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Abstract

We consider a regression discontinuity (RD) design where the treatment is received if a score

is above a cutoff, but the cutoff may vary for each unit in the sample instead of being equal for all

units. This Multi-Cutoff Regression Discontinuity Design is very common in empirical work, and

researchers often normalize the score variable and use the zero cutoff on the normalized score for

all observations to estimate a pooled RD treatment effect. We formally derive the form that this

pooled parameter takes, and discuss its interpretation under different assumptions. We show that

this normalizing-and-pooling strategy so commonly employed in practice may not fully exploit all

the information available in a multi-cutoff RD setup. We illustrate our methodological results

with three empirical examples based on vote shares, population, and test scores.
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1 Introduction

The regression discontinuity (RD) design has become one of the preferred quasi-experimental research

designs in the social sciences, mostly as a result of the relatively weak assumptions that it requires to

recover causal effects. In the “sharp” version of the RD design, every subject is assigned a score and

a treatment is given to all units whose score is above the cutoff and withheld from all units whose

score is below it. Under the assumption that all possible confounders vary smoothly at the cutoff as

a function of the score (also known as “running variable”), a comparison of units barely above and

barely below the cutoff can be used to recover the causal effect of the treatment—for a review see

Skovron and Titiunik (2015) and references therein.

The RD design is widely used in political science. RD designs based on elections are particularly

common, since the discontinuous assignment of victory in close races often provides a credible research

design to make causal inferences about mass or elite behavior. Although the RD design has been

found to fail in U.S. House elections (Caughey and Sekhon, 2011), RD designs based on elections

seem to be generally valid as an identification strategy to recover causal effects in other electoral

contexts (Eggers, Fowler, Hainmueller, Hall and Snyder, 2015). See de la Cuesta and Imai (2016) for

further discussion. In addition to elections, RD designs in political science, as well as in other social

and behavioral sciences, are based on other running variables such as population, test scores, poverty

indexes, birth weight, geolocation, and income. For a list of examples of recent RD applications see

Section S2 in the Supplemental Appendix.

In a standard RD design, the cutoff in the score that determines treatment assignment is known

and equal for all units. For example, in the classic education example where a scholarship is awarded

to students who score above a threshold on a standardized test, the cutoff for the scholarship is

known and the same for every student. However, in many applications of the RD design, the value

of the cutoff may vary by unit. One of the most common examples of variable cutoffs occurs in

political science applications where the score is a vote share, the unit is an electoral constituency, and

the treatment is winning an election under plurality rules. We refer to this kind of RD design with

multiple cutoffs as the Multi-Cutoff Regression Discontinuity Design.

When there are only two options or candidates in an election, the victory cutoff is always 50%

of the vote, and it suffices to know the vote share of one candidate to determine the winner of the
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election and the margin by which the election was won. This occurs most naturally in either political

systems dominated by exactly two parties, or elections such as ballot initiatives where the vote is

restricted to only two yes/no options (e.g., DiNardo and Lee, 2004). However, when there are three

or more candidates, two races decided by the same margin might result in winners with very different

vote shares. For example, in one district a party may barely win an election by 1 percentage point

with 34% of the vote against two rivals that get 33% and 33%, while in another district a party may

win by the same margin with 26% of the vote in a four-way race where the other parties obtain,

respectively, 25%, 25% and 24% of the vote.

Standard practice for dealing with this heterogeneity in the value of the cutoff has been to nor-

malize the score so that the cutoff is zero for all units. For example, researchers often use the margin

of victory for the party of interest as the running variable, defined as the vote share obtained by

the party minus the vote share obtained by its strongest opponent. Using margin of victory as the

score allows researchers to pool all observations together, regardless of the number of candidates in

each particular district, and make inferences as in a standard RD design with a single cutoff. This

normalizing-and-pooling approach is ubiquitous in political science and also in other disciplines. In

Section S2 of the Supplemental Appendix we list several multi-cutoff RD examples in political science

as well as in other fields, including education, economics and criminology, where this approach has

been applied.

Despite the widespread use of the normalizing-and-pooling strategy in RD applications, the exact

form and interpretation of the treatment effect recovered by this approach has not been formally

explored. Perhaps more importantly, by normalizing-and-pooling the running variable, researchers

may miss the opportunity to uncover key observable heterogeneity in RD designs, which can have

useful policy implications. This is the motivation for our article. We generalize the conventional RD

setup with a single fixed cutoff to an RD design where the cutoff is a random variable, and use this

framework to characterize the treatment effect parameter estimated by the normalizing-and-pooling

approach. We show that the pooled parameter can be interpreted as a double average: the weighted

average across cutoffs of the local average treatment effects across all units facing each particular

cutoff value. This weighted average gives higher weights to those values of the cutoff that are most

likely to occur and include a larger number of observations. Our derivations thus show that the

pooled estimand is not equal to the overall average of the average treatment effects at every cutoff
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value, except under specific assumptions.

We also use our framework to characterize the heterogeneity that is aggregated in the pooled

parameter, and the assumptions under which this heterogeneity can be used to learn about the

causal effect of the treatment at different values of the score. Learning about RD treatment effects

along the score dimension is useful for policy prescriptions. As we show, the probability of facing a

particular value of the cutoff may vary with characteristics of the units. If these characteristics also

affect the outcome of interest, then differences between treatment effects at different values of the

cutoff variable may be due to inherent differences in the types of units that happen to concentrate

around every cutoff value. However, if the cutoff value does not directly affect the outcomes and units

are placed as-if randomly at each cutoff value, then a treatment effect curve can be obtained.

We illustrate our results with three different RD examples based on vote shares, population, and

test scores. The first example analyzes Brazilian mayoral elections in 1996-2012, following Klašnja and

Titiunik (2015), and studies the effect of the Party of Brazilian Social Democracy (PSDB, Partido da

Social Democracia Brasileira) winning an election on the probability that the party wins the mayor’s

office in the following election. The running variable is vote share, and the multiple cutoffs arise

because there are many races with more than two effective parties. The second example is based on

Brollo et al. (2013), and focuses on the effect of federal transfers on political corruption in Brazil,

where transfers are assigned based on whether a municipality’s population exceeds a series of cutoffs.

The third example is based on Chay et al. (2005), where school improvements are assigned based on

past test scores, and the cutoffs differ by geographic region. Our examples illustrate the different

situations that researchers may encounter in practice, including the important difference between

cumulative and non-cumulative multiple cutoffs, as we discuss in more detail below.

After illustrating the main methodological results in the sharp multi-cutoff RD framework, we

show how the main ideas and results for sharp RD designs extend to fuzzy RD designs, where

treatment compliance is imperfect. Furthermore, in Section S4 of the Supplemental Appendix, we

discuss other extensions and results, covering a nonseparable RD model with unobserved unit-specific

heterogeneity (Lee, 2008), kink RD designs (Card, Lee, Pei and Weber, 2015), and the connections

to multi-scores and geographic RD designs (Papay, Willett and Murnane, 2011; Wong, Steiner and

Cook, 2013; Keele and Titiunik, 2015). Finally, before concluding, we offer recommendations for

practice to guide researchers in the interpretation and analysis of RD designs with multiple cutoffs.
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2 Motivation: RD Designs Based on Multi-party Elections

To motivate our multi-cutoff RD framework, we explore an RD design based on elections that studies

whether a party improves its future electoral outcomes by gaining access to office (i.e., by becoming

the incumbent party), a canonical example in political science. The treatment of interest is whether

the party wins the election in year t, and the outcome of interest is the electoral victory or defeat of

the party in the following election (for the same office), which we refer to as election at t+ 1.

We apply this design to two different settings. First, we analyze U.S. Senate elections between

1914 and 2010, pooling all election years and focusing on the effect of the Democratic party winning a

Senate seat on the party’s probability of victory in the following election for that same seat. Second,

we analyze Brazilian mayoral elections for the PSDB between 1996 and 2012. We also pool all election

years and focus on the effect of the party’s winning office at t on the party’s probability of victory in

the following election at t+ 1, which occurs four years later. For details on the data sources for the

U.S. and the Brazil examples see, respectively, Cattaneo, Frandsen and Titiunik (2015a) and Klašnja

and Titiunik (2015).

Figure 1 presents RD plots of the effect of the party barely winning an election on the probability

of victory in the following election in both settings, using the methods in Calonico, Cattaneo and

Titiunik (2015b). These figures plot the probability that the party wins election t+1 (y-axis) against

the party’s margin of the victory in the previous election (x-axis), where the dots are binned means

of binary victory variables, and the solid blue lines are 4th order polynomial fits. All observations

to the right of the cutoff correspond to states/municipalities where the party won election t, and all

observations to the left correspond to locations where the party lost election t. Figure 1(a) shows

that, in Brazilian mayoral elections, the PSDB’s bare victory at t does not translate into a higher

probability of victory at t+ 1. In contrast, as shown in Figure 1(b), a Democratic Party’s victory in

the Senate election at t considerably increases the party’s probability of winning the following election

at the cutoff for the same Senate seat.

For the statistical analysis of these two RD applications, we followed standard practice and used

margin of victory as the score, thus normalizing the cutoff to zero for all elections. This score

normalization is a practical strategy that allows researchers to analyze all elections simultaneously

regardless of the number of parties contesting each electoral district or even across years. However,
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(a) Brazilian Mayoral Elections, 1996-2012
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(b) U.S. Senate Elections, 1914-2010

Figure 1: RD Effect of Party Winning on Party’s Future Victory: Brazil and the United States

as we now illustrate, this approach pools together elections that are potentially highly heterogeneous.

If there were exactly two parties contesting the election in each state or municipality, the running

variable or score that determines treatment would be the vote share obtained by the party at t, as this

vote share alone would determine whether the party wins or loses election t. However, this is rarely

the case in applications. For example, roughly 68% of U.S. Senate elections and 50% of Brazilian

mayoral elections are contested by three or more candidates in the periods for which we have data.1

While these two cases differ little in terms of the number of parties, the number of effective parties

is quite different. In a race with three or more parties, in order to know whether a party’s vote share

led the party to win the election, and by how much, we need to know the vote share obtained by the

party’s strongest opponent—the runner-up when the party wins and the winner when the party loses.

In the above example, if the Democratic candidate obtains 33.4% of the vote against two candidates

that obtain 33.3% and 33.3%, its margin of victory is 33.4 − 33.3 = 0.1 percentage points and it

barely wins the election. In contrast, when the other two parties obtain 60% and 6.6%, its margin of

victory is 33.4− 60 = −26.6 points and it loses the election by a large margin.

Figure 2 summarizes the strongest opponent’s vote share for close elections in our two examples.

1We use the terms “parties” and “candidates” interchangeably throughout, but we note that in U.S. Senate elections
some third candidates are unaffiliated with a political party.
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Figure 2(a) shows the histogram of the vote share obtained by the PSDB’s strongest opponent at

election t only for races where the PSDB won or lost by three percentage points—that is, for races

where the absolute value of the PSDB’s margin of victory at t is three percentage points or less.

Figure 2(b) shows the analogous figure for the Democratic party in U.S. Senate elections.
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(a) Brazilian Mayoral Elections, 1996-2012
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(b) U.S. Senate Elections, 1914-2010

Figure 2: Histogram of Vote Share of Strongest Opponent in Elections Where the PSDB and the
Democratic Party Won or Lost by Less than 3 Percentage Points

Figure 2 reveals that the degree of heterogeneity differs greatly between the two examples. In

a perfect two-party system, the vote share of the party’s strongest opponent in races decided by 3

percentage points or less would range from 51.5% to 48.5%. That is, 48.5% is the minimum vote

percentage that a party could get in a two-party race if it lost to the Democratic Party by a margin

no larger than 3 percentage points; similarly, 51.5% is the maximum possible value. As illustrated in

Figure 2(b), in Senate elections where the Democratic party wins or loses by less than 3 percentage

points, only 26% of the observations are below 48.5%. Moreover, in 93% of the elections in the

figure, the Democratic party’s strongest opponent gets 46% or more of the vote. Despite most Senate

elections having a third candidate, in the overwhelming majority of these races the vote share obtained

by such candidates is negligible, and there is little heterogeneity in the location of close races along

the values of the strongest opponent’s vote share.

In contrast, Figure 2(a) shows that the PSDB exhibits much higher heterogeneity, with strongest
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opponent vote shares that fall below 48.5% for 44% of the observations. Moreover, more than a

third of the elections (35%) have strongest opponent vote shares below 46%. In other words, a non-

negligible proportion of the elections where the PSDB wins or loses by 3 points are elections in which

third parties obtain a significant proportion of the vote. The histogram shows that, below 46%, the

density peaks at around 35%, showing that in the roughly third of races below 46% the third party

obtains a minimum of about 20% of the vote.

The differences illustrated in Figure 2 suggest that we ought to interpret the RD results in Figure 1

differently. In the case of U.S. Senate elections, the average effect in Figure 1(b) can be interpreted

as roughly the average effect of the Democratic barely reaching the 50% cutoff and thus winning

a two-way race. Although the existence of third parties means that the real cutoff is not exactly

50%, in practice most close races are decided very close to this cutoff, so that the average RD effect

can be roughly interpreted as the effect of winning at 50%. In contrast, the average effect in Brazil

includes a significant proportion of elections where the cutoff is very far from 50%. As a consequence,

this overall effect cannot be interpreted simply as the effect of barely winning at the 50% cutoff.

Rather, it is the average effect of barely winning at different cutoffs that range roughly from 20%

to 50% of the vote. For example, the PSDB may win an election by a 2-percentage-point margin

obtaining 51% of the vote against a single challenger that obtains 49%, or obtaining 36% of the vote

against two challengers that get 34% and 30%. This heterogeneity is “hidden” or averaged in the

normalizing-and-pooling strategy.

Importantly, the heterogeneity in the Brazil example is not unique or unusual. Many political

systems around the world have third candidates that obtain a sizable proportion of the vote. Figure 3

shows the distribution of the vote share obtained by a reference party’s strongest opponent in six

different countries across different time periods and types of elections, using the data compiled by

Eggers et al. (2015). These histograms show only the subset of races decided by less than 3 percent-

age points for legislative elections in Canada, the United Kingdom, Germany, India, New Zealand

and mayoral elections in Mexico—the reference party is indicated in each case. In all the elections

illustrated in Figure 3, there is a non-negligible proportion of cases where the vote share of the party’s

strongest opponent falls below the range that would be observed in a perfect two-party system with

50% cutoff.
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Figure 3: Strongest Opponent’s Vote Share In Elections Decided by Less than 3 Percentage Points
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(a) Canadian House of Commons, 1867–2011
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(b) British House of Commons, 1918–2010
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(c) German Bundestag, 1953–2009
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(d) Indian Lower House, 1977–2004
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(e) Mexican Municipalities, 1970-2009
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3 Multi-Cutoff Regression Discontinuity Designs

We now we formally describe the heterogeneity in the treatment effect parameter that arises when the

normalizing-and-pooling approach is used in RD designs with multiple cutoffs. Our setup is general

and applies to any running variable, not only vote shares. In this section we discuss the interpretation

of the pooled parameter, while the next section explores how to recover different quantities of potential

interest under additional assumptions.

We study the sharp RD design first, and assume that the cutoff has finite support—i.e., it can

only take a finite number of different values. We adopt these simplifications to ease the exposition,

but we extend the framework to fuzzy multi-cutoff RD designs in Section 7, and to kink RD designs

and RD designs with multiple scores in Section S4 of the Supplemental Appendix. Our assumptions

and identification results reduce to those in Hahn, Todd and van der Klaauw (2001), Lee (2008) and

Card, Lee, Pei and Weber (2015) for the special case of single-cutoff RD designs.

In the standard single-cutoff RD design framework, there are three key random variables for each

unit, (Yi(0), Yi(1), Xi) for i = 1, 2, · · · , n, where Yi(0) and Yi(1) denote the potential outcomes for

each unit when, respectively, not exposed and exposed to treatment, and Xi denotes the running

variable or score assigned to each unit. In a sharp RD setting, the treatment indicator for each unit

is Di = 1(Xi ≥ c), where c is a common known cutoff for all units and 1(·) denotes the indicator

function. The treatment effect of interest in this setting is the average treatment effect at the cutoff:

τP = E[Yi(1)−Yi(0)|Xi = c]. In this context, one can always assume c = 0, without loss of generality,

by replacing Xi by X̃i = Xi − c and taking c = 0 as the cutoff for all units.

In our multi-cutoff RD design framework, Xi continues to denote the running variable or score for

unit i, but now there is another random variable, Ci, that denotes the cutoff that each unit i faces,

which we assume has support C = {c1, c2, ..., cJ} with P[Ci = c] = pc ∈ [0, 1] for c ∈ C. We assume

Xi is continuous with a continuous (Lebesgue) density fX(x), and let fX|C(x|c) denote a (regular)

conditional density of Xi|Ci = c.2 In the standard single-cutoff RD design, Ci would be a fixed value

(i.e., P[Ci = c] = 1), but in our framework it is a random variable taking possibly different values.

As a result, it is possible for different units to face different cutoff values. In the motivating example

based on Brazilian elections discussed above, the units indexed by i are municipalities, Xi is the

2Throughout the paper, we assume that all densities exist (with respect to the appropriate dominating measure)
and are positive, and that the Lebesgue densities are continuous at the evaluation points of interest.
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vote share obtained by the PSDB, and Ci is the vote share of the PSDB’s strongest opponent.3 In

the empirical illustrations we re-analyze below, Xi will be a vote share, a population measure, or a

test score. The variable Di ∈ {0, 1} continues to be the treatment indicator, but now assignment to

treatment depends on both the running variable Xi and the cutoff Ci. The unit receives treatment

if the value of Xi exceeds the value of the cutoff Ci and receives the control condition otherwise,

leading to Di = Di(Xi, Ci) = 1(Xi ≥ Ci). In the motivating examples, Di = 1 when the party

wins the t election in location i, and Di = 0 if it loses. This setting captures perfect compliance or

intention-to-treat; see Section 7 for the more general fuzzy RD case.

A common practice in the context of RD designs with multiple cutoffs is to define the normalized

running variable or score X̃i := Xi − Ci, pool all the observations as if there was only one cutoff at

c = 0, and use standard RD techniques. In the motivating examples, X̃i is the party’s margin of

victory at election t—i.e., the party’s vote share (Xi) minus the vote share of its strongest opponent

(Ci)—and the party wins the election when this margin is above zero. That is, we can write Di =

1(X̃i ≥ 0). It follows that the limit of Di as Xi approaches Ci = c from the left (i.e., from the region

where Xi ≤ Ci) is equal to zero, and it is equal to one when Xi approaches Ci = c from the right.

We formalize this in the assumption below, extended to the multi-cutoff RD setting.

Assumption 1 (Sharp RD) For all c ∈ C:

lim
ε→0+

E[Di|Xi = c+ ε, Ci = c] = 1 and lim
ε→0+

E[Di|Xi = c− ε, Ci = c] = 0.

To complete the multi-cutoff RD model, we assume the observed outcome is Yi = Y1i(Ci)Di +

Y0i(Ci)(1−Di), where Y1i(c) and Y0i(c) are, respectively, the potential outcomes under treatment and

control at each level c ∈ C for each unit i = 1, 2, · · · , n. We employ the standard notation from the

causal inference literature: Ydi(Ci) =
∑

c∈C 1(Ci = c)Ydi(c), for d = 0, 1. Unlike the single-cutoff RD

design, this model involves 2J potential outcomes, a pair for each cutoff level c ∈ C. In our motivating

examples, Y1i(c) is the party’s victory or defeat that would be observed at election t+ 1 if the party

won the previous election at t, and Y0i(c) is the party’s victory or defeat that would be observed at

election t+ 1 if the party lost the previous election. Note that, for each state or municipality, we only

observe Y0i(c) or Y1i(c), but not both, since the party cannot simultaneously lose and win election t.

Instead, we observe Yi a (binary) variable equal to one if the party wins election t+ 1.

3In multi-cutoff RD designs based on elections, Ci is a continuous random variable. As we illustrate in Section 6, in
order to analyze such examples within our framework, we discretize Ci it by dividing its support into intervals.
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Our notation allows the cutoff for winning an election to affect the potential outcomes directly.

More generally, the potential outcomes may be related to several variables: the running variable Xi,

the cutoff Ci, and other unit-specific (unobserved) characteristics. The latter variables are usually

referred to as the unit’s “type”—see the supplemental appendix for further discussion. Thus, in our

examples, we not only let the party’s potential electoral success in election t+ 1 be related to its vote

share and the vote share of its strongest opponent at t, but also to other (potentially unobservable)

characteristics of the state or municipality where the elections occur, such as its geographic location,

the underlying partisan preferences of the electorate and its demographic makeup.

Finally, as it is common in the RD literature, we assume that we observe a random sample,

indexed by i = 1, 2, · · · , n, from a well-defined population. As our notation also makes clear, we

are explicitly ruling out interference between units; see, e.g., Sinclair, McConnell and Green (2012),

Bowers, Fredrickson and Panagopoulos (2013), and references therein, for more discussion of SUTVA

implications and violations in political science.

3.1 The Normalizing-and-Pooling Approach

The RD pooled estimand, τP, is defined as follows:

τP = lim
ε→0+

E[Yi|X̃i = ε]− lim
ε→0+

E[Yi|X̃i = −ε] (1)

Equation 1 is the general form of the estimand in a multi-cutoff RD where the score has been nor-

malized and all observations have been pooled. Estimation of this pooled estimand is straightforward

and, as discussed above, is done routinely by applied researchers. After normalization of the running

variable, estimation just proceeds as in a standard RD design with a single cutoff—for example, using

local non-parametric regression methods, as is now standard practice. We provide further details in

Section 5 below. Although estimation of τP is straightforward, the interpretation of this estimand

differs in important ways from the interpretation of the causal estimand in a standard single-cutoff

RD design.

We consider first the most general form of treatment effect heterogeneity where the treatment

effect varies both across and within cutoffs. In this general case, individuals may respond to treatment

differently if they face different cutoffs but also if they face the same one. Formally, this individual-
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level treatment effect is τi(c) = Y1i(c) − Y0i(c). In our motivational empirical example, this implies

that the incumbency effect may vary in districts with different vote shares of the party’s strongest

opponent, but it may also vary across districts with the same value of this variable. In order to derive

the expression for τP we invoke the following two assumptions.

Assumption 2 (Continuity of Regression Functions) For all c ∈ C:

E[Y0i(c)|Xi = x,Ci = c] and E[Y1i(c)|Xi = x,Ci = c] are continuous in x at x = c.

Assumption 3 (Continuity of Density) For all c ∈ C:

fX|C(x|c) is positive and continuous in x at x = c.

Assumption 2 says that expected outcome under control is a continuous function of the running

variable for all values of the score, implying that units barely below the cutoff are valid counterfac-

tuals for units barely above it. This is the fundamental identifying assumption in all RD designs.

Assumption 3 rules out discontinuous changes in the density of the running variable. Lemma 1 below

characterizes the pooled estimand under complete heterogeneity.

Lemma 1 (Pooled Sharp Multi-Cutoff RD)

If Assumptions 1, 2 and 3 hold, the pooled sharp RD causal estimand is

τP =
∑
c∈C

E[Y1i(c)− Y0i(c)|Xi = c, Ci = c] ω(c), ω(c) =
fX|C(c|c)P[Ci = c]∑

c∈C
fX|C(c|c)P[Ci = c]

.

All proofs and related results are given in Section S3 of the Supplemental Appendix. Lemma 1 says

that whenever heterogeneity within and across cutoffs is allowed, the pooled RD estimand recovers

a double average: the weighted average across cutoffs of the average treatment effects E[Y1i(c) −

Y0i(c)|Xi = c, Ci = c] across all units facing each particular cutoff value. Importantly, this derivation

shows that the pooled estimand is not equal to the overall average of the (average) treatment effects

at every cutoff value. In Section S4.1 of the Supplemental Appendix, we discuss this point further

and show the differences between the average of the cutoff-specific effects and τP, and also discuss

how the pooled estimand can be written as an average across individuals of different types as in Lee

(2008).

Two things should be noted in order interpret the estimand in Lemma 1. First, the weight

ω(c) determines the effects that are included in the pooled parameter τP, and how much each effect
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contributes to this parameter. The term P[Ci = c] is simply the probability of observing the particular

realization of each cutoff, and implies that ω(c) will be higher for those values of c that are more

likely to occur. The term fX|C(c|c) increases the weight of effects that occur at values of c where the

density of the running variable is high.

Second, each of the conditional effects being averaged, E[Y1i(c) − Y0i(c)|Xi = c, Ci = c], is the

average effect of treatment given that both the running variable X and the cutoff C are equal to a

particular value c. In the standard single-cutoff RD design, the effect recovered is the average effect

of treatment at the point Xi = c, an effect that is typically characterized as local because it reflects

the average effect of a treatment at a particular value of the running variable and is not necessarily

generalizable to other values of Xi. Therefore, the conditional effects in the pooled RD case intensify

the local nature of the effect, because they represent the average effect of treatment when both the

running variable and the cutoff take the same particular value.

For example, in a perfect two-party system, the RD effect of a party winning election t on the

party’s future victory at t + 1 recovers a single effect—the effect of this party winning with a vote

share just above 50%, not the effect of winning in general. In contrast, in the pooled RD design, this

is just one of the effects that are included in τP. The pooled RD estimand τP includes other effects

such as the average of the party winning with 40% of the vote against a strongest opponent that

gets just below 40%, the average effect of the party winning with 30% of the vote against a strongest

opponent that gets just below 30%, etc. This heterogeneity in τP makes it a richer estimand, but it

also makes each of its component effects more local or specific, because each reflects only one of the

multiple ways in which “barely winning” can occur.

Moreover, τP is subtle in other ways. In the pooled multi-cutoff RD design, just like in the

standard single-cutoff RD design, units whose score Xi is close to a cutoff may be systematically

different from the units whose score is far from it. In the pooled RD design, however, units can also

differ systematically in their probabilities of facing a particular value of the cutoff. For example, in the

Brazilian mayoral context, municipalities where the PSDB gets 50% of the vote might be different in

relevant ways from municipalities where the PSDB gets 35% of the vote. In addition, even within those

municipalities where the PSDB gets 35% of the vote, municipalities where the strongest opponent

also gets roughly 35% may be very different from those where the strongest opponent gets 10% or

15% and the election is uncompetitive. In terms of our example, this means that, at every value
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c, the effects that contribute to τP are the average effect of the party barely defeating an opponent

that obtained a vote share equal to c. While this effect is uninformative about the effects at other

values of c, it does imply that when there are many values of c the pooled RD estimand contains

information about the causal effect of barely winning in a number of different contexts. This aspect

of the pooled RD estimand, by which many different local effects are combined when many different

values of Ci may occur, shows that multi-cutoff RD designs contain a richer set of information relative

to single-cutoff settings.

This means that the pooled estimand in a multi-cutoff RD design is something of a paradox. On

the one hand, τP is a more local parameter in the sense that it is the effect of the treatment for

those units for which Xi barely exceeds Ci in only one of the multiple ways in which Xi could barely

exceed Ci. On the other hand, when Ci takes a wide range of values, the average effect of treatment

is recovered for many different ways in which Xi can barely exceed Ci, potentially leading to a more

global interpretation of the RD effect. We will use the two motivating examples, as well as two other

distinct empirical illustrations, to illustrate how researchers may explore the richness in τP.

4 Identification in Multi-Cutoff RD Designs

A usual concern with single-cutoff RD designs is that they only offer estimates of the treatment effect

at the cutoff and are thus uninformative about the magnitude of the treatment effect at other values

of the running variable. In our motivating examples, the multi-cutoff RD gives us the effect of barely

defeating the opponent party with a range of different values—in Brazil mayoral elections this range

is roughly 20% to 50%. Can we use this wider range of values to learn about a more global effect?

We now consider assumptions under which the information contained in the pooled estimand τP can

be disaggregated to learn about treatment effects of a more global nature.

4.1 Constant Treatment Effects

We first consider a simplification of the general case, where the treatment effect is different across

cutoffs but constant for all individuals who face the same cutoff, i.e. τi(c) := Y1i(c)−Y0i(c) = τ(c) with

τ(c) a fixed constant for all i. Note that τ(c) varies by unit only insofar as c varies by unit, but there

is no i subindex in τ(c), indicating that two units facing the same given cutoff c will have the same

treatment effect τ(c). In terms of our motivating examples, this assumption implies that the effect of
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the party winning an election on its future electoral success is the same in all municipalities/states

where its strongest opponent obtains the same proportion of the vote. This is undoubtedly a very

strong assumption. We include it here to illustrate one possible way in which the treatment effects

recovered by the multi-cutoff RD design can be given a more global interpretation, but we discuss

weaker assumptions in the subsequent sections.

The proposition below shows that when there is no heterogeneity within cutoffs, the relationship

between the pooled RD estimand and the cutoff-specific effects simplifies considerably.

Proposition 1 (Constant treatment effects)

Suppose the assumptions of Lemma 1 hold. If τi(c) = τ(c) for all i and τ(c) fixed for each c, then the

pooled RD estimand is τP =
∑

c∈C τ(c)ω(c), where the weights ω(c) are the same as in Lemma 1.

Thus, when effects are constant within cutoffs, τ(c) captures the effect of treatment for all values

individuals facing cutoff c. Naturally, Proposition 1 simplifies considerably when the treatment effect

is the same for all individuals at all cutoffs, that is, τi(c) = Y1i(c) − Y0i(c) = τ for all i and all

c, and thus τ(c) = τ for all c. In this case, the pooled estimand becomes τP =
∑

c∈C τ(c)ω(c) =

τ
∑

c∈C ω(c) = τ, recovering the single (and therefore global) constant treatment effect. This global

interpretation of the multi-cutoff RD estimand under constant treatment effects is analogous to the

interpretation in a single-cutoff RD design, where the assumption of homogeneous treatment effects

leads to the identification of the overall constant effect of treatment.

4.2 Ignorable Running Variable

The case introduced above is very restrictive, as it is natural to expect some heterogeneity in treatment

affects among units facing the same value of the cutoff. We now consider the less restrictive case of

unit-heterogeneity within cutoffs, but with an average treatment effect at every value of the cutoff

that does not depend on the particular value taken by the score. We summarize this in the following

assumption.

Assumption 4 (Score Ignorability) For all c ∈ C:

E[Y1i(c)− Y0i(c)|Xi, Ci = c] = E[Y1i(c)− Y0i(c)|Ci = c].

Under Assumption 4, the running variable is ignorable once we condition on the value of the

cutoff—that is, once the value of the cutoff is fixed, we assume that the average effect of treatment
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is the same regardless of the value taken by the score. The proposition below shows the form of the

pooled RD estimand in this case.

Proposition 2 (Score-Ignorable Treatment Effects)

Suppose the assumptions of Lemma 1 hold. If Assumption 4 holds, then the pooled RD estimand is

τP =
∑
c∈C

E[Y1i(c)− Y0i(c)|Ci = c]ω(c),

where the weights ω(c) are the same as in Lemma 1.

Thus, when the average effect of treatment does not vary with the running variable Xi, E[Y1i(c) −

Y0i(c)|Ci = c] captures the effect of treatment for all values of Xi, not necessarily those that are close

to the cutoff c. For example, E[Y1i(c)−Y0i(c)|Ci = c] may reflect the average effect of the Democratic

party winning election t on its future electoral success for a given value of its strongest opponent’s

vote share, regardless of whether the party defeated its opponent barely or by a large margin. In this

sense, the effects in Proposition 2 are global in nature. Note, however, that the treatment effects are

allowed to vary with the value of Ci, and therefore the expression for τP in Proposition 2, though not

necessarily local, is only averaging over the set of values that Ci can take, and the values of Ci that

will be given positive weight are only those values where the density of Xi given Ci at Xi = Ci = c,

fX|C(c|c), is positive. As such, τP still retains a local aspect.

4.3 Ignorable Cutoffs

We now consider the case where the running variable is not ignorable, but where the heterogeneity

brought about by the multiple cutoffs to can be restricted in ways that allow extrapolation. It is

useful to introduce the analogy between the RD design with multiple cutoffs and an experiment that is

performed in different sites or locations. In the latter case, internally valid treatment effect estimates

from experiments in multiple sites are not necessarily informative about the effect that the treatment

would have in a different site where the experiment has not been run. This means that the results

from multi-site experiments may not allow researchers to extrapolate to the overall population, a

concern that is not necessarily eliminated if the number of sites is large (Allcott, 2015). The problem

arises because the sites that are selected to run an experimental trial may differ from the overall

population of sites in ways that are correlated with the treatment effect. For example, sites where
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the treatment is expected to have large effects may be more likely to run experimental trials, leading

to a positive “site selection bias” that would overestimate the effects that the treatment would have

if it were implemented in the overall population. Alternatively, the population may differ across sites

in a characteristic that is associated with treatment effectiveness (Hotz, Imbens and Mortimer, 2005).

Of course, generalizing the treatment effect from one particular site to other locations can be done

under additional assumptions.

Like in a multi-site experiment, in the multi-cutoff RD we have a series of internally valid estimates

that we would like to interpret more generally. In the multi-site experiments literature, the strongest

and simplest assumption under which the generalization of effects is possible is independence of

locations with respect to potential outcomes. This condition is guaranteed by design when the units

in the population are randomly assigned to different sites. In our context, we can make the analogous

assumption that, conditional on the value of the running variable, the cutoff faced by a unit is

unrelated to the potential outcomes. Formally, we can write this assumption as follows.

Assumption 5 (Cutoff Ignorability) For all c ∈ C:

(a) E[Y1i(c)|Xi, Ci = c] = E[Y1i(c)|Xi] and E[Y0i(c)|Xi, Ci = c] = E[Y0i(c)|Xi].

(b) Y1i(c) = Y1i and Y0i(c) = Y0i.

Assumption 5(a) says that, conditional on the running variable, the potential outcomes are mean

independent of the cutoff variable C. In addition, we need to ensure that the value of the cutoff does

not affect the potential outcomes. This is equivalent to the “no macro-level variables” assumption

in Hotz, Imbens and Mortimer (2005). Assumption 5(b) above formalizes this idea as an exclusion

restriction, requiring that the cutoff level does not affect the potential outcomes directly.

To build intuition, note that if c0 ≤ Xi < c1, then Assumption 5 leads to E[Yi|Xi, Ci =

c0] − E[Yi|Xi, Ci = c1] = E[Y1i − Y0i|Xi] for observed random variables, which captures the av-

erage treatment effect conditional on Xi for c0 ≤ Xi < c1. This shows that under these assumptions

we can estimate the average treatment effect away from the cutoff, and thus obtain a more global

effect. However, the following lemma shows that, as before, the ability to recover a global effect from

the pooled multi-cutoff RD design, even under Assumption 5, is limited by the fact that τP weighs

these average effects by the probability of observing a realization of the cutoff variable Ci at the

particular value c.
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Proposition 3 (Cutoff-Ignorable Treatment Effects) Suppose the assumptions of Lemma 1 hold.

If Assumptions 5 holds, then the pooled RD estimand becomes

τP =
∑
c∈C

E[Y1i − Y0i|Xi = c]ω(c),

where the weights ω(c) are the same as in Lemma 1.

Thus, under these assumptions, τP averages the average treatment effects E[Y1i−Y0i|Xi = c], each

of which is the average effect of receiving treatment conditional on the running variable Xi being at

the value c, regardless of the value taken by Ci. In our motivating examples, this represents the

average effect of a party winning the t election given that the party’s vote share is c and regardless

of the vote share obtained by its strongest opponent, i.e. regardless of whether it won barely or by a

large margin. However, these averages are still evaluated only at values of c that are in the support of

the random cutoff variable Ci. So, although they are more global effects, they can only be recovered

at feasible values of Ci. Moreover, the weights entering τP still depend on P[Ci = c] through the

weights ω(c).

If, in addition to the assumptions imposed in Proposition 3, we imposed the assumption that the

conditional density of the score Xi given Ci is constant, the pooled RD parameter τP simplifies to:

τp =
∑
c∈C

E[Y1i − Y0i|Xi = c]P[Ci = c]

and now, if the support of Ci is equal to the support of Xi (which will only be possible if both are

discrete or both are continuous), we can recover the average of the average treatment effect at all

values of Xi determined by the cutoff values faced by the units in the sample. All these assumptions

combined would thus make τP a truly global averaged estimand, without the need of imposing an

assumption of constant RD treatment effects.

Assumption 5 also has another important application. Under the conditions imposed in that

assumption, E[Y1i(c) − Y0i(c)|Xi = c, Ci = c] = E[Y1i − Y0i|Xi = c]. This shows that when these

assumptions hold, estimating the RD effects separately for each value c will provide a treatment-effect

curve that will summarize the effects of the treatment at different values of the running variable

(independently of the value taken by the cutoff). In other words, under these assumptions, we can
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estimate multiple RD treatment effects for different values of the running variable.

Of course, Assumption 5 is generally strong and may be too restrictive in some empirical ap-

plications. Cattaneo, Vazquez-Bare, Keele and Titiunik (2016) investigate different approaches in

a multi-cutoff RD design to achieve identification of E[Y1i − Y0i|Xi = x] for values of x ∈ C under

substantially weaker conditions than Assumption 5. These alternative conditions would allow for “en-

dogenous cutoffs” or “sorting into cutoffs” for the units of analysis, and would give an opportunity

for extrapolation of RD treatment effects in applications where there is variation in cutoff values.

4.4 Difference Between Non-Cumulative and Cumulative Cutoffs

The plausibility of the assumptions just discussed will be directly affected by the way in which the

multiple cutoffs are related to the running variable. Multi-Cutoff RD designs are typically of two

main types. In the first type, the value of the running variable Xi and the cutoff variable Ci are

unrelated, in the sense that a unit i with running variable equal to a particular value, say Xi = x0, can

be exposed to any cutoff value c ∈ C = {c1, c2, ..., cJ}. This scenario, which we call the Multi-Cutoff

RD Design with Non-Cumulative Cutoffs, is illustrated in Figure 4(a). As shown in Panels I, II and

III, a unit with Xi = x0 can be exposed to any one of the possible cutoff values—c0, c1 or c2. In this

scenario, the rule that governs whether a unit faces c0, c1 or c2 may be related to Xi, but this rule is

not a deterministic function of Xi.

RD designs based on multi-party elections have non-cumulative cutoffs. For example, when the

PSDB contests an election against two other parties, if it obtains 40% of the vote, its strongest

opponent’s vote share—the cutoff the PSDB faces to win the election—can be anything between 60%

(if the third party gets zero votes) and just above 30% (if the second and third parties are tied).

Thus, except for the restriction that the total sum of vote percentages must be 100%, the cutoff faced

by the PSDB is unrelated to the vote share it obtains.

In contrast, some multi-cutoff RD applications have what we call cumulative cutoffs. In these

applications, different versions of the treatment are given for different ranges of the running variable,

and as a result the cutoff faced by a unit is a deterministic function of the unit’s score value. In

the hypothetical example illustrated in Figure 4(b), units with Xi < c0 receive Treatment A, units

with c0 ≤ Xi < c1 receive treatment B, units with c1 ≤ Xi < c2 receive treatment C, and units with

c2 ≤ Xi receive treatment D. Thus, knowing a unit’s score value is sufficient to know which cutoff (or
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(b) Cumulative Cutoffs

Figure 4: Cumulative versus Non-cumulative Cutoffs in Multi-Cutoff RD Designs: Under non-
cumulative cutoffs, all units may be exposed to all cutoffs regardless of their score value; under
cumulative cutoffs, units with a given score may be exposed to only a subset of cutoffs.

pair of cutoffs) the unit faces. For example, an education intervention that gave a financial award to

teachers based on evaluation scores could grant no awards to teachers with score below c0, a small

award to teachers with scores between c0 and c1, a medium award to teachers with scores between c1

and c2, and the largest awards to those whose evaluation scores are above c2.

The difference between non-cumulative and cumulative cutoffs is important for two main reasons.

First, in designs with non-cumulative cutoffs, all units tend to receive the same treatment, while

in designs with cumulative cutoffs the treatments given are typically different in some respect. For

example, a party whose vote share barely exceeds its strongest opponent’s vote share always wins the

election regardless of how low or high the strongest opponent’s vote share is, while a teacher’s award

can be smaller or larger depending on which cutoff the teacher’s score exceeds. This distinction may

not be important if, in cumulative cutoff applications, researchers are willing to redefine the treatment

appropriately. For example, all teachers see an increase in the award amount when they barely exceed

any cutoff, and thus the treatment can be understood as increasing the award amount, regardless of

by how much.

Second, while all of our results apply to both scenarios, the interpretation and plausibility of the
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underlying assumptions will change depending on whether a cumulative or non-cumulative setting

is considered. For example, our main Lemma 1 applies to both cases, which means that regardless

of whether cutoffs are cumulative or non-cumulative, the normalizing-and-pooling approach leads

to a weighted average of cutoff-specific effects. However, the assumption of Cutoffs Ignorability

(Assumption 5) is less plausible under cumulative cutoffs because the cumulative rule implies a

complete lack of common support in the value of the running variable for units facing different

cutoffs. For example, in Figure 4(b), a unit with score Xi = x0 can only be exposed to cutoff c1

or c0, but will never be exposed to c2, and the units exposed to c2 have score Xi ≥ c1, meaning

that there are no units with low values of Xi exposed to c2. In general, with cumulative cutoffs,

the subpopulations of units exposed to every cutoff will have systematically different values of the

running variable. Thus, if the running variable is related to the potential outcomes, the assumption

that the potential outcomes are mean independent of the cutoff variable conditional on the running

variable will always be false. The conditions required to obtain more general estimands based on

multiple cutoffs are therefore much stricter in cases where the cutoffs are cumulative. We return to

this distinction when we discuss our three empirical examples in Section 6.

5 Estimation and Inference in Multi-Cutoff RD Designs

Estimation and inference in multi-cutoff RD designs can be based on the same methods and techniques

that are commonly used for the analysis of single-cutoff RD designs, by either pooling all observations

via a normalized score (as commonly done in current practice) or by conducting inference procedures

for each cutoff separately. For a review of the most recent single-cutoff RD approaches to estimation

and inference see Skovron and Titiunik (2015) and references therein.

The standard practice in single-cutoff RD analysis is to employ either local polynomial methods

(Hahn et al., 2001; Calonico et al., 2014a,b, 2015a,c) or local randomization methods (Lee, 2008;

Cattaneo et al., 2015a,b,c). Either approach can be used directly in multi-cutoff RD designs, both

when a single normalized cutoff is considered (X̃i = Xi − Ci and cutoff c = 0) or when the different

cutoffs are analyzed separately (Xi and cutoffs c ∈ C). We illustrate both approaches below with our

three empirical illustrations, which cover both non-cumulative and cumulative cutoff settings.

We briefly outline the main steps for estimation and inference using nonparametric local poly-

nomial methods, which are usually the preferred option in empirical work. In this setting, point
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estimation amounts to fitting a weighted least squares regression of the outcome (Yi) on a poly-

nomial basis of the running variable (X̃i or Xi) for observations within a small region around the

cutoff (c = 0 when X̃i is used or for each c ∈ C when Xi is used). The region around the desired

cutoff is determined by a choice of bandwidth, and it is necessarily different depending on whether

normalizing-and-pooling is used or not. The weights are determined by a kernel function, and the

polynomial is fitted separately for observations above and below the cutoff. The RD treatment effect

is obtained as the difference in the intercepts of the two polynomial fits at the cutoff(s), which im-

plies that either one single estimate is computed (τ̂P when normalizing-and-pooling) or a collection

of estimates is computed (τ̂(c) for c ∈ C when Xi is used). The implementation of this procedure

requires a bandwidth, which is typically chosen to minimize an approximation to the asymptotic

mean-squared-error (MSE) of the point estimator(s). Confidence intervals for each parameters τP or

τ(c), c ∈ C, can be constructed using the asymptotically valid procedures developed by Calonico et al.

(2014b), which have better finite-sample properties and faster vanishing coverage error rates.

Thus, implementing local polynomial estimation and inference in multi-cutoff RD designs is

straightforward. By construction, the normalizing-and-pooling treats the multi-cutoff RD design

as a single-cutoff RD design for all practical purposes, and all results in the literature are directly

applicable. Likewise, a cutoff-by-cutoff analysis of multi-cutoff RD designs can also be done with

estimation and inference methods already available in the literature with minor modifications and

extra care. If the cutoffs are non-cumulative, for every cutoff c ∈ C = {c1, c2, ..., cJ}, researchers can

construct point estimators, confidence intervals and other inference procedures by first keeping only

the observations exposed to c, and then employing directly local polynomial methods that treat c as

the single cutoff in this subsample. When the cutoffs are non-cumulative but continuous, as in the

case of multi-party elections, we have Ci ∈ [cmin, cmax]. In this case, the researcher can first define a

grid of values c ∈ C = {c1, c2, · · · , cJ} on the support of the continuous cutoff, [cmin, cmax], keep ob-

servations in a region around each grid value, and perform estimation and inference in this subsample

treating cj as the single cutoff. We illustrate this approach in our first empirical illustration below.

A similar procedure can be applied when the cutoffs are cumulative, either discrete or continuous,

except that in this case the observations used for estimation and inference at each cutoff or grid point

cj should only include observations whose running variable is not smaller than the cutoff immediately

before cj and no larger than the cutoff immediately after cj . For example, a reasonable empirical

22



practice is to consider only observations with cj−1 + k < Xi < cj+1 − k, assuming the cutoffs are

ordered, where k could be chosen to the middle point or the median point (based on Xi) between

two cutoffs.

In all cases, the individual point estimates and confidence intervals can then be plotted against

each cutoff or grid value cj to capture the heterogeneity underlying the pooled RD treatment effect

τP. Joint inference across different cutoff is also possible by either relying on the bootstrap or by

deriving the joint asymptotic distribution of the cutoff-specific estimates.

6 Empirical Examples

We now illustrate how the formal results derived above can inform the empirical analysis of RD designs

with multiple cutoffs. We analyze three different examples: the incumbency advantage example in

Brazil presented above, the effect of federal transfers on political corruption in Brazil analyzed by

Brollo et al. (2013), and the effect of school infrastructure improvements on educational outcomes

analyzed by Chay et al. (2005). We do not analyze the U.S. Senate example further because the

number of effective the parties is very close to two—see Section S5 in the Supplemental Appendix for

more details.

Example 1: The Effect of Incumbency for the PSDB in Brazilian Elections

The first example we analyze is the PSDB’s incumbency advantage in Brazilian mayoral elections

introduced above. In this electoral context, about a third of races occurs in municipalities where the

two top-getters combined obtain less than 70% of the vote. Table 1 presents the frequency of races in

our sample by different levels of the PSDB’s strongest opponent vote shares at t. Since this variable

is continuous, we divide its support in four non-overlapping intervals: [0, 35), [35, 40), [40, 45), and

[45, 50). Within each of these intervals, Table 1 reports the number of elections that the party won

and lost at t. In a perfect two-party system, knowing the value of a party’s strongest opponent’s

vote share is equivalent to knowing whether the party won or lost the election, but this equivalency

is broken in a multi-party RD design. For example, the PSDB wins no more than 64% of the races

where the vote share of its strongest opponent is 35% or higher.

We begin by estimating τp, which is the pooled RD estimand that uses margin of victory as

the score and normalizes all cutoffs to zero, by local linear regression with MSE-optimal bandwidth.
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Table 1: Frequency of Observations for Different Levels of the PSDB’s Strongest Opponent Vote
Shares at t

PSDB in Brazil Mayoral Elections

Strongest Opponent Vote (%)
Sample Size Victories (%) Defeats (%)

(Cutoff Value)

[0, 35) 1346 84.9 15.1
[35, 40) 986 63.9 36.1
[40, 45) 1251 62.3 37.7
[45, 50) 1490 61.5 38.5

Note: Counts based on mayoral elections in Brazil in 1996-2012. Source

is Klašnja and Titiunik (2015) replication data.

The pooled RD point estimate is -0.03, an effect that cannot be statistically distinguished from zero

(p-value = 0.44). The robust 95% confidence interval is [−0.11, 0.05].

Next, we explore the heterogeneity by separately estimating the RD effects at different levels of

strongest opponent’s vote share. We choose a grid of values in the support of the vote share of the

PSDB’s strongest opponent and, for each value in this grid, we separately estimate the RD effect of

the PSDB’s winning at t on the PSDB’s future success using only the 600 treated observations closest

to the grid value and the 600 control observations closest to the grid value.

Figure 5: RD Effects of PSDB’s Victory on Future Vote Share at Different Levels of Strongest
Opponent’s Vote Share
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Figure 5 summarizes the results, showing the treatment effects at six different, equidistant values

of strongest opponent vote shares between 34% and 49%. The dots are the treatment effect and the

bars are the robust 95% confidence intervals described in Section 5. Note that for every value of the

PSDB’s strongest opponent vote share that is displayed in the figure, we are estimating the effect of

the PSDB’s barely defeating its strongest opponent, so that all the effects in this figure are local RD

effects. The blue dotted line indicates the normalizing-and-pooling point estimate, τ̂p = −0.03.

The effects shown in this figure reveal some heterogeneity. For values of strongest opponent vote

shares that fall near 46% or below, the effect of barely winning is relatively small and cannot be

distinguished from zero. This estimate is also consistent with the results from the pooled analysis.

However, for those elections where the PSDB’s strongest opponent obtains a vote share near 49%,

the effect is negative, large in absolute value, and significantly different from zero.

The heterogeneity illustrated in Figure 5 must be interpreted with care for two reasons. The first

reason is practical. As shown in Table 1, the number of observations at every cutoff is moderate,

which may lead to noisy estimates of the conditional expectations. The length of the confidence

intervals in Figure 5 varies significantly across the range of the running variable, often increasing

where the density of observations is lower.

Second, following our discussion in Section 4, the interpretation of the treatment-effect curve

in Figure 5 depends crucially on the assumptions surrounding the factors that affect the strongest

opponent’s vote shares. If we were willing to assume that, at every level of vote share obtained

by the PSDB at t, the vote share obtained by its strongest opponent is mean independent of the

PSDB’s potential victory at t + 1 (Assumption 5a) and the strongest opponent’s vote shares affect

the potential future performance of the PSDB only through the PSDB’s winning or losing the election

but not directly (Assumption 5b), then each of these effects would be the effect of the PSDB winning

election t with a vote share in each interval, regardless of whether it won barely or by a large margin.

If however, we believe that the more plausible scenario is one in which elections that differ in

the strongest opponent’s vote share also differ systematically in observed and unobserved factors that

affect the PSDB future vote shares (e.g., municipalities with strong third parties may be systematically

different from municipalities where only two parties contest the election), then the interpretation of

Figure 5 changes considerably. Under this scenario, the potential differences between the effects also

reflect the different electoral environments that occur at different levels of strongest opponent’s vote
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shares, and cannot be simply interpreted as the effect of treatment at those levels of the PSDB’s t

vote share (the running variable).

Example 2: The Effect of Federal Transfers on Political Corruption in Brazil

Our second empirical illustration is based on a study by Brollo et al. (2013), who examine whether in-

creasing federal transfers results in increased political corruption in Brazilian municipalities. Brazilian

municipal governments provide goods and services related to education, health, and infrastructure.

For municipalities with a population of less than 50,000 people, the largest source of total revenues

is the Fundo de Participação dos Munićıpios (FPM) which are automatic transfers from the cen-

tral government. FPM transfers are based on the population of the municipality within each state,

increasing at preset population thresholds.

In the original study, the authors focused on the first seven thresholds: 10,189, 13,585, 16,981,

23,773, 30,565, 37,357, and 44,149. At each of these thresholds, the amount of FPM transfers increased

by a linear multiplier. The question of interest is whether these increases in revenues contributed to

political corruption, measured in various ways. In our re-analysis, we focus on a single corruption

measure—a binary outcome equal to one if authorities found evidence of severe irregularities in

municipal finances including diversion of funds, over-invoicing of goods and services, and fraud.

The original study treated the design as a fuzzy RD, since official population counts do not

perfectly correspond to the actual amount of FPM transfers received. This noncompliance arises from

several sources, including the fact that FPM transfer amounts were frozen for several years, while

population counts shifted. We only focus on the intention-to-treat effects of population thresholds on

corruption, and thus treat it as a sharp design.

This application is an example of a multi-cutoff RD design with cumulative cutoffs: municipalities

of a certain population are only exposed to one or at most two cutoffs, and the treatment assigned

differs at different cutoffs, as being above each of the cutoffs results in a different amount of FPM

transfers. For example, a municipality above the 30,565 cutoff receives more federal transfers than a

municipality above the 16,981 cutoff. The treatment received at every cutoff is therefore changing,

which is typical of cumulative cutoff settings.

The pooled RD point estimate in this application is 0.1487 (p-value 0.0595), and the robust 95%

confidence interval is [−0.0071, 0.3612]. We also estimate cutoff-by-cutoff effects. Figure 6, which is

26



Table 2: Frequency of Observations Exposed to Each Cutoff Value

Brazilian Municipalities

Population
Sample Size

(Cutoff Value)

10,189 489
13,585 432
16,981 407
23,773 342
30,565 225
37,356 153
44,148 81

Note: For each cutoff, the sample size is mu-

nicipalities with score greater than or equal to

previous cutoff (if there is one) and smaller than

the following cutoff (if there is one). Source is

Brollo et al. (2013) replication data.

analogous to Figure 5 above, shows the RD treatment effects at each of the seven different cutoffs.

For every cutoff-specific effect, we only use observations with score greater than or equal to the

previous cutoff, and smaller than the following cutoff. That is, at each cutoff cj , we only include in

the estimation observations with cj−1 ≤ Xi < cj+1, and at the extreme cutoffs, c1 and cJ , we keep,

respectively, observations with Xi < c2 and Xi ≤ cJ−1. The sample size at each cutoff is shown in

Table 2.

As shown in Figure 6, almost all the point estimates are positive and near the pooled effect,

showing considerable homogeneity in the corruption effect of increasing federal transfers across pop-

ulation levels. Like the confidence intervals for the pooled effect, the robust 95% confidence intervals

for each cutoff-specific effect include zero. Although the 90% confidence intervals for pooled effect

do exclude zero and are consistent only with positive effects, all the 90% confidence intervals for the

cutoff-specific effects include zero, suggesting that the normalizing-and-pooling approach leverages

the increased statistical power obtained by aggregating the sample sizes across all cutoffs.

Example 3: The Effect of School Infrastructure Improvements in Chile

Our third and final empirical illustration is based on the study by Chay et al. (2005) on the effect of

school improvements on test scores, with cutoffs that differ by geographic region. In 1990, the Chilean

government introduced P-900, an intervention targeted at low-performing, publicly funded schools.
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Figure 6: RD Effects of Municipal Transfers on Corruption
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Schools selected for participation in the P-900 intervention received improvements in their infras-

tructure, updated instructional materials, additional teacher training, and new after school tutoring

sessions. Assignment to P-900 participation was done using a single score based on a combination of

school level test scores in language and mathematics from 1988.4 However, officials from the Chilean

Ministry of Education used different cutoffs across each of Chile’s 13 administrative regions, the

highest subnational level of government.

Table 3 contains the cutoff, number of observations, and range of the running variable in each

region. The outcome data are school-level test scores from 1992 in language and mathematics. To

keep our analysis brief, we focus only on language test scores.

As in the other empirical examples, we first estimate the single pooled estimate of the effect of

the P-900 intervention on language test scores. This estimate is 1.9859 (p-value 0.0410), with 95%

robust confidence interval [0.1009, 4.8361]. Thus, the normalizing-and-pooling strategy indicates that

the program increased language test scores by about 2 points, an effect that is significantly different

from zero at 5% level.

We also explore whether the effect of the program varied by region. As in our previous application,

4While the indicator for participation in P-900 and the test scores that make up the running variable are fully
observed, the exact cutoffs in the score are not observed. Chay et al. (2005) use two different methods to estimate the
cutoffs. We use the second set of estimated cutoffs in our analysis.
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Table 3: Cutoffs and sample sizes with regions with same cutoff values combined.

Geographic Region
Past Test Scores Index

Sample Size Min Xi Max Xi(Cutoff Value)

Region 7 42.4 494 20.0 79.7
Regions 6,8 43.4 1141 25.8 90.2
Region 13 46.4 1131 28.7 83.9
Region 9 47.4 359 16.2 86.7
Regions 2,5,10 49.4 1056 16.7 83.2
Regions 1,3,4 51.4 390 26.7 96.2
Regions 11, 12 52.4 57 38.1 80.6

Note: For each cutoff, the sample size is the number of schools in each region facing a unique

cutoff. Source is Chay et al. (2005) replication data.

the size of the subpopulations exposed to each cutoff value is very variable. For example, Regions 11

and 12, which have the same threshold, include only 57 schools combined, while three other regions

have more than 1,000 schools. Because of the small number of observations, we exclude Regions 11

and 12. The effects at all other cutoffs are presented in Figure 7. The RD effects at three cutoffs

values are positive and at least as large as the pooled estimate, and two of those are significantly

different from zero at 5% level. Two effects have negative point estimates, but the small number of

observations prevents us from distinguishing these effects from zero. Thus, according to our analysis,

the effects of the P900 program do not appear to vary systematically by geographic region.

7 Fuzzy Multi-Cutoff RD Designs

All the results presented above can be extended in multiple ways. In this section we briefly discuss

the fuzzy multi-cutoff RD design, where treatment compliance is imperfect. In Section S4 of the

Supplemental Appendix we further extend our work to the case of kink multi-cutoff RD designs, and

discuss connections with RD designs with multiple running variables.

In the fuzzy RD case, some units below the cutoff may receive the treatment and some units

above it may refuse it, leading to a jump in the probability of receiving treatment at the cutoff that

is less than one. Despite the necessary technical modifications, all the conceptual issues discussed

above apply directly to this case. Therefore, for brevity, we only discuss here the interpretation of the

pooled estimand. First, we formalize the idea of imperfect treatment compliance in the multi-cutoff

RD design.
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Figure 7: RD Effects of P-900 Assignment on Language Test Scores
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Assumption 6 (Fuzzy RD) For all c ∈ C:

lim
ε→0+

E[Di|Xi = c+ ε, Ci = c] 6= lim
ε→0+

E[Di|Xi = c− ε, Ci = c].

This assumption is a direct generalization of Assumption 1, and covers as a special case the sharp

RD design. Observe that Di continues to denote whether unit i received treatment or not, but it is

no longer required that this binary indicator take the form Di = 1(Xi ≥ Ci) as in the sharp RD case.

The pooled estimand in the fuzzy RD design is generalized to

τPFRD =
lim
ε→0+

E[Yi|X̃i = ε]− lim
ε→0+

E[Yi|X̃i = −ε]

lim
ε→0+

E[Di|X̃i = ε]− lim
ε→0+

E[Di|X̃i = −ε]
.

The extension to fuzzy designs can be studied using a causal inference framework (Angrist, Imbens

and Rubin, 1996), with a few simple modifications. Let the function D0i(x; c) : (−∞, c)×C → {0, 1}

denote the potential treatment status when unit i faces cutoff c and has a score of x < c. Similarly,

define the function D1i(x; c) : [c,∞)× C → {0, 1} as the potential treatment status for a unit facing

cutoff c and with score x ≥ c. In this case, we assume that the functions Ddi(x; c) are allowed to

depend on x only through their first argument, and our notation emphasizes this fact. The observed
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treatment status in the fuzzy multi-cutoff RD design is

Di = Di(Xi, Ci) = D0i(Xi, Ci)1(Xi < Ci) +D1i(Xi, Ci)1(Xi ≥ Ci).

Define D0i(c) := lim
x→c−

D0i(x, c) and D1i(c) := lim
x→c+

D1i(x, c). Then, for each cutoff c ∈ C, we can

define four subpopulations: local always takers (D1i(c) = D0i(c) = 1), local never takers (D1i(c) =

D0i(c) = 0), local compliers (D1i(c) > D0i(c)) and local defiers (D1i(c) < D0i(c)).

Within this framework, the smoothness condition (Assumption 2 in the sharp multi-cutoff RD

setting) can be adapted as follows.

Assumption 7 (Continuity of Regression Functions) For all c ∈ C:

E[(Y1i(c)− Y0i(c))D1i(x, c)|Xi = x,Ci = c] and E[D1i(x, c)|Xi = x,Ci = c] are right continuous in x

at x = c.

E[(Y1i(c) − Y0i(c))D0i(x, c)|Xi = x,Ci = c] and E[D0i(x, c)|Xi = x,Ci = c] are left continuous in x

at x = c.

Finally, as it is common in the (causal) instrumental variables literature, we rule out local defiers.

Assumption 8 (Monotonicity) For all c ∈ C:

P[D1i(c) ≥ D0i(c)] = 1.

The main identification result for the normalizing-and-pooling approach in the fuzzy multi-cutoff

RD design is summarized in the following lemma.

Lemma 2 (Pooled Fuzzy Multi-Cutoff RD)

If Assumptions 2, 3, 6, 7 and 8 hold, the pooled fuzzy RD causal estimand is

τPFRD =
∑
c∈C

E[Y1i(c)− Y0i(c)|D1i(c) > D0i(c), Xi = c, Ci = c] ωFRD(c)

where

ωFRD(c) =
P[D1i(c) > D0i(c)|Xi = c, Ci = c]fX|C(c|c)P[Ci = c]∑
c∈C P[D1i(c) > D0i(c)|Xi = c, Ci = c]fX|C(c|c)P[Ci = c]

.

This lemma gives an analogue of Lemma 1, and can be interpreted in exactly the same way.

Furthermore, the same ideas and discussion given in Section 4, for sharp multi-cutoff RD designs,
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apply to the fuzzy setting. We do not work through the different assumptions to avoid unnecessary

repetition.

8 Recommendations for Practice

We now outline a few simple recommendations for applied researchers. As a starting point, we

suggest some visual and descriptive diagnostics to explore the density of observations around each

cutoff. If most of the mass in the distribution is near the same cutoff value, then the analyst can

treat the design as equivalent to a single-cutoff RD design, since the heterogeneity is minimal. If,

in contrast, there are many units exposed to different cutoffs, this simple analysis will reveal that

the normalizing-and-pooling approach is combining effects that are heterogeneous in the cutoff value.

For multi-cutoff RD designs based on multi-party elections, the analyst should create a histogram

of the strongest opponent’s vote shares, as we did in Figure 2. If the density of the vote share of

the strongest opponent is more dispersed as in Figure 2(a), then the pooled estimand is potentially

heterogeneous. For other type of multi-cutoff RD designs with discrete cutoff variables, can again

explore the number of units exposed to each of the cutoff values. When potential heterogeneity is

present, the analyst has several options.

First, one could simply pool the estimates and either ignore (i.e., average) the heterogeneity

or, alternatively, assume constant treatment effects. Second, one could acknowledge the presence

of heterogeneity, but leave it unexplored claiming that the main object of interest is the pooled

estimand. Third, one could explore whether the pooled estimate is robust to excluding some of the

observations. For example, in a case that looks like our Brazil incumbency advantage example, one

could split the sample into two subsets: races where the strongest opponent gets 45% or more of the

vote, and the rest. If most of the mass is in the first subset, an interesting question is whether the

pooled estimate is actually close to the estimate that uses only this subset. Since the pooled estimand

is a weighted average, a low mass of observations below the 45% cut point would receive little weight

but an aberrant treatment effect in this range could lead to an “uninformative” pooled effect.

Next, one could test substantive hypotheses about how the heterogeneity is expected to change

from one cutoff to the next, and explore these hypotheses and heterogeneity fully, estimating several

treatment effects along the cutoff variable. For example, one could formally investigate the presence

of monotonic treatment effects along the running variable.
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Finally, an important lesson of our framework is that RD designs with multiple cumulative cutoffs

are very different from settings in which the cutoffs are non-cumulative. Thus, an important practical

step in the analysis and interpretation of the multi-cutoff RD design is to establish whether the cutoff

values are cumulative or non-cumulative, since some ignorability assumptions will be harder to defend

in cumulative multi-cutoff settings.

9 Concluding Remarks

The standard RD design assumes that a treatment is assigned on the basis of whether a score exceeds

a single cutoff. However, in many empirical RD applications the cutoff varies by unit, and researchers

normalize the running variable so that all units face the same cutoff value and a single estimate can

be obtained by pooling all observations. This is a useful approach to summarize the average effect

across cutoffs, but in some cases it is possible to disaggregate the information contained in the pooled

effect and provide a richer description of the underlying heterogeneity in the treatment effect. This

heterogeneity can be important from a policy perspective, as it may capture differential RD treatment

effects for different values of the running variable.

When there are multiple cutoffs, the pooled RD estimand is a weighted average of the average

effects of treatment at every cutoff value, with higher weight given to a particular cutoff value c

when there are many units whose scores are close to c. Our formalization of the pooled estimand as a

weighted average thus shows that the degree of heterogeneity captured by this estimand will vary on a

case-by-case basis depending on the density of the data used in each application. This result continues

to be true for both the fuzzy and kink RD designs with multiple cutoffs. We also discussed different

assumptions that allow for a causal interpretation of the disaggregated RD treatment effects obtained

at different cutoff levels. Importantly, we showed that the plausibility of some of these assumptions

depends on whether the cutoffs are cumulative or non-cumulative. When cutoffs are cumulative, the

cutoff(s) faced by a unit are a deterministic function of the unit’s score value; this means that there is

a lack of common support of the running variable for units exposed to different cutoffs, making cutoff

ignorability assumptions particularly implausible if the running variable is related to the potential

outcomes. Thus, an important step in the analysis of multi-cutoff RD Designs is to determine whether

the cutoffs are cumulative.

We also briefly summarized how estimation and inference can be conducted in the multi-cutoff
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setting, and illustrated these steps in the discussion of three empirical examples. Moreover, in the

Supplemental Appendix we discuss the connections between our multi-cutoff RD framework and RD

designs with multiple scores or running variables. In particular, we show how an RD design with

two running variables can be recast as an RD design with one score and multiple cutoffs, a result

that highlights the connections between geographic RD designs and the multi-cutoff framework we

developed.

Our motivational and empirical examples illustrated the main methodological points of our paper.

In the case of Brazilian municipal elections, a multi-cutoff RD design arises because a substantial

proportion of Brazil mayoral elections are decided far from the 50% cutoff: in this setting, it is

common for the two top parties combined to obtain less than 80% or 70% of the vote. In this

scenario, the heterogeneity underlying the pooled estimand can be substantial. As we show for

the effect of the PSDB winning on its future electoral victory, the pooled estimate is statistically

indistinguishable from zero but using only observations where the vote share obtained by the PSDB’s

strongest opponent is near 49%, this effect becomes negative, large and statistically different from zero.

In our other two empirical examples, the heterogeneity in the cutoff-by-cutoff RD treatment effects

was less pronounced. In particular, our replication of the effects of federal transfers on municipal

corruption in Brazil showed that the effects at each cutoff are relatively similar to the pooled effect.

Our empirical examples also illustrated in practice the differences between cumulative and non-

cumulative multi-cutoff RD designs.

In showing that the weights in the pooled approach combine the effects at different cutoffs in a

particular way, our framework also suggests that researchers may want to choose different weights

relevant to their application. However, as discussed above, the interpretation of this heterogeneity

depends on whether the probability that a unit faces a particular cutoff is related to characteristics

that correlate with the potential effects of the treatment. Indeed, while identifying the estimands

τ(c) = E[Y1i(c)−Y0i(c)|Xi = c, Ci = c] for c ∈ C is straightforward, these estimands do not necessarily

correspond to the more interesting and policy-relevant estimands E[Y1i(c)− Y0i(c)|Xi = c] for c ∈ C

(or, even more difficult, E[Y1i(c) − Y0i(c)|Xi = x] for x 6= c ∈ C). In concurrent work (Cattaneo,

Vazquez-Bare, Keele and Titiunik, 2016), we are investigating different ways to identify the latter

estimands in the context of the multi-cutoff RD Design under conditions that allow units to sort

into the cutoff their are exposed to. This is perhaps the most important extension of our work as
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our current assumptions effectively treat the variable Ci as exogenous, while in many applications

differences in the RD average treatment effect at different values of the cutoff Ci may arise due to

“selection” of different unit types into cutoffs.
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