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ABSTRACT

Chetty, Hendren, Kline, and Saez (2014) and Chetty and Hendren (2015) document variation

across commuting zones in intergenerational mobility. With over 700 commuting zones, the task of

estimating place effects involves a high-dimension parameter space. I consider a class of invariant

estimators in a multivariate model. An infeasible oracle estimator provides a lower bound on

risk. The oracle corresponds to an invariant prior distribution, which I use to construct a feasible

random-effects estimator. In the univariate (scalar outcome) case, this estimator is in the James

and Stein (1961) family of estimators. Its risk function is evaluated using the parameter space

for the original, fixed-effects model. In the univariate case, this risk function depends only on a

scalar noncentrality parameter. In the empirical application, the random-effects estimator almost

achieves the oracle bound on risk over the relevant part of the parameter space, and there is a

substantial improvement over the risk of the least-squares estimator.
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FIXED EFFECTS, INVARIANCE, AND SPATIAL VARIATION

IN INTERGENERATIONAL MOBILITY

1. INTRODUCTION

I shall work with a multivariate normal linear model:

Y |x ∼ N (xβ,Σ ⊗ IN ),

where Y is N × M , x is N × K, β is K × M , and Σ is a M × M positive-definite matrix. I

am interested in applications with large K. For example, Yij could be the score for student i on

test j. The students can be grouped in various ways, and x could include indicator variables for

school, classroom, teacher, and other groups. Coefficients on indicator variables are sometimes

called “fixed effects.” It will be useful to partition x = ( x1 x2 ), with xβ = x1β1 + x2β2, and

β1 is K1 ×M , β2 is K2 ×M . The indicator variables are in x2, and x1 includes a constant (and

other variables) so that coefficients on indicator variables can be interpreted as deviations from

an average coefficient. The relative dimensions could have a large number N of students, a large

number of indicator variables making K2 large with a large number of fixed effects in β2, with a

small number K1 of variables in x1 and a small number M of tests. (Could have M = 1.)

We may want to impose restrictions on β2, such as having the same fixed effect in the predictors

for multiple test scores. This could take the form

β2 = τγ′,

where τ is the K2 × 1 vector of fixed effects and γ is M × 1. More generally, there could be l fixed

effects corresponding to each group, with 1 ≤ l ≤ M , so that τ is K2 × l and γ is M × l. We

can impose normalizations, because τ and γ are not separately identified. If l = M , then β2 is

unrestricted.

This is related to the model in Chamberlain and Moreira (2009). Their focus is on the estima-

tion of γ, treating τ as a nuisance parameter. Because τ has high dimension, there is an incidental
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parameters problem caused by the nonlinear term τγ′. Their solution is to use invariance argu-

ments to construct a statistic whose distribution does not depend upon the incidental parameters.

Then a marginal likelihood function can be based on that statistic, with a low dimension parameter

space. I shall use their arguments to deal with γ, and my focus is on estimating τγ′.

Simplify notation by temporarily dropping the term x1β1. There is a convenient linear trans-

formation (given x) of x2τγ
′ that I’ll call µ. Imposing normalizations, we can express µ as

µ = ωλ′,

where ω is a K2 × l matrix with orthonormal columns: ω′ω = Il, and the M × l matrix λ has

an l × l submatrix that is lower triangular with positive diagonal elements. The positive-definite

matrix Σ has the factorization Σ = σσ′, where σ is a lower triangular matrix with positive diagonal

elements. We can index the family of distributions for Y conditional on x using the parameter θ =

(ω, λ, σ).

Using a quadratic loss function based on forecasting Y , there is a class of invariant estimators

for µ. The risk function for an invariant estimator depends on the parameter θ only through σ−1λ.

The risk function does not depend on the high dimension parameter ω.

I construct an oracle estimator for µ that is allowed to depend on α(θ) = (λ, σ). The oracle is

an optimal invariant estimator, and I can compare feasible invariant estimators to it. The oracle is

based on the posterior mean for ω using an invariant prior distribution.

I use a random-effects model to motivate a particular (feasible) invariant estimator. The key

feature of this random-effects model is that the distribution it implies for ω is the invariant prior

distribution. The risk function for the random-effects estimator is evaluated using the parameter

space for our original, fixed-effects model. This risk function depends only upon σ−1λ, and can

be compared to the oracle risk function. This comparison is particularly simple when M = 1; for

example, the scalar outcome Yi could be the score for student i on a single test. Then the risk

function depends only on the scalar noncentrality parameter δ = µ′µ/σ2 = λ2/σ2. When M = 1,

this random-effects estimator is in the James and Stein (1961) family of estimators.
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My estimator requires a specification for which variables are in x2. In the random-effects

model, this corresponds to assigning a mean of zero to β2. But my approach corresponds to a

fixed-effects model in that it does not require any additional specification for the distribution of β2

conditional on x.

Section 2 sets up a canonical form for the model, which simplifies the subsequent analysis.

Section 3 applies standard invariance arguments, and Section 4 constructs an optimal invariant

estimator when α(θ) = (λ, σ) is given. Section 5 uses a random-effects model based on the invariant

prior to obtain a feasible invariant estimator.

The application in Section 6 draws on work by Chetty, Hendren, Kline, and Saez (2014) and

Chetty and Hendren (2015). There is a sample of parents moving across commuting zones with

children of age less than 23. There are measures of parent income and child outcome measures

such as an indicator for college attendance and the child’s income rank at age 26. Based on the

age of the child at the move, a variable is constructed that measures the exposure of the child

to the new neighborhood. For each origin-destination pair of commuting zones (o, d), a separate

least-squares fit provides regression coefficients that are used to form a statistic Sod. In comparing

two children for whom exposure to d differs by one year, with both children having parents at

quantile p of the income distribution, the predicted difference in the outcomes is Sod. Each row of

my Y matrix corresponds to an (o, d) pair, with N between 3000 and 5000 in the samples that I

use. The elements in the row are constructed from the Sod statistics. Weights are used, based on

the number of families moving from origin o to destination d, or based on an estimated variance

for Sod.

For example, using college attendance for the child outcome and p = .25 for parent income

rank, we would have a single column in Y (M = 1). Jointly using college attendance and income

rank for the child outcomes and p = .25 and .75 for the income rank of the parents would give

M = 4 columns in the Y matrix.

The x matrix is constructed using indicator variables for commuting zones. There is a column

for each commuting zone. The (o, d) row of x has +1 in the column for d and −1 in the column for
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o, and the row is multiplied by the weight for the (o, d) pair. Corresponding to each column of Y ,

there is a column of the β matrix, with a coefficient for each commuting zone. The columns of x

sum to zero, and we can normalize the coefficients in β to sum to zero across commuting zones. So

the coefficients can be interpreted as deviations from an average coefficient, and we have β = β2,

x = x2, and K = K2 is greater than 500. I interpret β as providing place effects that summarize

differences across commuting zones in intergenerational mobility.

A one-factor model has β = τγ′, where τ is a single column with an element for each commuting

zone, and the M = 4 elements in γ provide (relative) effects on the four variables in Y . Restricting

β to have rank = 2 could correspond to separate factors for the child’s college attendance and

income rank outcomes.

2. CANONICAL FORM

The observation is the realized value of an N ×M matrix Y . We shall be conditioning on the

value of an N ×K matrix x, which is observed. Partition x = ( x1 x2 ), where x1 is N ×K1 and

x2 is N × K2. Our model specifies a conditional distribution for Y given x, as a function of the

parameter (β1, τ, γ, σ):

Y |x d
= x1β1 + x2τγ

′ +Wσ′,

where τ is K2× l with l ≤ M , γ is M × l, and the M ×M matrix σ is lower-triangular with positive

diagonal elements. The components of the N × M matrix W are, conditional on x, independent

and identically distributed N (0, 1), which we shall denote by

L(W ) = N (0, IN ⊗ IM ).

(For a random matrix V , the notation L(V ) = N (µ,Λ) indicates that the vector formed by joining

the rows of V has a multivariate normal distribution with covariance matrix Λ and mean vector

formed by joining the rows of µ.) We cannot, without further restrictions, distinguish between

(τ, γ) and (τc′, γc−1), where c is any nonsingular l × l matrix. It will be convenient to restrict the

submatrix formed from the first l rows of γ to be lower triangular with positive diagonal elements.
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Let x̃2 denote the residual from the least-squares projection of x2 on x1:

x̃2 = x2 − x1a, x′
1x̃2 = 0.

Let

π = β1 + aτγ′

so that

x1β1 + x2τγ
′ = x1π + x̃2τγ

′.

Assume that x̃2τ has full column rank (= l). Note that β1 unrestricted implies that π is unrestricted.

Let h denote the rank of x1. The singular value decomposition (SVD) of x1 gives

x1 = q1d1s
′
1,

where q1 is N × h with q′1q1 = Ih, d1 is a h × h diagonal matrix with positive diagonal elements,

and s1 is K1 × h with s′1s1 = Ih. Let r denote the rank of x̃2 (with r ≥ l). The SVD of x̃2 gives

x2 = q2d2s
′
2,

where q2 is N × r with q′2q2 = Ir, d2 is a r × r diagonal matrix with positive diagonal elements,

and s2 is K2 × r with s′2s2 = Ir. Note that x′
1x̃2 = 0 implies that q′1q2 = 0. The rank of x is h+ r,

which must be ≤ N . If h + r < N , let the columns of q3 be an orthonormal basis for {q1, q2}⊥

(the orthogonal complement of the linear space spanned by the columns of q1 and q2). Then the

N × N matrix q = ( q1 q2 q3 ) has orthonormal columns: q′q = IN . If h + r = N , then simply

set q = ( q1 q2 ), and again q is an N ×N matrix with q′q = IN .

We can use the one-to-one function q′Y as the observation, with





q′1
q′2
q′3



Y |x d
=





d1s
′
1

0
0



π +





0
d2s

′
2

0



 τγ′ +





W1

W2

W3



σ′

(where we have used q′W
d
= W ). Define

π̃ = d1s
′
1π, τ̃ = d2s

′
2τ.
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If x1 has full column rank, then π = s1d
−1
1 π̃; if x̃2 has full column rank, then τ = s2d

−1
2 τ̃ . Let Fl,r

denote the set of r × l matrices whose columns are orthogonal and have unit length:

Fl,r = {a ∈ Rr×l : a′a = Il}.

The matrix τ̃ has the QR factorization

τ̃ = ωρ′, ω ∈ Fl,r, ρρ′ = τ̃ ′τ̃ ,

where ρ is lower triangular with positive diagonal elements. Let λ = γρ and note that the submatrix

formed from the first l rows of λ is lower triangular with positive diagonal elements. Then we have





q′1
q′2
q′3



Y |x d
=





π̃
ωλ′

0



+





W1

W2

W3



σ′.

To simplify notation, I shall focus on estimating (ω, λ, σ) using Z1 = q′2Y and Z2 = q′3Y . So,

conditional on x, the canonical form is

(

Z1

Z2

)

d
=

(

ωλ′

0

)

+

(

V1

V2

)

σ′,

where V1 ∼ N (0, Ir⊗IM ), V2 ∼ N (0, In−r⊗IM ) (with n = N−h), and V1 and V2 are independent.

(I shall use q′1Y as the estimate of π̃; this implies that the estimate of x1π is the least-squares

projection of Y on x1.)

3. INVARIANCE

We shall be using standard invariance arguments; see, for example, Eaton (1983, 1989). The

sample space for the observation Z ′ = (Z ′
1 Z ′

2 ) is

Z = {z = (z1, z2) : z1 ∈ Rr×M , z2 ∈ R(n−r)×M}.

Let θ = (ω, λ, σ) denote the parameter. The parameter space is

Θ = Fl,r ×Dl × G+
T ,
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where Dl is the set of M × l matrices with the l× l submatrix formed from the first l rows a lower

triangular matrix with positive diagonal elements, and G+
T is the group of M ×M lower-triangular

matrices with positive diagonal elements.

Consider the group

G = O(r)×O(n− r)× GT
+,

where O(k) denotes the group of k× k orthogonal matrices. Let g = (g1, g2, g3) denote an element

of G. Define an action of the group on the sample space:

m1:G×Z → Z, m1(g, z) = (g1z1g
′
3, g2z2g

′
3),

and abbreviate m1(g, z) = g · z. Define an action of the group on the parameter space:

m2:G×Θ → Θ, m2(g, θ) = (g1ω, g3λ, g3σ),

and abbreviate m2(g, θ) = g · θ.

Let Pθ denote the distribution of Z (conditional on x) when the parameter takes on the value

θ.
(

g1Z1g
′
3

g2Z2g
′
3

)

d
=

(

g1ωλ
′g′3

0

)

+

(

g1V1

g2V2

)

σ′g′3
d
=

(

(g1ω)(g3λ)
′

0

)

+

(

V1

V2

)

(g3σ)
′,

so

L(Z) = Pθ ⇒ L(g · Z) = Pg·θ,

and the model is invariant under the actions of G on the sample space and the parameter space.

Consider estimation of µ = Eθ(Z1) = ωλ′. The loss function is based on the following prediction

problem. We observe Y , whose distribution is in our model, and we want to predict the value of an

independent draw Y ∗ from the same distribution (conditional on x): L(Y ∗ |x) = L(Y |x). Given

estimates π̃e and µe, our prediction for Y ∗ is

Ŷ ∗ = q





π̃e

µe

0



 .
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The forecast loss function is

E(β1,τ,γ,σ)

[

trace[Σ−1(Y ∗ − Ŷ ∗)′(Y ∗ − Ŷ ∗)]
]

= E(β1,τ,γ,σ)

[

trace[Σ−1(π̃ − π̃e)
′(π̃ − π̃e)]

+ trace[Σ−1(µ − µe)
′(µ− µe)]

]

+NM

(with Σ = σσ′). So for estimation of µ, the action space is A = Rr×M and the loss function is

L: Θ×A → R, L(θ, a) = trace[Σ−1(µ− a)′(µ − a)].

The action of G on the action space is given by g · a = g1ag
′
3. Then L(g · θ, g · a) = L(θ, a) for all

g ∈ G, a ∈ A, and θ ∈ Θ. So the loss function is invariant.

An estimator (decision rule) µ̂:Z → A maps the sample space into the action space. An

estimator µ̂ is invariant if for all g ∈ G, z ∈ Z we have

µ̂(g · z) = g · µ̂(z).

The risk function for an estimator µ̂ expresses expected loss as a function of the parameter:

R(θ, µ̂) = Eθ[L(θ, µ̂(Z))].

If µ̂ is an invariant estimator, then the risk function depends on θ = (ω, λ, σ) only through

σ−1λ; it does not depend upon ω. A key step in the argument is that for any θ = (ω, λ, σ) ∈ Θ,

we can choose g ∈ G such that g · θ = (el, σ
−1λ, IM ), where el is the matrix formed from the first

l columns of Ir. To see this, note that for any ω ∈ Fl,r, we can choose g1 ∈ O(r) so that g1ω = el.

Choose g3 = σ−1. Then g · θ = (el, σ
−1λ, IM ). Let θ∗ = (el, σ

−1λ, IM ) denote this function of θ.

Now use the invariance of the loss function, the invariance of the estimator, and the invariance of

the model:

R(θ, µ̂) = Eθ[L(θ, µ̂(Z))] (1)

= Eθ[L(g · θ, g · µ̂(Z))]

= Eθ[L(θ∗, µ̂(g · Z))]

= Eg·θ[L(θ∗, µ̂(Z))]

= Eθ∗ [L(θ∗, µ̂(Z))]

= R(θ∗, µ̂).
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4. OPTIMALITY

I shall construct an oracle estimator for µ = Eθ(Z1) that is allowed to depend on the following

function of θ: α(θ) = (λ, σ). The oracle will be an optimal invariant estimator, and we can compare

feasible invariant estimators to it.

The oracle is constructed by minimizing posterior loss with respect to a uniform prior distribu-

tion on Fl,r. The construction of the uniform distribution on Fl,r follows Eaton (1989, Proposition

7.1, p. 100). Start with an r× l matrix T of independent standard normal random variables: L(T )

= N (0, Ir ⊗ Il). With probability one the rank of T is l, in which case the polar decomposition of

T gives T = US, where U ∈ Fl,r and S = (T ′T )1/2 is the unique positive-definite matrix satisfying

S2 = T ′T . The distribution of U = T (T ′T )−1/2 is uniform in that it has the following invariance

property: for any g ∈ O(r), L(gU) = L(U). To see this, note that gT
d
= T , and so

gU
d
= gT (T ′T )−1/2 d

= gT [(gT )′(gT )]−1/2 d
= T (T ′T )−1/2 d

= U.

Let L(U) = η denote the uniform distribution on Fl,r. Let f(z | θ) denote the density of Pθ:

f(z | (ω, λ, σ)) = (2π)−n/2|Σ|−n/2 exp
[

− 1

2
trace

[

Σ−1[(z1 − ωλ′)′(z1 − ωλ′) + z′2z2]
]

]

,

with Σ = σσ′. Consider the average risk, averaging over the uniform distribution on Fl,r with

α = (λ, σ) given:

A(µ̂;α) =

∫

Fl,r

R((ω,α), µ̂) η(dω)

=

∫

Fl,r

∫

Z

L((ω,α), µ̂(z))f(z | (ω,α)) dz η(dω).

We can minimize the average risk, without constraining µ̂ to be invariant, by reversing the order

of the double integral and minimizing the inner integral separately at each value for z:

A(µ̂;α) ≥
∫

Z

[

min
t∈A

∫

Fl,r

L((ω,α), t)f(z | (ω,α)) η(dω)
]

dz.
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So

µ̂∗( · ;α) = argmin
µ̂

A(µ̂;α)

is obtained by setting µ̂∗(z;α) equal to the minimizing value for t in the inner integral, which is

equivalent to minimizing posterior expected loss:

µ̂(z;α) = argmin
t∈A

∫

Fl,r

L((ω,α), t)f(z | (ω,α)) η(dω)
/ ∫

Fl,r

f(z | (ω,α)) η(dω).

With our quadratic loss function, posterior expected loss is minimized by the posterior mean:

µ̂∗(z;α) =

∫

Fl,r

ωλ′f(z | (ω,α)) η(dω)
/ ∫

Fl,r

f(z | (ω,α)) η(dω).

Because

f(z|(ω, λ, σ)) = f1(z1 | (ω, λ, σ)) · f2(z2 |σ),

we can replace f(z | (ω,α)) by f1(z1 | (ω,α)) in the formula for the posterior mean. For calculation,

take independent draws U (j) from the invariant distribution λ, and approximate µ̂∗(z;α) by

1

J

J
∑

j=1

U (j)λ′f(z | (U (j), α))

/

1

J

J
∑

j=1

f(z | (U (j), α)).

The invariance condition for the oracle is

µ̂∗(g · z;α(g · θ)) = g · µ̂∗(z;α(θ)).

This condition implies that for all θ ∈ Θ,

R(θ, µ̂∗( · ;α(θ))) = R(θ∗, µ̂
∗( · ;α(θ∗))),

where, as above, θ∗ = (el, σ
−1λ, IM ). The argument is similar to that used in equation (1). To see

that µ̂∗( · ;α) satisfies the invariance condition, note that for any g = (g1, g2, g3) ∈ G:

f(g · z | θ) = |g3|−nf(z | g−1 · θ),
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and so the invariance of η implies that

µ̂∗(g · z;α(g · θ)) =
∫

Fl,r

ω(g3λ)
′f(g · z | (ω, g3λ, g3σ) η(dω)

/ ∫

Fl,r

f(g · z | (ω, g3λ, g3σ)) η(dω)

= g1

∫

Fl,r

g−1
1 ωλ′g′3f(z | (g−1

1 ω, λ, σ)) η(dω)

/ ∫

Fl,r

f(z | (g−1
1 ω, λ, σ)) η(dω)

= g1

∫

Fl,r

ωλ′f(z | (ω, λ, σ)) η(dω)g′3
/ ∫

Fl,r

f(z | (ω, λ, σ)) η(dω)

= g · µ̂(z;α(θ)).

For an invariant estimator µ̂, the risk R((ω,α), µ̂) at any ω ∈ Fl,r equals the average risk A(µ̂;α),

and so the oracle provides a lower bound on risk for invariant estimators:

R((ω,α), µ̂) = A(µ̂;α) ≥ A(µ̂∗( · ;α);α) = R((ω,α), µ̂∗( · ;α)).

Furthermore, µ̂∗( · ;α) is minimax when α is given: for any estimator µ̂ (which need not be invari-

ant),

sup
ω∈Fl,r

R((ω,α), µ̂∗( · ;α)) = A(µ̂∗(·;α);α) ≤ A(µ̂;α) ≤ sup
ω∈Fl,r

R((ω,α), µ̂).

5. RANDOM EFFECTS MODEL

I shall use a random-effects model to motivate a particular (feasible) invariant estimator. It is

important to stress that the risk function for this estimator will be evaluated using the parameter

space for the original, fixed-effects model. In particular, the risk will be compared to the lower

bound provided by the oracle.

The random-effects model specifies a distribution for τ̃ :

τ̃ ∼ N (0, Ir ⊗ Il).

The key feature of this distribution is that τ̃(τ̃ ′τ̃)−1/2 has the uniform distribution η on Fl,r.

There is a family of distributions {Qζ : ζ ∈ ΘRE} for Z, indexed by the parameter ζ = (γ, σ) with

parameter space

Θre = Dl × G+
T .
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Qζ specifies that Z1 and Z2 are independent with

Z1 ∼ N (0, Ir ⊗ (γγ′ +Σ)), Z2 ∼ N (0, In−r ⊗ Σ)

(with Σ = σσ′). The covariance matrix Il for a row of τ̃ is a normalization. If the covariance matrix

were Φ = φφ′, then the covariance matrix for a row of Z1 would be γΦγ′+Σ, and we could replace

τ̃ by τ̃φ′−1
and replace γ by γφ.

Conditional on (τ̃ , γ, σ), the distribution of Z1 is N (τ̃ γ′, Ir ⊗ Σ). So given ζ = (γ, σ), the

posterior mean of τ̃ is

Eζ(τ̃ |Z1 = z1) = z1Σ
−1γ(γ′Σ−1γ + Il)

−1.

For an invariant estimator of µ = τ̃ γ′, I shall use

µ̂re(z) = z1Σ̂
−1γ̂(γ̂′Σ̂−1γ̂ + Il)

−1γ̂′,

with Σ̂ = σ̂σ̂′. The invariance condition that µ̂re(g · z) = g1µ̂re(z)g
′
3 is satisfied provided that

γ̂(g · z) = g3γ̂(z), σ̂(g · z) = g3σ̂(z).

To motivate a particular choice for σ̂, note that Eζ(Z
′
2Z2) = (n − r)Σ, which suggests using

Σ̂(z) = z′2z2/(n− r). Provided that Σ̂(z) is positive definite, there will be a unique σ̂(z) ∈ G+
T with

σ̂(z)σ̂(z)′ = Σ̂(z), and this σ̂ satisfies the invariance condition σ̂(g · z) = g3σ̂(z).

To motivate a particular choice for γ̂, note that

Eζ(σ
−1Z ′

1Z1σ
′−1

) = r(σ−1γγ′σ′−1
+ IM ).

A spectral decomposition gives

σ̂−1(z)z′1z1σ̂(z)
′−1

/r =

M
∑

j=1

κjνjν
′
j with κ1 ≥ κ2 · · · ≥ κM ≥ 0

and orthonormal eigenvectors ν′jνj = 1, ν′jνk = 0 (j 6= k). Let

A(z) = σ̂(z)

( l
∑

j=1

(κj − 1)+νjν
′
j

)

σ̂(z)
′
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(with t+ = max{t, 0} for t ∈ R). Let l̄ ≤ l denote the rank of A(z). If the submatrix formed from

the first l̄ rows and columns of A(z) has rank l̄, then there is a unique M × l matrix γ̂(z) such that

the submatrix formed from the first l̄ columns is in Dl̄, the remaining columns (if any) are zero,

and

γ̂(z)γ̂(z)′ = A(z).

This γ̂ satisfies the invariance condition γ̂(g · z) = g′3γ̂(z).

If M = 1, these choices for σ̂ and γ̂ give

µ̂re(z) = (1− 1/Fstat)
+µ̂ls(z),

where the least-squares estimate of µ is µ̂ls(z) = z1, and the F -statistic for testing µ = 0 is

Fstat =
z′1z1/r

z′2z2/(n − r)
.

This estimator is in the James and Stein (1961) family of (positive-part) estimators:

µ̂JS+(z) = (1− c
z′2z2
z′1z1

)+z1,

which dominate µ̂ls if r ≥ 3 and c is any number in the interval

0 < c <
2(r − 2)

n− r + 2
.

See Sclove (1968) for a discussion of this result. Our estimator µ̂re has c = r/(n− r) and satisfies

the dominance condition if r ≥ 5 and n− r > 10.

If x̃2 has full column rank, then β2 = s2d
−1
2 µ and, if M = 1,

β̂2,re(z) = (1− 1/Fstat)
+β̂2,ls(z).

Each element of the least-squares estimate of β2 is multiplied by the same factor to obtain the

random-effects estimate. This is a consequence of using the invariant prior and would not generally
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hold in other random-effects models, which would imply a different specification for the distribution

of β2 conditional on x. The invariant prior distribution for τ̃ is not meant to be a subjective choice,

motivated, for example, by exchangeability. The invariant prior implies that the covariance matrix

for β2 is proportional to s2d
−2
2 s′2 = (x̃′

2x̃2)
−1. If one wanted to model the covariance matrix of β2

conditional on x, and, perhaps motivated by exchangeability, chose a covariance matrix proportional

to IK2
, then the implied covariance matrix for τ̃ would be proportional to d22. But I am only using

a random-effects model to motivate a feasible approximation to the optimal invariant estimator in

the fixed-effects model. That calls for an invariant prior for τ̃ .

If M = 1, the risk function R(θ, µ̂) for an invariant estimator depends upon θ = (ω, λ, σ) only

through the scalar noncentrality parameter δ = µ′µ/σ2 = λ2/σ2. I use simulation to evaluate the

risk functions for the oracle µ̂∗( · ;α(θ)) and for µ̂re at θ = θ∗ = (e1,
√
δ, 1). In order to have a

relevant range of values for δ in the empirical application, I shall use a .95 confidence interval. It

is based on the distribution of Fstat, which is noncentral F with noncentrality parameter δ and

degrees of freedom r and (n − r). I take the observed value of Fstat and find the value for δ such

that Fstat is at the .025 quantile of this noncentral F distribution. This gives the upper bound for

the confidence interval. The value for δ that puts the observed Fstat at the .975 quantile gives the

lower bound for the confidence interval.

If M = 1, the integrals in the formula for the oracle estimator can be evaluated to give

µ̂∗(z;α) = H(
r

2
− 1,

√
δ

σ
||z1||)

√
δσz1/||z1||,

where ||z1|| = (z′1z1)
1/2, H(v, u) = Iv+1(u)/Iv(u), and Iv(u) is a modified Bessel function (a special

function for which there are standard computational algorithms).

6. APPLICATION

I shall draw on work by Chetty, Hendren, Kline, and Saez (2014) and Chetty and Hendren

(2015). Chetty and Hendren use data constructed in Chetty et al. (2014) to form a sample of

parents moving from commuting zone o to commuting zone d with children of age less than 23.
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As in the earlier paper, there is a measure of parent income rank (p) and there are child outcome

measures (c) such as an indicator for college attendance and the child’s income rank at age 26. A

variable is constructed that measures the exposure (ex) of the child to the new neighborhood. The

number of families moving from origin o to destination d is nod, and I shall use the (o, d) pairs with

nod ≥ 100. For each of these (o, d) pairs, a least-squares projection of c on a constant, ex, ex · p,

and additional variables in m gives

ĉi = b1,od · exi + b2,od · exi · pi + b′3,od ·mi (i = 1, . . . , nod).

Here exi is the amount of time that child i spent growing up in the destination neighborhood: exi

= (23 − childi’s age at move), and pi is the parent income rank in the national distribution. The

additional variables in the vector mi are a constant, pi, si, s
2
i , si · pi, s2i · pi, where si is the child’s

cohort. Let Sod denote the statistic b1,od + .25 · b2,od. In comparing two children (from the same

cohort) for whom ex differs by one year, with both children having parents at the .25 quantile of

the income distribution (p = .25), the predicted difference in the outcomes is Sod. The vector Y

and the matrix x are formed using the weights wod =
√
nod. Each element of Y corresponds to an

(o, d) pair, and the (o, d) element of Y is wodSod. The x matrix has a column for each commuting

zone. Row (o, d) of x has wod in the column for commuting zone d, with −wod in the column for

commuting zone o, and zeros in the other columns. In the notation of our general model, we have

M = 1, x = x2 = x̃2, x1 is null, K = K2, and β = β2, which is unrestricted. The regression

function is

E(Yod |x) = wod(βd − βo).

I interpret β as providing place effects that summarize differences across commuting zones in

intergenerational mobility.

To go from our estimates of µ to estimates of β, we need a normalization, because the columns

of x sum to zero and so r = rank(x) ≤ K − 1. Let 1 denote a K × 1 vector of ones. Then 0

= q′2x1 = d2s
′
21 implies that s′21 = 0, so that 1 is orthogonal to the r columns of s2. We can

normalize 1
′β = 0, so that the place effects sum to 0. If r = K − 1, then µ = d2s

′
2β together with
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the normalization 0 = 1
′β gives the unique solution β = s2d

−1
2 µ. The least-squares estimate of µ

is µ̂ls = Z1. Let β̂ls = s2d
−1
2 µ̂ls and β̂re = s2d

−1
2 µ̂re.

For a simple summary measure, I shall use the standard deviation (SD) of the estimated

place effects, weighting by the population in the 2000 Census. The data are from the Chetty

and Hendren (2015) Online Data Tables 3 and 5 (http://www.equality-of-opportunity.org). With

college attendance (col) as the child outcome c, there are N = 4931 commuting zone (o, d) pairs

that satisfy the nod ≥ 100 requirement. The rank of x is r = K − 1 = 586. Multiplying by 100 to

convert the probability of college attendance to percentage points, we have

SD(β̂col,.25
ls ) = .48, SD(β̂col,.25

re ) = .24.

With the least-squares estimate, a one standard deviation increase in a place effect corresponds to

a predicted increase of .48 percentage points in the probability of college attendance (per year of

exposure). With the random effects estimate, the predicted increase is .24 percentage points. With

the latter estimate, 20 years of exposure imply a predicted increase of 4.7 percentage points.

The value for the F statistic is Fstat = 1.96 with r = 586 and n− r = 4345. The .95 interval

for the noncentrality parameter δ is [.76 · r, 1.18 · r]. Over this interval, the ratio of µ̂re risk to

oracle risk varies from 1.006 to 1.004. So the feasible invariant estimator is almost achieving the

oracle bound on risk. The ratio of least-squares risk to oracle risk varies from 2.32 to 1.84. So the

oracle and its feasible approximation provide substantial risk improvements over the least-squares

estimator.

The unweighted standard deviations of the estimated place effects are SD(β̂col,.25
ls ) = .95,

SD(β̂col,.25
re ) = .47. The population weights matter because the ratio of largest to smallest is over

two thousand. The least-squares estimates of the individual place effects are all reduced by the

same factor: 1 − 1/Fstat = .49, and so the ratio of the standard deviations is the same as before:

SD(β̂col,.25
re )/SD(β̂col,.25

ls ) = .49. This is a consequence of using an invariant prior in the random-

effects model, in order to match the optimal invariant estimator in the fixed-effects model. An

alternative would be to require a separate specification for the distribution of β conditional on
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x, so we would no longer be using a fixed-effects approach. With survey sampling of individuals,

random sampling can motivate an independent and identically distributed (i.i.d.) specification for

individual effects. The random sampling motivation is less obvious here, because the commuting

zones form a partition of the country. Even if an i.i.d. specification is adopted for the place effects,

this need not hold conditional on x. If we did assume that the covariance matrix of β conditional

on x is proportional to an identity matrix, then the implied covariance matrix for µ would be

proportional to d22 instead of the invariant prior specification of Ir. This can make a difference,

because the ratio of the largest to smallest diagonal elements of d22 is over ten thousand. (The

diagonal matrix d22 contains the nonzero eigenvalues of x′x.)

Now use the .75 quantile of the income distribution for parents and set Sod = b1,od+ .75 · b2,od.

In comparing two children from the same cohort whose families move from o to d, with parents at

the .75 quantile of the income distribution, the predictive effect of an additional year of exposure

to d is Sod. Using Sod and nod to construct Y and x as before, and using population-weighted

standard deviations, gives

SD(β̂col,.75
ls ) = .40, SD(β̂col,.75

re ) = .19.

With the least-squares estimate, a one standard deviation increase in a place effect corresponds to

a predicted increase of .40 percentage points in the probability of college attendance (per year of

exposure), for a child with parents at the .75 quantile of the income distribution. With the random

effects estimate, the predicted increase is .19 percentage points, and 20 years of exposure gives a

predicted increase of 3.8 percentage points. The value for the F statistic is Fstat = 1.90 with r =

586 and n− r = 4345. The .95 interval for δ is [.70 · r, 1.12 · r]. Over this interval, the ratio of µ̂re

risk to oracle risk varies from 1.006 to 1.005. The ratio of least-squares risk to oracle risk varies

from 2.42 to 1.90.

The above results use the weights wod =
√
nod in constructing Y and x. An alternative is

to use the estimated covariance matrix of (b1,od, b2,od) to provide an estimated variance for Sod =

b1,od + p · b2,od (with p = .25 or .75). Let varod denote this estimated variance and use wod =

17



var
−1/2
od for the weights. This gives similar results:

SD(β̂col,.25
ls ) = .48, SD(β̂col,.25

re ) = .24, SD(β̂col,.75
ls ) = .38, SD(β̂col,.75

re ) = .16.

The F statistics are 2.01 for p = .25 and 1.71 for p = .75.

With income rank at age 26 (kr) as the child outcome c, there are N = 3094 commuting zone

(o, d) pairs that satisfy the nod ≥ 100 requirement. The rank of x is r = K − 1 = 508. Multiply by

100 to convert the income rank from quantiles to percentiles. Using the weights wod =
√
nod gives

SD(β̂kr,.25
ls ) = .33, SD(β̂kr,.25

re ) = .038, SD(β̂kr,.75
ls ) = .40, SD(β̂kr,.75

re ) = .105.

Using the weights wod = var
−1/2
od gives

SD(β̂kr,.25
ls ) = .33, SD(β̂kr,.25

re ) = .078, SD(β̂kr,.75
ls ) = .39, SD(β̂kr,.75

re ) = .052.

Using the variance weights makes more of a difference here than it did with the college outcome.

With the variance weights, the F statistics are 1.31 with p = .25 and 1.15 with p = .75. The

random effects estimate with p = .25 implies that a one standard deviation increase in a place

effect corresponds to a predicted increase of .078 percentiles of income rank per year of exposure.

At the .75 quantile of the parent income distribution, the predicted increase is .052 percentiles.

With 20 years of exposure, the predicted increases in income rank are 1.6 and 1.0 percentiles. With

p = .25, the .95 interval for the noncentrality parameter δ is [.15 · r, .50 · r]. Over this interval, the

ratio of µ̂re risk to oracle risk varies from 1.03 to 1.01. The ratio of least-squares risk to oracle

risk varies from 7.60 to 3.02. So the oracle and its feasible approximation provide substantial risk

improvements over the least-squares estimator.

In the multivariate model with M = 4, let

Y = (Y col,.25 Y col,.75 Y kr,.25 Y kr,.75 ) ,

where Y col,p is the vector constructed above using the college outcome and with parents at quantile

p of the income distribution; Y kr,p is constructed in the same way, using the child’s income rank at

18



age 26. There are N = 3094 commuting zone (o, d) pairs that satisfy the nod ≥ 100 requirement for

both the college and income outcomes. I shall use w =
√
nod (with nod from the college outcome).

With β unrestricted, the standard deviations for the four columns of β̂re are

SD(β̂col,.25
re ) = .27, SD(β̂col,.75

re ) = .19, SD(β̂kr,.25
re ) = .052, SD(β̂kr,.75

re ) = .101.

Imposing the rank 2 restriction that β = τγ′, where τ is K × 2 and γ′ is 2× 4, gives

SD(β̂col,.25
re ) = .26, SD(β̂col,.75

re ) = .18, SD(β̂kr,.25
re ) = .050, SD(β̂kr,.75

re ) = .101.

This rank restriction corresponds to separate factors for the college and income rank outcomes.

The two-factor model provides a good summary of the unrestricted estimates. Restricting to a

single factor so that β = τγ′,where τ is K × 1 and γ′ is 1× 4, gives

SD(β̂col,.25
re ) = .26, SD(β̂col,.75

re ) = .18, SD(β̂kr,.25
re ) = .020, SD(β̂kr,.75

re ) = .009.

The standard deviations of the place effects for the college outcomes are not affected, but there is a

sharp drop for the income rank outcomes. The one-factor model does not provide a good summary

of the unrestricted estimates.

7. CONCLUSION

I have developed a fixed-effects model along with an oracle bound on the risk of invariant

estimators. The oracle estimator uses an invariant prior, which I have incorporated into a random-

effects model to obtain a feasible estimator. This estimator almost achieves the oracle bound over

the relevant part of the (fixed-effects) parameter space in the empirical application. There is a sub-

stantial reduction in risk compared with the least-squares estimator. The random-effects estimator

requires a specification for which variables are in x2 (with xβ = x1β1 + x2β2). This corresponds

to assigning a mean of zero to β2. The estimator does not require a separate specification for the

covariance matrix of β2 conditional on x, because this is chosen to mimic the oracle in the fixed-

effects model. An alternative is a random-effects approach that separately develops a model for
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the distribution of β2 conditional on x, perhaps using exchangeability arguments. The form of my

estimator suggests entertaining specifications in which the covariance matrix of β2 depends upon

x. This may matter in the application, because there are large differences across the commuting

zones in their scale, which is reflected in substantial differences between population-weighted and

unweighted standard deviations.
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