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Abstract

This paper applies the least absolute shrinkage and selection operator (LASSO) to
identify rare, short-lived, “sparse” signals in the cross-section of returns. The LASSO
is an ordinary-least-squares (OLS) regression combined with a penalty function that
shrinks small OLS coe�cients to be exactly zero, so it is well-defined even when
there are many more predictors than observations. Using the LASSO increases out-
of-sample predictability in minute-by-minute NYSE returns by a factor of 1.5, from an
adjusted R2 = 5.43% to an adjusted R2 = 8.08%, and generates trading-strategy returns
of 0.30% per month net of trading costs. This predictive power comes from quickly
identifying the right predictors at the right time, not from better estimating the e↵ects
of some persistent factor. The LASSO typically forecasts a stock’s returns using the lags
of only 11 other stocks (a mere 0.5% of all possible choices), and 90% of these predictors
last 4 minutes or less. This success implies that returns have a sparse structure and
suggests a new way of thinking about the economic forces behind returns.

JEL Classification. C55, C58, G12, G14

Keywords. The LASSO, Sparsity, High-Dimensional Inference, Return Predictability

*We have received many helpful comments and suggestions from John Campbell, Xavier Gabaix, Andrew
Karolyi, Maureen O’Hara, Thomas Ruchti, Gideon Saar, Heather Tookes, Sunil Wahal, and Brian Weller as
well as seminar participants at the University of Illinois Urbana-Champaign and the 11th Annual Central
Bank Conference on the Microstructure of Financial Markets. This research is supported by National
Science Foundation grant 1352936. This work also uses the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575.
We thank David O’Neal of the Pittsburgh Supercomputer Center for his assistance with supercomputing,
which was made possible through the XSEDE Extended Collaborative Support Service (ECSS) program.

Current Version: http://www.alexchinco.com/sparse-signals-in-cross-section.pdf
†University of Illinois at Urbana-Champaign, alexchinco@gmail.com, (916) 709-9934.
‡University of Illinois at Urbana-Champaign, adcj@illinois.edu, (217) 244-1536.
§University of Illinois at Urbana-Champaign, maoye@illinois.edu, (217) 244-0474.

1

http://www.alexchinco.com/sparse-signals-in-cross-section.pdf
mailto:alexchinco@gmail.com
mailto:adcj@illinois.edu
mailto:maoye@illinois.edu


1 Introduction

Financial economists have been looking for variables that forecast future stock returns for
as long as there have been financial economists. For some recent examples, think about
Jegadeesh and Titman (1993), who show that a stock’s current returns are predicted by
the stock’s returns over the previous 12 months, Hou (2007), who shows that the current
returns of smallest stocks in an industry are predicted by the lagged returns of the largest
stocks in the industry, and Cohen and Frazzini (2008), who show that a stock’s current
returns are predicted by the lagged returns of its major customers.

When you think about it, finding these sorts of forecasting variables actually consists
of two separate problems, identification and estimation. Until now these two separate
problems have always been tackled using two separate toolkits. First, researchers have
used their intuition to identify a new predictor—let’s call it xt. Then, they have used
statistics to estimate this new predictor’s quality,

rn,t+1 = ✓̂0 + ✓̂1 · xt + ✏n,t+1, (1)

where ✓̂0 and ✓̂1 are estimated coe�cients, rn,t+1 is the return on the nth stock, and ✏n,t+1

is the regression residual. If knowing xt reveals a lot of information about what a stock’s
future returns will be, then |✓̂1| and the associated R2 will be large.

But, modern financial markets are big, fast, and densely interconnected. Predictability
doesn’t always occur at scales that are easy for researchers to intuit, making the standard
approach to tackling the first problem problematic. For instance, the lagged returns of
the Family Dollar Corporation were a significant predictor for more than 25% of all NYSE-
listed oil and gas stocks during a 20-minute stretch on October 6th, 2010. Can a researcher
really fish this particular forecasting variable out of a sea of spurious predictors using
intuition alone? And, how exactly is he supposed to do this in under 34 minutes?

This paper replaces intuition with statistics and uses the least absolute shrinkage
and selection operator (LASSO) to identify rare, short-lived, “sparse” signals in the cross-
section of returns. The LASSO increases out-of-sample predictability in minute-by-minute
NYSE returns by a factor of 1.5, from an adjusted R2 = 5.43% to an adjusted R2 = 8.08%, and
thereby suggests a new way of thinking about the economic forces behind stock returns.

Estimation Strategy. We begin our analysis by asking: What’s so special about the
LASSO? Why not just add in the lagged returns of other NYSE-listed stocks when esti-
mating Equation (1)? This is a natural first thought, but the problem with this approach is
that it implicitly assumes all possible cross-stock relationships are equally important. For
instance, there are 2,191 NYSE-listed stocks in our data for October 2010, so the resulting
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estimation problem for this one month would have 2,192 free parameters: one for the
intercept and one for the return of each NYSE stock in the previous minute. Estimating all
of these free parameters using an ordinary least squares (OLS) regression would require
at least 2,192 minutes of data, which is nearly 6 trading days! To shorten the required
sample length, we need to take a di↵erent approach and focus on only the most important
predictors.

The LASSO allows us to do just that. This penalized-regression technique, which
was introduced in Tibshirani (1996), simultaneously identifies and estimates the most
important coe�cients using a far shorter sample period by betting on sparsity—that is,
by assuming only a handful of variables actually matter at any point in time. Formally,
using the LASSO means solving the problem below,

#̂ = arg min
#2R2,192

8>>><>>>:
1

2 · T ·
TX

t=1

0
BBBBB@rn,t+1 � #0 �

2,191X

n0=1

#n0 · rn0,t
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+ � ·
2,191X

n0=1

|#n0 |

9>>>=>>>;
, (2)

where rn,t is the nth stock’s return in minute t, #̂ is a (2,192 ⇥ 1)-dimensional vector of
estimated coe�cients, T is the number of minutes in the sample period, and � is a penalty
parameter. Equation (2) looks complicated at first, but it’s not. It’s a simple extension
of an OLS regression. In fact, if you ignore the right-most term—the penalty function,
� ·Pn0 |#n0 |—then this optimization problem would simply be an OLS regression.

But, it’s this penalty function that’s the secret to the LASSO’s success, allowing the
estimator to give preferential treatment to the largest coe�cients and completely ignore
the smaller ones. To better understand how the LASSO does this, consider the solution to
Equation (2) when the right-hand-side variables are uncorrelated and have unit variance:

#̂n0 = sgn[✓̂n0] · (|✓̂n0 | � �)+. (3)

Here, ✓̂n0 represents what the standard OLS coe�cient would have been if we had an
infinite amount of data, sgn[x] = x/|x|, and (x)+ = max{0, x}. On one hand, this solution
means that, if OLS would have estimated a large coe�cient, |✓̂n0 |� �, then the LASSO is
going to deliver a similar estimate, #̂n0 ⇡ ✓̂n0 . On the other hand, the solution implies that,
if OLS would have estimated a su�ciently small coe�cient, |✓̂n0 | < �, then the LASSO is
going to pick #̂n0 = 0. Because the LASSO can set all but a handful of coe�cients to zero,
it can be used to identify the most important predictors even when the sample length is
much shorter than the number of possible predictors, T ⌧ 2,192. Morally speaking, if
only K ⌧ 2,192 of the predictors are non-zero, then you should only need a few more than
K observations to select and then estimate the size of these few important coe�cients.

Out-of-Sample Predictability. As a benchmark, we first use OLS to estimate rolling
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Figure 1: Average adjusted R2 from out-of-sample forecasting regressions using the return-forecasts
from an OLS regression, the LASSO, or both. Data: Minute-by-minute returns for NYSE-listed
stocks in each October from 2005 to 2013. Reads: “Including the LASSO’s return-forecast boosts
out-of-sample return predictability by a factor of 1.5, from an adjusted R2 = 5.43% to an adjusted
R2 = 8.08%.”

autoregressions with 30 minutes of data and find that the average out-of-sample adjusted
R2 is 5.43% for NYSE-listed stocks. That is, on average 5.43% of the total variation in an
NYSE stock’s minute-by-minute returns can be accounted for by studying that stock’s
past returns, and only that stock’s past returns. Having estimated this benchmark model,
we next consider the e↵ects of other stocks’ returns over the previous 3 minutes. This
means using 30 minutes of data to both identify and estimate the handful of significant
predictors from among 1 + (3 ⇥ 2,191) = 6,574 possibilities in October 2010. Our main
result is that including the LASSO’s return-forecast boosts the out-of-sample adjusted R2

by a factor of 1.5, from an adjusted R2 = 5.43% to an adjusted R2 = 8.08%! This result isn’t
driven by a few outlying observations; rather, it’s a robust feature of all stocks over our
entire sample period.

Trading-Strategy Returns. Next, to show that this predictability isn’t just a statistical
artifact, we compute the returns to a trading strategy that buys or sells a stock whenever the
LASSO’s return-forecast exceeds the bid-ask spread. This plain-vanilla strategy generates
returns of 0.30% per month net of trading costs, and these positive net returns exist in each
subsample of the data we look at. The goal of this analysis isn’t just to show that you can
make money using the LASSO—after all, this is an academic paper. Rather, we study the
returns to a LASSO-based trading strategy because they provide evidence that the sparse
signals we identify using the LASSO are economically important, that the sparse signals
matter to real-world traders.
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Evidence of Sparsity. After documenting the LASSO’s predictive power and showing
that this predictability matters to real-world traders, we next ask ourselves: what sort of
information is the LASSO picking up? It turns out that the LASSO only selects around 11
predictors on average. That is, when making its return-forecast for a single stock, such as
Exxon, the LASSO typically considers the lagged returns of only 11 other stocks during
the previous 3 minutes. This is only around 0.5% of the roughly 2,000 stocks that it can
choose from each month! What’s more, the set of significant predictors changes rapidly.
If the LASSO is using the lagged returns of the Family Dollar Corporation to predict
Exxon’s future returns right now, then there is only a 10% chance that the LASSO will still
be using Family Dollar’s lagged returns in 5 minutes. Finally, the LASSO tends to load
on the same predictors when making forecasts for di↵erent stocks. If the LASSO is using
the lagged returns of Family Dollar to forecast Exxon’s returns, then it is also much more
likely to be using this variable when making return-forecasts for other stocks, such as
British Petroleum or Chevron. Thus, the LASSO’s predictive power comes from quickly
identifying the right predictors at the right time, not from better estimating the e↵ects of
some persistent factor.

More Than Just News. We use data from RavenPack to study how the LASSO’s choice
of predictors is related to news announcements. We find that, for example, even though
Family Dollar is more likely to be chosen by the LASSO as a significant predictor for
some other stock’s returns in the minutes following a news announcement about Family
Dollar, there is nothing in the announcements that predicts which stocks Family Dollar’s
returns will help forecast. Should we look at oil and gass stocks like Exxon? Industrials
like Mitsubishi? Or, somewhere else? In short, the LASSO is doing more than just
mimicking information that’s in news announcements. It’s identifying the way in which
this information is propagating through the market.

Economic Implications. Finally, we conclude our analysis by discussing the economic
implications of the LASSO’s success, which suggests a new way of thinking about the
economic forces behind stock returns. If we only run OLS regressions like Equation (1),
then it’s hard to think about anything other than persistent factors, ✓̂1 ·xt, and idiosyncratic
noise, ✏n,t+1, driving stock returns. But, we know that factors like market and industry
returns only account for roughly 20% of asset-return volatility (see Campbell, Lettau,
Malkiel, and Xu (2001)). So, why do returns move around so much? Can the remaining
80% really just be due to the accidents of life? This paper suggests an alternative. The
LASSO’s predictive power implies that returns realize sparse shocks. These sparse shocks
are more structured than noise (see Figure 2) but can’t be captured by OLS regressions.
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Figure 2: Heat map showing the minutes during October 2010 during which the LASSO selected a
given predictor when making its return-forecast for more than 2% of all NYSE-listed stocks. Darker
dots indicate predictors that were used in more return-forecasts.
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✓̂0 + ✓̂3 · r11:57+✓̂2 · r11:58+✓̂1 · r11:59 f OLS
11:59=

Step 1: Use a 30 minute sample period
to estimate an AR(3) model.

rt = ✓̂0 + ✓̂1 · rt�1 + ✓̂2 · rt�2 + ✓̂3 · rt�3 + ✏t

Step 2: Use estimated coe�cients and last 3
obs. to make out-of-sample prediction.

Estimation Strategy and Timing

Figure 3: To make an out-of-sample predictions in minute (t + 1) = 12:00pm via ordinary least
squares (OLS), we estimate an autoregressive model with L? lags using the stock’s returns in the
previous 30 minutes, selecting the optimal number of lags using the Akaike information criterion.
Then, we use the estimated coe�cients to predict the stock’s returns in minute (t + 1) = 12:00pm,
referring to the prediction as Et[rt+1] = f OLS

t . The figure above shows this process when the optimal
number of lags is L? = 3.

2 Out-of-Sample Predictability

We find that the minute-by-minute returns of NYSE-listed stocks are 1.5-times more
predictable out-of-sample after using the LASSO to account for sparse signals. Our data
consists of the minute-level returns of NYSE-listed stocks from TAQ during the month of
October in each year from 2005 to 2013—that is, 9 years in total. We restrict the sample
to stocks which had prices exceeding $5 at the start of the month and which were traded
every day of the month.

2.1 OLS Regression

To provide a benchmark, we begin by making out-of-sample return-forecasts by fitting
via ordinary least squares (OLS), an approach which explicitly does not take into account
any sparse signals. Figure 3 outlines the timing of the estimation strategy.

Estimation Strategy. For each NYSE-listed stock in our data, we estimate a series of
autoregressions in rolling 30-minute windows,

rn,t = ✓̂0 +
PL?
`=1✓̂` · rn,t�` + ✏n,t, (4)

where ✓̂0 and {✓̂`} are estimated coe�cients, L? is the optimal number of lags for the stock
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Figure 4: Left panel: Fraction of the di↵erent 30-minute time windows where the OLS model
in Equation (5) chooses a given number of lags according to the Akaike information criterion
(AIC). Reads: “There are more than 3 informative lags in less than 18% of the 30-minute time
windows.” Right panel: Average out-of-sample adjusted R2 for the LASSO prediction when using
non-optimized penalty parameters for a random sample of 20 stocks. Reads: “When the LASSO is
estimated each day with a penalty parameter that is 60% of the optimal choice, the resulting average
adjusted R2 for the prediction is 7.24%.”

during the 30-minute window according to the Akaike information criterion (AIC), rn,t

denotes stock the nth stock’s return in minute t, and ✏n,t is the regression residual. The
first 30-minute window we consider each day is t 2 { 10:37am, 10:38am, . . . , 11:06am } and
the last window is t 2 { 3:29pm, 3:30pm, . . . , 3:58pm }, yielding 293 total such samples for
each stock on each day. Our first prediction each trading day is at 11:07am and our last
prediction each trading day is at 3:59pm. The Akaike information criterion chooses 3 or
fewer lags in more than 82% of the 30-minute time windows that we study as shown in
the left panel of Figure 4.

Out-of-Sample Prediction. Next, we predict each stock’s return in the 31st minute using
the coe�cient estimates from the preceding 30-minute training sample:

Et[rn,t+1] = f OLS
n,t = ✓̂0 +

PL?
`=1✓̂` · rn,t�`+1. (5)

So, for example, if we estimated the coe�cients for IBM over the 30-minute window
t 2 { 11:30am, 11:31am, . . . , 11:59am }, then we’d use these coe�cients to predict IBM’s
return in minute (t + 1) = 12:00pm. This gives us 293 out-of-sample predictions for each
stock each day, one for each 30-minute training period.

To test whether these out-of-sample predictions are good or bad, we regress the realized
returns in the 31st minute on the normalized return-forecast for each stock,

rn,t+1 = ãn + b̃n ·
 f OLS

n,t � µOLS
n

�OLS
n

!
+ en,t+1, (6)

where ãn and b̃n are estimated coe�cients, rn,t+1 denotes stock n’s realized return in minute
(t+1), f OLS

n,t denotes our prediction of stock n’s return in minute (t+1) using an autoregression
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Figure 5: Distribution of adjusted R2s from the forecasting regressions in Equations (6), (10), and
(12). Black bars: Probability that the adjusted R2 from a single out-of-sample forecasting regression
falls within a 1%-point interval. Red vertical line: Average adjusted R2 from these regressions
corresponding to the point estimates in the bottom row of Table 1. Left panel: Out-of-sample
prediction made using OLS as in Equation (6). Middle panel: Out-of-sample prediction made using
the LASSO as in Equation (10). Right panel: Out-of-sample predictions made using both OLS and
the LASSO as in Equation (12). Reads: “While the OLS and LASSO models have similar out-of-
sample fits on average, 5.43% vs. 4.56%, their fits display very di↵erent cross-sectional distributions
meaning that each estimator is picking up very di↵erent information.”

model, µOLS
n and �OLS

n represent the mean and standard deviation of this out-of-sample
prediction over the entire sample period, and en,t+1 is the regression residual. To be clear,
this means running separate regressions for each stock in each month—for example, one
regression for each of the 2,192 NYSE-listed stocks in our sample in October 2010 and one
regression for each of the 1,965 NYSE-listed stocks in our sample for October 2008.

Estimation Results. The first column of Table 1 shows that the average adjusted R2 in
these regressions is 5.43%. That is, for a randomly selected stock, you can explain 5.43%

of the variation in its minute-by-minute returns using only information about that stock’s
past returns. Table 1 also shows this analysis for di↵erent subsamples of our data. This
subsample analysis indicates that the average fit is relatively stable. If using the LASSO
to account for sparse signals adds value, then it has to improve on this 5.43% benchmark.

While we are primarily interested in the model’s fit, it’s useful to look at the coe�cients
to gain some economic intuition about what the model is telling us. Specifically, we can
interpret b̃n as the average return per minute to a time-series momentum strategy à la
Moskowitz, Ooi, and Pedersen (2012):

b̃n =
1

T·�OLS
n
·PT

t=1( f OLS
n,t � µOLS

n ) · rn,t+1. (7)

So, the average coe�cient of hb̃ni = 3.57⇥10�4 means that the gross monthly return to a
market-timing strategy that is long a stock when the OLS model’s prediction is higher
than average and short the stock otherwise is (390 · 21) · hb̃ni = 2.92% per month.

Of course, this estimate ignores trading costs, which are (to put it mildly) substantial
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when rebalancing once every minute rather than once every month like in the original
paper. On top of this, the market-timing strategy depends on knowing the distribution
of the OLS model’s out-of-sample prediction for each stock, µOLS

n and �OLS
n , even though

this information is not known at the beginning of the sample period. For these reasons,
this 2.92% per month figure should be taken as an upper bound on the profitability of the
OLS predictor, and we examine its usefulness as a trading predictor in the presence of
transactions costs in Section 3 below.

2.2 Penalized Regression

Let’s now consider the impact of using other stocks’ returns over the previous 3 minutes
using the LASSO. There are roughly N ⇡ 2,000 NYSE-listed stocks in our sample each
October. So, using the LASSO means using 30 minutes of data to both identify and
estimate the few significant predictors from among 1 + (N ⇥ 3) ⇡ 6,000 possibilities each
month, a task that would clearly be impossible using OLS.

Estimation Strategy. For each of the NYSE-listed stocks in our sample each October, we
compute a series of LASSO estimates using rolling 30-minute windows just like we did
for the OLS-based approach. The LASSO solves the optimization problem below,

#̂ = arg min
#2R7,636

8>>><>>>:
1

2 · 30
·

30X

t=1

0
BBBBB@rn,t � #0 �

NX

n0=1

3X

`=1

#n0,` · rn0,t�`

1
CCCCCA

2

+ � ·
NX

n0=1

3X

`=1

���#n0,`

���

9>>>=>>>;
, (8)

where #n,0 and {#n0,`} are estimated coe�cients, rn,t�` denotes stock the nth stock’s return `
minutes ago, � is a penalty parameter, and N is the number of stocks in a given month. We
perform this analysis on the exact same set of 30-minute training samples for each stock
as in the subsection above. Our first prediction each trading day is at 11:07am and our last
prediction each trading day is at 3:59pm. This gives us 293 out-of-sample predictions for
each stock each day, one for each 30-minute training period. We give a detailed example
of how the LASSO works using simulated data in Appendix A.

Out-of-Sample Prediction. To see whether or not the LASSO’s coe�cient estimates
contain useful information, we create an out-of-sample prediction for each 30-minute
training sample just as before,

Et[rn,t+1] = f LASSO
n,t = #̂0 +

PN
n0=1

P3
`=1#̂n0,` · rn0,t�`+1, (9)

and then regress each stock’s realized returns on the LASSO’s normalized return-forecast,

rn,t+1 = ãn + c̃n ·
 f LASSO

n,t � µLASSO
n

�LASSO
n

!
+ en,t+1, (10)
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Figure 6: x-axis: OLS-regression coe�cient in an infinite sample. y-axis: Penalized-regression
coe�cient from the LASSO. Dotted: x = y line. Reads: “If an OLS regression would have estimated
a small coe�cient value given enough data, |✓̂n0,`| < �, then the LASSO will set #̂n0,` = 0.”

where ãn and c̃n are estimated coe�cients, rn,t+1 denotes the nth stock’s realized return
in minute (t + 1), f LASSO

n,t denotes our prediction of the nth stock’s return in minute (t + 1)
using the LASSO, µLASSO

n and �LASSO
n represent the mean and standard deviation of this out-

of-sample prediction over the entire sample period, and en,t+1 is the regression residual.

Betting on Sparsity. Before we discuss the results, let’s first ask ourselves: what addi-
tional information might the LASSO be capturing? To gain some intuition, consider the
solution to the optimization problem in Equation (8) when the right-hand-side variables
are uncorrelated and have unit variance,

#̂n0,` = sgn[✓̂n0,`] · (|✓̂n0,`| � �)+, (11)

where ✓̂n0,` represents what the OLS coe�cient would have been given enough data,
sgn[x] = x/|x|, and (x)+ = max{0, x}. Equation (11) says that, if OLS would have estimated
a large coe�cient, |✓̂n0,`| � �, then the LASSO will deliver a similar estimate, #̂n0,` ⇡ ✓̂n0,`.
When you look all the way to the right or to the left in Figure 6, you see that the solid
line denoting the LASSO estimate and the dotted line denoting the OLS estimate are quite
close. By contrast, if OLS would have estimated a su�ciently small coe�cient, |✓̂n0,`| < �,
then the LASSO will pick #̂n0,` = 0. This corresponds to the flat region in Figure 6.

Thus, the LASSO’s return-forecast is helpful only under certain conditions. If there
are only a few (that is, K  30) important predictors with coe�cients larger than � in any
30-minute time window, then the LASSO will be able to identify and estimate these sparse
signals, providing useful information when trying to forecast returns. But, if there are no
significant predictors or if these signals are not sparse (that is, K > 30), then the LASSO’s
return-forecast won’t be a helpful predictor. In the first case, there wouldn’t be any cross-
stock signals to estimate. In the second case, there would be too many cross-stock signals
to estimate using only 30 data points. It’s possible to bet on sparsity and lose.

Estimation Results. The second column of Table 1 displays summary statistics describ-
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ing the results of the LASSO forecasting regressions. Looking at the average adjusted
R2 from these regressions, we see that the fit of the LASSO’s prediction is on par with
that of the prediction from the autoregressive model. When we include the out-of-sample
predictions from both the autoregression and the LASSO in the same regression,

rn,t+1 = ãn + b̃n ·
 f OLS

n,t � µOLS
n

�OLS
n

!
+ c̃n ·

 f LASSO
n,t � µLASSO

n

�LASSO
n

!
+ en,t+1, (12)

we find that these two predictions are capturing very di↵erent kinds of information.
The third column of Table 1, which displays the summary statistics from the combined
regressions, reveals that including information from the LASSO increases the out-of-
sample adjusted R2 for the typical stock by a factor of 1.5, from an adjusted R2 = 5.43% to
an adjusted R2 = 8.08%. Although the OLS model and the LASSO generate predictions
with similar accuracies on average, each model uses very di↵erent information to make
its forecast as shown in Figure 5. The bet on sparsity pays o↵.

2.3 Robustness Checks

We now show that these general patterns hold when we slice the data in a variety of
di↵erent ways.

Sample Periods. Table 1 shows the summary statistics for the predictive regressions
broken down into a set of 3 di↵erent 3-year intervals. We now further slice our results into
year-specific segments to show that the gain from including the LASSO’s return-forecast
is consistent over time. The left panel of Figure 7 shows the average adjusted R2 from

Out-of-Sample Return Predictability
Full Sample 2005-07 2008-10 2011-13

hãni⇥10�4 0.01
(19.42)

0.01
(19.42)

0.01
(19.41)

0.01
(18.75)

0.01
(18.75)

0.00
(4.78)

0.00
(4.78)

0.02
(29.77)

0.02
(29.77)

hb̃ni⇥10�4 3.57
(140.59)

3.00
(136.06)

2.71
(77.08)

2.35
(75.02)

4.16
(97.17)

3.45
(91.57)

3.97
(77.08)

3.28
(74.75)

hc̃ni⇥10�4 3.17
(166.77)

2.40
(175.02)

1.91
(97.22)

2.76
(133.89)

2.59
(90.24)

hAdj. R2i 5.43% 4.56% 8.08% 4.11% 6.20% 6.13% 9.30% 6.22% 8.98%

Table 1: Average of the parameter estimates from the out-of-sample regressions each month de-
scribed by Equations (6), (10), and (12). The full sample includes results from (stock,minute)-level
regressions in each October from 2005 to 2013. Coe�cient estimates have units of percent per
minute. Numbers in parentheses are the t-statistics. Reads: “While the typical fit of the LASSO’s
prediction is on par with the typical fit of the OLS model’s prediction, adjusted R2 = 5.43% vs.
adjusted R2 = 4.56%, the two forecasts are using fundamentally di↵erent information. Including
both the OLS and the LASSO forecasts increases out-of-sample return predictability by a factor of
1.5, from an adjusted R2 = 5.43% to an adjusted R2 = 8.08%.”
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Distribution of Adjusted R2s, by Year
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Figure 7: Average fit from the out-of-sample regressions each month sorted by year. Left panel,
green squares: Adjusted R2s from predictions made using an OLS model as in Equation (6). Left
panel, blue triangles: Adjusted R2s from predictions made using the LASSO as in Equation (10).
Left panel, red circles: Adjusted R2s from predictions made using both OLS and the LASSO as in
Equation (12). Right panel: Ratio of the average adjusted R2 using both the OLS and the LASSO
forecasts to the average adjusted R2 using only the OLS forecast in each year. Reads: “There are
some years, such as 2007, where the OLS model does a bad job of forecasting returns, and there
are other years, such as 2010, where the OLS model does a good job of forecasting returns. But,
regardless of the average fit for the OLS model in any given year, including the LASSO’s return
forecast always boosts out-of-sample predictive power by a factor of 1.5.”

the forecasting regressions each year. There are some years, such as 2007, where the OLS
model does a bad job of forecasting returns (adjusted R2 = 3.72), and there are other
years, such as 2010, where the OLS model does a good job of forecasting returns (adjusted
R2 = 9.32). But, regardless of the average fit for the OLS model in any given year, the
right panel of Figure 7 shows that including the LASSO’s return-forecast always boosts
out-of-sample predictive power by a factor of 1.5.

Industry Groupings. Motivated by the evidence of industry lead-lag e↵ects documented
in both Hong, Torous, and Valkanov (2007) and Hou (2007), we show that the gain from
including the LASSO’s return-forecast in our predictive regressions is unchanged when
we slice the data by industry. We classify each stock in our sample according to its 3-digit
SIC code. Figure 8 displays the increase in average adjusted R2 values from including the
LASSO’s return-forecast for each 3-digit industry, restricting the sample to the industries
with at least 100 stocks over the course of our entire sample period. The figure shows that
this gain factor of 1.5 is remarkably steady across all major industry groups.

Market and Industry Returns. We know that individual stock returns are explained by
changes in market-wide and industry-specific returns. So, one potential concern is that our
LASSO return-forecast is just picking up information that’s already in these variables. Put
another way, perhaps it’s the case that the LASSO tends to make postive return forecasts
for all stocks in a given minute, right before the whole market does really well. Or, maybe
the LASSO tends to make postive return forecasts for all stocks in an industry at the same
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Distribution of Adjusted R2s, by Industry

Figure 8: Average gain from including the LASSO’s return forecast when running the out-of-
sample regressions each month sorted by 3-digit SIC-code industry. y-axis: Ratio of the average
adjusted R2 using both the OLS and the LASSO forecasts to the average adjusted R2 using only the
OLS forecast for each industry. For brevity, we only report industries with at least 100 observations.
Reads: “The LASSO’s return-forecast adds significant predictive power to out-of-sample regressions
in all major industries.”

time, right before the industry does really well?
To show that this is not what’s going on, we include contemporaneous market-wide

and industry-specific returns in our forecasting regressions,

rn,t+1 = ãn + · · · + d̃Mkt,n · rMkt,t+1 + en,t+1 (13a)

and rn,t+1 = ãn + · · · + d̃Mkt,n · rMkt,t+1 + d̃Ind,n · rInd(n),t+1 + en,t+1, (13b)

where “· · · ” denotes some combination of forecasting variables from Equation (6), (10), or
(12) and the variables d̃Mkt,n and d̃Ind(n),n are the estimated coe�cients for each stock on the
contemporaneous market-wide return or its contemporaneous industry-specific return.
Because we need to be able to estimate an industry-specific return, we restrict the sample
to stocks in 3-digit SIC-code industries with at least 10 stocks in a given month.

Table 2 shows the summary statistics from these new regressions. The first, fourth
and seventh columns correspond to the left-3 columns of Table 1 when restricting the
sample to stocks in 3-digit SIC-code industries with at least 10 stocks in a given month.
The coe�cients are almost identical, suggesting that this restriction isn’t altering the
sample in a meaningful way. From this starting point, we then add in controls for
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the market-wide and industry-specific returns for each stock. As we do so, the point
estimates in the regressions hardly change. What’s more, there is still a significant jump
in the model’s fit from the third column (OLS return-forecast plus market-wide and
industry-specific controls, average adjusted R2 = 12.82%) to the ninth column (both the
OLS and the LASSO return-forecasts plus market-wide and industry-specific controls,
average adjusted R2 = 15.36%). Thus, the LASSO’s return-forecast isn’t just a proxy for
market-wide or industry-specific news. It’s capturing some other information.

Penalty Parameters. Finally, we find that our results are robust to selecting the penalty
parameter, �, in di↵erent ways. We select the � for each stock by choosing the penalty
parameter with the highest out-of-sample R2 during the first 45 minutes of each trading
day. This parameter then remains constant throughout the rest of the trading day. Choos-
ing the penalty parameter using the first 45 minutes of the trading day isn’t necessarily
optimal; but, we simply want to show that accounting for sparse signals can significantly
boost traders’ out-of-sample predictive power. This procedure is the method of choice
in Friedman, Hastie, and Tibshirani (2010). The right panel of Figure 4 shows that the
LASSO’s predictions do not depend on the gritty details of how � is chosen.

Out-of-Sample Return Predictability, Market and Industry Controls
Full Sample

hãni⇥10�4 0.01
(18.90)

0.01
(18.90)

0.01
(18.90)

0.01
(18.90)

0.01
(18.90)

0.01
(18.90)

0.01
(18.90)

0.01
(18.90)

0.01
(18.90)

hb̃ni⇥10�4 3.60
(135.83)

3.61
(136.46)

3.51
(137.91)

3.02
(131.45)

3.04
(132.12)

2.95
(133.35)

hc̃ni⇥10�4 3.18
(160.75)

3.18
(161.28)

3.09
(164.21)

2.40
(170.42)

2.40
(170.95)

2.34
(174.42)

rMkt,t+1 X X X X X X
rInd(n),t+1 X X X
hAdj. R2i 5.43% 10.88% 12.82% 4.54% 9.96% 11.96% 8.06% 13.51% 15.36%

Table 2: Average of the parameter estimates from the out-of-sample regressions each month described
by Equations (6), (10), and (12) when including contemporaneous market-wide and industry-specific
returns. The full sample includes results from (stock,minute)-level regressions in each October from
2005 to 2013 for stocks in 3-digit SIC-code industries with at least 10 stocks in a given month.
Coe�cient estimates have units of percent per minute. Numbers in parentheses are the t-statistics.
Reads: “When we add controls for market-wide and industry-specific returns, the point estimates
in the regressions hardly change and there is still a significant jump in the model’s fit from the third
column (average adjusted R2 = 12.82%) to the ninth column (average adjusted R2 = 15.36%).”
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3 Trading-Strategy Returns

Next, to show that this predictability isn’t just a statistical artifact, we compute the returns
to a trading strategy that buys or sells a stock whenever the LASSO’s return-forecast
exceeds the bid-o↵er spread. This plain-vanilla strategy generates returns of 0.30% per
month net of trading costs, and these positive net returns exist in each subsample of the
data we look at.

3.1 Realized Returns

Table 1 shows that, for a typical stock, the average return to a market-timing strategy
which is long when the LASSO’s prediction is higher than average and short otherwise
(see Moskowitz, Ooi, and Pedersen (2012)) is (390 · 21) · (3.17⇥10�4) = 2.60% per month. But,
this interpretation is subject to a pair of implementation-related caveats: it su↵ers from
look-ahead bias and it ignores trading costs. We now analyze the returns to a trading
strategy that corrects for these concerns.

Look-Ahead Bias. First, let’s consider the problem of look-ahead bias. The issue is that
when we computed the mean and standard deviation of our LASSO return-forecast in
Equation (10), we used information from future trading periods. For instance, the strategy
dictated by Equation (10) is using information from October 26th, 2009 when deciding
how many shares to buy on October 1st, 2009. To get around this problem, we split our
sample in hald each month and use the first 10 trading days of each October—that is,
minutes t = 1 through t = (293 ⇥ 10) = 2,930—to compute the mean and volatility of the

Trading-Strategy Returns
Full Sample 2005-07 2008-10 2011-13

No Spread 2.82
(128.47)

2.28
(74.36)

2.97
(87.76)

3.28
(69.65)

NBBO Spread 0.30
(23.58)

0.17
(8.81)

0.17
(8.10)

0.55
(22.83)

Table 3: Returns per month to a trading-strategy based on LASSO return-forecast. In the first
row, the strategy buys or sells a stock whenever the normalized LASSO’s return-forecast is positive
or negative, and no spread is paid. In the second row, the strategy buys or sells a stock whenever the
LASSO’s return-forecast exceeds the national best bid-o↵er (NBBO) spread, and the resulting return
calculations include the cost of paying the spread. The columns marked “2005-07”, “2008-10”,
and “2011-13” report the same calculations done in 3 subsamples. Numbers in parentheses are
t-statistics. Reads: “The trading strategy based on LASSO return-forecast generates a 0.30% per
month return net of trading costs when applied to an average stock.”
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Spread-Beating Returns per Minute
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Figure 9: Daily average number of stocks with spread-beating returns, |rn,t+1| > spreadn,t each
minute. Data: NYSE-listed stocks traded in each October from 2005 to 2013. The spread is the
average national-best bid-o↵er (NBBO) spread for each stock in a given minute. Days labeled on
the x-axis are Mondays. The values labeled on the y-axis correspond to the minimum, median,
and maximum of the number of spread-beating returns per minute during the month. Number in
square brackets denote the number of NYSE-listed stocks each month. Reads: “Out of the 2,121
NYSE-listed stocks in our sample during October 2009, only 310 realized returns in excess of their
NBBO spread on Friday, October 9th.”

out-of-sample LASSO predictions for each stock,

µ̂LASSO
n = 1

2,930 ·
P2,930

t=1 f LASSO
n,t (14a)

and �̂LASSO
n =

✓
1

2,930 ·
P2,930

t=1

h
f LASSO
n,t � µ̂LASSO

n

i2
◆1/2

. (14b)

We then compute the returns to a trading strategy that is long whenever the prediction is
positive and short whenever the prediction is negative,

rLASSO
n,t+1 =

✓
f LASSO
n,t �0

�̂LASSO
n

◆
⇥ rn,t+1, (15)

for the second half of each October from 2005 to 2013–that is, days 11 through 21. By
estimating each predictor’s volatility in an earlier period and assuming each predictor’s
mean is zero, we avoid the look-ahead bias. All the information we need to compute the
portfolio weights is available prior to the start of trading each minute.

This trading strategy buys a stock whenever the LASSO’s out-of-sample return-forecast
is positive, f LASSO

n,t > 0, and sells a stock whenever the LASSO’s out-of-sample return-
forecast is negative, f LASSO

n,t < 0. Moreover, for a given prediction, the strategy dictates
that we trade more in stocks where the LASSO’s out-of-sample return-forecast is less
volatile. We choose this portfolio weighting scheme in order to mirror the coe�cients
in the predictive regressions, not because it is somehow the optimal way to trade. The
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goal of this analysis isn’t just to show that you can make money using the LASSO. Rather,
we study the returns to a LASSO-based trading strategy because they provide evidence
that the sparse signals we identify using the LASSO are economically important, that the
sparse signals matter to real-world traders.

Trading Costs. Let’s now turn our attention to the second problem—namely, trading
costs—which are substantial when trading every minute. Figure 9 highlights this basic
point by showing that, out of the roughly 2,000 NYSE-listed stocks in our sample each
October, only around 364 realize returns in excess of their national-best bid-o↵er spread
in any given minute. A predictor can be very good at forecasting small return fluctuations
but be utterly useless because it work for the 364/2,260 ⇡ 16% of stocks each minute with
price movements large enough to trade on.

We account for trading costs by redefining the strategy so that it only trades when the
LASSO’s out-of-sample return-forecast exceeds the national-best bid-o↵er (NBBO) spread:

rLASSO
n,t+1 =

⇢ �����
f LASSO
n,t �0

�̂LASSO
n

����� ⇥
⇣
sgn[ f LASSO

n,t ] · rn,t+1 � spreadn,t

⌘ �
· 1{| f LASSO

n,t |>spreadn,t}. (16)

So, for example, if spreadn,t = 0, then there is no spread and the strategy is the same as
before. By contrast, if the spread is positive, spreadn,t > 0, then the trading strategy only
invests when the LASSO’s return-forecast is su�ciently large, | f LASSO

n,t | > spreadn,t. Moreover,
for a trade to be profitable, the LASSO’s return-forecast has to have both the right sign as
the realized return in the next minute, sgn[ f LASSO

n,t ] · rn,t+1 > 0, and the realized return has to
exceed the spread, |rn,t+1| > spreadn,t. For each stock, we define the spread as the average
of the NBBO spread each minute in the second-by-second TAQ data.

Estimation Results. Table 3 describes the returns per minute to trading strategies based
on the LASSO’s return-forecasts under two di↵erent regimes: no spread and NBBO
spread. The top row reveals that, for a typical NYSE-listed stock, the LASSO-based
strategy generate positive gross returns of 2.82% per month in the absence of any trading
costs. This point estimate is very close to the (390 · 21) · (3.17⇥10�4) = 2.60% per month point
estimate we got when ignoring look-ahead bias in the second column of Table 1.

As you would expect, introducing trading costs dramatically lowers the trading strat-
egy’s returns. After accounting for the spread, the LASSO-based trading strategy has a net
return of 0.30% per month when applied to a typical stock. But, this return is still positive
and statistically significant. What’s more, the results exist in each subsample of the data
we look at and are slightly increasing over time. You could engineer a more sophisticated
LASSO-based strategy to deliver much larger returns, but that isn’t our goal here. These
positive returns are interesting because they show that the sparse signals that the LASSO
is using to make its return-forecasts are economically important.
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Accurate LASSO Predictions per Minute
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Figure 10: Number of return-forecasts made by the LASSO that end up beating the spread. Dark
shaded: Daily average number of stocks each minute with spread-beating returns, |rn,t+1| > spreadn,t,
that were accurately predicted by only the LASSO, | f LASSO

n,t | > spreadn,t. Light shaded: Daily average
number of stocks each minute with spread-beating returns that were accurately predicted by both
OLS and the LASSO. Days labeled on the x-axis are Mondays. The values labeled on the y-axis
correspond to the minimum, median, and maximum of the number of accurate prediction made
by the LASSO each the month. Data: NYSE-listed stocks traded in each October from 2005 to
2013. Reads: “Less than half of the LASSO’s accurate predictions can be captured using an OLS
regression.”

3.2 Di↵erent Trades

While the main goal of looking at the trading-strategy returns is to show that the LASSO’s
predictive power is economically meaningful, this analysis also has the added benefit of
giving us another vantage point for seeing how the information captured by the LASSO
di↵ers from the information captured by an OLS regression.

Accurate Predictions. Figure 10 shows the daily average number of accurate predictions
made by the LASSO each trading day. These are stock-minutes where the stock realized a
return in excess of its NBBO spread, |rn,t+1| > spreadn,t, and where the LASSO said the stock
would realize a spread-beating return, | f LASSO

n,t | > spreadn,t. The dark regions represent the
number of accurate predictions that were only made by the LASSO. The lighter regions
represent the number of accurate predictions that were made by both the LASSO and
an OLS regression. The LASSO typically picks out only around 60 of the 364 possible
spread-beating returns each minute.

Di↵erent Predictions. What’s more, less than half of the LASSO’s 60 accurate predictions
can be captured using an OLS regression. For example, the probability that both OLS and
the LASSO select the same stock to beat the spread in a given minute is 6%. Each strategy
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Significant Predictors per Stock per Minute
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Figure 11: Number of predictors used by the LASSO to makes its 1-minute-ahead return forecasts.
Solid black line: Daily average number of significant predictors selected by the LASSO each minute.
Grey ribbons: (5%, 25%] and [75%, 95%) ranges for the number of significant predictors selected by
the LASSO each minute. Days labeled on the x-axis are Mondays. The values labeled on the y-axis
correspond to the minimum, mean, and maximum of the number of predictors used by the LASSO
each the month. Data: NYSE-listed stocks traded in each October from 2005 to 2013. Reads:
“If you select a stock at random and then look at the LASSO’s return-forecast for that stock in a
randomly selected minute during October 2010, then you should expect the LASSO to use roughly
13 predictors when making this return-forecast.”

generates a di↵erent pattern of returns because each strategy tells traders to hold very
di↵erent collections of assets. This is another way of showing that the LASSO and OLS
are capturing very di↵erent kinds of information.

4 Evidence of Sparsity

We’ve just seen that including the LASSO’s return-forecast in a predictive regression
boosts the out-of-sample R2 by a factor of 1.5, from an adjusted R2 = 5.43% to an adjusted
R2 = 8.08%, and that trading on the LASSO’s return-forecast generates net returns of 0.30%

per month. When we dig a little deeper to better understand where this predictive power
comes from, we find that the LASSO’s predictive power comes from identifying the right
variables at the right time, not from better estimating the e↵ect of some persistent factor.

4.1 Number of Predictors

To start with, the LASSO uses an extremely small number of predictors to make its return-
forecast every minute.
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Predictors per Stock. Figure 11 characterizes the number of significant predictors the
LASSO uses to make its return-forecast for each NYSE-listed stock in each minute. On
average, the LASSO uses only 11 predictors to make its return-forecast. To put this number
in perspective, note that this is roughly

0.5% = 11/2,191 (17)

of the 2,191 possible stocks that the LASSO could choose from in October of 2010. More-
over, this is a stable feature of all the stocks we look at.

Timeseries Variation. The LASSO’s tendency to use only a handful predictors is also
extremely stable over time. The thick black line gives the average number of significant
predictors selected by the LASSO in each minute; whereas, the grey shaded regions give
the (5%, 25%] and [75%, 95%) ranges. While the LASSO does tend to use slightly more
predictors later in the sample period, the basic pattern is quite constant across our sample.
The LASSO generally makes its return-forecast using only 11 predictors out of the roughly
2,000 possible each month.

4.2 Sparse Predictors

Even though the LASSO uses a small number of predictors when making its return-
forecasts, this isn’t necessarily evidence that its identifying a sparse signal. It could be
the case that the LASSO always chooses the same 11 predictors—in other words, that the
signal is just a persistent factor. Or, it could be the case that the LASSO chooses entirely
di↵erent predictors when forecasting each stock. We now show that neither of these two
possibilities is true in the data.

Predictor Duration. To see what we mean, first notice that the LASSO’s chosen pre-
dictors do not remain significant for long. The left panel of Figure 12 shows that the
median predictor emerges into significance for a single minute, sees its shadow, and then
disappears. Moreover, less than 10% of all LASSO predictors remain significant for more
than 4 minutes. If we estimate a simple hazard-rate model, we find that each significant
predictor has a 60% chance of becoming insignificant in the following minute. This means
that, if the LASSO uses 11 di↵erent predictors to make its return-forecast in the current
minute, then on average the LASSO will not be using any of these predictors 10 minutes
later since the expected time until 11 failures is given by

7.33 min =
⇣

1�0.60
0.60

⌘
⇥ 11. (18)

Predictor Overlap. Yet, in spite of the fact that the LASSO is constantly churning through
predictors, we find that the predictors that the LASSO selects for each stock are far more
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Evidence of Sparse Predictors
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Figure 12: Left panel: Probability that the LASSO uses a predictor for more than x consecutive
minutes when making the return-forecast for a particular stock. Reads: “Less than 10% of all
LASSO predictors remain significant for more than 4 consecutive minutes.” Right panel, red
line: Probability that the LASSO uses a particular predictor when making its return-forecast for
x di↵erent stocks. Right panel, blue line: Probability that a particular predictor would be used to
make return-forecasts for x di↵erent stocks if each stock’s predictors were chosen at random. Reads:
“Compared to when each stock’s predictors are chosen at random, predictors are more likely to be
used very often or not at all when the predictors are selected by the LASSO.”

likely to overlap than would be expected by pure chance. Put another way, if the LASSO
is using the lagged returns of Family Dollar to forecast Chevron’s returns, then it is
also much more likely to be using this variable when making return-forecasts for other
stocks, as well. The red line in the right panel of Figure 12 gives the probability that a
randomly selected stock is a significant predictor in x di↵erent LASSO return-forecasts.
The blue line, on the other hand, gives the probability that a randomly selected stock
would be a significant predictor for x return-forecasts if each stock had 11 randomly
selected predictors. Compared to this random-selection benchmark, the LASSO is 17.6-
times more likely to use a predictor in more than 20 of its return-forecasts than it would
be by pure chance.

5 More Than Just News

We now data from RavenPack to show that the LASSO is doing more than just mirroring
news announcements: it’s capturing how this news propagates from stock to stock. For ex-
ample, even though Family Dollar is more likely to be chosen by the LASSO as a significant
predictor for some other stock’s returns in the minutes following a news announcement
about Family Dollar, this news announcement doesn’t reveal which stocks Family Dollar’s
returns will help forecast. Should we look at oil and gas stocks like Exxon? Industrials
like Mitsubishi? Somewhere else? The LASSO identifies these cross-stock links.
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News Releases Per Stock Per Day

October 2005

3

70

3 10 17 24 31

October 2006

3

59

2 9 16 23 30

October 2007

3

102

1 8 15 22 29
October 2008

4

204

6 13 20 27

October 2009

4

159

5 12 19 26

October 2010

4

146

4 11 18 25
October 2011

4

215

3 10 17 24 31

October 2012

4

258

1 8 15 22 29

October 2013

4

181

7 14 21 28
Figure 13: Distribution of the number of news releases for each stock each day in the RavenPack
data. Thick black line: Daily average number of news releases across all NYSE-listed stocks. Grey
ribbon: [75%, 95%) range for the number of news releases per stock. Thin black line: Number of news
releases for the NYSE-listed stock with the most news. Days labeled on the x-axis are Mondays. The
values labeled on the y-axis correspond to the mean, and maximum of the number of news releases
per day for each stock during the month. Data: RavenPack news-release data for NYSE-listed stocks
traded in each October from 2005 to 2013. Reads: “During October 2009, the typical NYSE-listed
stock had 4 news releases per day, while the stock with the most news had 159.”

5.1 News-Release Data

We obtain business press data from RavenPack, a news analytics company.

Data Source. RavenPack has a partnership with Dow Jones, giving it access to the
full Dow Jones news archives. These data consist of all Dow Jones Newswire and Wall
Street Journal articles. The Dow Jones news archives have been used in many prior studies,
including Barber and Odean (2008), Tetlock (2010), and Engelberg, Reed, and Ringgenberg
(2012). After collecting each news release, RavenPack also assigns it a relevance score that
ranges from 0.0 (not relevant) to 1.0 (most relevant) and computes its subsequent news
impact on the market on the same scale.

Variable Definition. We use the RavenPack data to compute a “has news” indicator
variable for each stock in each minute of our sample,

hasNewsn,t =

8>>><>>>:
1 if there is a new release about stock n in minute t,

0 else.
(19)

We can also interact this variable with the relevant and impact variables provided by
RavenPack. Because we only have relevance and impact data when there is a news
release, we set these variables equal to zero in all other minutes.
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5.2 E↵ect of News

We begin our analysis by verifying that the LASSO is more likely to use a stock as a
predictor when it realizes a news release.

Predictor Choice. To set up our regressions, we define a pair of additional variables. First,
we create another indicator variable at the stock-pair-by-minute level, which captures
whether or not the nth stock was used by the LASSO to predict the mth stock’s returns in
minute (t + 1),

isUsedn!m,t =

8>>><>>>:
1 if LASSO uses stock n to forecast stock m’s returns in (t + 1),

0 else.
(20)

To make the definition concrete, recall that the LASSO makes its return-forecast for each
stock using 11 predictors on average, so E

⇣PN
n=1 isUsedn!m,t

⌘
= 11. But, we could also

compute the sum the other way and ask how many times does the LASSO use the nth
stock as a predictor in minute t,

#UsedByn,t =
PN

m=1isUsedn!m,t. (21)

If the LASSO used the nth stock in all its return-forecasts, then #UsedByn,t = N; whereas,
if the LASSO never used the nth stock in its return-forecast for any other stock, then
#UsedByn,t = 0.

Regression Specifications. To show that the LASSO is more likely to use a stock as a
predictor when it has a news release, we run the regression below,

#UsedByn,t = ãt + b̃n + c̃ · hasNewsn,t + ✏n,t, (22)

where ãt and b̃n are minute and stock fixed e↵ects. If we were to estimate c̃ = 1, for example,
then this would mean that a stock with a news release in the current minute is typically
used by the LASSO to make one additional return-forecast relative to its average. We
include stock fixed e↵ects because some firms realize more news releases than others. We
include time fixed e↵ects because there are some minute with many more news releases
than others (see Figure 13).

In addition to this baseline specification, we also run specifications where the “has
news” indicator variable is interacted with RavenPack’s measures of relevance and impact,

#UsedByn,t = ãt + b̃n + c̃ · {hasNewsn,t ⇥ newsRelevancen,t} + ✏n,t (23a)

and #UsedByn,t = ãt + b̃n + c̃ · {hasNewsn,t ⇥ newsImpactn,t} + ✏n,t. (23b)

The relevance variable is a measure of the extent to which the news release is about a
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particular company. For example, a news release about the computer industry that briefly
mentions Apple might have a relatively low relevance score; by contrast, a news release
about the Apple iPhone would have a relevance score of 1.0. The news impact score is
a forward looking measure, which measures the rise in market volatility in the 2 hours
immediately after a news announcement. We run these additional regressions to verify
that our specification is correct. We should expect that the estimated c̃ should rise in both
these regressions. More relevant news about a company should lead the LASSO to use it
in more return-forecasts. And, if we know that the market gets really volatility right after
a news release about a particular company, then the LASSO should be much more likely
to use this company’s stock as a predictor when forecasting other stocks’ returns.

Regression Results. The first 3 columns of Table 4 show the results of these 3 regressions.
In the first column, we see that the LASSO tends to use a stock in 0.65-more return-forecasts
in the minute when it realizes a news announcement. This e↵ect jumps to 0.88-more
return-forecasts when we focus on news stories that are very relevant to the stock. Finally,
we see in the third column that the LASSO is likely to use a stock in 2.01 additional return-
forecasts if it had a news release that had a large e↵ect on subsequent market volatility.
These results give strong evidence that the LASSO is using stocks with news releases as
predictors.

5.3 How Information Propagates

But, even though news announcements are good predictors of which stocks the LASSO
will use as predictors, they say nothing about how the LASSO will use them.

Regression Specification. We encode this result in the following regression,

isUsedn!m,t = ãt + b̃n!m + d̃ · hasNewsn,t + ✏n!m,t, (24)

which we run at the ordered-stock-pair-by-minute level. If we estimate d̃ > 0, then this
means that the LASSO is always more likely to use, say, Family Dollar to predict Exxon’s
returns when there is news about Family Dollar. We include time and ordered-stock-pair
fixed e↵ects for the same reasons as before.

Regression Results. The fourth column of Table 4 shows the results of this regression.
We find a coe�cient estimate of d̃ = 0. This means that news announcements about a
particular stock don’t always propagate through the market in the same way. Sometimes
news about Family Dollar will predict oil and gas companies’ returns, but other times it
will be relevant for industrials like Mitsubishi. Thus, the LASSO is doing more than just
loading on news releases when they come out. It’s telling you which other stocks this
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news is relevant for. Put another way, it’s both identifying and estimating the relevant
cross-stock signals.

6 Related Literature

The paper borrows from and brings together several strands of the statistics and empirical
asset-pricing literatures.

The LASSO. To start with, this paper belongs to a growing literature applying the
LASSO to econometric problems. For some examples, see Belloni, Chen, Chernozhukov,
and Hansen (2012) and Belloni, Chernozhukov, and Hansen (2014). These papers answer
the question of how to estimate treatment e↵ects in an econometric setting where there
are a large number of (potentially weak) instruments. Hastie, Tibshirani, and Friedman
(2001) provide a general introduction to the LASSO and give the intuition behind the
“Betting on sparsity principle”, which suggests you assume that the underlying truth is
sparse and use an `1 penalty to try to recover it. If you’re right, you will do well. If
you’re wrong—that is, if the underlying truth is not sparse—then no method can do well.
Meinshausen and Yu (2009) gives an excellent overview of how well these LASSO-type
estimators extend to settings with correlated right-hand-side variables. In addition to the
LASSO, numerous other `1-based penalized-regression techniques have been suggested
in the statistics literature. For instance, consider the least-angle regression (Efron, Hastie,

More Than Just News
#UsedByn,t isUsedn!m,t

hasNewsn,t 0.65
(8.84)

0.01
(0.21)

hasNewsn,t ⇥ newsRelevancen,t 0.88
(10.69)

hasNewsn,t ⇥ newsImpactn,t 2.01
(13.20)

R2 93.2% 94.1% 94.5% 14.2%

Time FE X X X X
Group FE X X X X

Table 4: Coe�cient estimates from the regressions in Equations (22), (23a), (23b), and (24). The
first 3 columns use stock-by-minute-level data during trading hours during each October from 2005
to 2013. The fourth column uses ordered-stock-pair-by-minute-level data over the same sample
period. All 4 regressions have time and group fixed e↵ects. Coe�cient estimates have units of
predictors. Numbers in parentheses are the t-statistics. Reads: “While the LASSO typically
uses a stock with a news announcement in 0.65 additional predictions, you can’t predict which
return-forecast the LASSO will use it for.”
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Johnstone, and Tibshirani (2004)), the elastic net (Zou and Hastie (2005)), and the Dantzig
selector (Candes and Tao (2007)).

Economics of Sparsity. Several other papers have also investigated the economic im-
plications of sparsity. For instance, Gabaix (2014) introduces a sparsity-based model
of bounded rationality where economic agents build simplified mental models of the
world that are sparse. These agents use an `1-type penalty to figure out which variables
are of first-order importance. While sparse thinking is a useful heuristic for real-world
situations, it is non-Bayesian unless the agent’s decision problem exactly matches the
statistical structure outlined in Park and Casella (2008). From the opposite perspective,
Chinco (2015) shows that if traders have to uncover sparse signals in past market data,
then there are information-theoretic limits to how quickly they can interpret what the
market is telling them.

Return Predictability. Finally, this paper relates to a long line of papers on momentum,
return predictability, and information di↵usion dating back to the early 1990s. These
papers can be split into two categories: those that focus on same-stock predictability and
those that focus on cross-stock predictability. Papers that use a stock’s past returns to
predict its future returns find negative autocorrelation at horizons shorter than 3 months
(Fama (1965), Lo and MacKinlay (1990), and Conrad, Kaul, and Nimalendran (1991)), pos-
itive autocorrelation at horizons between 3 and 12 months (Jegadeesh (1990), Jegadeesh
and Titman (1993), Asness (1994), Chan, Jegadeesh, and Lakonishok (1996), and Carhart
(1997)), and negative autocorrelation at horizons longer than a year (De Bondt and Thaler
(1985)). The cross-stock predictability literature finds lead-lag relationship in price move-
ments across stocks (Lo and MacKinlay (1990) and Boudoukh, Richardson, and Whitelaw
(1994)). In a closely related paper, DeMiguel, Nogales, and Uppal (2014) show that a
vector-autoregression can capture some cross-stock signals.

There are numerous explanations for these return patterns. Hong and Stein (1999)
and Hong, Lim, and Stein (2000) give and then test a theoretical model of slow-moving
new to explain this pattern. Chordia and Subrahmanyam (2004) shows theoretically that
market-maker inventory management is an important driver of short-term predictability,
and Hendershott and Seacholes (2007) confirms this link empirically. Hasbrouck and
Seppi (2001) investigates the common factors in prices, order flow, and liquidity. Harford
and Kaul (2005) examines the importance of common factors in explaining order flow,
returns, and trading costs, and they find that common factors are key drivers only for S&P
500 stocks. Coughenour and Saad (2004) show stocks handled by the same specialist firm
show commonality in their liquidity. The one exception to this commonality literature is
Tookes (2008), which derives a model to show that informed traders have incentives to
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trade in the stock of competitors. Her model highlights the informational link between
stocks which share the same product market.

7 Conclusion

This paper applies the least absolute shrinkage and selection operator (LASSO) to identify
rare, short-lived, “sparse” signals in the cross-section of returns. We find that using
the LASSO increases out-of-sample predictability in minute-by-minute NYSE returns by
a factor of 1.5, from an adjusted R2 = 5.43% to an adjusted R2 = 8.08%, and generates
trading-strategy returns of 0.30% per month net of trading costs. This predictive power
comes from quickly identifying the right predictors at the right time, not from better
estimating the e↵ects of some persistent factor. The LASSO typically forecasts a stock’s
returns using the lags of only 11 other stocks (a mere 0.5% of all possible choices), and 90%

of these predictors last 4 minutes or less.
But, the LASSO’s return-forecast is helpful only under certain conditions as highlighted

in the simulation-based analysis in Appendix A. When using rolling 30-minute windows
to fit the model, the LASSO is only going to add predictive power if there are a few (that
is, less than 30) important predictors with coe�cients larger than � in any 30-minute time
window. But, if there are no significant predictors or if these signals are not sparse (that
is, there are more than 30), then the LASSO’s return-forecast won’t be a helpful predictor.
In the first case, there wouldn’t be any cross-stock signals to estimate. In the second case,
there would be too many cross-stock signals to estimate using only 30 data points. It’s
possible to bet on sparsity and lose.

So, the LASSO’s success suggests a new way of thinking about the economic forces
behind stock returns. If the LASSO adds predictive power, then returns must contain a
sparse component. If we only run OLS regressions like Equation (1), then it’s hard to think
about anything other than persistent factors, ✓̂1 · xt, and idiosyncratic noise, ✏n,t+1, driving
stock returns. But, we know that factors like market and industry returns only account
for roughly 20% of asset-return volatility (see Campbell, Lettau, Malkiel, and Xu (2001)).
So, why do returns move around so much? Can the remaining 80% really just be due to
the accidents of life? This paper suggests an alternative. The sparse shocks captured by
the LASSO are more structured than noise but can’t be captured by OLS regressions.
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Adjusted R2 Distribution: Simulated Data, Sparse Shocks

Figure 14: Distribution of adjusted R2s from the forecasting regressions in Equations (6), (10), and
(12) using simulated data generated from Equation (25). Black bars: Probability that the adjusted
R2 from a single out-of-sample forecasting regression falls within a 0.1%-point interval. Red vertical
line: Average adjusted R2 from these regressions. Far-left panel: Out-of-sample prediction made
using OLS as in Equation (6). Left-center panel: Out-of-sample prediction made using the LASSO
as in Equation (10). Right-center panel: Out-of-sample predictions made using both OLS and the
LASSO as in Equation (12). Far-right panel: Far-left panel: Out-of-sample prediction made using
OLS as in Equation (6) but including the true set of K = 5 predictors as right-hand-side variables.
Reads: “Including the LASSO’s return-forecast boosts the out-of-sample adjusted R2 from 1.29% to
4.56% in simulated data.”

A Simulation Analysis
We apply the LASSO to simulated returns in order to verify that it really is identifying
sparse signals in the cross-section of returns. All of the relevant code is available in an
online appendix.1

Data Simulation. We run 1,000 simulations. Each simulation involves generating
returns for Q = 100 stocks for T = 1,150 trading periods. Each trading period, the returns
of all Q = 100 stocks are governed by the returns of a subset of K = 5 stocks, Kt, together
with an idiosyncratic shock,

rq,t = 0.15 ·PKt
rk,t�1 + 0.001 · ✏q,t, (25)

where ✏q,t
iid⇠ N(0,1). This collection of K = 5 sparse signals changes over time, leading to

the time subscript on Kt. We assume that there is a 1% chance that each signal changes
every period, so each signal lasts (1 � 0.01)/0.01 = 99 trading periods on average.

Fitting the Model. For each trading period from t = 151 to t = 1,150, we estimate the
LASSO on the first stock, q = 1, as defined in Equation (2) using the previous T = 50
periods of data where the Q possible predictors are the Q = 100 stocks. This means
using T = 50 time periods to estimate a model with Q = 100 potential right-hand-side
variables. As a useful benchmark, we also estimate the OLS model from Equation (1) and
an oracle model. In this specification, we estimate an OLS regression with the K = 5 true
predictors as the right-hand-side variables. Obviously, in the real-world you don’t know
what the true predictors are, but this specification gives an estimate of the best fit you
could possibly achieve if you knew exactly where to look. After fitting each model to the

1See https://gist.github.com/alexchinco/467325abbf11d5c8f565.
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Figure 15: Distribution of the optimal choice of penalty parameters, �, estimated using the first
150 trading periods in the simulated data generated from Equation (25). Black bars: Probability
that the optimal penalty parameter falls within a 0.0005 interval. Red vertical line: Average choice
of penalty parameters. The discrete 0.0005 jumps come from the discrete grid of possible �s that we
considered when running the code. Reads: “The estimation procedure typically picks out a penalty
parameter of � = 0.0016 in the simulated data.”

previous 50 periods of data, we then make an out-of-sample forecast in the 51st period.
The procedure is exactly the same as in Section 2.

Forecasting Regressions. We then check how closely these forecasts line up with the
realized returns of asset q = 1 by analyzing the adjusted R2 statistics from a bunch of
forecasting regressions. For example, we take the LASSO’s return forecast in trading
periods t = 151 to t = 1,150 and estimate the regression below,

r1,t+1 = ã1 + b̃1 ⇥
✓

f LASSO
1,t �µLASSO

1

�LASSO
1

◆
+ "1,t+1, (26)

where ã1 and b̃1 are estimated coe�cients, r1,t+1 denotes the first stock’s realized return
in period (t + 1), f LASSO

1,t denotes the LASSO’s forecast of the first stock’s return in minute
(t + 1), µLASSO

1 and �LASSO
1 represent the mean and standard deviation of this out-of-sample

return forecast from period t = 151 to t = 1,150, and "1,t+1 is the regression residual. Figure
14 shows that the average adjusted-R2 statistic from these 1,000 simulations is 4.40% for
the LASSO; whereas, this statistic is only 1.29% when making your return forecasts using
an OLS model.

Penalty Parameter Choice. Fitting the LASSO to the data involves selecting a penalty
parameter, �. We do this by selecting the penalty parameter that has the highest out-of-
sample forecasting R2 (equivalently Akaike information criterion (AIC)) during the first
100 periods of the data. This is why the forecasting regressions above only use data
starting at t = 151 instead of t = 51. Figure 15 shows the distribution of penalty parameter
choices across the 1,000 simulations. The discrete 0.0005 jumps come from the discrete
grid of possible �s that we considered when running the code.

Number of Predictors. If you look at the panel labeled “Oracle” in the adjusted R2 figure,
you’ll notice that the LASSO’s out-of-sample forecasting power is about a third of the true
model’s forecasting power, 4.40/12.84 = 0.34. This is because the LASSO doesn’t do a perfect
job of picking out the K = 5 sparse signals. The right panel of the figure below shows that
the LASSO usually only picks out the most important of these K = 5 signals. What’s more,
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Predictor Distribution: Simulated Data, Sparse Shocks
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Figure 16: Distribution of the number of predictors used by the LASSO when making its return
forecast using simulated data generated from Equation (25). Left panel, black bars: Probability that
the number of predictors falls within a 0.5 interval. Left panel, red vertical line: Average number of
predictors used by the LASSO to make its return-forecast. Right panel, black bars: Probability that
the number of correct predictors chosen by the LASSO to make its return-forecast falls within a 0.05
interval. Left panel, red vertical line: Average number of correct predictors chosen by the LASSO.
Reads: “The LASSO usually only picks out the most important of the K = 5 correct predictors.”

the left panel shows that the LASSO also locks onto lots of spurious signals. This result
suggests that you might be able to improve the LASSO’s forecasting power by choosing a
higher penalty parameter, �.

Placebo Tests. We conclude this section by looking at two alternative simulations where
the LASSO shouldn’t add any forecasting power. In the first alternative setting, there are
no shocks. That is, the returns for the Q = 100 stocks are simulated using the model below,

rq,t = 0.00 ·PKt
rk,t�1 + � · ✏q,t. (27)

In the second setting, there are too many shocks: K = 75. Figure 17 and 18 show that, in
both these settings, the LASSO doesn’t add any forecasting power. Thus, running these
simulations o↵ers a pair of nice placebo tests showing that the LASSO really is picking up
sparse signals in the cross-section of returns.
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Adjusted R2 Distribution: Simulated Data, No Shocks

Figure 17: Distribution of adjusted R2s from the forecasting regressions in Equations (6), (10),
and (12) using simulated data generated from Equation (27) where there are no shocks. Black bars:
Probability that the adjusted R2 from a single out-of-sample forecasting regression falls within a
0.1%-point interval. Red vertical line: Average adjusted R2 from these regressions. Left panel: Out-
of-sample prediction made using OLS as in Equation (6). Center panel: Out-of-sample prediction
made using the LASSO as in Equation (10). Right panel: Out-of-sample predictions made using
both OLS and the LASSO as in Equation (12). Reads: “When there are no shocks, the LASSO does
not add any forecasting power.”
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Adjusted R2 Distribution: Simulated Data, Dense Shocks

Figure 18: Distribution of adjusted R2s from the forecasting regressions in Equations (6), (10), and
(12) using simulated data generated from Equation (25), but where there are K = 75 rather than
K = 5 shocks. Black bars: Probability that the adjusted R2 from a single out-of-sample forecasting
regression falls within a 0.1%-point interval. Red vertical line: Average adjusted R2 from these
regressions. Left panel: Out-of-sample prediction made using OLS as in Equation (6). Center
panel: Out-of-sample prediction made using the LASSO as in Equation (10). Right panel: Out-
of-sample predictions made using both OLS and the LASSO as in Equation (12). Reads: “When
shocks are dense, the LASSO does not add any forecasting power.”
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