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Abstract

This paper develops extremum estimation and inference results for nonlinear models with

very general forms of potential identification failure when the source of this identification

failure is known. We examine models that may have a general deficient rank Jacobian in

certain parts of the parameter space, leading to an identified set that is a sub-manifold of

the parameter space. We examine standard extremum estimators and Wald statistics under

a comprehensive class of parameter sequences characterizing the strength of identification of

the model parameters, ranging from non-identification to strong identification. Allowing for

a general singular Jacobian as the limiting point of weak identification allows us to study

estimation and inference in many models to which previous results in the weak identification

literature do not apply. Using the asymptotic results, we propose two hypothesis testing

methods that make use of a standard Wald statistic and data-dependent critical values,

leading to tests with correct asymptotic size regardless of identification strength and good

power properties. Importantly, this allows one to directly conduct uniform inference on low-

dimensional functions of the model parameters, including one-dimensional subvectors. The

paper focuses on three examples of models to illustrate the results: sample selection models,

models of potential outcomes with endogenous treatment and threshold crossing models.

∗The authors are grateful to Donald Andrews, Isaiah Andrews, Xiaohong Chen, Xu Cheng, Yanqin Fan, Bruce
Hansen, Ivana Komunjer, Tassos Magdalinos, Peter Phillips, Eric Renault, Yixiao Sun, Edward Vytlacil and
Tiemen Woutersen for helpful comments. This paper is developed from earlier work by Han (2009). The second
author gratefully acknowledges support from the NSF under grant SES-1357607.

mailto:sukjin.han@austin.utexas.edu
mailto:adam_mccloskey@brown.edu


1 Introduction

Many models estimated by applied economists suffer the problem that, at some points in the

parameter space, the model parameters lose point identification. It is often the case that at

these points of identification failure, the identified set for each parameter is not characterized

by the entire parameter space it lies in but rather a lower-dimensional manifold inside of this

parameter space. Such a scenario is sometimes referred to as “under-identification”, “partial

identification” or simply “non-identification”. The non-identification status of these models is

not straightforwardly characterized in the sense that one cannot say that some parameters are

“completely” unidentified while the others are identified. Instead, it can be characterized by

a non-identification curve that describes the lower-dimensional manifold defining the identified

set. Moreover, in practice the model parameters may be weakly identified in the sense that they

are near the under-identified/partially-identified region of the parameter space relative to the

number of observations and sampling variability present in the data.

This paper develops estimation and inference results for nonlinear models with very general

forms of potential identification failure when the source of this identification failure is known.

We characterize identification failure in this paper as a lack of (global) first-order identification

in that the Jacobian matrix of the model restrictions has deficient column rank at some points in

the parameter space.1 We examine models for which a vector of parameters governs the identifi-

cation status of the model. The contributions of this paper are threefold. First, we characterize

the non-identification curve for a general class of models at points of identification failure and

transform these models to have straightforward identification status. Second, we derive the

limit theory for standard extremum estimators (e.g., GMM, maximum likelihood and classical

minimum distance) and Wald statistics for these models under a comprehensive class of iden-

tification strengths including non-identification, weak identification and strong identification.

We find that the asymptotic distributions derived under certain sequences of data-generating

processes (DGPs) indexed by the sample size provide much better approximations to the finite

sample distributions of these objects than those derived under the standard limit theory that

assumes strong identification. Third, we use the limit theory derived under weak identification

DGP sequences to construct data-dependent critical values (CVs) for Wald statistics that yield

(uniformly) correct asymptotic size and good power properties. Importantly, our robust infer-

ence procedures allow one to directly conduct hypothesis tests for low-dimensional functions of

the model parameters, including one-dimesnional subvectors, that are uniformly valid regardless

of identification strength.

1See Rothenberg (1971) for a discussion of local vs. global identification and Sargan (1983) for a discussion of
first vs. higher-order (local) identification.
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A substantial portion of the recent econometrics literature has been devoted to estimation

and inference that is robust to the identification strength of the parameters in an underlying

economic or statistical model. Earlier papers in this line of research focused upon the linear

instrumental variables model, the behavior of standard estimators and inference procedures un-

der weak identification of this model (e.g., Staiger and Stock, 1997), and the development of

new inference procedures robust to the strength of identification in this model (e.g., Kleibergen,

2002 and Moreira, 2003). More recently, focus has shifted to nonlinear models, such as those de-

fined through moment restrictions. In this more general setting, there have similarly been many

attempts to characterize the behavior of standard estimators and inference procedures under

weak identification (e.g., Stock and Wright, 2000) and to develop robust inference procedures

(e.g., Kleibergen, 2005). Most papers in this literature, such as Stock and Wright (2000) and

Kleibergen (2005), have focused upon special cases of identification failure and weak identifi-

cation by explicitly specifying how the Jacobian matrix of the underlying model could become

(nearly) singular. For example, Kleibergen (2005) focused on a zero rank Jacobian as the point

of identification failure in moment condition models. In this case, the identified set becomes

the entire parameter space at points of identification failure. The recent works of Andrews and

Cheng (2012a, 2013, 2014) implicitly focus on models for which the Jacobian of the model re-

strictions has columns of zeros at points of identification failure. For these types of models, some

parameters become “completely” unidentified (those corresponding to the zero columns) while

others remain strongly identified. In this paper, we do not specify the form of singularity in the

Jacobian at the point of identification failure. This complicates the analysis but allows us to

cover many more economic models used in practice such as sample selection models, treatment

effect models with endogenous treatment, mixed proportional hazards models and higher-order

ARMA models. Indeed, this feature of a singular Jacobian without zero columns at points of

identification failure is typical of, but not limited to, many nonlinear instrumental variables

models.

Only very recently have researchers begun to develop inference procedures that are robust

to completely general forms of (near) rank-deficiency in the Jacobian matrix. See Andrews and

Mikusheva (2013) in the context of classical minimum distance (CMD) estimation and Andrews

and Guggenberger (2014) and Andrews and Mikusheva (2014) in the context of moment con-

dition models. Andrews and Mikusheva (2013) provide methods to directly perform uniformly

valid subvector inference while Andrews and Guggenberger (2014) and Andrews and Mikusheva

(2014) do not.2 Unlike these papers, but like Andrews and Cheng (2012a, 2013, 2014), we focus

2Andrews and Mikusheva (2014) provide a method of “concentrating out” strongly identified nuisance param-
eters for subvector inference when all potentially weakly identified parameters are included in the subvector. One
may also “indirectly” perform subvector inference using the methods of either Andrews and Guggenberger (2014)
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explicitly on models for which the source of identification failure (a finite-dimensional parame-

ter) is known to the researcher. This enables us to directly conduct subvector inference in a large

class of models that is not nested in the setup of Andrews and Mikusheva (2013). Also unlike

these papers, but like Andrews and Cheng (2012a, 2013, 2014), we derive nonstandard limit

theory for standard estimators and test statistics. This nonstandard limit theory sheds light on

how (badly) the standard Gaussian and chi-squared distributional approximations can fail in

practice. For example, one interesting feature of the models studied here is that the asymptotic

size of standard Wald tests for the full parameter vector is equal to one no matter the nominal

level of the test. This feature emerges from observing that the Wald statistic diverges to infinity

under certain DGP sequences admissible under the null hypothesis.

Aside from those already mentioned, there are many papers in the literature that have studied

various types of under-identification in various models. For example, Sargan (1983) studied re-

gression models that are nonlinear in parameters and first-order locally under-identified. Phillips

(1989) studied under-identified simultaneous equations models and spurious time series regres-

sions. Arellano et al. (2012) proposed a way to test for under-identification in a GMM context.

Qu and Tkachenko (2012) study under-identification in the context of dynamic stochastic general

equilibrium models. Escanciano and Zhu (2013) studied under-identification in a class of semi-

parametric models.3 Dovonon and Renault (2013) uncovered an interesting result that, when

testing for common sources of conditional heteroskedasticity in a vector of time series, there is a

loss of first-order identification under the null hypothesis while the model remains second-order

identified. Although all of these papers study under-identification of various forms, none of them

deal with the empirically relevant potential for near or local to under-identification, one of the

main focuses of the present paper.

In order to derive our asymptotic results under a comprehensive class of identification

strengths, we begin by examining a transformed extremum estimation problem that falls under

the framework of Andrews and Cheng (2012a) (AC12 hereafter). More specifically, we “profile

out” (i.e., minimize with respect to) a subvector of the parameters of interest and look at a

concentrated objective function. The profiling yields a random vector-valued function that can

be used to estimate the non-identification curve at points of identification failure. The concen-

trated objective function is a function of a subvector of the model parameters that we show

satisfies the crucial assumption of AC12: at points of identification failure, the concentrated ob-

jective function does not depend upon the unidentified parameters.4 Hence, we use the results

or Andrews and Mikusheva (2014) by using a projection or Bonferroni bound-based approach but these methods
are known to often suffer from severe power loss.

3Both Qu and Tkachenko (2012) and Escanciano and Zhu (2013) use the phrase “conditional identification”
to refer to “under-identification” as we use it here.

4This corresponds to Assumption A of AC12.
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of AC12 to find the limit theory for a subvector of the model parameter estimates. The pro-

filed/concentrated objective function approach we use is related to but distinct from approaches

found in Sargan (1983) and Escanciano and Zhu (2013), who study different forms of (local)

identification failure.

We subsequently derive the limit theory for the entire vector of model parameters by es-

tablishing convergence results for the remaining parameter estimators. These latter estimators

are equal to a random function of the subvector estimators, where the random function comes

from the profiling step. To obtain a full asymptotic characterization of the full vector parameter

estimator, we rotate the estimator in different directions of the parameter space. The estimator

converges at different rates in different directions of the parameter space when identification is

not strong, with some directions leading to a standard parametric rate of convergence and oth-

ers leading to slower rates. Under weak identification, some directions of the weakly identified

part of the parameter are not consistently estimable, leading to inconsistency in the parameter

estimator that is reflected in finite sample simulation results and our derived asymptotic approx-

imations. The rotation technique we use in our asymptotic derivations has many antecedents

in the literature. For example, Sargan (1983) and Phillips (1989) used similar rotations to de-

rive limit theory for estimators under identification failure; Antoine and Renault (2009, 2012)

used similar rotations to derive limit theory for estimators under “nearly-weak” identification;5

Andrews and Cheng (2014) used similar rotations to find the asymptotic distributions of Wald

statistics under weak and nearly-strong identification; and recently Phillips (2015) used similar

rotations to find limit theory for regression estimators in the presence of near-multicollinearity

in regressors.

Using the limit theory for the parameter estimators, we derive the asymptotic distributions of

standard Wald statistics for general (possibly nonlinear) hypotheses under a comprehensive class

of identification strengths. The nonstandard nature of these limit distributions implies that using

standard quantiles from chi-squared distributions as CVs leads to asymptotic size-distortions.

Finally, we provide two data-driven methods to construct CVs for standard Wald statistics that

lead to tests with correct asymptotic size, regardless of identification strength. The first is a

direct analog of the Type 1 Robust CVs of AC12. The second is a modified version of the

adjusted-Bonferroni CVs of McCloskey (2012), where the modifications are designed to ease the

computation of the CVs in the current setting of this paper. The former CV construction method

is simpler to compute while the latter yields better finite-sample size and power properties.

The paper is organized as follows. In the next section, we introduce the general class of

models under study and provide three examples of models in this class. Section 3 considers

5In this paper, we follow AC12 and describe such parameter sequences as “nearly-strong”.
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identification and the lack of identification, presenting the non-identification curve and the

associated identified set. Based on this curve, Section 4 introduces a transformation of the

parameter space and presents a result that is useful for calculating the limit distributions later

derived in Sections 8 and 9. Section 5 defines criterion functions of the extremum estimators we

examine and shows that a transformed criterion function satisfies a desirable property that is

crucial in the subsequent asymptotic theory. Section 6 discusses three examples in more detail.

The asymptotic theory for the parameter estimators under various strengths of identification

is given in Sections 7–8 and for Wald Statistics in Section 9. We describe how to perform

uniformly robust inference in Section 10. Section 11 contains further details for a threshold

crossing model of a triangular system, including Monte Carlo simulations demonstrating how

well the nonstandard limit distributions derived in Sections 7–9 approximate their finite-sample

counterparts. Proofs of the main results of the paper are provided in Appendix A, while figures

are collected at the end of the document.

Notationally, we let λmin(A) and λmax(A) denote the smallest and largest eigenvalues of a

generic matrix A and dB denote the dimension of a generic vector B. All vectors in the paper

are column vectors. However, to simplify notation, we occasionally abuse it by writing (c, d)

instead of (c′, d′)′ and for a function f(a) with a = (c, d), we write f(c, d) rather than f(a).

2 Class of Models

Suppose that an economic model implies a relationship among the components of a finite-

dimensional parameter θ̃:

0 = g̃(θ̃; γ∗) ≡ g̃∗(θ̃) ∈ Rdg̃ (2.1)

when θ̃ = θ̃∗. The function describing this relationship g̃ may depend on the true underlying

value γ∗ ≡ (θ̃∗, φ̃∗) of parameter γ ≡ (θ̃, φ̃), i.e., the true underlying DGP, and thus moment

conditions may be involved in defining this relationship. The parameter φ̃ captures the part

of the distribution of the observed data that is not determined by θ̃, which is typically infinite

dimensional (AC12). An important special case of (2.1) occurs when g̃ relates a “structural

parameter” θ̃ to a reduced-form parameter δ and depends on γ∗ only through the true value δ∗

of δ:

0 = δ∗ − g̃(θ̃) ∈ Rdδ (2.2)

when θ̃ = θ̃∗.

Oftentimes, econometric models imply a natural decomposition of θ̃: θ̃ = (β, ζ, π̃), where

the parameter β determines the “identification status” of π̃. That is, when β 6= β̄ for some β̄, π̃
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is identified; when β = β̄, π̃ is under-identified; and when β is “close” to β̄ relative to sampling

variability, then π̃ is local-to-underidentified. The identification status of the parameter ζ is not

affected by the value of β. For convenience and without loss of generality, we us the normalization

β̄ = 0. In this paper, we characterize identification via the Jacobian of the model restrictions:

J∗(θ̃) ≡ ∂g̃∗(θ̃)

∂θ̃
. (2.3)

When β = 0, J∗(θ̃) will have deficient rank. Although our results cover cases for which J∗(θ̃)

has columns of zeros when β = 0, these cases are not of primary interest for this paper as they

are already covered by the analysis of AC12. Rather, we focus on models for which the column

rank of J∗(θ̃) lies strictly between dβ + dζ and d
θ̃

when β = 0 and this rank-deficiency is not

the consequence of zero columns.6

We present three examples that have a deficient rank Jacobian (2.3) with nonzero columns

when β = 0. The first two examples fall into the framework of (2.1) and the third into (2.2):

Example 2.1 (Sample selection models).

Yi = X ′iπ
1 + εi, Di = 1[ζ + Z ′1iβ ≥ νi],

(εi, νi)
′ ∼ Fεν(ε, ν;π),

where Xi ≡ (1, X ′1i)
′ is k×1 and Zi ≡ (1, Z ′1i)

′ is l×1. Note that Zi can include (components of)

Xi.
7 We observe (DiYi, Di, Xi, Zi) and Fεν(·, ·;π) is a parametric distribution of the unobserv-

able variables (ε, ν) parameterized by scalar π. The mean and variance of each unobservable is

normalized to be zero and one, respectively. Let Wi ≡ (Yi, Xi, Zi). Then we have, when θ̃ = θ̃∗,

0 =g̃∗(θ̃) = Eγ∗ϕ(Wi, θ̃), (2.4)

where θ̃ ≡ (β, ζ, π1, π) and the moment function is

ϕ(w, θ̃) =

 d

[
x

λ̃(ζ + z′1β;π)

] [
y − x′π1 − λ̃(ζ + z′1β;π)

]
λ̃(ζ + z′1β;π)F−1

ν (−ζ − z′1β) [d− Fν(ζ + z′1β)] z

 ,
with λ̃(·;π) being a known function. When Fεν(ε, ν;π) is a bivariate standard normal distribution

6Recall that β and ζ are always identified so that rank(J∗(θ̃)) ≥ dβ + dζ for all θ̃.
7In this example and in Example 2.2, we can alternatively design the linear index for the D equation to be

X ′iζ + Z′1iβ so that β is the coefficient on the excluded instruments, where dβ is smaller than the current design.
To keep the analysis simple, however, we maintain the current one.
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with the correlation coefficient π, we have λ̃(·;π) = πλ(·) where λ(·) = φ(·)/Φ(·) is the inverse

Mill’s ratio with the standard normal density and distribution functions φ(·) and Φ(·), and

Fν(·) = Φ(·). �

Example 2.2 (Models of potential outcomes with endogenous treatment).

Y1i = X ′iπ
1
1 + ε1i,

Y0i = X ′iπ
1
2 + ε0i,

Di = 1[ζ + Z ′1iβ ≥ νi],

Yi = DiY1i + (1−Di)Y0i,

(ε1i, ε0i, νi)
′ ∼ Fε1,ε0,ν(ε1, ε0, ν;π),

where Fε1,ε0,ν(·, ·, ·;π) is a parametric distribution of the unobserved variables (ε1, ε0, ν) param-

eterized by vector π. We observe (Yi, Di, Xi, Zi). The Roy model (Heckman and Honore, 1990)

is a special case of this model of regime switching. This model extends the model in Example

2.1, but is similar in the aspects that this paper focuses upon. �

Example 2.3 (Threshold crossing models with a dummy endogenous variable).

Yi = 1[π1
1 + π2Di − εi ≥ 0]

Di = 1[ζ + βZi − νi ≥ 0]
, (εi, νi)

′ ∼ Fεν(εi, vi;π).

where Zi ∈ {0, 1}. We observe (Yi, Di, Zi). The model can be generalized by including common

exogenous covariates Xi in both equations and allowing the instrument Zi to take more than

two values. We focus on this stylized version of the model in this paper only for simplicity.

With Fεν(ε, ν;π) = Φ(ε, ν;π), a bivariate standard normal distribution, the model becomes the

usual bivariate probit model. A more general model with Fεν(ε, ν;π) = C(Fε(ε), Fν(ν);π), for

C(·, ·;π) in a class of single parameter copulas, is considered in Han and Vytlacil (2015), whose

generality we follow here. Normalize Fv and Fε to be uniform distributions for simplicity and

let π1
2 ≡ π1

1 + π2. By Han and Vytlacil (2015), the non-redundant fitted probabilities are

p11,0 = C(π1
2, ζ;π),

p11,1 = C(π1
2, ζ + β;π),

p10,0 = π1
1 − C(π1

1, ζ;π),

p10,1 = π1
1 − C(π1

1, ζ + β;π),

p01,0 = ζ − C(π1
2, ζ;π),

p01,1 = ζ + β − C(π1
2, ζ + β;π),
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where pyd,z ≡ Pr[Y = y,D = d|Z = z]. Then we have, when θ̃ = θ̃∗,

0 = δ∗ − g̃(θ̃) =



p11,0

p11,1

p10,0

p10,1

p01,0

p01,1


−



C(π1
2, ζ;π)

C(π1
2, ζ + β;π)

π1
1 − C(π1

1, ζ;π)

π1
1 − C(π1

1, ζ + β;π)

ζ − C(π1
2, ζ;π)

ζ + β − C(π1
2, ζ + β;π)


, (2.5)

where δ∗ and g̃(θ̃) are defined implicitly with θ̃ ≡ (β, ζ, π1, π) and π ≡ (π1
1, π

1
2). �

In Example 2.1, with λ(·) being the inverse Mill’s ratio, the Jacobian matrix (2.3) satisfies

J∗(θ̃) = Eγ∗

 −π2DiXiλ1iZ
′
i −DiλiXi −DiXiX

′
i

DiYiλ1iZ
′
i −DiX

′
iπ1λ1iZ

′
i − 2π2Diλiλ1iZ

′
i −Diλ

2
i −DiλiX

′
i

Li(β, ζ)ZiZ
′
i 0l×1 0l×k

 ,
where λi ≡ λ(ζ + Z ′1iβ), λ1i ≡ dλ(x)/dx|x=ζ+Z′1iβ

,

Li(β, ζ) ≡ {λ1i(Di − Φi)− λiφi} (1− Φi) + λiφi(Di − Φi)

(1− Φi)2
,

Φi ≡ Φ(ζ + Z ′1iβ) and φi ≡ φ(ζ + Z ′1iβ). Note that dβ + dζ < rank(J∗(θ̃)) < d
θ̃

when β = 0,

since λi becomes a constant and Xi = (1, X ′1i)
′. This rank-deficient Jacobian with non-zero

columns when β = 0 poses several challenges that make the existing asymptotic theory in the

literature that considers a Jacobian with zero columns when β = 0 inapplicable here: (i) since

none of the columns of J∗(θ̃) are equal to zero, it is not immediately clear which components of

the π̃ parameter are (un-)identified; (ii) key assumptions in the literature, such as Assumption

A in AC12, do not hold; (iii) typically, g̃∗(θ̃) or J∗(θ̃) is highly nonlinear in β. In what follows,

we develop a framework to tackle these challenges and to obtain local asymptotic theory and

uniform inference procedures.

3 Identification and Lack of Identification

In this section, through the discussions of identification and the lack of identification we formalize

the class of problems we are interested in, and introduce the non-identification curve which

may be of independent interest and is useful for subsequent analysis. Recall γ ≡ (θ̃, φ̃) with
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θ̃ ≡ (β, ζ, π̃). Let Γ and Θ̃ be the parameter spaces of γ and θ̃, respectively. Let γ0 ≡ (θ̃0, φ̃0)

and θ̃0 ≡ (β0, ζ0, π̃0). Later we define a sequence of parameters γn that converges to γ0. Let

g̃0(θ̃) ≡ g̃(θ̃; γ0). We begin by assuming a mild regularity condition.

Assumption Reg1. g̃0 : Θ̃→ Rdg̃ is continuously differentiable in θ̃ ∀γ0 ∈ Γ.

The following assumption describes the lack of identification when β = 0.

Assumption ID1. When β = 0, rank
(
∂g̃0(θ̃)/∂π̃

)
= r < dπ̃ ∀θ̃ = (0, ζ, π̃) ∈ Θ̃ ∀γ0 ∈ Γ,

where π̃ is the smallest subvector of θ̃ such that dπ̃ − rank(∂g̃0(θ̃)/∂π̃) = d
θ̃
− rank(∂g̃0(θ̃)/∂θ̃).

By allowing r > 0, Assumption ID1 presents the key aspect of the problem of this paper:

a general form of deficient rank Jacobian. This condition yields the lack of identification of π̃

in the sense of the lack of first-order identification detailed by Sargan (1983). This concept is

also used in relating the lack of identification with a criterion function in estimation; see, e.g.,

Theorem FSTrans below.

When β = 0, the identified set for π̃ is not necessarily equal to its entire parameter space.

Rather, π̃ is under-identified. Specifically, π̃ is partially identified with an identified set that is a

lower-dimensional manifold within the parameter space for π̃. This identified set is characterized

below by a non-identification curve. In the special case of zero rank ∂g̃0(θ̃)/∂π̃, this manifold

shapes a linear subspace (or location shift of it). In general, however, this is not the case. This

feature of the problem motivates us to proceed as follows.

Lemma ID1. Assumption ID1 implies that there exist r-dimensional subvectors π1 ∈ Π1 of π̃ =

(π, π1) and g1
0 of g̃0 = (g1′

0 , g
0′
0 )′ such that when β = 0, rank(∂g1

0(θ̃)/∂π1) = r ∀θ̃ = (0, ζ, π̃) ∈ Θ̃

∀γ0 ∈ Γ.

The subvector π1 of π̃ in this lemma is not necessarily uniquely determined, but only its

existence is necessary for the subsequent analysis. The next two assumptions are regularity

conditions that are related to the global inversion of g̃0 at β = 0.

Assumption Reg2. When β = 0, the function g̃0(β, ζ, π, ·) from Π1 to Rdg̃ is proper ∀(0, ζ, π)

∀γ0 ∈ Γ.

Under Assumption Reg1, a sufficient condition for Assumption Reg2 to hold is that Π1 is

bounded.

Assumption Reg3. When β = 0, g̃0(β, ζ, π,Π1) is simply connected ∀(0, ζ, π) ∀γ0 ∈ Γ.

For the remainder of this section, we suppose r 6= 0. Define Θ0 ≡
{

(0, ζ, π) : θ̃ ∈ Θ̃
}

. The

following lemma defines the non-identification curve as a solution to a subvector of the vector

of equations (2.1) at β = 0.
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Lemma ID2. Suppose r 6= 0. Under Assumptions ID1 and Reg1–Reg3, there exists a unique

solution π1 = h1
0(ζ, π) ≡ h1(ζ, π; γ0) such that

g1
0

(
0, ζ, π, h1

0(ζ, π)
)

= 0 (3.1)

∀(0, ζ, π) ∈ Θ0 ∀γ0 ∈ Γ.

When β0 = 0, the non-identification curve h1
0(ζ, π) defines the identified set for θ̃ by a curve

(i.e., a lower dimensional manifold) in Θ̃ that depends on the true DGP, which can be denoted

as Θ̃0(γ0) ≡
{

(0, ζ0, π̃) ∈ Θ̃ : π1 = h1
0(ζ0, π)

}
.

4 Transformation

For a given π1 such that π̃ ≡ (π, π1), define θ ≡ (β, ζ, π) so that θ̃ ≡ (β, ζ, π, π1) ≡ (θ, π1) ∈ Θ̃.

Without loss of generality, Θ̃ can be written as

Θ̃ = {θ̃ = (θ, π1) : θ ∈ Θ, π1 ∈ Π1(θ)},

where

Θ = {θ : there is some π1 such that (θ, π1) ∈ Θ̃},

Π1(θ) = {π1 : (θ, π1) ∈ Θ̃} for θ ∈ Θ.

Finally, define

Π = {π : there are some β, ζ, π1 such that (β, ζ, π, π1) ∈ Θ̃}.

In order to transform the function g̃0(θ̃) to a function defined on Θ, we “extend” the non-

identification curve h1
0(ζ, π) to a function on Θ (which is a superset of Θ0). We show that such a

function can be defined as a concentrated true parameter value that solves a profiled optimization

problem. We are ultimately interested in an estimator of θ̃ that minimizes a sample criterion

function Q̃n(θ̃) but we first study the population criterion function Q̃0(θ̃) ≡ Q̃(θ̃; γ0) to which

Q̃n(θ̃) converges.8

Assumption CF1. For some nonstochastic real-valued function Q̃0(θ̃) on Θ̃× Γ, the solution

θ̃0 to Q̃0(θ̃0) = inf
θ̃∈Θ̃

Q̃0(θ̃) exists and is unique ∀γ0 ∈ Γ.

The next assumption defines the class of criterion functions we consider in this paper.

8See Assumption FSCF2 for a formal expression.
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Assumption CF2. Q̃0(θ̃) can be written as

Q̃0(θ̃) = Ψ̃0(g̃0(θ̃))

for some deterministic function Ψ̃0(·) ≡ Ψ̃(·; γ0) that is twice continuously differentiable such

that Ψ̃g̃g̃,0 ≡ ∂2Ψ̃0
∂g̃∂g̃′ is positive definite ∀γ0 ∈ Γ.

Assumption CF2 is naturally satisfied when we construct GMM/CMD or maximum likeli-

hood (ML) criterion functions, given (2.1) or (2.2). Note that models that generate likelihoods

or minimum distance structures typically involve g̃0(θ̃) = δ0 − g̃(θ̃) by (2.2). For a GMM/CMD

criterion function, Ψ̃0(g̃0(θ̃)) =
∥∥∥W0

(
g̃0(θ̃)

)∥∥∥2
where W0 is a weight matrix.9 For a ML criterion

function, Ψ̃0(g̃0(θ̃)) = −Eγ0 ln f †
(
Wi, δ0 − g̃(θ̃)

)
if the distribution of the data depends on θ̃

only through δ (Rothenberg, 1971). That is, there exists a function f †(w; δ) such that

f(w; θ̃) = f †(w; g̃(θ̃)) = f †(w; δ). (4.1)

The positive definiteness of Ψ̃g̃g̃,0 can be ensured by the usual assumption that the weight matrix

W0 = Ψ̃g̃g̃,0 is positive definite in the GMM/CMD case and by the fact that the information

matrix with respect to the reduced-form parameter δ, Eγ0
∂2 ln f†

∂δ∂δ′ , is always non-singular in the

ML case.

Remark 4.1. Given the existence of f †(w; δ) in the ML framework, the setting of this paper

can be characterized in terms of the information matrix. Let I(θ̃) be the d
θ̃
× d

θ̃
information

matrix

I(θ̃) ≡ E
[
∂ log f

∂θ̃

∂ log f

∂θ̃′

]
.

Then, the general form of singularity of the Jacobian (0 ≤ rank(∂g̃(θ̃0)/∂θ̃) < d
θ̃
) can be

characterized as the general form of singularity of the information matrix (0 ≤ rank(I(θ̃0)) <

d
θ̃
), since

∂ log f(w; θ̃)

∂θ̃
=
∂ log f †(w; g̃(θ̃))

∂ζ̃ ′

∂g̃(θ̃)

∂θ̃

and I†(ζ̃) ≡ E
(
∂ log f †/∂ζ̃

)(
∂ log f †/∂ζ̃ ′

)
has full rank.

Assumption CF3. For any θ ∈ Θ, the solution π1
0(θ) to Q̃0(θ, π1

0(θ)) = infπ1∈Π1(θ) Q̃0(θ, π1)

exists and is unique and π1
0(θ) ∈ int(Π1(θ)) ∀γ0 ∈ Γ.

9Note that Assumption CF2 does not cover GMM with a continuously updating weight matrix W0(θ̃) ≡
W (θ̃; γ0).
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This assumption holds if the population criterion function is well-behaved and the optimiza-

tion parameter space is chosen to be “large enough”.

Define

g0(θ) ≡ g(θ; γ0) ≡ g̃(θ, π1
0(θ); γ0) (4.2)

and

Q0(θ) ≡ Q̃0(θ, π1
0(θ)) = Ψ̃0(g0(θ)).

Based on the analysis of the previous section, we show that the transformed model 0 = g0(θ)

satisfies a useful property.

When β = 0, Lemma ID1 implies that there exists some (dg̃ − r)× r matrix M , such that

∂g0
0(θ̃)

∂π̃
= M

∂g1
0(θ̃)

∂π̃
(4.3)

∀θ̃ = (0, ζ, π̃).

Assumption ID2. The matrix M in (4.3) is only a function of (β, ζ) and not a function of π̃,

which is denoted as M(β, ζ; γ0).

This assumption holds for all the examples considered in this paper.

Our goal is now to transform the extremum estimation problem into one for which the

criterion function does not depend upon the non-identified parameter when β = 0. The partition

π̃ = (π, π1) and the function h1
0 enable us to do so. More specifically, the following theorem

shows “to what extent” π̃ is identified when β = 0: conditional on knowing π, the parameters

are identified. Note that (β, ζ) are always identified by assumption.

Theorem Trans. Suppose Assumptions ID1–ID2, Reg1–Reg3 and CF1–CF3 hold. When β0 =

0, π1
0(0, ζ0, π) = h1

0(ζ0, π) and g0(0, ζ0, π) = 0 ∀π ∈ Π such that (0, ζ0, π) ∈ Θ ∀γ0 ∈ Γ.

Since h1
0 can be obtained from inverting g1

0 by Lemma ID2, the result of Theorem Trans can

be useful for calculating the limit distributions of the estimators, which involve π1
0(·), in Section

7. See Section 11.1 for an example of how this result can be used in practice.

Since g0(0, ζ0, π) = 0 for all π ∈ Π such that (0, ζ0, π) ∈ Θ, it is not a function of π over the

relevant parameter space. This result is reminiscent of Assumption GMM1(iii) (or GMM3(ii))

of Andrews and Cheng (2014) but for the transformed model defined by g0(θ) rather than the

original g̃0(θ̃), although the result is not restricted to the GMM setting. Note that in terms of

12



θ in the transformed model, the identified set when β0 = 0 becomes a (location shifted) simple

linear subspace of Θ, where π is entirely unidentified.

5 Criterion Functions

In this section, we define the original and transformed criterion functions and relevant estimators.

We then establish a sample counterpart to Theorem Trans of the previous section.

We define the extremum estimator
̂̃
θn as the minimizer of the criterion function Q̃n(θ̃) over

the optimization parameter space Θ̃:

̂̃
θn ∈ Θ̃ and Q̃n(

̂̃
θn) = inf

θ̃∈Θ̃
Q̃n(θ̃) + o(n−1). (5.1)

The function Q̃n(θ̃) depends on the observations {Wi : i ≤ n}. Consider the following profiled

extremum estimation, which defines the concentrated estimator π̂1
n(θ):

Q̃n(θ, π̂1
n(θ)) = inf

π1∈Π1(θ)
Q̃n(θ, π1) + o(n−1). (5.2)

This gives us the concentrated criterion function, which naturally defines the transformed cri-

terion function analogous to the tranformation introduced in the previous section:

Qn(θ) ≡ Q̃n(θ, π̂1
n(θ)). (5.3)

Now we define the estimator θ̂n of θ as

Qn(θ̂n) = inf
θ∈Θ

Qn(θ) + o(n−1). (5.4)

We assume that
̂̃
θn = (θ̂n, π̂

1
n) can be written as (θ̂n, π̂

1
n(θ̂n)), where π̂1

n(·) and θ̂n are defined in

(5.3) and (5.4).

Define the sample counterpart of g0(θ) as

ḡ(θ) ≡ ¯̃g(θ, π̂1
n(θ))

where ¯̃g(θ̃) is the sample counterpart of g̃0(θ̃). In the case of CMD and ML, ¯̃g(θ̃) = δ̂n − g̃(θ̃)

analogous to (2.2). For GMM, ¯̃g(θ̃) = n−1
∑n

i=1 ϕ(Wi, θ̃). We list assumptions on the sample

objects that are analogous to the assumptions on the population objects, Assumptions Reg1,

ID1, CF2 and CF3.
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Assumption FSReg1. ¯̃g : Θ̃→ Rdg̃ is continuously differentiable in θ̃.

Assumption FSID1. When β = 0, rank
(
∂¯̃g(θ̃)/∂π̃

)
= r < dπ̃ ∀θ̃ = (0, ζ, π̃) ∈ Θ̃, where π̃ is

the smallest subvector of θ̃ such that dπ̃ − rank(∂¯̃g(θ̃)/∂π̃) = d
θ̃
− rank(∂¯̃g(θ̃)/∂θ̃).

The proof of the following Corollary to Lemma ID1 is nearly identical to the proof for that

lemma and is therefore omitted.

Corollary FSID. Assumption FSID1 implies that there exist r-dimensional subvectors π1 ∈
Π1 of π̃ = (π, π1) and ḡ1 of ¯̃g = (ḡ1′, ḡ0′)′ such that when β = 0, rank(∂ḡ1(θ̃)/∂π1) = r

∀θ̃ = (0, ζ, π̃) ∈ Θ̃.

Assumption FSCF1. Q̃n(θ̃) can be written as

Q̃n(θ̃) = Ψn(¯̃gn(θ̃))

for some random function Ψn(·) that is twice continuously differentiable such that Ψn,g̃g̃ ≡ ∂2Ψn
∂g̃∂g̃′

is positive definite.

Assumption FSReg2. For any θ ∈ Θ, π̂1
n(θ) in (5.2) satisfies ∂Q̃n(θ, π̂1

n(θ))/∂π1 = 0.

For a GMM/CMD criterion function, Ψn(¯̃g(θ̃)) =
∥∥∥Wn

¯̃g(θ̃)
∥∥∥2

where Wn is a (possibly ran-

dom) weight matrix; for a ML criterion function, Ψn(¯̃g(θ̃)) = − 1
n

∑n
i=1 ln f †

(
Wi, δ̂n − g̃(θ̃)

)
.

Defining ḡ(θ) ≡ ¯̃g(θ, π̂1
n(θ)), note that Qn(θ) = Ψn(¯̃g(θ, π̂1

n(θ))) = Ψn(ḡ(θ)).

When r > 0, the original criterion function depends on π̃ when β = 0. Only when r = 0 is

Q̃n(0, ζ, π̃) a constant function of π̃. Under the new set of parameters θ = (β, ζ, π), however, we

show that the transformed criterion function does not depend on π when β = 0.

Theorem FSTrans. Under Assumptions FSID1, FSReg1–FSReg2 and FSCF1, for all β = 0,

Qn(θ) does not depend upon π.

This theorem is reminiscent of Assumption A in AC12. In sum, after transforming the

problem, among the components of θ = (β, ζ, π), β determines the identification status of θ, ζ

is a parameter whose identification is not affected by the value of β, and π is a parameter which

is not identified and does not appear in the criterion function when β = 0. This transformation

facilitates our analysis in two ways: (i) it distinguishes the parameters that are strongly identified

from the parameters that are weakly identified when β is close to zero; (ii) it yields criterion

functions that do not depend (in a generalized sense) on the unidentified parameters when β = 0.
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6 Examples

6.1 Sample selection models and models of potential outcomes

Since Examples 2.1 and 2.2 share similar features, we focus our attention on Example 2.1. Let

π̃ = (π, π1) in that model. Given g̃0(θ̃) defined by (2.4) with a bivariate standard normal

distribution, the part of the Jacobian relevant to our discussions in Sections 3–5 is

∂g̃0(θ̃)

∂π̃
= −Eγ0

 DiλiXi DiXiX
′
i

Diλ
2
i DiλiX

′
i

0l×1 0l×k

 .
When β = 0, we have rank(∂g̃0(θ̃)/∂π̃) = dπ̃ − 1 = r = k since

∂g̃0(0, ζ, π̃)

∂π̃
= −Eγ0

 λ(ζ)DiXi DiXiX
′
i

λ2(ζ)Di λ(ζ)DiX
′
i

0l×1 0l×k

 ,
and the (k + 1)-th row is a scalar multiple of the first row since Xi = (1, X ′1i)

′. Given

g1
0(θ̃) = Eγ0

[
DiXiYi −DiXiX

′
iπ

1 − πDiλiXi

]
when β = 0, note that 0 = g1

0(0, ζ, π̃) is equivalent to

0k×1 = Eγ0
[
DiXiYi −DiXiX

′
iπ

1 − πλ(ζ)DiXi

]
≡ Q0,DXY −Q0,DXXπ1 − λ(ζ)πQ0,DX ,

where Q0,DXY , Q0,DXX , and Q0,DX are implicitly defined. Observe that the result of Lemma

ID1 holds. Also when β = 0, M∂g1
0(0, ζ, π̃)/∂π̃ = ∂g0

0(0, ζ, π̃)/∂π̃ with M being a (l + 1) × k
zero matrix but with the (1, 1) element replaced λ(ζ). In this example, the function h1

0 has a

closed form solution:

h1
0(ζ, π) = Q−1

0,DXX (Q0,DXY − λ(ζ)πQ0,DX) .
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6.2 Threshold crossing models with a dummy endogenous variable

We now continue to discuss Example 2.3. Let π̃ = (π, π1
1, π

1
2). Given g̃0(θ̃) = δ0 − g̃(θ̃) from the

expression in (2.5), the relevant Jacobian is

∂g̃0(θ̃)

∂π̃
= −∂g̃(θ̃)

∂π̃
= −



C3

(
π1
2 , ζ;π

)
0 C1

(
π1
2 , ζ;π

)
C3

(
π1
2 , ζ + β;π

)
0 C1

(
π1
2 , ζ + β;π

)
−C3

(
π1
1 , ζ;π

)
1− C1

(
π1
1 , ζ;π

)
0

−C3

(
π1
1 , ζ + β;π

)
1− C1

(
π1
1 , ζ + β;π

)
0

−C3

(
π1
2 , ζ;π

)
0 −C1

(
π1
2 , ζ;π

)
−C3

(
π1
2 , ζ + β;π

)
0 −C1

(
π1
2 , ζ + β;π

)



,

where C1(·, ·;π) and C3(·, ·;π) denote the derivatives of C(·, ·;π) with respect to the first ar-

gument and π, respectively. When β = 0, we have rank(∂g̃0(θ̃)/∂π̃) = dπ̃ − 1 = r = 2,

since there are only two linearly independent rows in ∂g̃(0, ζ, π)/∂π̃. When β = 0, note that

0 = δ1
0 − g1(0, ζ, π̃) is equivalent to

0 =

 p11,0

p10,0

p01,0

−
 C(π1

2, ζ;π)

π1
1 − C(π1

1, ζ;π)

ζ − C(π1
2, ζ;π)

 .
Observe that the result of Lemma ID1 holds, as rank

(
∂g1

0(0, ζ, π̃)/∂π1
)

= rank
(
∂g1(0, ζ, π̃)/∂π1

)
=

r. Also when β = 0, M∂g1
0(0, ζ, π̃)/∂π̃ = ∂g0

0(0, ζ, π̃)/∂π̃, where M = I3. In this example, the

function h1
0 may or may not have a closed form solution, depending upon the copula used. See

Section 11.1 for an example.

7 Concentrated Estimation

We proceed to derive the limit theory for
̂̃
θn under a comprehensive class of identification

strengths in two steps: (i) using the results of Section 5, we derive the joint limit theory for θ̂n

and π̂1
n(·) and (ii) we use the results of (i) to find the limit theory for the parameter of interest.

This section is devoted to step (i).
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We formally characterize a local-to-deficient rank Jacobian by modeling the β parameter as

local-to-zero. This allows us to fully characterize different strengths of identification, namely,

strong, semi-strong, and weak. Ultimately, we derive asymptotic theory under parameters with

different strengths of identification in order to conduct uniformly valid inference robust to iden-

tification strength.

The parameter space Γ for γ is of the form

Γ = {γ = (θ̃, φ̃) : θ̃ ∈ Θ̃∗, φ̃ ∈ Φ∗(θ̃)},

where Θ̃∗ is a compact subset of Rdθ̃ and Φ∗(θ̃) ⊂ Φ∗ ∀θ̃ ∈ Θ̃ for some compact metric space Φ∗

with a metric that induces weak convergence of the bivariate distributions of the data (Wi,Wi+m)

for all i,m ≥ 1. Define sets of sequences of parameters {γn} as follows:

Γ(γ0) ≡ {{γn ∈ Γ : n ≥ 1} : γn → γ0 ∈ Γ} ,

Γ(γ0, 0, b) ≡
{
{γn} ∈ Γ(γ0) : β0 = 0 and n1/2βn → b ∈ Rdβ∞

}
,

Γ(γ0,∞, ω0) ≡
{
{γn} ∈ Γ(γ0) : n1/2 ‖βn‖ → ∞ and

βn
‖βn‖

→ ω0 ∈ Rdβ
}
,

where γ0 ≡
(
β0, ζ0, π̃0, φ̃0

)
and γn ≡

(
βn, ζn, π̃n, φ̃n

)
, and R∞ ≡ R ∪ {±∞}. When ‖b‖ < ∞,

{γn} ∈ Γ(γ0, 0, b) are weak or non-identification sequences, otherwise, when ‖b‖ = ∞, they

characterize semi-strong identification. Sequences {γn} ∈ Γ(γ0,∞, ω0) characterize semi-strong

identification when βn → 0, otherwise, when limn→∞ βn 6= 0, they are strong identification

sequences.

We first establish the limit theory for the first step estimator π̂1
n(θ), as a function of θ ∈ Θ.

The following assumption establishes the population criterion function discussed in Section 4 as

the limit (in a uniform sense) of the sample criterion function.

Assumption FSCF2. The function Q̃0(θ̃) is such that

sup
θ̃∈Θ̃

|Q̃n(θ̃)− Q̃0(θ̃)| p−→ 0

under {γn} ∈ Γ(γ0) ∀γ0 ∈ Γ.

Assumption ID3. For π1
0 : Θ→ Π1(Θ) ⊂ Rdπ1 and every neighborhood Π1

0(θ) of π1
0(θ) at any

given θ ∈ Θ,

inf
θ∈Θ

(
inf

π1∈Π1(θ)\Π1
0(θ)

Q̃0(θ, π1)− Q̃0(θ, π1
0(θ))

)
> 0
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∀γ0 ∈ Γ.

In conjunction with Assumption CF3, Assumption ID3 states that conditional on θ, the

population criterion function locally identifies the parameter π1
0(θ). For any {γn} ∈ Γ(γ0) with

γ0 ∈ Γ and any θ ∈ Θ, define π1
n(θ) implicitly as

Q̃(θ, π1
n(θ); γn) = inf

π1∈Π1(θ)
Q̃(θ, π1; γn).

The next assumption is a weak continuity condition on Q̃(θ, π1; ·).

Assumption Reg4. Under any {γn} ∈ Γ(γ0) with γ0 ∈ Γ, supθ∈Θ ‖π1
n(θ)− π1

0(θ)‖ → 0.

Let Xn(θ) = opθ(1) mean that supθ∈Θ ‖Xn(θ)‖ = op(1). Similarly, Xn(π) = opπ(1) means

that supπ∈Π ‖Xn(π)‖ = op(1) and analogously for Opθ(1) and Opπ(1). The next assumptions

supposes the sample criterion function has a partial quadratic expansion in the parameter π1.

Assumption FSReg3. Under any {γn} ∈ Γ(γ0) with γ0 ∈ Γ, the following statements hold:

(i) The sample criterion function Q̃n(θ, π1) has a quadratic expansion in π1 around π1
n(θ) for

given θ:

Q̃n(θ, π1) = Q̃n(θ, π1
n(θ)) +Dπ1Q̃n(θ, π1

n(θ))′(π1 − π1
n(θ))

+
1

2
(π1 − π1

n(θ))′Dπ1π1Q̃n(θ, π1
n(θ))(π1 − π1

n(θ)) +Rn(θ, π1),

where Dπ1Q̃n(θ, π1
n(θ)) ∈ Rdπ1 is a first partial-derivative vector (with respect to π1, evaluated

at π1
n(θ)) and Dπ1π1Q̃n(θ, π1

n(θ)) ∈ Rdπ1×dπ1 is a second partial-derivative matrix (with respect

to π1, evaluated at π1
n(θ)) that is symmetric and may be stochastic or nonstochastic.

(ii) The remainder term Rn(θ, π1) satisfies

sup
π1∈Π1(θ):‖π1−π1

n(θ)‖≤εn

|nRn(θ, π1)|
(1 + ‖

√
n(π1 − π1

n(θ))‖)2
= opθ(1)

for all constants εn → 0.

It will be convenient to let ψ ≡ (β, ζ) denote the subvector of well-identified parameters. Let

B(β) ≡

(
Idψ 0dψ×dπ

0dπ×dψ ι(β)Idπ

)
, ι(β) ≡

{
β, if β is scalar,

‖β‖, if β is a vector.

The following is a joint convergence assumption on the (partial) generalized stochastic derivatives

of the (concentrated) criterion function. Let ψ0,n ≡ (0, ζn).
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Assumption FSReg4. (i) Under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞,

√
n

(
Dπ1Q̃n(·, π1

n(·))
DψQn(ψ0,n, ·)− EγnDψQn(ψ0,n, ·)

)
⇒

(
G̃0(·)
G0(·)

)
,

where DψQn(ψ0,n, ·) is defined in Assumption C1(i)-(ii) of AC12 and G̃0(·) ≡ G̃(·; γ0) and

G0(·) ≡ G(·; γ0) are mean zero Gaussian processes indexed by θ ∈ Θ and π ∈ Π with bounded

continuous sample paths and some covariance kernels Ω̃0(θ1, θ2) ≡ Ω̃(θ1, θ2; γ0) and Ω0(π1, π2) ≡
Ω(π1, π2; γ0), respectively, for θ1, θ2 ∈ Θ and π1, π2 ∈ Π.

(ii) Under {γn} ∈ Γ(γ0,∞, ω0),

√
n

(
Dπ1Q̃n(·, π1

n(·))
B−1(βn)DQn(θn)

)
⇒

(
G̃0(·)

N (0dθ , V (γ0))

)
,

where DQn(θn) is defined in Assumption D1 of AC12 and G̃0(·) is defined in part (i) of this

assumption.

Assumptions C2(i) and C3 of AC12 ensure the marginal convergence of the empirical process

DψQn(ψ0,n, ·)− EγnDψQn(ψ0,n, ·) under {γn} ∈ Γ(γ0, 0, b). Assumption D3(i) of AC12 ensures

the marginal convergence of the random variable DQn(θn) under {γn} ∈ Γ(γ0,∞, ω0). The

next assumption is a standard regularity condition on the second (stochastic) partial derivative

matrix of the criterion function with respect to π1.

Assumption FSReg5. (i) Under any {γn} ∈ Γ(γ0) with γ0 ∈ Γ, supθ∈Θ ‖Dπ1π1Q̃n(θ, π1
n(θ))−

H̃0,π1π1(θ)‖ p−→ 0 for some nonstochastic symmetric dπ1×dπ1 matrix-valued function H̃0,π1π1(θ) ≡
H̃π1π1(θ; γ0) on Θ× Γ that is continuous on Θ ∀γ0 ∈ Γ.

(ii) λmin(H̃0,π1π1(θ)) > 0 and λmax(H̃0,π1π1(θ)) <∞ ∀θ ∈ Θ, ∀γ0 ∈ Γ.

We are now ready to state a result that extends Theorems 3.1(a) and 3.2(a) of AC12, but

applied to the concentrated estimator θ̂n and the random function π̂1
n(·).

Theorem Conc. (i) Suppose Assumptions FSID1, FSReg1–FSReg3, FSReg4(i), FSReg5, FSCF1–

FSCF2, CF3, ID3, Reg4 and Assumptions B1-B3 and C1-C6 of AC12, applied to the θ and Qn(θ)

of this paper, hold. Under parameter sequences {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞,
√
n(ψ̂n − ψn)

π̂n√
n(π̂1

n(·)− π1
n(·))

⇒
 τ0,b(π

∗
0,b)

π∗0,b
−H̃−1

0,π1π1(·)G̃0(·)

 ,
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where

π∗0,b ≡ π∗(γ0, b) ≡ arg min
π∈Π
−1

2
(G0(π) +K0(π)b)′H−1

0 (π)(G0(π) +K0(π)b),

τ0,b(π) ≡ τ(π; γ0, b) ≡ −H−1
0 (π; γ0)(G0(π) +K0(π)b)− (b, 0dζ )

with (b, 0dζ ) ∈ Rdψ , π∗0,b being a random vector and {τ0,b(π) : π ∈ Π} being a Gaussian process.

The underlying functions H0(π) ≡ H(π; γ0) and K0(π) ≡ K(π; γ0) are defined in Assumptions

C4(i) and C5(ii) of AC12, respectively.

(ii) Suppose Assumptions FSID1, FSReg1–FSReg3, FSReg4(ii), FSReg5, FSCF1–FSCF2,

CF3, ID3, Reg4 and Assumptions B1-B3, C1-C5, C7-C8 and D1-D3 of AC12, applied to the θ

and Qn(θ) of this paper, hold. Under parameter sequences {γn} ∈ Γ(γ0,∞, ω0),

√
n

(
B(βn)(θ̂n − θn)

π̂1
n(·)− π1

n(·)

)
⇒

(
N (0dθ , J

−1(γ0)V (γ0)J−1(γ0)

−H̃−1
0,π1π1(·)G̃0(·)

)
,

where J(γ0) and V (γ0) are defined in Assumptions D2 and D3 of AC12.

This theorem is instrumental to deriving the limit theory for the ultimate parameter esti-

mates of interest:
̂̃
θn = (θ̂n, π̂

1
n(θ̂n)). This is the goal of the following section.

8 Limit Theory for Original Parameter Estimates

We now proceed to find the limit theory for the original parameter estimator of interest
̂̃
θn under

a comprehensive class of identification strengths using the results of the previous section.

Let π1
n,θ(θ

∗) = ∂π1
n(θ)/∂θ′|θ=θ∗ . Partition π1

n,θ(θ
∗) conformably with θ′ = (ψ, π): π1

n,θ(θ
∗) =

[π1
n,ψ(θ∗) : π1

n,π(θ∗)]. Suppose rank(π1
n,π(θ)) = d∗π,n for all θ ∈ Θε ≡ {θ ∈ Θ : ‖β‖ < ε}.

For θ ∈ Θε, let An(θ) ≡ [A1,n(θ)′ : A2,n(θ)′]′ be an orthogonal dπ1 × dπ1 matrix such that

A1,n(θ) is a (dπ1 −d∗π,n)×dπ1 matrix whose rows span the null space of π1
n,π(θ)′ and A2,n(θ) is a

d∗π,n × dπ1 matrix whose rows span the column space of π1
n,π(θ). The matrix A1,n(θ) essentially

rotates π1
n(θ) “off” the direction of π while the matrix A2,n(θ) rotates π1

n(θ) in the direction of

π. The estimate π̂1
n = π̂1

n(θ̂n) has very different limiting behavior after being rotated by either

of these two matrices, with one “direction” converging at the
√
n-rate and the other being

inconsistent. Similar asymptotic behavior can be found in the related contexts of, e.g., Phillips

(1989) and Antoine and Renault (2009, 2012), where parameters of interest are functions of

quantities with different convergence rates. Indeed, the rotation approach used in the limit

theory here has antecedents in many distinct but related contexts including Sargan (1983),
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Phillips (1989), Antoine and Renault (2009, 2012), Andrews and Cheng (2014) and Phillips

(2015). Let π1
0,θ(θ

∗) = ∂π1
0(θ)/∂θ′|θ=θ∗ with the analogous partition π1

0,θ(θ
∗) = [π1

0,ψ(θ∗) :

π1
0,π(θ∗)].

The following assumptions impose regularity conditions on the mapping π1
n : Θ→ Π1(Θ).

Assumption Reg5. For all n ≥ 1, the following statements hold:

(i) π1
n(θ) is continuously differentiable on Θ.

(ii) rank(π1
n,π(θ)) = d∗π,n for some constant d∗π,n ≤ min(dπ1 , dπ) and d∗π,n−rank(π1

0,π(θ))→ 0

under {γn} ∈ Γ(γ0, 0, b) ∀θ ∈ Θε for some ε > 0.

Analogous assumptions can be found in, e.g., Assumptions R1 and R2 of Andrews and Cheng

(2014). The major difference with these assumptions is the condition in Assumption Reg5(ii)

on the limit of d∗π,n under {γn} ∈ Γ(γ0, 0, b). This essentially restricts the class of sequences

{γn} ∈ Γ(γ0, 0, b) under study to those that yield a limit for d∗π,n. This assumption is not

restrictive since for any given sequence {γn} ∈ Γ(γ0, 0, b), one could find a subsequence {γωn}
along which d∗π,ωn converges since d∗π,ωn is limited to a finite number of values.

Define

ηn(θ) ≡

{ √
nA1,n(θ){π1

n(ψn, π)− π1
n(ψn, πn)}, if d∗π,n < dπ1

0, if d∗π,n = dπ1 .

Assumption Reg6. Under {γn} ∈ Γ(γ0, 0, b), ηn(θ̂n)
p−→ 0.

Denote the Gaussian random vector to which
√
nB(βn)(θ̂n−θn) converges in Theorem Conc

(ii) as Zθ = (Z ′ψ, Z
′
π)′ ∼ N (0dθ , J

−1(γ0)V (γ0)J−1(γ0)), partitioned conformably with ψ and π.

We are now ready to state the main result of this section. In what follows, A1,0(·) and A2,0(·)
are defined analogously to A1,n(·) and A2,n(·), replacing π1

n,θ(θ) with π1
0,θ(θ) in the definition.

Theorem Est. (i) Suppose Assumptions FSID1, FSReg1–FSReg3, FSReg4(i), FSReg5, FSCF1–

FSCF2, CF3, ID3, Reg4–Reg6 and B1-B3 and C1-C6 of AC12, applied to the θ and Qn(θ) of

this paper, hold. Under parameter sequences {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞,
√
n(ψ̂n − ψn)

π̂n√
nA1,n(θ̂n)(π̂1

n − π1
n)

A2,n(θ̂n)(π̂1
n − π1

n)

 d−→


τ0,b(π

∗
0,b)

π∗0,b
A1,0(ψ0, π

∗
0,b){π1

0,ψ(ψ0, π
∗
0,b)τ0,b(π

∗
0,b)− H̃

−1
0,π1π1(ψ0, π

∗
0,b)G̃0(ψ0, π

∗
0,b)}

A2,0(ψ0, π
∗
0,b){π1

0(ψ0, π
∗
0,b)− π1

0(ψ0, π0)}

 .

(ii) Suppose Assumptions FSID1, FSReg1–FSReg3, FSReg4(ii), FSReg5, FSCF1–FSCF2,

CF3, ID3, Reg4–Reg6 and Assumptions B1-B3, C1-C5, C7-C8 and D1-D3 of AC12, applied to
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the θ and Qn(θ) of this paper, hold. Under parameter sequences {γn} ∈ Γ(γ0,∞, ω0),

√
n

 B(βn)(θ̂n − θn)

A1,n(θ̂n)(π̂1
n − π1

n)

ι(βn)A2,n(θ̂n)(π̂1
n − π1

n)

 d−→

 Zθ

A1,0(θ0)[π1
0,ψ(θ0)Zψ − H̃−1

0,π1π1(θ0)G̃0(θ0)]

A2,0(θ0)π1
0,π(θ0)Zπ

 ,

if β0 = 0 and

√
n(
̂̃
θn − θ̃n)

d−→

(
B−1(β0)Zθ

π1
0,θ(θ0)B−1(β0)Zθ − H̃−1

0,π1π1(θ0)G̃0(θ0)

)

if β0 6= 0.

Due to the rotation by A1,n(θ̂n) and A2,n(θ̂n), Theorem Est does not directly express the

limiting distribution of π̂1
n. However this is can be obtained as a corollary.

Let An(θ) = [A1
n(θ) : A2

n(θ)], which forms a conformable partition so that A1
n(θ) is a dπ1 ×

(dπ1−d∗π,n) matrix and A2
n(θ) is a dπ1×d∗π,n matrix. Define A0(θ) = [A1

0(θ) : A2
0(θ)] analogously.

Let

B̃(β) ≡

(
Idψ 0dψ×dπ̃

0dπ̃×ddψ ι(β)Idπ̃

)
,

B̄(β) ≡

(
ι(β)Idψ 0dψ×dπ

0dπ×dψ Idπ

)
= ι(β)B−1(β),

and H̄−1
0,π1π1(θ0) ≡ ι(β0)H̃−1

0,π1π1(θ0).

Corollary Est. (i) Under the assumptions of Theorem Est(i) and {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <
∞, 

√
n(ψ̂n − ψn)

π̂n

π̂1
n

 d−→

 τ0,b(π
∗
0,b)

π∗0,b
π1∗

0,b

 ,

where

π1∗
0,b ≡ π1

0 +A2
0(ψ0, π

∗
0,b)A2,0(ψ0, π

∗
0,b)(π

1
0(ψ0, π

∗
0,b)− π1

0(ψ0, π0)).

(ii) Under the assumptions of Theorem Est(ii) and {γn} ∈ Γ(γ0,∞, ω0),

√
nB̃(βn)(

̂̃
θn − θ̃n)

d−→

(
Zθ

π1
0,θ(θ0)B̄(β0)Zθ − H̄−1

0,π1π1(θ0)G̃0(θ0)

)
≡ Z

θ̃
.
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Remark 8.1. Though π1∗
0,b is the limiting random vector for π̂1

n in Corollary Est, including

the asymptotic counterpart to the Op(n
−1/2) term A1

n(θ̂n)A1,n(θ̂n)(π̂1
n − π1

n) provides a better

approximation to the finite sample distribution of π̂1
n. That is, the distributional approximation

for π̂1
n by

π1a
0,b = π1∗

0,b+n
−1/2A1

0(ψ0, π
∗
0,b)A1,0(ψ0, π

∗
0,b){π1

0,ψ(ψ0, π
∗
0,b)τ0,b(π

∗
0,b)−H̃−1

0,π1π1(ψ0, π
∗
0,b)G̃0(ψ0, π

∗
0,b)}

serves better in finite samples than that by π1∗
0,b, even though they are asymptotically equivalent.

See the Monte Carlo results for the threshold-crossing model example in Section 11.1.

9 Wald Statistics

We are interested in testing general nonlinear hypotheses of the form

H0 : r̃(θ̃) = v ∈ Rdr̃

using the standard Wald statistic. The usual Wald statistic for H0 based upon
̂̃
θn can be written

as

W̃n(v) ≡ n(r̃(
̂̃
θn)− v)′(r̃

θ̃
(
̂̃
θn)B̃−1(β̂n)

̂̃
ΣnB̃

−1(β̂n)r̃−1

θ̃
(
̂̃
θn)′)(r(

̂̃
θn)− v),

where r̃
θ̃
(θ̃) ≡ ∂r̃(θ̃)/∂θ̃′ ≡ [r̃ψ(θ̃) : r̃π̃(θ̃)] ∈ Rdr̃×dθ̃ and the covariance matrix estimator of

̂̃
θn is

specified as ̂̃
Σn ≡

(
Σ̂n Σ̂12

n

Σ̂12′
n Σ̂22

n

)

with Σ̂n ≡ Ĵ−1
n V̂nĴ

−1
n being as defined in AC12 to be an estimator of Σ(γ0) = Eγ0 [ZθZ

′
θ], Σ̂12

n

being an estimator of

Σ12(γ0) = Σ(γ0)B̄(β0)π1
0,θ(θ0)′ − Eγ0 [ZθG̃(θ0)′]H̄−1

0,π1π1(θ0)

and Σ̂22
n being an estimator of

Σ22(γ0) = π1
0,θ(θ0)B̄(β0)Σ(γ0)B̄(β0)π1

0,θ(θ0)′ − π1
0,θ(θ0)B̄(β0)Eγ0 [ZθG̃0(θ0)′]H̄−1

0,π1π1(θ0)

− H̄−1
0,π1π1(θ0)Eγ0 [G̃0(θ0)Z ′θ]B̄(β0)π1

0,θ(θ0)′ + H̄−1
0,π1π1(θ0)Ω̃0(θ0, θ0)H̄−1

0,π1π1(θ0)

under {γn} ∈ Γ(γ0,∞, ω0). The following assumptions are similar to R1 and R2 of AC14,

applied to r̃(θ̃).
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Assumption Res1. (i) r̃(θ̃) is continuously differentiable on Θ̃.

(ii) rank(r̃π̃(θ̃)) = d∗π̃ for some constant d∗π̃ ≤ min{dr̃, dπ̃} for all θ̃ ∈ Θ̃ε ≡ {θ̃ ∈ Θ̃ : ‖β‖ < ε}
for some ε > 0.

In a similar spirit to the rotations used to characterize the limit theory for π̂1
n = π̂1

n(θ̂n), we

rotate the restrictions being tested when evaluated at
̂̃
θn, r̃(

̂̃
θn). Let Ã(θ̃) = [Ã1(θ̃)′ : Ã2(θ̃)′]′

be an orthogonal dr̃ × dr̃ matrix such that Ã1(θ̃) is a (dr̃ − d∗π̃)× dr̃ matrix whose rows span the

null space of r̃π̃(θ̃)′ and Ã2(θ̃) is a d∗π̃ × dr̃ matrix whose rows span the column space of r̃π̃(θ̃)

with r̃
θ̃
(θ̃) ≡ [r̃ψ(θ̃) : r̃π̃(θ̃)]. Let

η̃n(θ̃) ≡

{
n1/2Ã1(θ̃) {r̃(ψn, π̃)− r̃(ψn, π̃n)} , if d∗π̃ < dr̃

0, if d∗π̃ = dr̃.

Assumption Res2. Under {γn} ∈ Γ(γ0, 0, b), η̃n(
̂̃
θn)

p−→ 0.

When β is scalar, let Σ12
0 (θ̃) ≡ Σ12(θ̃; γ0) and Σ22

0 (θ̃) ≡ Σ22(θ̃; γ0) be some nonstochastic

dθ × dπ1 and dπ1 × dπ1 matrix-valued functions for θ̃ ∈ Θ̃. Let

Σ̃0(θ) ≡ Σ̃(θ; γ0) =


Σ0(θ) Σ0(θ)

(
0dψ×dπ1
π1

0,π(θ)

)

(0dπ1×dψ : π1
0,π(θ)′)Σ0(θ) (0dπ1×dψ : π1

0,π(θ)′)Σ0(θ)

(
0dψ×dπ1
π1

0,π(θ)

)


≡

(
Σ0(θ) Σ12

0 (θ)

Σ12
0 (θ)′ Σ22

0 (θ)

)
,

Σ̃0(π) ≡ Σ̃(π; γ0) = Σ̃(0, ζ0, π̃; γ0),

where Σ0(θ) ≡ Σ(θ; γ0) is defined in (4.4) of AC12. In addition to Assumption V1 of AC12, the

following assumption describes the limiting behavior of
̂̃
Σn under weak identification sequences.

For this assumption, Σ0(π) ≡ Σ(π; γ0) is defined in (4.4) of AC12.

Assumption Var1. (Scalar β) (i) Σ̂12
n = Σ̂12

n (θ̂n) and Σ̂22
n = Σ̂22

n (θ̂n) for some (stochastic) dθ×
dπ1 and dπ1 × dπ1 matrix-valued functions Σ̂12

n (·) and Σ̂22
n (·) on Θ̃ that satisfy supθ∈Θ ‖Σ̂12

n (θ)−
Σ12

0 (θ)‖ p−→ 0 and supθ∈Θ ‖Σ̂22
n (θ)− Σ22

0 (θ)‖ p−→ 0 under {γn} ∈ Γ(γ0, 0, b) with |b| <∞.

(ii) Σ12
0 (θ) and Σ22

0 (θ) are continuous on θ ∈ Θ ∀γ0 ∈ Γ with β0 = 0.

(iii) λmin(Σ0(π)) > 0 and λmax(Σ̃0(π)) <∞ ∀π ∈ Π ∀γ0 ∈ Γ with β0 = 0.

We deal with the scalar β case here in the main text. See Appendix B for details on the

vector β case.
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When estimating Σ12(γ0) and Σ22(γ0) by Σ̂12
n and Σ̂22

n in practice, the β0’s appearing in

B̄(β0) and H̄−1
0,π1π1(θ0) would be replaced by the estimator β̂n. Under {γn} ∈ Γ(γ0, 0, b) with

|b| <∞, along with Assumption Var1 and the results of Corollary Conc(i), this implies

Σ̂12
n (
̂̃
θn)

d−→ Σ0(θ∗0,b)B̄(0)π1
0,θ(θ

∗
0,b)
′ = Σ0(θ∗0,b)[0dπ1×dψ : π1

0,π(θ∗0,b)]
′

Σ̂22
n (
̂̃
θn)

d−→ π1
0,θ(θ

∗
0,b)B̄(0)Σ0(θ∗0,b)B̄(0)π1

0,θ(θ
∗
0,b)
′

= [0dπ1×dψ : π1
0,π(θ∗0,b)]Σ0(θ∗0,b)[0dπ1×dψ : π1

0,π(θ∗0,b)]
′.

since H̄−1
0,π1π1(θ0) = ι(0)H−1

0,π1π1(θ0) = 0. This implies the limiting matrix Σ0(θ∗0,b) has reduced

rank equal to the rank of Σ0(θ∗0,b), which is equal to dθ by Assumption Var1(iii). This problem

also arises under semi-strong identification sequences. Indeed, note that by Corollary Est(ii),

under {γn} ∈ Γ(γ0,∞, ω0) with β0 = 0,

√
nB̃(βn)(

̂̃
θn − θ̃n)

d−→

(
Idθ

π1
0,θ(θ0)B̄(0)

)
Zθ (9.1)

Standard variance matrix estimators
̂̃
Σn are consistent for the variance matrix of this Gaussian

limiting random vector under semi-strong identification sequences. Hence,
̂̃
Σn is singular in the

limit under these sequences as well.

Depending upon the restrictions being tested, these singularities in the limit of
̂̃
Σn under

weak and semi-strong identification sequences can cause the standard Wald statistic to diverge.

This can perhaps be most easily seen for the standard full vector test restriction r̃(θ̃) = θ̃ under

semi-strong identification sequences: W̃n(θ̃n) = n(
̂̃
θn − θ̃n)′B̃(β̂n)

̂̃
Σ
−1

n B̃(β̂n)(
̂̃
θn − θ̃n). Under

semi-strong identification and H0,
√
nB̃(β̂n)(

̂̃
θn − θ̃n) weakly converges to the right hand side

of (9.1) and with Σ(γ0) = Eγ0 [ZθZ
′
θ],

̂̃
Σn

p−→

(
Σ(γ0) Σ(γ0)B̄(β0)π1

0,θ(θ0)′

π1
0,θ(θ0)B̄(β0)Σ(γ0) π1

0,θ(θ0)B̄(β0)Σ(γ0)B̄(β0)π1
0,θ(θ0)′

)
.

Consider inverting
̂̃
Σn. The lower right hand block of

̂̃
Σ
−1

n is

(
̂̃
Σn,22 −

̂̃
Σ
′
n,12

̂̃
Σ
−1

n,11
̂̃
Σn,12)−1
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but under semi-strong identification,

̂̃
Σn,22 −

̂̃
Σ
′
n,12

̂̃
Σ
−1

n,11
̂̃
Σn,12

p−→ π1
0,θ(θ0)B̄(0)Σ(γ0)B̄(0)π1

0,θ(θ0)′

− π1
0,θ(θ0)B̄(0)Σ(γ0)Σ−1(γ0)Σ(γ0)B̄(0)π1

0,θ(θ0)′ = 0.

Therefore, the Wald statistic diverges under the null.

Because the Wald statistic diverges under the null and weak or semi-strong identification for

some null hypotheses, standard Wald tests that make use of χ2
dr̃

CVs exhibit size distortion of the

most extreme kind: their asymptotic size is equal to one. In order to construct Wald tests with

uniform asymptotic size control, we limit our attention to null hypotheses that do no cause Wald

statistic divergence under the null. Standard Wald tests still exhibit size distortions in these

cases since the Wald statistics are not asymptotically χ2
dr̃

-distributed under weak identification

sequences (see Theorem Wald(i) below). We know the form of singularity in the asymptotic

variance matrix under {γn} ∈ Γ(γ0, 0, b) that causes the Wald statistic to diverge for certain

restrictions, e.g., rank(Σ̃(γ0)) = rank(Σ(γ0)) = dθ. This enables us to write down verifiable

sufficient rank conditions on the restrictions that ensure the Wald statistic does not diverge.

Assumption Res3. (i) dr̃ ≤ dθ
(ii) rank(Ã1(θ̃)r̃ψ(θ̃)) = dr̃−d∗π̃ and rank(Ã2(θ̃)(r̃π(θ̃)+r̃π1(θ̃)∂π1

0(θ)/∂π′)) = d∗π̃ ∀θ̃ = (0, ζ, π̃) ∈
Θ̃, ∀γ0 ∈ Γ with β0 = 0.

One-dimensional restrictions trivially satisfy this assumption. Subvector restrictions satisfy

this assumption so long as the subvector is not too large (it must have dimension smaller than

dθ) and does not contain more than dπ entries of π̃. It is interesting to note that while Andrews

and Guggenberger (2014) and Andrews and Mikusheva (2014) cannot generally directly conduct

one-dimensional inference that is uniformly valid, we can by properly constructing CVs (see the

following section). Conversely, we cannot directly conduct full vector inference that is uniformly

valid while this is precisely what the methods Andrews and Guggenberger (2014) and Andrews

and Mikusheva (2014) are for (in moment condition models).10

Along with Assumption V2 of AC12 applied to Σ̂n, the following assumption presumes that̂̃
Σn is consistent under (semi-)strong identification.

Assumption Var2. Under {γn} ∈ Γ(γ0,∞, ω0), Σ̂12
n

p−→ Σ12(γ0) and Σ̂22
n

p−→ Σ22(γ0).

Before stating the main result of this section, we must introduce some notation. First, let

10Andrews and Mikusheva (2014) cannot handle moment conditions for which the asymptotic variance matrix
of the moments is singular. This occurs for the ML estimators of this paper.
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θ̃∗0,b = (ψ0, π
∗
0,b, π

1∗
0,b). Second, let

qÃ0,b(θ̃) ≡ qÃ(θ̃; γ0, b) =

(
Ã1(θ̃)r̃ψ(θ̃)τ0,b(π)

ι(b+ τβ0,b(π))Ã2(θ̃)(r̃(θ̃)− r̃(θ̃0))

)
,

where τβ0,b(π) denotes the subvector of the first dβ elements of τ0,b(π). Third, let

r̃Ã
θ̃

(θ̃) =

(
Ã1(θ̃)r̃ψ(θ̃) 0

0 Ã2(θ̃)r̃π̃(θ̃)

)
.

Finally, let

¯̃
Σ0,b(π̃) ≡ ¯̃

Σ(π̃; γ0, b) =

{
Σ̃0(π̃), if β is scalar

Σ̃0(π̃, ω∗0,b(π̃)), if β is a vector

where for π ∈ Π,

ω∗0,b(π̃) ≡ ω∗(π; γ0, b) ≡
τβ0,b(π)

‖τβ0,b(π)‖
.

Under a sequence {γn}, we consider the sequence of null hypotheses H0 : r̃(θ̃) = vn, where

vn = r̃(θ̃n).

Theorem Wald. (i) Suppose Assumptions FSID1, FSReg1–FSReg3, FSReg4(i), FSReg5, FSCF1–

FSCF2, CF3, ID3, Reg4–Reg6, Res1–Res3, Var1 and Assumptions B1-B3, C1-C6 and V1 of

AC12, applied to the θ and Qn(θ) of this paper, hold. Under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞,

W̃n(vn)
d−→ W̃ (b, γ0) ≡ qÃ0,b(θ̃∗0,b)′(r̃Ãθ̃ (θ̃∗0,b)

¯̃
Σ0,b(π̃

∗
0,b)r̃

Ã
θ̃

(θ̃∗0,b)
′)−1qÃ0,b(θ̃

∗
0,b).

(ii) Suppose Assumptions FSID1, FSReg1–FSReg3, FSReg4(ii), FSReg5, FSCF1–FSCF2,

CF3, ID3, Reg4–Reg6, Res1–Res3, Var2 and Assumptions B1-B3, C1-C5, C7-C8, D1-D3 and

V2 of AC12, applied to the θ and Qn(θ) of this paper, hold. Under {γn} ∈ Γ(γ0,∞, ω0),

W̃n(vn)
d−→ χ2

dr̃
.

10 Robust Wald Inference

As can be seen, e.g., in Figures 5–8, for some b ∈ Rdβ∞ , the limit distribution of W̃ (b, γ0) given in

Theorem Wald(i) provides a good approximation to the finite-sample distribution of W̃n(v). This

limit distribution depends upon the unknown nuisance parameters b and γ0. Letting c1−α(b, γ0)

denote the 1−α quantile of this distribution, a standard approach to CV construction for a test
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of size α would be to evaluate c1−α(·) at a consistent estimate of (b, γ0). However, the nuisance

parameter b and some elements in γ0 are not consistently estimable under {γn} ∈ Γ(γ0, 0, b)

with ‖b‖ < ∞, lending such an approach to size distortions. This feature of the problem leads

us to consider more sophisticated CV construction methods that lead to correct asymptotic size

for the test. We will restrict our focus to testing problems for which the distribution function of

W̃ (b, γ0) in Theorem Wald(i) only depends upon γ0 through the parameters ζ0 and π0 and an

additional consistently-estimable finite-dimensional parameter δ0. This is the case in all of the

examples we have encountered. Without loss of generality, we will assume δ is a component of

φ̃ so we can write φ̃ = (δ, φ).11

Assumption FD. The distribution function of W̃ (b, γ0) depends upon γ0 only through ζ0, π0,

and some δ0 ∈ Rdδ∞ such that under {γn} ∈ Γ(γ0, 0, b) or {γn} ∈ Γ(γ0,∞, ω0) there is an

estimator δ̂n with δ̂n
p−→ δ0.

We will “plug-in” consistent estimators for ζ0 and δ0, ζ̂n and δ̂n, when constructing the CVs.

The first construction is more computationally straightforward while the second leads to tests

with better finite-sample properties.

10.1 Identification Category Selection CVs

The first type of CV we consider is the direct analog of AC12’s (plug-in and null-imposed) Type

I Robust CV. Define tn ≡ (nβ̂′nΣ̂−1
ββ,nβ̂n/dβ)1/2, where Σ̂ββ,n is equal to the upper left dβ × dβ

block of Σ̂n and suppose {κn} is a sequence of constants such that κn → ∞ and κn/n
1/2 → 0

(Assumption K of AC12). Then the ICS CV for a test of size α is defined as follows:

cICS1−α,n ≡

χ2
dr̃

(1− α)−1 if tn > κn,

cLF1−α,n if tn ≤ κn

where χ2
dr̃

(1 − α)−1 is the (1 − α) quantile of a χ2
dr̃

-distributed random variable and cLF1−α,n ≡
sup

λ∈Λ̂n∩Λ(v)
c1−α(λ) with Λ̂n ≡ {λ = (b, γ) ∈ Λ : γ = (β, ζ̂n, π, δ̂n, φ)}, Λ(v) ≡ {λ = (b, γ0) ∈ Λ :

r̃(θ̃0) = v}, and Λ ≡ {λ = (b, γ0) ∈ Rdβ∞ × Γ : for some {γn} ∈ Γ(γ0), n1/2βn → b}. That is, we

both impose H0 and “plug-in” consistent estimators ζ̂n and δ̂n of ζ0 and δ0 in the construction

of the CV. This leads to tests with smaller CVs and hence better power (see, e.g., AC12 for

a discussion).12 Under the assumptions of Theorem Wald, Assumption FD and the following

11It is possible to relax this restriction and modify the CVs accordingly. However, we have not found an example
where this is necessary.

12As in AC12, one may also choose not to impose H0 in the CV construction since it is misspecified under the
alternative. Then, simply replace Λ̂n ∩ Λ(v) with Λ̂n in the expression for cLF1−α. Also, any consistent estimators
of the components of γ0 may be analogously “plugged-in”.
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assumption, we can establish the correct asymptotic size of tests using the Wald statistic and

ICS CVs.

Assumption DF1. The distribution function of W̃ (b, γ0) is continuous at χ2
dr̃

(1 − α)−1 and

supλ∈Λ0∩Λ(v) c1−α(λ), where Λ0 ≡ {λ = (b, γ) ∈ Λ : γ = (β, ζ0, π, δ0, φ)}.

Proposition ICS. Under the assumptions of Theorem Wald, Assumption K of AC12 and

Assumptions FD and DF1, lim supn→∞ sup
γ∈Γ:r̃(θ̃)=v

Pγ(W̃n(v) > cICS1−α,n) = α.

10.2 Adjusted-Bonferroni CVs

The second type of CV we consider is a modification of the adjusted-Bonferroni CV of McCloskey

(2012). The basic idea here is to use the data to narrow down the set of localization param-

eters b and parameters π from the entire space P(ζ̂n, δ̂n) ≡ {(b, π) ∈ Rdβ+dπ
∞ : for some γ0 ∈

Γ with ζ0 = ζ̂n and δ0 = δ̂n, π = π0 and for some {γn} ∈ Γ(γ0), n1/2βn → b}, as in the con-

struction of least-favorable CVs, to a data-dependent set and subsequently maximize c1−α(b, γ)

over b and π in this restricted set. Roughly speaking, this allows the CV to randomly adapt

to the data to determine how “guarded” we should be against potential weak identification and

which part of the parameter space Π is relevant to the finite-sample testing problem.

Let b̂n = n1/2β̂n. Using the results of Theorem Est, we can determine the joint asymptotic

distribution of (̂bn, π̂n) under sequences {γn} ∈ Γ(γ0, 0, b) with ‖b‖ < ∞, and consequently

construct an asymptotically valid confidence set for (b, π0). In the context of this paper, the

adjusted-Bonferroni CV of McCloskey (2012) uses such a confidence set for (b, π0) as the data-

dependent set from which to form the data-adaptive CV. Though this may be feasible in prin-

ciple, the formation of such a confidence set would be quite computationally burdensome in our

context since the quantiles of the limit random vector (τβ0,b(π
∗
0,b), π

∗
0,b) depend upon the underly-

ing parameters (b, π0) themselves.13 As a modification, we instead here propose the use of the set

Îan (̂bn, π̂n) = {(b, π) ∈ P(ζ̂n, δ̂n) : [(̂bn−b)′, (π̂n−π)′]̂̄Σ−1

n [(̂bn−b)′, (π̂n−π)′]′ ≤ χ2
dβ+dπ

(1−a)−1},
where ̂̄Σn ≡

(
Σ̂ββ,n n−1/2‖β̂n‖−1Σ̂βπ,n

n−1/2‖β̂n‖−1Σ̂′βπ,n n−1‖β̂n‖−2Σ̂ππ,n

)

with Σ̂βπ,n denoting the upper right dβ × dπ block of Σ̂n and Σ̂ππ,n denoting the lower right

dπ × dπ block of Σ̂n. This is set is akin to an a-level Wald confidence set for (b, π0). Though

this confidence set does not have asymptotically correct coverage under {γn} ∈ Γ(γ0, 0, b) with

‖b‖ <∞ sequences, it attains nearly correct coverage as ‖b‖ → ∞. Similarly to the ICS CV in

13A similar complication arises in e.g., the formation of an asymptotically valid confidence set for the localization
parameter in a local-to-unit root autoregressive model.
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the previous subsection, one may both impose H0 and “plug-in” the values of ζ̂n and δ̂n since

they are consistent estimators.

Let Λ̃an(b, γ0) = {λ = (̃b, γ) ∈ Λ̂n : (̃b, π) ∈ Îan(b + τβ0,b(π
∗
0,b), π

∗
0,b)} and Λ̂an = {λ = (b, γ) ∈

Λ̂n : (b, π) ∈ Îan (̂bn, π̂n)}. For a size-α test, the construction of the CV proceeds in two steps:

1. Compute the smallest value η = η(ζ̂n, δ̂n, Σ̂n(·)) such that

P

(
W̃ (b, γ0) ≥ sup

λ∈Λ̃an(b,γ0)∩Λ(v)

c1−α(λ) + η

)
≤ α

for all (b, γ0) ∈ Λ̂n ∩ Λ(v).

2. Construct the quantity cAB1−α,n = sup
λ∈Λ̂an∩Λ(v)

c1−α(λ) + η(ζ̂n, δ̂n, Σ̂n(·)). This is the

adjusted-Bonferroni CV.

The computations in Step 1 can be achieved by simulating from the joint distribution of W̃ (b, γ0),

τβ0,b(π
∗
0,b) and π∗0,b over a grid of (b, γ0) values in Λ̂n∩Λ(v). See Algorithm Bonf-Adj in McCloskey

(2012) for additional details on the computation of this CV. Under the assumptions of Theorem

Wald, Assumption FD and the following assumption, we can establish the correct asymptotic

size of tests using the Wald statistic and adjusted-Bonferroni CVs.

Let Λaγ0(b, γ0) = {λ = (̃b, γ) ∈ Λγ0 : (̃b, π) ∈ Ia0 (b + τβ0,b(π
∗
0,b), π

∗
0,b)}, where Λγ0 ≡ {λ =

(b, γ) ∈ Λ : γ = (β, ζ0, π, δ0, φ)} and

Ia0 (b+ τβ0,b(π
∗
0,b), π

∗
0,b) = {(b, π) ∈ P(ζ0, δ0) :

[(τβ0,b(π
∗
0,b)
′, (π∗0,b − π)′]Σ̄−1

0 (b+ τβ0,b(π
∗
0,b), π

∗
0,b)[(τ

β
0,b(π

∗
0,b)
′, (π∗0,b − π)′]′ ≤ χ2

dβ+dπ(1− a)−1}

with

Σ̄0(b+ τβ0,b(π
∗
0,b), π

∗
0,b) ≡

(
Σββ,0(θ∗0,b) ‖b+ τβ0,b(π

∗
0,b)‖−1Σβπ,0(θ∗0,b)

‖b+ τβ0,b(π
∗
0,b)‖−1Σβπ,0(θ∗0,b)

′ ‖b+ τβ0,b(π
∗
0,b)‖−2Σππ,0(θ∗0,b)

)

and Σββ,0(θ∗0,b) denoting the upper left dβ × dβ block of Σ0(θ∗0,b), Σβπ,0(θ∗0,b) denoting the upper

right dβ×dπ block of Σ0(θ∗0,b), and Σππ,0(θ∗0,b) denoting the lower right dπ×dπ block of Σ0(θ∗0,b).

Assumption DF2. There exists some (b∗, γ∗0) ∈ Λ such that

(i) P (W̃ (b∗, γ∗0) ≥ supλ∈Λa
γ∗0

(b∗,γ∗0 )∩Λ(v) c1−α(λ) + η(ζ∗0 , δ
∗
0 ,Σ(·; γ∗0))) = α,

(ii) P (W̃ (b∗, γ∗0) = supλ∈Λa
γ∗0

(b∗,γ∗0 )∩Λ(v) c1−α(λ) + η(ζ∗0 , δ
∗
0 ,Σ(·; γ∗0))) = 0.

Proposition AB. Under the assumptions of Theorem Wald and Assumptions FD and DF2,

lim supn→∞ sup
γ∈Γ:r̃(θ̃)=v

Pγ(W̃n(v) > cAB1−α,n) = α.
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11 Threshold-Crossing Model Example

To illustrate our approach in this section, we examine a particular version of the threshold-

crossing model (Example 2.3) that uses the Ali-Makhail-Haq copula, defined for π ∈ (−1, 1)

by

C(u1, u2;π) =
u1u2

1− π(1− u1)(1− u2)
.

The data is given by the vectorWi ≡ (Yi, Di, Zi) for i = 1, . . . , n. We also suppose the instrument

Zi ∈ {0, 1} is independent of (εi, νi) with Pγ0(Zi = z) ≡ φz,0.

The maximum likelihood estimator
̂̃
θn minimizes the following criterion function in θ̃ ≡

(β, ζ, π, π1
1, π

1
2) over the parameter space Θ̃ ≡ {θ̃ ∈ [−0.98, 0.98] × [0.01, 0.99] × [−0.99, 0.99] ×

[0.01, 0.99]× [0.01, 0.99] : 0.01 ≤ β + ζ ≤ 0.99}:

Q̃n(θ̃) = − 1

n

n∑
i=1

∑
y,d,z=0,1

1ydz(Wi) log pyd,z(θ̃),

where 1ydz(Wi) ≡ 1{Wi = (y, d, z)} and

p11,0(θ̃) ≡ C(π1
2, ζ;π),

p11,1(θ̃) ≡ C(π1
2, ζ + β;π),

p10,0(θ̃) ≡ π1
1 − C(π1

1, ζ;π),

p10,1(θ̃) ≡ π1
1 − C(π1

1, ζ + β;π), (11.1)

p01,0(θ̃) ≡ ζ − C(π1
2, ζ;π),

p01,1(θ̃) ≡ ζ + β − C(π1
2, ζ + β;π),

p00,0(θ̃) ≡ 1− p11,0(θ̃)− p10,0(θ̃)− p01,0(θ̃),

p00,1(θ̃) ≡ 1− p11,1(θ̃)− p10,1(θ̃)− p01,1(θ̃).

After concentrating out π1 = (π1
1, π

1
2), the concentrated objective function is

Qn(θ) = Q̃n(θ, π̂1
n(θ)) = − 1

n

n∑
i=1

∑
y,d,z=0,1

1ydz(Wi) log pyd,z(θ, π̂
1
n(θ)),

where θ ≡ (β, ζ, π) and π̂1
n(θ) solves

Q̃n(θ, π̂1
n(θ)) = inf

π1∈[0.01,0.99]×[0.01,0.99]
Q̃n(θ̃).
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The population objective function evaluated at γ0 is

Q̃0(θ̃) = −
∑

y,d,z=0,1

pyd,z(θ̃0)φz,0 log pyd,z(θ̃).

The concentrated population objective function evaluated at γ0 is

Q0(θ) = Q̃0(θ, π1
0(θ)) = −

∑
y,d,z=0,1

pyd,z(θ̃0)φz,0 log pyd,z(θ, π
1
0(θ)),

where π1
0(θ) solves

Q̃0(θ, π1
0(θ)) = inf

π1∈[0.01,0.99]×[0.01,0.99]
Q̃0(θ̃).

11.1 Asymptotic Distributional Approximations for the Estimators

In this subsection, we describe the quantities composing the asymptotic distributions of the

estimators in the Threshold Crossing example under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ < ∞ found in

Theorems Conc and Est and Remark 8.1. The derivations used to obtain these quantities are

given in Appendix C.

The first deterministic function is

H̃0,π1π1(θ) ≡ Dπ1π1Q̃0(θ, π1
0(θ)) = −

∑
y,d,z=0,1

pyd,z(θ̃0)φz,0Dπ1π1 log pyd,z(θ, π
1
0(θ)).

We define the Gaussian processes jointly as follows. In what follows, we use the notation

Dxf(x, y, z) = ∂f(x, y, z)/∂x andDxyf(x, y, z) = ∂f(x, y, z)/∂x∂y for a generic function f(x, y, z)

of (x, y, z). Let Z̃ be an eight-dimensional random vector with entries indexed by y, d, z ∈ {0, 1}
such that

Z̃ =


Z̃000

...

Z̃111

 d∼ N (0, Ṽ0)

with Ṽ0 defined such that

V arγ0(Z̃ydz) = pyd,z(θ̃0)φz,0(1− pyd,z(θ̃0)φz,0)

Covγ0(Z̃ydz, Z̃y′d′z′) = −pyd,z(θ̃0)py′d′,z′(θ̃0)φz,0φz′,0.
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for (y, d, z) 6= (y′, d′, z′). The first Gaussian process is defined as

G̃0(θ) = −
∑

y,d,z=0,1

Z̃ydzDπ1 log pyd,z(θ, π
1
0(θ)).

Letting

Ḡ0(θ) ≡ Ḡ(θ; γ0) =
∑

y,d,z=0,1

pyd,z(θ̃0)φz,0Dψπ1 log pyd,z(θ, π
1
0(θ))H̃−1

0,π1π1(θ)G̃0(θ)

−
∑

y,d,z=0,1

Z̃ydzDψ log pyd,z(θ, π
1
0(θ)),

the second Gaussian process is defined byG0(π) = Ḡ(0, ζ0, π; γ0). For the other two deterministic

functions, let

H̄0(θ) ≡ H̄(θ; γ0) = −
∑
y,d,z

pyd,z(θ̃0)φz,0Dψψ log pyd,z(θ, π
1
0(θ))

K̄0(θ) ≡ K̄(θ; γ0) =
∂DψQ(θ; γ0)

∂β′0
= −

∑
y,d,z=0,1

Dψ log pyd,z(θ, π
1
0(θ))[Dβ0pyd,z(θ̃0)]′φz,0.

The functions are then defined as H0(π) = H̄0(0, ζ0, π) and K0(π) = K̄0(0, ζ0, π).

Finally, noting that π1
0(θ) is always evaluated at θ = (0, ζ0, π) in the construction of the

above quantities, we use the result that π1
0(0, ζ0, π) = h1

0(ζ0, π) from Theorem Trans so that we

can solve explicitly for π1
0(0, ζ0, π) in this model using (3.1). This is useful for simulating from

the distributions of Corollary Est, Remark 8.1 and Theorem Wald(i). More specifically, upon

setting β = 0, we invert the fitted probabilities in (11.1) to find

π1
0(0, ζ0, π) =

(
−b0(ζ0, π) +

√
b0(ζ0, π)2 − 4a(ζ0, π)c0(ζ0, π)/2a(ζ0, π)

δ1,0[1− π(1− ζ0)]/[ζ0 − δ1,0π(1− ζ0)]

)
,

where a(ζ0, π) = π(1 − ζ0), b0(ζ0, π) = (1 − ζ0)[π(1 + δ2,0) − 1], c0(ζ0, π) = δ2,0[π(1 − ζ0) − 1],

δ1,0 = Pγ0(Yi = 1, Di = 1|Zi = 0) and δ2,0 = Pγ0(Yi = 1, Di = 0|Zi = 0).14

We conclude this subsection with a brief simulation study illustrating how well the weak

identification asymptotic distributions for the parameter estimators approximate their finite

sample counterparts. Figures 1–4 provide the simulated finite-sample density functions of the

estimators of the threshold-crossing model parameters in red and their approximations that

14As may be gleaned from the formula, the expression for π1
1,0(0, ζ0, π) comes from solving a quadratic equation.

This equation has two solutions, one of which is always negative and one of which is always positive. Given that
π1
1 must be strictly positive, π1

1,0(0, ζ0, π) is equal to the positive solution.
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arise from simulating the distributions in Theorem Conc/Est (to approximate the distributions

of β̂, ζ̂ and π̂) and Remark 8.1 (to approximate the distributions of π̂1
1 and π̂1

2) in blue. For

the finite-sample distributions, we examine the parameter values β ∈ 0, 0.1, 0.2, 0.4, ζ = 0.2,

π = 0.4, π1
1 = 0.6 and π1

2 = 0.4. Under {γn} ∈ Γ(γ0, 0, b) the asymptotic distributional

approximations use the corresponding parameter values with b =
√
nβ, ζ0 = ζ, π0 = π and

π1
0 = π1. Figures 1–4 show that (i) the distributions of the parameter estimators can be highly

non-Gaussian under weak/non-identification; (ii) as β grows larger, the distributions become

approximately Gaussian; and (iii) the new asymptotic distributional approximations perform

well overall, especially in contrast with usual Gaussian approximations.

11.2 Asymptotic Distributional Approximations for Wald Statistics

In this subsection, we describe how to approximate the asymptotic distributions of Wald statis-

tics in the threshold-crossing model. For the threshold-crossing model estimated by maximum

likelihood, the estimator of the asymptotic covariance matrix of the parameter estimators is

equal to an estimator of the inverse information matrix so that for a generic null hypothesis the

Wald statistic takes the form

W̃n(v) = n(r̃(
̂̃
θn)− v)′(r̃

θ̃
(
̂̃
θn)I−1(

̂̃
θn, φ̂1,n)r̃

θ̃
(
̂̃
θn)′)−1(r̃(

̂̃
θn)− v),

where

I(
̂̃
θn, φ̂1,n) =

∑
y,d,z=0,1

φ̂z,n

pyd,z(
̂̃
θn)

D
θ̃
pyd,z(

̂̃
θn)D

θ̃
pyd,z(

̂̃
θn)′

with φ̂1,n = n−1
∑n

i=1 Zi and φ̂0,n = 1−φ̂1,n. In the notation of Section 9,
̂̃
Σn = B̃(β̂n)I−1(

̂̃
θn, φ̂1,n)B̃(β̂n).

Under {γn} ∈ Γ(γ0, 0, b) with |b| < ∞, using the CMT and Corollary Est, I(
̂̃
θn, φ̂1,n)

d−→
I(θ̃∗0,b, φ1,0) and I(θ̃∗0,b, φ1,0) is a singular matrix and is therefore not invertible in the limit.

However, we may use an asymptotically equivalent approximation to I(θ̃∗0,b, φ1,0) when con-

structing an approximation to W̃ (b, γ0) in Theorem Wald that is easy to implement. Let

θ̃a0,b = (ψa0,b, π
∗
0,b, π

1a
0,b), where ψa0,b = ψ0 + τ0,b(π

∗
0,b)/
√
n and π1a

0,b is given by the display in

Remark 8.1. We use θ̃a0,b to construct the asymptotically equivalent approximation to W̃ (b, γ0):

W̃ a(b, γ0) = n(r̃(θ̃a0,b)− v)′(r̃
θ̃
(θ̃a0,b)I−1(θ̃a0,b, φ1,0)r̃

θ̃
(θ̃a0,b)

′)−1(r̃(θ̃a0,b)− v).

The random vector θ̃a0,b is asymptotically equivalent to θ̃∗0,b so that W̃ a(b, γ0) is asymptotically

equivalent to W̃ (b, γ0). Analogous to the case in Remark 8.1, this W̃ a(b, γ0) serves as a better

approximation in finite samples than W̃ (b, γ0). Moreover, since for any finite n, P (ψa0,b = ψ0) =
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0, I(θ̃a0,b, φ1,0) is invertible with probability 1.15

Similarly to the previous subsection, we provide a brief simulation study to illustrate how

well the random variables W̃ a(b, γ0) approximate their finite-sample counterparts. Figures 5–8

provide the simulated finite sample density functions of W̃n(v) for one-dimensional null hy-

potheses on the separate elements of the parameter vector θ̃. This type of null hypothesis is

a special case of those satisfying Assumptions Res1–Res2 in Section 9 and we therefore de-

scribe the limiting Wald statistic under weak identification in Theorem Wald(i). We emphasize

the one-dimensional subvector testing case here, since it is often of primary interest in applied

work and, to the best of our knowledge, no other studies in the literature have developed weak

identification asymptotic results for test statistics of this form. As in the previous subsection,

the finite-sample density functions for the Wald statistics are given in red and the densities of

W̃ a(b, γ0) are given in blue. In addition, the solid black line graphs the density function of a

χ2
1 distribution for comparison. We look at identical true parameter values as in the previous

subsection. Figures 5–8 show similar features to the corresponding figures for the estimators

(Figures 1–4): (i) the distributions of the Wald statistics can depart significantly from the usual

asymptotic χ2
1 approximations in the presence of weak/non-identification; (ii) as β grows larger,

the distributions become approximately χ2
1; and (iii) the new asymptotic distributional approx-

imation perform very well, especially compared to the usual χ2
1 approximation when β is small.

One interesting additional feature to note is that, although the distributions of the parameter

estimates when β = 0.2 in Figure 3 appear highly non-Gaussian (especially for π and π1
2), the

corresponding distributions in Figure 7 look well-approximated by the χ2
1 distribution. This is

perhaps due to the self-normalizing nature of Wald statistics.

12 Appendix A: Proofs of Main Results

Proof of Lemma ID1: By Assumption ID1, the following arguments hold for all θ̃ = (0, ζ, π̃) ∈
Θ̃ and γ0 ∈ Γ. Since rank(∂g̃0(θ̃)/∂π̃) = r, there are r linearly independent columns in

∂g̃0(θ̃)/∂π̃. These columns form the matrix ∂g̃0(θ̃)/∂π1 and the rank of this matrix is r. Thus,

∂g̃0(θ̃)/∂π1 has r linearly independent rows. These rows form the matrix ∂g1
0(θ̃)/∂π1 which has

rank equal to r. �

Proof of Lemma ID2: Under the imposed assumptions, by Hadamard’s global inverse

function theorem, g1
0(0, ζ, π, π1) as a function of π1, is a homeomorphism at a given (0, ζ, π).

15The invertibility issue for I(
̂̃
θn, φ̂1,n) arises when β̂n is exactly equal to zero, as is the limiting case under

weak and semi-strong identification. However, the probability that β̂n = 0 is equal to zero in finite samples, which
is reflected in the refined asymptotic approximation.

35



Therefore,

π1 =
(
g1

0

)−1
(0, ζ, π, 0) ≡ h1

0(ζ, π) (12.1)

∀(0, ζ, π) ∈ Θ0. �

Proof of Theorem Trans: When β = 0, (4.3) and Assumption ID2 imply that

g0
0(θ̃) = M(β, ζ; γ0)g1

0(θ̃) + C(β, ζ; γ0)

∀θ̃ = (0, ζ, π̃), where C(β, ζ; γ0) is (dG − r)-vector, which also does not depend on π̃. When

θ̃ = θ̃0 = (β0, ζ0, π̃0) = (0, ζ0, π̃0), both g0
0(θ̃) and g1

0(θ̃) are zero vectors by (2.1), and hence

C(0, ζ0; γ0) = 0. Therefore

g̃0(0, ζ0, π, h
1
0(0, ζ0, π)) =

[
g1

0(0, ζ0, π, h
1
0(0, ζ0, π))

g0
0(0, ζ0, π, h

1
0(0, ζ0, π))

]

=

[
I

M0

]
g1

0(0, ζ0, π, h
1
0(0, ζ0, π))

= 0 (12.2)

where M0 ≡M(0, ζ0; γ0) and the last equality holds by Lemma ID2.

Now, by Assumption CF2, Q̃0(0, ζ0, π, h
1
0(ζ0, π)) = Ψ0(0) = Q̃0(θ̃0). Since Q̃0(θ̃0) is the

smallest value that can be achieved by Assumption CF1, Assumption CF3a implies

π1
0(0, ζ0, π) = h1

0(ζ0, π). (12.3)

This establishes the theorem’s first claim. Combining this result with (12.2) establishes the

theorem’s second claim. �

Proof of Theorem FSTrans: Note that

dQn(θ)

dπ
=

(
dḡ(θ)

dπ

)′ dΨn(ḡ(θ))

dG
. (12.4)

We want to show that, for all θ = (0, ζ, π) ∈ Θ,

dḡ(θ)

dπ
= 0.

By Assumptions FSCF1 and FSReg2, for a given θ = (0, ζ, π), π̂1
n(θ) satisfies the first order
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condition:

0 =
∂Ψn

(
¯̃g(θ, π̂1

n(θ))
)

∂g̃

∂¯̃g(θ, π̂1
n(θ))

∂π1

=
∂Ψn

(
¯̃g(θ, π̂1

n(θ))
)

∂g̃

[
Ir

Mn

]
∂ḡ1(θ, π̂1

n(θ))

∂π1
, (12.5)

where the second equality follows from Assumption FSID1 so that

∂ḡ0((θ, π̂1
n(θ))

∂π1
= Mn

∂ḡ1((θ, π̂1
n(θ))

∂π1
.

Since ∂ḡ1/∂π1 is invertible, post-multiplying by its inverse on both sides of (12.5) yields

0 =
∂Ψn

(
¯̃g(θ, π̂1

n(θ))
)

∂g̃

[
Ir

Mn

]
, (12.6)

which, by differentiating with respect to π then yields (suppressing the argument (θ, π̂1
n(θ)) in

all relevant parts)

0 =

[
∂¯̃g

∂π
+

∂¯̃g

∂π1

∂π̂1
n(θ)

∂π

]′
∂2Ψn

∂g̃∂g̃′

[
Ir

Mn

]

=

[
∂ḡ1

∂π
+
∂ḡ1

∂π1

∂π̂1
n(θ)

∂π

]′ [
Ir

Mn

]′
Ψn,g̃g̃

[
Ir

Mn

]

=

[
∂ḡ1

∂π
+
∂ḡ1

∂π1

∂π̂1
n(θ)

∂π

]′
Ψ†n,g̃g̃, (12.7)

where the second equality holds by Assumption FSID1 and Ψ†n,g̃g̃ is implicitly defined. Since

Ψ̃n,g̃g̃ is positive definite by Assumption FSCF1, it can be decomposed as Ψn,g̃g̃ = R′nRn where

Rn is a matrix of full column rank. Therefore,

Ψ†n,g̃g̃ =

[
Ir

Mn

]′
R′nRn

[
Ir

Mn

]

and Rn

[
Ir

Mn

]
has rank of r and hence full column rank, which implies that Ψ†n,g̃g̃ is positive
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definite and thus invertible. Then (12.7) gives the first desired result:

0 =

[
∂ḡ1

∂π
+
∂ḡ1

∂π1

∂π̂1
n(θ)

∂π

]
=
dḡ1(θ, π̂1

n(θ))

dπ
.

We also have

dḡ0(θ, π̂1
n(θ))

dπ
=

[
∂ḡ0

∂π
+
∂ḡ0

∂π1

∂π̂1
n(θ)

∂π

]
= Mn

[
∂ḡ1

∂π
+
∂ḡ1

∂π1

∂π̂1
n(θ)

∂π

]
= 0. �

Lemma Conc1. Suppose Assumptions CF3, FSCF2, ID4 and Reg4 hold. Then, supθ∈Θ ‖π̂1
n(θ)−

π1
n(θ)‖ p−→ 0 under {γn} ∈ Γ(γ0) for any γ0 ∈ Γ.

Proof: Begin by noting the following:

0 ≤ inf
θ∈Θ

[Q̃0(θ, π̂1
n(θ))− Q̃0(θ, π1

0(θ))]

≤ sup
θ∈Θ

[Q̃0(θ, π̂1
n(θ))− Q̃0(θ, π1

0(θ))]

≤ sup
θ∈Θ

[Q̃0(θ, π̂1
n(θ))− Q̃n(θ, π̂1

n(θ))] + sup
θ∈Θ

[Q̃n(θ, π̂1
n(θ))− Q̃0(θ, π1

0(θ))]

≤ sup
θ∈Θ

[Q̃0(θ, π̂1
n(θ))− Q̃n(θ, π̂1

n(θ))] + sup
θ∈Θ

[Q̃n(θ, π1
0(θ))− Q̃0(θ, π1

0(θ))] + o(n−1)

≤ 2 sup
π1∈Π1(θ),θ∈Θ

|Q̃n(θ, π1)− Q̃0(θ, π1)|+ o(n−1) = op(1),

where the first inequality holds by Assumption CF3, the fourth inequality holds by (5.2) and the

equality holds by Assumption FSCF2. Now, Assumption ID3 implies that for any given θ ∈ Θ

and any neighborhood Π1
0(θ) of π1

0(θ), there is some ε > 0 such that infπ1∈Π1(θ)\Π1
0(θ) Q̃0(θ, π1)−

Q̃0(θ, π1
0(θ)) ≥ ε. Thus,

P (π̂1
n(θ) ∈ Π1(θ) \Π1

0(θ) for some θ ∈ Θ)

≤ P (Q̃0(θ, π̂1
n(θ))− Q̃0(θ, π1

0(θ)) ≥ ε for some θ ∈ Θ)→ 0

since supθ∈Θ[Q̃0(θ, π̂1
n(θ))− Q̃0(θ, π1

0(θ))]
p−→ 0. The statement of the lemma then follows from

Assumption Reg4. �

Lemma Conc2. Suppose Assumptions CF3, FSCF2, ID3, Reg4 and FSReg3–FSReg5 hold.

Then,
√
n(π̂1

n(·)− π1
n(·))⇒ −H̃−1

0,π1π1(·)G̃0(·) under {γn} ∈ Γ(γ0) for any γ0 ∈ Γ.
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Proof: Let κn(θ) = [Dπ1π1Q̃n(θ, π1
n(θ))]1/2

√
n(π̂1

n(θ)−π1
n(θ)). Since π1

n(θ) ∈ Π1(θ), we have

opθ(1) ≥ n(Q̃n(θ, π̂1
n(θ))− Q̃n(θ, π1

n(θ)))

=
√
nDπ1Q̃n(θ, π1

n(θ))′[Dπ1π1Q̃n(θ, π1
n(θ))]−1/2κn(θ) +

1

2
‖κn(θ)‖2 + nRn(θ, π̂1

n(θ))

= Opθ(‖κn(θ)‖) +
1

2
‖κn(θ)‖2 + (1 + ‖[Dπ1π1Q̃n(θ, π1

n(θ))]−1/2κn(θ)‖)2opθ(1)

= Opθ(‖κn(θ)‖) +
1

2
‖κn(θ)‖2 + opθ(‖κn(θ)‖) + opθ(‖κn(θ)‖2) + opθ(1),

where the first equality follows from Assumption FSReg3(i), the second equality follows from

Assumptions FSReg3(ii), FSReg4 and FSReg5 and Lemma Conc1 and the third equality follows

from Assumption FSReg5. Rearranging the previous display provides

2‖κn(θ)‖Opθ(1) + ‖κn(θ)‖2 + ‖κn(θ)‖opθ(1) + ‖κn(θ)‖2opθ(1) + opθ(1) ≤ opθ(1)

or

2‖κn(θ)‖Opθ(1) + ‖κn(θ)‖2 ≤ opθ(1),

which in turn implies

‖κn(θ)‖2 ≤ 2‖κn(θ)‖Opθ(1) + opθ(1).

Let Opθ(1) = ξn,θ. Then

ξ2
n,θ + ‖κn(θ)‖2 − 2‖κn(θ)‖ξn,θ ≤ ξ2

n,θ + opθ(1),

so that ‖κn(θ)‖ = Opθ(1) by taking square roots. Then
√
n(π̂1

n(θ)− π1
n(θ)) = Opθ(1) under any

{γn} ∈ Γ(γ0) by Assumption FSReg5.

Applying the quadratic approximation of Assumption FSReg3(i) with π1 = π̂1
n(θ),

n(Q̃n(θ, π̂1
n(θ))− Q̃n(θ, π1

n(θ)))

= nDπ1Q̃n(θ, π1
n(θ))′[Dπ1π1Q̃n(θ, π1

n(θ))]−1Dπ1π1Q̃n(θ, π1
n(θ))(π̂1

n(θ)− π1
n(θ))

+
1

2
n(π̂1

n(θ)− π1
n(θ))′Dπ1π1Q̃n(θ, π1

n(θ))(π̂1
n(θ)− π1

n(θ)) + opθ(1)

=
1

2

(√
n(π̂1

n(θ)− π1
n(θ)) + [Dπ1π1Q̃n(θ, π1

n(θ))]−1√nDπ1Q̃n(θ, π1
n(θ))

)′
Dπ1π1Q̃n(θ, π1

n(θ))

×
(√

n(π̂1
n(θ)− π1

n(θ)) + [Dπ1π1Q̃n(θ, π1
n(θ))]−1√nDπ1Q̃n(θ, π1

n(θ))
)

(12.8)
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− 1

2
nDπ1Q̃n(θ, π1

n(θ))′[Dπ1π1Q̃n(θ, π1
n(θ))]−1Dπ1Q̃n(θ, π1

n(θ)) + opθ(1)

where the opθ(1) term follows from Assumption FSReg3(ii) and the fact that
√
n(π̂1

n(θ)−π1
n(θ)) =

Opθ(1). Similarly applying the quadratic approximation of Assumption FSReg3(i) with π1 =

π1†
n (θ) ≡ π1

n(θ)− [Dπ1π1Q̃n(θ, π1
n(θ))]−1Dπ1Q̃n(θ, π1

n(θ)),

n(Q̃n(θ, π1†
n (θ))− Q̃n(θ, π1

n(θ))) = −1

2
nDπ1Q̃n(θ, π1

n(θ))′[Dπ1π1Q̃n(θ, π1
n(θ))]−1Dπ1Q̃n(θ, π1

n(θ)) + opθ(1),

(12.9)

where the opθ(1) term follows from Assumption FSReg3(ii) and the facts that π1†
n (θ)− π1

n(θ) =

opθ(1) and π1†
n (θ) ∈ Π1(θ) with probability approaching 1. The first of these facts follows from

Assumptions FSReg4 and FSReg5. The second follows from the first and Assumption CF3.

Since π1†
n (θ) ∈ Π1(θ) with probability approaching 1, Q̃n(θ, π̂1

n(θ)) ≤ Q̃n(θ, π1†
n (θ))+opθ(n

−1).

Along with (12.8) and (12.9), this implies

1

2

(√
n(π̂1

n(θ)− π1
n(θ)) + [Dπ1π1Q̃n(θ, π1

n(θ))]−1√nDπ1Q̃n(θ, π1
n(θ))

)′
Dπ1π1Q̃n(θ, π1

n(θ))

×
(√

n(π̂1
n(θ)− π1

n(θ)) + [Dπ1π1Q̃n(θ, π1
n(θ))]−1√nDπ1Q̃n(θ, π1

n(θ))
)
≤ opθ(1).

Finally, Assumption FSReg5 then implies

√
n(π̂1

n(θ)−π1
n(θ)) = −[Dπ1π1Q̃n(θ, π1

n(θ))]−1√n[Dπ1Q̃n(θ, π1
n(θ))+opθ(1)⇒ −H̃−1

0,π1π1(θ)G̃0(θ),

where the weak convergence is a direct result of Assumptions FSReg4 and FSReg5. �

Proof of Theorem Conc: First note that Theorem FSTrans implies that Assumption A

of AC12 holds for the concentrated criterion function Qn(θ).

(i) Theorem 3.1(a) of AC12 implies the marginal convergence of (
√
n(ψ̂n−ψn), π̂n). Lemma

Conc2 provides the marginal convergence of
√
n(π̂1

n(·) − π1
n(·)). Hence, it suffices to show that

these quantities converge jointly. The proof of Theorem 3.1 of AC12 shows that
√
n(ψ̂n(·)−ψn)

and π̂n are continuous functions of
√
nDψQn(ψ0,n, ·)+opπ(1) and DψψQn(ψ0,n, ·)+opπ(1), where

ψ̂n = ψ̂n(π̂n). Similarly, the proof of Lemma Conc2 shows that
√
n(π̂1

n(·)−π1
n(·)) is a continuous

function of
√
nDπ1Q̃n(·, π1

n(·))+opθ(1) and Dπ1π1Q̃n(·, π1
n(·))+opθ(1). Since DψψQn(ψ0,n, ·) and

Dπ1π1Q̃n(·, π1
n(·)) converge to nonrandom limits H0(·) and H̃0,π1π1(·) by Assumptions C4(i) of

AC12 and FSReg5(i) of this paper, it suffices that
√
nDψQn(ψ0,n, ·) and

√
nDπ1Q̃n(·, π1

n(·))
converge jointly. This is given by Assumption FSReg4(i).

(ii) Similarly to the proof of part (i), it suffices to show that
√
nB(βn)(θ̂n−θn) and

√
n(π̂n(·)−
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πn(·)) converge jointly since their marginal convergence has been shown in Theorem 3.2(a) of

AC12 and Lemma Conc2. The proof of Theorem 3.2 of AC12 shows that
√
nB(βn)(θ̂n − θn)

is a continuous function of
√
nB−1(βn)DQn(θ) + op(1) and B−1(βn)D2Qn(θn)B−1(βn) + op(1),

the latter of which converges to the nonrandom limit J(γ0) by Assumption D2 of AC12. Thus,

in analogy with the proof of part (i), it suffices that
√
nB−1DQn(θn) and

√
nDπ1Q̃n(·, π1

n(·))
converge jointly. This is given by Assumption FSReg4(ii). �

Proof of Theorem Est: (i) Begin by decomposing π̂1
n(θ̂n)− π1

n(θn) = π̂1
n − π1

n as follows:

π̂1
n(θ̂n)− π1

n(θn) = {π̂1
n(θ̂n)− π1

n(θ̂n)}+ {π1
n(θ̂n)− π1

n(θn)}

= {π̂1
n(θ̂n)− π1

n(θ̂n)}+ {[π1
n(ψ̂n, π̂n)− π1

n(ψn, π̂n)] + [π1
n(ψn, π̂n)− π1

n(ψn, πn)]}

= {π̂1
n(θ̂n)− π1

n(θ̂n)}+ {πn,ψ(θ̂n)(ψ̂n − ψn) + [π1
n(ψn, π̂n)− π1

n(ψn, πn)]}+ op(n
−1/2),

where the final equality uses a mean value expansion (with respect to ψ) that holds by Theorem

Conc(i) and Assumption Reg5(i). Using this decomposition, we have( √
nA1,n(θ̂n)(π̂1

n(θ̂n)− π1
n(θn))

A2,n(θ̂n)(π̂1
n(θ̂n)− π1

n(θn))

)

=

( √
nA1,n(θ̂n)[π1

n,ψ(θ̂n)(ψ̂n − ψn) + (π̂1
n(θ̂n)− π1

n(θ̂n))]

A2,n(θ̂n)(π1
n(ψn, π̂n)− π1

n(ψn, πn))

)

+

( √
nA1,n(θ̂n)(π1

n(ψn, π̂n)− π1
n(ψn, πn))

A2,n(θ̂n)[π1
n,ψ(θ̂n)(ψ̂n − ψn) + (π̂1

n(θ̂n)− π1
n(θ̂n))]

)
+ op(1)

=

( √
nA1,n(θ̂n)[π1

n,ψ(θ̂n)(ψ̂n − ψn) + (π̂1
n(θ̂n)− π1

n(θ̂n))]

A2,n(θ̂n)(π1
n(ψn, π̂n)− π1

n(ψn, πn))

)
+ op(1)

d−→

(
A1,0(ψ0, π

∗
0,b){π1

0,ψ(ψ0, π
∗
0,b)τ0,b(π

∗
0,b)− H̃

−1
0,π1π1(ψ0, π

∗
0,b)G̃0(ψ0, π

∗
0,b)}

A2,0(ψ0, π
∗
0,b){π1

0(ψ0, π
∗
0,b)− π1

0(ψ0, π0)}

)

under {γn} ∈ Γ(γ0, 0, b), where the second equality follows from Assumptions Reg5(i) and Reg6,

Theorem Conc(i) and the uniform CMT and the weak convergence follows from Assumption

Reg5, Theorem Conc(i) and the uniform CMT. Assumption Reg5(ii) is used to ensure An(θ)→
A0(θ) for all θ ∈ Θε (see e.g., Andrews, 1987). The marginal convergence (

√
n(ψ̂n−ψn), π̂n)

d−→
(τ0,b(π

∗
0,b), π

∗
0,b) immediately follows from Theorem Conc(i) and, noting that ψ̂n, π̂n, A1,n(θ̂n),

A1,n(θ̂n) and π̂1
n are all continuous functions of ψ̂n, π̂n and π̂1

n(·), the uniform CMT and Theorem

Conc(i) yield the joint convergence stated in the theorem.

(ii) For the β0 = 0 case, the same decomposition of π̂1
n(θ̂n)−π1

n(θn) as that used in the proof
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of part (i) and similar reasoning imply( √
nA1,n(θ̂n)(π̂1

n(θ̂n)− π1
n(θn))

√
nι(βn)A2,n(θ̂n)(π̂1

n(θ̂n)− π1
n(θn))

)
=

( √
nA1,n(θ̂n)[π1

n,ψ(θ̂n)(ψ̂n − ψn) + (π̂1
n(θ̂n)− π1

n(θ̂n))]
√
nι(βn)A2,n(θ̂n)(π1

n(ψn, π̂n)− π1
n(ψn, πn))

)
+ op(1).

A mean-value expansion, Assumption Reg5(i) and the consistency of θ̂n under {γn} ∈ Γ(γ0,∞, ω0)

given by Theorem Conc(ii) provide that

√
nι(βn)A2,n(θ̂n)(π1

n(ψn, π̂n)− π1
n(ψn, πn)) =

√
nι(βn)A2,n(θ̂n)[(π1

n,π(ψn, π̂n) + op(1))(π̂n − πn)]

=
√
nι(βn)A2,n(θ̂n)π1

n,π(ψn, π̂n)(π̂n − πn) + op(1),

where the second equality follows from Assumption Reg5(i) and Theorem Conc(ii). Putting

these results together, we have( √
nA1,n(θ̂n)(π̂1

n(θ̂n)− π1
n(θn))

√
nι(βn)A2,n(θ̂n)(π̂1

n(θ̂n)− π1
n(θn))

)
d−→

(
A1,0(θ0)[π1

0,ψ(θ0)Zψ − H̃−1
0,π1π1(θ0)G̃0(θ0)]

A2,0(θ0)π1
0,π(θ0)Zπ

)

by Assumption Reg5, Theorem Conc(ii) and the uniform CMT. Analogous reasoning to that

used in the proof of part (i) then yields the stated result for β0 = 0. Finally, for the β0 6= 0 case,

note that

π̂1
n − π1

n = π̂1
n(θ̂n)− π1

n(θn)

= [π1
n(θ̂n)− π1

n(θn)] + [π̂1
n(θ̂n)− π1

n(θ̂n)]

= π1
θ,n(θ̂n)[θ̂n − θn] + [π̂1

n(θ̂n)− π1
n(θ̂n)] + op(n

−1/2)

where the third equality follows from a mean value expansion which holds by Assumption Reg5(i)

and Theorem Conc(ii). By Theorem Conc(ii), Assumption Reg5(i) and the CMT, this implies

√
n(π̂1

n − π1
n)

d−→ π1
0,θ(θ0)B−1(β0)Zθ − H̃−1

0,π1π1(θ0)G̃0(θ0)

jointly with
√
n(θ̂n − θn)

d−→ B−1(β0)Zθ. �

Proof of Corollary Est: (i) By Theorem Est(i),

(π̂1
n − π1

n) = A−1
n (θ̂n)An(θ̂n)(π̂1

n − π1
n)

= A1
n(θ̂n)A1,n(θ̂n)(π̂1

n − π1
n) +A2

n(θ̂n)A2,n(θ̂n)(π̂1
n − π1

n)

d−→ A2
0(ψ0, π

∗
0,b)A2,0(ψ0, π

∗
0,b)(π

1
0(ψ0, π

∗
0,b)− π1

0(ψ0, π0)),
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since A1,n(θ̂n)(π̂1
n− π1

n) = Op(n
−1/2) and A1

n(θ̂n) = Op(1). The joint convergence follows imme-

diately from Theorem Est(i).

(ii) When β0 6= 0, the stated result follows directly from Theorem Est(ii). For the β0 = 0

case, note that

π̂1
n − π1

n = [π̂1
n(θ̂n)− π1

n(θ̂n)] + [π1
n(θ̂n)− π1

n(θn)]

= [π̂1
n(θ̂n)− π1

n(θ̂n)] + π1
θ,n(θ̂n)[θ̂n − θn] + op(ι(βn)−1n−1/2)

= π1
π,n(θ̂n)[π̂n − πn] + op(ι(βn)−1n−1/2)

where the second equality follows from a mean value expansion which holds by Assumption

Reg5(ii) and Theorem Conc(ii) and the third equality follows from Theorem 1(ii). Again apply-

ing Theorem Conc(ii), with Assumption Reg5(ii) and the CMT, this implies

n1/2ι(βn)[π̂1
n − π1

n]
d−→ π1

0,π(θ0)Zπ

jointly with
√
nB(βn)(θ̂n−θn)

d−→ Zθ. To obtain the stated result, then note that when β0 = 0,

H̄0,π1π1(θ0) = 0 and

π1
0,θ(θ0)B̄(β0)Zθ − H̄−1

0,π1π1(θ0)G̃0(θ0) = π1
0,θ(θ0)

(
0dψ×dψ 0dψ×dπ

0dπ×dψ Idπ

)(
Zψ

Zπ

)
= π1

0,π(θ0)Zπ. �

Proof of Theorem Wald: Under H0 we can express the Wald statistic as

W̃n(vn) = qÃn (
̂̃
θn)′(r̃Ã

θ̃,n
(
̂̃
θn)
̂̃
Σnr̃

Ã
θ̃,n

(
̂̃
θn)′)−1qÃn (

̂̃
θn),

where

qÃn (
̂̃
θn) = n1/2B∗(β̂n)Ã(

̂̃
θn)(r̃(

̂̃
θn)− r̃(θ̃n)) and rÃ

θ̃,n
(
̂̃
θn) = B∗(β̂n)Ã(

̂̃
θn)r̃

θ̃
(
̂̃
θn)B̃−1(β̂n)

with

B∗(β̂n) =

(
Idr̃−d∗π̃ 0

0 ι(β̂n)Id∗
π̃

)
.

(i) Note that

rÃ
θ̃,n

(
̂̃
θn) = B∗(β̂n)

 Ã1(
̂̃
θn)r̃ψ(

̂̃
θn) 0

Ã2(
̂̃
θn)r̃ψ(

̂̃
θn) Ã2(

̂̃
θn)r̃π̃(

̂̃
θn)

 B̃−1(β̂n)
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=

 Ã1(
̂̃
θn)r̃ψ(

̂̃
θn) 0

ι(β̂n)Ã2(
̂̃
θn)r̃ψ(

̂̃
θn) Ã2(

̂̃
θn)r̃π̃(

̂̃
θn)

 d−→ r̃Ã
θ̃

(θ̃∗0,b), (12.10)

where the convergence follows from Corollary Est(i), Assumption Res1(i) and the CMT since

ι(β̂n) = op(1) and Ã2(
̂̃
θn)r̃ψ(

̂̃
θn) = Op(1). Turning to the qÃn (

̂̃
θn) term, note that

r̃(
̂̃
θn)− r̃(θ̃n) = {r̃(ψ̂n, ̂̃πn)− r̃(ψn, ̂̃πn)}+ {r̃(ψn, ̂̃πn)− r̃(ψn, π̃n)}

= r̃ψ(
̂̃
θn)(ψ̂n − ψn) + {r̃(ψn, ̂̃πn)− r̃(ψn, π̃n)}+ op(n

−1/2),

where the second equality follows from a mean-value expansion, the fact that ψ̂n − ψn =

Op(n
−1/2) by Corollary Est(i) and Assumption Res1(i). Hence,

qÃn (
̂̃
θn) =

 n1/2Ã1(
̂̃
θn)(r̃(

̂̃
θn)− r̃(θ̃n))

n1/2ι(β̂n)Ã2(
̂̃
θn)(r̃(

̂̃
θn)− r̃(θ̃n))

 = qÃ1,n(
̂̃
θn) + qÃ2,n(

̂̃
θn) + op(1),

where

qÃ1,n(
̂̃
θn) =

 n1/2Ã1(
̂̃
θn)r̃ψ(

̂̃
θn)(ψ̂n − ψn)

n1/2ι(β̂n)Ã2(
̂̃
θn)(r̃(ψn, ̂̃πn)− r̃(ψn, π̃n))


qÃ2,n(

̂̃
θn) =

 η̃n(
̂̃
θn)

n1/2ι(β̂n)Ã2(
̂̃
θn)r̃ψ(

̂̃
θn)(ψ̂n − ψn)

 .

Note that Assumption Res2, the fact that ψ̂n −ψn = Op(n
−1/2) and ι(β̂n) = op(1) by Corollary

Est(i) and Assumption Res1(i) imply that qÃ2,n(
̂̃
θn) = op(1). Hence,

qÃn (
̂̃
θn) = qÃ1,n(

̂̃
θn) + op(1)

d−→ qÃ0,b(θ̃
∗
0,b) (12.11)

by Corollary Est(i), Assumption Res1(i) and the CMT. Now, for the case of scalar β,

̂̃
Σn =

 Ĵ−1(θ̂n)V̂ (θ̂n)Ĵ−1(θ̂n) Σ̂12
n (
̂̃
θn)

Σ̂12
n (
̂̃
θn)′ Σ̂22

n (
̂̃
θn)

 d−→ Σ̃0(π∗0,b) (12.12)

by Assumption V1 of AC12, Assumption Var1, Corollary Est(i) and the CMT. The analogous

argument holds for the vector β case. Finally, the convergence of (12.10) and (12.12) occurs
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jointly by Corollary Est(i) and the CMT so that

r̃Ã
θ̃,n

(
̂̃
θn)
̂̃
Σnr̃

Ã
θ̃,n

(
̂̃
θn)′

d−→ r̃Ã
θ̃

(θ̃∗0,b)Σ̃0(π∗0,b)r̃
Ã
θ̃

(θ̃∗0,b)
′ (12.13)

= [r̃Ãθ (θ̃∗0,b) : r̃Ãπ1(θ̃∗0,b)]Σ̃0(π∗0,b)[r̃
Ã
θ (θ̃∗0,b) : r̃Ãπ1(θ̃∗0,b)]

′,

where

r̃Ãθ (θ̃) ≡

(
Ã1(θ̃)r̃ψ(θ̃) 0

0 Ã2(θ̃)r̃π(θ̃)

)
,

r̃Ãπ1(θ̃) ≡

(
0

Ã2(θ̃)r̃π1(θ̃)

)
.

By Assumption Var1(i), this in turn equals

[r̃Ãθ (θ̃∗0,b) : r̃Ãπ1(θ̃∗0,b)]×
Σ0(π∗0,b) Σ0(π∗0,b)

(
0dψ×dπ1
π1

0,π(θ∗0,b)

)

(0dπ1×dψ : π1
0,π(θ∗0,b)

′)Σ0(π∗0,b) (0dπ1×dψ : π1
0,π(θ∗0,b)

′)Σ0(π∗0,b)

(
0dψ×dπ1
π1

0,π(θ∗0,b)

)


×

(
r̃Ãθ (θ̃∗0,b)

′

r̃Ãπ1(θ̃∗0,b)
′

)
(12.14)

=
(
r̃Ãθ (θ̃∗0,b) + r̃Ãπ1(θ̃∗0,b)(0dπ1×dψ : π1

0,π(θ∗0,b)
′)
)

Σ0(π∗0,b)
(
r̃Ãθ (θ̃∗0,b) + r̃Ãπ1(θ̃∗0,b)(0dπ1×dψ : π1

0,π(θ)′)
)′
.

Now note that

r̃Ãθ (θ̃∗0,b)+r̃
Ã
π1(θ̃∗0,b)(0dπ1×dψ : π1

0,π(θ∗0,b)
′) =

(
Ã1(θ̃∗0,b)r̃ψ(θ̃∗0,b) 0

0 Ã2(θ̃∗0,b)[r̃π(θ̃∗0,b) + r̃π1(θ̃∗0,b)π
1
0,π(θ∗0,b)

′]

)

so that by Assumption Var1(iii), (12.14) has full rank when Assumption Res3 holds. Finally,

the convergence of (12.11) and (12.13) is joint by Corollary Est(i) and the CMT, yielding the

statement of the theorem.

(ii) In the case that β0 = 0, very similar arguments to those providing the convergence in

(12.10) but instead using Corollary Est(ii) provide that rÃ
θ̃,n

(
̂̃
θn)

p−→ r̃Ã
θ̃

(θ̃0). In addition, very

similar arguments to those leading up to (12.11), but instead using Corollary Est(ii), provide
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that qÃn (
̂̃
θn) = qÃ1,n(

̂̃
θn) + op(1). In this case,

n1/2ι(β̂n)Ã2(
̂̃
θn)(r̃(ψn, ̂̃πn)− r̃(ψn, π̃n)) = n1/2ι(β̂n)Ã2(

̂̃
θn)(r̃π̃(

̂̃
θn) + op(1))(̂̃πn − π̃n)

= n1/2ι(β̂n)Ã2(
̂̃
θn)r̃π̃(

̂̃
θn)(̂̃πn − π̃n) + op(1)

where the first equality follows from a mean value expansion, Assumption Res1(i) and Corollary

Est(ii) and the second equality follows from Corollary Est(ii). Hence,

qÃ1,n(
̂̃
θn) = r̃Ã

θ̃
(
̂̃
θn)n1/2B̃(βn)(

̂̃
θn − θ̃n)

d−→ r̃Ã
θ̃

(θ0)Z
θ̃

by Corollary Est(ii) and Assumption Res1(i). By Assumption Var2 and Assumption V2 of

AC12,
̂̃
Σn

p−→ Eγ0 [Z
θ̃
Z ′
θ̃
] ≡ Σ̃(γ0). Very similar arguments to those used in part (i) imply that

r̃Ã
θ̃

(θ0)Σ̃(γ0)r̃Ã
θ̃

(θ0)′ is invertible. Putting the parts together, we have

W̃n(vn)
d−→ Z ′

θ̃
r̃Ã
θ̃

(θ0)′
(
r̃Ã
θ̃

(θ0)Σ̃(γ0)r̃Ã
θ̃

(θ0)′
)−1

r̃Ã
θ̃

(θ0)Z
θ̃
∼ χ2

dr̃

by the CMT. Finally, for the β0 6= 0 case, note that

√
n(r̃(

̂̃
θn)− r̃(θ̃n)) = (r̃

θ̃
(
̂̃
θn) + op(1))

√
n(
̂̃
θn − θ̃n)

d−→ r̃
θ̃
(θ̃0)B̃−1(β0)Z

θ̃

by a mean-value expansion, Theorem Est(ii) and Assumption Res1(i) and

r̃
θ̃
(
̂̃
θn)B̃−1(β̂n)

̂̃
ΣnB̃

−1(β̂n)r̃
θ̃
(
̂̃
θn)′

p−→ r̃
θ̃
(θ̃0)B̃−1(β0)Σ̃(γ0)B̃−1(β0)r̃

θ̃
(θ̃0)′,

by the CMT, Theorem Est(ii), Assumption Res1(i), Assumption Var2 and Assumption V2 of

AC12. The stated result then follows. �

Proof of Proposition ICS: The proof is nearly identical to the proof of Theorem 5.1(b)(iv)

of AC12, using Theorem Wald in the place of Theorems 4.2 and 4.3 of AC12. �

Proof of Proposition AB: The proof of this proposition verifies that the assumptions of

Theorem Bonf-Adj of McCloskey (2012) hold, with some modifications. First, Assumption PS

of McCloskey (2012) holds with γ1 = (β, π), γ2 = (ζ, δ), no γ3 and γ4 = φ. For the definition

of {γn,h}, γn,h,1 = (βn,h, n
−1/2πn,h) and γn,h,2 = (ζn,h, δn,h). Note that h1,1 = b, where h1,1

denotes the first dβ elements of h1. In the notation of McCloskey (2012), sequences {γn,h} with

‖h1,1‖ < ∞ (‖h1,1‖ = ∞) correspond to weak (semi-strong or strong) identification sequences

{γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞ ({γn} ∈ Γ(γ0,∞, ω0)) in the notation of this paper.

Second, for Assumption DS of McCloskey (2012), Tn(θn) = W̃n(vn) ĥn,1 = (̂bn, π̂n) and
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ĥn,2 = (ζ̂n, δ̂n). Theorem Wald provides the marginal weak convergence of Tωn(θωn) for all

sequences {γωn,h}, where in the notation of McCloskey (2012), Wh = W̃ (b, γ0) when ‖h1,1‖ <∞
and Wh is distributed χ2

dr̃
when ‖h1,1‖ = ∞. Corollary Est and Assumption FD provide the

marginal weak convergence of ĥωn = (ĥωn,1, ĥωn,2) for all sequences {γωn,h}, where in the notation

of McCloskey (2012), h̃1 = (b + τβ0,b(π
∗
0,b), π

∗
0,b) when ‖h1,1‖ < ∞, h̃1 = (b + Zβ, π0) when

‖h1,1‖ = ∞ and h2 = (ζ0, δ0). Joint convergence of (Tωn(θωn), ĥωn) follows from Corollary Est

similarly to the joint convergence statements made in Theorem Wald.

Third, for Assumption MLLD of McCloskey (2012), we are in what McCloskey (2012) refers

to as “the usual case” for which u = 1, W̃
(1)
h = W̃ (b, γ0) and H̄(1),c = ∅ since P (|W̃ (b, γ0)| <

∞) = 1 under the assumptions of Theorem Wald. Since we are in the usual case, there is no

need to define the auxiliary sequence of parameters {ζn} (it can be any arbitrary sequence in Rr

for arbitrary r > 0) and P = Rr∞ for any r > 0. Since Wh = W̃ (b, γ0) = W̃
(1)
h when ‖h1,1‖ <∞

and Wh = W̃
(1)
h is distributed χ2

dr̃
when ‖h1,1‖ =∞, the only item left to verify is that W̃ (b, γ0)

is completely characterized by h(1) = h = (b, π0, ζ0, δ0). This holds by Assumption FD.

Fourth, for Assumption Cont-Adj of McCloskey (2012), H̄(1) = H. This assumption holds

for any δ(1) > 0 and δ̄(1) ≤ α since W̃ (b, γ0) is an absolutely continuous random variable with

quantiles that are continuous in b and W̃ (b, γ0)
d∼ χ2

dr̃
for any b such that ‖b‖ = ∞. Fifth,

Assumption Sel holds trivially since we are in the “usual case”.

Sixth, Assumption CS of McCloskey (2012) can be modified and applied to Îan(·) and its

limit counterpart Ia0 (·) so that: (i)

sup

(b,π0)∈{(̃b,π̃)∈R
dβ+dπ
∞ :(̃b,γ̃)∈Λ}

dH(Îan(b, π0), Ia0 (b, π0))
p−→ 0

under any {γn} ∈ Γ(γ0), where dH(A,B) denotes the Hausdorff distance between the two sets

A and B; (ii) Ia0 (·) is a continuous and compact-valued correspondence; (iii) Pγn(Îan (̂bn, π̂n) ⊂
H̄

(1)
1 (ĥn,2)) = 1 for all n ≥ 1 and {γn} ∈ Γ(γ0) and P (Ia0 (b + τβ0,b(π

∗
0,b), π

∗
0,b) ⊂ H̄

(1)
1 (h2)) = 1;

and (iv) Ia0 (b + τβ0,b(π
∗
0,b), π

∗
0,b) need not satisfy a coverage requirement (i.e., P (h1 ∈ Ia0 (b +

τβ0,b(π
∗
0,b), π

∗
0,b) ≥ 1−a). The proof of Theorem Bonf-Adj in McCloskey (2012) still goes through

with this modification of Assumption CS. Condition (i) is satisfied by the consistency of (ζ̂n, δ̂n)

and the uniform consistency of Σ̂n(·) under any {γn} ∈ Γ(γ0). The former holds by Corollary Est

and Assumption FD while the latter holds by Assumptions V1 and V2 of AC12. For condition

(ii), Ia0 (·) is clearly continuous and compact-valued. Note that P(ζ̂n, δ̂n) and P(ζ0, δ0) are equal

to H̄(1)(ĥn,2) and H̄(1)(h2) in the notation of McCloskey (2012) so that condition (iii) holds by

construction.

Seventh, note that rather than using a quantile adjustment function (a(j)(·) in the notation
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of McCloskey, 2012), we are fixing the quantile at level 1−α and adding a size-correction func-

tion η(·) to it. The proof of Theorem Bonf-Adj of McCloskey (2012) can be easily adjusted

to this modification. Rather than requiring the quantile adjustment function to be continuous,

the proof requires η(·) to be continuous. That is, Assumption a(i) of McCloskey (2012) may

be replaced by the analogous assumption: η(·) is continuous. In practice, η(·) is only evalu-

ated at the point (ζ̂n, δ̂n, Σ̂n(·)), which is consistent with this assumption. Due to the replace-

ment of quantile adjustment by additive size-correction, Assumption a(ii) of McCloskey (2012)

should also be replaced by the analogous assumption: P (W̃ (b, γ0) ≥ supλ∈Λaγ0 (b,γ0)∩Λ(v) c1−α(λ)+

η(ζ0, δ0,Σ0(·))) ≤ α for all (b, γ0) ∈ Λ0 ∩ Λ(v). This assumption holds by the construction of

η(ζ̂n, δ̂n, Σ̂n(·)) and the (uniform) consistency of (ζ̂n, δ̂n, Σ̂n(·)).
Finally, Assumption Inf-Adj of McCloskey (2012) holds vacuously since H̄(1),c = ∅ and

Assumption LB-Adj of that paper is imposed by Assumption DF2. �

13 Appendix B: Assumptions and Notation for Vector β Case

For the vector β case, reparameterize β as (‖β‖, ω), where ω = β/‖β‖ if β 6= 0 and define

ω = 1dβ/‖1dβ‖ if β = 0. Correspondingly, reparameterize θ̃ as θ̃+ = (‖β‖, ω, ζ, π̃). Let
̂̃
θ

+

n and

θ̃+
0 be the correspondingly reparameterized versions of

̂̃
θn and θ̃0. Let Σ̃0(θ+) ≡ Σ̃(θ+; γ0) for

θ+ ∈ Θ+ ≡ {θ+ : θ ∈ Θ} be a nonstochastic dθ × dθ matrix-valued function. Let

Σ̃0(θ+) =


Σ0(θ+) Σ0(θ+)

(
0dψ×dπ1

∂π1+
0 (θ+)′/∂π

)

(0dπ1×dψ : ∂π1+
0 (θ+)/∂π′)Σ0(θ+) (0dπ1×dψ : ∂π1+

0 (θ+)/∂π′)Σ0(θ+)

(
0dψ×dπ1

∂π1+
0 (θ+)′/∂π

)


≡

(
Σ0(θ+) Σ12

0 (θ+)

Σ12
0 (θ+)′ Σ22

0 (θ+),

)
Σ̃0(π̃, ω) ≡ Σ̃(π̃, ω; γ0) = Σ̃(‖β0‖, ω, ζ0, π; γ0),

where π1+
0 (θ+) = π1

0(θ) and Σ0(θ+) ≡ Σ(θ+; γ0) is defined in (8.1) of Andrews and Cheng

(2012b).

Assumption Var1. (Vector β) (i) Σ̂12
n = Σ̂12

n (θ̂+
n ) and Σ̂22

n = Σ̂22
n (θ̂+

n ) for some (stochastic) dθ×
dπ1 and dπ1×dπ1 matrix-valued functions Σ̂12

n (·) and Σ̂22
n (·) on Θ+ that satisfy supθ+∈Θ+ ‖Σ̂12

n (θ+)−
Σ12

0 (θ+)‖ p−→ 0 and supθ+∈Θ+ ‖Σ̂22
n (θ+)−Σ22

0 (θ+)‖ p−→ 0 under {γn} ∈ Γ(γ0, 0, b) with ‖b‖ <∞.

(ii) Σ12
0 (θ+) and Σ22

0 (θ+) are continuous on θ+ ∈ Θ+ for all γ0 ∈ Γ with β0 = 0.
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(iii) λmin(Σ0(π̃, ω)) > 0 and λmax(Σ̃0(π̃, ω)) < ∞ for all π̃ such that there is some θ̃ =

(ψ, π̃) ∈ Θ̃, ω ∈ Rdβ with ‖ω‖ = 1 and γ0 ∈ Γ with β0 = 0.

(iv) P (τβ0,b(π
∗(γ0, b)) = 0) = 0 for all γ0 ∈ Γ with β0 = 0 and b with ‖b‖ <∞.

14 Appendix C: Derivations for Threshold-Crossing Example

Beginning with the Gaussian processes, note that

DψQn(θ) = −
∑

y,d,z=0,1

1

n

n∑
i=1

1ydz(Wi)Dψ log pyd,z(θ, π̂
1
n(θ))

DψQ(θ; γn) = −
∑

y,d,z=0,1

pyd,z(θ̃n)φz,nDψ log pyd,z(θ, π
1
n(θ))

so that

√
n(DψQn(θ)−DψQ(θ; γn))

= −
∑

y,d,z=0,1

[
n−1/2

n∑
i=1

(1ydz(Wi)− pyd,z(θ̃n)φz,n)

]
Dψ log pyd,z(θ, π̂

1
n(θ)) (14.1)

+
∑

y,d,z=0,1

pyd,z(θ̃n)φz,n
√
n
[
Dψ log pyd,z(θ, π

1
n(θ))−Dψ log pyd,z(θ, π̂

1
n(θ))

]
. (14.2)

Note that a CLT for triangular arrays provides that under {γn} ∈ Γ(γ0),

n−1/2
n∑
i=1


1000(Wi)− p00,0(θ̃n)φ0,n

...

1111(Wi)− p11,1(θ̃n)φ1,n

 d−→ Z̃ =


Z̃000

...

Z̃111

 d∼ N (0, Ṽ0) (14.3)

with Ṽ0 defined such that

V ar(Z̃ydz) = pyd,z(θ̃0)φz,0(1− pyd,z(θ̃0)φz,0)

Cov(Z̃ydz, Z̃y′d′z′) = −pyd,z(θ̃0)py′d′,z′(θ̃0)φz,0φz′,0.

On the other hand, a (uniform in θ) mean value expansion, along with the results of Lemma

Conc1 (see Appendix A) provides that

Dψ log pyd,z(θ, π̂
1
n(θ)) = Dψ log pyd,z(θ, π

1
n(θ)) +Dψπ1 log pyd,z(θ, π

1†
n (θ))(π̂1

n(θ)− π1
n(θ)),
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where supθ∈Θ ‖π
1†
n (θ)− π1

n(θ)‖ p−→ 0. Hence, (14.2) is equal to

−
∑

y,d,z=0,1

pyd,z(θ̃n)φz,nDψπ1 log pyd,z(θ, π
1†
n (θ))

√
n(π̂1

n(θ)− π1
n(θ))

=
∑

y,d,z=0,1

pyd,z(θ̃n)φz,nDψπ1 log pyd,z(θ, π
1†
n (θ))[Dπ1π1Q̃n(θ, π1

n(θ))]−1√nDπ1Q̃n(θ, π1
n(θ)) + opθ(1)

(14.4)

since
√
n(π̂1

n(θ)− π1
n(θ)) = −[Dπ1π1Q̃n(θ, π1

n(θ))]−1√nDπ1Q̃n(θ, π1
n(θ)) + opθ(1)

by taking the first order condition with respect to π1 in the quadratic expansion in Assumption

FSReg3. Now, note that

√
nDπ1Q̃n(θ, π1

n(θ)) = −
∑

y,d,z=0,1

n−1/2
n∑
i=1

1ydz(Wi)Dπ1 log pyd,z(θ, π
1
n(θ))

= −
∑

y,d,z=0,1

n−1/2
n∑
i=1

[
1ydz(Wi)− pyd,z(θ̃n)φz,n

]
Dπ1 log pyd,z(θ, π

1
n(θ)),

where the second equality follows from the first order condition with respect to π1 of Q̃(θ̃; γn):

Dπ1Q̃(θ̃; γn) = −
∑

y,d,z=0,1

pyd,z(θ̃n)φz,nDπ1 log pyd,z(θ, π
1
n(θ)) = 0.

Invoking (14.3), the results of Lemma Conc1 the and the uniform CLT, we have the following

joint weak convergence result for (14.1) and
√
nDπ1Q̃n(θ, π1

n(θ)):(
−
∑

y,d,z=0,1

[
n−1/2

∑n
i=1(1ydz(Wi)− pyd,z(θ̃n)φz,n)

]
Dψ log pyd,z(θ, π̂

1
n(θ))

√
nDπ1Q̃n(θ, π1

n(θ))

)

⇒

(
−
∑

y,d,z=0,1 Z̃ydzDψ log pyd,z(θ, π
1
0(θ))

−
∑

y,d,z=0,1 Z̃ydzDπ1 log pyd,z(θ, π
1
0(θ))

)
.

By (14.1), (14.2), (14.4), the results of Lemma Conc1 and the uniform CLT, this result implies

√
n

(
Dπ1Q̃n(·, π1

n(·))
DψQn(·)−DψQ(·; γn)

)
⇒

(
G̃0(·)
Ḡ0(·)

)
, (14.5)
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where

G̃0(θ) = −
∑

y,d,z=0,1

Z̃ydzDπ1 log pyd,z(θ, π
1
0(θ))

Ḡ0(θ) =
∑

y,d,z=0,1

pyd,z(θ̃0)φz,0Dψπ1 log pyd,z(θ, π
1
0(θ))[H̃0,π1π1(θ)]−1G̃0(θ)

−
∑

y,d,z=0,1

Z̃ydzDψ log pyd,z(θ, π
1
0(θ))

with

H̃0,π1π1(θ) = Dπ1π1Q̃0(θ, π1
0(θ)) = −

∑
y,d,z=0,1

pyd,z(θ̃0)φz,0Dπ1π1 log pyd,z(θ, π
1
0(θ)).

Finally, by (14.5), G0(π) = Ḡ0(0, ζ0, π).

For the other two deterministic functions of interest, note that by Lemma Conc1 and the

uniform CLT, supθ∈Θ |DψψQn(θ)− H̄0(θ)| p−→ 0 for

H̄0(θ) = −
∑
y,d,z

pyd,z(θ̃0)φz,0Dψψ log pyd,z(θ, π
1
0(θ)).

Hence, H0(π) = H̄0(0, ζ0, π). Finally, let Kn(θ; γ∗) = ∂Eγ∗DψQn(θ)/∂β∗ and note that for non

stochastic sequences {ψ̄n} and {γn} such that γn ∈ Γ, γn → γ0 = (0, ζ0, π0, π
1
0, φ̃0) for some

γ0 ∈ Γ, (ψ̄n, π) ∈ Θ and ψ̄n → ψ0 = (0, ζ0),

Kn(ψ̄n, π; γn) =
∂

∂β̃n
Eγn

1

n

n∑
i=1

{−
∑

y,d,z=0,1

1ydz(Wi)Dψ log pyd,z(ψ̄n, π, π̂
1
n(ψ̄n, π))}

=
∂

∂βn
Eγn

1

n

n∑
i=1

{−
∑

y,d,z=0,1

1ydz(Wi)Dψ log pyd,z(ψ̄n, π, π
1
n(ψ̄n, π))} (14.6)

+
∂

∂βn
Eγn

1

n

n∑
i=1

{−
∑

y,d,z=0,1

1ydz(Wi)
∂ log pyd,z(ψ̄n, π, π

1∗
n (ψ̄n, π))

∂π1
[π̂1
n(ψ̄n, π)− π1

n(ψ̄n, π)]},

(14.7)

by the mean value theorem, where each element of π1∗
n (ψ̄n, π) lies in between the corresponding

elements of π̂1
n(ψ̄n, π) and π1

n(ψ̄n, π). The quantity (14.6) is equal to

− ∂

∂βn

∑
y,d,z=0,1

pyd,z(θ̃n)φz,nDψ log pyd,z(ψ̄n, π, π
1
n(ψ̄n, π))}
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−→ −
∑

y,d,z=0,1

Dψ log pyd,z(ψ0, π, π
1
0(ψ0, π))[Dβ0pyd,z(θ̃0)]′φz,0 = K0(ψ0, π).

For the term (14.7), note that for all n ≥ 1,

sup
π∈Π

∣∣∣∣∣∣ 1n
n∑
i=1

{−
∑

y,d,z=0,1

1ydz(Wi)
∂ log pyd,z(ψ̄n, π, π

1∗
n (ψ̄n, π))

∂π1
[π̂1
n(ψ̄n, π)− π1

n(ψ̄n, π)]}

∣∣∣∣∣∣ (14.8)

≤ 2
∑

y,d,z=0,1

sup
θ̃∈Θ̃

∣∣∣∣∣∂ log pyd,z(θ̃)

∂π1

∣∣∣∣∣ sup
θ∈Θ

sup
π1∈Π1(θ)

π1 <∞

almost surely under Pγn due to the continuity of ∂ log pyd,z(θ̃)/∂π
1 in θ̃ and the compactness of

the parameter spaces Θ̃, Θ and Π1(θ) so that (14.8) is uniformly integrable under Pγn for all

π ∈ Π. In conjunction with the fact that

1

n

n∑
i=1

{−
∑

y,d,z=0,1

1ydz(Wi)
∂ log pyd,z(ψ̄n, π, π

1∗
n (ψ̄n, π))

∂π1
[π̂1
n(ψ̄n, π)− π1

n(ψ̄n, π)]}

= −[π̂1
n(ψ̄n, π)− π1

n(ψ̄n, π)]
∑

y,d,z=0,1

∂ log pyd,z(ψ̄n, π, π
1∗
n (ψ̄n, π))

∂π1

1

n

n∑
i=1

1ydz(Wi)
p−→ 0

uniformly over π ∈ Π by Theorem Conc, this implies that Kn(ψ̄n, π; γn) → K0(ψ0, π) = K0(π)

uniformly over π ∈ Π.
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Figure 1: Threshold Crossing Model Parameter Estimator Densities when b = 0

Asymptotic and finite-sample (n = 1000) densities of the estimators of β, ζ, π, π1
1 and π1

2 in the
Threshold-Crossing model when ζ0 = 0.2, π0 = 0.4, π1

1,0 = 0.6 and π1
2,0 = 0.4.

Figure 2: Threshold Crossing Model Parameter Estimator Densities when b =
√
n0.1

Asymptotic and finite-sample (n = 1000) densities of the estimators of β, ζ, π, π1
1 and π1

2 in the
Threshold-Crossing model when ζ0 = 0.2, π0 = 0.4, π1

1,0 = 0.6 and π1
2,0 = 0.4.



Figure 3: Threshold Crossing Model Parameter Estimator Densities when b =
√
n0.2

Asymptotic and finite-sample (n = 1000) densities of the estimators of β, ζ, π, π1
1 and π1

2 in the
Threshold-Crossing model when ζ0 = 0.2, π0 = 0.4, π1

1,0 = 0.6 and π1
2,0 = 0.4.

Figure 4: Threshold Crossing Model Parameter Estimator Densities when b =
√
n0.4

Asymptotic and finite-sample (n = 1000) densities of the estimators of β, ζ, π, π1
1 and π1

2 in the
Threshold-Crossing model when ζ0 = 0.2, π0 = 0.4, π1

1,0 = 0.6 and π1
2,0 = 0.4.



Figure 5: Wald Statistic Densities for the Threshold Crossing Model when b = 0

Asymptotic and finite-sample (n = 1000) densities of the Wald statistic for the parameters β, ζ,
π, π1

1 and π1
2 in the Threshold-Crossing model when ζ0 = 0.2, π0 = 0.4, π1

1,0 = 0.6 and π1
2,0 = 0.4,

with a χ2
1 density overlay (black line).

Figure 6: Wald Statistic Densities for the Threshold Crossing Model when b =
√
n0.1

Asymptotic and finite-sample (n = 1000) densities of the Wald statistic for the parameters β, ζ,
π, π1

1 and π1
2 in the Threshold-Crossing model when ζ0 = 0.2, π0 = 0.4, π1

1,0 = 0.6 and π1
2,0 = 0.4,

with a χ2
1 density overlay (black line).



Figure 7: Wald Statistic Densities for the Threshold Crossing Model when b =
√
n0.2

Asymptotic and finite-sample (n = 1000) densities of the Wald statistic for the parameters β, ζ,
π, π1

1 and π1
2 in the Threshold-Crossing model when ζ0 = 0.2, π0 = 0.4, π1

1,0 = 0.6 and π1
2,0 = 0.4,

with a χ2
1 density overlay (black line).

Figure 8: Wald Statistic Densities for the Threshold Crossing Model when b =
√
n0.4

Asymptotic and finite-sample (n = 1000) densities of the Wald statistic for the parameters β, ζ,
π, π1

1 and π1
2 in the Threshold-Crossing model when ζ0 = 0.2, π0 = 0.4, π1

1,0 = 0.6 and π1
2,0 = 0.4,

with a χ2
1 density overlay (black line).


