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1 Introduction

Following Hansen (1982) it is established that in a GMM approach with more moment

conditions than the dimension of the parameter, optimal variance of the estimator is obtained

if the empirical moments are weighted by the inverse of the square root of the variance matrix.

This result is asymptotic in the general case but it may not be exact in particular case. In

this paper we investigate this result for linear inverse problems such as infinite dimensional

GMM. By means of simulation, we show that ”the optimal” weighting is no longer optimal

once we have an infinite dimensional parameter of interest.

We can illustrate Hansen (1982)’s result by a simple example. LetX be a random element,

m(X) ∈ Rq be a set of integrable linear functions and assume that r = E(m(X)) = Mθ

where M is an q × k matrix and θ ∈ Rk is an unknown parameter. Let r̂ be the empirical

moments of m (r̂ = 1
n

∑n
i=1m(xi)) and 1

n
Σ be the variance of r̂. It is straightforward to

show that the optimal estimator of θ is (M ′Σ−1M)−1M ′Σ−1r̂ in the following sense: Let θ

be estimated by minimization of the Euclidian norm of Ar̂ − AMθ where A is an arbitrary

matrix. The choice of A which minimizes the variance of θ̂ is A = Σ−1/2 and for all A, θ̂

is an unbiased estimator. This GMM problem can be extended to the infinite dimensional

case. The problem is then rewritten as r = Kϕ where r is an infinite set of moments, ϕ is

an element of a functional space and K is a linear operator. Then the estimate of ϕ is given

by the argument that minimizes the following: ‖Ar̂ − AKϕ‖2 where A is a chosen linear

operator. However it is well-known in the nonparametric IV literature that if r is estimated

by r̂ this minimization problem is ill-posed and the minimization does not give a consistent

estimator; see Carrasco, Florens, and Renault (2007). Among many solutions the Tikhonov

Regularization provides a good solution to this problem where the minimization is modified

by an L2 penalty. Then the estimator minimizes ‖Ar̂ − AKϕ‖2 + α‖Lϕ‖2 where L is also

a suitably chosen linear operator and α is the regularization parameter. For any A and L,

the mean integrated squared error, MISE, E(‖ϕ̂α − ϕ‖2) can be computed and an optimal

value of α (αopt) can be selected. One may then compute optimal MISE, E(‖ϕ̂αopt − ϕ‖2)
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which depends on the choice of A and L. Hence the optimality question becomes: What is

the operator A which minimizes the MISE? In other words, does the variance operator Σ−1/2

lead to the most efficient estimator? In this paper we show that the MISE is not minimized

for the choice of A = Σ−1/2 as it is in the finite dimensional case, even if the estimator is

well defined for this particular choice.

Infinite dimensional GMM considered in this paper, i.e., the parameter of interest belongs

to an infinite dimensional functional space, is closely related to nonparametric instrumental

variables literature, see Darolles, Fan, Florens, and Renault (2011); Newey and Powell (2003);

Ai and Chen (2003) and Horowitz (2011) among others. Darolles, Fan, Florens, and Renault

(2011) use a Tikhonov regularized kernel based estimator while Newey and Powell (2003);

Ai and Chen (2003) and Horowitz (2011) use sieve minimum distance (SMD) estimator. All

these mentioned papers show that the estimators they use is consistent however none of them

considers efficiency.

This paper may also be viewed as an extension to the usual GLS method to infinite

dimensional case. In GLS approach optimal estimators are obtained by weighting the sum

of squares by the inverse of the variance of the residual. We will later show that this property

is no longer true if the infinite dimension requires a penalisation.

With the growth of nonparametic IV literature in the recent years, the attention has also

been given to models that are semiparametric, i.e., the parameter of interest is composed of

an infinite dimensional function as well as a finite dimensional vector. Florens, Johannes, and

Bellegem (2012); Ai and Chen (2003); Chen and Pouzo (2009) considers the nonparametric

estimation of these semiparametric models. Ai and Chen (2003) and Chen and Pouzo (2009)

focus on the efficiency of the estimator of the finite dimensional parameter and show that it

reaches semiparametric efficiency bound when the weighting matrix is equal to the inverse

of variance covariance matrix of moment conditions. To the best of our knowledge efficiency

of the nonparametric estimator in terms of mean integrated squared error (MISE) has only

been considered by Gagliardini and Scaillet (2012) within the framework of Tikhonov regu-
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larised nonparametric IV estimation. However, they do not investigate the optimality of the

estimator with respect to the choice of weighting matrix.

Moreover, the use of nonparametric techniques in structural models has increased the

interest in nonparametric estimation of simultaneous equations. Most recent work on this

topic comes from Berry and Haile (2014) where they show the identification without the

use of completeness condition and Matzkin (2015) which introduces an easy to implement

estimation technique for nonparametric, nonadditive simultaneous equations models. We

believe that the light we shed on the optimal weighting matrix in linear inverse problems

will also contribute to nonparametric estimation of simultaneous equations by leading to

development of techniques such as nonparametric three stage least squares.

Apart from nonparametric IV literature, this paper also relates to the literature on GMM

with finite dimensional parameter of interest and with a continuum of moment conditions,

see Carrasco and Florens (2000, 2014). Both of these papers consider a continuum of moment

conditions however the parameter of interest is a finite dimensional vector. In such a case

Carrasco and Florens (2000) show that the optimal weighting matrix is not invertible and

this leads to an ill-posed inverse problem in the estimation. Hence, they propose to use

a regularized inverse. Carrasco and Florens (2014) show that this GMM estimator with a

continuum of moment conditions which uses the regularized inverse of the optimal weighting

matrix reaches the efficiency of the MLE. Note that although seems similar, the problem

we investigate in this paper is different since in our case the ill-posed inverse problem is not

caused by the choice of the weighting matrix but it is the result of the estimation problem

itself.

From a mathematical viewpoint, the weighting problem can be considered as follows.

The equation r = Kϕ is an integral equation. If A is an integral operator (Σ at some

positive power for example) then K becomes AK which has a larger degree of ill-posedness.

Then an intuitive approach would be to select A as a differential operator (such as Σ−1/2)

in order to reduce the degree of ill-posedness. If Ar is defined, weighting means a derivation
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of the equation before its resolution. However, the impact of A is not so clear if we select

the regularization parameter in an optimal way. For example, the rate of decline of the

bias is lower for an integral operator A but the optimal values of α is smaller and the effect

is then ambiguous. Up to our knowledge, a theoretical conclusion on optimal weighting

is not tractable and we have adopted a numerical analysis. This analysis is not a Monte

Carlo simulation; for a given design, we have an explicit form of the MISE and we optimize

numerically with respect to α and A.

The paper proceeds as follows. In Section 2 we introduce our model. In Sections 3

and 4 we examine the optimisation of the MISE with geometric and exponential spectra

respectively. In Section 5, we look for a solution to the problem of optimality introduced in

Sections 3 and 4 by means of simulation. In Section 6 we look at the optimal weighting

problem in non-parametric IV case. Finally, in Section 6 we conclude.

2 The Model

Let us consider a linear inverse problem in the form:

r̂ = Kϕ+ U

ϕ ∈ E and r̂ and U ∈ F where E and F are Hilbert spaces. The operator K : E 7→ F is

a compact operator and U is a random element in F such that E(U) = 0 and V(U) = 1
n
Σ

where n is the sample size. The value r̂ is a noisy observation of r = Kϕ with a variance

of 1
n
Σ. The element r̂ is observed and K and Σ are given (possibly estimated). Let L be

a differential operator defined on E (L is densely defined, self adjoint and L−1 is a compact

operator from E 7→ E). We also consider a weighting operator A which is compact. In case

of a well-posed inverse problem, the strategy would be to minimize ‖Ar̂ − AKϕ‖2 and the

optimal choice is to take A∗A = Σ−1. Let us consider the general ill-posed inverse problem.

In the sequel, D(S) and R(S) denote respectively the domain and range of an operator S.
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Assumption 1 L is chosen such that ϕ ∈ D(L).

Under this assumption the Tikhonov estimator using a Hilbert scale penalty is defined as

the solution of:

min ‖Ar̂ − AKϕ‖2 + α‖Lϕ‖2 (1)

and it is equal to:

ϕ̂α = L−1(αI + L−1K∗A∗AKL−1)−1L−1K∗A∗Ar̂ (2)

= (αL−2 +K∗A∗AK)−1K∗A∗Ar̂ (3)

see Florens and Van Bellegem (2015). Let us introduce the following assumption:

Assumption 2 K, L−1 and A have the same countable family of singular vectors denoted

(ϕj)
∞
j=1 and their singular values are λKj, λL−1j and λAj, respectively.

Using these notation, Assumption 2 is equivalent to:

∞∑
j=1

〈ϕ, ϕj〉2

λ2L−1j

<∞

Under these assumptions we may compute the mean square error of ϕ̂α.

Proposition 1 The MISE of ϕ̂α is given by:

E‖ϕ̂α − ϕ‖2 =
1

n

∞∑
j=1

〈Σϕj, ϕj〉2λ2Kjλ4Ajλ4L−1j

(α + λ2Kjλ
4
Ajλ

4
L−1j)

2
+ α2

∞∑
j=1

〈ϕ, ϕj〉2

(α + λ2Kjλ
4
Ajλ

4
L−1j)

2
(4)

Proof.

E‖ϕ̂α − ϕ‖2 = tr[V(ϕ̂α)] + ‖ϕα − ϕ‖2
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where ϕα = L−1(αI + L−1K∗A∗AKL−1)−1L−1K∗A∗AKϕ. Using some elementary manipu-

lations and the property that L−1 commute with K∗A∗AK we get:

E‖ϕ̂α − ϕ‖2 =
1

n
tr[(αI +B)−1L−1K∗A∗AΣA∗AKL−1(αI +B)−1] + ‖α(αI +B)−1ϕ‖2

where B = L−1K∗A∗AKL−1. Using the property that tr(Ω) =
∑∞

j=1 〈Ωϕj, ϕj〉, we get the

result.

One can remark that A and L−1 play the same role because only the product λAjλL−1j

appears in the MISE formula. Then the same value may be obtained either by weighting by

A or by penalizing by LA−1. Hence, in the following we just consider A but our result may

be reinterpreted in terms of Hilbert scale penalisation.

The estimation strategy which minimizes the risk measured by the MISE consists of the

choice of α and A which minimise E‖ϕ̂α − ϕ‖2 at n, K and Σ fixed. Actually, this compu-

tation cannot be done analytically up to our knowledge so we will perform this optimisation

numerically. We will adopt two frameworks: one with the geometric decline of spectrums

and the other with the exponential decline. In the first case the problem is mildly ill-posed

while it is severely ill-posed in the second case. However, we consider the case that the true

function is analytic which preserves polynomial rates of convergence.

We conclude this section by examples:

Example 1 (Density Estimation): Let X ∈ [0, 1] be a real random variable with a

cdf denoted by F and a density denoted by f . Both F and f are assumed to be the elements

of L2
[0,1] provided with the uniform distribution. If an iid sample of X is available, we denote

by F̂ the empirical cdf. The model can be written:

F̂ (t) =

∫ t

0

f(t)dt+ U
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where the parameter of interest is now f , K is the integral operator and Σ is characterized

by:

(Σg)(s) =

∫ 1

0

[F (s ∧ t)− F (s)F (t)]g(t)dt

Example 2 (Functional Linear IV Model): Let Y ∈ R, Z ∈ E and W ∈ F three

random elements such that Y = 〈Z, ϕ〉 + ε and E(εW ) = 0, see Florens and Van Bellegem

(2015). If an iid sample is observed, we can define r = E(YW ) ∈ F , r̂ = 1
n

∑
yiwi ∈ F

and Kϕ = 1
n

∑
wi〈zi, ϕ〉. The model is then written r̂ = Kϕ + U and U is a zero mean

random element (conditional on wi) with a conditional variance equal to 1
n
Σ. The operator

Σ is characterized by:

Σg =
1

n

∑
wi〈wi, g〉V ar(ε|wi)

3 MISE Optimisation in the case of geometric spec-

trum

Let us underline that we do not proceed to a Monte Carlo simulation but we will evaluate

numerically equation (4) and compute its optimal value for α and A (in a given parametrized

family). In order to evaluate equation (4) we fix different elements in the following way:

λKj =
1

ja
, λAj =

1

jd
〈Σϕj, ϕj〉 =

1

j2c
, 〈ϕ, ϕj〉 =

1

jb

where a, b, c are strictly larger than 1
2
. The spectrum of A may be characterized by d < 0

which is to say that A is a differential operator.

In this framework, equation (4) becomes:

E‖ϕ̂α − ϕ‖2 =
1

n

∞∑
j=1

j2(a−c)

(αj2(a+d) + 1)2
+ α2

∞∑
j=1

j4(a+d)−2b

(αj2(a+d) + 1)2
(5)

We will optimize numerically this risk with respect to α and d.
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Even if the asymptotic analysis is not our objective, we may give an approximation of

equation (5) from which the rate may be analysed. Note that the first term on the right

hand side is the variance and the second term is the bias. Let us first consider the variance

term. Suppose that there exists a function h(x):

h(x) =
x2(a−c)

(αx2(a+d) + 1)2

if we approximate the sum with the integral we can write, see Florens and Simoni (2014):

=
1

n

∫ ∞
1

x2(a−c)

(αx2(a+d) + 1)2
dx

After making the following change of variable to evaluate the integral:

y = αx2(a+d) + 1⇒
( y
α

) 1
2(a+d)

= x

we can write:

=
1

n

(
1

α

) 2(a−c)+1
2(a+d) 1

2(a+ d)

∫ ∞
0

y
−2d−2c+1

2(a+d)

(y + 1)2
dy

the following condition is needed for the integral to converge:

1− 2(c+ d) < 2(a+ d)⇒ 2(a+ c) + 4d > 1

Equivalently, for bias term, given the following function g(x) = x4(a+d)−2b

(αx2(a+d)+1)2
, and under the

same change of variable, we can approximate the sum with the following integral:

=
1

2(a− d)
α

2b−1
2(a−d)

∫ ∞
0

y
2(a−d)−2b+1

2(a−d)

(y + 1)2
dy
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Then the condition for integral to converge is given by:

2(a+ d)− 2b+ 1

2(a+ d)
< 1⇒ b > 1/2

which is already satisfied by the previous assumptions.

One can now obtain the optimal regularization parameter, αopt, by minimizing the MISE

with respect to α. Call the integral in the variance term V and the integral in the bias term

B. Then the MISE can be written as the following:

MISE =
1

n

(
1

α

) 2(a−c)+1
2(a+d) 1

2(a+ d)
V +

1

2(a+ d)
α

2b−1
2(a+d)B

∂MISE

∂α
= − 1

n

1

2(a+ d)

2(a− c) + 1

2(a+ d)
α1+

2(a−c)+1
2(a+d) V +

1

2(a+ d)

2b− 1

2(a+ d)
α1− 2b−1

2(a+d)B = 0

Then the optimal α, αopt is given by:

αopt =

[
1

n

V

B

2(a− c) + 1

2b− 1

] 2(a+d)
2(a−c)+2b

(6)

If one replaces αopt back in the MISE:

MISE =
1

2(a+ d)

(
1

n

) 2b−1
2(a−c)+2b

V µB1−µ(R1 +R2) (7)

where µ = 2b−1
2(a−c)+2b

, R1 =
[
2(a−c)+1

2b−1

]−(2(a−c)+1)
2(a−c)+2b

and R2 =
[
2(a−c)+1

2b−1

] 2b−1
2(a−c)+2b

. Note that µ, R1

and R2 do not depend on d. Moreover the speed of convergence will be captured by the term(
1
n

) 2b−1
2(a−c)+2b which does not depend on d either. So, we are left with the following term:

1

2(a+ d)

[∫ ∞
0

y
−2d−2c+1

2(a+d)

(y + 1)2
dy

]µ
×

[∫ ∞
0

y
2(a+d)−2b+1

2(a+d)

(y + 1)2
dy

]1−µ
(8)

We do not use this approximation for our simulation and we go back to equation (5) to
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optimize with respect to α and d.

4 MISE Optimisation in the case of exponential spec-

trum

Let us now consider MISE formula given in equation (4) if all the elements of the series

decline exponentially. We assume that for a given ρ ∈]0, 1[ we have:

λKj = ρj, λAj = ρjδ, 〈Σϕj, ϕj〉 = ρ2jµ, 〈ϕ, ϕj〉 = ρjβ

Then the MISE formula becomes:

E‖ϕ̂α − ϕ‖2 =
1

n

∞∑
j≥1

ρ2(1+µ+2δ)j

(α + ρ2(1+δ)j)2
+ α2

∞∑
j≥1

ρ2βj

(α + ρ2(1+δ)j)2
(9)

Let us consider the rate of convergence of the MISE. Using the same integral approximation

as before we get:

MISE =
1

n

∫ ∞
0

ρ2(1+µ+2δ)x

(α + ρ2(1+δ)x)2
dx+ α2

∫ ∞
0

ρ2βx

(α + ρ2(1+δ)x)2
dx

If we make the following change of variable:

y =
ρ2(1+δ)x

α

The integral approximation of MISE will be given by:

=
1

α2

1

(1 + δ)lnρ2

∫ ∞
0

1

y(1 + y)2
ρ

2(1+µ+2δ)
(1+δ)lnρ

(lnα+lny)dy+
1

(1 + δ)lnρ2

∫ ∞
0

1

y(1 + y)2
ρ

2β

(1+δ)lnρ2
(lnα+lny)

dy
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After some manipulation we can write

1

nα2
α

1+µ+2δ
1+δ V + α

β
1+δB

where V and B are suitable constants coming from the bias and variance term, respectively.

We assume that 1+µ+2δ
1+δ

< 2 and β
1+δ

< 2. Then the optimal value of α is then proportional

to n−
1+δ

β+1−µ and the rate of convergence is proportional to n−
β

β+1−µ . As in the geometric case,

the rate of convergence does not depend on δ, the degree of ill-posedness of A.

5 Simulations

In this section we explain and present our numerical simulations. In the geometric case

we minimize the MISE given in equations (5) numerically by first picking the optimal value

of α. Then the optimal weighting will be characterised by parameter d which minimizes the

MISE(αopt). In the exponential case we minimize the MISE given in equation (9) again by

with respect to α and then with respect to δ to get the optimal weighting.

5.1 Simulations in Geometric Case

To optimize the MISE numerically, we generate j = 1, ..., 106 and we compute the MISE

given in equation (5) where we fix the sample size n to 100. Then for each simulation we

pick different values of a, b and c and compute the MISE given a grid of α and d. In other

words, for fixed values of n,a,b and c, we take a grid of α and a grid of d and compute MISE

for each value of α and d on these grids. Then the optimal value of regularization parameter

and the optimal weighting are given by those α and d which lead to the minimum value of

MISE.

First of all, Figure (1) shows how MISE changes with α for given values of d, whereas

the left panel of figure (2) shows how bias square changes with α for given values of d and

the right panel shows the same for the variance. Bias increases and variance decreases with
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α as expected. A stronger regularization, i.e., a larger α increases the regularization bias

while making the estimation more efficient.

Figure (3) shows the MISE vs. d given that α is optimal. For a simulation design where

a, b and c are set to be equal to 5,1 and 1.5 respectively and d is a grid of 40 equidistant

points between −2.5 and 2, figure (3) shows that the MISE is minimized at d = −0.4231.

Moreover, variance has a decreasing trend with d whilst the bias square has an increasing

trend, see figures 4 and 5. Given these results we see that the MISE is not minimized for

d = −c. So the optimality condition for the finite dimensional case does not hold in the

infinite dimensional case. However, to see if we can find a rule for the optimal value of d, we

try several designs for different values of a, b and c; d is always obtained to be equal to b− c

and the optimal value of d does not depend on the value of a since we get exactly the same

results whatever is the value of a. Depending on the values of b and c, d can be positive

or negative. In other words, depending on the regularity of the function and the degree of

ill-posedness of the variance operator, the optimal weighting can be given by a differential or

an integral operator. Tables 1 and 2 present the values of optimal values of α and d obtained

under different designs.

Table 1: Simulation results in geometric case
a = 5, c = 1.5, n = 100
b 0.5 1 2 3
d −1 −0.4872 0.5385 1.5641
α 0.01 0.0098 0.0096 0.0094

Table 2: Simulation results in geometric case
a = 5, c = 2, n = 100
b 0.5 1 2 3
d −1.4872 −0.9744 0.05 1.0769
α 0.0098 0.0096 0.0094 0.0092

Figures 6-8 show the 3 dimensional surfaces for α and d and MISE, variance and bias

terms respectively. We pick 40 equidistant points in [−3, 2] for the grid of d and 50 equidis-

tant points in [10−4, 10−2] for the grid of α. Moreover we set the following values for the
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parameters: a = 5, b = 1 and c = 1.5. The optimal value of d is obtained to be −0.4872

while the optimal value of α is obtained to be 0.0098.

Figure 1: MISE vs. α for different values of d
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Figure 2: Left panel: Bias2 vs. α for different values of d. Right panel: Variance vs. α for

different values of d

Figure 3: MISE vs. d given that α = αopt, b = 1, c = 1.5

15



Figure 4: Variance vs. d given that α = αopt, b = 1, c = 1.5

Figure 5: Bias2 vs. d given that α = αopt, b = 1, c = 1.5
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Figure 6: MISE vs. d and α, b = 1, c = 1.5, α ∈ [10−4, 10−2]

Figure 7: Variance vs. d and α, b = 1, c = 1.5, α ∈ [10−4, 10−2]
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Figure 8: Bias2 vs. d and α, b = 1, c = 1.5, α ∈ [10−4, 10−2]

5.2 Simulations in Exponential Case

We conduct numerical simulations also in the exponential case to see if we can still get

the same result, i.e., the optimal weighting depends on the regularity of the function and

the degree of ill-posedness of the variance operator.

We minimize equation (9) with respect to α and δ. We generate j = 1, ..., 500 and set

ρ = 0.6. As in the geometric case we then optimize MISE for different values of β and µ. In

this case too, we find that the optimal weighting depends on both β and µ. More precisely,

the optimal delta is equal to β − µ. Our results are presented in Tables 3 and 4.

Table 3: Simulation results in exponential case
ρ = 0.6, µ = 1.5, n = 100
b 0.5 1 2 3
d −0.6735 −0.5102 0.5510 1.5714
α 2.14× 10−4 0.01 0.009 0.009

Figures 9-11 show the 3 dimensional surfaces for α and δ and MISE, variance and bias
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Table 4: Simulation results in exponential case
ρ = 0.6, µ = 1, n = 100
b 0.5 1 2 3
d −0.4694 0.0408 1.0612 1.9796
α 0.008 0.0086 0.009 0.01

terms respectively. We pick 50 equidistant points in [−2, 3] for the grid of δ and 50 equidis-

tant points in [10−5, 10−2] for the grid of α. Moreover we set the following values for the

parameters:β = 2 and µ = 1. The optimal value of δ is obtained to be 1.0612 while the

optimal value of α is obtained to be 0.009.

Figure 9: MISE vs. d and α, β = 2, µ = 1, α ∈ [10−5, 10−2]
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Figure 10: Variance vs. d and α, β = 2, µ = 1, α ∈ [10−5, 10−2]

Figure 11: Bias2 vs. d and α, β = 2, µ = 1, α ∈ [10−5, 10−2]
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6 The Nonparametric IV Case

We consider the usual NPIV case as developed now in many papers; see Carrasco, Florens,

and Renault (2007); Darolles, Fan, Florens, and Renault (2011); Hall and Horowitz (2005)

among others. We consider a vector of random elements (Y, Z,W ) such that:

Y = ϕ(Z) + U and E(U |W ) = 0 (10)

The model then generates a linear inverse problem:

E(E(Y |W )|Z) = E(E(ϕ(Z)|W )|Z) (11)

r = Kϕ (12)

where r ∈ L2
Z , ϕ ∈ L2

Z and K : L2
Z 7→ L2

Z . We assume that all the L2 spaces are related to

the true distribution. We have a noisy observation of r, r̂ but we assume that K is given,

then we write:

r̂ = Kϕ+ U (13)

We may assume that E(U) = 0 and V(U) = σ2K. The operator K is a self-adjoint trace

class operator. This situation is discussed in many previous papers, see Carrasco, Florens,

and Renault (2007); Darolles, Fan, Florens, and Renault (2011).

Let us discuss first the rate of convergence of the Tikhonov estimator of equation (13).

In this case Σ is proportional to K. If the spectrum is geometrical, this means that c = a
2

and the rate is n−
2b−1
2b+a . If the spectrum is exponential as in Section 5, µ = 1

2
and the rate is

n−
β

β+1/2 . In order to compare these rates with the ones discussed by Chen and Reiss (2011),

let us consider for example the geometric case. In their approach, if ϕ has the regularity ν,

i.e., if ϕ is ν times differentiable, E(Y |W ) has the regularity ν+p where p is the degree of ill-

posedness of E(ϕ(Z)|W ). Then if the dimension of W is equal to 1, the rate of convergence

is given by
(
n−

2(ν+p)
2(ν+p)+1

) ν
ν+p

= n−
2ν

2(ν+p)+1 . In our framework, ν = b − 1 and p = a, then
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we can rewrite their rate as n−
2b−2

2b+2a+1 . Hence, our rate is faster than the rate obtained by

Chen and Reiss (2011). Note that, this result does not contradict with the minimax result

because it incorporates a restriction on the estimation of E(E(Y |W )|Z) which is to have a

variance equal to σ2K. Even if the spectrum is exponential, if the Fourier coefficients of ϕ

also decline exponentially, the variance property of U implies a very good rate for the MISE

(n−
2β

2β+1 ).

Let us now consider our problem of optimal weighting. We consider the class of estima-

tors:

ϕ̂α,d = (αI +K2(d+1))2K2d+1r̂

Note that the case d = 1
2

(weighting by Σ−1/2) corresponds to the usual estimator of NPIV,

solution of:

αϕ+ E(E(ϕ|W )|Z) = E(E(Y |W )|Z)

We will show by simulation that the MISE may be improved by choosing a larger value of

d, if α is taken at its optimal value.

7 Conclusion

This paper presents some analytical computations and numerical simulations for the

mean squared error of the estimation of a function ϕ deduced from the program:

min ‖Ar̂ − AKϕ‖2 + α‖Lϕ‖2

The function r̂ is observed and the operator K and the variance of r̂ −Kϕ are given. We

discuss the choice of the tuning parameters α, L and A. Our main conclusions are the

following:

• By analytical computations, we show that A and L−1 play the same role and that the

product AL−1 only matters. We may then fix one of them equal to the identity.

22



• From the same analytical results, we are also able to compute to rate of decline of

MISE taking into account the knowledge of Σ. This assumption allows us to improve

the usual minimax rates of convergence (obtained without any constraint on Σ).

• The choice of the optimal weighting operator is only obtained numerically. Intuitively,

the optimal choice depends on the regularity of ϕ and on Σ. A conjecture would be

to equalize the regularity of ϕ and the sum of the degree of ill-posedness of A and

Σ. Then the choice A = Σ−1/2 (or L = Σ1/2 an integral operator) corresponds to a

completely irregular ϕ. If ϕ is sufficiently regular, A becomes an integral operator or L

a differential operator. This last result is relatively intuitive: if ϕ is sufficiently smooth

regarding to Σ, a penalization by the norm of the derivative is optimal.
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