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Abstract. We introduce a new class of swap trading strategies in incomplete mar-

kets, which disaggregate the tradeable compensation for time-varying nonlinear risks in

aggregate market returns. While the price of Hellinger variance, a tradeable put-call

symmetric measure of variance, has a leading contribution to the VIX volatility index,

the higher-order contribution to the VIX is comprehensively captured by the price of

tradeable skewness and kurtosis. Risk premia for trading Hellinger variance, skewness

and kurtosis do not vanish after transaction costs and are all linked to non-tradeable

indices of fear. Skew swaps appear as the most appropriate vehicles for trading fear and

disaster risk, as they are best spanned by non-tradeable indices of fear and consistently

price market skewness benchmarked to put-call symmetry.
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1. Introduction

This paper introduces a systematic model-free approach for identifying the tradeable

risk premium of time-varying market disaster risk. Our approach is based on a new class

of general divergence trading strategies in incomplete option markets, which allow us

to disaggregate the leading component of higher-order market risks from (second-order)

market volatility risk.1 We measure the risk premium and the price of disaster risk in a

model-free way, from excess returns and forward prices of appropriate simple divergence

swaps. We quantify the contribution of the price of disaster risk to the CBOE (2009) VIX

volatility index, which is often interpreted by practitioners and academics as a proxy of

investors’ fear for market-wide disasters. Finally, we show that among simple divergence

swaps, skew swaps are appropriate instruments for trading and pricing fear, which create a

leading exposure to S&P 500 index (SPX) return skewness, are spanned by non-tradeable

indicators of fear in the literature and consistently price return asymmetries benchmarked

to put-call symmetry.

Economically, fear can be understood as an aversion to an increase in downside risk

and it is naturally related to the economic concept of prudence (see Menezes et al., 1980,

among others). Prudence can also be characterized as an aversion to lotteries with a

payoff distribution exhibiting a more negative skewness, measured by lower odd moments

of any order (Ebert, 2013). Consistently with this motivation, our preferred tradeable

proxy of the price of fear directly reflects the price of realized market skewness captured

by arbitrary odd higher-moments.

While implied variance indices such as VIX2 are related to market skewness by construc-

tion, we find that the forward price of tradeable market skewness has an informational

1Divergence is a measure of discrepancy between random variables. Expected divergence is a measure of
discrepancy between probability distributions, which generalizes standard measures of distance, such as
the L2−distance.
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content different from other implied moments, which offers a convenient way to mea-

sure the price of fear as the price of an easily implementable skew trading strategy in

incomplete option markets. Figure 1 highlights the weak time series relation between the

implied variance and the implied skewness of S&P 500 (SPX) index returns, extracted

from two time series of simple divergence swap rates. Indeed, we find that often implied

variance is above average when implied skewness (kurtosis) is below (above) average, and

vice versa. Moreover, while implied variance typically rises significantly for short periods

of time, in connection with large downturns associated with adverse market news (as, e.g.,

after the Lehman default in September 2008), implied skewness can be persistently more

negative than average in periods of market recovery and low average volatility.

Consistent with the economic motivation of fear as an aversion to a decrease in skewness,

we identify the price of fear and fear risk premia through a new class of simple divergence

swaps, which are tradeable in incomplete option markets and consistently disaggregate the

compensation for variance and higher-order risks in SPX returns. Using such divergence

swaps, we quantify, price and trade the components of VIX more directly related to

investors’ fear. We show that the leading contribution of variance risk to VIX and VIX

risk premia is appropriately captured by Hellinger variance swaps, which measure the price

of realized variance in a put-call symmetric way, unaffected by rotations of the implied

volatility surface around the forward. Similarly, the leading contribution of skewness and

kurtosis risks to VIX and VIX risk premia is comprehensively captured by Hellinger skew

and kurtosis swaps.

Tradeability of our simple divergence swaps is ensured by the fact that they are im-

plementable at moderate transaction costs in incomplete option markets, when only a

discrete set of option strikes is available. This feature allows us to identify economically
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relevant risk premia for time-varying second- and higher-order market risks net of trans-

action costs. We then specify tradeable corridor versions of simple divergence swaps, in

order to localize the price and the risk premium for time-varying variance, skewness and

kurtosis over the support of the distribution of SPX returns. In this way, we can directly

observe how the prices and risk premia for variance, skewness and kurtosis depend on the

time-varying risks generated by distinct regions of the payoff space. Finally, we link the

forward price and the risk premium of simple variance, skewness and kurtosis swaps to

non tradeable fear indices proposed in the literature, in order to support their interpreta-

tion as tradeable proxies for the price of fear and fear risk premia. Our empirical findings

can be summarized as follows.

First, the risk premium (swap rate) for realized Hellinger variance is negative (positive)

and dominated by a negative (positive) non-monotonic contribution of out-of-the money

call and put (nearly at-the-money option) payoff risk premia (prices). Second, the risk

premium (swap rate) for skewness risk is positive (negative) and the consequence of large

positive risk premia (negative swap rates) for out-of-the-money put payoff risks, which

are virtually monotonically decreasing (increasing) with option moneyness. Third, the

risk premium (swap rate) for volatility feedback risk, which is tradeable using long-short

semi-variance portfolios, is also positive (negative), but it depends in a more balanced,

non-monotonic way on both out-of-the-money put and call option risks: At-the-money

call and put option risks have a substantial influence on the risk premium (swap rate),

which is positive (negative) for put (call) option payoffs, and hump-shaped for options

that are progressively more out-of-the-money. Fourth, the kurtosis risk premium (swap

rate) is negative (positive) and follows from a large negative (positive) contribution of risk

premia (swap rates) induced by out-of-the-money put option payoffs, which is monoton-

ically increasing (decreasing) with option moneyness. Finally, following this asymmetric
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evidence on divergence risk premia generated by out-of-the-money put and call payoff

risks, we investigate the interpretation of divergence swap rates and excess returns as

tradeable measures of the price and the risk premium for fear. We find that while swap

rates and excess returns of Hellinger variance, skewness, and kurtosis swaps all correlate

with proxies of fear in the literature, Bollerslev et al. (2014)’s Tail Index (TI) alone ex-

plains already about 70% of the variation in implied Hellinger skews. Similarly, predictive

regressions of skew swap returns on Bollerslev and Todorov (2011)’s Fear Index (FI) show

that the latter largely correlates with the time-varying component of the premium for

realized skewness, explaining about 30% of the variation in realized skew swap payoffs.

We conclude that skew swaps are appropriate instruments for measuring the time-varying

price of fear and for trading fear risk premia, in a way that helps to conveniently identify

the leading contribution of the price of fear to the VIX. Hellinger-implied skewness is

also a convenient tradeable measure of (forward neutral) skewness in incomplete option

markets, having good theoretical properties with respect to empirical deviations from

put-call symmetry and a large correlation with non tradeable indices of skewness used by

practitioners, such as the CBOE (2010) Skew Index.2

Our work draws from a large literature studying the implications of time-varying uncer-

tainty for the market price of variance and disaster risk and for the option-implied price

of higher moments. Models emphasizing the important role of time-varying volatility or

disaster risk for explaining key aggregate asset pricing features include Eraker and Shalias-

tovich (2008), Drechsler and Yaron (2011), Gabaix (2012) and Wachter (2013), among

others. The tight relation between SPX option-implied moments, fear and disaster risk

has been studied and documented by a large number of authors, including Bates (2000),

Carr and Wu (2009), Backus et al. (2011), Kelly et al. (2011), Martin (2013), Jackwerth

2In the sample period from January 1990 to February 2014, the correlation between the implied Hellinger
skewness and the CBOE skew is about 85%.
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and Vilkov (2013) and Andersen et al. (2014a), among others. Evidence that aggregate

higher moments risk is priced in the cross-section of asset returns has also been provided.

Chang et al. (2013) show that stock exposure to shocks in option-implied skewness is

priced with a negative premium. Cremers et al. (2014) estimate a lower excess return for

stocks with positive exposure to the payoffs of market-neutral straddle portfolios mimick-

ing time-varying volatility and jump risk, respectively. Jiang and Kelly (2012) document

large and persistent exposures of hedge funds to downside tail risk, as well as a key role of

tail risk for the cross-section of hedge fund returns. Our family of simple trading strate-

gies can prove useful to characterize with a model-free approach the implications of this

literature for the market price of tradeable market disaster risk, as the excess returns of

simple skew swaps offer a natural measure of realized disasters for directly estimating

time-varying market disaster risk premia and cross-sectional differences in exposure to

disaster risk.

Our work is also related to the large literature on volatility trading. While a small subset

of the trading strategies used in this paper has been considered in a previous version of this

manuscript (Schneider, 2012) and in Bondarenko (2014), we borrow from Schneider and

Trojani (2014)’s divergence framework to systematically isolate the tradeable properties

of higher-order market risks from second-order volatility risk. This approach allows us to

uniquely decompose VIX into the price contribution of even and odd implied moments

of SPX returns, measured by the implied legs of a new family of simple divergence swaps

that are tradeable at moderate transaction costs in incomplete option markets. The low

transaction costs of these strategies are a consequence of the fact that dynamic trading

during the lifetime of the swap is performed exclusively in the forward/futures market, in

contrast to the dynamic option portfolio strategies necessary to replicate the skew swap

contract proposed in Kozhan et al. (2013). Moreover, our simple divergence swaps are
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all based on static option portfolios that are delta-hedged in a model-free way in the

forward/futures market. Therefore, their payoffs have better statistical properties than

those of naked buy-and-hold positions in single deep OTM options stressed in Broadie

et al. (2009), allowing for a more accurate inference on divergence swap risk premia. Even

though our family of simple divergence swaps offers a natural nesting framework also for

different proxies of implied variance and corridor implied variance in the literature, such

has VIX, SVIX (Martin, 2013) and the corridor variance indexes in Carr and Lewis (2004),

Lee (2008), Andersen and Bondarenko (2009) and Andersen et al. (2011), among others,

we focus on the isolation of the tradeable properties of higher-order risk premia attached

to time-varying disasters. With this objective in mind, we specify a new class of simple

variance, skewness and kurtosis swaps that allow us to identify natural tradeable proxies

for the price and the risk premium of market fear in incomplete option markets.

The paper proceeds as follows. Section 2 introduces simple divergence trading strate-

gies, together with the modifications needed to accommodate corridor divergence, in Sec-

tion 2.5, and discrete option strikes, in Section 2.6. Section 3 studies the price and the

risk premia of simple divergence strategies empirically, as well as their interpretation as

prices and risk premia for fear. The distinct components of the price of VIX divergence

are isolated in Section 3.2, using simple Hellinger contracts trading realized variance,

skewness and kurtosis, while the relation to fear and tail indices is investigated in Section

3.7. Section 4 concludes. Section A of the Appendix contains tables and figures, while

Section B of the Appendix contain proofs of the main results in the paper.

2. Simple Trading Strategies

2.1. VIX and the Price of Fear. The VIX implied volatility index is often referred to as

an index of fear (CBOE, 2009), following the observation that states of particularly large

VIX values are correlated with states in which option insurance against future market
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catastrophe events is very expensive, as a consequence of investors’ prudent assessment of

market downside risk. This observation is a natural consequence of the definition of VIX

as the price of a portfolio of out-of-the money options, in which out-of-the-money puts

play a dominating role

(1) V IX2 ∝
n∑
i=1

Q(Ki)

K2
i

.

Here, i = 1, . . . , n indexes the set of available strikes Ki on a given date, for one month

maturity out-of-the-money options with prices Q(Ki). While VIX is mechanically related

to the price of catastrophe insurance, it measures to first-order the forward neutral market

variance, as can be seen from the cumulant expansion of VIX2, under the assumption of

a continuum of option prices (Martin, 2013)

(2) V IX2 = κ2 +
κ3

3
+
κ4

12
+
κ5

60
+ · · ·

where κi is the i−forward-neutral cumulant of log forward SPX returns. This expression

makes clear that VIX depends on the forward price of all realized even and odd moments

of SPX returns, with a decreasing dependence on higher moments.

Motivated by Menezes et al. (1980), we can understand fear as an aversion to increases in

downside risk, defined as an aversion to mean-variance preserving density transformations

shifting variation from the right to the left of the return distribution. As shown in

Menezes et al. (1980), aversion to downside risk is equivalent to the economic concept

of prudence, which in the expected utility framework is equivalent to the requirement of

a convex marginal utility. More generally, prudence attitudes are defined independently

of the expected utility framework, using the apportionment approach of Eeckhoudt and

Schlesiger (2006), and they are characterized by an aversion to lower odd moments of

any order, which is independent of even moments of any order. This property is known
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as the kurtosis robustness of prudence (Ebert, 2013). Therefore, fear can be understood

statistically as an aversion to a decrease of odd moments of any order, which is independent

of even moments. As a consequence, tradeable proxies for the price of fear should naturally

reflect the price of an increase or a decrease of an arbitrary odd moment. At the same time,

they should be as unrelated as possible to the price of even moments and, in particular,

the price of variance. This economic intuition motivates our approach.

In order to isolate more properly the price of fear and to measure its contribution

to the VIX, we specify a class of simple trading strategies that are suited to trade the

leading contributions of even and odd realized moments of arbitrary order in incomplete

option markets. These strategies are derived from the information-theoretic divergence

swaps introduced by Schneider and Trojani (2014) for a complete option market setting.

They are simple, because they are implementable using a discrete set of out-of-the money

options requiring only a single static option position at inception. This last feature is

important, in order to reduce the transaction costs implied by dynamic option-replication

strategies for realized higher moments, such as for example the dynamic skew swaps

considered in Kozhan et al. (2013). To specify our simple trading strategies in incomplete

option markets, we proceed in two steps. We initially introduce appropriate portfolios

of divergence swaps and their properties in a complete option market. We then extend

the approach used in the definition of VIX in CBOE (2009), in order to propose suitable

approximations of the prices and the payoffs of divergence swap portfolios in incomplete

option markets.

2.2. Simple Divergence Swaps. We start from a frictionless arbitrage-free market, in

which a continuum of European call and put options on the underlying SPX index, with

prices Ct,T (K) and Pt,T (K) at time t ∈ [0, T ], respectively, are traded at strikes K > 0.

We denote by Ft,T (pt,T ) the SPX forward price (the risk-less zero coupon price) at time
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t ∈ [0, T ] for delivery in T .3 Given a discrete grid of trading dates 0 = t0 < t1 < t2 < . . . <

tn = T , simple trading strategies are defined through a generating function Φ : R → R

which we assume to be twice-differentiable almost everywhere, and they pay as a floating

leg the realized (generalized) divergence

DΦ
n :=

n∑
i=1

DΦ(Fi,T ;Fi−1,T ) ,(3)

where for brevity Fi,T := Fti,T and DΦ(Fi,T ;Fi−1,T ) := Φ(Fi,T ) − Φ(Fi−1,T ) −

Φ′(Fi−1,T )(Fi,T − Fi−1,T ) is a (generalized) Φ−Bregman (1967) divergence between Fi,T

and Fi−1,T .4 The forward price of realized divergence follows from the martingale property

of forward prices and a telescoping sum property, as

S(DΦ
n ) := EQT

0 [DΦ
n ] = EQT

0 [DΦ
1 ] .(4)

Therefore, the terminal cash-flow of a simple divergence swap is

(5) ZΦ
T := DΦ

n − S(DΦ
n ) = ΦT,T − Φ0,T −

N∑
i=1

Φ′(Fi−1,T )(Fi,T − Fi−1,T ) ,

where Φt,T := EQT
t [Φ(FT,T )] is the t−forward price of terminal payoff Φ(FT,T ). By defini-

tion, the expected payoff of a divergence swap is a measure of the risk premium for trading

realized divergence, i.e., the divergence premium. Similarly, S(DΦ
n ) is the (forward) price

of future realized divergence. Therefore, divergence swaps that create a positive exposure

to realized odd moments of SPX returns, in a way that is as independent as possible of

the even moments of forward returns, are natural instruments to measure the price of fear

and to trade fear risk premia.

3Under the assumption of a constant interest rate, Ft,T can be interpreted as the SPX futures price.
4Strictly speaking, realized divergence and Bregman divergence are defined for a convex generating func-
tions Φ, which ensures divergence to be nonnegative. We consider here a general generating function,
because portfolios of proper divergence swaps give rise to simple trading strategies with generating func-
tions that are not globally convex.
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While VIX2 equals the price of a divergence swap with generating function Φ(x) =

−2 ln(x), VIX is not the most appropriate simple swap rate for measuring the price of

fear, since, according to expansion (2), it depends on a positive contribution of all even

and odd moments, with a dominating contribution of second moments.5 More generally,

we can introduce appropriate choices of generating functions Φ, in order to isolate more

systematically the price and the risk premium of fear from the prices and risk premia of

standard second-order risk aversion or other even higher-order attitudes to risk. Using

simple divergence swaps, this task is achievable with a model-free approach, because the

price (excess return) of a divergence swap can be computed from the price (payoff) of a

static option portfolio that is dynamically delta-hedged in the forward market.

Result 2.1 (Simple Divergence Swaps). In a complete arbitrage-free option market, the

floating leg (3) of a simple divergence swap can be generated by the payoff of a static

delta-hedged option portfolio, as follows

DΦ
n =

(∫ F0,T

0

Φ′′(K)PT,T (K)dK +

∫ ∞
F0,T

Φ′′(K)CT,T (K)dK

)
(6)

−
N∑
i=1

(Φ′(Fi−1,T − Φ′(F0,T )) (Fi,T − Fi−1,T ) .

The fixed leg (4) of a simple divergence swap has the following model-free representation,

in terms of the forward price of an option portfolio

S(DΦ
n ) = EQT

0 [DΦ
1 ] =

1

p0,T

(∫ F0,T

0

Φ′′(K)P0,T (K)dK +

∫ ∞
F0,T

Φ′′(K)C0,T (K)dK

)
.

The divergence swap in Result 2.1 is called simple, because the replicating strategy for

DΦ
n in Eq. (6) is based on a static option portolio, with weights Φ′′(K), and a dynamic

5Therefore, VIX actually reflects a combination of the price of several second- and higher-order attitudes
to risk, such as, e.g., standard risk aversion, prudence and temperance.
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delta-hedging that is performed exclusively in the forward market. Moreover, the fixed

leg of a simple divergence swap is independent of the hedging frequency. Therefore, the

forward price for realized divergence is independent of the observation frequency.6 Table

1 illustrates the structure of the replicating strategy of simple divergence swap payoffs.

2.3. Divergence Indices and Simple Power Divergence Swaps. To isolate system-

atically the price and the risk premium of fear, we borrow from Schneider and Trojani

(2014) and introduce a flexible class of divergence swaps, which is generated by power

functions. Using portfolios of power divergence swaps, we can then more directly and more

systematically identify the prices and the risk premia of odd higher-order risk attitudes.

Definition 2.2. (i) For any q ∈ R, a power divergence swap of order q is the divergence

swap generated by power function

(7) Φq(x) :=
xq − 1

q(q − 1)
; x ∈ Dq ⊂ R

where Φ0(x) := − ln(x) and Φ1(x) := x ln(x) are defined by continuity and Dq = R for

q ∈ N \ {0, 1} and Dq = R+ otherwise. We denote by Dq
n := D

Φq
n (S(Dq

1) := S(D
Φq

1 )) the

floating (fixed) leg of a power divergence swap of order q. (ii) For any q ∈ R, the (power)

divergence index of order q is defined by7

DIX(q) := 2S(Dq
n/F

q
0,T ) .(8)

6In contrast to the skew swap in Kozhan et al. (2013), after the inception date the replicating strategy
of simple divergence swaps does not take positions in implied moments. Another difference is the hedge
ratio Φ′(Fi−1,T ) for the delta-hedging in the forward market, which in their case depends on the forward
price of a nonlinear claim at time ti−1, which can be computed in a model free-way using the cross section
of option prices at time ti−1.
7The scaling by F q

0 ensures the scale-invariance of DIX(q) with respect to the initial forward price F0,T ;
see Schneider and Trojani (2014).
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(iii) For any q ∈ R, the divergence index of order q, relative to Hellinger divergence, is

defined by8

DIX(q) := DIX(q)/DIX(1/2) .(9)

Since, from Result 2.1, V IX2 = DIX(0) is a particular example of a divergence index,

the floating leg of the simple divergence swap that has VIX as a fixed leg equals twice the

Itakura and Saito (1968) divergence

2D0
n = −2

n∑
i=1

(ln(Fi,T/Fi−1,T )− (Fi,T/Fi−1,T − 1)) .(10)

In a continuous-time world with pure-diffusion price dynamics, this divergence is designed

to trade exactly the quadratic variation of log returns.9

In general, the leading contribution to all power divergence indices derives from the

second forward neutral moment of log returns. Explicitly,

DIX(q) = µ2 + 2
∞∑
k=3

Ak(q) ·
µk
k!

,(12)

where Ak(q) := (qk−1−1)/(q−1) and µk is the k−th forward-neutral moment of log returns

yT = ln(FT,T/F0,T ). In other words, to first-order all divergence indices capture the second

forward-neutral moment of log returns and differences between indices arise from different

8The terminology Hellinger divergence index for DIX(1/2) derives from the fact that the 1/2−power
divergence equals half the squared Hellinger distance.
9In a similar vein, DIX(2) = SV IX2, the simple variance index introduced by Martin (2013). The
floating leg of this simple divergence swap is

2D2
n =

n∑
i=1

(
Fi,T − Fi−1,T

F0,T

)2

,(11)

and it is proportional to the realized variance of forward prices.
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contributions of higher moments.10 Therefore, portfolios of power divergence swaps can

naturally isolate the contribution of higher moments to the price of divergence, in a way

that is not mechanically related to second moments.

Expansion (12) raises the question of which divergence index is most suited to capture

the price of divergence symmetrically, i.e., in a way that does not depend on a simple

rotation of the option-implied volatility smile with respect to log moneyness. Schneider

and Trojani (2014) show that DIX(1/2), the Hellinger divergence index, is the single

power divergence index that is invariant to rotations of implied volatilities.11 Moreover,

while empirically DIX(1/2) and other power divergence indices look similar, expansion

(12) shows that differences between such indices are informative about the price of higher

moments risk. The relative divergence index DIX(q) is a direct natural measure of such

differences, in terms of the relative price of asymmetric and symmetric divergence: While

DIX(1/2) is invariant to changes in the sign of the slope of the smile, DIX(q) is not

for q 6= 1/2. Finally, DIX(q) also has the obvious interpretation of the fixed leg of a

divergence swap with floating leg

(14) DIXn(q) :=
2Dq

n

F q
0DIX(1/2)

.

2.4. Skewness, Quarticity and Higher-Order Hellinger Swaps. To identify the

prices and the risk premia of fear and, more generally, realized higher moments, we make

use of higher-order Hellinger swaps. These swaps exploit the local structure of power

10For instance, the divergence index of order −1 depends exclusively on the even moments of forward
returns

DIX(−1) = µ2 + 2

∞∑
k=1

µ2k

(2k)!
.(13)

11The Hellinger divergence index also implies the smallest absolute contribution of higher moments with
respect to symmetric divergence swap rates; see Schneider and Trojani (2014).
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divergence swaps at q = 1/2, in order to uniquely decompose power divergence into put-

call symmetric (put-call antisymmetric) contributions of even (odd) higher-order attitudes

to uncertainty.

Definition 2.3. (i) A (scaled) simple Hellinger swap of order j ∈ N is a swap with floating

leg

D1/2
n (j) :=

dj(Dq
n/F

q
0,T )

dqj

∣∣∣∣∣
q=1/2

=
n∑
i=1

dj(Dq(Fi,T ;Fi−1,T )/F q
0,T )

dqj

∣∣∣∣∣
q=1/2

,(15)

and fixed leg given by

S(D1/2
n (j)) = EQT

0 [D
1/2
1 (j)] =

djEQT
0 [Dq

1/F
q
0,T ]

dqj

∣∣∣∣∣
q=1/2

.(16)

(ii) We call the simple Hellinger swaps of order 0, 1, 2 and 3, Hellinger variance, skew,

quarticity and quinticity swaps, respectively.

By construction, second- and higher-order simple Hellinger swaps in Definition 2.3 are

simple divergence swaps generated by a corresponding generating function. Therefore,

they can be replicated and priced in a model-free way using Result 2.1. Obviously, the

zero-th order Hellinger swap is the (scaled) 1/2-power divergence swap, which measures

the price of realized divergence symmetrically. It is defined through the generating func-

tion

Φ
(0)
1/2(x/F0,T ) := Φ1/2(x/F0,T ) = −4((x/F0,T )1/2 − 1) .(17)

The Hellinger skew swap is the simple divergence swap defined by the generating function

Φ
(1)
1/2(x/F0,T ) :=

dΦq(x/F0,T )

dq

∣∣∣∣
q=1/2

= −4(x/F0,T )1/2 ln(x/F0,T ) .(18)
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Similarly, the simple Hellinger quarticity swap is generated by function

Φ
(2)
1/2(x/F0,T ) :=

d2Φq(x/F0,T )

dq2

∣∣∣∣
q=1/2

= −4[(x/F0,T )1/2(ln2(x/F0,T ) + 8)− 8] .(19)

From expansion (12) and Definition 2.3, the swap rate of a k−th order Hellinger swap

has a leading contribution of moments of order k and a zero contribution of moments of

order less than k. For instance, for Hellinger skew and quarticity swaps expansion (12)

yields, respectively

S(D
1/2
1 (1)) =

∞∑
k=3

dAk(q)

dq

∣∣∣∣
q=1/2

µk
k!

= −4
∞∑
k=3

k(1/2)k−1 − 1

k!
µk ,(20)

S(D
1/2
1 (2)) =

∞∑
k=4

d2Ak(q)

dq2

∣∣∣∣
q=1/2

µk
k!

= −16
∞∑
k=4

(1/2)k(k(k − 1) + 2)− 1

k!
µk .(21)

It follows that k−th order Hellinger swap rates systematically isolate the leading con-

tribution of the k−th order moments of log returns to the price of power divergence.

Moreover, Schneider and Trojani (2014) show that even (odd) order Hellinger swap rates

isolate such a contribution in a way that is consistent with put-call symmetry, i.e., put-call

symmetrically (put-call antisymmetrically) with respect to rotations of the option-implied

volatility smile. A useful implication of this property is that all odd Hellinger swap rates

are zero under put-call symmetry. This feature is consistent with the intuition that in

continuous-time pure diffusion models with no correlation between returns and volatility

the price of fear should be zero; see Carr and Lee (2009) for a detailed characterization

of put-call symmetry in continuous-time models.

Hellinger swaps decompose power divergence swaps into the leading contributions of

higher-order risks, as a consequence of the fact that the generating functions of power
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divergence and Hellinger swaps are related by

Φq(x/F0,T ) =
∞∑
j=0

Φ
(k)
1/2(x/F0,T )

(q − 1/2)j

j!
.(22)

In this identity, even (odd) Hellinger swaps contribute identically (with opposite sign

but identical absolute contribution) to all power divergence swaps of order q and 1 − q,

respectively. Therefore, differences between power divergence swaps of order q and 1− q

arise exclusively from the contribution of odd Hellinger swaps. Following these insights,

we can use the analyticity of power divergences to obtain a convenient decomposition of

power divergence swaps, which can be used to measure the contribution of the price of

fear to the VIX.

Result 2.4. For any q ∈ R, the floating and the fixed leg of a simple power divergence

swap of order q have the following unique decomposition

Dq
n/F

q
0,T =

∞∑
j=0

D1/2
n (j)

(q − 1/2)j

j!
,(23)

S(Dq
1/F

q
0,T ) =

∞∑
j=0

S(D
1/2
1 (j))

(q − 1/2)j

j!
.(24)

In particular, VIX can be uniquely decomposed as follows, using Hellinger variance,

Hellinger skewness and Hellinger quarticity

V IX2 =
∞∑
j=0

2S(D
1/2
1 (j))

(−1)j

(2j)j!
(25)

≈ 2 · S(D
1/2
1 (0))− S(D

1/2
1 (1)) +

1

4
S(D

1/2
1 (2)) .

In Result 2.4, the contribution of all even (odd) Hellinger swap rates to VIX2 is strictly

positive (negative). Increases (decreases) in uncertainty, which are reflected in a change of

the level but not the slope of the smile, increase (decrease) the price of all even Hellinger
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swaps and the VIX. In contrast, a positive (negative) deviation from put-call symmetry

increases (decreases) the price of all odd Hellinger swaps and the VIX. Finally, the price

of all odd Hellinger swaps is zero in absence of deviations from put-call symmetry. In this

case, the VIX is completely determined by the price of the even Hellinger swaps.

Intuitively, it is difficult to motivate a non-zero price of fear and fear risk premium in

economies where put-call symmetry holds, such as, e.g., a standard Black–Scholes econ-

omy or a continuous-time pure-diffusion economy with independent returns and volatili-

ties, because of the symmetry of log returns under the physical and the forward-neutral

probabilities in such settings. Consistent with this intuition, the swap rate of all odd

Hellinger swaps is zero in such economies. Moreover, since even Hellinger swap rates are

invariant to rotations of the implied volatility smile, they do not capture changes in the

sign of the price of fear, when put-call symmetry deviations arise, e.g., from a flipping sign

of the correlation between returns and volatility. In contrast, odd Hellinger swap rates

are antisymmetric with respect to rotations of the smile and consistently reflect a change

in the sign of the price of fear. We conclude that swap rates and excess returns of odd

Hellinger swaps are more naturally related to the price of fear and to fear risk premia ex-

ante. Note that the leading contribution of odd Hellinger swap rates to VIX2 is produced

by the Hellinger skew, the second-order contribution by the Hellinger quinticity, and so

on. Therefore, Hellinger skew swaps are natural instruments for trading and pricing fear,

using a model-free approach.

Remark 2.5. Result 2.4 implies in general that Hellinger variance, Hellinger skewness

and Hellinger quarticity indices are sufficient to span quite accurately (i.e., up to terms
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of order O(µ5)) power divergence indices, as follows

DIX(q) ≈ 2 · S(D
1/2
1 (0)) + (q − 1/2) · 2S(D

1/2
1 (1)) + (q − 1/2)2 · S(D

1/2
1 (2))(26)

=: DIX(1/2) + (q − 1/2)SKEW (1/2) + (q − 1/2)2QUART (1/2) .

Empirically, decomposition (26) is indeed very accurate and virtually identical to the

following exact decomposition of DIX(q)

DIX(q) = DIX(1/2) + (q − 1/2)SKEW (q) + (q − 1/2)2QUART (q) ,(27)

where

SKEW (q) :=
DIX(q)−DIX(1− q)

q − 1/2
,(28)

QUART (q) :=
DIX(q) +DIX(1− q)−DIX(1/2)

(q − 1/2)2
,(29)

are the (scaled) put-call antisymmetric skew and symmetric quarticity indices of order q in

Schneider and Trojani (2014). Therefore, SKEW (1/2) (QUART (1/2)) can be directly

interpreted as the fixed leg of a long-short portfolio of power (symmetric) divergence

swaps, giving rise to put-call antisymmetric (symmetric) skew (quarticity) swaps. Figure

2 of the Appendix illustrates the relation between decompositions (26) and (27) for power

divergence swaps, showing that they are virtually identical for empirical purposes.

According to decomposition (26), the relative divergence index DIX(q), can also be

naturally decomposed in terms of relative skew and quarticity indices

DIX(q) ≈ 1 + (q − 1/2)SKEW (1/2) + (q − 1/2)2QUART (1/2) ,(30)
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where the relative Hellinger skew is SKEW (1/2) := SKEW (1/2)/DIX(1/2) and the

relative Hellinger quarticity is QUART (1/2) := QUART (1/2)/DIX(1/2). The ob-

vious floating legs associated with relative skew and quarticity are SKEW n(1/2) :=

(2D
1/2
n (1))/DIX(1/2) and QUART n(1/2) := D

1/2
n (2)/DIX(1/2), respectively

In terms of scale-invariant skew and quarticity indices, an equivalent useful decompo-

sition of relative power divergence is

DIX(q) ≈ 1 + (q − 1/2)DIX(1/2)1/2 ˜SKEW (1/2) + (q − 1/2)2DIX(1/2) ˜QUART (1/2) ,

with the scale-invariant Hellinger skew and quarticity indices

˜SKEW (1/2) :=
SKEW (1/2)

DIX(1/2)3/2
; ˜QUART (1/2) :=

QUART (1/2)

DIX(1/2)2
.(31)

Scale-invariant indices are useful to measure time-variations of the price of skew and

quarticity that are not directly induced by a time-variation of the price of (symmetric)

divergence. ˜SKEW (1/2) and ˜QUART (1/2) also have the obvious interpretation of the

fixed legs of scale-invariant skew and quarticity swaps, having the floating legs

˜SKEWn(1/2) :=
2D

1/2
n (1)

DIX(1/2)3/2
; ˜QUARTn(1/2) :=

D
1/2
n (2)

DIX(1/2)2
,(32)

respectively. These swaps can be used to measure the risk premia traded using scale-

invariant skew and quarticity.

2.5. Corridor Contracts. An important recent development in measuring implied vari-

ance is the corridor version of the VIX, the CVIX, proposed by Lee (2008), Andersen and

Bondarenko (2009), Andersen et al. (2011), and Andersen et al. (2014b), among others.

CVIX is constructed to measure to first-order the forward neutral variance of log returns,
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while controlling for the illiquidity (or absence) of options far out-of-the-money in prac-

tice. CVIX can be interpreted as the fixed leg of a particular simple divergence swap with

a corresponding generating function. Therefore, it is naturally embedded into the simple

divergence swap framework established by Result 2.1. Given a generating function Φ, we

can define for any 0 ≤ a < b the corridor generating function Φa,b, as follows:

(33) Φa,b(x) :=


Φ(a) + Φ′(a)(x− a) x < a ,

Φ(x) a ≤ x ≤ b ,

Φ(b) + Φ′(b)(x− b) b < x .

The corridor function equals Φ inside the corridor and it is the linear extrapolation of Φ

outside the corridor. When Φ is convex, the linear extrapolation of Φ outside the corridor

implies the convexity of Φa,b. Moreover, the realized divergence generated by function Φa,b

outside the corridor is zero, because the corridor generating function is linear there. As

a consequence, corridor divergence is concentrated on price changes inside the corridor,

or price changes from regions inside (outside) the corridor to regions outside (inside) the

corridor.

Given corridor generating function Φa,b, corridor divergence swaps are easily replicated

and priced, using a slightly modified version of Result 2.1. The floating leg of a corridor

swap is simply D
Φa,b
n , with the realized divergence in Eq. (3), where Φ′a,b(x) is the left

derivative of Φa,b in x. Denoting by Φ′′a,b(x) second left derivatives, we prove in Appendix

B.2 the following modified version of Result 2.1, which gives the explicit weights of the

option replicating portfolio for corridor divergence.

Corollary 2.6 (Simple Corridor Divergence Swaps). In a complete arbitrage-free option

market, the floating leg (3) of a simple corridor divergence swap can be generated by the
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payoff of a static delta-hedged option portfolio

D
Φa,b
n =

(∫ min{F0,T ,b}

a

Φ′′(K)PT,T (K)dK +

∫ ∞
max{F0,T ,a}

Φ′′(K)CT,T (K)dK

)
(34)

−
N∑
i=1

(
Φ′a,b(Fi−1,T )− Φ′a,b(F0,T )

)
(Fi,T − Fi−1,T ) .

The fixed leg (4) of a simple corridor divergence swap has the following model-free repre-

sentation, in terms of the forward price of an option portfolio

S(D
Φa,b
n ) =

1

p0,T

(∫ min{F0,T ,b}

a

Φ′′(K)P0,T (K)dK +

∫ b

max{F0,T ,a}
Φ′′(K)C0,T (K)dK

)
.

The static option portfolio in the dynamic replication strategy for corridor divergence

swaps in Corollary 2.6 has portfolio weights given by Φ′′(K) inside the corridor and zero

outside of the corridor, i.e., for appropriate choices of thresholds a and b, out-of-the-

money call and/or put payoffs have no contribution to realized corridor divergence. For

the case a ≤ F0,T < b and a VIX generating function Φ(x) = −2 ln(x), the implied leg

S(D
Φa,b
n ) of the corridor divergence swap gives the CVIX in Andersen and Bondarenko

(2009) and Andersen et al. (2011). Equation (34) gives explicitly the replicating strategy

for the realized corridor divergence, from which it follows that the floating leg of a corridor

divergence swap having CVIX as implied leg is simply a corridor Itakura and Saito (1968)

divergence. Panel (a) of Figure 3 illustrates the relation between realized power divergence

and realized corridor power divergence for power q = 0.

Remark 2.7. Corridor divergence swaps can be introduced for general generating func-

tions Φ, e.g., to define corridor Hellinger variance, Hellinger skew and Hellinger quarticity

swaps, having a floating and a fixed leg that does not excessively depend on the payoffs

and prices of out-of-the-money options. Allowing for a lower (upper) corridor threshold
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a = 0 (b = ∞), one obtains upper and lower semi-divergence swaps. For instance, start-

ing from the generating function Φ1/2(x) of Hellinger divergence, we can obtain an upper

Hellinger semi-variance index, based on an upper corridor threshold b =∞

(35) UDIX(1/2) :=
2

p0,TF
1/2
0,T

(∫ ∞
F0,T

Φ′′1/2(K)Ct,T (K)dK

)
.

Similarly, using a lower corridor threshold a = 0, we obtain a lower Hellinger semi-variance

index

(36) LDIX(1/2) :=
2

p0,TF
1/2
0

(∫ F0,T

0

Φ′′1/2(K)Pt,T (K)dK

)
.

UDIX(1/2) and LDIX(1/2) are natural measures of the price of symmetric divergence

in upside and downside markets, respectively. Therefore, their difference captures to first

order the price of volatility asymmetries in upside and downside markets, i.e., the price of

volatility feedback effects, giving rise to the following Hellinger volatility feedback index:12

(37) SKEWUL(1/2) := UDIX(1/2)− LDIX(1/2) .

As volatility feedback is naturally related to returns asymmetries, we can inter-

pret SKEWUL(1/2) as an additional tradeable proxy for the price of fear. Also

SKEWUL(1/2), like the implied Hellinger skew, has a price of zero under put-call sym-

metry.

2.6. Tradeable Divergence Swaps in Incomplete Option Markets. In practice,

option markets are incomplete. Therefore, a continuum of option prices to compute the

12See Turner et al. (1989), Campbell and Hentschel (1992), Bekaert and Wu (2000), Bollerslev et al.
(2006) and Calvet and Fisher (2007), among others, for papers finding empirical support for volatility
feedbacks. See also Lettau and Ludvigson (2010) for a review.
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option portfolio in the replicating strategy for realized divergence is not in general avail-

able, even inside a compact corridor [a, b]. In practice realized divergence can be traded

only approximately, using piecewise linear generating functions Φ and option portfolios

that depend on a finite number of out-of-the-money options. These features are directly

reflected also in definition (1) of the VIX by CBOE. The extent to which traded realized

divergence accurately approximates the theoretical divergence generated by a function Φ

depends on the granularity of the available option price information across strikes, which

is a function of variables related to market liquidity and market structure. Whenever

only a few strikes are traded, as it is the case for example in the foreign exchange option

market, a replication of realized divergence based on a dynamic delta hedging using the

hedge ratio implied by the theoretical generating function Φ, instead of its piecewise linear

approximation, may induce non-negligible hedging errors. Therefore, in incomplete op-

tion markets we directly define realized divergence in terms of piecewise linear generating

functions that allow a perfect replication with a finite number of option payoffs.

The basic intuition to define a piecewise linear divergence generating function associated

with a general generating function Φ borrows from identity (34) in Corollary 2.6, which

implies

Φ̃a,b(FT,T ) := Φa,b(FT,T )− Φa,b(F0,T )− Φ′a,b(F0,T )(FT,T − F0,T )

=

∫ min(F0,T ,b)

a

Φ′′(K)PT,T (K)dK +

∫ b

max(F0,T,a)

Φ′′(K)CT,T (K)dK .

In this equation, note that functions Φ̃a,b and Φa,b generate the same corridor realized

divergence, because Bregman divergence is invariant to affine transformations of the un-

derlying generating function; see Banerjee et al. (2005), among others. As a consequence,

the integral representation of Φ̃a,b(x) implied by the above identity gives a natural way

to generate and trade realized divergence using a finite number of strikes.
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Precisely, given an index set ι = {1, 2, . . . ,M,M + 1, . . . , N − 1, N}, enumerating the

available option prices at time 0, such that K1 < . . . < KM ≤ F0,T < KM+1 < . . . < KN ,

we substitute the two integrals in the definition of Φ̃a,b by their discrete approximation

and introduce the following piecewise linear generating function

(38) Φa,b(x; ι) :=
M∑
i=1

Φ′′(Ki)(Ki − x)+∆Ki +
N∑

i=M+1

Φ′′(Ki)(x−Ki)
+∆Ki ,

where

(39) ∆Ki :=


(Ki+1 −Ki−1)/2 if 1 < i < N ,

(K2 −K1) if i = 1 ,

(KN −KN−1) if i = N .

The dynamic delta hedging in the definition of the realized divergence

D
Φa,b(·;ι)
n := Φa,b(FT,T ; ι)− Φa,b(F0,T ; ι)−

n∑
i=1

Φ′a,b(Fi−1,T ; ι)(Fi,T − Fi−1,T ) ,(40)

generated by function Φa,b(·; ι), is computed in a straightforward way, using the left de-

rivative

(41) Φ′(x; ι) = −
M∑
i=1

Φ′′(Ki)11{Ki−x>0}∆Ki +
N∑

i=M+1

Φ′′(Ki)11{x−Ki>0}∆Ki .

From these findings, we define consistently with Result 2.1 a tradeable divergence swap,

generated by function Φ in incomplete option markets.

Definition 2.8. In an incomplete option market, with strike prices Ki indexed by i ∈ ι,

a simple divergence swap generated by function Φ is the swap with floating leg D
Φa,b(·;ι)
n
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given in equation (40) and fixed leg given by

S
(
D

Φa,b(·;ι)
1

)
=

1

p0,T

(
M∑
i=1

Φ′′(Ki)P0,T (Ki)∆Ki +
N∑

i=M+1

Φ′′(Ki)C0,T (Ki)∆Ki

)
.

Besides being consistent with our general approach to trade realized divergence, the

tradeable fixed leg in Definition 2.8 is also fully consistent with the definition of VIX

by CBOE, which is obtained in our setting starting from a generating function Φ(x) =

−2 ln(x) on a suitable corridor [a, b]. Panels (b) and (c) of Figure 3 illustrate the properties

of realized corridor power divergence (q = 0) and Hellinger realized corridor skewness in

complete and incomplete option markets, respectively.

3. Fear Trading

We make use of simple divergence swaps to disaggregate the VIX into the forward price

of second-order Hellinger variance and the forward prices of higher-order Hellinger skew-

ness and kurtosis, consistently with the VIX decomposition in Result 2.4. We focus on

implied Hellinger variance, skewness and kurtosis, because they span the VIX very ex-

haustively. We also study Hellinger volatility feedback swaps, because they are additional

natural trading strategies creating an exposure to market skewness. Using the corridor

swap technology in Section 2.5, we further disaggregate the swap rates and the risk premia

of Hellinger variance, skewness, kurtosis and volatility feedback over the support of SPX

returns, in order to measure the local excess returns for realized variance, skewness and

kurtosis risk over the support of SPX returns. From the excess returns (swap rates) of

some of these swaps, we identify and characterize the tradeable components of fear risk

premia (the price of fear).

Precisely, we first make use of corridor (VIX and Hellinger) variance swaps, in order

to characterize the contribution of higher-order risks to variance excess returns. We then
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compare these findings to those of corridor Hellinger skewness, kurtosis and volatility

feedback swaps, in order to characterize the distinct asymmetric excess return properties of

higher-order swaps. Finally, we link the swap rates and the excess returns of higher-order

swaps to non-tradeable indices for the price and the risk premium of fear in the literature,

in order to support and further motivate their interpretation as tradeable indicators of

fear.

3.1. Data Set and Corridor Choice. We use monthly observations of the prices of SPX

options, obtained from MarketDataExpress for the sample period from January 1990 until

February 2014. Following Engle and Neri (2010), we exclude options with negative bid-

ask spreads, with an implied volatility smaller than 0.001 or greater than 9, or with a

Gamma greater than 0. Forward prices are computed from the option data through put-

call parity, following CBOE (2009). We use this data to compute several monthly time

series of the floating legs and the swap rates of corridor divergence swaps, generated by

the piecewise linear approximation Φa,b(·, ι) in Eq. (38) for a generating function Φ. Such

a linear approximation is defined from the set of observed option strikes without relying

on any interpolation or extrapolation. As divergence functions Φ, we consider zero-th

order power divergence (the VIX generating function) and the generating functions of

Hellinger variance, skewness and quarticity swaps. Moreover, we compute the floating

legs and swap rates of corridor versions of Hellinger volatility feedback swaps.

We fix a monthly horizon for all divergence swaps, starting and ending on the third

Friday of each month, consistently with the maturity structure of option data. Options

are struck at the special opening quotation (SOQ), which brings together the spot and

the futures market.13 The delta hedge in the floating leg of our swaps is performed on a

daily frequency, in order to mimic as closely as possible OTC variance swaps, in which

13The CME reports significant deviations of the SOQ from the spot open price on around 30 occasions
since 2004.
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the floating leg is usually defined using daily squared log returns. As shown in Section

2, the implied swap leg of our divergence swaps is independent of the frequency of the

hedging strategy. Given that the transaction costs implied by bid-ask spreads in option

markets can be large, we compute effective excess payoffs and risk premia for short and

long swap positions, using bid and ask prices, respectively, and we compare them to those

implied by mid bid-ask prices.

We work with corridor swaps implied by the following corridor choices, {[ai, bi) :

i = 1, . . . , 11}, defined in percentage deviations from zero log moneyness: (−∞,−15),

[−15,−10), [−10,−6), [−6,−4), [−4,−2), [−2, 0), [0, 2), [2, 4), [4, 6), [6, 10) and [10,∞).

This corridor choice implies a convenient trade-off between the degree of disaggregation

of divergence risk premia over the support of SPX returns and the statistical properties

of corridor divergence payoffs in the corridor. Such a tradeoff arises from the fact that

finer corridors are typically associated with the delta-hedged payoffs of a more limited set

of out-of-the-money options having strike price inside the given corridor.14

Broadie et al. (2009) show that the statistical properties of naked out-of-the-money

option payoffs can imply a low accuracy of estimated option risk premia, especially for

sufficiently deep out-of-the money options with an abnormally skewed empirical return

distribution. Our corridor divergence approach overcomes this important issue in several

ways. First, we make use of delta-hedged divergence payoffs that imply a market neutral

payoff, as suggested by Broadie et al. (2009). Second, we select corridor widths implying

a sufficient granularity of traded option strikes in the corridor. In this way, we can

trade corridor divergence based on a sufficiently diversified portfolio of out-of-the-money

14As a robustness check, we also apply a slightly finer corridor stratification, which does however not
change our results. The results are available in the Online Appendix. By construction, a too fine
stratification implies a too low power for estimating accurately divergence risk premia, because of a too
low number of traded out-of-the-money options with strike price inside the corridor, so that there is a
natural limit to risk premium stratification.
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options. Finally, we normalize realized corridor divergence payoffs by the implied leg

of total realized divergence, instead of corridor divergence. This allows us to measure

additively the contribution of corridor risk premia to total divergence risk premia and

has the advantage of avoiding a scaling of corridor payoffs by the small implied legs of

corridors that imply large deviations from zero log moneyness. In summary, this approach

allows us to disaggregate in an easy way the excess returns of simple divergence swaps

over the support of SPX returns, while preserving at the same time the efficiency of the

estimation of corridor divergence risk premia.

Figure 4 illustrates some aspects of our corridor divergence methodology for disaggre-

gating divergence risk premia. It also highlights the tradeoff between the choice of the

corridor width and the statistical properties of corridor divergence swap payoffs. Panel 4a

(Panel 4b) of Figure 4 plots the time series of returns of a short Hellinger skew swap in the

corridor [−10,−6) (in the corridor (−∞, 0)). The empirical distribution of corridor skew

returns in Panel 4a is generated by the payoffs of a long portfolio of out-of-the-money

puts with a percentage log moneyness between -10% and -6%. In the vast majority of the

cases, the payoff of the corridor skew swap equals zero and the swap yields a loss of 100%.

At the same time, the empirical distribution of positive swap returns contains a number

of quite large returns.15 While this distribution is pronouncedly positively skewed, it is

clearly less affected by extreme option returns than the empirical distribution of naked 6%

out-of-the-money put returns, consistent with the findings in Broadie et al. (2009). When

the corridor is wider or when it contains strikes of options that are less out-of-the-money,

as in Panel 4b of Figure 4, the empirical distribution of corridor returns tends to be less

dominated by extreme positive returns and by 100% losses. Aggregating further over all

corridors, we obtain in Panel 4c the time series of short Hellinger skew returns, which

15Note that we plot a return of zero in all cases where no option with positive option price and with a
strike price inside the relevant corridor is available for replicating the corridor divergence.
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implies an empirical return distribution that is even more well-behaved.16 Finally, scaling

corridor divergence payoffs by implied divergence, instead of corridor implied divergence,

allows us to quantify the contribution of corridor risk premia to total divergence risk pre-

mia and further regularizes the empirical distribution of corridor divergence payoffs, as

shown in Figures IA.4 and IA.5 of the Online Appendix.

With the exception of corridors implied by extreme log moneyness deviations of about

±15% or more, for which the statistical uncertainty might make the estimation of expected

corridor excess payoffs challenging for some types of divergence swaps, we conclude that

our corridor methodology preserves a sufficient power for identifying corridor divergence

risk premia.

3.2. Power Divergence Risk Premia. In this section, we first quantify the aggregate

risk premia of power divergence swaps, while accounting for the bid-ask spreads in in-

complete option markets. In a second step, we disaggregate these risk premia over the

support of SPX returns using our corridor methodology. We focus on power divergence

swaps of order 0 and 1/2, in order to decompose VIX in a second step into the return

contribution of put-call symmetric Hellinger variance, Hellinger skewness and Hellinger

kurtosis, respectively.

3.2.1. Aggregate VIX and Hellinger Variance Risk Premia. Table 2 summarizes the prop-

erties of the unconditional payoff of power divergence swaps, normalized by the price of

Hellinger variance, estimated as the sample average of payoff

DIXn(q)−DIX(q) = (2Dq
n/F

q
0 −DIX(q))/DIX(1/2) ,(42)

16For comparison, we provide in the Online Appendix the box plots of the empirical distribution of
corridor skew returns in Figure 4. We also provide a plot of the time series of corridor skew returns for
a more extreme corridor (−∞,−10].
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for q = 0, 1/2. By construction, the fixed leg of this payoff is the relative power divergence

index DIX(q). Moreover, for q = 1/2, quantity (42) is the risk premium on Hellinger

variance. We compute average normalized excess payoffs from the perspective of both a

swap seller and a swap buyer, using mid, bid and ask prices, respectively.

In Table 2, we find that a short position on power divergence swaps executed at mid

prices yields an annualized relative excess payoff of 28.34% (29.36%) for q = 1/2 (q = 0)

over the full sample. The average excess payoff in the first (second) half of the sample is

only larger (lower). In all cases, the average payoff of VIX-type swaps, evaluated at mid

prices, is slightly larger than the one of Hellinger variance swaps.

These findings are the result of two distinct effects of demand and supply for divergence

swaps, which can be highlighted using bid and ask divergence swap returns. While traded

swap prices are likely strictly inside the bid-ask spread in phases of balanced option

demand and supply, a divergence swap return evaluated at bid (ask) prices provides useful

information about an upper (lower) bound for the return of a short (long) swap position,

which could be more relevant in phases of excess net demand for some particular out-of-

the-money put or call options. The effect of bid-ask spreads is large and economically

relevant, with average excess payoffs around 6% lower (higher) for short (long) swap

positions for VIX-type swaps. This asymmetric effect of bid ask spreads on divergence

swap returns is a natural consequence of the larger loading on out-of-the-money puts

in the option replicating portfolio of VIX relative to Hellinger variance. Consequently,

the larger (smaller) returns for shorting (going long) variance swaps arise systematically

for Hellinger swaps, i.e., shorting (going long) VIX-type swaps is on average more (less)

expensive in phases of net buying pressure on out-of-the-money puts (calls).

Sharpe ratios for shorting power divergence swaps at mid prices are large and similar

across contracts. They are about 49% for Hellinger as well as VIX variance over the
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full sample. They have been about 12% higher (5% lower) in the first (second) part of

the sample, making short divergence swaps particularly profitable from January 1990 to

December 2002. The Sharpe ratios of long (short) swap positions are higher (lower) by

about 15% for both Hellinger and VIX-type swaps, showing that bid-ask spreads also

amplify the standard deviation of divergence returns. In summary, these findings show

that the risk premia for VIX and Hellinger divergence are large, even after accounting for

transaction costs, and linked to a similarly asymmetric risk-return trade-off.

3.2.2. Corridor VIX and Hellinger Variance Risk Premia. Unconditional differences be-

tween VIX and Hellinger variance swap payoffs and Sharpe ratios are rather small, as the

leading contribution to the payoff of these swaps derives from realized second moments.

However, differences between VIX and Hellinger variance swap rates (payoffs) are linked

to the price (risk premium) of realized higher moments. To better isolate these small,

but informative discrepancies, we disaggregate the risk premium of VIX and Hellinger

variance swap payoffs in Eq. (42), into disjoint regions of the support of SPX returns,

using the expected payoffs of VIX and Hellinger corridor variance swaps, based on the

corridor technique introduced in Section 2.5.

We split the support of SPX returns into the following disjoint corridors {[ai, bi) :

i = 1, . . . , 11}, defined in percentage deviations from zero log moneyness: (−∞,−15),

[−15,−10), [−10,−6), [−6,−4), [−4,−2), [−2, 0), [0, 2), [2, 4), [4, 6), [6, 10) and [10,∞).

Note that the sum of the swap rates and the floating legs of all these corridor swaps

equals the price and the floating leg of divergence over the entire support of SPX returns.

Owing to this additivity property, we thus identify more precisely the profitable regions

of divergence swap payoffs from the unprofitable ones.

Figure 5 plots average payoffs of VIX and Hellinger corridor variance swaps, in per-

centage of DIX(1/2) and as a function of the relevant corridor, together with their 95%
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confidence interval. As before, we study short swap positions at mid (Panel 5a and 5b)

and bid (Panel 5c and 5d) prices, as well as long swap positions at ask prices (Panel

5e and 5f). We find that the (negative) risk premium for VIX and Hellinger variance

risk is concentrated in the out-of-the-money put and call payoff region. The premium is

significant for log-moneyness deviations of at least about ±2% and less than about −10%

from zero, despite the wide confidence intervals on average divergence swap payoffs, and

on average it is slightly more negative for VIX variance.

Corridor divergence swap risk premia are asymmetric with respect to log moneyness,

and tend to decrease in absolute value, even though non-monotonically, from lower to

higher corridors. This suggests a more negative risk premium for VIX and Hellinger vari-

ance, conditional on states of low market valuations, which is reflected by more expensive

out-of-the-money put portfolios relative to out-of-the-money call portfolios. At the same

time, this evidence suggests the presence of a priced fear component in VIX and Hellinger

divergence swap rates, which can be isolated more precisely using higher-order divergence

swaps.

3.3. Hellinger Corridor Skew and Kurtosis Risk Premia. To isolate the price and

the risk premium attached to higher-order risks, we make use of corridor Hellinger skew

and quarticity (or kurtosis) swaps, which have swap rates and payoffs that uniquely

decompose VIX swap rates and risk premia, into the leading contributions of put-call

antisymmetric skewness and put-call symmetric quarticity, consistently with the decom-

position in Result 2.4. In this way, we disaggregate the risk premium of Hellinger skewness
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and Hellinger quarticity over the support of SPX returns, using the same corridors of Sec-

tion 3.2.2. Precisely, we localize on each corridor the premium of the payoffs

SKEW n(1/2)− SKEW (1/2) = (SKEWn(1/2)− SKEW (1/2))/DIX(1/2) ,

QUART n(1/2)−QUART (1/2) = (QUARTn(1/2)−QUART (1/2))/DIX(1/2) ,

by localizing skew and quarticity payoffs across corridors and by normalizing them with

Hellinger divergence index.

Figure 9 plots average payoffs of Hellinger corridor skew and quarticity swaps, in per-

centage of DIX(1/2) and as a function of the relevant corridor, together with their 95%

confidence intervals. As above, we focus on short swap positions at mid (Panel 6a and

6b) and bid (Panel 6c and 6d) prices, as well as long swap positions at ask prices (Panel

6e and 6f). We find a clearly positive (a small, but slightly negative) risk premium for

Hellinger realized skewness in the out-of-the-money put (call) payoff region. The pre-

mium is significant for negative log-moneyness deviations between about −2% and −10%

and positive deviations of at least +2%, with confidence intervals on average skew swap

excess returns that become substantially wider in states of low market valuations. The

(long) skew risk premium is almost monotonically decreasing with log moneyness in the

out-of-the-money put payoff region, but it is small in absolute value and almost flat in the

out-of-the-money call payoff region, consistently with a large price for buying downside

risk insurance and a moderate cost for buying positive skewness.

The risk premium for Hellinger realized quarticity is negative (not different from zero) in

the out-of-the-money put (call) payoff region. It is significant for negative log-moneyness

deviations of at least −4%, with confidence intervals on average excess returns that as

before become clearly wider in states of low market valuations. Compared to Hellinger



FEAR TRADING 35

skewness, the negative risk premium becomes significant for negative corridors more dis-

tant from the at-the-money region. At the same time, no significant corridor risk premium

is observed for Hellinger quarticity linked to out-of-the-money call payoffs.

On an aggregate level, this evidence implies an economically important positive (nega-

tive) risk premium for long (short) Hellinger skewness and short (long) Hellinger quartic-

ity, which is naturally related to the large price of downside risk insurance. On average,

Hellinger variance risk premia evaluated at mid prices are between −3% and −4% in the

out-of-the money put region. Hellinger skew (quarticity) risk premia, as a fraction of

Hellinger variance, are between −0.01% (−0%) and −0.05% (−0.004%). The fact that

Hellinger skew and quarticity payoffs make up such a small fraction of VIX and Hellinger

variance payoffs makes it hard to identify the price and the risk premium for fear from

tradeable payoffs that have a leading contribution of second moments.

3.4. Scale-Invariant Hellinger Corridor Skew and Quarticity Risk Premia. The

different scaling of Hellinger variance, skewness and quarticity can be handled more con-

veniently using scale-invariant Hellinger skewness and quarticity, together with the corre-

sponding corridor swaps. This approach produces a more natural measure of the excess

return and the price of realized skewness and kurtosis, respectively.

3.4.1. The Risk Premium on (scale-invariant) Hellinger Skewness and Kurtosis. We dis-

aggregate the risk premium of scale-invariant Hellinger skewness and quarticity over the

support of SPX returns, using the same corridors of Section 3.2.2. Precisely, we localize

on each corridor the premium of the payoffs

˜SKEW n(1/2)− ˜SKEW (1/2) = (SKEWn(1/2)− SKEW (1/2))/DIX(1/2)3/2 ,

˜QUART n(1/2)− ˜QUART (1/2) = (QUARTn(1/2)−QUART (1/2))/DIX(1/2)2 .
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Figure 7 plots the average payoffs of scale-invariant Hellinger corridor skew and corridor

quarticity. Similarly to Section 3.3, we find a clearly positive and large (a negative, but

small) risk premium for Hellinger realized skewness in the out-of-the-money put (call)

payoff region. The premium is significant for almost all negative log-moneyness deviations

and for positive deviations of at least +6%. The risk premium for Hellinger quarticity is

negative (negative, but not significant) in the out-of-the-money put (call) payoff region.

It is significant for log-moneyness deviations of at least −2%.

Overall, this evidence provides an economically intuitive risk premium behaviour for

scale-invariant Hellinger skewness and quarticity, over a wide moneyness range. Com-

pared to scale-invariant Hellinger skewness, the absolute risk premium for scale-invariant

Hellinger quarticity in low corridors is about three times the skewness risk premium. For

comparison, while the mid-price risk premium for Hellinger variance in low corridors is be-

tween −3% and −4%, the risk premium for scale-invariant Hellinger skewness (quarticity)

ranges between 4% and 15% (-3% and -40%).

3.4.2. Implied Hellinger Skewness and Kurtosis. The fixed leg ˜SKEW (1/2)

( ˜QUART (1/2)) of scale-invariant Hellinger skewness (quarticity) has the natural

interpretation of a tradeable measure of statistical forward-neutral, or implied, skewness

(kurtosis). Different non-tradeable measures of implied skewness have been proposed in

the literature and in practice, such as the CBOE SKEW; see, e.g., the CBOE (2010)

SKEW White Paper. Our measures of implied Hellinger skewness and quarticity provide

a different, coherent way for quantifying forward-neutral skewness and kurtosis, as the

price of tradeable skewness and quarticity swaps.

Figure 8 provides a summary of the time series properties of Hellinger implied skew

and kurtosis, together with the CBOE SKEW. We find that while implied Hellinger

skew has a correlation of about 85% with CBOE’s skew, the two time series have clearly
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distinct properties and can attain substantially different values in a number of cases.

Moreover, despite the large correlation, ˜SKEW (1/2) is conceptually different from CBOE

SKEW, owing to its direct tradeable interpretation and its theoretical consistency with the

implications of deviations from put-call symmetry. Similar to Hellinger implied skewness,

Hellinger implied kurtosis ˜QUART (1/2) is a natural tradeable measure of forward-neutral

kurtosis, which is theoretically consistent with the implications of deviations from put-call

symmetry. We find that while Hellinger implied kurtosis correlates quite extensively with

Hellinger implied skewness, with a correlation of about -90%, the two series are clearly

different and nonlinearly related, as highlighted in more detail by their scatter plot in

Figure 8.

3.5. Hellinger Corridor Volatility Feedback Risk Premia. Asymmetric volatility

is a well-known source of unconditional return skewness in many asset pricing models,

which has a different origin than the conditional skewness generated, e.g., by asymmetric

shocks in SPX returns. Since we can measure and trade realized asymmetric volatility

using realized Hellinger volatility feedback, we can also quantify the risk premium and

the price of asymmetric volatility.

3.5.1. The Risk Premium on Hellinger Volatility Feedback. We disaggregate the risk pre-

mium of Hellinger volatility feedback, over the support of SPX returns, based on the

same corridors of Section 3.2.2. Precisely, we localize on each corridor the premium of

the following payoff, introduced in Remark 2.7

SKEW
UL

n (1/2) := (SKEWUL
n (1/2)− SKEWUL(1/2))/DIX(1/2) .

Figure 9 collects the average payoffs of Hellinger corridor volatility feedbacks. Interest-

ingly, we find a clearly positive (negative) premium for a long volatility feedback position

in the out-of-the-money put (call) payoff region. The premium is significant for virtually
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all moneyness deviations of at least ±2%. In contrast to the risk premia for scale-invariant

Hellinger skewness, which are almost monotonically decreasing in log moneyness and flat

in the out-of-the-money call payoff region, the premia for volatility feedback exhibit a

richer S−shaped structure. They are large in absolute value already for log-moneyness

deviations of about ±2%. Moreover, they tend to flatten out (increase) rapidly for larger

negative (positive) moneyness deviations, consistently with the intuition that risk premia

for return asymmetries generated by volatility feedbacks are not primarily risk premia for

extreme return skewness. In this sense, the risk premia for volatility feedback and for

return skewness capture different properties of the market compensation for fear.

3.5.2. Implied Hellinger Volatility Feedback. The scaled implied leg SKEW
UL

(1/2) :=

SKEWUL(1/2)/DIX(1/2) of Hellinger volatility feedback has the natural interpretation

of a tradeable scale-invariant measure of the price of asymmetric volatility, which can be

naturally compared to measures of implied skewness or kurtosis, such as ˜SKEW (1/2),

CBOE SKEW or ˜QUART (1/2). Figure 10 provides a summary of the time series prop-

erties of Hellinger implied volatility feedback, in comparison to ˜SKEW (1/2) and CBOE

SKEW. The correlation of SKEW
UL

(1/2) with ˜SKEW (1/2) (CBOE SKEW) is only

49% (35%), highlighting the distinct return higher-moment features captured by volatil-

ity feedbacks, relative to other measures of implied skewness. Implied volatility feedback

also has a moderate correlation of only -29% with implied Hellinger kurtosis.

3.6. Implied Corridor Divergence. The asymmetric risk compensation for corridor

divergence, highlighted in the previous sections, illustrates the particular characteristics

of different divergence swaps, for creating distinct exposures to second- and higher-order

SPX uncertainty. Such distinct properties are naturally related to the implied price of

corridor divergence. Similar to the Black-Scholes option-implied volatility, which localizes

as a function of moneyness the volatility price of an option, corridor implied divergence
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localizes the option price of divergence with respect to moneyness. Figure 11 summarizes

the unconditional properties of implied corridor divergence, for power divergence swaps,

skew and kurtosis swaps, as well as for volatility feedback swaps.

Implied corridor VIX and Hellinger variance (panels (a) and (b)) attain a maximum

for corridors that include the at-the-money strike region, and it decreases almost mono-

tonically away for it, in a slightly asymmetric way, because variance payoffs generated

by out-of-the-money puts are on average more expensive than those of out-of-the-money

calls. This pattern is naturally linked to the asymmetric profile of corridor variance risk

premia, which is tilted to more negative risk premia for out-of-the-money put payoffs,

relative to out-of-the money call payoffs.

The implied leg of corridor Hellinger skewness (volatility feedback) in Panel (c) (Panel

(d)) is negative (positive) for sufficiently out-of-the-money put (call) corridors. It is almost

monotonically increasing with moneyness for skew corridors, while it has a more complex

S−shape for volatility feedback corridors. This pattern is consistent with the positive

(negative) corridor risk premia for Hellinger skews and Hellinger volatility feedbacks in

corridors of out-of-the-money put (call) payoffs. The almost monotonically increasing

(S−shaped) pattern of corridor implied skews (volatility feedbacks) is clearly reflected in

the almost monotonically decreasing (reverse S−shaped) pattern of corridor skew (volatil-

ity feedback) risk premia.

Finally, despite the symmetry of realized Hellinger kurtosis, its implied leg in Panel

(e) is monotonically decreasing with moneyness (flat and very small) in the out-of-the-

money put (call) payoff region. Naturally, these features are associated with large (small)

negative corridor risk premia that increase monotonically (are very flat) with respect to

moneyness for out-of-the-money put (call) corridors.
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3.7. Trading Fear Risk Premia and the Price of Fear. The asymmetric compensa-

tion for higher-order risks produced by Hellinger swaps suggests that Hellinger variance,

Hellinger skewness, Hellinger quarticity, and Hellinger volatility feedback all correlate in

different ways with information related to the price and the risk premium for investor fear.

In this section, we produce a more direct interpretation of the prices and the risk premia

of investor fear, in terms of traded Hellinger swaps, by linking Hellinger divergence swap

rates and excess returns to non-tradeable proxies for the price and the risk premium of

investor fear in the literature.

3.7.1. Non-Tradeable Indices of Investor Fear and Tails. The fear index (FI) from Boller-

slev and Todorov (2011) is an estimate of a weekly risk premium for the ex-ante mar-

ket compensation of upper vs. lower tail risk. It is estimated based on physical and

risk-neutral information about SPX returns, using extreme-value theory methods, as the

difference of the risk premia for payoffs in the upper and the lower tail of SPX returns,

which are associated with the payoffs of 10% out-of-the-money call and put options.

FI is not explicitly defined as the ex-ante risk premium of a corresponding trading

strategy. According to FI’s definition, the obvious trading strategy would be a long-short

portfolio of 10% out-of-the-money call and put options of one-week maturity. However,

the excess returns of such a trading strategy would produce a quite noisy proxy of fear

risk premia, because the underlying options are typically difficult to hedge and expire

worthless in most cases. Figures IA.1 and IA.1b of the online Appendix illustrate this

aspect more concretely, based on a corridor skew swap payoff generated by out-of-the-

money put options having a log moneyness of less that -10% and a maturity of one month.

Such options have produced only four positive returns over our full sample period, of

which the largest (second largest) return was above +2000% (+900%). As a consequence,
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FI is not easily tradeable and measurable, using the returns of such portfolios of 10%

out-of-the-money options.

Similarly to FI, the tail index (TI) from Bollerslev et al. (2014) is an option-implied

measure of the price of downside risk, which is derived from extreme-value theory esti-

mates of the risk-neutral tails of out-of-the-money put options of maturity between 8 and

45 days. As a consequence, TI is also not easily tradeable. In order to obtain tradeable

proxies for the price and the risk premium of fear, we follow a different approach, which

considers the excess returns and implied legs of divergence swaps that are potentially

consistent with the time series properties of FI and TI.

3.7.2. Fear Risk Premia as (Tradeable) Divergence Risk Premia. We test in this section

whether the payoffs of appropriate simple divergence swaps can be interpreted as mea-

sures of realized fear risk. Intuitively, whenever the conditional expectation of simple

divergence payoffs correlates with a time-varying fear risk premium proxied by Boller-

slev and Todorov (2011)’s FI, we could interpret divergence payoffs themselves as noisy

signals of (unobservable) fear risk premia. For this purpose, we first perform monthly

predictive regressions of the form

Yt+1 = α + βXt + εt+1 ,(43)

where Xt is Bollerslev and Todorov (2011)’s fear index at time t and Yt+1 the payoff in t+1

of a corridor divergence swap with one-month maturity. Recalling that FI is an estimate

of the time-varying premium of 10% out-of-the-money call vs. put payoffs, this corridor

approach can highlight in a flexible way the information provided by FI for future realized

divergence, generated by out-of-the-money call and put payoff states, respectively. We

make use of the family of disjoint corridors in Section 3.2.2 and focus for brevity on VIX
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and Hellinger variance, as well as Hellinger skewness and quarticity, but the results for

Hellinger volatility feedback are similar.

Figure 12 summarizes the results, by plotting the resulting predictive regression R2’s

for the different simple divergence swaps, as a function of the relevant corridor. We find

that FI forecasts corridor divergence payoffs in a similar way for all divergence swaps

considered, with a U−shaped pattern of predictive R2’s around zero log moneyness. Con-

sistently with the construction of FI, the largest significant contribution to predictive R2’s

is generated for all divergence swaps by the ±10% out-of-the-money option corridors, even

though with significantly different predictive regression coefficients across corridors. This

evidence confirms that simple divergence swap payoffs contain useful information about

fear risk premia.

The aggregation of divergence payoffs across corridors provides sharper information

about which divergence swap better captures tradeable time-varying fear risk premia.

Using aggregate payoffs, we can also easily test more formally their role as proxies of

divergence risk premia, and vice versa, by testing the null hypothesis β = 1 in Eq. (44).

Table 3 collects the resulting predictive regression results.

The results for Hellinger quarticity and quinticity consistently reject the null hypothesis

β = 1, rejecting the interpretation of FI as a direct proxy for the risk premium of realized

quarticity or quinticity. Despite the low power implied by very large confidence intervals,

the results based on bid prices for VIX divergence, Hellinger divergence and Hellinger

lower semi-variance also reject the null hypothesis β = 1. In contrast, this null hypothesis

cannot be rejected for Hellinger skew and Hellinger volatility feedback swaps, suggesting

FI as an observable proxy of time-varying skew or volatility feedback risk premia.

Given these findings, one would also be tempted to interpret skew and volatility feed-

back risk premia as fear risk premia. When considering in more detail the merit of these
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premium interpretations, it is useful to note that fear risk premia are likely only im-

precisely identified from realized signals of Hellinger volatility feedback, because of the

large and very imprecise point estimate for β obtained. This insight is confirmed by the

weak degree of predictability of FI for realized volatility feedback, with a predictive R2

of 11.68% using mid prices that is less than half the R2 of 28.13% implied for realized

skewness. Based on this evidence, we conclude that simple Hellinger skew swaps are the

most appropriate divergence strategies to trade fear risk premia.

3.7.3. The Price of Fear as (Tradeable) Implied Divergence. We finally test whether diver-

gence swaps rates can be interpreted as measures of the price of fear, simply by performing

monthly linear regressions of the form

Yt = α + βXt + εt ,(44)

where Xt is Bollerslev et al. (2014)’s tail index in at time t and Yt the implied leg of

a divergence swap with one-month maturity. With these regressions, we quantify the

fraction of divergence swap rate variation that can be explained by a variation of Bollerslev

et al. (2014)’s proxy of the price of fear.

We find very large regression R2’s overall, typically larger than 55%, indicating, as

expected, that all divergence swaps rate are sensitive to shocks in the price of fear. Per-

haps surprisingly, implied lower Hellinger semi-variance is not the most sharp implied

divergence proxy for the price of fear. In contrast, implied Hellinger skew and implied

volatility feedback have the largest R2’s, with a largest explanatory power of about 68.5%

for implied Hellinger skews, using mid prices. Based on this evidence, we conclude that

implied Hellinger skewness can be interpreted as a tradeable proxy of the price of tail risk.
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4. Conclusion

Time-varying market uncertainty depends on several distinct features, related to time-

varying second- and higher-order risks of market returns, which are challenging to measure

and to trade in isolation. In this context, excess returns of variance swaps are often

interpreted as a compensation for crash risk, in addition to variance risk. Similarly,

measures of implied volatility like the CBOE (2009) VIX are often interpreted as an

index of investors’ fear. In this paper, we adopt a systematic model-free approach for

pricing and trading time-varying second- and higher-order risks. With this approach, we

identify convenient tradeable proxies of the price of fear and fear risk premia, which are

distinct from the leading contribution of the price of variance to the VIX.

Precisely, we measure market uncertainty with realized divergence and its price with

implied divergence. In this way, we obtain a unique decomposition of VIX into the leading

variance contribution and additional contributions from higher moments, offering a way

to directly assess the price of investors’ fear. We introduce simple trading strategies

that are applicable at moderate transaction costs, in incomplete option markets with

a discrete set of option strikes, which allow us to localize the price and risk premium

contributions of realized variance, realized skewness, and realized kurtosis over the support

of the distribution of SPX index returns.

These strategies originate from so-called simple Hellinger swaps and allow us to trade

variance, skewness and kurtosis in a way that is benchmarked to put-call symmetry and

deviations thereof. They are tradeable in the sense that they are implementable with

available market instruments, with no inter- or extrapolations that depend on assumptions

about the granularity of option strikes, continuous trading, or the absence of transaction

costs.
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From the excess returns of Hellinger realized variance, Hellinger realized skewness,

Hellinger realized kurtosis and realized long-short Hellinger semi-variance (an instrument

designed to create exposure to volatility-return feedback), we estimate large unconditional

risk premia that are economically and statistically significant, even after transaction costs.

However, while the risk premium for realized variance derives from a non-monotonic con-

tribution of both out-of-the money call and put payoffs with respect to log moneyness,

the risk premium contribution of realized skewness and realized kurtosis is concentrated

in the out-of-the money put payoff region and it is upward and downward sloping, respec-

tively. On the other hand, the risk premium contribution of realized volatility feedback

is non-monotonic, dominated by the payoffs of options that are slightly out-of-the-money

and it has a different sign for call and put option payoffs.

This asymmetric evidence on the risk premia generated by divergence swaps, suggests

the price (risk premium) of some of these swaps as a directly tradeable measure of the

leading component of the price (risk premium) for fear. Following this intuition, we study

the relation between the price (risk premium) of Hellinger divergence swaps and well-

known non-tradeable proxies for the price (risk premium) of fear in the literature, which

are constructed from extreme-value theory estimates of the physical and risk-neutral tails

of the distribution of SPX returns. Using predictive regressions of the payoffs of Hellinger

skew swaps on Bollerslev and Todorov (2011)’s Fear Index, we find that the latter strongly

correlates with the time-varying component of skew risk premia, explaining about 30%

of the variation of Hellinger skew swap payoffs. Similarly, about 70% of the variation of

implied Hellinger skew is explained by variations of Bollerslev et al. (2014)’s Tail Index

alone. Based on these findings, we conclude that Hellinger skew swaps are appropriate

instruments for trading and pricing fear, which also help to conveniently isolate the leading

contribution of the price of fear to the VIX. Finally, using implied Hellinger skew and
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implied Hellinger kurtosis, we propose new tradeable indices of skewness and kurtosis,

which measure variations in the price of skewness and kurtosis not mechanically related

to the price of variance.
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Appendix A. Tables and Figures
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Figure 1. Different Dimensions of Time-Varying Uncertainty Captured by Implied SPX
Variance, Skewness and Kurtosis: We plot the time series of the SPX index together with the time
series of forward prices implied by divergence swaps trading realized variance, skewness and kurtosis,
respectively. To compute these forward rates, we make use of SPX forward and option data from January
1990 to February 2014, provided by MarketDataExpress. Details on the definition and computation of
tradeable divergence swap rates are given in the main text. For simplicity, all time series are scaled,
in order to be displayed in a common plot. Additionally, we highlight in the graph the timing of some
important events in our sample period.
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Figure 2. Realized Skew and Quarticity: We plot the floating leg of skew and quarticity swaps, as a
function of log returns. SKEW (1) (SKEW (1/2)) corresponds to the floating leg of the q = 1 (Hellinger)
skew swap fixed leg in equation (26) (equation (27)). QUART (1) (QUART (1/2)) corresponds to the
floating leg of the q = 1 (Hellinger) quarticity swap fixed leg in equation (26) (equation (27)).
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Figure 3. Tradeable Corridor Divergence: The figure shows different examples of realized corridor
divergences, for F0,T = 1, FT,T ∈ [0.7, 1.3] and a corridor [a, b] such that a = 0.8 and b = 1.2. Panel (a)
plots power and power corridor realized divergence for p = 0, both generated by the payoff of an option
portfolio in complete option markets. Panel (b) plots power and power corridor realized divergence for
p = 0, both generated by the payoff of an option portfolio in incomplete option markets, with 4 and
10 options, respectively, having equally spaced strikes in interval [a, b]. Panel (c) plots Hellinger and
Hellinger corridor realized skewness, both generated by the payoff of an option portfolio in incomplete
option markets, with 4 and 10 options, respectively, having equally spaced strikes in interval [a, b]. Both
in Panel (b) and Panel (c), we also plot for comparison the realized corridor payoffs generated by an
option portfolio in complete option markets.
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Figure 4. Returns of Hellinger Corridor Skewness: This figure plots in Panel (a) (Panel (b))
the time series of returns of a short corridor skew swap localized to all available options in the corridor
[−10,−6) ((−∞, 0)). Panel (c) plots the time series of returns of a short skew swap based on all available
options on each day. The skew swap payoffs are constructed using SPX forward data from January 1990
to February 2014, provided by MarketDataExpress.



FEAR TRADING 51

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

< −15−10 −6 −4 −2 0 2 4 6 10 > 10

av
g

p
re

m
iu

m

moneyness

5%
avg

95%

(a) Short Mid DIX(1/2)

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

< −15−10 −6 −4 −2 0 2 4 6 10 > 10

av
g

p
re

m
iu

m

moneyness

5%
avg

95%

(b) Short Mid DIX(0)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

< −15−10 −6 −4 −2 0 2 4 6 10 > 10

av
g

p
re

m
iu

m

moneyness

5%
avg

95%

(c) Short Bid DIX(1/2)

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

< −15−10 −6 −4 −2 0 2 4 6 10 > 10

av
g

p
re

m
iu

m

moneyness

5%
avg

95%

(d) Short Bid DIX(0)

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

< −15−10 −6 −4 −2 0 2 4 6 10 > 10

av
g

p
re

m
iu

m

moneyness

5%
avg

95%

(e) Long Ask DIX(1/2)

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

< −15−10 −6 −4 −2 0 2 4 6 10 > 10

av
g

p
re

m
iu

m

moneyness

5%
avg

95%

(f) Long Ask DIX(0)

Figure 5. VIX and Hellinger Corridor Divergence: The charts present average monthly payoffs
of corridor VIX and Hellinger variance swaps, normalized by DIX(1/2). On the x-axis, the support of
SPX log returns is stratified into 11 corridors of log moneyness. For each corridor, the excess return is
computed from the payoff of corridor VIX and Hellinger variance swaps, based on the tradeable corridor
swaps specified in Section 2.6. For instance, the average premium for moneyness -10% corresponds to
the swap with corridor [−15%,−10%). Similarly, the average premium for moneyness less than −15%
(more than 10%) corresponds to the corridor (−∞,−15%] ([10%,∞)). In the different subpanels, “Mid”,
“Bid”, and “Ask” indicates short swap positions evaluated at mid prices, short swap positions evaluated
at bid prices and long swap positions evaluated at ask prices, respectively. The data are SPX forward and
option data from January 1990 to February 2014, provided by MarketDataExpress. Realized divergence
is computed at a daily frequency. 95% confidence interval bands are obtained from a block bootstrap
with 25,000 replications.
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Figure 6. Hellinger Corridor Skew and Quarticity: The charts present average monthly payoffs
of Hellinger skewness and quarticity swaps, normalized by DIX(1/2). On the x-axis, the support of SPX
log returns is stratified into 11 corridors of log moneyness. For each corridor, the excess payoff is computed
from the payoff of corridor Hellinger skewness and quarticity swaps, based on the tradeable corridor swaps
specified in Section 2.6. For instance, the average premium for moneyness -10% corresponds to the swap
with corridor [−15%,−10%). Similarly, the average premium for moneyness less than −15% (more than
10%) corresponds to the corridor (−∞,−15%] ([10%,∞)). In the different subpanels, “Mid”, “Bid”, and
“Ask” indicates short swap positions evaluated at mid prices, short swap positions evaluated at bid prices
and long swap positions evaluated at ask prices, respectively. The data are SPX forward and option data
from January 1990 to February 2014, provided by MarketDataExpress. Realized divergence is computed
at a daily frequency. 95% confidence interval bands are obtained from a block bootstrap with 25,000
replications.
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Figure 7. Scale-Invariant Hellinger Corridor Skew and Quarticity: The charts present average
monthly payoffs of Hellinger skewness (quarticity) swaps, normalized by DIX(1/2)3/2 (DIX(1/2)2).
On the x-axis, the support of SPX log returns is stratified into 11 corridors of log moneyness. For
each corridor, the excess payoff is computed from the payoff of corridor VIX and Hellinger variance,
Hellinger skewness and Hellinger quarticity swaps, based on the tradeable corridor swaps specified in
Section 2.6. For instance, the average premium for moneyness -10% corresponds to the swap with
corridor [−15%,−10%). Similarly, the average premium for moneyness less than −15% (more than 10%)
corresponds to the corridor (−∞,−15%] ([10%,∞)). In the different subpanels, “Mid”, “Bid”, and “Ask”
indicates short swap positions evaluated at mid prices, short swap positions evaluated at bid prices and
long swap positions evaluated at ask prices, respectively. The data are SPX forward and option data
from January 1990 to February 2014, provided by MarketDataExpress. Realized divergence is computed
at a daily frequency. 95% confidence interval bands are obtained from a block bootstrap with 25,000
replications.
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Figure 8. Implied Hellinger Skewness and Kurtosis: The figure illustrates the properties of
monthly implied Hellinger Skew and Kurtosis. Panel (a) compares the time series of the Implied Hellinger

skew ˜SKEW (1/2) in equation (31) with (for better comparability) the time series of an affine transfor-
mation of the CBOE SKEW, defined by

CBOE SKEW := (100− Z)/10 =

EQT

0

[(
R0,T − EQT

0 [R0,T ]
)3
]

(
EQT

0 [R0,T ]− EQT

0 [R0,T ]
2
)3/2

,

where Z is the skew measure published by the CBOE and Rt,T := log(FT,T /F0,T ). Panel (c) plots the

time series of implied Hellinger kurtosis ˜QUART (1/2) in equation (31). Panel (b) (Panel (d)) exhibits

a scatter plot of ˜SKEW (1/2) and the CBOE SKEW ( ˜QUART (1/2)). The data are SPX forward and
option data from January 1990 to February 2014, provided by MarketDataExpress.
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Figure 9. Hellinger Volatility Feedback: The figure plots average monthly payoffs of Hellinger
volatility feedback swaps, normalized by DIX(1/2). On the x-axis, the support of SPX log returns
is stratified into 11 corridors of log moneyness. For each corridor, the excess payoff is computed from
the payoff of corridor Hellinger volatility feedbacks, based on the tradeable corridor swaps specified
in Section 2.6. For instance, the average premium for moneyness -10% corresponds to the swap with
corridor [−15%,−10%). Similarly, the average premium for moneyness less than −15% (more than 10%)
corresponds to the corridor (−∞,−15%] ([10%,∞)). In the different subpanels, “Mid”, “Bid”, and “Ask”
indicates short swap positions evaluated at mid prices, short swap positions evaluated at bid prices and
long swap positions evaluated at ask prices, respectively. The data are SPX forward and option data
from January 1990 to February 2014, provided by MarketDataExpress. Realized divergence is computed
at a daily frequency. 95% confidence interval bands are obtained from a block bootstrap with 25,000
replications.
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Figure 10. Implied Hellinger Volatility Feedback: The figure illustrates the properties of monthly
implied Hellinger volatility feedbacks. Panel (a) plots the time series of implied Hellinger volatility

feedbacks SKEW
UL

(1/2) (left y-axis), defined in equation (37) and ˜SKEW (1/2) (right y-axis). Panel
(b) exhibits a scatter plot of the same data. Panel (c) plots the time series of implied Hellinger volatility

feedback skew SKEW
UL

(1/2) (left y-axis) and CBOE SKEW (right y-axis), whereas panel (d) exhibits a
scatter plot of the same data. The data are SPX forward and option data from January 1990 to February
2014, provided by MarketDataExpress.
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Figure 11. Implied Divergence: The figure plots average normalized swap rates of different corridor
divergence swaps: power divergence (panels (a) and (b)), Hellinger skew (panel (c)), Hellinger volatility
feedback (panel (d)), and Hellinger quarticity (panel (e)). On the x-axis, the support of SPX log returns
is stratified into 11 corridors of log moneyness. For each corridor, the average swap rate is computed
from the implied leg of corridor divergence swaps, based on the tradeable corridor swaps specified in
Section 2.6. For instance, the average swap rate for moneyness -10% corresponds to the corridor swap
with corridor [−15%,−10%). Similarly, the average swap rate for moneyness less than −15% (more than
10%) corresponds to the corridor (−∞,−15%] ([10%,∞)). For brevity, all swap rates evaluated at mid
prices. The data are SPX forward and option data from January 1990 to February 2014, provided by
MarketDataExpress. 95% confidence interval bands are obtained from a block bootstrap with 25,000
replications.
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(c) FI - Corridor SKEW (1/2)
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(d) FI - Corridor QUART (1/2)

Figure 12. Predictive Regression of Corridor Realized Divergence on the Fear Index: We
plot the predictive R2s implied by a predictive regression of monthly payoffs of corridor divergence on
Bollerslev and Todorov (2011)’s Fear Index. On the x-axis, the support of SPX log returns is stratified
into 11 corridors of log moneyness. For each corridor, the excess payoff is computed from the payoff
of corridor VIX and Hellinger variance, Hellinger skewness and Hellinger quarticity swaps, based on the
tradeable corridor swaps specified in Section 2.6 and using mid bid-ask prices fro brevity. For instance, the
average premium for moneyness -10% corresponds to the swap with corridor [−15%,−10%). Similarly, the
average premium for moneyness less than−15% (more than 10%) corresponds to the corridor (−∞,−15%]
([10%,∞)). The data are SPX forward and option data from January 1990 to February 2014, provided
by MarketDataExpress. Realized divergence is computed at a daily frequency. 95% confidence interval
bands are obtained from a block bootstrap with 25,000 replications.
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Time Position Forw. Price in ti Payoff in tn = T
t0 long DΦ

1 S(DΦ
1 ) DΦ

1 − S(DΦ
1 )

t1 lo. Φ′(F0,T ) fw. on ST Φ′(F0,T )F1,T Φ′(F0,T )(FT,T − F1,T )
sh. Φ′(F1,T ) fw. on ST Φ′(F1,T )F1,T -Φ′(F1,T )(FT,T − F1,T )

t2 lo. Φ′(F1,T ) fw. on ST Φ′(F1,T )F2,T Φ′(F1,T )(FT,T − F2,T )
sh. Φ′(F2,T ) fw. on ST Φ′(F2,T )F2,T -Φ′(F2,T )(FT,T − F2,T )

...
...

...
...

tn−1 lo. Φ′(Fn−2,T ) fw. on ST Φ′(Fn−2,T )Fn−1,T Φ′(Fn−2,T )(FT,T − Fn−1,T )
sh. Φ′(Fn−1,T ) fw. on ST Φ′(Fn−1,T )Fn−1,T -Φ′(Fn−1,T )(Fn,T − Fn−1,T )

Total – – DΦ
n − S(DΦ

n )

Table 1. Structure of Simple Divergence Trading Strategy: This table illustrates the structure
of the simple trading strategy replicating the realized divergence payoff in Eq. (5), for an investment
horizon [0, T ] and a sampling frequency defined by trading dates 0 = t0 < t1 < · · · < tn = T . We denote
by Pt,T (K) (Ct,T (K)) the price at time 0 ≤ t ≤ T of a European put (call) option on underlying S, with
strike K and maturity T . The price of a zero coupon bond at time 0 with maturity T is denoted by p0,T .
The payoff of the replicating strategy at time T is obtained by summing the payoffs in the last column.
Precisely, the definition of realized divergence gives

DΦ
n − S(DΦ

n ) =

n∑
i=1

{Φ(Fi,T )− Φ(Fi−1,T )− Φ′(Fi−1,T )(Fi,T − Fi−1,T )} − S(DΦ
1 )

= Φ(FT,T )− Φ(F0,T )−
n∑

i=1

Φ′(Fi−1,T )(Fi,T − Fi−1,T )− S(DΦ
1 ) .

Recalling that DΦ
1 = Φ(FT,T )− Φ(F0,T )− Φ′(F0,T )(FT,T − F0,T ), it follows

DΦ
n − S(DΦ

n ) = DΦ
1 − S(DΦ

1 ) + Φ′(F0,T )(FT,T − F1,T )−
n∑

i=2

Φ′(Fi−1,T )(Fi,T − Fi−1,T )

= DΦ
1 − S(DΦ

1 ) + Φ′(F0,T )(FT,T − F1,T )−
n∑

i=2

Φ′(Fi−1,T )((FT,T − Fi−1,T )− (FT,T − Fi,T ))

= DΦ
1 − S(DΦ

1 ) +

n−1∑
i=1

(Φ′(Fi−1,T )− Φ′(Fi,T ))(FT,T − Fi,T ) .

The first (second) term on the right hand side of the last equality is the payoff generated by the static
(dynamic) option replicating portfolio (trading strategy in the forward market). Together, these two
payoffs produce the payoff identity derived in the last column of the table above. Consistently with
Result 2.1, we also have:

DΦ
1 − S(DΦ

1 ) =

∫ F0,T

0

Φ′′(K)

(
PT,T (K)− P0,T (K)

p0,T

)
dK +

∫ ∞
F0,T

Φ′′(K)

(
CT,T (K)− C0,T (K)

p0,T

)
dK ,

which identifies the weights and the payoff of the static option replicating portfolio. Similarly,

−
n∑

i=1

(Φ′(Fi−1,T )− Φ′(F0,T ))(Fi,T − Fi−1,T ) =

n−1∑
i=1

(Φ′(Fi−1,T )− Φ′(Fi,T ))(FT,T − Fi,T ) ,

which identifies the self-financed dynamic replicating strategy in the forward market.
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Returns bid mid ask

Entire Sample

DIX(1/2) 22.00 (12.50,29.85) 28.34 (19.99,35.47) -33.64 (-40.15,-26.10)

DIX(0) 21.21 (11.15,29.57) 29.35 (20.55,36.72) -32.98 (-39.87,-24.92)

SKEW
UL

(1/2) -20.64 (-28.54,-11.93) -14.29 (-22.92,-4.73) 6.83 (-3.48,16.33)

˜SKEW (1/2) -39.86 (-48.72,-29.94) -32.30 (-41.79,-21.22) 21.98 (8.94,32.36)

˜QUART (1/2) 54.98 (35.33,71.13) 73.64 (55.88,91.50) -85.21 (-104.15,-67.64)

First Half

DIX(1/2) 24.03 (16.74,30.83) 28.96 (21.94,35.50) -33.25 (-39.45,-26.68)

DIX(0) 23.61 (16.18,30.62) 30.05 (22.94,36.62) -32.82 (-39.16,-25.98)

SKEW
UL

(1/2) -22.93 (-34.03,-11.05) -18.16 (-30.03,-5.59) 12.40 (-1.25,25.30)

˜SKEW (1/2) -38.64 (-46.38,-30.44) -33.46 (-41.62,-24.45) 26.92 (16.95,36.13)

˜QUART (1/2) 54.52 (46.57,62.44) 64.96 (55.60,74.72) -72.28 (-83.28,-62.27)

Second Half

DIX(1/2) 20.07 (3.22,33.84) 27.76 (12.96,39.67) -34.04 (-44.91,-20.84)

DIX(0) 18.96 (1.09,33.29) 28.70 (13.43,41.26) -33.05 (-44.46,-18.95)

SKEW
UL

(1/2) -18.45 (-28.08,-7.03) -10.91 (-21.38,1.69) 1.69 (-12.39,13.21)

˜SKEW (1/2) -41.02 (-54.91,-24.48) -31.13 (-46.41,-12.03) 17.28 (-5.10,34.14)

˜QUART (1/2) 55.60 (19.45,83.19) 81.87 (49.74,110.98) -97.48 (-127.04,-67.68)

Sharpe Ratios x 100

Entire Sample

DIX(1/2) 35.10 (14.02,62.46) 49.67 (25.85,80.42) -63.78 (-97.69,-37.98)

DIX(0) 32.61 (12.03,59.88) 49.30 (25.60,80.50) -60.27 (-94.57,-34.32)

SKEW
UL

(1/2) -31.04 (-48.95,-15.40) -20.17 (-36.81,-5.84) 9.11 (-3.71,24.05)

˜SKEW (1/2) -61.38 (-104.08,-31.85) -44.14 (-82.87,-18.69) 26.60 (6.11,59.45)

˜QUART (1/2) 56.22 (17.36,129.59) 80.68 (36.83,142.65) -99.00 (-149.80,-56.06)

First Half

DIX(1/2) 48.16 (28.11,74.31) 62.10 (39.61,92.25) -75.73 (-109.29,-50.67)

DIX(0) 46.20 (26.59,72.50) 62.59 (40.03,92.42) -72.79 (-106.11,-48.30)

SKEW
UL

(1/2) -38.21 (-61.75,-17.36) -28.27 (-50.84,-7.97) 18.36 (-1.48,39.53)

˜SKEW (1/2) -80.42 (-116.42,-53.87) -63.90 (-96.08,-40.21) 46.75 (24.67,76.82)

˜QUART (1/2) 108.08 (80.79,147.46) 128.42 (101.30,166.62) -138.98 (-175.00,-113.27)

Second Half

DIX(1/2) 29.92 (2.88,75.36) 45.10 (13.75,97.81) -59.86 (-118.42,-24.60)

DIX(0) 27.26 (0.86,71.49) 44.51 (12.96,97.99) -55.92 (-114.55,-21.01)

SKEW
UL

(1/2) -26.81 (-52.16,-7.57) -15.04 (-36.82,1.76) 3.11 (-10.83,20.66)

˜SKEW (1/2) -56.84 (-127.69,-19.73) -38.84 (-102.52,-8.25) 20.23 (-2.81,70.89)

˜QUART (1/2) 49.22 (6.91,157.19) 74.20 (23.73,164.26) -94.41 (-167.35,-41.76)

Table 2. Returns and Sharpe Ratios on Variance, Skew, Quarticity and Volatility Feed-
back Swaps: The table presents summary statistics on average annualized payoffs and payoff Sharpe
ratios of Hellinger and VIX power divergence swaps (with payoffs scaled by DIX(1/2)), scale-invariant
Hellinger skew and quarticity swaps, as well as Hellinger volatility feedback swaps (with payoffs scaled
by DIX(1/2)). For instance, for the case of power divergence swaps, we estimate the average payoff

EP [(2Dq
n − 2S(Dq

n))/DIX(1/2)] and the payoff Sharpe ratio EP
[
(Dq

n − S(Dq
n))/

√
VP(Dq

n − S(Dq
n))
]

for

q = 0, 1/2. The columns headed by “Bid” and “Mid” denote returns from short positions at bid and
mid option prices, respectively. The column headed by “Ask” contains returns from long positions. The
data are SPX forward and option data from January 1990 to February 2014, provided by MarketData-
Express. The first (second) half of the sample goes from January 1990 (January 2003) to December 2002
(February 2014). Realized divergence is computed at a daily frequency. 95% confidence interval bands
in parentheses are obtained from a block bootstrap with 25,000 replications.
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R2 bid mid ask
DIX(1/2) 5.64 (0.024,24.58) 10.07 (0.62,33.19) 16.15 (2.43,41.08)
DIX(0) 5.43 (0.025,24.62) 11.61 (0.98,35.98) 14.94 (2.02,40.03)
LDIX(1/2) 7.72 (0.23,28.25) 11.43 (0.72,32.54) 15.65 (1.60,37.30)
SKEWUL(1/2) 7.29 (0.19,24.22) 11.68 (0.32,29.64) 16.64 (1.06,34.66)
SKEW (1/2) 19.24 (0.96,42.52) 28.13 (3.01,48.46) 34.98 (4.53,53.07)
QUART (1/2) 31.99 (2.65,69.47) 40.80 (3.94,70.05) 43.41 (5.60,71.14)
QUINT (1/2) 43.16 (2.23,74.54) 42.98 (3.63,72.95) 40.33 (5.23,71.08)

β bid mid ask
DIX(1/2) 0.48 (-0.11,0.96) 0.81 (0.27,1.19) 1.14 (0.56,1.57)
DIX(0) 0.50 (-0.14,0.99) 0.96 (0.39,1.37) 1.16 (0.56,1.63)
LDIX(1/2) 0.78 (0.056,1.31) 1.01 (0.24,1.60) 1.25 (0.43,1.93)
SKEWUL(1/2) -0.88 (-1.66,0.086) -1.22 (-2.13,-0.13) -1.55 (-2.64,-0.32)
SKEW (1/2) -0.58 (-1.01,-0.17) -0.83 (-1.47,-0.24) -1.09 (-1.94,-0.29)
QUART (1/2) 0.27 (0.10,0.44) 0.51 (0.12,0.94) 0.76 (0.14,1.45)
QUINT (1/2) -0.22 (-0.41,-0.037) -0.48 (-0.98,-0.047) -0.74 (-1.55,-0.057)

α× 100 bid mid ask
DIX(1/2) 0.28 (-0.51,1.2) 0.45 (-0.47,-1.7) 0.6 (-0.56,2.1)
DIX(0) 0.38 (-0.48,1.4) 0.65 (-0.45,2.1) 0.69 (-0.56,2.3)
LDIX(1/2) 0.98 (-0.23,2.5) 1.1 (-0.25,2.8) 1.2 (-0.33,3.1)
SKEWUL(1/2) -1.6 (-3.6,0.058) -1.8 (-4,0.11) -1.9 (-4.5,0.18)
SKEW (1/2) -0.85 (-2,-0.058) -1.1 (-2.5,-0.041) -1.4 (-3.1,-0.016)
QUART (1/2) 0.36 (0.042,0.82) 0.66 (0.035,1.4) 0.95 (0.029,2.1)
QUINT (1/2) -0.3 (-0.66,-0.018) -0.64 (-1.4,-0.016) -0.97 (-2.1,-0.014)

Table 3. Predictive Power of Fear Index: We run predictive regressions of the form Yt+1 =
α+ βXt + εt, where Yt+1 is the monthly payoff of one of our divergence swaps and Xt the fear index in
Bollerslev and Todorov (2011). We consider a number of divergence swaps introduced in Section 2, with
floating leg given by corridor VIX and Hellinger variance, lower Hellinger semivariance, Hellinger volatility
feedback, corridor Hellinger skewness, quarticity and quinticity, respectively. We report in the top,
middle and bottom panel regression R2’s and point estimates for α and β, together with 95% confidence
intervals in parentheses, obtained from a block bootstrap with 25,000 replications. All divergence swaps
are tradeable, in the sense that they make use of finitely many options for replication of their floating
leg; see Section 2.6 for details. The time series of monthly payoffs of our divergence swaps is computed
based on SPX options and forwards from January 1990 to February 2014, using a daily frequency for the
computation of realized divergence.
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TI bid mid ask
DIX(1/2) 55.72 (26.62,69.68) 56.17 (27.83,69.44) 56.18 (28.95,69.07)
DIX(0) 55.99 (27.02,69.79) 56.88 (29.00,70.10) 56.20 (28.58,69.11)
LDIX(1/2) 58.51 (28.62,72.44) 59.03 (30.35,72.14) 59.19 (31.28,71.76)
SKEWUL(1/2) 63.05 (30.17,82.68) 64.08 (32.46,78.35) 62.89 (34.19,75.09)
SKEW (1/2) 74.98 (52.22,84.34) 68.55 (50.89,80.58) 65.00 (49.47,79.52)
QUART (1/2) 65.25 (48.86,78.37) 60.24 (44.24,76.77) 57.11 (40.91,75.08)
QUINT (1/2) 65.63 (48.21,78.29) 54.54 (37.29,72.35) 50.15 (33.68,69.50)

Table 4. Relation between Implied Divergence and Tail Index: We run linear regressions of
the form Yt = α + βXt + εt, where Yt is the implied leg of one of our divergence swaps and Xt the
tail index in Bollerslev et al. (2014). We consider a number of divergence swaps introduced in Section
2, with implied leg given by implied corridor VIX and Hellinger variance, lower Hellinger semivariance,
Hellinger volatility feedback, corridor Hellinger skewness, quarticity and quinticity, respectively. We
report regression R2’s, together with 95% confidence intervals in parentheses, obtained from a block
bootstrap with 25,000 replications. All divergence swaps are tradeable, in the sense that they make use
of finitely many options for replication of their floating leg; see Section 2.6 for details. The time series of
fixed legs of our divergence swaps is computed based on SPX options and forwards from January 1990
to February 2014.
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Appendix B. Proofs

B.1. Proof of Result 2.1.

Proof. Given a twice continuously differentiable generating function Φ almost everywhere,

Lagrange’s remainder (see, e.g., Definition 3.3 in Hobson and Klimmek, 2012) gives

Φ(FT,T )− Φ(F0,T ) = Φ′(F0,T )(FT,T − F0,T )(45)

+

∫ F0,T

0

Φ′′(K)PT,T (K)dK +

∫ ∞
F0,T

Φ′′(K)CT,T (K)dK .

From Eq. (3), we thus obtain

DΦ
n =

n∑
i=1

[Φ(Fi,T )− Φ(Fi−1,T )− Φ′(Fi−1,T )(Fi,T − Fi−1,T )]

= Φ(FT,T )− Φ(F0,T )−
n∑
i=1

Φ′(Fi−1,T )(Fi,T − Fi−1,T )

=

∫ F0,T

0

Φ′′(K)PT,T (K)dK +

∫ ∞
F0,T

Φ′′(K)CT,T (K)dK + Φ′(F0,T )(FT,T − F0,T )

−
n∑
i=1

Φ′(Fi−1,T )(Fi,T − Fi−1,T )

=

∫ F0,T

0

Φ′′(K)PT,T (K)dK +

∫ ∞
F0,T

Φ′′(K)CT,T (K)dK

−
n∑
i=1

(Φ′(Fi−1,T )− Φ′(F0,T ))(Fi,T − Fi−1,T ) .

Taking QT expectations and using the martingale property of forward prices finally yields

the desired result. �

B.2. Proof of Corollary 2.6.

Proof. Given a generating function Φ that is twice continuously differentiable almost

everywhere, so is the corridorized generating funciton Φa,b. Lagrange’s remainder (see,
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e.g., Definition 3.3 in Hobson and Klimmek, 2012) gives

Φa,b(FT,T ) = Φa,b(F0,T ) + Φ′a,b(F0,T )(FT,T − F0,T ) +

∫ FT,T

F0,T

Φ′′a,b(K)(FT,T −K)+dK

= Φa,b(F0,T ) + Φ′a,b(F0,T )(FT,T − F0,T ) +

∫ F0,T

0

Φ′′a,b(K)(K − FT,T )+dK

+

∫ ∞
F0,T

Φ′′a,b(K)(FT,T −K)+dK

= Φa,b(F0,T ) + Φ′a,b(F0,T )(FT,T − F0,T ) +

∫ min(F0,T ,b)

a

Φ′′(K)(K − FT,T )+dK

+

∫ b

max(F0,T ,a)

Φ′′(K)(FT,T −K)+dK .

Expression (34) is obtained analogously to the previous proof in Section B.1 of this Ap-

pendix. Taking QT expectations and using the martingale property of forward prices

finally yields the desired result. �
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Figure IA.1. Returns of Hellinger Corridor Skewness: Panel (a) plots the time series of returns
of a short corridor skew swap, localized to all available options in the corridor (−∞,−10). Panel (b)
shows box plots of returns of short corridor skew swaps, localized to all available options in the corri-
dors (−∞,−10), [−10,−6), (−∞, 0) and (−∞,∞), respectively. In all box plots, extreme observations
outside the 95% interquartile range of the data are represented as dots. The skew swap payoffs and
fixed legs are constructed using SPX forward data from January 1990 to February 2014, provided by
MarketDataExpress.
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(f) Long Ask DIX(0)

Figure IA.2. Corridor Divergence (Fine Corridors): The charts show average monthly returns
from divergence swaps. The x-axis stratifies the region around the forward price into 17 intervals between
log moneyness levels from -16% and below to +14% and above. The average excess returns are computed
from tradeable corridor contracts outlined in Section 2.6. As an example, the average premium at
moneyness -10% refers to the moneyness corridor [-12%, -10%). The entry at < −16 refers to the corridor
[left-most available strike, -16%), and similarly the entry at > 14 refers to the corridor (14%, right-most
available strike]. The name code reflects whether the options were purchased at “mid”, “bid”, or “ask”
price. The data are S&P 500 forward and options data from January 1990 until February 2014 from
MarketDataExpress, and the floating legs are computed from daily observations. The average premium
and the 5% and 95% confidence intervals are obtained from a block bootstrap with 25,000 replications.
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Figure IA.3. Corridor Skew and Quarticity (Fine Corridors): The charts show average monthly
returns from skewness and quarticity swaps. The x-axis stratifies the region around the forward price
into 17 intervals between log moneyness levels from -16% and below to +14% and above. The average
excess returns are computed from tradeable corridor contracts outlined in Section 2.6. As an example,
the average premium at moneyness -10% refers to the moneyness corridor [-12%, -10%). The entry at
< −16 refers to the corridor [left-most available strike, -16%), and similarly the entry at > 14 refers to the
corridor (14%, right-most available strike]. The name code reflects whether the options were purchased at
“mid”, “bid”, or “ask” price. The data are S&P 500 forward and options data from January 1990 until
February 2014 from MarketDataExpress, and the floating legs are computed from daily observations.
The average premium and the 5% and 95% confidence intervals are obtained from a block bootstrap with
25,000 replications.
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Figure IA.4. Payoffs of Hellinger Corridor Skewness Normalized by Implied Hellinger Skew-
ness: This figure plots in Panel (a) (Panel (b)) the time series of payoffs of a short corridor skew swap,
localized to all available options in the corridor [−10,−6) ((−∞, 0)) and normalized by implied Hellinger
skewness. The corridor skew swap payoffs and the implied skewness legs are constructed using SPX
option data from January 1990 to February 2014, provided by MarketDataExpress.
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Figure IA.5. Payoffs of Hellinger Corridor Skewness Normalized by Implied Hellinger Skew-
ness: Panel (a) plots the time series of payoffs of a short corridor skew swap, localized to all available
options in the corridor (−∞,−10) and normalized by implied Hellinger skewness. Panel (b) shows box
plots of payoffs of short corridor skew swaps, localized to all available options in the corridors (−∞,−10),
[−10,−6), (−∞, 0) and (−∞,∞), respectively, and normalized by implied Hellinger skewness. In all box
plots, extreme observations outside the 95% interquartile range of the data are represented as dots. The
skew swap payoffs and fixed legs are constructed using SPX option data from January 1990 to February
2014, provided by MarketDataExpress.
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