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Abstract

Long-run restrictions (Blanchard and Quah, 1989) are a very popular method

for identifying structural vector autoregressions (SVARs). A prominent exam-

ple is the debate on the effect of technology shocks on employment, which has

been used to test real business cycle theory (Gali, 1999, Christiano Eichenbaum

and Vigfusson, 2003). The long-run identifying restriction is that non-technology

shocks have no permanent effect on productivity. This can be used to identify the

technology shock and the impulse responses to it. It is well-known that long-run

restrictions can be expressed as exclusion restrictions in the SVAR and that they

may suffer from weak identification when the degree of persistence of the instru-

ments is high (Pagan and Robertson, 1998). This introduces additional nuisance

parameters and entails nonstandard distributions, so standard weak-instrument-

robust methods of inference are inapplicable. We develop a method of inference
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that is robust to this problem. The method is based on a combination of the

Anderson and Rubin (1949) test with instruments derived by filtering potentially

non-stationary variable to make them near stationary (Magdalinos and Phillips,

2009, Phillips, 2014, Kostakis Magdalinos and Stamatogiannis, 2015). In the

case of Blanchard and Quah (1989), we find that long-run restrictions yield very

weak identification. On the hours debate, we find that the difference specification

of Gali (1999) is very well identified, while the level specification of Christiano

et. al. (2003) is weakly identified.

Keywords: SVARs, identification, weak instruments, near unit roots, IVX.

JEL: C12, C32, E32

“It is better to be vaguely right than exactly wrong.” Carveth Read

1 Introduction

Since the seminal paper of Sims (1980), structural vector autoregressions (SVARs) have

become a very popular method for analysing dynamic causal effects in macroeconomics.

SVARs can be used to decompose economic fluctuations into interpretable shocks, such

as ‘technology’, ‘demand’, ‘policy’ shocks, and trace the dynamic response of macroe-

conomic variables to such shocks, known as impulse response functions (IRFs). The

success of the SVARs relies on (i) the ability of the model to recover the true underly-

ing structural shocks (“invertibility”); (ii) the validity of the identification scheme; and

(iii) the informativeness of the identifying restrictions. Because a SVAR is a system of

linear simultaneous equations, the third condition can be expressed as the availability

of informative instruments.

In the words of Christiano et al. (2007), “to be useful in practice, VAR-based

procedures should accurately characterize [and] uncover the information in the data

about the effects of a shock to the economy”. In other words, confidence intervals on the

model’s parameters, e.g., the IRFs to an identified shock, need to have the property that

they are (i) as small as possible when instruments are strong (efficiency); and (ii) large

when instruments are weak/irrelevant (robustness), see Dufour (1997). Conventional

methods based on standard strong-instrument and stationarity assumptions achieve

the first objective but fail the second and therefore lead to unreliable inference.

This paper focuses on the identification scheme known as ‘long-run restrictions’,

proposed by Blanchard and Quah (1989). This assumes that certain shocks (e.g. “de-

mand” shocks) have no permanent effect on certain economic variables (e.g., output).
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Long-run restrictions are a popular identification scheme for SVARs, because they

seem to be less contentious than short-run identifying restrictions, see e.g., Christiano

et al. (2007) and the associated comments and discussion. However, it is well-known

that long-run restrictions can lead to weak identification, see e.g., Pagan and Robert-

son (1998), and there is presently no method of inference that is fully robust to this

problem. The main difficulty is that the features that make instruments weak in this

context also work to make them highly persistent, or nearly non-stationary. Therefore,

all the available weak identification robust methods of inference, such as the Anderson

and Rubin (1949), see Staiger and Stock (1997), are inapplicable because they rely on

stationary asymptotics. This applies to common pretests of weak identification, too,

see Mark Watson’s comment on Christiano et al. (2007).1

In this paper, we develop a method of inference that is robust to weak instruments

as well as near non-stationarity. The method is based on combining recent advances in

econometrics on inference with highly persistent data by Magdalinos and Phillips (2009)

and Kostakis et al. (2015), see also Phillips (2014), with well-established methods

of inference that are robust to weak instruments. The former methods have been

developed for predictive regressions or cointegration, and their use in the context of

structural inference in simultaneous equations models is new. Our new method of

inference controls asymptotic size under a wide range of data generating processes,

including standard local-to-unity asymptotics; it has good size in finite samples; it is

asymptotically efficient under strong identification and has good power under weak

identification; and it is very simple to implement. For illustration, we revisit the

empirical evidence in two classic applications of SVARs with long-run restrictions: the

original application in Blanchard and Quah (1989) and the “hours debate” of Gali

(1999) and Christiano et al. (2003). In the case of Blanchard and Quah (1989), we

find that long-run restrictions yield very weak identification, since confidence bands

on the impulse responses comprise the entire parameter space (which is bounded). On

the hours debate, we find that the difference specification of Gali (1999) is very well

identified, while the level specification of Christiano et. al. (2003) is weakly identified.

Long-run restrictions are by now a very common approach to the identification of

SVARs. At the time of writing, Blanchard and Quah (1989) had 4363 Google scholar

1Note that the presence of persistent regressors affects inference on IRFs at long horizons under
any identification scheme, see Pesavento and Rossi (2006, 2007). We do not study long-horizon IRFs
here, but we believe that use of filtered instruments provides valid inference for long-horizon IRFs,
too, though the methods in Pesavento and Rossi (2006) may be more efficient.
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citations, and we found that about half of all the articles that used SVARs published

between 2005 and 2014 in the top general interest and macro journals in economics

used long-run restrictions.2 Therefore, the scope of the present paper extends well

beyond the two applications that we discuss here.

The paper is structured as follows. Section 2 sets up the model and assumptions

and discusses the long-run identification scheme. Section 3 discusses existing methods

of inference, highlights the problem and presents our proposed solution. Section 4 gives

simulations on the finite-sample size and asymptotic power of our new method. Section

5 presents the two empirical applications and finally, section 6 concludes. Proofs and

additional numerical and empirical results are given in an appendix at the end.

2 Model and assumptions

2.1 The baseline SVAR(k) with long-run restrictions

A general SVAR with k lags can be written as

B (L)Yt = εt, B (L) =
k∑
j=0

BjL
j (1)

where L is the lag operator, Yt is a n × 1 vector of endogenous random variables, Bj

are n × n nonstochastic matrices of parameters, var (εt) is a n-dimensional diagonal

variance matrix, and B0 has ones along its diagonal. Moreover, the defining assumption

of the VAR is E (εt|Yt−1, Yt−2, . . .) = 0.

Partition the vector of structural shocks εt =
(
ε1t
ε2t

)
. We are interested in identifying

ε1t, and the IRF

gj
n×1

=
∂Yt+j
∂ε1t

, j = 0, 1, . . .

The long-run identifying restriction is that ε2t has no long-run effect on Y1t. In the

literature this is expressed as a zero restriction on elements of the spectral density

matrix of Yt at frequency zero – a Choleski factorization of the long-run variance of

Yt. We work with the (equivalent) instrumental variables (IV) representation of the

long-run restrictions in Pagan and Robertson (1998).

2American Economic Review, Econometrica, Quarterly Journal of Economics, Journal of Political
Economy, Review of Economic studies, Journal of Monetary Economics, AEJ Macro and Journal of
Money Credit and Banking.
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Fukac and Pagan (2006) show that the long-run restrictions depend on the number

of permanent shocks in the system. We assume throughout that there are no I(2)

trends, i.e., Yt is at most I(1). For clarity, we discuss here the bivariate case, n =

2 – multivariate generalization is straightforward. It is typically assumed (e.g., by

Gali (1999)) that long-run identification requires at least one permanent shock, so the

cointegrating rank can be 0 (two permanent shocks) or 1 (one permanent shock).

2.1.1 Case of one permanent shock

This is a cointegrated VAR, or vector error correction model (VECM), which can be

written as

Γ (L) ∆Yt = α
2×1

β′︸︷︷︸
1×2

Yt−1 +B−1
0 εt, (2)

with Γ (L) =
∑k−1

j=0 ΓjL
j, Γ0 = I, Γj = −B−1

0

∑k
i=j+1 Bi, and αβ′ = −B−1

0 B (1) . Its

Granger representation is:

Yt = C
t∑

s=1

εs + C̃ (L) εt, C = β⊥ (α′⊥Γ (1) β⊥)
−1
α′⊥B

−1
0 ,

where α′⊥α = 0, α =
(
α1

α2

)
, α⊥ =

(
α2

−α1

)
and similarly for β. The long-run restriction

that permanent shocks to Y2t have no impact on Y1t can be written as a zero restriction

on the top right element of the matrix C,

C =

(
C11 C12

C21 C22

)
=

(
∗ 0

∗ ∗

)
.

(Note that since cointegration implies rank(C) = 1, C22 = 0 must hold too: only ε1t

drives the stochastic trend.) This implies that α⊥B
−1
0

(
0
1

)
= 0, or if we define

B0 =

(
1 −b12

−b21 1

)
,

b12 =
α1

α2

.

5



Alternatively, let Γ (L) =

(
γ11 (L) −γ12 (L)

−γ21 (L) γ22 (L)

)
and write the VECM as:

γ11 (L) ∆Y1t = α1β
′Yt−1 + γ12 (L) ∆Y2t + u1t

γ22 (L) ∆Y2t = α2β
′Yt−1 + γ21 (L) ∆Y1t + u2t,

where ut = B−1
0 εt are the reduced form errors. Imposing the long-run restriction yields

(Pagan and Pesaran, 2008):

γ̃11 (L) ∆Y1t = b12∆Y2t + γ̃12 (L) ∆Y2t + ε1t, (3)

where γ̃11 (L) = γ11 (L) + b12γ21 (L) and γ̃12 (L) = γ12 (L) + b12 [γ22 (L)− 1]. Observe

that the error correction (‘ecm’) term β′Yt−1 is missing from (3), so we can use this

to instrument for the endogenous regressor ∆Y2t. Once ε1t is identified from (3), the

impact of ε1t on Y2t can be obtained from the regression

γ22 (L) ∆Y2t = α2β
′Yt−1 + γ21 (L) ∆Y1t−1 + d21ε1t + ε2t. (4)

Identification is weak if α2 → 0.

2.1.2 Case of two permanent shocks

In this case there is no cointegration, so the model is a VAR in first differences:

Γ (L) ∆Yt = B−1
0 εt.

The long-run restriction that permanent shocks to Y2t have no impact on Y1t is

C = Γ (1)−1B−1
0 =

(
∗ 0

∗ ∗

)
.

(Note that in this case C22 does not need to be 0). The long-run restriction then

implies:

b12 = −γ12 (1)

γ22 (1)
.

As before, this can also be expressed as an exclusion restriction. First, from the
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Beveridge and Nelson (1981) (henceforth BN) decomposition we have

b12 + γ̃12 (L) = b12 + γ̃12 (1) + γ̃∗12 (L) ∆.

Substituting in the SVAR, using the long-run restriction b12 + γ̃12 (1) = 0 we have

γ̃11 (L) ∆Y1t = γ∗12 (L) ∆2Y2t + ε1t, (5)

and the equation for Y2t reads

γ22 (L) ∆Y2t = γ21 (L) ∆Y1,t−1 + d21ε1t + ε2t.

Thus, we are using ∆Y2,t−1 as an instrument for the endogenous regressor ∆2Y2t in (5).

Identification is weak if ∆Y2t is nearly I(1).

2.2 The hours debate

The number of permanent shocks can make a big impact on the results. The debate of

the short-run effect of a technology shock on hours between Gali (1999) and Christiano

et al, is based on a SVAR that contains productivity and hours. Gali used a VAR in

first differences (two permanent shocks), found a negative effect and rejected RBC

theory. Christiano et al favored a VAR with hours in levels (one permanent shock,

cointegrating vector β = (0, 1)′) and found a positive effect – they also used per-capita

hours as opposed to total hours, which also matters. Christiano et al claimed the

“level” specification encompasses the “difference” one, and is preferred by the data.

It is true that the level specification nests the difference specification. Consider the

following encompassing specification:

γ̃11 (L) ∆Y1t = γ̃∗12 (L) ∆2Y2t + [b12 + γ̃12 (1)] ∆Y2t + ε1t (6)

γ22 (L) ∆Y2t = α2Y2,t−1 + γ21 (L) ∆Y1t + u2t,

The level specification imposes no extra restriction, and uses Y2,t−1 as an instrument

in (6). The difference specification imposes b12 + γ̃12 (1) = α2 = 0, which enables us to

use ∆Yt−1 as an instrument in (6). The difference specification will be misspecified if

b12+γ̃12 (1) 6= 0. In principle, this misspecification is detectable by a suitable diagnostic

test. However, the power of such a test depends on the value of α2 6= 0. Only when α2
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is far from zero can we reject α2 = 0 with high probability. Otherwise, if we do not

reject α2 = 0 and impose it incorrectly, the bias that will result depends on the true

value of b12 + γ̃12 (1) and can be arbitrarily large. This corroborates Christiano et al’s

claim. But if we are in a situation when α2 is small, which we can model as α2 → 0 as

T → ∞, the level specification suffers from weak identification because of a near unit

root in Y2t. Therefore, the sampling uncertainty in the level specification may be so

large that we cannot rule out conclusions based on the difference specification.

3 Econometric Methods

3.1 GMM estimating equations

Consider the multivariate SVAR(m) in n variables. We are interested in identifying

the IRF to the first shock ε1t using (n− 1) long-run restrictions. This can be done

by estimating equations (3) and (4). Let θ denote all the parameters of the model.

Moreover, let X1t, X2t denote vectors containing lags of ∆Yt. In canonical, unrestricted

SVAR(m), X1t = X2t =
(
∆Y ′t−1, . . . ,∆Y

′
t−m+1

)′
, so that (3) and (4) can be written

compactly as

∆Y1t = b′12∆Y2t + δ′1X1t + ε1t (7)

∆Y2t = α2Y2,t−1 + δ′2X2t + d21ε1t + v2t︸ ︷︷ ︸
u2t

, (8)

where δ1 denotes the coefficients on exogenous and predetermined variables in (3), and

δ2 denotes the corresponding coefficients in (4).3 Note that v2t is the residual of the

projection of the reduced form error u2t on ε1t. It coincides with ε2t when it is a scalar

(n = 2), but not otherwise. So, as is well-known, the n− 1 long-run restrictions above

combined with the orthogonality of the structural shocks, do not identify the structural

shocks ε2t when n > 2. For clarity, we will discuss the case n = 2 in the remainder of

this section. Extension to the general case n > 2 is given below.

Because the model is just-identified, maximum likelihood estimation of θ can be

expressed in terms of the method of moments. Let

h1t (θ1) = b12∆Y2t + δ′1X1t, (9)

3X1t and X2t do not need to be the same and do not need to include all k lagged differences of the
variables. They may also contain deterministic terms, see Section 3.4.
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where θ1 = (b12, δ
′
1, σε1)

′
, and

h2t (θ) = ∆Y2t − α2Y2,t−1 − δ′2X1t − d21h1t (θ1) . (10)

Note that (9) and (10) correspond to the ‘level’ specification, which is more general, but

can easily accommodate the difference specification by redefining Y2t accordingly. Let

Z1t, Z2t denote vectors of instruments to be specified below. The identifying restrictions

can be expressed as the moment equations E (ft (θ)) = 0, where ft = (f ′1t, f
′
2t)
′ and

f1t (θ1) =

(
Z ′1th1t (θ1)

h1t (θ1)2 − σ2
ε1

)
, f2t (θ) =

(
Z ′2th2t (θ)

h1t (θ1)h2t (θ)

)
. (11)

This structure of the moment conditions and the corresponding block-diagonality of the

efficient GMM weighting matrix allows us to define the GMM estimator sequentially,

see below.

Under standard strong-instrument stationary asymptotics define the long-run vari-

ance of the moment conditions Vf (θ) = var
(
T−1/2

∑T
t=1 ft (θ)

)
. Let V̂f

(
θ̄
)

denote a

consistent estimator of Vf (θ) , where θ̄ is some initial estimator of θ. Note that by

the finite-order VAR assumption Vf (θ) = var (ft (θ)) , so V̂f (θ) does not need to be a

HAC estimator. The GMM criterion is

ST (θ) = FT (θ)′ V̂f
(
θ̄
)−1

FT (θ) ,

where FT (θ) = T−1
∑T

t=1 ft (θ). The GMM estimator is θ̂ = arg minθ ST (θ) . Because

the SVAR model is linear and just-identified, under (conditional) homoskedasticity,

GMM becomes 2SLS equation by equation. Wald-tests and confidence intervals are

based on standard first-order strong-instruments stationary asymptotics:

√
T
(
θ̂ − θ

)
d→ N

(
0,
[
J (θ)′ Vf (θ)−1 J (θ)

]−1
)

,

where J (θ) = p limT→∞ ∂FT (θ) /∂θ′. However, under near-unit-root asymptotics the

above result breaks down.

Orthogonality of the errors implies that the variance matrix of ft is block diagonal,

with Vf1 (θ1) = var (f1t (θ1)) and Vf2 (θ) = var (f2t (θ)), so the GMM criterion function
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can be decomposed into orthogonal components

ST (θ) =
(
F1T (θ1)′ , F2T (θ)′

)( V̂ −1
f1

0

0 V̂ −1
f2

)(
F1T (θ1)

F2T (θ)

)
= F1T (θ1)′ V̂ −1

f1
F1T (θ1)︸ ︷︷ ︸

S1T (θ1)

+F2T (θ)′ V̂ −1
f2
F2T (θ)︸ ︷︷ ︸

S2T (θ)

. (12)

where

F1T (θ1) =
1

T

T∑
t=1

f1t (θ1) , F2T (θ) =
1

T

T∑
t=1

f2t (θ) .

3.1.1 The impulse response function

The IRF of interest is given by

gj (θ) =
∂Yt+j
∂ε1t

=
(
In,0n×n(m−1)

)
A (θ)j

(
1

0n(m−1)×1

)
g0 (θ) , j ≥ 1 (13)

where A (θ) is the companion VAR matrix and g0 are the impact IRFs:

g0 (θ) =

(
1 + b12d21

d21

)
σε1 . (14)

This is the IRF to a one-standard-deviation shock to ε1t. Alternatively, we can use the

IRF to one unit shock to ε1t by dropping σε1 from (14).

3.2 The conventional approach

The conventional approach, e.g., Blanchard and Quah (1989), is to use Gaussian max-

imum likelihood (ML) estimation with conditional homoskedasticity. The ML estima-

tor corresponds to the GMM estimator defined above when Z1t =
(
Y ′2,t−1, X

′
1t

)
and

Z2t =
(
Y ′2,t−1, X

′
2t

)
, namely, when we use Y2,t−1 as instruments in (7)-(8). This corre-

sponds to 2SLS estimation of θ1 from (7), yielding estimate θ̂1, and OLS estimation

of θ2 from (8), with the ‘generated regressor’ ε̂1t = h1t

(
θ̂1

)
. Under strong-instrument

stationary asymptotics, the asymptotic distribution of Wald statistics is χ2 and er-

ror bands for any smooth function of the parameters can be derived using the delta

method, e.g. Mittnik and Zadrozny (1993), or bootstrapping, e.g., Kilian (1998).
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When α2 is small, e.g., α2 = O (T−a) , a > 0, conventional asymptotic approx-

imations break down and the distribution of Wald statistics depends on a nuisance

parameter that measures the proximity of α2 to zero, see Gospodinov (2010) for the

case a = 1. Thus, conventional confidence bands on VAR coefficients and IRFs do not

have correct asymptotic coverage. In the next subsection, which contains the main

contribution of the paper, we introduce a method that does.

3.3 Anderson Rubin test with filtered instruments

Our approach to solving this problem consists of two components: (i) address the near

unit root problem, α2 = O (T−a) with a > 0, by using filtered instruments – the so-

called IVX approach of Magdalinos and Phillips (2009, henceforth MP); (ii) address the

weak-instrument problem using a weak-identification robust method – the Anderson

and Rubin (1949) (henceforth AR) test, since the model is typically just-identified. It

is crucial to use both components – using any one of them alone does not suffice to

control size.

3.3.1 A brief description of the IVX method of Magdalinos and Phillips

(2009)

MP obtained nuisance-parameter-free asymptotic distribution theory for Wald tests in

situations where the order of integration of the regressors is unknown, such as predictive

regressions or cointegrating regressions when the right hand side variables are nearly

integrated. They did so by introducing an instrument which is filtered from the original

data in such a way that it is at most moderately integrated, and correlates sufficiently

with the variable it is instrumenting.

We illustrate the idea using the predictive regression example in Kostakis et al.

(2015, henceforth KMS). Consider the system of equations

yt = θxt−1 + ut

xt =

(
1 +

kT
T

)
xt−1 + vt,

where kT = O (T ) as T →∞ such that kT/T ∈ [−1, 0] , and suppose we are interested

in doing inference on θ. Instead of using the OLS t-test, following MP, KMS proposed
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to use IV with the following generated instrument:

zt =
t∑

j=1

ρt−jTz ∆xj, ρz = 1 +
cz
T b
, b ∈ (0, 1) , cz < 0.

so zt = ρzzt−1 + ∆xt, with ρz sufficiently smaller than 1. When kT = cT a−1, c ≤ 0 and

a ∈ [0, 1] they showed that the IV t-test is asymptotically standard normal under H0

irrespective of a, c and the choice of b, cz.
4 We show in the Supplementary Appendix

that this results holds for all sequences such that kT/T ∈ [−1, 0].

3.3.2 Filtered instruments for the SVAR model

We take that approach to our model as follows. In the original model, the instruments

contain all lagged differences that appear on the right hand side of all equations (which

we denoted by X1t), plus the lagged stationary regressors Y2,t−1, which are excluded

only from the first equation, i.e., Z1t = Z2t = (X1t, Y2,t−1) . The alternative we propose

is to replace Y2,t−1 in the instrument set with the filtered instrument

zt =
t−1∑
j=1

ρt−jTz ∆Y2,j, ρTz = 1 +
cz
T b
, b ∈ (0, 1) , cz < 0 (15)

(we follow MP in setting cz = −1 and b = 0.95).

3.3.3 The AR statistic

The next step in our methodology is to construct the AR test using those instruments.

Consider first a statistic for testing H0 : b12 = b0
12. Because of the block diagonality of

Vf , this can be tested using just the first equation (3). The AR statistic, AR (b0
12) , is

the squared t-statistic for testing H∗0 : δz = 0 in the auxiliary regression:

∆Y1t − b0
12∆Y2t = δ′1X1t + ztδz + ε0

1t (16)

where X1t contains the m − 1 lags of ∆Yt, and zt is the filtered instrument (15).

Note that with conditional homoskedasticity, AR (b0
12) corresponds exactly to the min-

imum value of S1T (θ1), defined in (12), under the restriction that b12 = b0
12, i.e.,

4This example is a special case of KMS Theorem 1.
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S1T

(
θ̂1 (b0

12)
)

, where θ̂1 = arg minθ1:b12=b012
S1T (θ1) . Under conditional homoskedastic-

ity, this can be written analytically as

AR (b12) =
(∆Y1 −∆Y2b12)′ PMX1

z (∆Y1 −∆Y2b12)

(∆Y1 −∆Y2b12)′MZ1 (∆Y1 −∆Y2b12) / (T − col (Z1))
, (17)

where P· denotes the projection matrix, M· = I − P· Z1 = (X1, z) , and we follow

standard notation that for any column vector Xt, X denotes the matrix of T stacked

rows X ′t, t = 1, . . . , T .

To proceed, we make the following assumption on εt, where ‖·‖ denotes the spectral

norm.

Assumption A. (εt)t∈Z is a sequence of identically and independently distributed random

vectors with E (εt|Yt−1, Yt−2, . . .) = 0, E (εtε
′
t|Yt−1, Yt−2, . . .) = Σε and diagonal with

Σε > 0, and the moment condition E ‖εt‖4 <∞.

This assumption is similar to the one used in MP, except for the addition of con-

ditional homoskedasticity, which is typically used in the literature (e.g., the results

in Blanchard and Quah, 1989, and Gali, 1999, assume conditional homoskedasticity).

Heteroskedasticity robust version of the proposed tests can be obtained using a het-

eroskedasticity consistent estimator of Vf .

Our proposed AR test is then based on the following result.

Theorem 1. Consider the model (7) and (8), with α2 = kT/T ∈ [−1, 0] , and εt

satisfying Assumption A. Let statistic AR (b12) as in (17) where the instrument is

defined by (15). Then under H0 : b12 = b0
12, AR (b0

12)
d→ χ2

1 for all sequences kT .

Comments 1. The proof of the Theorem is somewhat simpler than in MP and

KMS because no variable in the auxiliary regression is near-integrated. Thus, δ̂z is

asymptotically Normal, rather than mixed normal, in all cases.

2. Extending kT = cT 1−a, the case considered by MP and KMS, to general se-

quences kT is easily done by following the proofs in MP, see the supplementary ap-

pendix.

3. The case kT/T = c < 0 corresponds to stationarity and strong identification.

In this case, the statistic AR in (17) is asymptotically equivalent to the AR statistic

13



AR∗ defined in (30) that is obtained by replacing the filtered instrument zt with Y2,t−1.5

AR∗ is the standard AR statistic, which is asymptotically efficient because the model is

just identified (Moreira, 2003), and it is also asymptotically equivalent to the standard

Wald test of H0. Thus, the use of the filtered instrument entails no loss of power in

the case of strong identification, and so the AR test with filtered instruments weakly

dominates the Wald and standard AR tests.

3.3.4 A projection test for general hypotheses

The proposed methodology can be extended to testing general hypotheses of the form

H0 : r (θ) = 0, where r : Θ → <q, q < dim θ. This includes e.g., the IRF and forecast

error variance decomposition. Testing such hypotheses is difficult because r (θ) contains

the potentially weakly identified parameter b12. Since this is the only parameter that is

affected by weak identification, we propose the following projection testing approach.

Use a test of the joint null hypothesis H∗0 : r (θ) = 0, b12 = b0
12, and “project out” b12,

i.e., reject H0 : r (θ) = 0 if there is no value of b0
12 for which H∗0 is accepted. We now

turn to the derivation of a test of H∗0 .

Our test of the combined hypothesis H∗0 is based on a novel idea that combines

the AR (b12) statistic developed above with a Wald statistic for testing the restrictions

on the remaining parameters in θ (this idea applies more generally, see section A.2

and Theorem 3 in the Appendix). Partition θ into b12 and ψ, say, the remaining

unknown parameters. Let ψ̂ (b12) be the restricted GMM estimator of ψ given b12 and

let V̂ψ̂ (b12) denote an estimate of the asymptotic variance matrix of ψ̂ (b12). Provided

R (θ) = ∂r (θ) /∂ψ′ exists and is of full rank q, define

W (b12) = r
(
b12, ψ̂ (b12)

)′
V̂r̂ (b12)−1 r

(
b12, ψ̂ (b12)

)
, (18)

where V̂r̂ (b12) = R
(
b12, ψ̂ (b12)

)′
V̂ψ̂ (b12)R

(
b12, ψ̂ (b12)

)
,

and consider the combined statistic

ARW
(
b0

12

)
= AR

(
b0

12

)
+W

(
b0

12

)
. (19)

The asymptotic distribution of ARW (b0
12) under the null H∗0 is given by the following

5The asymptotic equivalence AR = AR∗ + op (1) is shown in the proof of Proposition 7 in the
Supplement.
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result.

Theorem 2. Under the conditions of Theorem 1, with b ∈ (1/2, 1) in the definition

of the filtered instrument zt, and if the null hypothesis H∗0 : r (θ) = 0, b12 = b0
12 holds,

then, for all 0 ≤ a ≤ 1, c ≤ 0:

W
(
b0

12

) d→ χ2
q,

W (b0
12) it is asymptotically independent of AR (b12) , and

ARW
(
b0

12

)
= AR

(
b0

12

)
+W

(
b0

12

) d→ χ2
1+q.

Comments 1. The ARW test rejects H∗0 : r (θ) = 0, b12 = b0
12 at the η level of

significance if ARW (b0
12) is greater than the 1−η quantile of χ2

1+q. A projection test of

H0 : r (θ) = 0 rejects H0 when there is no value of b0
12 such that the ARW test accepts

H∗0 .

2. Because of the conditional homoskedasticity case, the confidence set for b12 can

be obtained analytically using Dufour and Taamouti (2005) and that greatly speeds

up computation. But even in the general case, computation of confidence bands only

requires a grid search over the space of b12, so if the latter is a scalar, it is quite fast,

too.

3. This test can be applied, e.g. to the IRF or forecast error variance decomposition,

see Examples below. Importantly, the test is valid also for inference on long-horizon

IRFs, see Example LHIRF below.

Example SHIRF A bivariate SVAR(1) with a long-run restriction and cointegrating

vector β = (0, 1)′ is a special case of (3) and (4) with

∆Y1t = b12∆Y2t + ε1t, (20)

∆Y2t = α2Y2,t−1 + d21ε1t + ε2t. (21)

The structural parameters θ = (b12, α2, d21)′ are partitioned into b12 and ψ = (α2, d21)′ .

Suppose we are interested in testing H0 : ∂Y2t/∂ε1t = d21 = d0
21 against H1 : d21 6= d0

21.

This can be expressed as the linear restriction r (b12, ψ) = d21 − d0
21, with R (b12, ψ) =

∂r/∂ψ′ = (0, 1) . Our proposed η-level ARW test rejectsH0 if minb12 (AR (b12) +W (b12))

is greater than the 1− η quantile of χ2
2.
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Example LHIRF Suppose we are interested in the impulse response of Y2 to ε1 at

horizon j = κT , in the special case where α2 = cT−1. This example corresponds to

the problem studied by Pesavento and Rossi (2005, 2006, 2007) and Mikusheva (2012),

though these authors did not consider the case of long-run restrictions which matters.

Specifically, the parameter of interest is given by ∂Y2t+j/∂ε1t = (1 + α2)j d21 ≈ ecκd21

when j = κT and T is large. The procedures proposed in the aforementioned papers

require d21 to be consistently estimated and inference on this parameter is obtained by

using a robust test for c. The additional complication here is that d21 is weakly identified

when α2 is local to zero, so uncertainty in d21 (stemming from weak identification of

b12) is not asymptotically negligible – it is of the same order as for c.

Our ARW test covers this case. Specifically, consider the null hypothesis H0 :

∂Y2t+kT/∂ε1t = r0. This is can be expressed as the analytic restriction r (b12, ψ) =

eα2jd21 − r0, where j is known, so that R (b12, ψ) = ∂r/∂ψ′ = eα2j (j, 1) . By Theorem

2, the asymptotic size of the projection η-level ARW test described in Example SHIRF

will not exceed η for all c.

3.4 Deterministic terms

The model (7)-(8) above did not include any deterministic terms in X1t and X2t.

Although their values do not affect the IRF or forecast error variance decomposition,

misspecification of the deterministic elements may result in inconsistent estimators of θ.

Under stationarity assumptions, the use of consistent estimators of the deterministic

terms (we restrict our attention to an intercept or a linear trend) will preserve the

asymptotic distributions of the AR and ARW statistics. They may have an impact in

the presence of near-unit roots.

When a constant is present in (7), we show in the supplementary appendix that

the results of KMS hold and the test statistics are asymptotically unaffected. The

estimated intercept matters in finite samples though, and we therefore use the finite

sample correction these authors suggest, adapting it to the ARW statistic as follows.

The finite sample correction in KMS, applied to the AR in (17) consists in modifying

PMX1
z in the numerator. When the model contains an intercept, so X1 is augmented

as X1 =
[
ι : X̃1

]
. replacing in effect PMX1

z = MX1z (z′MX1z)−1 z′MX1 with

P̃MXz = MXz
(
z′MXz −

(
1− λ̂ε1,u2

)
T1z

′z
)−1

z′MX

16



where λ̂ε1,u2 is the estimated long run correlation between ε1t and u2t. A similar cor-

rection for the Wald statistic W obtains. It depends on the specific form of H∗0 but

only affects the variance related to the estimator of α2 in V̂ψ̂ (b12) . We provide an

expression thereof in the supplementary appendix. In the empirical applications we

consider in this paper, λ̂ε1,u2 is low enough so the finite sample correction does not play

a substantive role.

In some applications, Y2t denotes the deviation of some observed variable (e.g., log

hours, or log real GDP) from a linear deterministic trend where the observed data

Y obs
2t is given by Y obs

2t = Y2t + τx + γxt. We then replace Y2t with Ŷ2t = Y obs
2t−1 − γ̂xt in

the computation of the IVX instrument Zt. Whether or not Y2t is stationary affects

inference on γx. In particular, if γ̂x is computed using the full sample, then Ŷ2t is

a function of future values and this may affect the exclusion restrictions used in the

GMM objective function.

To avoid this issue, we follow Phillips, Park and Chang (2004) and use a recursive

detrending formula to ensure that Ŷ2t is not computed using future values:

Ŷ2t = Y obs
2t − γ̂xt = Y obs

2t +
6

(t− 1)

t∑
j=1

Y obs
2j −

12

(t+ 1) (t− 1)

t∑
j=1

jY obs
2j

This formula preserves the martingale difference sequences which are needed in the

asymptotic theory, so moment conditions hold under the null. Hence the asymptotic

results presented above are preserved.

4 Numerical results

In this section we investigate the finite sample properties of our proposed test and

compare them with the existing nonrobust alternative.

The data generating process is a bivariate reduced-form VAR(1):

∆Y1t =
c

T
b12Y2t−1 + v1t, 1 ≤ t ≤ T

∆Y2t =
c

T
Y2t−1 + v2t

with (
v1t

v2t

)
∼ NID

((
0

0

)
,

(
1 ρ

ρ 1

))
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At 5% At 10%
ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.052 0.005 0.071 0.774 0.103 0.025 0.133 0.807

−1 0.052 0.007 0.064 0.680 0.100 0.029 0.125 0.717

−10 0.050 0.019 0.047 0.257 0.102 0.053 0.092 0.307

−30 0.051 0.034 0.044 0.135 0.100 0.081 0.089 0.181

−100 0.053 0.050 0.045 0.069 0.102 0.100 0.093 0.115

Table 1: Null rejection frequencies of AR (with filtered instruments) and conventional
t tests of the hypothesis H0 : b12 = 0 in a bivariate SVAR(1) with long-run restrictions.
ρ is the correlation between the reduced-form VAR errors. The sample size is 200.
Number of MC replications: 20000.

and Y10 = Y20 = 0. The estimated model is SVAR(m), m = 1, 2, 4, and we focus on

testing the null hypothesis H0 : b12 = 0 against H1 : b12 6= 0.

4.1 Size

We consider the following parameters sets: ρ ∈ {0.20, 0.95} and c ∈ {0,−1,−10,−30,−100}.
The sample size is set to T = 200. We compute the null rejection frequencies of our AR

test with filtered instrument z (17) and the conventional t test with instrument Y2,t−1

at the 5% and 10% levels of significance. The number of Monte Carlo replications

is 20000. Tables 1 and 2 give the results for SVAR(1) and SVAR(2) models, respec-

tively. We notice that the rejection frequency of the t test can deviate sharply from

its asymptotic level, with considerable overrejection in the cases ρ = 0.2 and c close to

zero. In contrast, the rejection frequency of our proposed AR test is very close to its

asymptotic level in all cases. Similar results obtain for higher order models as well as

for models with deterministic terms (further results can be found in the Supplementary

Appendix).

4.2 Power

We compute (large-sample) power of the AR and t tests of the previous case under

weak identification. We set T = 2000, use 1000 Monte Carlo replications, and con-
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At 5% At 10%
ρ = 0.20 0.95 0.20 0.95
AR t AR t AR t AR t

c = 0 0.049 0.006 0.066 0.770 0.098 0.025 0.126 0.802

−1 0.047 0.008 0.060 0.676 0.096 0.029 0.119 0.716

−10 0.045 0.020 0.039 0.258 0.091 0.055 0.080 0.308

−30 0.036 0.035 0.034 0.144 0.078 0.084 0.079 0.186

−100 0.028 0.048 0.052 0.081 0.065 0.100 0.113 0.117

Table 2: Null rejection frequencies of AR (with filtered instruments) and conventional
t tests of the hypothesis H0 : b12 = 0 in a bivariate SVAR(2) with long-run restrictions.
ρ is the correlation between the reduced-form VAR errors. The sample size is 200.
Number of MC replications: 20000.

sider ρ ∈ {0.2, 0.95} and c = −10,−100, and −500. In this model, the strength of

identification is driven by c. To relate the results to well-known cases of weak, moder-

ate and strong identification in linear IV, we compute an approximate measure of the

strength of instruments known as the concentration parameter (denoted λ) in linear

IV.6 The chosen values of c correspond to approximate values of λ of 1.3, 13, and 72

respectively, i.e., weak, moderate and strong identification. The range of b12 under H1

is λ−1/2 (−3 : 3) .

Figure 1 reports the resulting power curves in each case. The figures show that the

AR test has good power even for c close to zero. This is not the case of the t test, which

is both size distorted and even biased in some cases. Moreover, when identification is

strong (c = −500), the power of the AR test is very similar to that of the t test, which

is asymptotically efficient in this case. Since the DGP in this case is approximately

stationary, this is a consequence of the fact that the AR and t tests are asymptotically

equivalent in the case of stationarity, see comment 2 to Theorem 1.

6In linear IV with fixed instruments, the concentration parameter is equal to k [E (F )− 1] , where
F is the infeasible version of the first-stage F statistic for excluding the instrument, computed when
the variance of the reduced form error variance is known, see Stock et al. (2002). The present context
does not fit into that canonical IV framework. so we use a large sample approximation of λ.
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Figure 1: Large-sample power of AR (with filtered instrument) and t tests of the
hypothesis H0 : b12 = 0 against H1 : b12 6= 0 in the SVAR(1) model with long run
restrictions. T = 2000, 1000 MC replications, ρ is correlation of reduced-form errors.
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Figure 2: Original data used in Blanchard and Quah (1989).

5 Empirical Results

5.1 Blanchard and Quah (1989)

We first revisit the application of Blanchard and Quah (1989) (BQ), where Y1t is log

real GNP, and Y2t is unemployment in deviation from a linear trend. We use the

original BQ dataset, which is quarterly and covers the period 1948q2 to 1987q4. More

details about the data and transformations are given in the Supplementary Appendix.

For comparison with the results reported in BQ, we give here results based on full-

sample detrending as in BQ. The results with recursive detrending are given in the

Supplementary Appendix, where we also report results based on an extended sample

up to 2014q4.

The level specification in BQ is a SVAR(9) with Y1t in first differences and Y2t in

levels. The actual BQ data are presented in Figure 2.

Figure 3 reports the estimated IRFs together with the robust confidence bands

based on our proposed ARW method and the non-robust confidence bands of BQ. We

see that the point estimates from our method that uses the filtered instrument are very
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Figure 3: Estimates and confidence intervals of the IRFs. Robust (in red), and Blan-
chard and Quah (1989) (in blue and black)

close to those of BQ, but the robust confidence bands are so large that the original

conclusion of BQ is not borne out. In other words, long-run restrictions produce very

weak identification in this application.

5.2 The hours debate

In the hours debate, Y1t denotes log productivity, and Y2t log hours. We consider the

level specifications in Gali (1999) and Christiano et al (2003), henceforth CEV. Both

use quarterly data to estimate a SVAR(5) with Y1t in first differences and Y2t in levels.

Gali uses total hours linearly detrended over the sample 1948q2 to 1994q4. CEV use

per capita hours and their sample is 1948q1 to 2002q4. Figure 4 presents the Gali

(1999) data.

Figure 5 presents the Gali (1999) estimates and confidence intervals together with

their robust version. The robust confidence intervals do not alter Gali’s conclusions.

The data used by CEV is presented in Figure 6 and their IRFs together with their

robust versions are reported in Figure 7. In the CEV data, the response of hours to a
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Figure 4: Original data used in Gali (1999).

technology shock is no longer significant. The information in the long-run restriction is

so small that the data is consistent with both a positive as well as a negative response

of hours to a technology shock. Therefore, the original conclusions of CEV are not

robust to weak identification.

Finally, we report results in Figure 8 for the difference specification in Gali (1999).

We see that the robust ARW confidence bands are not much wider than the non-robust

ones reported in Gali (1999), indicating that this specification did not suffer from weak

identification (notwithstanding, of course, the valid CEV critique for using total as

opposed to per capita hours, though the difference in the growth rates is relatively

small).

6 Conclusions

We proposed a method of inference on the parameters of SVARs identified using long-

run restrictions that is robust to both weak instruments and near unit roots in the

data. The method uses instruments obtained by filtering the potentially non-stationary
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Figure 5: IRFs to technology shock. Robust estimates (in red) together with the Gali
(1999) estimates (in blue and black).
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Figure 6: Original data used in Christiano et al (2003).

variables to make them near stationary. We propose to test hypotheses on the pa-

rameters that are potentially weakly identified using the Anderson-Rubin test with

filtered instruments. Tests of general parametric restrictions, and confidence intervals

for differentiable functions of the parameters, such as IRFs or forecast error variance

decompositions, are obtained using a combined AR and Wald test. The robust test

and associated confidence bands are easy to compute, and offer informative and reliable

inference in two high-profile applications.

A Proofs

A.1 Proof of Theorem 1

Notice that, here, the generated instrument zt is adapted to the filtration F2,t−1 =

σ {∆Y2,t−j, j ≥ 1} as opposed to the case considered by MP where it is adapted to F2,t.

Hence cov (zt, ε1t) = 0 and there is no need to estimate this covariance: the condition

b > 2/3 in MP does not apply here. Also, contrary to MP, the errors (ε1t, v2t) are i.i.d

so the restritction b > 1/2 in Proposition A2 of MP is not required (there is no need
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estimates (in blue and black).
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for a Beveridge-Nelson decomposition of the errors), hence their lemmas 3.1, 3.5 and

3.6 apply for b ∈ (0, 1) as in KMS.

We first consider the case m = 1 so the numerator of the AR statistic in equation

(17), simplifies to

(∆Y1 −∆Y2b12)′ Pz (∆Y1 −∆Y2b12) =
T∑
t=1

ε1tzt

(
T∑
t=1

z2
t

)−1 T∑
t=1

ztε1t,

Define Σu2 = var [u2t] where u2t is defined in expression (8). The test statistic re-

lates to that of the estimator considered by Kostakis et al (2015, KMS henceforth):

(
∑

t zt∆Y2t)
−1∑

t ztε1t. KMS consider four cases which extend the results of MP: (i)

b < min (a, 1) ; (ii) a ∈ (0, b) ; (iii) a = b > 0 and finally (iv) a = 0. We denote by g a

constant that takes value cz in case (i) and c in (ii) .

In Cases (i) and (ii), Lemmata 3.2 and 3.5 of MP imply that

T−
1+min(a,b)

2

T∑
t=1

ztε1t =⇒ N

(
0,

1

−2g
Σu2σ

2
ε1

)
.

Also, Lemmata 3.1 and 3.5 of MP imply T−(1+min(a,b))
∑T

t=1 z
2
t

p→ 1
−2g

Σu2 . In Case

(iii) , Lemma 3.6(iii) of MP implies

T−
1+a
2

bTsc∑
t=1

ztε1t =⇒ N

(
0,

1

−2 (c+ cz)
Σu2σ

2
ε1

)

and T−(1+a)
∑T

t=1 z
2
t

p→ c
c+cz

Σu2 . Finally in Case (iv) , Lemma A.2(ii) and (iii) of KMS

imply that (
∑

t z
2
t )
−1∑

t ztε1t behaves as the estimator of their Theorem 1(iv) :(∑
t

z2
t

)−1∑
t

ztε1t =⇒ N
(

0, E
(
∆Y 2

2t

)−1
σ2
ε1

)

where T−1
∑

t z
2
t

p→ E (∆Y 2
2t) from their Lemma A.2(ii) . Collecting the four cases

above yields:

σ−2
ε1

∑
t

ε1tzt

(∑
t

z2
t

)−1∑
t

ztε1t =⇒ χ2
1. (22)
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Now the denominator is

(∆Y1 −∆Y2b12)′Mz (∆Y1 −∆Y2b12) =
T∑
t=1

ε2
1t −

T∑
t=1

ε1tzt

(
T∑
t=1

z2
t

)−1 T∑
t=1

ztε1t

Since E [ztε1t] = 0, the second element on the RHS of the previous expression is Op (1)

(this is also the case when k > 1), so

T−1 (∆Y1 −∆Y2b12)′Mz (∆Y1 −∆Y2b12)
p→ σ2

ε1
.

This completes the proof when m = 1. Notice that we can allow for b ∈ (0, 1) here

We now consider extending the result above to m > 1, which involves X1t =[
∆Yt−1, . . . ,∆Yt−(k−1)

]
. We show in a supplementary appendix that

(i)
T∑
t=1

X ′1tzt = Op (T ) ; (ii)
T∑
t=1

X ′1tε1t = Op

(
T 1/2

)
; (iii)

T∑
t=1

X ′1tX1t = Op (T ) .

(23)

Hence if a > 0, the numerator (∆Y1 −∆Y2b12)′ PMX1
z (∆Y1 −∆Y2b12) , T∑

t=m

ε1tzt −
T∑
t=m

ε1tX1t

(
T∑
t=m

X ′1tX1t

)−1 T∑
t=m

X ′1tzt


×,

 T∑
t=m

z2
t −

T∑
t=m

ztX1t

(
T∑
t=m

X ′1tX1t

)−1 T∑
t=m

X ′1tzt

−1

(24)

×

 T∑
t=m

ztε1t −
T∑
t=m

ztX1t

(
T∑
t=m

X ′1tX1t

)−1 T∑
t=m

X ′1tε1t


behaves as in (22) since the correction for the lags is of lower magnitude. The denom-

inator of the AR statistic still converges to σ2
ε1

in probability.

When a = 0, Lemma A.2 of KMS shows that expression (24) is asymptotically

equivalent to

(∆Y1 −∆Y2b12)′ PMX1
Y2 (∆Y1 −∆Y2b12) = ε′1MX1Y2 (Y ′2MX1Y2)

−1
Y ′2MX1ε1,

where Y2 denotes the stacked (Y2t−1). Since E [ε1tY2t−1] = 0 and Y2t−1 is stationary, it
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follows that

σ−2
ε1
ε′1MX1Y2 (Y ′2MX1Y2)

−1
Y ′2MX1ε1

d→ χ2
1.

Again the same result as above holds for the denominator.

A.2 General ARW test

Here we give high-level conditions to derive the properties of the combined ARW test

in a general GMM setting, which we use to prove Theorem 2 in the next subsection.

Let θ ∈ Θ denote a p-dimensional vector of parameters partitioned into θ = (ϑ′, ψ′)
′

of dimensions pϑ and pψ, respectively. Let FT (θ) = T−1
∑T

t=1 ft (θ) denote the sample

moments, where ft (θ) is a k-dimensional vector of data and parameters with k ≥ p and

E (ft (θ)) = 0 at the true value of θ. Let r (θ) be a known function of the parameters,

r : Θ→ <q, q ≤ pψ. Suppose ft (ϑ, ·) and r (ϑ, ·) are continuously differentiable wrt ψ,

and let JT (θ) = ∂FT (θ) /∂ψ′ and R (θ) = ∂r (θ) /∂ψ′. Let V̂f (θ) denote a k×k matrix

that is positive definite almost surely, and define the GMM objective function

ST (ϑ, ψ) = FT (ϑ, ψ)′ V̂f

(
ϑ, ψ̃

)−1

FT (ϑ, ψ) ,

where ψ̃ could be equal to some one-step GMM estimator (for 2-step GMM) or to ψ

(for continuously updated GMM). Suppose the constrained GMM estimator of ψ given

ϑ exists:

ψ̂ (ϑ) = arg min
ψ∈Θ2

FT (ϑ, ψ)′ V̂f

(
ϑ, ψ̃

)−1

FT (ϑ, ψ) .

To simplify notation, let ψ̂ ≡ ψ̂ (ϑ) , r̂ (ϑ) = r
(
ϑ, ψ̂

)
, R̂ (ϑ) = R

(
ϑ, ψ̂

)
, Ṽf (ϑ) =

V̂f

(
ϑ, ψ̃

)
, F̂T (ϑ) = FT

(
ϑ, ψ̂

)
and ĴT (ϑ) = JT

(
ϑ, ψ̂

)
. Also, let Ĉ (ϑ) be a full-rank

k × (k − pψ) matrix that spans the null-space of Ṽf (ϑ)−1/2 ĴT (ϑ) , i.e., Ĉ (ϑ) Ĉ (ϑ)′ =

MṼf (ϑ)−1/2ĴT (ϑ), where MX = I − PX , PX = X (X ′X)−1X ′.

Consider the statistic

ARW (ϑ) = ŜT (ϑ) +Wr (ϑ)
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where

ŜT (ϑ) = ST

(
ϑ, ψ̂

)
= F̂T (ϑ)′ Ṽf (ϑ)−1 F̂T (ϑ) ,

Wr (ϑ) = r̂ (ϑ)′
[
R̂ (ϑ) V̂ψ̂ (ϑ) R̂ (ϑ)′

]−1

r̂ (ϑ) , and (25)

V̂ψ̂ (ϑ) =
[
ĴT (ϑ)′ Ṽf (ϑ)−1 ĴT (ϑ)

]−1

.

Let Ĉψ̂ (ϑ) denote the Choleski factor of ĴT (ϑ)′ Ṽf (ϑ)−1 ĴT (ϑ) = Ĉψ̂ (ϑ) Ĉψ̂ (ϑ)′ , so

that V̂ψ̂ (ϑ)−1 = Ĉψ̂ (ϑ) Ĉψ̂ (ϑ)′ . The following result gives high-level conditions under

which the asymptotic distribution of ARW (ϑ) is χ2
pϑ+q when ϑ is the true value of that

parameter and r (θ) = 0. It can then be used to form a test of

H∗0 : ϑ = ϑ0, r (θ) = 0 against H∗0 : ϑ 6= ϑ0 and/or r (θ) 6= 0.

Theorem 3. Suppose that at the true value of the parameters θ =
(
ϑ
ψ

)
,

(i) r (θ) = 0, (ii) ψ̃
p→ ψ, ψ̂

p→ ψ,

(iii)

(
ξ̂1

ξ̂2

)
≡

(
Ĉ (ϑ)′ Ṽf (ϑ)−1/2 F̂T (ϑ)

Ĉψ̂ (ϑ)′
(
ψ̂ − ψ

) )
=⇒

(
ξ1

ξ2

)
∼ N (0, Ik) ,

(iv) there exist a non-stochastic pψ×pψ symmetric matrix BT → 0 such that B−1′
T V̂ψ̂ (ϑ)B−1

T =⇒
Ψ full-rank a.s., and (v) any stochastic elements in Ψ are independent of ξ = (ξ′1, ξ

′
2)
′
.

Then, ARW (ϑ) =⇒ χ2
pϑ+q.

Proof By assumption (ii) and Slutsky’s theorem we have R̂ (ϑ) = R (θ) + op (1) . By

the singular value decomposition, R (θ)BT = QTΛTU
′
T , where QT is an orthonormal

q× q matrix, ΛT → 0 is a diagonal matrix holding the singular values of R (θ)BT , and

UT is a pψ × q matrix such that U ′TUT = Iq. So,

Λ−1
T Q′T R̂ (ϑ)BT = Λ−1

T Q′TR (θ)BT + op (1) = U ′T + op (1) .

and

Λ−1
T Q′T R̂ (ϑ) V̂ψ̂ (ϑ) R̂ (ϑ)′QTΛ−1

T = Λ−1
T Q′T R̂ (ϑ)BTB

−1
T V̂ψ̂ (ϑ)B−1′

T B′T R̂ (ϑ)′QTΛ−1
T

= U ′TΨUT + op (1) ,
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by Assumption (iv). Let Ψ1/2 denote the Choleski factor of Ψ, such that Ψ1/2Ψ1/2′ = Ψ.

Assumption (iv) implies that B−1′
T Ĉψ̂ (ϑ)−1′ =⇒ Ψ1/2. Assumption (iii) then implies

B−1′
T

(
ψ̂ − ψ

)
= B−1′

T Ĉψ̂ (ϑ)−1′ Ĉψ̂ (ϑ)′
(
ψ̂ − ψ

)
= Ψ1/2ξ2 + op (1) .

Assumption (ii) and a mean value expansion of r̂ (ϑ) , yields, under H∗0 ,

r̂ (ϑ) = R (θ)
(
ψ̂ − ψ

)
+ op

(∥∥∥ψ̂ − ψ∥∥∥)
and Λ−1

T Q′T r̂ (ϑ) = U ′TB
−1
T

(
ψ̂ − ψ

)
+ op (1) which for BT symmetric yields

Λ−1
T Q′T r̂ (ϑ) = U ′TΨ1/2ξ2 + op (1) .

Moreover,

r̂ (ϑ)′
[
R̂ (ϑ) V̂ψ̂ (ϑ) R̂ (ϑ)′

]−1

r̂ (ϑ)

= r̂ (ϑ)′QTΛ−1
T

[
Λ−1
T Q′T R̂ (ϑ) V̂ψ̂ (ϑ) R̂ (ϑ)′QTΛ−1

T

]−1

Λ−1
T Q′T r̂ (ϑ)

= ξ′2Ψ1/2′UT [U ′TΨUT ]
−1
U ′TΨ1/2ξ2 + op (1) .

Combining these results and using the continuous mapping theorem we have

ARW (ϑ) =

(
ξ1

ηT

)′(
ξ1

ηT

)
+ op (1) ,

where ηT = [U ′TΨUT ]−1/2′ U ′TΨ1/2ξ2, and the conclusion of the theorem follows from

Assumptions (v) and (iii) which imply that
(
ξ1
ηT

) d→ N (0, Ipϑ+q) and the continuous

mapping theorem.

Comments 1. It is straightforward to verify the conditions of the theorem in ‘stan-

dard’ GMM settings where BT = T−1/2Ipψ , the limit variance of the moment vector,

Ψ, is nonstochastic, and
√
T F̂T (θ)

d→ N(0,Ψ).
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A.3 Proof of Theorem 2

The proof involves verifying the conditions of Theorem 3. Intermediate results will be

given as propositions whose proof can be found in the supplementary appendix.

The specification in Theorem 2 is a special case of that in Theorem 3, where ϑ = b12

and ψ contains all remaining elements θ. It is convenient to partition ψ into ψ1 and

ψ2, where ψ1 are the parameters that appear in equation (7) other than b12, namely δ1

and σ2
ε1

, and ψ2 are the parameters that appear only in (8), i.e., α2, δ2 and d21. Because

V̂f is block diagonal (due to the orthogonality of the errors), estimation of ψ1 and ψ2

can be performed sequentially.

We start by obtaining expressions for ξ̂ in Theorem 3, which forms the basis of the

ARW statistic.

Proposition 4. The estimator ψ̂ is given by

ψ̂1 =

(
(X ′1X1)−1X ′1 (∆Y1 −∆Y2b12)

T−1ε̂′1ε̂1

)
, (26)

ψ̂2 =
(
Ẑ ′2X̂2

)−1

Ẑ ′2∆Y2,

where ε̂1 = MX1 (∆Y1 −∆Y2b12) , X̂2 =

(
Y2

...X2
...ε̂1

)
, and Ẑ2 =

(
z
...X2

...ε̂1

)
. The

estimator of the variance of ψ̂ is given by

V̂ψ̂=

 Vψ̂,11 0 Vψ̂,13

0 $̂
T

0

V ′
ψ̂,13

0 Vψ̂,33

 ,

where

V̂ψ̂,11 = (X ′1X1)
−1
σ̂2
ε1

,

V̂ψ̂,13 = (X ′1X1)
−1
X ′1Ẑ2

(
X̂ ′2Ẑ2

)−1

σ̂2
ε1
d21,

V̂ψ̂,33 =
(
Ẑ ′2X̂2

)−1 (
Ẑ ′2Ẑ2σ̂

2
ε2

+ Ẑ ′2PX1Ẑ2σ̂
2
ε1
d2

21

)(
X̂ ′2Ẑ2

)−1

, (27)

σ̂2
ε1

= T−1ε̂′1ε̂1, $̂ is a consistent estimator of var
(
σ̂2
ε1

)
, σ̂2

ε2
= T−1ε̂′2ε̂2 and ε̂2 =
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∆Y2 − X̂2ψ̂2. The standardized random vector ξ̂ defined in Theorem 3 is given by

ξ̂1 = (z′MX1z)
−1/2

σ̂−1
ε1
z′MX1ε1, and (28)

ξ̂2 =


(X ′1X1)−1/2X ′1ε1σ̂

−1
ε1

T 1/2$̂−1/2
(
σ̂2
ε1
− σ2

ε1

)(
X̂ ′2PẐ2

X̂2

)1/2

σ̂−1
ε2

(
Ẑ ′2X̂2

)−1

Ẑ ′2ε2

 . (29)

It is straightforward to establish the following.

Proposition 5. (i) ψ̃ = ψ̂, and (ii) ψ̂1

p→ ψ1.

We will now proceed by giving the proof of the theorem in each of the following

three cases. Case 1: 0 ≤ a < b, case 2: a = b; case 3: a > b. Recall that b ∈ (1/2, 1)

holds throughout this theorem.

Case 1. 0 ≤ a < b We will first show that, in this case, the ARW statistic (19)

is asymptotically equivalent to the ARW statistic that is obtained by replacing the

filtered instrument zt−1 by the standard instrument Y2,t−1. This is a consequence of

the following result and the continuous mapping theorem.

Proposition 6. If 0 ≤ a < b and b ∈ (1/2, 1) , then

(i) T−(1+a)
∑T

t=1 z
2
t−1 = T−(1+a)

∑T
t=1 Y

2
2,t−1 + op (1) ;

(ii) T−(1+a)
∑T

t=1 zt−1Y2,t−1 = T−(1+a)
∑T

t=1 Y
2

2,t−1 + op (1) ;

(iii) T−
1+a
2

∑T
t=1 zt−1εt = T−

1+a
2

∑T
t=1 Y2,t−1εt + op (1) ;

(iv) T−
1+a
2

∑T
t=1 zt−1∆Yt−i = T−

1+a
2

∑T
t=1 Y2,t−1∆Yt−i + op (1) , i = 1, . . .m− 1.

Specifically, define

AR∗ (b12) =
(∆Y1 −∆Y2b12)′ PMX1

Y2 (∆Y1 −∆Y2b12)

(∆Y1 −∆Y2b12)′MZ∗
1

(∆Y1 −∆Y2b12) / (T − col (Z∗1))
(30)

where Z∗1 = (X1, Y2) , ψ̂
∗

(b12) =
(
ψ̂1 (b12)′ , ψ̂

∗′
2

)′
, with

ψ̂
∗
2 =

(
X̂ ′2X̂2

)−1

X̂ ′2∆Y2, (31)

V̂ ∗
ψ̂

(b12) =


V̂ψ̂,11 0 V̂ ∗

ψ̂,13

0 $̂
T

0

V̂ ∗′
ψ̂,13

0 V̂ ∗
ψ̂,33

 , (32)
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V̂ ∗
ψ̂,13

= (X ′1X1)
−1
X ′1X̂2

(
X̂ ′2X̂2

)−1

σ̂2
ε1
d21,

V̂ ∗
ψ̂,33

=
(
X̂ ′2X̂2

)−1 (
X̂ ′2X̂2σ̂

2
ε2

+ X̂ ′2PX1X̂2σ̂
2
ε1
d2

21

)(
X̂ ′2X̂2

)−1

,

W ∗ (b12) = r
(
b12, ψ̂

∗
(b12)

)′
V̂ ∗r̂ (b12)−1 r

(
b12, ψ̂

∗
(b12)

)
,

where V̂ ∗r̂ (b12) = R
(
b12, ψ̂

∗
(b12)

)′
V̂ ∗
ψ̂

(b12)R
(
b12, ψ̂

∗
(b12)

)
,

and

ARW ∗ (b12) = AR∗ (b12) +W ∗ (b12) .

We then have the following result.

Proposition 7. If 0 ≤ a < b and b ∈ (1/2, 1) , then ARW (b12)−ARW ∗ (b12) = op (1) .

We can complete the discussion of this case by working out the limiting distribution

of ARW ∗ (b12) . For a = 0, the result follows straightforwardly, see comment 1 of

Theorem 3. So, it remains to show the result for 0 < a < β.

Proposition 8. If 0 < a < b and b ∈ (1/2, 1) , then

B−1
T V̂ ∗

ψ̂
(b12)B−1

T

p→ Ψ, (33)

where

BT =

 T−1/2Ipψ1
0 0

0 T−
1+a
2 0

0 0 T−1/2Ipψ2
−1

 (34)

and Ψ is a non-stochastic matrix of full-rank pψ; and ξ̂
∗

=
(ξ̂1
ξ̂
∗
2

)
, where ξ̂1 is defined in

(28) and

ξ̂
∗
2 =


(X ′1X1)−1/2X ′1ε1σ̂

−1
ε1

T 1/2$̂−1/2
(
σ̂2
ε1
− σ2

ε1

)(
X̂ ′2X̂2

)−1/2

X̂ ′2ε2σ̂
−1
ε2


satisfies

ξ̂
∗ d→ N (0, Ik) .

Proposition satisfies the remaining Assumptions (iii)-(v) in Theorem 3, and so the

result follows.
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Case 2. a = b MP Lemma 3.6 implies

T−(1+a)

T∑
t=1

zt−1Y2,t−1
p→ cω

cz + c

T−(1+a)

T∑
t=1

z2
t−1

p→ cω

cz + c
,

where ω is a positive constant relating to the long run variance of ∆Y2t (see the proof of

Proposition 8 in the Supplement). Similarly, using similar arguments as in Proposition

8 for
∑T

t=1 Y2,t−1Xit, it can be shown that

T−(1+a
2 )

T∑
t=1

zt−1Xit = Op

(
T−a/2

)
. (35)

Thus, it follows that

B−1
T V̂ψ̂ (b12)B−1

T

p→ Ψ,

where BT is given in (34) and Ψ is nonstochastic, satisfying Assumptions (iv) and (v)

of Theorem 3. Finally, Assumption (iii) of that theorem are verified using MP Lemma

3.6(iii) and the arguments in the proof of Proposition 8, completing the proof for this

case.

Case 3. a > b First, we establish the counterpart of Proposition 6 for this case.

Proposition 9. If 1/2 < b < a, then

(i) T−(1+b)
∑T

t=1 z
2
t−1

p→ ω
−2cz

;

(ii)

T−(1+b)

T∑
t=1

zt−1Y2,t−1 =⇒


−
(∫ 1

0
WdW + 1

)
ωc−1

z if c = 0 or a > 1

−
(∫ 1

0
JcdW + 1

)
ωc−1

z if c < 0 and a = 1

−ωc−1
z if c < 0 and a < 1,

(36)

where W is a standard Brownian motion and Jc (s) =
∫ s

0
ec(s−r)dW (r) is the associated

Ornstein-Uhlenbeck process with parameter c.

(iii) T−
1+b
2

∑T
t=1 zt−1εt =⇒ W̃ , where W̃ is a Brownian motion independent of W .

(iv) T−(1+ b
2)∑T

t=1 zt−1∆Yt−i = Op

(
T−b/2

)
, i = 1, . . .m− 1.
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Define the martingale difference array

ζTt =


T−(1+b)/2zt−1εt

T−1/2X1tε1t

T−1/2X2tε2t

T−1/2 (ε2
1t − σ2

ε)

T−1/2ε1tε2t

 =

(
T−(1+b)/2 0

0 T−1/2Ik−1

)
ft (θ) , (37)

where ft (θ) is the moment function in the notation of section A.2 evaluated at the true

value of the parameters, so that

T∑
t=1

ζTt =

(
T (1+b)/2 0

0 T 1/2Ik−1

)
FT (θ) .

By exactly the same arguments as in the proof of Proposition 8, it follows that

T∑
t=1

ζTt =⇒ ζ ∼ N (0, Vζ)

where Vζ is a nonstochastic matrix, and ζ is independent of W in Proposition 9 by MP

Lemmas 3.1 and 3.2. The conditions of Theorem 3 can then be verified by application

of Slutsky’s Lemma and the continuous mapping theorem.

Finally, the presence of an intercept in the SVAR results in all the variables in the

above equations being demeaned using their sample means. This can be easily handled

by replacing W and Jc in (36) by their demeaned versions W = W −
∫ 1

0
W (s) ds and

Jc = Jc −
∫ 1

0
Jc (s) ds, respectively. The presence of an intercept has no effect on the

distribution of ζTt, following the same arguments as in the proof of KMS Theorem A.
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