ YT /Y0. This specification is a gener-

alization of the function used to represent mutual fund investors’ flow-performance relationship

by Basak and Makarov (2014), and is similar to the incentive function in Kaniel and Kondor

(2013).

The fee rate (5) is positive and (weakly) increasing in the manager’s relative performance

RT /R
Y
T . It implies an asymmetric relation between relative performance and perceived fees

whenever the slope α1 in the underperformance region,
{
RT < ζ̄RYT

}
, is smaller than the slope

α2 in the outperformance region,
{
RT ≥ ζ̄RYT

}
. In particular, α1 < α2 implies that the fees

perceived by the manager increase with performance at a faster rate when relative performance

RT /R
Y
T exceeds a threshold ζ̄. This asymmetric relation implies an option-like, or convex com-

pensation scheme, according to which the manager receives a “bonus” payment for relatively

good performance. This bonus is given by the difference in fee rates between the outperformance

and underperformance regions in (5).

The specification (5) is general enough to capture the incentives of different types of money

managers, most notably hedge fund and mutual fund managers. The case of mutual fund

managers, for whom the benchmark (4) is a broad stock market index, has been examined

extensively in the literature (see, e.g., Basak and Pavlova (2013), Kaniel and Kondor (2013),

Vayanos and Woolley (2013), Buffa, Vayanos, and Woolley (2014)). Therefore, we focus on the

case of hedge fund managers following so-called “absolute return” strategies, whose incentive

fees depend on their fund performance against a money market rate (e.g., 3-month LIBOR)

plus a spread. However, to the possible extent we keep the analysis general enough to include

the cases of mutual funds and other money managers with performance concerns relative to the

stock index or other portfolios of the stock index and the risk-free asset.

2.2.2 Retail Investors

Retail investors are uninformed, in the sense that they do not observe the realized value of the

dividend growth rate ρ at t = 0. We refer to these as U -investors.9 At each time t ∈ [0, T ],

U -investors allocate a fraction φUt of their wealth WU
t to the stock and the remaining fraction to

the risk-less asset to maximize utility from final wealth at time T . Given initial wealth w0 = S0

their wealth process evolves according to:

dWU
t = WU

t

(
r + φUt (µt − r)

)
dt+WU

t φ
U
t σtdBt. (6)

9 Assuming that all retail investors are uninformed makes the model tractable but is not key for our results.
Qualitatively, we just need that prices do not reflect all the information available to the money manager.
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Since they do not observe ρ at t = 0, U -investors have to infer it from the observation of dividends

during the investment period. We explain the dynamics of the posterior of the expected dividend

growth rate in subsection 2.3.

2.3 Information Structure

Money managers have an information advantage over U -investors, in the sense that managers

observe the realization of the dividend growth rate ρ at t = 0 whereas U -investors have to infer

its value over time. We assume that U -investors are dogmatic about their beliefs and disregard

managers’ information. This may occur because U -investors fail to recognize that managers

do observe ρ and believe instead that they only have a (potentially) different prior, but we

abstract from the specific reasons behind this behavior and take the difference in information as

exogenously given. This assumption implies that retail investors learn from the observation of

the dividend process Dt over the period t ∈ [0, T ] but ignore the information about ρ contained

in the prices, via the price impact of money managers. While irrational given that managers

have superior information, this limited learning by retail investors is enough to create a rich

enough mispricing dynamics in our model. Moreover, it allows us to avoid the intractability

of embedding our setup in a noisy rational expectation equilibrium (REE) framework featuring

irrational noise traders alongside managers and U -investors.10 As such, the information structure

in our model is a variation of Wang (1993) and Kogan, Ross, Wang, and Westerfield (2006).

Because U -investors face incomplete information while managers face complete information

about economic fundamentals, each type of investor forms expectations under a different prob-

ability measure. U -investors start the investment period with a prior distribution for ρ and

update it over time according to Bayes rule, based on the arrival of information Dt. We denote

by P̃ the probability measure that describes the dynamics of the dividend process according to

U -investors’ priors. Letting Ẽ denote the expectation under P̃ , the distribution of ρ conditional

on Dt is Gaussian, with mean ρ̃t ≡ Ẽ [ρ|Dt] and variance vt ≡ Ẽ
[
(ρ− ρ̃t)2|Dt

]
satisfying:11

 dρ̃t = vt
δ

1
δ

(
dDt
Dt
− ρ̃tdt

)
≡ vt

δ dB̃t,

dvt = −v2t
δ2
dt,

(7)

for the initial values ρ̃0 = ρ0 and v0. B̃t is a standard Brownian motion with respect to the filtra-

tion FDt generated by the dividend processD under P̃ , with dynamics dB̃t ≡ 1/δ (dDt/Dt − ρ̃tdt) =

dBt + 1/δ(ρ− ρ̃t)dt. We let µ̃t ≡ Ẽ [µt|Dt] and η̃t ≡ (µ̃t− r)/σt denote the time-t inferred stock

mean rate of return and market price of risk under P̃ . From U -investors’ perspective, markets are

complete with respect to the observable states of the economy (a single risky asset S driven by

10 Our results in Sections 3 and 4 draw on wealth effects stemming from the CRRA preferences of the investors
in our model. These wealth effects and the high non-linearity of managers’ optimal policies as a function of the
state variables would make the filtering problem of inferring ρ from prices intractable for the U -investors in our
model. This, in turn, would render a characterization of the equilibrium unfeasible.

11 See, e.g., Liptser and Shirayayev (2001).
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a single Brownian motion B̃). Absent arbitrage opportunities, U -investors see financial markets

as driven by a unique state-price deflator (SPD) π̃ with dynamics dπ̃t = −rπ̃tdt− π̃tη̃tdB̃t.
The representative manager observes the true value of the dividend growth rate ρ, and sees

the stock price dynamics under the true probability P as given by:

dSt =St

(
µ̃tdt+ σt

(ρ− ρ̃t
δ

dt+ dBt
))

=St

((
µ̃t + σt

ρ− ρ̃t
δ

)
dt+ σtdBt

)
, (8)

with the following dynamics for U -investors’ estimated growth rate ρ̃t

dρ̃t =
vt
δ2

(ρ− ρ̃t)dt+
vt
δ
dBt. (9)

Similarly, the market price of risk under P consists of the sum of the market price of risk under P̃

and a term proportional to the uninformed investors’ estimation error ρ−ρ̃t: ηt = η̃t+1/δ(ρ−ρ̃t).
Markets are complete for the money manager, who sees financial markets as driven by a

unique SPD π with dynamics dπt = −rπtdt− πtηtdBt, i.e.:

πt = exp

{
−rt− 1

2

∫ t

0
η2
sds−

∫ t

0
ηsdBs

}
=π̃tξt, (10)

where

ξt ≡ exp

{
−1

2

∫ t

0

(
ρ− ρ̃s
δ

)2

ds−
∫ t

0

ρ− ρ̃s
δ

dBs

}
(11)

is the likelihood process (a P -martingale) for the measure transformation from P to P̃ : ξt =

dP̃ /dP on Ft. Therefore, the extent to which the manager’s SPD, πt, differs from the SPD of

retail investors, π̃t, depends on the size and sign of the estimation error ρ− ρ̃t.

2.4 Investors’ Problems

Managers allocate a fraction φ̂t of AUM Wt to the stock market to maximize expected utility

over their terminal wealth:

E0

[
(WM

T )1−γ

1− γ

]
, (12)

subject to initial AUM w0 = θS0 and the self-financing constraint (3).

Similarly, U -investors allocate a fraction φ̂Ut of their wealth WU
t to the stock market to

maximize expected utility over terminal wealth:

Ẽ0

[
(WU

T )1−γ

1− γ

]
, (13)

subject to initial wealth wU0 = (1 − θ)S0 and the self-financing constraint (6), re-expressed in
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terms of observable variables as:

dWU
t = WU

t

(
r + φUt (µ̃t − r)

)
dt+WU

t φ
U
t σtdB̃t. (14)

A solution to our model consists of a set of investment policies and asset prices such that: (i) the

individual investment policies of the managers and the U -investors are optimal, and (ii) bond

and stock markets clear. We first examine the managers’ trading against mispricing in partial

equilibrium in the next Section. We analyze the price impact of these trading policies to Section

4. All proofs are given in Appendix A.

3 Optimal Investment Strategy

In this section we derive the optimal investment policy of the investors in our economy for

the particular case of θ = 0, i.e. prices are determined exclusively by the retail investors.

Although unrealistic, this case allows us to characterize managers’ trading against mispricing in

closed form.12 Our main goal is to build intuition for the more realistic case in which informed

managers can affect equilibrium prices in Section 4, for which analytic expressions cannot be

derived. We solve for the dynamics of prices in a first stage, and for the optimal portfolio of the

money manager under these prices in a second stage.

3.1 Price Dynamics

When θ = 0, market clearing along with the requirement of no-arbitrage implies:13

WU
T = ST = DT . (15)

The optimal investment strategy of retail investors in this case determines the following price

dynamics:

Proposition 1. Let τ = T − t > 0. Equilibrium stock prices and the SPD of the uninformed

investors are given by:

St = Dt exp

{(
ρ̃t − r − γδ2 −

(
γ − 1

2

)
vtτ

)
τ

}
, (16)

π̃t = λ−1D−γt exp

{(
r − γρ̃t +

1 + γ

2
γδ2 +

γ2

2
vtτ

)
τ

}
, (17)

where λ > 0 is the Lagrange multiplier of the equivalent static problem and its solution is given

in Appendix A. Under the probability P̃ , equilibrium stock mean return, volatility and market

12 Our approach in this Section is in the spirit of DeLong, Shleifer, Summers, and Waldman (1990), who analyze
the survival of irrational traders in a model in which noise traders do not affect prices. By contrast, we focus on
the trading of the informed manager in partial equilibrium when less informed traders determine prices.

13 The condition of absence of arbitrage in the stock market requires that the stock price equals the liquidation
dividend at the terminal date: ST = DT .
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price of risk are time-varying and deterministic, as given by:

µ̃t = r + γσ2
t ,

σt = δ +
vt
δ
τ,

η̃t = γσt. (18)

The stock price dynamics in equations (16) are affected by investors’ estimate of the divi-

dend growth rate ρ̃t and by their uncertainty vt. U -investors’ incomplete information can then

introduce a wedge between the stock market price in this economy and its “fundamental value,”

understood as the stock price SCI that would prevail if all traders in the economy had complete

and symmetric information about the dividend growth rate ρ (i.e., ρ0 = ρ and v0 = 0).

Arguably, any situation in which S 6= SCI would be perceived as stock mispricing by fully

informed investors such as the money manager in our setup.14 Hence, we measure the extent of

stock overvaluation as of time t < T by the quantity OVt ≡
(
St/S

CI
t

)1/τ − 1, and the extent of

mispricing by the quantity MPt ≡ |OVt|.15 We say that stock mispricing reflects overvaluation

or overpricing (respectively, undervaluation or underpricing) whenever OVt > 0 (OVt < 0).

Since by no-arbitrage ST = DT = SCIT , stock mispricing equals zero at the terminal date T . The

following Lemma characterizes the stock fundamental value and the extent of overvaluation as

perceived by the informed manager at any interim period:

Corollary 1. Under complete information for the retail investors in the economy, stock prices

are:

SCIt = Dt exp
{(
ρ− r − γδ2

)
τ
}
. (19)

The stock mean return, volatility and market price of risk are:

µCI = r + γ
(
σCI

)2
,

σCI = δ,

ηCI = γσCI . (20)

The time-t stock overvaluation OVt, as perceived by a fully-informed agent, is:

OVt = exp

{(
ρ̃t − ρ−

(
γ − 1

2

)
vtτ

)}
− 1. (21)

As expected, an over-estimation of the mean dividend growth rate by U -investors, ρ̃t > ρ, will

typically lead to stock overvaluation.16 Moreover, the extent of overvaluation OVt is increasing

14 Our definition of over- and undervaluation in this paper is in the spirit of the equivalent definitions in
Grossman and Stiglitz (1980).

15 As can be seen from the proof of Corollary 1 below, the ratio St/S
CI
t depends on the time to maturity τ .

The definitions of OVt and MPt then make the extent of mispricing at different dates comparable.
16 The stock will be overvalued as long as U -investors over-estimate the dividend growth rate by a large
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in the over-estimation margin ρ̃t−ρ, consistent with the intuition that better perceived dividend

growth prospects leads U -investors to push prices further up.

We note that there is no uncertainty about the date at which prices converge to the funda-

mental value, since by construction ST = SCIT with probability one, even though the path to

convergence is random. This rules out bubble-riding behavior due to “synchronization” risk as

originally studied by Abreu and Brunnermeier (2003) and generalized to a delegated portfolio

management context by Sato (2009).

We further note that, due to the assumption in this Section of no price impact by money

managers, U -investors are fully invested in the stock at all times, i.e. φU ≡ φ̂Ut = 1 for all

t ∈ [0, T ]. In this particular setting, the stock price S (equivalently, U -investors’ wealth WU )

can be interpreted as the value of the market portfolio. We draw on this interpretation when we

assess the trading policies of an informed investor in the next subsection.

3.2 Optimal Investment Strategy of the Money Manager

According to equation (21), the manager observes that time-varying learning by U -investors

induces time-variation in the level of asset mispricing, potentially resulting in sustained periods of

stock overpricing or underpricing. An important particular case of stock overpricing is the price

appreciation observed during financial bubbles. Although fully characterizing the emergence and

dynamics of a bubble is beyond the scope of this paper, a main goal of this Section is to analyze

the behavior of money managers under the asset overvaluation typical of bubbles. Whenever

possible, we relate our results to the observed behavior of money managers as documented by

prior empirical literature.

3.2.1 Benchmark Case: Investment Policy without Convex Incentives

In order to single out the effects of convex incentives on the manager’s trading strategy, we first

examine the dynamic policy of a hypothetical retail investor with superior information—but

without this type of incentives. We follow Basak, Pavlova, and Shapiro (2007) in referring to

this standard (default) policy as the normal (N) policy.

For an arbitrary coefficient of relative risk aversion γ̃ > 1, we define φNγ̃,t as the time-t

(t ∈ [0, T ]) normal trading in the stock of an investor with RRA coefficient γ̃. Proposition 2

characterizes φNγ̃,· along with the associated portfolio value process WN
γ̃,·:

Proposition 2. For t ∈ [0, T ], the normal trading strategy φNγ̃,t and associated portfolio value

process WN
γ̃,t are:

φNγ̃,t ≡
δ2 + vtτ

δ2 + vt
γ̃ τ

ηt
γ̃σt

, (22)

enough margin: ρ̃t − ρ > (γ − .5)vtτ > 0. This implies that a low enough over-estimation of fundamentals,
(γ − .5)vtτ > ρ̃t − ρ > 0, is still consistent with an undervalued stock in our economy with sufficiently risk-averse
U -traders.
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ŴN
γ̃,t = (λNπt)

− 1
γ̃ Z1− 1

γ̃
,t,T , (23)

where for any ψ ∈ (0, 1) and 0 ≤ t ≤ t′ ≤ T

Zψ,t,t′ ≡ δψ
√

(δ2 + vt(t′ − t))1−ψ

δ2 + (1− ψ)vt(t′ − t)
exp

{
−ψr(t′ − t)− ψ(1− ψ)δ2(t′ − t)

δ2 + (1− ψ)vt(t′ − t)
η2
t

2

}
, (24)

and λN =

(
Z
1− 1

γ̃ ,0,T

w0

)γ̃
.

Comparing the portfolio weight in the stock of the U -investors (the market portfolio), φU ,

to the normal policy of an equally risk-averse (γ̃ = γ) investor, φNγ,t, we obtain the following:

Corollary 2. For t ∈ [0, T ], the normal excess holding of the stock relative to the market is:

φNγ,t − φU = −1

γ

ρ̃t − ρ− (γ − 1)vtτ

δ2 + vt
γ τ

. (25)

Thus, the normal portfolio implies a lower stock holding than the market, φNγ,t < φU , iff:

ρ̃t >ρ+ (γ − 1)vtτ

⇔ OVt > exp

{
−1

2
vtτ

}
− 1. (26)

The normal portfolio implies a higher stock holding than the market if the converse of (26) holds;

both holdings are the same when (26) holds as an equality.

Table 1 summarizes the relationship between over-estimation of fundamentals, stock overpric-

ing and the normal policy. Except for a typically low-probability range of underpricing, OVt ∈(
exp

{
−1

2vtτ
}
− 1, 0

)
(corresponding to an estimation error (ρ̃t−ρ) ∈ ((γ − 1)vtτ, (γ − 0.5)vtτ)),17

we see that for an overpriced stock, St > SCIt , the normal portfolio underweights the stock rel-

ative to the market (φNγ,t < φU ), and conversely for an underpriced security (φNγ,t > φU for

St < SCIt ). Moreover, rewriting equation (25) as:

φNγ,t − φU = −1

γ

ln(1 +OVt) + 1
2vtτ

δ2 + vt
γ τ

, (27)

we see that a higher overvaluation leads to larger stock underweighting in the normal portfolio

relative to the market, potentially resulting in sizable short positions in the stock for high levels

of overpricing.

We emphasize that even though the informed agent underweights the stock relative to the

market, the allocation to the stock can still be positive in our setting. This is because the local

17 In these states, the normal portfolio underweights slightly underpriced securities. This occurs because a
positive but small enough over-estimation of the dividend growth rate by U -investors, 0 ≤ (γ − 1)vtτ < ρ̃t − ρ <
(γ−.5)vtτ , does not translate into stock overpricing (see Section 3.1) but still leads to below-normal stock holdings.
However, these states occur with low probability for short enough investment horizons T .
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expected return µ can be greater than the risk-free rate r despite the fact that the stock is

overvalued. The local expected return is determined by retail investors, who eventually learn

the true dynamics of the dividend process. However, they learn only gradually over a horizon

that largely exceeds the evaluation period of the money manager. In this case, a risk-averse

informed investor will optimally hold a long position in the stock for diversification purposes.

Therefore a puzzle in practice should be not that money managers invest in overvalued stocks,

but rather that they invest more than the market portfolio, as documented by Brunnermeier

and Nagel (2004).

ρ̃t − ρ

(−∞, 0] (0, (γ − 1)vtτ) ((γ − 1)vtτ, (γ − 0.5)vtτ) ((γ − 0.5)vtτ,+∞)

sgn(OVt) − − − +
sgn

(
φNγ,t − φU

)
+ + − −

Table 1: Relation Between Fundamentals, Overpricing and the Normal Portfolio

Summing up, for the short investment horizon we consider in this Section we have shown

that the normal policy is consistent with the commonly expected behavior of an informed trader

under efficient financial markets. In particular, (i) the informed trader overweights underpriced

assets and underweights overpriced assets relative to the market portfolio, (ii) the size of the

informed trader’s bets against mispricing increases with the extent of mispricing and (iii) can

even result in substantial short-sale positions for largely overvalued securities. In the next

subsection we contrast this with the behavior of an informed trader under convex incentives—

the money manager.

3.2.2 The Informed Money Manager

Previous authors have suggested that high-powered incentives can alleviate the bubble-riding

behavior associated with career concerns of money managers (see, e.g., Scharfstein and Stein

(1990), Dass, Massa, and Patgiri (2008)). A high enough weight on managers’ short-term perfor-

mance, the argument goes, should offset the negative longer-term effects of a loss of reputation

and make managers more willing to deviate from the herd and away from overvalued assets. In

this subsection and the next we assess the validity of this argument under the convex managerial

incentives that we describe in section 2.

Within our setup, a simple low-powered compensation arrangement consists in setting the

fee rate equal to a (possibly small) positive constant c, i.e. fT = c. Under this arrangement, it

is straightforward to show that the manager’s optimal trading strategy equals the normal policy

at all times. For high-powered compensation arrangements such as convex contracts to offset

incentives to over-invest in overpriced assets, the resulting trading against mispricing should be

at least as aggressive as under the normal policy.

In what follows, we relate the manager’s optimal policy to the allocations in the stock φY , φU

and φNγ̃,· of the benchmark portfolio, the market (U -investors’) portfolio and the normal policy
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(for a given RRA coefficient γ̃) introduced in previous sections. As before, we let τ = T−t denote

the time remaining to horizon, and we introduce the following additional notation: ζ ≡ ζ̄W0/Y0,

and γi ≡ γ + αi(γ − 1), for i = 1, 2. ζ is the normalized performance threshold. γ1 and γ2

represent the manager’s effective RRA in the underperformance and outperformance regions,

respectively, of section 2.2.1. The interpretation of γi follows from computing the RRA coefficient

corresponding to the manager’s utility function when wealth is augmented by the fee rate (5)

and implies that, for α2 > α1 > 0, the manager’s effective RRA in the outperformance region

increases by γ2−γ1 > 0 relative to the underperformance region. This is the consequence of the

higher sensitivity of expected fees to relative performance when the manager’s funds do better

than the benchmark.18 Our main result of this Section is stated in the following:

Proposition 3. The informed manager’s optimal holdings of the stock is:

φ̂t =ωtφ
N
γ1,t + (1− ωt)φNγ2,t +

[
ωt

(
1− γ

γ1

)
δ

σγ1,t
+ (1− ωt)

(
1− γ

γ2

)
δ

σγ2,t

]
φY

+
1
√
σtτ

[ωtΦ1,t + (1− ωt)Φ2,t] (28)

where the weight ωt ∈ [0, 1] is increasing in the time-t probability Π1,t of underperforming at T

as given below,

Φi,t ≡
1

σγi,t

N ′(di,t)−N ′(di,t)
Πi,t

, (29)

for

di,t ≡
γδ2σγ,t
vt
√
τ

√
δ2+vtτ
δ2+

vt
γi
τ

(
φNγ,t − φY

)
− σt

vt
√
τ

√
δ2+

vt
γi
τ

δ2+vtτ
Γ, di,t ≡ di,t + 2 σt

vt
√
τ

√
δ2+

vt
γi
τ

δ2+vtτ
Γ, (30)

Π1,t ≡ N (d1,t) + 1−N (d1,t), Π2,t ≡ N (d2,t)−N (d2,t), N (·) is the standard normal cumulative

distribution function, σγ̃,t ≡ δ + vt
γ̃δ τ , and Γ ≥ 0 is as given in Appendix A.

The manager’s optimal portfolio (28) consists of the sum of three components, each of which

is a weighted average with weights ωt and 1−ωt of a specific portfolio in the underperformance

region and its counterpart in the outperformance region:

(1) A mean-variance component ωtφ
N
γ1,t + (1− ωt)φNγ2,t. The normal portfolios φNγ1,t and φNγ2,t

reflect the different relative risk aversion of the manager in the underperformance (RRA

coefficient γ1) and outperformance (RRA coefficient γ2 > γ1) regions. This component has

the same sign as the normal policy φNγ,t but a smaller absolute value, implying a smaller

position in the stock. Moreover, |φNγ2,t| ≤ |φ
N
γ1,t| ≤ |φ

N
γ,t|, implying a more conservative

mean-variance policy in the outperformance relative to the underperformance regions.

18 To see this, note that changes in actual wealth are augmented by a fee rate k
(
WT /ζW

Y
T

)α2 in the out-

performance region, but only by a flow rate k
(
WT /ζW

Y
T

)α1 < k
(
WT /ζW

Y
T

)α2 for α2 > α1 outside of it. The
fee charged by a top performer is increasing in wealth at a higher rate. Therefore, effective wealth fluctuates
more in response to the same change in actual wealth in this region than in the underperformance region, raising
manager’s effective risk aversion.
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(2) An indexing component, scaling down the benchmark weight in the stock φY by the factor[
ωt (1− γ/γ1) δ/σγ1,t + (1− ωt) (1− γ/γ2) δ/σγ2,t

]
∈ (0, 1). Since we examine long-only

benchmarks (0 ≤ φY ≤ 1), and the scaling factor takes values in the interval (0, 1), this

component represents either long or zero positions in the stock. We discuss the weight in

the stock of this component relative to the normal policy in Corollary 3 below.

(3) An additional component, proportional to the sum ωtΦ1,t + (1 − ωt)Φ2,t. Portfolios Φ1,t

and Φ2,t are non-linear functions of the difference between the normal and benchmark

portfolios φNγ,t − φY and can reflect large long or short positions in the stock. We refer

to this as the risk-shifting component, and assess the direction in which this component

deviates the manager’s trading from the normal policy in in Corollary 3 below.

As usual, we can interpret the difference between the manager’s portfolio (28) and the mean-

variance component (1) as the manager’s hedging demand. The manager in our model hedges

against the risk of underperforming or, equivalently, of not receiving the performance fee in the

outperformance region. Given the decomposition above, this hedging demand is captured by

the indexing and risk-shifting components. We analyze these components in the following:

Corollary 3. At any interim state of the economy as of time t ∈ [0, T ), the sign of the risk-

shifting component in the manager’s portfolio (28) equals the sign of (φNγ,t − φY ):

sgn

(
1
√
σtτ

(ωtΦ1,t + (1− ωt)Φ2,t)

)
= sgn(φNγ,t − φY ). (31)

The indexing component overweights the stock whenever φNγ,t < 0.

Whether the risk-shifting component represents a long or a short position in the stock de-

pends on the sign of the difference in the allocations to the stock of the normal and the benchmark

portfolios, as first pointed out by Basak, Pavlova, and Shapiro (2007). Unlike in their model,

the normal policy in our setup is not constant but varies with the (state-dependent) extent of

stock mispricing. Thus, the same manager may over- or under-invest in mispriced securities with

respect to the normal portfolio at different points in time. Notably, risk-shifting in our setup can

lead to over-investment in overpriced securities, even with respect to the market portfolio, when

φY < φNγ,t < φU .19 We show later with a numerical example that the risk-shifting component

dominates the portfolio when the manager underperforms the benchmark by a small to mod-

erate margin. In practice, the typical benchmark in hedge fund performance fees tend to differ

substantially from the market portfolio, with φY � φU . Therefore, we expect the risk-shifting

portfolio to especially distort an informed hedge fund manager’s trading against mispricing. We

verify this intuition with our numerical example below.

19 This can be seen by reference to equations (27) and (31). According to (27), an overvalued stock (OVt > 0)
calls for a reduction in the normal stock holding, φNγ,t, relative to the stock holding of the market, φU . According
to equation (31), though, the risk-shifting component represents a long position in the stock. Under standard
parameterizations of the model, this long position can result in a long overall position φ̂t that exceeds φU (and
thus φNγ,t) by a large margin.
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Within the indexing component, the manager tilts the portfolio towards the outperformance

component (1 − γ/γ2)δ/σγ2,tφ
Y as the probability of outperforming increases (ωt falls). Since

0 ≤ (1 − γ/γ1)δ/σγ1,tφ
Y ≤ (1 − γ/γ2)δ/σγ2,tφ

Y ≤ φY , the outperforming indexing component

is closer to the benchmark than its underperforming counterpart. This reflects the well-known

lock-in effect according to which an outperformer (“winner”) and risk-averse manager prefers

to secure an interim relative gain by investing like the benchmark. In our setup, this effect

intensifies with the fee-performance sensitivity α2. Whenever the benchmark overweights the

stock with respect to the normal policy φNγ,t, the indexing component tilts the portfolio towards

overweighting the stock. By the lock-in effect highlighted above, this effect is more severe in

the outperformance region. Given that a benchmark weight in the stock is non-negative, the

indexing component always over-invests when the normal policy represents a short position in

the stock, as claimed in Corollary 3. A stock market bubble characterized by a negative risk

premium then leads to an indexing component of the manager’s portfolio that overweights the

overpriced stock.

3.2.3 Numerical Example: the Case of Hedge Funds

The typical fee contract in the hedge fund industry (“two-twenty”) stipulates a 2% management

fee along with an incentive fee equal to 20% of investment profits beyond a designated benchmark

performance. The preassigned benchmark is usually a money market rate such as LIBOR plus

a spread instead of a market index, and is consistent with the goal of most hedge funds of

delivering “absolute returns” in all market conditions.20

To capture these incentives, we set the benchmark weight in the stock to zero (φY = 0),

in which case YT = β0e
rT . Defining the continuously-compounded rates rT ≡ ln (RT ) /T, rYT ≡

ln
(
RYT
)
/T = r, setting the threshold ζ̄ = ehT for the spread (hurdle rate) h ≥ 0, and α1 = 0,

we show in Appendix B.1 that up to a first-order approximation our fee rate (5) is:

fT ≈ kT + kTα2(rT − (r + h))+, (32)

where x+ ≡ max(0, x). Using equation (32), it is easy to see how we can calibrate the two-twenty

contract with a positive hurdle rate within our setup by setting, e.g., kT = 1, kTα2 = 5, and

(r + h) = 1.5% + 5% = 6.5%.21

We next look into how the asset price dynamics described by Proposition 1 affect the trading

20 The fee structure often includes a “high-water mark” stipulating that the fund has to recover losses before
any incentive fee can be charged following a year in which the fund declines in value. Such provisions may reduce
the long-term risk-seeking incentives of a hedge fund manager, as analyzed by Hodder and Jackwerth (2007),
Panageas and Westerfield (2009), and Drechsler (2013). Since we focus on the trading behavior of the manager
over short-horizons, we follow Buraschi, Kosowski, and Sritrakul (2011) in assuming that the high-water mark is
prespecified at the beginning of the period, and allow for differences in high-water marks by varying our spread
parameter ζ̄ in (5).

21 Given the exponential form of the performance fee (5) in the outperformance region, a value of α2 = 5 suffices
to reflect a performance fee 10 times larger than the base management fee for most of the relevant domain of
relative performance.
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of a hedge fund managers according to Proposition 3. Figure 1 illustrates the manager’s alloca-

tion in the risky asset (solid blue line) at a given point in time (t = 3/4T ) across different states

of overvaluation OVt. The figures assume an initial stock overvaluation of 4%, corresponding to

a realized dividend growth rate ρ one standard deviation lower than U -investors’ prior belief ρ0.

0 0.02 0.04 0.06 0.08 0.1
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Figure 1: Interim Portfolio Weight of a Hedge Fund Manager in a Mispriced Stock

The solid blue, dashed red and dash-and-dot black lines represent the portfolio weights of a hedge fund
manager (φ̂t), the normal policy (φNγ,t) and the market (φU ), respectively, in the mispriced stock for
different degrees of overvaluation OVt as of t = 3/4T . The grey area depicts the time-0 actual probability
of the corresponding overvaluation state at t = 3/4T . Results obtain from a time-0 overvaluation of 4%
(following a realized dividend growth rate 1 std. dev. below the prior ρ0), as marked by the vertical
dotted line. We set: α1 = 0, α2 = 5, ζ̄ = 1.05, φY = 0. The rest of the parameters are as follows:
T = 1, r = 1.5%, δ = .0129, v0 = 0.052, γ = 5.

Both small and large stock overvaluations can lead the managers to trade less aggressively

against the mispriced security than the normal policy. The greater probability mass (grey shaded

area) over states in which the manager over-invests shows that this is the most likely behavior

even though situations of both above- and below-normal exposure to the stock can occur.

Notably, the high degree of convexity in hedge fund incentive fees leads managers to over-

weight the overpriced stock more than the uninformed investors under a high-probability subset

of overvaluation states. For a similar level of overpricing as at t = 0, the stock holdings of the

manager at t = 3/4T can exceed the proportion in the market portfolio by more than 50%. This

outcome is due exclusively to the risk-shifting component, and results from the combination of

three factors. First, a hedge fund is an underperformer until it meets the hurdle that triggers

the performance fee. But meeting this hurdle can take an extended period of time, even if the

stock overvaluation persists after three quarters of the year have elapsed. As Figure 2 illustrates,

a worsening—relative to the initial values—of the stock overpricing can still be consistent with

the small to moderate underperformance that “activates” the risk-shifting component in the

manager’s portfolio. Second, the high power of the incentive fees drastically reduces the risk

aversion of the manager and magnifies the absolute value of the risk-shifting component. Third,

the benchmark associated with the incentive fees in the hedge fund industry drives risk-shifting
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towards overweighting, rather than underweighting, the overpriced asset in the manager’s portfo-

lio. This last result is not trivial, as this factor needs not work in the direction that exacerbates

overpricing—once managers’ price impact is considered in the next Section—for all types of

money managers even under convex incentives. In particular, we show below that the manager

of a mutual fund shifts risk by underweighting instead the same overpriced stock, despite its

positive excess expected return.

We explain the intuition behind hedge funds’ over-investment in overpriced assets with Figure

2, which illustrates the manager’s portfolio for a hypothetical trajectory of stock overvaluation

under the same parameterization as in Fig. 1, along with the manager’s performance relative

to the benchmark. This trajectory is meant to resemble the dynamics of security overpricing in

the initial phase of a bubble.22

At the beginning of the period the option implied by the manager’s incentive fee is “out of the

money.” In other words, the manager starts off below the performance threshold necessary to

receive the incentive fee. In order to reach this threshold, the risk-shifting component increases

the weight in the overpriced stock (solid blue line) over the weights in both the normal (dashed

red line) and market (dash-and-dot black line) portfolios. This happens as long as the manager

has not attained a sufficient outperformance. The overinvestment in the stock follows from

Corollary 3. As noted above, hedge funds’ absolute performance condition is equivalent to

a (scaled) money market benchmark for which φY = 0. This risk-free asset-only benchmark

implies a lower position in the stock than the weight φNγ,· preferred by a manager with finite

risk aversion.23 Following Corollary 3, the manager shifts risk by aggressively overweighting the

overpriced stock in the portfolio, as can be seen in both Fig. 1 and Fig. 2.24

This excess investment in the overpriced stock is consistent with the bubble-riding behavior

documented empirically by Brunnermeier and Nagel (2004) for hedge funds during the build-up

of the tech bubble in the late 1990s. These authors show that several hedge funds overweighted,

relative to the market, highly overpriced technology stocks in their portfolios before the bubble

burst.

As prices keep rising in Fig. 2, this strategy eventually pays off and the fund performance

exceeds the threshold. As an outperformer (Rt > ζ̄RYt ), the manager’s effective risk aversion in-

creases. To lock-in the interim outperformance that warrants the performance fee payment, the

optimal policy becomes more conservative and tilts the portfolio towards the indexing compo-

nent. This results in a substitution of the risk-free security for the overpriced stock as overpricing

22 More precisely, we examine a particular sequence of shocks that results in the (unlikely) smooth path in
the figure. At each point in time, the manager’s portfolio allocation depends on the same ex ante uncertainty
about the future values of state variables as in Fig. 1. We choose this path to facilitate the analysis only, as our
conclusions do not depend on that particular realization.

23 More precisely, this occurs as long as ln(1 +OVt) < γδ2 + .5vtτ according to equation (27).
24 We expect this intuition to survive under multiple risky assets. The reason is that, as long as the overvalued

asset has a positive risk premium and provides some diversification value, the normal portfolio will include a
positive holding in this asset. Then, a manager levering up the normal portfolio component could indirectly lever
up the overpriced asset as well.
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Figure 2: Hedge Fund’s Investment in the Stock during an Overvaluation Path

The solid blue, dashed red and dotted black lines on the left axis represent the informed manager’s (φ̂t),
normal (φNγ,t) and market (φU ) portfolio weights, respectively, in the stock for a hypothetical overvaluation
path OVt (green crossed line, right axis). The cyan dash-and-dot line represents the manager’s relative
performance Rt/(ζ̄R

Y
t ) on the left axis. Results obtain from a realized dividend growth rate 1 std. dev.

below the prior ρ0. We assume: α1 = 0, α2 = 5, ζ̄ = 1.05, φY = 0, T = 1, r = 1.5%, δ = .0129, v0 =
0.052, γ = 5.

worsens. While the risk premium on the overpriced stock remains positive, the manager’s tilt

towards the indexing component results in more aggressive trading than the normal portfolio

against the mispricing. When the overpricing is so severe that the stock expected excess re-

turn turns negative, the normal policy sells the overpriced stock short, whereas the indexing

component limits the extent of short selling below the normal policy. The resulting difference

drives the manager’s over-investment in the overpriced stock with negative risk premium. This

benchmark-induced conservative behavior contrasts with the common view of hedge funds as

absolute-return investment vehicles.

As can be seen in Fig. 1, benchmarking concerns can induce the hedge fund manager to

short-sell substantially less of the mispriced stock than the normal policy for large levels of

overvaluation OVt. Absent explicit portfolio constraints, the incentives in our model then lead

to endogenous short-sale restrictions. This behavior agrees with the decline in short interest in

NASDAQ stocks during the tech bubble documented by Stein and Lamont (2004). We show in

Section 4 that these incentive-based limits to short-selling can hamper the role of sophisticated

investors in stabilizing the stock market in the same fashion that explicit short-sale constraints

limit pessimistic investors’ trading against overvaluation in models of disagreement (see, e.g.,

Hong and Stein (2007)).

We note that for money managers following benchmarks different from those of hedge funds,

like mutual funds, the risk-shifting component needs not overweight an asset with positive ex-

pected excess return. In the mutual fund industry, an implicit convexity results from the relation

between a fund’s performance and its clients’ share purchases and redemptions. Indeed, an ex-

tensive literature (see, e.g., Chevalier and Ellison (1997), and Sirri and Tufano (1998)) documents
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that mutual fund inflows after good performance relative to a stock market index largely exceed

outflows following poor excess returns. Since mutual funds’ revenue is commonly proportional

to their assets under management (AUM), such a convex flow-performance relationship suggests

an implicit option-like relation between mutual fund performance in excess of the stock market

and managerial compensation.
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Figure 3: Interim Portfolio Weight in a Mispriced Stock

The solid blue, dashed red and dash-and-dot black lines represent the portfolio weights of a manager (φ̂t),
the normal policy (φNγ,t) and the market (φU ), respectively, in the mispriced stock for different degrees
of overvaluation OVt as of t = 3/4T . Panel 3(a) shows the case of a mutual fund (MF) manager subject
to a convex flow-performance relationship (α1 = 0, α2 = 1.5, ζ̄ = 0.94, φY = 1, γ = 1, see Appendix
B.2). Panel 3(b) shows the case of a hedge fund (HF) manager with log preferences (α1 = 0, α2 =
5, ζ̄ = 1.05, φY = 0, γ = 1). The grey area depicts the time-0 actual probability of the corresponding
overvaluation state at t = 3/4T . Results obtain from a time-0 overvaluation of 4% (following a realized
dividend growth rate 1 std. dev. below the prior ρ0), as marked by the vertical dotted line. The rest of
the parameters are as follows: T = 1, r = 1.5%, δ = .0129, v0 = 0.052.

Figure 3(a) plots the optimal investment strategy of a mutual fund manager under the same

scenario as in Fig. 1. We explain how we parameterize eq. (5) to reflect the convex incentives

in the mutual fund industry in Appendix B.2. Unlike the hedge fund manager, a mutual fund

manager can shift risk by underweighting the overpriced stock in the portfolio relative to the

normal policy. In particular, the manager can sell the stock short even when it has a positive

expected excess return and is held long in the normal portfolio. This is because the risk-shifting

component of the mutual fund manager represents a more aggressive stance against mispricing

than the normal policy. As can be seen in the Fig. 1 for low levels of overvaluation, a mutual

fund manager can also overweight the overpriced stock relative to the normal policy. This is

driven exclusively by the indexing component, which makes the manager mimic partially the

stock market index when outperforming. This effect is similar to the price distortion arising

from managers’ unwillingness to deviate from their benchmark in Buffa, Vayanos, and Woolley

(2014).

We also note that the over-investment in overpriced assets in our model is not just the result

of convex incentives reducing the manager’s risk aversion. On the contrary, the effects arise

and become more severe for managers that are more risk-averse than implied by log preferences.
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Figure 3(b) shows the case of a manager with log preferences, and thus lower risk aversion

than the manager in our analysis. If the over-investment in overpriced assets were driven by a

decrease in risk aversion only, the manager with log preferences should overweight the overpriced

asset more. By contrast, the portfolio under log preferences sells the overpriced security even

faster than the normal policy in almost all overpricing states. Only for a very small range of

overpricing does the log manager overweight the overpriced asset relative to the normal policy.

This case agrees with the intuition in Dass, Massa, and Patgiri (2008), who hypothesize that

convex incentives should lead managers to trade aggressively against security overpricing.25 Log

preferences also eliminate the need to hedge against underperformance when the manager is

outperforming, shutting down the indexing component that drives the overinvestment for large

levels of overpricing in our setup.

We highlight that in our analysis so far the manager perceives the fees at the same time T

as the stock price converges to its fundamental value. Therefore, our results do not hinge on

the manager’s conservatism in anticipation of potential losses triggered by further widening in

mispricing, as originally suggested by Shleifer and Vishny (1997).

We conclude this Section by examining the effects of the manager’s information advantage

on its aggressiveness to trade against mispricing. Figure 4 plots the hedge fund manager’s time-t

excess holdings of the stock, relative to the normal portfolio, for different values of the manager’s

information advantage v0. To remove the dependence on the realization of ρ, the policies are

plotted as a function of the current overvaluation OVt by averaging the manager’s trading across

all paths of the inferred growth rate ρ̃t that lead to that particular value of overvaluation as of

t = 0.5. If the manager traded more aggressively against the mispricing than the normal policy,

the policies should plot in the top-left and bottom-right quadrants of the figure.

Generalizing our results above, on average the hedge fund manager fails to trade against any

levels of undervaluation, as well as against high levels of overvaluation. Crucially, the problem

becomes worse in general as (i) up-to-date overvaluation OVt worsens, and (ii) the manager’s

initial information advantage v0 improves. The economic intuition behind (i) is as follows: a

larger initial mispricing improves the odds that the manager will outperform early on and lock

in the outperformance thereafter. The hedge fund manager locks in the current performance by

(partially) mimicking a risk-free asset, which results in either too few holdings of an underpriced

stock, or too little trading against a severely overpriced stock. The intuition underlying (ii) is

similar: as the manager’s advantage over retail traders widens, the probability of outperforming

the benchmark increases and the indexing component tends to dominate the manager’s portfolio.

This behavior leads to an overly conservative stance against mispricing and worsens precisely

when the manager’s potential profits from trading against the mispricing are greatest.

25 This aggressive trading against mispricing is explained by the normal policy under low risk aversion. Unlike
a more risk-averse investor, the normal portfolio of a log investor will bet against an overpriced security in the
presence of the slightest mispricing. Since by Corollary 3 the risk-shifting component of a manager’s portfolio
invests in the same direction as the normal policy, the manager with convex incentives and log preferences will
invest even more aggressively against the overpricing than in the absence of these incentives.
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Figure 4: Hedge Fund Manager’s Average Over-Investment in the Mispriced Stock

Average time-t optimal weight in the stock of the hedge fund manager in excess of the normal portfolio,
φ̂t − φNt , as of mid-year (t = 0.5). For each level of overvaluation OVt, the average is computed over all
the paths of the inferred dividend growth rate ρ̃t that result in that particular value of OVt. The red
solid, cyan dash-and-dot and blue dashed lines correspond, respectively, to levels of U -investors’ initial
uncertainty

√
v0 equal to 3.7%, 7.4% and 11.1%. We assume: α1 = 0, α2 = 5, ζ̄ = 1.05, φY = 0, ρ̃0 =

0.0238, T = 1, r = 1.5%, δ = .0129, γ = 5.

Summing up, informed money managers responding to convex incentives can trade less

aggressively against mispricing than would be expected absent such incentives. This problem

is particularly severe for sophisticated investors like hedge fund managers, and in situations of

very high over- and underpricing. In the next Section we show how this behavior can exacerbate

mispricing under the general equilibrium in which money managers have positive price impact.

4 Convex Incentives and Equilibrium Mispricing

In this section we assess the price impact of the policies of money managers with superior

information but convex incentives under general equilibrium. More precisely, we abandon our

assumption that θ = 0 of Section 3 to focus on the effectiveness of these policies in correcting

asset mispricing when θ ∈ (0, 1). Although our setup lends itself to examine the price impact

of money managers following any type of benchmark of the type (4), for brevity of exposition

we concentrate our results on the relatively under-explored case of hedge funds for which the

benchmark is, effectively, a money market rate.

To solve for the equilibrium state-price density in closed form, we examine the piece-wise lin-

ear approximation (32) to the fee rate (5) directly, and assume that the manager’s compensation

WM is the product of this fee rate times initial AUM W0:

WM
T =

(
kT + kTα2(rT − (r + h))+

)
W0 (33)

Importantly, this variant retains all the features of our previous specification of the hedge fund

manager’s incentives and induces optimal portfolio policies that are almost indistinguishable
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from the policies in Section 3.2.26 The only (slight) difference is observed in the strength of

the indexing effect in the outperformance region: by applying the fee rate to a fixed instead

of to a stochastic level of AUM (W0 instead of WT ) the manager becomes less risk averse in

this region than in the case examined in Section 3.2, while still remaining more risk averse

than in the underperformance region. Given the importance of the indexing component in the

manager’s portfolio in limiting the trading against mispricing highlighted above (particularly

for severe mispricing), we expect this alternative compensation specification to exacerbate the

equilibrium mispricing in this section to a lesser extent than would the incentives analyzed so

far. In this sense, the impact of managers’ policies on severe levels of mispricing that we derive

below can be seen as a lower bound on the results that can be expected under slightly different

fee arrangements.

When θ ∈ (0, 1), market clearing in the risk-free and risky assets,

WT +WU
T = ST = DT , (34)

implies the following:

Proposition 4. For a given realization of the dividend growth rate ρ and for t ∈ [0, T ], if an

equilibrium exists the (manager’s) SPD and the risky asset price are given by:

πt = er(T−t)
∫ +∞

−∞
πTϕ(BT |Bt)dBT , (35)

St = π−1
t

∫ +∞

−∞
πTDTϕ(BT |Bt)dBT , (36)

where ϕ(·|Dt) is the normal density with conditional mean and variance Bt and T − t,

πT = λ−1
M



 DT

(kT )
1
γ−1

+
(
λM
λU

ξT

) 1
γ

−γ , if DT < D
(
λM
λU
ξT
)
,

(kT (1 + α2))1−γ
[
γ−1
γ

1
κ−1

α2
1+α2

ζβT

]−γ
, if D

(
λM
λU
ξT
)
≤ DT < D

(
λM
λU
ξT
)
, DT−

α2
1+α2

ζβT

(kT (1+α2))
1
γ−1

+
(
λM
λU

ξT

) 1
γ

−γ , if D
(
λM
λU
ξT
)
≤ DT ,

(37)

κ ≡ (1 + α2)1−1/γ > 1, ζ ≡ ζ̄W0/Y0, the functions D(·), D(·) are as given in Appendix A, and

the constants λM , λU are the Lagrange multipliers for the manager and the retail investor that

solve the following system of (algebraic) equations: erT
∫ +∞
−∞ πTϕ(BT )dBT = 1,∫ +∞

−∞ π
1− 1

γ

T (ξT /λU )
1
γϕ(BT )dBT = (1− θ)S0.

(38)

26 Illustrations of the similarity of the manager’s policies in response to the two types of incentives are available
from the authors upon request.
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An equilibrium exists if and only if a solution to (38) exists.

The first equation in (38) is a normalization of the initial value of the SPD, whereas the second

equation is the retail investor’s budget constraint. The non-linearity of the optimal policy of

the manager (28) results in a three-piece equilibrium SPD. This SPD adopts different functional

forms in the “bad”, “intermediate” and “good” states of the economy according to (38). Given

this SPD, direct integration against a normal density allows for a relatively straightforward

computation of a solution (in case it exists) to (38) and, in turn, of the equilibrium prices (36).

We next follow this procedure to find the price impact of the manager’s policies of Section

3.2.3, assuming that the informed manager is endowed with half the share of the stock: θ = 0.5.

For comparability, we examine an identical parameterization of our model as in Section 3.27 We

note however that our results are robust to alternative values of the model parameters.

4.1 Benchmark case: Equilibrium Mispricing without Convex Incentives

We first examine the equilibrium mispricing in an economy in which the informed investor (the

manager) has no convex incentives. This case corresponds to the normal policy defined in Section

3.2. For consistency, we refer to this as the normal case. It represents the relevant comparison

benchmark to assess the effects of convex incentives on the price impact of an informed investor:

differences between the price impact of the hedge fund manager and the normal policy can be

attributed solely to the specific incentives that hedge fund managers face.

Figure 5 plots the equilibrium mispricing ((St/SCIt)
1/τ − 1) prevailing under the normal

economy for different states as of t = 3/4T . This states correspond to the different values of

stock overvaluation OVt defined in Section 3.2, i.e. the equilibrium mispricing that would prevail

absent any informed investor in the economy (θ = 0). For comparison, a 45-degree line is also

included in the graph.

Absent convex incentives, an informed investor always corrects prices towards their “fun-

damental values,” reducing the extent of mispricing across all economic states. Indeed, when

the uninformed investors underestimate the growth rate of dividend and underweight the stock

in their portfolios, they push the stock price below its fundamental value. The informed in-

vestor expects the uninformed traders to revise their estimates up in the future as better news

(higher realizations of Dt) arrive in the market. In anticipation of the upward pressure that

uninformed investors will exert on the stock price once they learn the better prospects, the

normal policy overweights the stock. The resulting increased demand for the stock, relative to

the all-uninformed-investors economy, pushes prices up before the news arrive and corrects part

of the mispricing (given that the informed investors are endowed with only half the supply of

shares of the stock) in the process.

27 In particular, we assume that the manager receives the compensation fees at the end of the year, i.e. T = 1,
and that the initial estimation error of the uniformed investors is 4% (following a realized dividend growth rate
1 std. dev. below the prior ρ0). The rest of the parameters are as follows: α1 = 0, α2 = 5, ζ̄ = 1.05, φY = 0, r =
1.5%, δ = .0129, v0 = 0.052, γ = 5.
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Figure 5: Equilibrium Mispricing as of t = 3/4T in the Normal Case

The solid red and black dotted lines represent the equilibrium mispricing (St/SCIt)
1/τ − 1 under the

normal case (no convex incentives) and the all-uninformed (θ = 0) case. Results obtain from a realized
dividend growth rate 1 std. dev. below the prior ρ0. We assume: r = 1.5%, δ = .0129, v0 = 0.052, γ = 5.

Similarly, the normal policy has a stabilizing role in situations of stock overpricing. A streak

of good news can make uninformed investors too optimistic about the future prospects of the

economy. They will demand more shares of the stock and push the stock price up and above

its fundamental value in the process. The informed normal investor expect uninformed trader

to revise down their estimates to more realistic as worse news arrive in the future. Anticipating

the future price drop the normal investor will demand more shares of the stock and bring part

of the correction in the stock mispricing ahead of time.

This correcting effect on prices of the normal policy reduces the initial stock mispricing

substantially. As mentioned above, the initial stock overvaluation depicted in the graph amounts

to 4%, corresponding to the realization of ρ falling one standard deviation below the uninformed

prior ρ0. The normal policy shrinks that initial overpricing by 53.4% even though the informed

investor is endowed with only half of the stock in our example.

4.2 Impact of Convex Incentives

Our partial equilibrium analysis of the manager’s investment policy in Section 3.2 suggests

that convex incentives could exacerbate mispricing in many situations. In particular, the risk-

shifting and indexing components of the manager’s portfolio can overweight an overpriced asset

relative to the normal policy. However, for intermediate ranges of stock overvaluation the

indexing component in the manager’s portfolio can also underweight the stock as long as the

stock risk premium remains positive. Given that the manager outperforms the benchmark in

these situations, fund AUM may exceed the wealth of a normal investor in the same circumstance.

The expected net effect on current and future prices then remains uncertain unless examined
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within the general equilibrium framework in this Section.

We plot the equilibrium mispricing under convex incentives in Figure 6. For both the hedge

fund manager and normal case, results are plotted as a fraction of the mispricing that would

prevail absent any informed investor in the economy (θ = 0), and against this level of mispricing

on the x-axis.

Figure 6: Equilibrium Mispricing as of t = 3/4T

The solid red and blue dashed lines represent the equilibrium mispricing (St/SCIt)
1/τ − 1 under the

hedge fund manager and normal (no convex incentives) cases, as a fraction of the mispricing prevailing
when all investors are uninformed (θ = 0). Results obtain from a realized dividend growth rate 1 std.
dev. below the prior ρ0. We assume: α1 = 0, α2 = 5, ζ̄ = 1.05, φY = 0, T = 1, r = 1.5%, δ = .0129, v0 =
0.052, γ = 5, θ = 0.5.

Convex incentives can exacerbate overpricing not only relative to the normal case, but even

beyond the overpricing prevailing in a fully-uninformed economy. Indeed, the overpricing under

convex incentives can be up to 55% higher than if all investors are over-optimistic about the

prospects of the economy. This is in spite of the fact that, unlike these investors, the manager is

actually aware that the asset is overpriced. However, the convex incentives induce the manager to

shift risk until she secures a large enough margin over the risk-free benchmark in the performance

fee. Following Corollary 3, given the low (zero) risk of the benchmark the manager optimally

risk-shifts by taking a large long position in the stock rather than trading against its overpricing.

The true, lower ρ is revealed slowly over time to the uninformed investors. Thus, the manager

expects to make a large enough excess profit from this risk-shifting position before stock prices

revert back to fundamental values.

Once a sufficient outperformance is secured, the indexing component in the manager’s port-

folio can help correct overpricing faster than in the normal case for intermediate but not for

severe levels of overvaluation. In the latter situation, the endogenous constraint on short-selling

that we highlighted in Section 3.2 severely limits, relative to the normal policy, the trading of
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the manager against the overvaluation. The resulting overvaluation can be 8.1% higher than in

the normal case, compared to a 51.8% higher when all investors are uninformed.

Crucially, the manager’s investment policy has a positive net impact on the initial stock

overpricing. Indeed, the trading of the manager corrects only 28.2% of the overpricing that

would prevail if all investors were uninformed. Compared to the 53.4% correction that would

be attained in the absence of convex incentives, we conclude that the overweight in overpriced

assets of the risk-shifting and indexing component in the manager’s portfolio more than offset

her trading against mispricing under intermediate levels of overpricing. The net effect of convex

incentives is an upward bias on the price of already overvalued stocks.

5 Conclusions

In this paper we consider the effects of convex incentives on the trading against mispricing of a

money manager with superior information. According to the standard paradigm, the trading of

an agent with superior information should vary depending on the level of mispricing or deviation

of the security price from the fundamentals. In particular, the investor should underweight an

overpriced security and overweight an underpriced security. Even in the presence of career

concerns, a recent line of research suggests that short-term incentive contracts should induce

trading against overpricing and offset the bubble-riding behavior resulting from these concerns.

We find that convex incentives alter these conclusions. In particular, it can be optimal for

an informed money manager to over-invest—relative to the standard level or even to the market

portfolio—in overpriced securities, so as if “riding the bubble.” We further show that this be-

havior worsens as expected overpricing increases. Our model is able to reconcile some puzzling

empirical findings without recurring to behavioral arguments, and only using incentives docu-

mented in the literature—although not standard in financial models. We study the problem in

detail in partial equilibrium, where we get analytic expressions, but we show that our conclusions

hold in general equilibrium and result in a significant exacerbation of security mispricing.
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Appendix

A Proofs and Auxiliary Results

We start by stating two auxiliary lemmas that are used throughout the remaining proofs.

Lemma A1. Let τ = T − t. For 0 ≤ t ≤ T , α ∈ R:

Ẽt [Dα
T ] = Dα

t exp

{(
αρ̃t −

1− α
2

αδ2 +
α2

2
vtτ

)
τ

}
(39)

Proof. The dynamics of Dt under the filtered probability are dDt = Dt(ρ̃tdt+ δdB̃t), or, for 0 ≤ t ≤ t′ ≤
T :

Dt′ = Dte
∫ t′
t

(
ρ̃s− δ

2

2

)
ds+δ(B̃t′−B̃t) (40)

= Dte
− δ22 (t′−t)+

∫ t′
t
ρ̃sds+δ(B̃t′−B̃t).

From (7), and using the solution to v as: vt = δ2v0

δ2+v0t
,

dρ̃t
vt

= δdB̃t ⇒
∫ t′

t

dρ̃t
vt

= δ(B̃t′ − B̃t) (41)

⇒ ρ̃t′

vt′
− ρ̃t
vt
−
∫ t′

t

ρ̃sds = δ(B̃t′ − B̃t)

⇒ ρ̃t′

vt′
− ρ̃t
vt

=

∫ t′

t

ρ̃sds+ δ(B̃t′ − B̃t),

which allows us to re-express (40) as:

Dte
− δ22 (t′−t)+

∫ t′
t
ρ̃sds+δ(B̃t′−B̃t) = Dte

− δ22 (t′−t)+
ρ̃
t′
v
t′
− ρ̃tvt . (42)

Note that, conditioning on FDt , the only random variable in the former expression is ρ̃t′ . Moreover, from

(7) we know that ρ̃t is a linear diffusion with deterministic volatility, so:

ρ̃t′ |ρ̃t = ρ̃t +
1

δ

∫ t′

t

vsdB̃s|ρ̃t ∼ N
(
ρ̃t, σ

2
ρ̃,t,t′

)
, (43)

with σ2
ρ̃,t,t′ = 1

δ2

∫ t′
t

(vs)
2ds = vt − vt′ . This implies that DT |Dt is log-normally distributed with deter-

ministic mean and variance, so:

Ẽt [Dα
T ] =Dα

t e
−α δ22 τ−α

δ2

vt
ρ̃tEt

[
e
α δ2

vT
ρ̃T

]
=Dα

t exp

{
−αδ

2

2
τ − αδ2

(
1

vt
− 1

vT

)
ρ̃t +

α2δ4

2v2
T

(vt − vT )

}
, (44)

which results in (39) after some algebraic manipulations.
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Lemma A2. Let z ∼ N(0, σ2
z), and let ρ̌, c, z̄ ∈ R. We have:

E
[
e−ρ̌(z−c)

2

1{z≤z̄}

]
=

e
− ρ̌c2

1+2ρ̌σ2
z√

1 + 2ρ̌σ2
z

N

 z̄ − 2ρ̌σ2
z

1+2ρ̌σ2
z
c

σz/
√

1 + 2ρ̌σ2
z

 , (45)

where N (.) is the standard normal cumulative distribution function.

Proof. Follows from direct integration against the normal density, using the change of variables ž =
z− 2ρ̌σ2

z
1+2ρ̌σ2

z

σz/
√

1+2ρ̌σ2
z

, žl =
z̄− 2ρ̌σ2

z
1+2ρ̌σ2

z

σz/
√

1+2ρ̌σ2
z

.

Proof of Proposition 1. Problem (13) can be solved as in an equivalent full-information framework.

In particular, the dynamic budget constraint (14) can be restated (see e.g. Karatzas and Shreve (1998))

as:

Ẽ0

[
π̃TW

U
T

]
= w0. (46)

Using the martingale/duality approach of Cox and Huang (1989) and Karatzas, Lehoczky, and Shreve

(1987), the dynamic optimization problem (13) can be solved as a static problem over final payoffs WU
T .

The standard solution to uninformed investors’ optimization problem is then:

ŴU
T = (λπ̃T )

− 1
γ ⇒ π̃T =

1

λ
(ŴU

T )−γ . (47)

By market clearing condition (15):

ŴU
T = DT ⇒ π̃T =

1

λ
D−γT . (48)

Uninformed investors’ equilibrium SPD is:

π̃t = er(T−t)Ẽt[π̃T ] = er(T−t)Ẽt
[
D−γT

]
. (49)

Applying Lemma A1 for α = −γ, uninformed investors’ equilibrium SPD is then:

π̃t = λ−1D−γt exp

{(
r − γρ̃t +

1 + γ

2
γδ2 +

γ2

2
vtτ

)
τ

}
. (50)

Using (50) to solve for λ in the equation π̃0 = 1:

λ = D−γ0 exp

{(
r − γρ̃0 +

1 + γ

2
γδ2 +

γ2

2
v0T

)
T

}
. (51)

By no-arbitrage, equilibrium stock prices are:

St = π̃−1
t Ẽt[π̃TDT ] = (λπ̃t)

−1
Ẽt

[
D1−γ
T

]
(52)

Using Lemma A1 for α = 1− γ and equation (50):

St = Dt exp

{(
ρ̃t − r − γδ2 −

(
γ − 1

2

)
vtτ

)}
. (53)
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Applying Itô’s Lemma to (53)

dSt =

(
r + γ

(
δ +

vt
δ
τ
)2
)
Stdt+

(
δ +

vt
δ
τ
)
StdB̃t. (54)

Under the P̃ -probability, the stock dynamics (2) can be rewritten as:

dSt = µ̃tStdt+ σtStdB̃t. (55)

Comparing the drift and diffusion terms of (54) and (55) we get equations (18).

Proof of Corollary 1. Equations (19)-(20) follow by letting ρ0 → ρ and v0 → 0 in Proposition 1. To

obtain (21), we divide (16) by (19) to get:

St
SCIt

= exp

{(
ρ̃t − ρ−

(
γ − 1

2

)
vtτ

)
τ

}
. (56)

The result then follows from the definition of OVt.

Proof of Proposition 2. For an informed direct investor with RRA coefficient γ̃, the normal optimiza-

tion problem is:

max
Wγ̃,T

E0

[
(Wγ̃,T )1−γ̃

1− γ̃

]
, (57)

subject to:

E0 [πTWγ̃,T ] = w0. (58)

Attaching Lagrange multiplier λN to the budget constraint (58),the normal time-T optimal wealth profile

is given by the first order condition:

WN
γ̃,T = (λNπT )

− 1
γ̃ , (59)

where the Lagrange multiplier λN is given by:

λN = w−γ̃0

(
E0

[
(πT )

1− 1
γ̃

])γ̃
=

(
Z1− 1

γ̃ ,0,T

w0

)γ̃
. (60)

The normal time-t (0 ≤ t ≤ T ) portfolio value WN
γ̃,t is given by the no-arbitrage condition:

πtW
N
γ̃,t = Et

[
πTW

N
γ̃,T

]
⇒WN

γ̃,t = (λNπt)
− 1
γ̃ Et

[(
πT
πt

)1− 1
γ̃

]
= (λNπt)

− 1
γ̃ Z1− 1

γ̃ ,t,T
, (61)

with Z1− 1
γ̃ ,t,T

= Et

[(
πT
πt

)1− 1
γ̃

]
. The following lemma provides a closed-form expression for Z1− 1

γ̃ ,t,T
:

Lemma A3. Let ψ ∈ R. For 0 ≤ t ≤ t′ ≤ T :

Zψ,t,t′ ≡Et

[(
πt′

πt

)ψ]

=δψ

√
(δ2 + vt(t′ − t))1−ψ

δ2 + (1− ψ)vt(t′ − t)
exp

{
−ψr(t′ − t)− ψ(1− ψ)δ2(t′ − t)

δ2 + (1− ψ)vt(t′ − t)
η2
t

2

}
(62)
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Proof. We first simplify the expression of the likelihood process ξt. Defining κt ≡ ρ−ρ̃t
δ , the likelihood

process can be rewritten as:

ξt = e−
1
2

∫ t
0
κ2
sds−

∫ t
0
κsdBs . (63)

The manager sees the dynamics of ρ̃ in (7) as:

dρ̃t =
vt
δ

(
ρ− ρ̃t
δ

+ dBt

)
=
vt
δ2

(ρ− ρ̃t)dt+
vt
δ
dBt. (64)

An application of Itô’s Lemma gives the dynamics of ρ̃t
vt

as:

d

(
ρ̃t
vt

)
=

ρ

δ2
dt+

1

δ
dBt (65)

A further application of Itô’s Lemma to the product κt
ρ̃t
vt

leads to:

κ2

2
dt+ κtdBt =

δ

2
d

(
κt
ρ̃t
vt

)
+

1

2

( vt
δ2
dt+

ρ

δ
dBt

)
. (66)

Integrating both side from 0 to t allows us to re-express the likelihood process as:

ξt = e−
1
2

∫ t
0
κ2
sds−

∫ t
0
κsdBs =

√
vt
v0
e
− δ2
(
ρ−ρ̃t
δ

ρ̃t
vt
− ρ−ρ̃0δ

ρ̃0
v0

)
− ρ

2δBt , (67)

or, for t′ ≥ t:
ξt′

ξt
=

δ√
δ2 + vt(t′ − t)

e
− 1

2

(
(ρ−ρ̃t′ )

ρ̃
t′
v
t′
−(ρ−ρ̃t) ρ̃tvt−

ρ
δ (Bt′−Bt)

)
. (68)

Integrating both sides of (65) from t to t′ and replacing back in (68) we get:

ξt′

ξt
=

δ√
δ2 + vt(t′ − t)

e
1

2v
t′

(ρ̃2
t′−2ρρ̃t′)− 1

2vt
(ρ̃2
t−2ρρ̃t)+ ρ2

2δ2
(t′−t)

. (69)

Given expressions (10) and (17) for the manager’s and uninformed investors’ state-price deflators, and

equation (69) for the likelihood process, we can write:

Et

[(
πt′

πt

)ψ]
=δψ

√
δ2 + (1− ψ)vt(t′ − t) exp

{
−ψ

(
r + γ(ρ+ γδ2) +

γ2

2
vt(t
′ − t)− γρ̃t

)
× (t′ − t)− ψ

2vt

(
ρ̃t − (ρ+ γδ2)

)2}
× Et

[
exp

{
ψ

2vt′

(
ρ̃t′ − (ρ+ γδ2)

)2}]
. (70)

We can work (65) to show that:

ρ̃t′ = ρ̃t + (ρ− ρ̃t)
vt′

δ2
(t′ − t) +

vt′

δ
(Bt′ −Bt), (71)

so the under P ρ̃t′ is normally distributed with conditional mean and variance:{
Et[ρ̃t′ ] = δ2

δ2+vt(t′−t) ρ̃t + vt(t
′−t)

δ2+vt(t′−t)ρ,

V art[ρ̃t′ ] =
δ2v2

t

(δ2+vt(t′−t))2 (t′ − t).
(72)
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We can then rewrite the expectation on the RHS of (70) as:

Et

[
exp

{
ψ

2vt′

(
ρ̃t′ − (ρ+ γδ2)

)2}]
=Et

[
exp

{
ψ

2vt′
(ρ̃t′ − Et[ρ̃t′ ]

− δ2

δ2 + vt(t′ − t)
(ρ− ρ̃t)− γδ2

)2
}]

. (73)

Using Lemma A2 for z = ρ̃t′ −Et[ρ̃t′ ], σ2
z = V art[ρ̃t′ ], ρ̌ = ψ

2vt′
, c = δ2

δ2+vt(t′−t) (ρ− ρ̃t) + γδ2,z̄ = +∞, we

can compute this expectation as:

Et

[
exp

{
ψ

2vt′

(
ρ̃t′ − (ρ+ γδ2)

)2}]
=

√
δ2 + vt(t′ − t)

δ2 + (1− ψ)vt(t′ − t)

× exp


ψ δ

2+vt(t
′−t)

2vt′

(
δ2

δ2+vt(t′−t) (ρ− ρ̃t) + γδ2
)2

δ2 + (1− ψ)vt(t′ − t)

 . (74)

Plugging (74) in (70) we get, after some algebraic manipulation, equation (62).

In order to derive the investment policy (22) replicating the optimal portfolio value (23), note that

this can be rewritten as WN
γ̃,t = f(t, ηt), where the diffusion term ση of η can be computed as ση = −vt/δ2

and f ∈ C1,2. Applying Itô’s Lemma the diffusion term of dWN
γ̃,t is:

− vt
δ2

∂WN
γ̃,t

∂ηt
= WN

γ̃,t

δ2 + vtτ

δ2 + vt
γ̃ τ

ηt
γ̃

(75)

Equating (75) to the diffusion term of Wt in (3) gives the optimal portfolio (22).

Proof of Corollary 2. Equation (25) follows from plugging in the equilibrium values ηt = η̃t + ρ−ρ̃t
δ

and η̃t = γσt in equation (22), letting γ̃ = γ, subtracting 1 from φNγ,t and rearranging. Since δ2 + vt/γτ

and γ are positive, the LHS of (25) is negative iff the numerator on the RHS is negative, i.e.:

ρ̃t > ρ+ (γ − 1)vtτ. (76)

To obtain condition (26), we apply the natural logarithm on both sides of equation (56) to get:

1

τ
ln

(
St
SCIt

)
− 1

2
vtτ =(ρ− ρ̃t) + (γ − 1) vtτ. (77)

Therefore, condition (76) holds iff condition (26) holds.

Proof of Proposition 3. Let ζ ≡ ζ̄W0/Y0 be the normalized performance fee threshold, and let

UT (WT ) ≡ (fTWT )
1−γ

1− γ
. (78)

At t = 0, the problem of the informed money manager is then:

max
WT

E0 [UT (WT )] s.t. E0[πTWT ] = w0. (79)
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The objective function (78) in the manager’s problem (79) is locally non-concave in a neighborhood of

δWT = ζYT Standard optimization techniques cannot be applied directly to this problem. Following

Basak and Makarov (2014), the first step consists in constructing the concavification ŨT (.) of the man-

ager’s utility function UT (.) (i.e. the smallest concave function ŨT (w) satisfying ŨT (w) ≥ UT (w) for all

w ≥ 0), restate and solve the original problem (79) in terms of ŨT (.).

In order to construct the concavified function, we look for functions W (ζYT ), W (ζYT ), a (ζYT ) and

b (ζYT ) so that (omitting the arguments for notational simplicity):

ŨT (WT ) =


UT (WT ), if WT < W ≤ ζYT ,

a+ bWT , if W ≤WT < W ,

UT (WT ), if ζYT ≤W ≤WT ,

(80)

and

Ũ
′

T (WT ) =


U
′

T (WT ), if WT < W ≤ ζYT ,

b, if W ≤WT < W ,

U
′

T (WT ), if ζYT ≤W ≤WT .

(81)

where:

U
′

T (WT ) =

{
(1 + α1)W−γ1

T (ζYT )
γ1−γ , if WT < ζYT ,

(1 + α2)W−γ2

T (ζYT )
γ2−γ , if WT > ζYT .

(82)

Eqs. (82) and eqrefeq:MIU give us a system of 4 equations in our 4 unknowns W , W , a and b:
a+ bW = 1

1−γW
1−γ1 (ζYT )

γ1−γ

a+ bW = 1
1−γW

1−γ2
(ζYT )

γ2−γ

b = (1 + α1)W−γ1 (ζYT )
γ1−γ

b = (1 + α2)W
−γ2

(ζYT )
γ2−γ .

(83)

The solution to this system of equation yields

b (ζYT ) =

[
(1 + α2)γ1(γ2−1)

(1 + α1)γ2(γ1−1)

(
γ1

γ2

)γ1γ2
] 1
γ2−γ1

(ζYT )
−γ

, (84)

W (ζYT ) =

[(
1 + α2

1 + α1

)γ2−1(
γ2

γ1

)γ2
] 1
γ2−γ1

ζYT , (85)

W (ζYT ) =

[(
1 + α1

1 + α2

)γ1−1(
γ2

γ1

)γ1
] 1
γ2−γ1

ζYT . (86)

In order to verify that (84) to (86) are indeed the solutions we are after, it remains to verify that W and

W satisfy the condition:

W ≤ ζYT ≤W, (87)

which holds iff: [(
(1 + α2)

(1 + α1)

)γ2−1(
γ2

γ1

)γ2
] 1
γ2−γ1

< 1, (88)

and [(
(1 + α1)

(1 + α2)

)γ1−1(
γ2

γ1

)γ1
] 1
γ2−γ1

> 1. (89)
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Since
1 + α2

1 + α1
<

(
1 + α2

1 + α1

γ1

γ2

)γ2

, (90)

and
1 + α1

1 + α2
<

(
1 + α1

1 + α2

γ2

γ1

)γ1

, (91)

both conditions indeed verify.

We can now restate the manager’s optimization problem (79) at t = 0 as:

max
WT

E0

[
ŨT (WT )

]
s.t. E0[πTWT ] = w0. (92)

Attaching Lagrange multiplier λM to the budget constraint, the solution to the concavified problem (92)

is given by the standard (state-by-state) first order condition:

Ũ
′

T (WT ) = λMπT . (93)

Using (82):

λMπT =


(1 + α1)W−γ1

T (ζYT )
γ1−γ , if WT < ζYT ,

b, if W ≤WT < W ,

(1 + α2)W−γ2

T (ζYT )
γ2−γ , if WT > ζYT ,

(94)

which gives the manager’s optimal time-T AUM as:

ŴT =


(1 + α1)

1
γ1 (ζYT )

γ1−γ
γ1 (λMπT )

− 1
γ1 , if WT < W ,

W ∈
[
W,W

]
, if W ≤WT < W ,

(1 + α2)
1
γ2 (ζYT )

γ2−γ
γ2 (λMπT )

− 1
γ2 , if W ≤WT .

(95)

Using Eqs. (84) through (86), we note that:

ŴT < W ⇔ λMπT > b, (96)

and

ŴT ≥W ⇔ λMπT ≤ b, (97)

which allows us to re-express (95) as:

ŴT =

 (1 + α1)
1
γ1 (ζYT )

γ1−γ
γ1 (λMπT )

− 1
γ1 , if λMπT > b (R1),

(1 + α2)
1
γ2 (ζYT )

γ2−γ
γ2 (λMπT )

− 1
γ2 , if λMπT ≤ b (R2).

(98)

In order to define regionsR1 andR2, we need to obtain an explicit expression for the benchmark YT . This

can be done more easily by first writing the dynamics of Yt under the uninformed investors’ probability

P̃ :

dYt = Yt
(
r + φY σtη̃t

)
dt+ Ytφ

Y σtdB̃t, (99)
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which implies:

YT = Yt exp

{
rτ + φY

(
γ − φY

2

)∫ T

t

σ2
sds+ φY

∫ T

t

σsdB̃s

}

= Yt exp

{(
r + φY

(
γ − φY

2

)
(δ2 + vtτ)φY

)
τ +

δ2φY

vT
(ρ̃T − ρ̃t)

}
, (100)

where we used expressions (7) and (18) to solve for the integrals in (100). Defining:

ζ0 ≡
[

(1 + α2)γ1(γ2−1)

(1 + α1)γ2(γ1−1)

(
γ1

γ2

)γ1γ2
] 1
γ2−γ1

, (101)

we can express b (ζYT ) = ζ0 (ζYT )
−γ

. Region R1 is then given by:

λMπT > b (ζYT )⇔ λMπT > ζ0 (ζYT )
−γ

. (102)

Using the above closed-form expressions for πT and YT we can express region R1 as:

{
ρ̃T < ρ+ (1− φY )γδ2 + Γ

}
∪
{
ρ̃T > ρ+ (1− φY )γδ2 + Γ

}
, (103)

where:

Γ ≡
√
vT∆(ρ̃0, v0), (104)

and

∆(ρ̃0, v0) ≡ 1

v0

(
ρ̃0 − ρ− (1− φY )γδ2

)2
+ 2(1− φY )γ

{
ln

(
D0

β0

)
−
[
r +

(
1− (1− φY )γ

) δ2

2
− ρ
]
T

}
+ 2 ln

(
λζ0

λMδηγ

√
δ2 + v0T

)
. (105)

The existence of a solution to the manager’s problem (79) requires ∆(ρ̃0, v0) > 0, implying Γ ≥ 0. Region

R2 is just the relative complement in R of R1. We can now derive the interim AUM (106). By no-

arbitrage, the deflated wealth process πtŴt is a martingale, so using (98) the optimal wealth Ŵt for all

t ∈ [0, T ] is given by:

πtŴt = Et

[
πT ŴT

]
⇒ Ŵt = f1,t + f2,t, (106)

where :

fi,t = πtEt

[
(1 + αi)

1
γi (ζYT )

γi−γ
γi (λMπT )

− 1
γi 1Ri

]
. (107)

Using the closed-form expressions above for πT and YT , R1 and R2, and applying Lemma A2 to compute
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the expectation in (107) we get, for i = 1, 2:

fi,t ≡
(

1 + αi
λMξt

) 1
γi

ζ
1− γ

γi

(
δ

λ

)1− 1
γi

√√√√ (δ2 + vtτ)
1
γi

δ2 + vt
γi
τ

β

(
1− γ

γi

)
(1−φY )

t D

(
1− γ

γi

)
φY −

(
1− 1

γi

)
γ

t π̃−1
t

× exp

{[(
1− γ

γi

)(
1− φY

)
r −

(
1− 1

γi

)(
ki

(
ρ− ((γi − 1)ki + 1)

δ2

2

)
+

1

2γi

(
ρ− ρ̃t − (γi − 1)kiδ

2
)2

δ2 + vt
γi
τ

)]
τ

}
Πi,t, (108)

The Lagrange multiplier λM is the solution to the equation Ŵ0 = w0.

In order to derive the investment policy (28) replicating the optimal portfolio value (106), note that

this can be rewritten as Ŵt = h(t,Dt, π̃t, ξt, X1,t, X2,t, d1,t, d2,t, d1,t, d2,t), where for i = 1, 2:

Xi,t ≡ exp

{[(
1− γ

γi

)(
1− φY

)
r −

(
1− 1

γi

)(
ki

(
ρ− ((γi − 1)ki + 1)

δ2

2

)
+

1

2γi

(
ρ− ρ̃t − (γi − 1)kiδ

2
)2

δ2 + vt
γi
τ

)]
τ

}
, (109)

for some function h ∈ C1,2. Applying Itô’s Lemma the diffusion term σŴ of dŴt is:

σŴ = σDhD + σπ̃hπ̃ + σξhξ + σX1
hX1

+ σX2
hX2

+ σd1
hd1

+ σd2
hd2

+ σd1
hd1

+ σd2
hd2

, (110)

where hx denotes the partial derivative of h w.r.t. x and σX is the diffusion term in the SDE characterizing

the dynamics of the process X. Computing the diffusion terms in (110) explicitly and equating the result

to the diffusion term of Wt in (3) gives the optimal portfolio (28).

Proof of Corollary 3. From equation (29), for i = 1, 2 the sign of each risk-shifting component Φi,t

equals the sign ofN ′(di,t)−N ′(di,t). By the symmetry of the standard normal density, N ′(di,t) ≥ N ′(di,t)
if and only if |di,t| ≤ |di,t|. Since di,t < di,t,

|di,t| ≤ |di,t| ⇔ di,t + di,t ≥ 0

⇔ 2
γδ2σγ,t
vt
√
τ

√
δ2 + vtτ

δ2 + vt
γi
τ

(
φNγ,t − φY

)
≥ 0. (111)

Since the factor multiplying the difference (φNγ,t − φY ) above is positive, we conclude that N ′(di,t) ≥
N ′(di,t) if and only if φNγ,t ≥ φY . Thus, for i = 1, 2, sgn(Φi,t) = sgn(φNγ,t − φY ), which leads to equation

(31).

Proof of Proposition 4. Following Cuoco and Kaniel (2011), the time-t optimal wealth of a manager

perceiving the compensation (33) is:

ŴT =


(kT )

1
γ−1(λMπT )−

1
γ , if DT < D

(
λM
λU
ξT
)
,

PTW + (1− PT )W, if D
(
λM
λU
ξT
)
≤ DT < D

(
λM
λU
ξT
)
,

(kT (1 + α2))
1
γ−1(λMπT )−

1
γ + α2

1+α2
ζβT , if D

(
λM
λU
ξT
)
≤ DT ,

(112)
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where λM is the Lagrange multiplier attached to the manager’s budget constraint in (79),

D(ξ) =
(

(kT )
1
γ−1 + ξ

1
γ

)
(kT (1 + α2))1− 1

γ
γ − 1

γ

1

κ− 1

α2

1 + α2
ζβT , (113)

D(ξ) =
(

(kT (1 + α2))
1
γ−1 + ξ

1
γ

)
(kT (1 + α2))1− 1

γ

(
γ − 1

γ

1

κ− 1
+ 1

)
α2

1 + α2
ζβT , (114)

W =
γ − 1

γ

κ

κ− 1

α2

1 + α2
ζβT , (115)

W =

(
γ − 1

γ

1

κ− 1
+ 1

)
α2

1 + α2
ζβT , (116)

and the equilibrium randomizing probability PT is:

PT =
W +

(
λM
λU
ξT
) 1
γ (kT (1 + α2))1− 1

γ γ−1
γ

1
κ−1

α2

1+α2
ζβT −DT

W −W
× 1{

D
(
λM
λU

ξT

)
≤DT<D

(
λM
λU

ξT

)} (117)

Attaching a Lagrange multiplier λU to the U -investor’s budget constraint, the optimal time-t wealth of

a U -investor is:

ŴU
T = (λU π̃T )−

1
γ = (ξ−1

T λU π̃T )−
1
γ , (118)

Where we use the Abstract Bayes Theorem for the likelihood process ξt for the second equality in (118).

Using the market clearing condition (34) and rearranging, we obtain the equilibrium SPD (37).
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B Parameterization of Money Managers’ Incentives

B.1 (Piece-wise) Linearization of Hedge Fund Managers’ Incentives

Given the continuously-compounded rates rT , r
Y
T and the threshold ζ̄ = ehT as defined in Section 3.2.3,

for any α > 0 we can write:

k

(
RT
ζ̄RYT

)α
= keα(rT−(r+h))T . (119)

A first-order approximation of the RHS of (119) around rT = r + h gives:

k

(
RT
ζ̄RYT

)α
≈ kT + kα(rT − (r + h))T, (120)

Applying (120) to the two terms in the RHS of (5) and setting α1 = 0 implies a fee rate:

fT ≈ kT + kTα2(rT − (r + h))+, (121)

where x+ ≡ max(0, x).

B.2 Flow-Performance Relationship of Mutual Funds

Most mutual funds in the U.S. charge a management fee proportional to AUM but no performance fees.

Let m be this base fee. We assume that At t = T , but at no other 0 ≤ t < T , mutual fund investors

purchase or redeem additional fund shares depending on the manager’s performance during [0, T ] relative

to the benchmark Y according to an exogenously given flow-to-relative performance relationship (F-PR)

qT :

qT = q

(
RT
ζ̄RYT

)α1

1{RT<ζ̄RYT } + q

(
RT
ζ̄RYT

)α2

1{RT≥ζ̄RYT }, (122)

with q > 0. Defining k ≡ mq, the mutual fund manager’s fee rate fT = mqT follows the specification

(5). This functional form allows flows to be sensitive (and potentially locally concave, if α1 < 1) to

medium and low relative performance. At the same time, fT reflects the well-documented convexity

in the sensitivity of flows to performance (see, e.g., Chevalier and Ellison (1997), and Sirri and Tufano

(1998)) for α1 < α2, according to which outperforming funds receive a disproportionally high amount

of inflows.28 The F-PR (5) can also capture linear relationships (α1 = α2 = 1), log-linear relationship

(α1 = α2 6= 1), as well as no relationship (α1 = α2 = 0). Although our theoretical results in Section

3.2 apply to general benchmarks, we specialize our analysis to the case of an all-equity mutual fund for

which φY = 1.

We choose our parameterization of the fee rate fT to reflect the typical flow-performance relation-

ships in the mutual fund industry.29 Specifically, we assume a moderately high flow sensitivity to top

performance, no sensitivity of flows to bottom performance, and high sensitivity to medium performance:

α1 = 0, α2 = 1.5, ζ̄ = .94.

28 While many empirical studies document no sensitivity of flows to poor relative past performance (e.g. Sirri
and Tufano (1998)), many others (e.g. Huang, Wei, and Yan (2007)) find it is positive, although lower than the
sensitivity to medium or high relative returns.

29 See, e.g., Berk and Green (2004) and Huang, Wei, and Yan (2007) for models that identify mutual fund
characteristics associated with differences in the flow relationship. The latter authors provide empirical support
for their predictions.
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