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The importance of correlation in financial markets has spawned a large literature

documenting the properties of asset return correlations. Correlation risk is priced in

equity markets, arguably due to the deterioration of investors’ investment opportunities

that results from a reduction in diversification benefits when asset return correlations

increase. Yet, the existing literature has largely ignored the foreign exchange (FX)

market. In this paper, we explore the empirical properties of conditional FX correlations

both under the physical and under the risk-neutral measure and propose a reduced-form

no-arbitrage model that is consistent with our empirical findings and illustrates the

effects of spanned and unspanned currency risk on FX correlations.

We start by documenting the empirical properties of conditional FX correlations.

We consider exchange rates against the U.S. dollar (USD) and show that there exists

substantial cross-sectional heterogeneity in the average conditional correlation of FX

pairs, suggesting the existence of ex ante heterogeneity in exchange rates. Furthermore,

using several business cycle proxies, we find that FX pairs with high average correlation

become more correlated in adverse economic times, whereas FX pairs with low average

correlation become even less correlated in those states. As a result, the cross-sectional

dispersion of FX correlations widens in bad states and tightens in good states of the

world. Consider, for example, the exchange rates of three currencies against the USD:

the Japanese yen (JPY), a low interest rate currency, and the Australian and the New

Zealand dollar (AUD and NZD), two high interest rate currencies. The average cor-

relation between the JPY and either the AUD or the NZD exchange rate is fairly low

(0.16 and 0.15, respectively) and procyclical. On the other hand, the average corre-

lation between the exchange rates of the two high interest rate currencies is 0.76 and

countercyclical.

We exploit the cyclical properties of FX correlation by defining an FX correlation

dispersion measure, FXC, using the conditional correlations of the G10 exchange rates.

To construct our measure, we sort FX pairs into deciles based on their conditional FX

correlation and subtract the average conditional FX correlation of the bottom decile

from the average conditional FX correlation of the top decile. We then verify that the

resulting dispersion measure is strongly countercyclical, being positively correlated with
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the market variables that are associated with bad states. Finally, we sort currencies

into portfolios and find that currencies with low FXC betas have high average excess

returns, whereas currencies with high FXC betas yield low excess returns. For our

benchmark sample of G10 currencies, the return to HMLC , a currency portfolio that

goes short the high FXC beta currencies and invests in the low FXC beta currencies,

generates a highly significant average annual excess return of 6.4% with a Sharpe ratio

of 0.82. We then estimate the price of FX correlation risk using a two-factor model

that includes the dollar factor from Lustig, Roussanov, and Verdelhan (2011) and the

return to HMLC , our traded FX correlation factor. Using different sets of test assets

and estimation periods, we find that our estimates of the price of FX correlation risk

range from −51 to −67 basis points (bps) per month.

We conclude our empirical investigation by using currency option prices in order

to extract conditional FX correlation dynamics under the risk-neutral measure. We

calculate FX correlation risk premia, defined as the difference between conditional FX

correlations under the risk-neutral and the physical measures, and we find a strongly

negative cross-sectional relationship between average FX correlations and average cor-

relation risk premia: FX pairs characterized by low average correlations tend to exhibit

high correlation risk premia (i.e., they are on average more correlated under the risk-

neutral measure than under the physical measure), whereas FX pairs that are highly

correlated on average have low correlation risk premia. Thus, the cross-sectional disper-

sion of FX correlations is on average lower under the risk-neutral measure than under

the physical measure. We also show that there is a very strong negative time series

relationship between FX correlations and FX correlation risk premia for almost all FX

pairs. As regards cyclicality, FX pairs with high average correlation risk premia have

countercyclical correlation risk premia, whereas pairs with low correlation risk premia

have procyclical premia. Thus, bad states amplify the magnitude of FX correlation risk

premia, increasing their cross-sectional dispersion.

We rationalize our empirical findings with a no-arbitrage model of exchange rates.

The main tension we address is between physical and risk-neutral measure FX correlation

dynamics. Under the physical measure, the negative association between FXC betas
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and currency returns suggests that U.S. investors require an FX risk premium for being

exposed to states in which the cross section of FX correlations widens. However, FX

options data are priced in a way that suggests that U.S. investors worry about states in

which the cross section of FX correlations tightens. The key to addressing this apparent

conundrum is that, in our model, FX correlation risk is not spanned by exchange rates:

the marginal utility of U.S. investors is exposed to shocks that affect conditional FX

correlations, but not exchange rates themselves.

In the model, each country’s SDF is exposed to two global shocks, as well as a

single country-specific shock. Importantly, countries have heterogeneous loadings on the

first global shock, but identical loadings on the second global shock. This implies that

exchange rates are exposed only to the first global shock, as the second global shock

cancels out and does not affect exchange rates at all. As a result, the steady-state cross-

sectional distribution of conditional FX correlations is determined by the cross section

of exposures to the first global shock: on average, FX pairs that correspond to foreign

countries with similar exposure to the first global shock (called similar FX pairs) are

more correlated than FX pairs of countries with dissimilar global risk exposure (called

dissimilar FX pairs). Crucially, the cross section of conditional FX correlations exhibits

time variation due to the fact that conditional FX correlations are determined by the

relative importance of country-specific risk and global risk, which varies across time.

When the relative magnitude of country-specific SDF shocks increases, the countries’

heterogeneous exposure to the first global shock becomes less important quantitatively,

and the cross section of conditional FX correlations tightens, with high correlation FX

pairs becoming less correlated and low correlation FX pairs more correlated. Conversely,

a relative increase in the magnitude of global risk increases the correlation of similar FX

pairs and decreases the correlation of dissimilar FX pairs, widening the cross-section of

conditional FX returns.

In turn, the relative magnitude of country-specific and global risk is determined by

the relative magnitude of the local pricing factor, which prices country-specific risk and

is exposed to the second global shock, and the global pricing factor, which prices global

risk and is exposed to the first global shock. When the second global shock has an
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adverse realization, the local pricing factor increases, tightening the cross section of

conditional FX correlations; conversely, when the second global shock has a positive

realization, the cross section of conditional FX correlation becomes more dispersed. The

reverse occurs for realizations of the first global shock: its adverse (positive) realizations

increase (decrease) the global pricing factor, widening (tightening) the cross section of

FX correlations. Thus, the cross section of conditional FX correlations is driven by

both global shocks. Both shocks are priced, but not symmetrically: U.S. investors price

the second shock more severely than the first, so they attach a high price to states

characterized by high relative values of the local pricing factor. Since those are exactly

the states in which the cross-sectional dispersion of FX correlation tightens, our model

is able to match the cross sectional properties of average correlation risk premia.

On the other hand, only the first global shock is priced in currency markets, as this

is the only global shock to which exchange rates are exposed: exchange rates do not

span FX correlation risk, as they are unaffected by the second global shock. This lack

of spanning allows our model to generate a negative relationship between FXC betas

and currency returns: investing in exchange rates requires compensation for the only

global shock that exchange rates are exposed to, the first global shock. Since negative

realizations of that shock lead to a widening of the cross section of FX correlations,

investors require high returns for negative FXC beta currencies, in line with our cross-

sectional empirical findings.

A simulated version of our model generates realized FX correlations, implied FX

correlations and FX correlation risk premia that match the cross-sectional and time series

properties of their empirical counterparts, all the while fitting the standard exchange

rate, interest rate and inflation moments.

Related literature: This paper is part of the literature addressing the risk–return

relationship in FX markets. Our model builds on the work of Lustig, Roussanov, and

Verdelhan (2011, 2014) and Verdelhan (2015); their models feature global SDF shocks,

common across countries, and local SDF shocks, independent across countries. Im-

portantly, they assume that the price of country-specific shocks is uncorrelated across

countries, as local pricing factors are perfectly negatively correlated with the correspond-
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ing country-specific shocks. We show that allowing for cross-country comovement of the

local pricing factor is crucial for explaining the behavior of FX correlations under both

the physical and the risk-neutral measure.

Recent international finance models that address the cross section of currency risk

premia by assuming ex ante heterogeneity across countries include Hassan (2013), Martin

(2013), Tran (2013), Backus, Gavazzoni, Telmer, and Zin (2013), Ready, Roussanov, and

Ward (2013), and Colacito, Croce, Gavazzoni, and Ready (2014), the latter of which

extends Colacito and Croce (2013). In all models, high (low) interest rate currencies

are risky (hedges) because they depreciate (appreciate) in bad global states; this is

because high interest rate countries are those with low exposure to global risk: small

countries, countries with smooth non-traded output, countries with more procyclical

monetary policy, commodity producers, or countries with less exposure to global long-

run endowment shocks, depending on the model. Gabaix and Maggiori (2015) take a

different approach and consider a model of imperfect financial markets in which the FX

carry trade constitutes compensation for exposure to shocks in the risk-bearing capacity

of financiers.

In recent empirical work, Lustig and Verdelhan (2007), Menkhoff, Sarno, Schmeling,

and Schrimpf (2012), Mancini, Ranaldo, and Wrampelmeyer (2013), Farhi, Fraiberger,

Gabaix, Ranciere, and Verdelhan (2015), Lettau, Maggiori, and Weber (2014) and Do-

brynskaya (2014) argue that the carry trade can be explained as compensation for ex-

posure to consumption risk, global FX volatility risk, FX liquidity risk, disaster risk, or

downside market risk, respectively. Cenedese, Sarno, and Tsiakas (2014) find that a high

cross-sectional average of currency excess return variance predicts carry trade losses.

The rest of the paper is organized as follows. Section 1 describes the data. Section 2

contains our empirical findings regarding the cross section and time series properties

of FX correlations, as well as the pricing of correlation risk in currency markets. The

stylized facts concerning the FX correlation risk premia are presented in Section 3.

Section 4 presents our no-arbitrage model, and Section 5 concludes. The Appendix

contains details on the construction of the realized and implied correlation measures,
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robustness checks and details on the model. Additional results and robustness checks

are deferred to an Online Appendix.

1 Data

We start by describing the data. We calculate physical measure (realized) FX correla-

tions using daily spot exchange rates. To construct measures of implied FX correlations

we use daily FX options data. Our benchmark sample period starts in January 1996

and ends in December 2013, and is dictated by the availability of the options data.

Spot and forward rates: To calculate physical measure FX moments, we use daily

spot exchange rates from WM/Reuters obtained through Datastream. We also collect

one-month forward rates from WM/Reuters in order to calculate forward discounts. The

spot and forward rates are fixed at 4 p.m. UK time, which is standard in the FX market.

Following the extant literature (see, e.g., Fama, 1984), we work with log spot and log

one-month forward exchange rates, denoted sit = ln(Si
t) and f i

t = ln(F i
t ), respectively.

1

We use the U.S. dollar as the base currency, so superscript i always denotes the foreign

currency. Our benchmark sample comprises the nine G10 foreign currencies (AUD,

CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK) from January 1996 to December 2013.

Before the introduction of the EUR in 1999 we use the German Mark (DEM) in its place.

In the Appendix, we present results for an extended sample of developed and emerging

market currencies. Monthly log excess returns from holding the foreign currency i are

computed as rxi
t+1 = f i

t − sit+1.

Table 1 presents the properties of the G10 exchange rates during the benchmark

sample. In line with the literature on the FX carry trade, we find that currencies

with high nominal interest rates tend to achieve higher average dollar excess returns:

the NZD, AUD and NOK are characterized by high nominal interest rates, as well as

1WM/Reuters forward rates are available since 1997. For 1996 we either use forward rates from
alternative sources or we construct ‘implied’ forward rates using the interest rate differential between
the U.S. and the foreign country using interest rate data from Datastream. We thus exploit the fact
that during normal conditions covered interest rate parity holds and, hence, ft − st ≈ ri,$t − r0,$t , where

ri,$t and r0,$t denote the foreign and domestic nominal risk-free rates over the maturity of the contract,
respectively. We verify that all results are robust to using the WM/Reuters data only.
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high average currency excess returns, while the reverse is true for the JPY, CHF and

EUR/DEM.

[Insert Table 1 here.]

For robustness checks, we extend the cross section of currencies to a set of devel-

oped and emerging market currencies. The developed country sample, apart from the

G10 currencies, includes the currencies of Austria, Belgium, Denmark, Finland, France,

Greece, Italy, Ireland, Netherlands, Portugal and Spain. The full sample includes all the

developed country currencies, along with the currencies of Czech Republic, Hungary, In-

dia, Indonesia, Kuwait, Malaysia, Mexico, Philippines, Poland, Singapore, South Africa,

South Korea, Taiwan and Thailand.2

Currency options: We use daily over-the-counter (OTC) G10 currency options data

from J. P. Morgan. In addition to the nine FX pairs versus the U.S. dollar, we also have

options data for all 36 cross rates. Using OTC options data has several advantages over

exchange-traded options data. First, the trading volume in the OTC FX options market

is several times larger than the corresponding volume on exchanges such as the Chicago

Mercantile Exchange, and this leads to more competitive quotes in the OTC market.

Second, the conventions for writing and quoting options in the OTC markets exhibit

several features that are appealing when performing empirical studies. In particular,

new option series with fixed time to maturity and fixed strike prices, defined by sticky

deltas, are issued daily; in comparison, the time to maturity of an exchange-traded option

series gradually declines with the approaching expiration date and so the moneyness

continually changes as the underlying exchange rate moves. As a result, OTC options

data allows for better comparability over time because the series’ main characteristics do

not change from day to day. The options used in this study are plain-vanilla European

calls and puts with five option series per currency pair. Specifically, we consider a one-

month maturity and a total of five different strikes: at-the-money (ATM), 10-delta and

25-delta calls, as well as 10-delta and 25-delta puts.

2We start with the same set of currencies used in Lustig, Roussanov, and Verdelhan (2011). However,
we exclude some currencies such as the Hong Kong dollar as they are pegged to the U.S. dollar. We
also exclude the Danish krone after the introduction of the euro.
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2 Exchange rate correlations

In this section, we first document a negative relationship between the unconditional

average and the cyclicality of conditional FX correlations and, based on this observation,

we construct a novel FX correlation risk factor, FXC, which reflects the cross-sectional

dispersion of FX correlations. Sorting currencies into portfolios based on exposure to the

FXC factor reveals a significant return spread between the high and low correlation risk

portfolio. Consistent with this finding, we show that FX correlation risk has a negative

price in currency markets.

2.1 Properties of exchange rate correlations

We use daily spot exchange rates to calculate conditional FX correlations under the

physical measure. In particular, we proxy the conditional 1-month FX correlation of

each FX pair at time t with its corresponding realized correlation over a rolling 3-month

window of past daily observations. Appendix A provides the details.

The first two columns of Table 2 present the time-series mean and standard deviation

of the conditional FX correlation of each of the 36 G10 FX pairs. The average condi-

tional correlation is positive for all 36 FX pairs, indicating all pairs of dollar exchange

rates exhibit a positive comovement on average. The cross-sectional average of the con-

ditional correlation means is 0.454 but there is substantial cross-sectional variation in

the average conditional FX correlation: the averages range from almost zero (CAD/JPY

with 0.054, indicating that fluctuations in the relative price of the CAD and the JPY

against the USD are almost disconnected), to almost one (CHF/EUR with 0.888).3 This

variation suggests considerable ex ante heterogeneity across exchange rate pairs which

is manifested as fixed effects in average FX correlations. Furthermore, conditional FX

correlations exhibit non-trivial variability across time: the cross-sectional average of the

standard deviation of conditional FX correlations is 0.23, ranging from 0.09 (EUR/NOK

3Beginning September 2011, the Swiss National Bank imposed a cap of 1.2 CHF to the EUR. The
average correlation between the CHF/USD exchange rate and the EUR/USD exchange rate in the
period before the cap (0.887) is almost identical to their average correlation during the cap period
(0.895). Given that the cap does not seem to have changed the behavior of the CHF, we choose to
retain the CHF in our sample after September 2011. We have verified that removing the CHF during
the cap period does not materially affect our results.
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pair) to 0.34 (AUD/JPY pair), suggesting non-trivial swings in the degree of exchange

rate comovement across time for all FX pairs.

[Insert Table 2 here.]

Given the time variation in conditional FX correlations, we then explore whether

that time variation is cyclical and, if so, whether there is cross-sectional heterogeneity in

its properties. To that end, we consider the comovement of conditional FX correlations

with market variables that are well-known to exhibit countercyclical behavior. The

market variables we consider are a global equity volatility measure (GV ol), a global

funding illiquidity measure (GFI), the TED spread (TED), and the VIX (V IX). GV ol

is constructed as in Lustig, Roussanov, and Verdelhan (2011). GFI is constructed

based on the method proposed by Hu, Pan, and Wang (2013) but calculated using an

international sample of government bond securities as in Malkhozov, Mueller, Vedolin,

and Venter (2015). TED is from FRED and is the spread between the three month USD

LIBOR and the three month Treasury Bill rate. V IX is backed out from options on the

S&P 500 stock index and available from the CBOE. TED and V IX are U.S. specific

measures but are often used as global indicators. GV ol and GFI are calculated using

international data in local currencies. For each FX pair and each market measure, we

define the cyclicality measure to be the unconditional correlation of the market variable

with the conditional correlation of the FX pair. Thus, we calculate four FX correlation

cyclicality measures for each exchange rate pair, each corresponding to a market variable.

We present the cyclicality measures for the 36 G10 FX pairs in the first four columns of

Table 3.

[Insert Table 3 here.]

As seen in the table, we find substantial cross-sectional heterogeneity regarding the

cyclicality properties of conditional FX correlations. Consider for example the FX pairs

GBP/JPY and NOK/SEK: the former is a pair with low average conditional correlation

(0.22), while the latter is an FX pair with high conditional correlation on average (0.80).
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Interestingly, the cyclicality measures of the GBP/JPY pair are all negative, ranging

from −0.43 (V IX) to −0.35 (GV ol), indicating lower FX comovement during periods

when the market variables are elevated, which are typically considered bad states of

the world. On the other hand, the cyclicality measures of the NOK/SEK pair are all

positive, ranging from 0.03 (GFI) to 0.16 (GV ol), suggesting higher comovement of the

two exchange rates in bad states.

To determine whether there is a cross-sectional pattern in the cyclicality properties

of FX correlation, we plot each cyclicality measure of the 36 FX pairs against their

average conditional correlation; Panels A to D in Figure 1 present the plots for the four

cyclicality measures. Each panel also presents the line of best fit from a cross-sectional

regression of average conditional FX correlations on the FX cyclicality measure featured

in the panel. We report the details of the four cross-sectional regressions in Panel A of

Table 4: for each regression, we document the point estimate of the slope coefficient, its

asymptotic t-statistic, and the 95% bootstrapped confidence interval (2.5 and 97.5 boot-

strap percentiles). The asymptotic t-statistic is calculated using White (1980) standard

errors that adjust for cross-sectional heteroskedasticity. The bootstrapped confidence

interval allows to adjust for potential small sample biases. All four slope coefficients are

positive and statistically significant at the 5% level using either the asymptotic or the

bootstrapped distribution, suggesting a positive cross-sectional relationship between av-

erage conditional FX correlation and FX correlation cyclicality. Indeed, we can see that

the FX pairs with the highest average realized correlations exhibit either non-cyclical or

slightly countercyclical correlations. In the other extreme, the FX pairs with the lowest

realized correlations are characterized by strongly procyclical FX correlations.

[Insert Figure 1 and Table 4 here.]

Our findings imply that in periods characterized by adverse economic conditions or

market stress, the cross section of conditional FX correlations widens, as high correlation

FX pairs become more correlated and low correlation FX pairs become less correlated.

Thus, the difference in conditional correlations between high correlation FX pairs and low

correlation FX pairs is also countercyclical, increasing during crises and declining during
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booms. This can easily be seen by constructing an FX correlation dispersion measure

as follows: each period t, we sort all FX pairs according to their conditional correlation,

defined as the realized correlation over the past three months. We then calculate the

average conditional correlation for the top and bottom decile (which consists of four

pairs each) and take the difference of the two values as our dispersion measure at time t,

FXCt. Due to the time variation in conditional FX correlations, there is turnover in

both the top and bottom deciles; in order to abstract from composition effects, we also

compute an alternative dispersion measure (FXCUNC) by using the top and bottom

deciles of FX pairs based on the unconditional realized correlations.

We plot the time series of the level of the two FX correlation dispersion measures in

Panel A of Figure 2. The correlation between the two series is 0.87, indicating that the

two measures are very similar.4 Indeed, during the financial crisis the two measures are

almost perfectly correlated, as there is almost no turnover in the extreme deciles of FX

pair conditional correlation. In Panel B, we plot the (standardized) market variables we

used to measure the cyclicality of correlations. Table 5 reports the unconditional corre-

lations between our two FX correlation dispersion measures and the market variables.

All correlations are significantly positive, confirming our previous empirical findings.

[Insert Figure 2 and Table 5 here.]

2.2 Correlation risk and the cross section of currency returns

We can now explore the pricing of FX correlation risk in the cross section of currency

returns. To do so, we sort currencies into portfolios based on their exposure to our disper-

sion measure FXC. We measure exposure to FX correlation dispersion by the currency

return beta with respect to innovations in the FX correlation dispersion measure FXC;

innovations for the period t to t + 1 are defined as the average of first differences in

conditional FX correlation for the FX pairs that belong to the top and bottom decile in

4The Online Appendix presents additional results for alternative construction methods. Overall,
we find that results using the alternative measures remain qualitatively the same.
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period t.5 Our currency portfolios are rebalanced monthly: each month t we calculate

rolling betas using 36 monthly observations and, hence, portfolios are formed using only

information available at time t.

We sort the nine G10 currencies into three portfolios; the first portfolio (Pf1C)

contains the currencies with the low FXC betas while the last portfolio (Pf3C) contains

the high FXC beta currencies. Of particular interest is the HMLC portfolio, which

takes a long position in Pf3C and a short position in Pf1C. Panel A of Table 6 reports

the summary statistics for three FXC-beta-sorted currency portfolios using the G10

currencies. Notably, there is an inverse relationship between exposure to FXC and

average portfolio returns: average portfolio returns are monotonically decreasing in the

FXC beta. As a result, the average return to HMLC is negative and highly statistically

significant: shorting the HMLC portfolio yields an annualized average excess return of

6.4% with an associated Sharpe ratio of 0.82 and a t-statistic 3.5.

[Insert Table 6 here.]

Our finding of a strongly negative return for HMLC is robust to different sample

periods. Our benchmark sample period starts in January 1996 in line with the availabil-

ity of the options data. However, the construction of the risk factor FXC does not rely

on implied correlations but only on realized correlations that are calculated using daily

changes in log exchange rates. Hence, the time span for calculating the factor can be

extended further back. In particular, we consider the subperiods from January 1984 to

December 2013, from January 1984 to July 2007 and from January 1996 to July 2007.

Consistent with our results in the benchmark period, we find an inverse relationship be-

tween exposure to the FX correlation factor FXC and average portfolio returns in each

of the three additional sample periods. Although the return differences across portfolios

somewhat attenuate when the sample period is extended back to 1984 (Panels B and

C), shorting the HMLC portfolio still yields highly significant annualized average excess

returns of between 3.5% and 3.7%, respectively. On the other hand, ending the sample

5Innovations in FXC are not the first differences in the level of the factor, as the composition of
the deciles changes over time. On the other hand, since the FX pairs used to calculate FXCUNC are
fixed, innovations in FXCUNC can be simply defined as first differences in the level of the factor.

12



in July 2007, in the beginning of the financial crisis, results in an increase of the average

excess return of the HMLC portfolio to more than 7% and of its Sharpe ratio to 1.1.

Overall, our results are very robust to different sample periods and do not appear to be

driven by the recent financial crisis.

[Insert Figure 3 here.]

We can also extend the currency sample and consider a cross section that includes

other developed country currencies (the developed country sample) and one that in-

cludes the entirety of the developed sample and also some emerging currencies (the full

sample).6 For each of the two extended samples, we construct four FXC-beta-sorted

portfolios. Figure 3 presents the average excess return of HMLC for the three sets of

currencies (G10, all countries and developed countries) and four subperiods. We find

that there is a consistently negative relationship between average portfolio excess returns

and exposure to correlation risk for all currency samples and sample periods. Average

HMLC excess returns are significant at the 5% level for all currency and period samples

with the exception of the samples starting in 1984 for the full (developed and emerg-

ing) set of currencies. For example, for the benchmark subperiod from January 1996 to

December 2013 the average annualized return of HMLC in the developed country cross

section is 5.5% (with a t-statistic of 2.4) and its Sharpe ratio is 0.59. For the full cross

section of currencies, HMLC yields 4.0% on average (with a t-statistic of 2.0) and a

Sharpe ratio of 0.46.

2.3 The price of correlation risk

Given the significant excess returns to the HMLC portfolio, it is natural to test whether

correlation risk is priced in the cross section of currencies. We follow the extant literature

and consider a linear pricing model with two traded factors: the first factor is the dollar

factor DOL, defined as the simple average of all available FX returns and shown by

Lustig, Roussanov, and Verdelhan (2011) to act as a level factor in currency markets,

6See Section 1 for a full list of the currencies in the respective samples.
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and the second factor is HMLC , the return difference between the high and the low

correlation beta portfolio for the sample of G10 currencies.

In particular, we consider the following model:

E[rxi] = βDOL
i λDOL + βHMLC

i λHMLC

,

where rxi denotes the excess return in levels (i.e., corrected for the Jensen term). To

estimate the factor prices λ we follow the two-stage procedure of Fama and MacBeth

(1973): first, we run a time series regression of returns on the factors and then we run a

cross-sectional regression of average portfolio returns on factor betas. We do not include

a constant in the cross-sectional regression of the second stage.7

Panel A in Table 7 reports the first stage regression results. We consider 15 test as-

sets: the three currency portfolios sorted on exposure to FXC, three currency portfolios

sorted on forward discounts (called“carry portfolios” and denoted by Pf1F , Pf2F and

Pf3F ) and nine individual G10 exchange rates. As expected, the HMLC betas of the

correlation portfolios are monotonically increasing, while the HMLC betas of the carry

portfolios are monotonically decreasing in forward discounts. Finally, the HMLC betas

for the individual G10 currencies are highly negatively correlated with their average

excess returns over the sample period, with the correlation coefficient being −0.92.

Panel B presents the second-stage results for various sets of test assets. For set (1),

we estimate the market price of risk using only the three correlation-sorted (Pf1C to

Pf3C) and the three carry (Pf1F to Pf3F ) portfolios. For set (2), we also add the nine

individual G10 currencies. For both sets, we report the point estimates of the prices

of risk, along with their standard errors (in parentheses) and Shanken (1992)-corrected

standard errors (in brackets). We also report the R2 for each second-stage regression.

We find a significantly negative price of correlation risk of −58bps or −54bps per month

for sets (1) and (2), respectively. Those estimates are not significantly different from the

average HMLC excess return of −54bps per month. The second stage R2 are very high

for both sets of test assets (0.99 and 0.93, respectively).

7The dollar factor DOL essentially performs the function of a constant to allow for average mis-
pricing (see Lustig, Roussanov, and Verdelhan (2011)).
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[Insert Table 7 and Figure 4 here.]

For robustness, we extend our sample to developed countries and developed and

emerging countries, labelled sets (3) and (4), respectively. For each of the two additional

sets, we use eight test assets: four correlation and four carry portfolios. The second stage

results are also provided in Panel B of Table 7 and the estimates are in line with our

benchmark results: the price of correlation risk is significantly negative, ranging between

−51bps and −67bps per month for sets (3) and (4), respectively. The R2 are again high:

0.90 for developed currencies and 0.81 for the full set of currencies.8

Figure 4 illustrates the performance of our two-factor model by plotting the predicted

annualized excess returns for the test assets against their actual counterparts: Panels A,

B and C refer to the test assets and prices of risk of sets (2), (3) and (4), respectively.

For all three sets, the deviations from the model are small, as expected by the high

cross-sectional R2s in the second-stage regressions.

We have shown that our traded correlation risk factor HMLC acts as a slope factor

regarding the pricing of currency risk. Thus, a natural question that arises regards the

relationship between HMLC and the Lustig, Roussanov, and Verdelhan (2011) carry

trade factor HMLFX , which reflects the returns to a portfolio that invests in high

interest rate currencies and shorts low interest rate currencies. Empirically, the two

factors are strongly negatively correlated, suggesting that they capture similar sources

of systematic risk. We defer a more detailed exploration of the relationship between

HMLC and HMLFX to Section 4.4, which discusses the two factors in the context of

our proposed no-arbitrage model.9

8To save space we defer the first stage regression results for the additional sets of currencies to the
Online Appendix.

9In the Online Appendix, we also consider the relationship between our FX correlation risk factor
and the FX volatility risk factor of Menkhoff, Sarno, Schmeling, and Schrimpf (2012).
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3 Exchange rate correlation risk premia

In this section, we document the cross-sectional and time series properties of correlation

risk premia (CRP). Then, we explore the links between FX correlation risk premia and

FX correlations.

3.1 The cross sectional properties of correlation risk premia

Consistent with the literature on variance and correlation risk premia in other asset

markets, we define exchange rate correlation risk premia as the difference between the

FX correlations under the risk-neutral and objective measures, respectively:

CRPi,j
t,T ≡ EQ

t

(
∫ T

t

ρi,ju du

)

− EP
t

(
∫ T

t

ρi,ju du

)

.

We only consider one-month premia, i.e., T = t + 1 for a monthly frequency.10

To calculate the risk-neutral (implied) conditional FX correlations we follow the

literature on model-free measures of implied volatility and covariance using daily FX

option prices. The details of the calculations are outlined in Appendix B. Given the

availability of FX options, we calculate correlation risk premia for the nine G10 currencies

during the sample period from 1996 to 2013 for a total of 216 monthly observations. For

the EUR, the options data starts in 1999 for a total of 181 observations.

Columns (3) and (4) of Table 2 present the time-series mean and standard deviation,

respectively, of the implied conditional FX correlations for each of the 36 G10 FX pairs.

The cross-sectional mean of average implied FX correlation is 0.48, slightly higher than

its physical measure counterpart (0.45). However, the cross-sectional range of average

implied FX correlations is lower than that of physical measure ones: the lowest average

implied conditional FX correlation is 0.14 (CAD/JPY pair) and the highest is 0.88

(CHF/EUR pair), whereas the average realized correlations are 0.05 and 0.89 for the

same pairs. Thus, the heterogeneity of FX pairs regarding their average conditional

10Variance risk premia are defined analogously as the difference between the risk-neutral and objec-
tive measures of FX variance. A brief discussion of their summary statistics is deferred to the Online
Appendix.
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correlation is lower under the risk-neutral measure than under the physical measure.

However, the volatility of conditional implied FX correlations has the same order of

magnitude as the volatility of conditional FX correlations under the physical measure,

with standard deviations ranging from 0.07 to 0.34 and the cross-sectional average being

0.19 (for the realized correlations, the range is from 0.09 to 0.34 and the average is slightly

higher at 0.23).

The last five columns of Table 2 present the descriptive statistics for correlation

risk premia. From left to right, we report the time-series mean and standard deviation

of the correlation risk premia for each exchange rate pair, followed by the asymptotic

t-statistic and the bootstrapped 95% confidence interval of the CRP mean. Average

FX correlation risk premia can be substantial and exhibit considerable cross-sectional

heterogeneity, with their size and sign varying greatly across FX pairs. In particular,

average correlation risk premia range from −0.069 (CAD/SEK) to 0.099 (JPY/NOK),

with the cross-sectional mean being 0.016, indicating that risk-neutral FX correlations

are on average slightly higher than realized FX correlations. Roughly two thirds of

the average CRP are positive and one third are negative; overall, three quarters of all

average premia are significant at the 5% level according to either the asymptotic or

the bootstrapped distributions. The average of the bottom quartile of correlation risk

premia is −0.04, whereas the top quartile average is 0.07.11 Furthermore, correlation

risk premia are very volatile: despite the fact that CRP are much smaller than either

physical measure or implied FX correlations, CRP standard deviations are of the same

order of magnitude as those of realized or implied correlations (ranging from 0.06 to

0.22, with the cross-sectional average equal to 0.14), suggesting that there is substantial

time variation in the disparity between the physical and the risk neutral measure.

To explore whether average correlation risk premia exhibit a cross-sectional pattern,

we plot the average CRP of all G10 exchange rate pairs against their average realized cor-

relations. Figure 5 presents the plot, along with the line of best fit. The cross-sectional

correlation between average FX correlation risk premia and average FX realized corre-

lations is −0.55. For example, the AUD/JPY pair, characterized by a very low average

11In terms of order of magnitude this is up to over 40% of the correlation risk premium reported for
the equity market by Driessen, Maenhout, and Vilkov (2009).
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realized FX correlation (0.16), has a positive and highly significant average CRP of 0.083.

On the other hand, the AUD/NZD pair has a very high average realized correlation (0.76)

and a negative and significant average premium (−0.016). A cross-sectional regression of

average correlation risk premia on the average realized correlations yields a statistically

significant slope coefficient of −0.144.12 The strongly negative cross-sectional relation-

ship between average realized FX correlations and average FX correlation risk premia

is what generates the lower cross-sectional range of average correlations under the risk-

neutral measure, as opposed to the average correlations under the physical measure that

we discussed earlier.

[Insert Figure 5 here.]

3.2 The time series properties of correlation risk premia

We now turn to the time series properties of conditional implied FX correlations and

FX correlation risk premia. The first four columns of Table 8 provide summary statis-

tics on the time-series correlations between physical measure and risk-neutral measure

conditional FX correlations: for each FX pair, we report the unconditional correlation

coefficient between the two time series, as well as its asymptotic t-statistic and the 95%

bootstrapped confidence interval. Physical measure and implied conditional FX corre-

lations exhibit substantial comovement for all FX pairs, with unconditional correlations

between the two ranging from 0.70 to 0.92, all statistically significant. Therefore, implied

conditional FX correlations appear to track observed FX correlations very well.

[Insert Table 8 here.]

The last four columns of Table 8 report descriptive statistics on the unconditional

correlation between physical measure correlations and CRP. We find that the correlation

averaging −0.52 across the 36 G10 FX pairs, suggesting that elevated FX correlation is

typically associated with lower than usual CRP, i.e., with a lower than usual disparity

12Its asymptotic t-statistic, calculated with White (1980) standard errors, is −5.80 and the boot-
strapped 95% confidence interval is [−0.154,−0.076].
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between the physical measure and the risk neutral measure. This relationship is pervasive

and robust: 35 of the 36 unconditional correlations are negative, ranging from −0.760

to −0.102, with all but one of those being statistically different from zero.

Finally, to assess the cyclicality of correlation risk premia, we construct CRP cyclical-

ity measures. We define those in a fashion similar to FX correlation cyclicality measures:

they are unconditional correlations between correlation risk premia and the four market

variables we used before. The last four columns of Table 3 provide the four CRP cyclical-

ity measures for the G10 FX pairs. Panels A to D of Figure 6 then plot those measures

against average correlation risk premia. We find a positive cross-sectional association:

FX pairs with high average CRP have countercyclical correlation risk premia, whereas

pairs with low average CRP have procyclical premia. The regression results in Panel B

of Table 4 suggest that this positive cross-sectional association is statistically significant

for all four cyclicality measures.

[Insert Figure 6 here.]

In sum, FX pairs with high average physical measure correlations or low average cor-

relation risk premia exhibit countercyclical correlations and procyclical correlation risk

premia, whereas FX pairs with low average correlations or high average correlation risk

premia have procyclical correlations and countercyclical correlation risk premia. Thus,

just as the cross-sectional dispersion in conditional FX correlations is countercyclical, so

is the dispersion in correlation risk premia: in bad times, the premia of FX pairs with

high average CRP increase and the premia of FX pairs with low average CRP decline.

4 A no-arbitrage model of exchange rates

In this section, we introduce a reduced-form, no-arbitrage model of exchange rates that

is consistent with our empirical findings. Our model builds on the reduced-form models

in Lustig, Roussanov, and Verdelhan (2011, 2014) and Verdelhan (2015). In contrast

to those models, which assume that innovations in the price of country-specific shocks
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are uncorrelated across countries, we assume cross-country comovement in the pricing

of local risk. This assumption allows our model to match the joint empirical properties

of FX correlations and FX correlation risk premia.

4.1 Model setup

In order to illustrate the basic economic mechanisms in operation, we first focus on a

simple version of our full model, which will be referred to as the benchmark model.

The global economy comprises I + 1 countries (i = 0, 1, . . . , I), each with a corre-

sponding currency. Without loss of generality, we will call country i = 0 the domestic

country and countries i = 1, ..., I the foreign countries. We assume that financial mar-

kets are frictionless and complete, so that there is a unique stochastic discount factor

(SDF) for each country, but that frictions in the international market for goods induce

non-identical stochastic discount factors across countries. In particular, the log SDF of

country i, denoted by mi, is exposed to two global shocks, uw and ug, and a country-

specific (local) shock ui, and satisfies

−mi
t+1 = α+ χzt + ϕzwt +

√
κztu

i
t+1 +

√

γizwt u
w
t+1 +

√

δztu
g
t+1,

where z and zw are the local and the global pricing factors, respectively. Both pricing

factors are common to all countries. Notably, countries are ex ante heterogeneous only

with regard to their exposure γ to the first global shock uw; all other SDF parameters

are identical across countries. As we will see, differences in γ capture the exchange rate

fixed effect that is manifested, inter alia, in the cross-sectional differences in average

FX correlations discussed in the empirical section. In our model, global risk exposure

γ is exogenous. Richer models that endogenize unconditional cross-sectional differences

in global risk exposure include Hassan (2013), Martin (2013), Tran (2013), Backus,

Gavazzoni, Telmer, and Zin (2013), Ready, Roussanov, and Ward (2013), and Colacito,

Croce, Gavazzoni, and Ready (2014).

The local pricing factor z prices both the local shock ui and the second global shock

ug: in all countries, the price of the local shock is
√
κzt and the price of the second
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global shock is
√
δzt. On the other hand, countries have heterogeneous exposure to the

first global shock uw, and its price in country i is
√

γizwt .

The two pricing factors are stationary processes. The local pricing factor z is driven

by the second global shock ug, and has law of motion

∆zt+1 = λ(z̄ − zt)− ξ
√
ztu

g
t+1.

Thus, the local pricing factor is a square root process, reverting to its unconditional

mean of z̄ at speed λ. Importantly, the local pricing factor is countercyclical, as adverse

ug shocks increase its value.

The global pricing factor zw is driven by the global shock uw; it is also a square root

process, with law of motion

∆zwt+1 = λw(z̄w − zwt )− ξw
√

zwt u
w
t+1.

It also features countercyclical pricing of risk. To ensure that all pricing factors are

strictly positive, we further assume that the Feller conditions 2λz̄ > ξ2 and 2λwz̄w >

(ξw)2 are satisfied. All parameters except α, χ and ϕ are strictly positive. All the shocks

in our model are i.i.d. standard normal.

Lastly, we assume that inflation is constant, normalized to zero for all countries,

so real interest rates and exchange rates coincide with their nominal counterparts. We

relax this assumption in the full version of our model.

4.2 The properties of conditional FX moments

We denote the real log exchange rate between foreign currency i and the domestic

currency by qi (units of foreign currency per units of domestic currency, in real terms).

As a result of financial market completeness, real exchange rate changes equal the SDF

differential between the two countries,

∆qit+1 = m0
t+1 −mi

t+1,
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which implies that real exchange rate changes can be decomposed into a part driven by

country-specific shocks and a part that reflects exposure to global risk:

∆qit+1 =
√
κztu

i
t+1 −

√
κztu

0
t+1 +

(

√

γi −
√

γ0
)

√

zwt u
w
t+1.

If the foreign country has a higher (lower) exposure γ to global shock uw than the

domestic country, its currency appreciates (depreciates) when a negative uw realization

occurs. On the other hand, exposure to the second global shock ug drops out of exchange

rate changes since all countries have the same loading on ug, and, thus, the only global

shock that is priced in foreign exchange markets is uw. Therefore, in the remainder of

this section, global FX risk always refers to the first global shock uw.

We now turn to conditional FX moments. The conditional variance of changes in

the log real exchange rate i is increasing in both the local pricing factor z and the global

pricing factor zw:

vart
(

∆qit+1

)

= 2κzt +
(

√

γi −
√

γ0
)2

zwt .

The first effect arises from the country-specific component of stochastic discount factors:

given the independence of local shocks across countries, the more volatile shocks are,

the more the two SDFs diverge and, hence, the more volatile the exchange rate is. The

second effect arises from the global component of SDFs: the higher the heterogeneity in

the global risk exposure of country i and the domestic country, and the more severely

global risk exposure is priced, the higher real exchange rate volatility is.

The conditional covariance of changes in log real exchange rates i and j is

covt
(

∆qit+1,∆q
j
t+1

)

= κzt +Di,jzwt ,

where we define the constant Di,j as follows:

Di,j ≡
(

√

γi −
√

γ0
)(

√

γj −
√

γ0
)

.

We call exchange rate pairs (i, j) that satisfy Di,j > 0 “similar” and exchange rate pairs

that satisfy Di,j < 0 “dissimilar”. Thus, similar exchange rates correspond to foreign
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countries which both have either more or less exposure to global risk than the domestic

country, whereas dissimilar exchange rates correspond to pairs of foreign countries in

which one country has a higher and the other country a lower exposure to global risk

compared to the domestic country.

The first component of conditional FX covariance is due to common exposure to

the domestic local shock, as the two exchange rates are mechanically correlated through

their relationship to the domestic SDF. When z increases, this “domestic currency effect”

becomes more prevalent, increasing the covariance between the two exchange rates, as

both foreign currencies appreciate or depreciate together against the domestic currency.

The second component captures FX comovement that arises from exposure to global

FX risk. On average, foreign countries with similar exposure to the global shock uw

(i.e., that satisfy Di,j > 0) have exchange rates that covary more than the exchange

rates of countries that have dissimilar exposure to global FX risk. Furthermore, the

effect of fluctuations in zw on conditional FX covariance depends on the type of the

FX pair concerned. In particular, an increase in the global pricing factor amplifies the

importance of exposure to global risk and, thus, increases the conditional covariance of

similar exchange rates and reduces the covariance of dissimilar exchange rates.

We can now turn to conditional FX correlations. As happens for FX covariances,

country heterogeneity in exposure to the global shock uw generates cross-sectional het-

erogeneity in average conditional FX correlations: similar FX pairs have higher uncon-

ditional correlations than dissimilar ones. As a result, an increase in the global pricing

factor zw increases the cross-sectional dispersion of conditional FX correlations, as it

raises the correlation of exchange rates with high average correlation (similar FX pairs)

and decreases the correlation of exchange rates with low average correlation (dissimilar

FX pairs). In the limit, as zw → ∞ similar exchange rates become perfectly positively

correlated and dissimilar exchange rates become perfectly negatively correlated.

On the other hand, an increase of the local pricing factor z increases both the FX

variance and the FX covariance of all exchange rate pairs, the latter due to the domestic

currency effect. When z → ∞ the correlation of all FX pairs converges to 1
2
. This

happens because all cross-sectional differences in global risk exposure become second-
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order and what ultimately drives FX comovement is the domestic currency effect. In

particular, the limit behavior of log exchange rate changes is described by

∆qit+1 →
√
κztu

i
t+1 −

√
κztu

0
t+1,

so exposure to the domestic local shock, which accounts for half of the conditional FX

variance and generates all the FX comovement, pushes all FX correlations towards 1
2
.

Thus, when the local pricing factor increases the conditional correlation of similar ex-

change rates (which have high unconditional correlations) declines, whereas the con-

ditional correlation of dissimilar exchange rates (with low unconditional correlations)

increases, leading to a tightening of the cross section of conditional FX correlations.

To illustrate the effects of the two pricing factors on conditional FX correlations,

we consider a world of I = 3 foreign countries. Countries 1 and 2 are less exposed to

global FX risk than the domestic country, while country 3 is more exposed than the

domestic country. This implies that the FX pair (1,2) is similar whereas FX pair (1,3)

is dissimilar. To ensure symmetry, we set the values of the country exposures to global

risk such that the condition D1,2 = −D1,3 > 0 is satisfied.

[Insert Figure 7 here.]

We first consider the impact of the global pricing factor zw; the left panels of Figure 7

present the results. In particular, Panels A, C and E plot conditional FX correlations

as a function of zw for different values of the local pricing factor (z = 0.2z̄, z̄ and 5z̄,

depicted with circles, solid lines and squares, respectively). Panel A refers to the similar

exchange rate pair (1,2), Panel C to the dissimilar exchange rate pair (1,3) and Panel E

plots the difference in the conditional FX correlations of the two FX pairs. Panel A shows

that the conditional correlation of the similar FX pair is always increasing in zw, as the

similarity of the two exchange rates to global risk exposure increases their comovement

when global fluctuations become more highly priced. Exactly the opposite occurs for

the dissimilar exchange rate pair: as seen in Panel C, an increase in zw always reduces

their conditional correlation. Taken together, these results imply that the disparity in

conditional FX correlations is increasing in zw, as illustrated in Panel E.
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We now turn to the effects of the local pricing factor z. The results are presented

in the right panels of Figure 7; Panels B, D and F plot the sensitivity of conditional

FX correlations to the value of the local pricing factor z for different values of the

global pricing factor (zw = 0.2z̄, z̄ and 5z̄), with Panel B referring to the similar FX

pair, Panel D to the dissimilar FX pair and Panel F to the difference in the two pairs’

conditional FX correlations. As seen in Panel B, the conditional correlation between

the two similar exchange rates is decreasing in z regardless of the value of zw. This is

due to the domestic currency effect, which pushes the correlation of the two exchange

rates towards 1
2
when z takes large values. On the other hand, this effect induces a

negative relationship between the value of the local pricing factor and the conditional

FX correlation of the dissimilar pair, as seen in Panel D. As a result, the difference in

the two FX correlations is decreasing in z regardless of the value of zw: Panel F shows

that as z increases all foreign currencies appreciate and depreciate together against the

domestic currency.

In sum, the cross-sectional dispersion of conditional FX correlations is increasing in

the global pricing factor zw and decreasing in the local pricing factor z. Given that zw

increases after negative uw shocks and z increases after negative ug shocks, that implies

that changes in FXC reflect both uw shocks (with a positive sign) and ug shocks (with

a negative sign). Empirically, we have seen that FXC is strongly positively correlated

with four market variables that reflect credit risk, illiquidity and stock market volatility,

suggesting that those variables identify exposure to the first global risk uw, rather than

to the second global shock ug.

4.3 Correlation risk and the cross section of FX returns

Recall that the USD excess return for investing in the currency of country i is given by:

rxi
t+1−Et(rx

i
t+1) = −∆qit+1+Et(∆qit+1) = −√

κztu
i
t+1+

√
κztu

0
t+1−

(

√

γi −
√

γ0
)

√

zwt u
w
t+1,
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so FX returns are not exposed to ug risk. As a result, the conditional risk premium that

the domestic investor receives for investing in foreign currency i (including the Jensen

term) is

rpit ≡ Et

(

rxi
t+1

)

+
1

2
vart(rx

i
t+1) = −covt(m

0
t+1,−∆qit+1) = κzt +

(

√

γ0 −
√

γi

)

√

γ0zwt .

FX risk premia have two components: a part that compensates domestic investors for the

fact that investing in a foreign currency essentially entails shorting the country-specific

component of the domestic SDF, and a part that reflects compensation for exposure

to the global shock uw. The first component is identical across currencies, so all cross-

sectional variation in FX risk premia is solely due to heterogeneity in exposure to uw,

i.e. heterogeneity in γ. In particular, the compensation provided by currency i for

exposure to uw shocks is decreasing in the country loading γi. For example, if γi < γ0,

then currency i depreciates against the domestic currency when a bad realization of the

global shock uw occurs. Given that γ0 > 0, i.e., that a bad realization of uw increases

domestic marginal utility, domestic investors require a positive risk premium in order

to hold currency i. Conversely, currencies of countries with high exposure to uw have a

negative compensation for global FX risk, as they provide a hedge to domestic investors.

We can now turn to the determinants of the ∆FXC loadings of FX returns. We

have seen that fluctuations in FXC reflect both innovations in the global pricing factor

zw (which are scaled multiples of global shock uw) and innovations in the the local

pricing factor zw (scaled multiples of global shock ug). Importantly, both kinds of

innovations are globally priced and they have opposite effects on FXC, so it is not

trivial to establish whether a positive loading of an asset return on FXC should be

associated with a positive or a negative risk premium: assets should earn a negative

premium for a positive loading on FXC that arises from exposure to uw, and a positive

premium for a positive loading that arises from exposure to ug. However, there is no

ambiguity in the case of FX returns, as the only global innovations to which they are

exposed are uw shocks. As a result, the conditional loading of FX returns on ∆FXC
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has the same sign as their conditional loading on ∆zw, so in the interests of tractability

we can consider the latter. We have:

covt(rx
i
t+1,∆zwt+1)

vart(∆zwt+1)
=

covt(−
(

√

γi −
√

γ0
)√

zwt u
w
t+1,−ξw

√
zwt u

w
t+1)

vart(−ξw
√
zwt u

w
t+1)

=

√

γi −
√

γ0

ξw
.

Thus, countries i with a higher SDF exposure γi to global risk uw than the domestic

country have USD exchange rates with a positive conditional loading on ∆FXC; con-

versely, the USD exchange rate of countries with γi < γ0 has a negative loading on

∆FXC. Given the negative cross sectional relationship between γ and currency risk

premia, that implies a negative risk premium for high FXC beta exchange rates and a

positive premium for low FXC beta exchange rates, in line with our empirical finding

of a negative price of FXC.

4.4 Correlation risk and the carry trade factor

In Section 2.3 we show empirically that the traded correlation risk factor HMLC prices

the cross section of currencies. At this stage we can discuss how correlation risk relates

in the model to the well-known Lustig, Roussanov, and Verdelhan (2011) carry trade

factor, a portfolio that invests in high interest rate currencies and shorts low interest

rate currencies.

The real interest rate of country i is given by

rit = α +

(

χ− 1

2
κ− 1

2
δ

)

zt +

(

ϕ− 1

2
γi

)

zwt ,

so all cross-sectional heterogeneity in interest rates is due to cross-sectional differences in

global risk exposure γ: in all periods, countries with high (low) exposure to global risk

have a relatively low (high) interest rate, due to a higher (lower) precautionary savings

motive. As a result, high interest rate currencies are associated with low γs and, thus,

high risk premia.
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The excess return to the carry trade portfolio HMLFX is defined as

rxHMLFX

t+1 =
1

N

∑

i∈H

rxi
t+1 −

1

N

∑

i∈L

rxi
t+1,

with high interest rate (low γ, according to the model) currencies in set H and low

interest rate (high γ) currencies in set L. Provided that currency portfolios contain

enough currencies so that the local shocks cancel out, the return innovations of the

HMLFX portfolio are perfectly positively correlated with the global shock uw:

rxHMLFX

t+1 − Et

(

rxHMLFX

t+1

)

= − 1

N

(

∑

i∈H

√

γi −
∑

i∈L

√

γi

)

√

zwt u
w
t+1.

Thus, HMLFX returns capture exposure to the global shock uw, which is the only global

shock priced in currency markets.

On the other hand, fluctuations in the correlation factor FXC capture both kinds

of global innovations, uw and ug, so they provide a very noisy measure of the part of

FX correlation risk that is priced in foreign exchange markets. It follows that HMLFX

will always have better pricing abilities than FXC in the cross section of currency

returns. To get a cleaner measure of uw innovations, we should consider FX excess

return differentials, which are only exposed to uw shocks. In particular, consider portfolio

HMLC , which is long currencies with high ∆FXC loading and short currencies with

low ∆FXC loading:

rxHMLC

t+1 =
1

N

∑

i∈H

rxi
t+1 −

1

N

∑

i∈L

rxi
t+1

with high-∆FXC-loading (i.e. high γ) currencies in set H and low-∆FXC-loading (low

γ) currencies in set L. Provided that the long and the short positions of the portfolio

contain enough currencies so that the local shocks cancel out, the return innovations of

the HMLC portfolio are perfectly negatively correlated with the global shock uw:

rxHMLC

t+1 − Et

(

rxHMLC

t+1

)

= − 1

N

(

∑

i∈H

√

γi −
∑

i∈L

√

γi

)

√

zwt u
w
t+1.
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Therefore, HMLC returns are perfectly negatively correlated with HMLFX returns for

a large enough set of currencies: they both reflect uw shocks and, thus, should have

the same explanatory power for the cross section of FX returns: high γ currencies,

which hedge uw risk, have a low interest rate and a high ∆FXC beta and low currency

risk premia, whereas low γ (high interest rate, low ∆FXC beta) have high currency

risk premia. Figure 8 plots HMLC and HMLFX from January 1996 to December

2013. Indeed, the correlation between the two time series is −0.66, suggesting a very

strong negative association between the two factors that is consistent with our model

predictions.

[Insert Figure 8 here.]

4.5 The properties of correlation risk premia

We now turn to correlation risk premia and show that our empirical findings can be

rationalized in our model if the domestic agent prices fluctuations in the local pricing

factor sufficiently more strongly than fluctuations in the global pricing factor.

In order to explore the properties of FX correlation risk premia, we first need to

characterize the law of motion of the pricing factors under the risk-neutral measure.

From the perspective of the domestic investor, the law of motion for the global pricing

factor zw is

∆zwt+1 = λw(z̄w − zwt ) + ξw
√

γ0zwt − ξw
√

zwt u
w,Q
t+1 , (1)

so the drift adjustment is positive and equal to ξw
√

γ0zwt . We can rewrite equation (1)

as a square root process,

∆zwt+1 = λw,Q(z̄w,Q − zwt )− ξw
√

zwt u
w,Q
t+1 ,

where λw,Q ≡ λw − ξw
√

γ0 and z̄w,Q ≡ λw

λw,Q z̄
w. Thus, under the risk-neutral measure

the global pricing factor zw has a higher unconditional mean (z̄0,Q > z̄0) and is more

29



persistent (λ0,Q < λ0) than under the physical measure. Similarly, the risk-neutral

measure law of motion for the local pricing factor z is given by

∆zt+1 = λQ(z̄Q − zt)− ξ
√
ztu

g,Q
t+1,

where λQ ≡ λ − ξ
√
δ and z̄Q ≡ λ

λQ z̄, so the local pricing factor also has a higher

unconditional mean and is more persistent under the risk-neutral measure than under

the physical measure. Notably, the drift adjustment of the two factors depends crucially

on the volatility parameters ξ and ξw, which determine the sensitivity of the pricing

factors to shocks ug and uw respectively, and the exposure parameters δ and γ0, which

regulate the pricing of shocks ug and uw respectively. The higher ξ is compared to ξw,

and the higher δ is relative to γ0, the higher the relative drift adjustment of the local

pricing factor over the global pricing factor, as the shocks of the former are more highly

priced compared to the shocks of the latter.

Note that for the local pricing factor we have

EQ
t (zt+s) =

(

1− (1− λQ)s
)

z̄Q + (1− λQ)szt

under the risk-neutral measure, compared to

EP
t (zt+s) = (1− (1− λ)s) z̄ + (1− λ)szt

under the physical measure. Given the higher steady-state and higher persistence of

the local pricing factor under the risk-neutral measure, the wedge EQ
t (zt+s) − Et(z

P
t+s)

is always positive and increasing in zt.
13 Exactly the same is true for the global pricing

factor zw.

Thus, the magnitude of FX correlation risk premia is determined by the disparity

between the risk-neutral measure and the physical measure behavior of z and zw. The

expression for FX correlation risk premia is derived in Appendix C. Of particular rele-

13In particular, the wedge is an affine function of zt, with both the constant and the slope coefficient

being positive. The constant is positive due to the fact that the function f(x) = 1−(1−x)s

x
for s > 1 is

decreasing for x ∈ (0, 1).
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vance is the case in which the domestic agent prices fluctuations in the local pricing factor

more heavily than fluctuations in the global pricing factor, i.e., when ξ
√
δ >> ξw

√

γ0.

In that case, the FX correlation under the risk-neutral measure is akin to the physical

measure FX correlation with a large upwards adjustment for the local pricing factor

and a much smaller upwards adjustment for the global pricing factor, so the relative

importance of the global pricing factor is smaller under the risk-neutral measure than

under the physical measure. This has implications for both the cross section and the

time series of FX correlation risk premia.

We can start with the cross-sectional implications. As discussed, the global pricing

factor is relatively less important under the risk-neutral measure than under the physical

measure. As a result, the risk-neutral FX correlation is always lower than the physical

correlation for similar FX pairs, and higher than the physical correlation for dissimilar

FX pairs. This implies that similar FX pairs have negative average CRP and dissimilar

FX pairs have positive average CRP, which generates a negative cross-sectional rela-

tionship between average FX correlations and average CRP, in line with the empirical

findings presented in Figure 5. The left side panels of Figure 7 provide a useful visualiza-

tion: keeping zw constant, higher values for z correspond to lower conditional correlation

for similar FX pairs and higher conditional correlation for dissimilar FX pairs. Indeed,

the high z curves are always below the low z curves for similar FX pairs (Panel A) and

always above the low z curves for dissimilar FX pairs (Panel C), implying negative CRP

for similar FX pairs and positive CRP for dissimilar FX pairs.

We can now turn to the time series of correlation risk premia. The key feature of the

model is that risk-neutral FX correlations are less sensitive to the value of zw than their

physical measure counterparts; this is because conditional FX correlation is typically

a less steep function of zw for higher values of z. This implies that in states in which

zw is high, which are the states identified as bad by our four empirical business cycle

proxies, the increase (decrease) of the correlation of similar (dissimilar) FX pairs that

occurs in the physical measure is attenuated in the risk-neutral measure. This amplifies

the discrepancy between risk-neutral and physical measure FX correlation for all FX

pairs: the (negative) correlation risk premia for similar FX pairs decrease further and
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the (positive) premia for dissimilar FX pairs increase further. Since the correlation

of similar FX pairs is increasing in zw and the correlation of dissimilar FX pairs is

decreasing in zw, the aforementioned behavior of CRP implies a negative time-series

correlation between FX correlation and CRP levels for all FX pairs and a widening of

the cross-sectional dispersion of CRP when zw is elevated, consistent with our empirical

findings. Graphically, consider the left panels of Figure 7 and focus on the distance

between the low z and high z curves: as the global pricing factor zw increases, the

distance between the two curves widens for both similar and dissimilar FX pairs, since

conditional FX correlation is a flatter function of zw for higher z values. This widening

characterizes the behavior of correlation risk premia in the region of the state state in

which the economy spends most of its time, although it starts to reverse for very high

values of zw.

Conversely, if the domestic agent attaches a higher relative price to zw fluctuations

than z0 fluctuations, there will be a counter-factually positive cross-sectional relationship

between average FX correlations and average FX correlation risk premia.

4.6 Quantitative performance

Finally, we assess the quantitative performance of our model and show that it can match

key moments of currency and correlation risk premia, as well as the standard interest

rate and exchange rate moments.

In this section, we consider the full version of our model, which allows for non-trivial

exogenous inflation processes with unpriced innovations. In particular, the local pricing

factor of country i, zi, satisfies

∆zit+1 = λ(z̄ − zit)− ξ
√

zit

(√
ρui

t+1 +
√

1− ρu
g
t+1

)

,

so it is driven by both the global shock ug and the local shock ui. If we assume that

ρ = 0 and that all local pricing factors have the same initial value, then all local pricing

factors are identical and we retrieve our benchmark model. On the other hand, if we
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assume that ρ = 1, then we retrieve the model in Lustig, Roussanov, and Verdelhan

(2014), which features independent local pricing factors.

The inflation process for country i is given by

πi
t+1 = π̄ + ζzwt +

√
σηit+1.

Inflation is exposed to i.i.d. innovations ηi. Since inflation shocks are unpriced, there is

no inflation risk premium.

We provide a more detailed description of the full model and its calibration and

smilation in Appendix D. The values of our calibrated parameters are reported in Table

9. To illustrate the importance of comovement in the local pricing factors, we consider

the two polar values of ρ: ρ = 0, as in our benchmark model, and ρ = 1, as in Lustig,

Roussanov, and Verdelhan (2014).

Table 10 reports moments for inflation, real and nominal interest rates and real and

nominal exchange rates for the U.S. and the foreign countries for our model (ρ = 0). All

moments are well matched, although the model slightly overshoots inflation volatility

and, as a result, nominal interest rate volatility. The model exhibits an annualized SDF

volatility of about 60%, in line with empirical bounds. Finally, the model generates a

strong carry trade effect, with the return on the FX carry portfolio having an average

excess return of 2.62%. It is worth mentioning that the Lustig, Roussanov, and Verdel-

han (2011) HMLFX factor is priced in the cross section of simulated interest rate sorted

portfolios: our low, medium, and high interest rate currency portfolios have HMLFX

betas of −0.45, 0.02, and 0.55, respectively, with average excess returns monotonically

increasing in the HMLFX portfolio betas. This mirrors the real data where betas are in-

creasing in the interest rate differentials and excess returns are increasing in the portfolio

betas.

[Insert Tables 9 and 10 here.]

Table 11 presents the FX correlation moments both our model (ρ = 0) and for the

model with independent local pricing factors (ρ = 1). We first discuss our model. As
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seen in Table 11, the model generates a non-trivial cross-sectional spread in average

physical and implied FX correlation coefficients, in line with empirical evidence, and

is able to closely match the cross-sectional average of mean FX correlations. The only

weakness of the model regards the magnitude of correlation risk premia: the model-

implied correlation risk premia are much lower (in absolute terms) than their empirical

counterparts. Notably though, the model is able to successfully generate both positive

and negative correlation risk premia, as in the data.

[Insert Table 11 here.]

For the model to generate higher correlation risk premia, δ, countries’ exposure to the

second global stock ug, has to be higher: a higher exposure to the second global shock

would increase the relative pricing of local pricing factor fluctuations by the domestic

agent and, thus, would raise the pricing importance of states characterized by high values

of z. Although the value of δ does not affect FX properties, as exposure to the second

global shock is identical across countries and, thus, cancels out from exchange rates,

higher values of δ would increase SDF volatility and lower interest rates by strengthening

the precautionary savings motive. Furthermore, if the local pricing factor is not exactly

identical across countries (i.e., ρ > 0), then exchange rate volatility is increasing in δ.

The model is able to replicate the almost perfect positive cross-sectional relationship

between average realized and average implied correlations and, crucially, the strongly

negative cross-sectional relationship between average realized correlations and average

CRP. In particular, in our simulated data FX pairs with high average FX correlation

have negative average CRP and FX pairs with low average FX correlation have positive

average CRP, as happens empirically. Regarding the time series, the model generates a

perfect time-series correlation between realized and implied correlation and a negative

time series correlation between realized correlation and CRP for all FX pairs. Em-

pirically, realized and implied correlations are very highly correlated for all FX pairs

(unconditional correlations range from 0.70 to 0.92) and almost all FX pairs display a

negative time series association between realized correlation and CRP, so the time series

properties of the model are fully in line with the data.
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Finally, we consider the asset pricing implications of the model. In the simulated

data, the annualized average excess return for the currency portfolio that is long curren-

cies with high exposure to FXC innovations and short currencies with a low exposure

is −1.21%, suggesting a negative price for exposure to FX correlation risk. As discussed

in the previous section, our FXC factor is not unrelated to the Lustig, Roussanov, and

Verdelhan (2011) HMLFX factor: indeed, the HMLFX factor is priced in the cross-

section of FXC-beta-sorted currency portfolio returns, with the low, medium, and high

FXC exposure portfolio having an HMLFX beta of 0.28, 0.03, and −0.19, respectively.

This is in line with the data where the HMLFX betas of the correlation sorted portfo-

lios are also monotonically decreasing. Furthermore, there is a negative cross-sectional

relationship between interest rates and FXC betas: the low, medium and high FXC

loading portfolio has an average interest rate differential (against the domestic country)

of 0.65%, 0.04% and −0.51%, respectively, which is again in line with the data.

We now turn to the model with independent local pricing factors. In that model,

foreign pricing factors are driven by foreign idiosyncratic shocks, unpriced by the domes-

tic investor. As a result, the domestic investor only prices fluctuations in the domestic

pricing factor z0 and in the global pricing factor zw, but not fluctuations in the foreign

pricing factors. This greatly affects the properties of FX correlation risk premia. Recall

that when local pricing factors are identical, pricing states in which the local pricing

factor has a high value delivers negative correlation risk premia for similar FX pairs and

positive premia for dissimilar FX pairs, consistent with the empirical evidence. However,

in the absence of comovement in local pricing factors, the risk adjustment for z0 tends

to generate positive correlation risk premia for all FX pairs; a discussion is provided in

Appendix D. Indeed, in our simulation average correlation risk premia are positive for

all currencies, ranging from 0.01% to 0.04%. The small magnitude of FX correlation

risk premia is due to the low value of parameter κ, which regulates (along with ξ) the

pricing of z0 fluctuations when local pricing factor shocks are country-specific.

Furthermore, the model generates an almost perfect positive cross-sectional asso-

ciation between average FX correlation and average FX CRP, at odds with empirical

evidence. This is because the pricing of z0 fluctuations is not strong enough to dominate
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the pricing effects of zw fluctuations in our parametrization. Lastly, the model fails to

match the empirical time series properties of CRP: the time series of simulated realized

correlations and CRP are uncorrelated for all FX pairs, at odds with the strong negative

correlation that characterizes their empirical counterparts. Increasing the value of local

risk loading κ would provide some limited improvement of the cross-sectional properties

of simulated average FX correlation risk premia, but would also change the properties of

a number of variables, including FX correlations, in counterfactual ways; for example, it

would reduce the relative importance of heterogeneous country exposure to global risk,

generating a very tight cross section of FX correlations—all average FX correlations

would be around 0.5 due to the domestic currency effect.

5 Conclusion

We document a negative cross-sectional relationship between average FX correlations

and correlation cyclicality, implying that FX pairs that are highly correlated on average

become even more correlated in bad times while pairs characterized by low average

correlations become even less correlated. Thus, FX correlations become more cross-

sectionally dispersed in adverse economic states.

We capture the countercyclicality of cross-sectional dispersion in conditional FX

correlations by constructing the FX correlation factor FXC, defined as the difference

between the conditional correlation of the most and least conditionally correlated FX

pairs. We then sort currencies into portfolios based on their exposure to FXC innova-

tions, and show that the spread between high and low FXC beta currency portfolios is

economically and statistically large (6.4% annually) and that the price of FX correlation

risk is almost −7% per year. In short, we find that investors want to be compensated

for investing in currencies that perform badly during periods of increased cross-sectional

dispersion in conditional FX correlations.

Defining the FX correlation risk premium as the difference between the FX correla-

tion under the risk-neutral and physical probability measure, we find a strong negative

relationship between FX correlations and FX correlation risk premia both in the cross
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section and in the time series. In the cross section, FX pairs with high average correla-

tion exhibit low (or negative) average correlation risk premia, while the opposite is true

for FX pairs with low average correlations. Furthermore, the cross sectional dispersion

of FX correlation risk premia increases in bad economic states.

We rationalize our findings through the lens of a no-arbitrage model of exchange rates

that is able to replicate the salient empirical time series and cross-sectional properties

of FX correlations and FX correlation risk premia, and show the importance of cross-

country comovement in the price of country-specific risk. Our results suggest that richer

models that feature endogenously determined stochastic discount factors and aim to

explain the joint dynamics of FX correlations under both the physical and the risk-

neutral measure need to feature comovement in the pricing of not just common, but also

country-specific, shocks.
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Appendix A Realized variances and correlations

We use daily spot exchange rates to calculate measures of realized variances and correlations.
∆sit = ln

(

Si
t

)

− ln(Si
t−1) denotes the daily log change for exchange rate i. The annualized

realized variance observed at t is then calculated as follows:

RVt =
252

K

K−1
∑

k=0

∆s2t−k,

where K refers to a three month window to estimate the rolling realized variances. Following
Bollerslev, Tauchen, and Zhou (2009) we use this rolling estimate to proxy for the expected
variance over the next month.

In a similar spirit, we derive the annualized realized covariance between exchange rates si

and sj:

RCovi,jt =
252

K

K−1
∑

k=0

∆sit−k∆sjt−k.

The realized correlation is then the ratio between the realized covariance and the product of
the respective standard deviations:

RCi,j
t = RCovi,jt /

√

RVi
t

√

RVj
t .

Appendix B Implied variances and correlations

We follow Demeterfi, Derman, Kamal, and Zhou (1999) and Britten-Jones and Neuberger
(2000) to obtain a model-free measure of implied volatility. They show that if the underlying
asset price is continuous, then the risk-neutral expectation over a horizon T − t of total return
variance is defined as an integral of option prices over an infinite range of strike prices:

EQ
t

(
∫ T

t

(

σi
u

)2
du

)

= 2er(T−t)

(

∫ Si
t

0

1

K2
P(K,T ) dK +

∫

∞

Si
t

1

K2
C(K,T ) dK

)

, (A-1)

where St is the underlying spot exchange rate and P(K,T ) and C(K,T ) are the respective put
and call prices with maturity date T and strike K. In practice, the number of traded options
for any underlying asset is finite; hence the available strike price series is a finite sequence.
Calculating the model-free implied variance involves the entire cross section of option prices:
for each maturity T , all five strikes are taken into account. These are quoted in terms of the
option delta. In addition, we use daily spot rates and one-month Eurocurrency (LIBOR) rates
from Datastream. Following the conventions in the FX market we use the use the Garman
and Kohlhagen (1983) valuation formula to extract the relevant strike prices and to calculate
the corresponding option prices.14

To approximate the integral in equation (A-1), we adopt a trapezoidal integration scheme
over the range of strike prices covered by our dataset. Jiang and Tian (2005) report two
types of implementation errors: (i) truncation errors due to the non-availability of an infinite
range of strike prices; and (ii) discretization errors that arise due to the unavailability of a

14See, e.g., Wystup (2006) for the specifics of FX options conventions.
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continuum of available options. We find that both errors are extremely small when currency
options are used. For example, the size of the errors totals only half a percentage point in
terms of volatility.

Model-free implied correlations are constructed from the available model-free implied volatil-
ities.15 For the construction we require all cross rates for three currencies, Si

t , S
j
t , and Sij

t .
The absence of triangular arbitrage then implies that:16 Sij

t = Si
t/S

j
t . Taking logs, we derive

the following equation:

ln

(

Sij
T

Sij
t

)

= ln

(

Si
T

Si
t

)

− ln

(

Sj
T

Sj
t

)

.

Finally, taking variances yields:

∫ T

t

(

σij
u

)2
du =

∫ T

t

(

σi
u

)2
du+

∫ T

t

(

σj
u

)2
du− 2

∫ T

t

γi,ju du,

where γi,jt denotes the covariance of returns between exchange rate pairs sit and sjt . Solving for
the covariance term, we obtain:

∫ T

t

γi,ju du =
1

2

∫ T

t

(

σi
u

)2
du+

1

2

∫ T

t

(

σj
u

)2
ds− 1

2

∫ T

t

(

σij
u

)2
du.

Using the standard replication arguments, we find that:

EQ
t

(
∫ T

t

γi,ju du

)

= er(T−t)

(
∫ Si

t

t

1

K2
Pi(K,T ) dK +

∫

∞

Si
t

1

K2
Ci(K,T ) dK (A-2)

+

∫ S
j
t

t

1

K2
Pj(K,T ) dK +

∫

∞

S
j
t

1

K2
Cj(K,T ) dK

−
∫ S

ij
t

t

1

K2
Pij(K,T ) dK −

∫

∞

S
ij
t

1

K2
Cij(K,T ) dK

)

.

The model-free implied correlation can then be calculated using expression (A-2) and the
model-free implied variance expression (A-1):

EQ
t

(
∫ T

t

ρi,ju du

)

≡
EQ
t

(

∫ T

t
γi,ju ds

)

√

EQ
t

(

∫ T

t
(σi

u)
2 du

)

√

EQ
t

(

∫ T

t

(

σj
u

)2
du

)

.

15Brandt and Diebold (2006) use the same approach to construct realized covariances of exchange
rates from range-based volatility estimators.

16Recent studies report that the average violation of triangular arbitrage is about 1.5 basis points
with an average duration of 1.5 seconds (Kozhan and Tham, 2012). However, most papers examining
violations of triangular arbitrage use indicative quotes, which give only an approximate price at which a
trade can be executed. Executable prices can differ from indicative prices by several basis points. Using
executable FX quotes, Fenn, Howison, McDonald, Williams, and Johnson (2009) report that triangular
arbitrage is less than 1 basis point and the duration less than 1 second. Our data also indicate that
triangular arbitrage is less than 1 basis point. We therefore conclude that these violations have no effect
on calculated quantities.
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Appendix C Correlation risk premia in the model

For period [t, T ], the expected variance of the changes in the log exchange rate i is given by
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,

and the expected covariance of the changes in log exchange rates i and j is
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Finally, the expected FX correlation is defined as the corresponding expected FX covari-
ance, adjusted by the product of the squared root of the two FX variances, as in the empirical
section of our paper. Thus, the FX correlation risk premium can be written as
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where the risk-neutral measure parameters AQ, BQ, Aw,Q and Bw,Q and the physical measure
parameters A, B, Aw and Bw are positive constants, defined as follows. For the local pricing
factor we have

EQ
t (zt+s) =

(

1− (1− λQ)s
)

z̄Q + (1− λQ)szt ≡ AQ
s +BQ

s zt

under the risk-neutral measure and

Et(zt+s) = (1− (1− λ)s) z̄ + (1− λ)szt ≡ As +Bszt

under the physical measure, with AQ
s > As and BQ

s > Bs for all s > 0. A similar notation can
be used for the global pricing factor zw. For Xs = As, Bs, A

Q
s , B

Q
s , A

w
s , B

w
s , A

w,Q
s and Bw,Q

s , we
respectively define X = A,B,AQ, BQ, Aw, Bw, Aw,Q and Bw,Q as

X ≡
T−t−1
∑

s=0

Xs.

The magnitude of the correlation risk premium depends on the difference between the risk-
neutral measure parameters AQ, BQ, Aw,Q and Bw,Q and the physical measure parameters A,
B, Aw and Bw. When fluctuations in the local pricing factor are priced more heavily than
fluctuations in the global pricing factor by the domestic agent, i.e., when ξ

√
δ >> ξw

√

γ0,
then it holds that

(

AQ +BQzt

)

− (A+Bzt) >>
(

Aw,Q +Bw,Qzwt

)

− (Aw +Bwzwt ) ,

which, as discussed in the main text, suggests a negative cross-sectional relationship between
average FX correlations and average FX correlation risk premia.
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Appendix D The full model

The full model allows for imperfect comovement across local pricing factors and introduces
non-trivial inflation dynamics.

If ρ > 0, the local pricing factors have different realizations due to the independence of the
local shocks. As a result, countries have different conditional loadings on the global innovation
ug and the exposure to ug now enters the expression for real exchange rate changes:

∆qit+1 = Et(∆qit+1)+
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i
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Under the risk-neutral measure, the law of motion for the global pricing factor zw is given by
equation (1), as in the benchmark model, whereas the local pricing factors zi, for i = 0, 1, ..., I
satisfy

∆zit+1 = λi,Q(z̄i,Q − zit)− ξ
√

zit

(√
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,
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i. Note that λ0,Q ≡ λ− ξ

(√
ρ
√
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√
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√
δ
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, as both components of the

innovations in the domestic pricing factor z0 are priced by the domestic investor, whereas for
i = 1, ..., I we have λi,Q ≡ λ− ξ

√
1− ρ

√
δ as only the global component of the foreign pricing

factor innovations is priced by the domestic investor.

The nominal stochastic discount factor of country i, mi,$ is

mi,$
t+1 = mi

t+1 − πi
t+1.

so nominal exchange rate changes satisfy

∆sit+1 = m0,$
t+1 −mi,$

t+1 = ∆qit+1 + πi
t+1 − π0

t+1.

Inflation differentials add unpriced volatility to exchange rates due to the idiosyncratic nature
of the inflation shocks η. In particular, the conditional variance of nominal log exchange rate
changes is given by
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+ vart
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+ 2σ.

Furthermore, domestic inflation shocks enhance the domestic currency effect as regards FX
comovement:

covt

(

∆sit+1,∆sjt+1

)

= covt

(

∆qit+1,∆qjt+1

)

+ σ.

Given the homoskedasticity of inflation innovations, conditional nominal FX moments equal
their real FX counterparts adjusted by constants, so their behavior has the same properties as
that of real exchange rate moments.

Consider the case of independent local pricing factors (ρ = 1). In that case, innovations
in the domestic pricing factor z0 are still priced by the domestic agent, but innovations in the
foreign pricing factors are not. Therefore, to understand risk adjustment in the risk-neutral
measure we only need to consider the impact of zw and z0 on conditional FX correlations. We
illustrate the effect of zw and z0 in Figure 9. As in Figure 7, we study a world of three foreign
countries: countries 1 and 2 are less exposed to the first global shock uw than the domestic
country, while country 3 is more exposed.
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[Insert Figure 9 here.]

The left panels of Figure 9 depict the conditional FX correlations as a function of the
global pricing factor zw for different values of the domestic pricing factor (z0 = 0.2z̄, z̄ and
5z̄, depicted with circles, solid lines and squares, respectively), holding all the foreign pricing
factors equal to their common steady-state value z̄. Not surprisingly, the impact of changes in
the global pricing factor zw is the same as in the benchmark model: as zw increases, similarities
and dissimilarities in exposure to global risk get amplified. However, the position of the curves
corresponding to different constant values of z0 suggests that conditional FX correlation is not
a monotonic function of the domestic pricing factor.

The right panels of Figure 9 present conditional FX correlations as a function of z0 for
different values of zw, assuming that all foreign pricing factors are equal to their steady-state
values, and confirm that the relationship between z0 and the conditional FX correlation is not
monotonic. For small values of z0, conditional FX correlation is higher than its steady-steady
value for both similar and dissimilar FX pairs. This is because the local pricing factor of each
country regulates its exposure to the second global shock ug, which now affects exchange rates.
For small values of z0, all FX pairs are similar regarding their exposure to ug, as the loading of
all foreign countries is lower than the domestic loading. As the value of z0 increases, conditional
FX correlation decreases, since the component of FX correlation arising from exposure to ug

is attenuated. When z0 reaches z̄, all local factors have identical values, so exposure to ug

does not affect FX moments, as it drops out of exchange rates. Finally, for large values of
z0, increases in z0 increase the similarity of all FX pairs regarding their exposure to ug, as
the domestic loading becomes much higher than all foreign loadings. As a result, all FX pairs
become more correlated.

Crucially, in the absence of comovement in local pricing factors across countries the model’s
ability to match the negative cross-sectional relationship between average FX correlations and
average FX correlation risk premia is severely hindered. Recall that in the benchmark model
the desired cross-sectional pattern is achieved by pricing states of the world characterized by
high values of the common local pricing factor z. However, Figure 9 shows that when only z0

fluctuations are priced, pricing states in which the domestic pricing factor z0 has a high value
does not generate the desired cross-sectional pattern. Indeed, conditional FX correlations are
increasing in z0 (in the region above z̄) for both similar and dissimilar FX pairs, suggesting
that the aforementioned risk adjustment tends to generate positive correlation risk premia for
all FX pairs. Graphically, in Figure 9 the curve that corresponds to z0 = 5z̄ is above the curve
for z0 = z̄ in both Panel A (similar FX pairs) and Panel C (dissimilar FX pairs).

We can also show that shutting down exposure to the second global shock ug (by setting
δ = 0) in the model with independent local pricing factors does not help with addressing
the cross section of FX correlation risk premia. In that case, increases in z0 always raise the
correlation of all exchange rates, implying that the pricing of high z0 states generates positive
average correlation risk premia for all FX pairs.

Our model has 15 + (I + 1) parameters: five common SDF parameters (α, χ, φ, κ and δ),
I +1 heterogeneous parameters (the loading γ for each country), seven common pricing factor
parameters—four for the local pricing factor (λ, z̄, ξ and ρ) and three for the global pricing
factor (λw, z̄w and ξw) —and, finally, three common inflation parameters (π̄, ζ and σ). In
our calibration, we follow Lustig, Roussanov, and Verdelhan (2011, 2014) and reduce the set
of parameters by imposing the constraint that the loadings γi are equally spaced across the
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foreign countries. In particular, we assume that the first foreign country has loading γmin, the
last foreign country has loading γmax and each intermediate foreign country i = 2, ..., I −1 has
loading γi = γmin + i−1

I−1(γ
max − γmin). Thus, there are 18 parameters of interest in total.

We set the values of all parameters (except α, ξ, ξw and ρ) equal to the corresponding values
in Lustig, Roussanov, and Verdelhan (2014). Notably, the calibration in Lustig, Roussanov,
and Verdelhan (2014) targets specific interest rate, inflation and exchange rate moments, but
does not involve any moments related to FX correlations or FX correlation risk premia. We
depart from that calibration as regards the values of α, ξ and ξw because the Lustig, Roussanov,
and Verdelhan (2014) parametrization delivers too high real interest rate means and too low
real interest rate volatilities compared to the corresponding empirical values in our sample.
To match those moments, we target the mean and variance of the U.S. real interest rate and
estimate the three aforementioned parameters using GMM: we leave α unconstrained, but
constrain the ratio of ξ

ξw
to equal 2.43, which is the parameter ratio in the Lustig, Roussanov,

and Verdelhan (2014) calibration. In sum, we do not use any of the moments related to either
FX correlation or FX correlation risk premia for our calibration. The values of our calibrated
parameters are reported in Table 9.17

To illustrate the importance of comovement in the local pricing factors, we consider the two
polar values of ρ: ρ = 0, in which case local pricing factors are identical, as in our benchmark
model, and ρ = 1, in which case the local pricing factors are independent across countries. In
the latter case, our model is identical to the model in Lustig, Roussanov, and Verdelhan (2014).
We consider a world with ten countries (I=9 foreign countries and the U.S.) and simulate the
model for each of the two polar cases. Each simulation runs for 55,000 monthly periods, and
is initialized at the steady-state values z̄ and z̄w; to reduce the effect of initial conditions,
we discard the first 5,000 observations. Conditional FX moments (realized and implied) are
calculated using conditional expectations over a period of 21 days (i.e., one month) into the
future, with the model parameters appropriately adjusted to the daily frequency.

17Interest rate differentials against the USD are proxied by the corresponding forward discounts.
The nominal USD interest rate is proxied by the Fama-French 1-month Treasury Bill rate. Inflation in
each country is constructed using the corresponding CPI.
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Appendix E Tables

Table 1

Summary statistics for G10 currencies

This table reports summary statistics for the G10 currencies, namely the mean excess return,
standard deviation, corresponding Sharpe ratio, skewness, kurtosis, and forward discount ft−
st. All returns are excess returns in USD, annualized and expressed in percent. Monthly data
from January 1996 through December 2013. Before 1999 we use the DEM instead of the EUR.

AUD CAD CHF EUR GBP JPY NOK NZD SEK

Mean 3.01 1.12 -0.39 -0.46 1.37 -2.74 1.17 3.73 0.22
StDev 12.78 8.50 10.91 10.25 8.50 10.78 11.15 13.09 11.22
Sharpe ratio 0.24 0.13 -0.04 -0.05 0.16 -0.25 0.11 0.29 0.02
Skewness -0.60 -0.60 0.13 -0.15 -0.50 0.48 -0.36 -0.37 -0.08
Kurtosis 5.29 7.26 4.40 3.80 4.73 5.22 4.10 4.85 3.61
ft − st 2.12 -0.04 -2.00 -0.60 0.91 -3.01 0.98 2.70 -0.10
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Table 2

Summary statistics for correlations and correlation risk premia

This table reports means and standard deviations for realized and implied correlations, as
well as correlation risk premia for all FX pairs. Correlation risk premia (CRP) are defined as
the difference between the implied and realized correlations. Realized correlations (RC) are
calculated using past daily log exchange rate changes over a three month window. Implied
correlations (IC) are calculated from daily option prices on the underlying exchange rates.
The last two columns show bootstrapped 95% confidence interval (using the 2.5 and 97.5
percentiles). Monthly data from January 1996 to December 2013 (options data for EUR start
in January 1999).

RC IC CRP

FX Pair Mean StDev Mean StDev Mean StDev t-stat 2.5% 97.5%

(1) (2) (3) (4) (5) (6) (7) (8) (9)
AUD CAD 0.471 0.25 0.430 0.27 -0.041 0.15 -4.07 -0.060 -0.023
AUD CHF 0.357 0.27 0.405 0.20 0.048 0.15 4.73 0.028 0.068
AUD EUR 0.450 0.28 0.544 0.16 0.019 0.09 2.81 0.006 0.031
AUD GBP 0.422 0.24 0.453 0.19 0.031 0.12 3.86 0.014 0.046
AUD JPY 0.155 0.34 0.238 0.26 0.083 0.16 7.58 0.062 0.103
AUD NOK 0.467 0.26 0.431 0.29 -0.036 0.20 -2.64 -0.064 -0.010
AUD NZD 0.755 0.16 0.739 0.15 -0.016 0.08 -2.97 -0.026 -0.005
AUD SEK 0.474 0.25 0.480 0.20 0.005 0.13 0.61 -0.012 0.022
CAD CHF 0.233 0.28 0.283 0.21 0.050 0.15 4.94 0.031 0.070
CAD EUR 0.307 0.30 0.405 0.19 0.024 0.13 2.45 0.005 0.044
CAD GBP 0.281 0.27 0.307 0.23 0.025 0.15 2.34 0.004 0.044
CAD JPY 0.054 0.26 0.136 0.19 0.082 0.16 7.33 0.060 0.104
CAD NOK 0.340 0.28 0.341 0.28 -0.002 0.18 -0.17 -0.028 0.022
CAD NZD 0.413 0.23 0.352 0.34 -0.061 0.22 -4.19 -0.092 -0.035
CAD SEK 0.352 0.26 0.287 0.29 -0.069 0.17 -5.96 -0.094 -0.047
CHF EUR 0.888 0.13 0.875 0.12 -0.010 0.08 -1.69 -0.020 0.002
CHF GBP 0.580 0.19 0.605 0.15 0.025 0.11 3.32 0.010 0.039
CHF JPY 0.405 0.26 0.456 0.18 0.051 0.14 5.15 0.032 0.070
CHF NOK 0.726 0.16 0.731 0.12 0.006 0.11 0.73 -0.009 0.021
CHF NZD 0.358 0.23 0.370 0.20 0.012 0.16 1.06 -0.010 0.033
CHF SEK 0.707 0.16 0.712 0.13 0.004 0.10 0.58 -0.010 0.017
EUR GBP 0.644 0.15 0.683 0.10 0.003 0.08 0.54 -0.009 0.015
EUR JPY 0.324 0.27 0.364 0.20 0.067 0.15 5.84 0.046 0.089
EUR NOK 0.825 0.09 0.798 0.07 -0.025 0.06 -5.20 -0.035 -0.016
EUR NZD 0.440 0.23 0.501 0.17 0.005 0.12 0.55 -0.013 0.022
EUR SEK 0.816 0.11 0.817 0.08 -0.022 0.06 -4.64 -0.031 -0.012
GBP JPY 0.217 0.26 0.293 0.19 0.076 0.15 7.29 0.056 0.095
GBP NOK 0.577 0.16 0.638 0.12 0.059 0.16 5.39 0.038 0.080
GBP NZD 0.415 0.23 0.404 0.22 -0.011 0.14 -1.15 -0.029 0.006
GBP SEK 0.560 0.16 0.598 0.13 0.037 0.13 4.26 0.021 0.053
JPY NOK 0.248 0.26 0.347 0.21 0.099 0.16 9.22 0.079 0.119
JPY NZD 0.146 0.32 0.233 0.24 0.087 0.18 7.09 0.063 0.111
JPY SEK 0.241 0.27 0.294 0.20 0.052 0.16 4.95 0.033 0.072
NOK NZD 0.449 0.22 0.413 0.27 -0.036 0.20 -2.65 -0.064 -0.011
NOK SEK 0.796 0.10 0.780 0.11 -0.016 0.08 -2.93 -0.026 -0.006
NZD SEK 0.439 0.23 0.403 0.27 -0.036 0.18 -2.89 -0.060 -0.013
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Table 3

Cyclicality of realized correlations and correlation risk premia

This table reports unconditional correlations of realized correlations (columns (1) to (4)) and
correlation risk premia (columns (5) to (8)) with the global equity volatility measure used
in Lustig, Roussanov, and Verdelhan (2011) (GV ol), the global funding illiquidity measure
of Malkhozov, Mueller, Vedolin, and Venter (2015) (GFI), the CBOE VIX (V IX), and the
TED spread (TED), respectively. Unconditional correlations are calculated using monthly
data from January 1996 through December 2013.

RC cyclicality CRP cyclicality

GV ol GFI TED V IX GV ol GFI TED V IX

(1) (2) (3) (4) (5) (6) (7) (8)
AUD CAD 0.174 -0.016 -0.081 0.168 -0.090 -0.203 -0.029 -0.180
AUD CHF -0.110 -0.342 -0.241 -0.180 0.068 0.116 0.024 0.062
AUD EUR 0.100 -0.217 -0.079 0.008 0.040 0.007 -0.076 0.060
AUD GBP 0.016 -0.207 -0.047 -0.102 0.004 0.062 -0.070 0.053
AUD JPY -0.328 -0.488 -0.365 -0.395 0.077 0.162 0.110 0.082
AUD NOK 0.143 -0.145 -0.037 0.089 -0.096 -0.113 -0.328 -0.116
AUD NZD 0.298 -0.125 0.014 0.287 -0.107 0.036 -0.016 -0.138
AUD SEK 0.121 -0.161 -0.084 0.050 -0.141 -0.017 -0.115 -0.125
CAD CHF -0.099 -0.251 -0.223 -0.164 0.120 0.099 0.167 0.103
CAD EUR 0.070 -0.133 -0.106 -0.009 -0.056 -0.014 0.076 -0.031
CAD GBP 0.042 -0.060 -0.021 -0.041 0.090 -0.156 -0.150 0.066
CAD JPY -0.284 -0.405 -0.322 -0.383 0.050 0.097 0.065 0.063
CAD NOK 0.102 -0.065 -0.063 0.053 -0.038 -0.151 -0.132 -0.043
CAD NZD 0.166 -0.005 -0.060 0.174 0.084 -0.321 -0.182 -0.018
CAD SEK 0.134 -0.025 -0.066 0.069 -0.078 -0.091 -0.187 -0.028
CHF EUR -0.221 -0.107 -0.030 -0.250 0.330 0.122 0.178 0.308
CHF GBP -0.159 -0.323 -0.256 -0.265 0.069 0.114 0.113 0.087
CHF JPY -0.146 -0.063 -0.028 -0.223 0.069 0.114 0.002 0.133
CHF NOK -0.269 -0.045 -0.130 -0.276 0.103 -0.019 0.098 0.130
CHF NZD -0.106 -0.241 -0.256 -0.114 0.142 -0.026 -0.031 0.084
CHF SEK -0.186 -0.221 -0.013 -0.265 0.037 -0.050 0.059 0.025
EUR GBP 0.105 -0.155 -0.137 -0.018 -0.216 -0.137 -0.043 -0.184
EUR JPY -0.281 -0.178 -0.215 -0.301 0.173 0.228 0.190 0.208
EUR NOK -0.064 0.137 0.026 -0.056 -0.063 -0.062 0.032 -0.042
EUR NZD 0.135 -0.106 -0.057 0.104 -0.002 -0.111 -0.205 -0.022
EUR SEK 0.077 -0.169 0.077 -0.025 -0.177 -0.107 0.058 -0.186
GBP JPY -0.353 -0.412 -0.368 -0.433 0.158 0.213 0.149 0.166
GBP NOK 0.026 -0.041 -0.118 -0.041 -0.038 -0.010 0.058 0.017
GBP NZD 0.059 -0.099 0.000 -0.007 0.001 -0.196 -0.227 0.006
GBP SEK 0.097 -0.163 -0.065 0.006 -0.211 0.013 -0.028 -0.128
JPY NOK -0.340 -0.219 -0.303 -0.354 0.199 0.212 0.262 0.226
JPY NZD -0.327 -0.361 -0.352 -0.317 0.064 0.077 0.129 0.008
JPY SEK -0.343 -0.314 -0.224 -0.399 0.224 0.256 0.121 0.253
NOK NZD 0.163 -0.059 -0.028 0.161 -0.062 -0.179 -0.301 -0.101
NOK SEK 0.156 0.030 0.141 0.144 -0.086 -0.022 -0.105 -0.047
NZD SEK 0.171 -0.065 -0.054 0.144 -0.118 -0.154 -0.284 -0.154
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Table 4

Cross-sectional cyclicality regressions

Panel A presents the output of the cross-sectional regressions of average realized correlations
on each of the four FX correlation cyclicality measures. Panel B presents the output of the
cross-sectional regressions of average correlation risk premia on each of the four CRP cyclicality
measures. Each panel reports the slope coefficients, their t-statistic, their bootstrapped 95%
confidence interval, as well as the regression R2. Each FX correlation cyclicality measure (CRP
cyclicality measure) is defined as the unconditional correlation of conditional FX correlation
(CRP) with a given market variable. The market variables are the global equity volatility
measure used in Lustig, Roussanov, and Verdelhan (2011) (GV ol), the global funding illiquidity
measure of Malkhozov, Mueller, Vedolin, and Venter (2015) (GFI), the CBOE VIX (V IX),
and the TED spread (TED). The cyclicality measures are calculated using monthly data
from January 1996 through December 2013 and are reported in Table 3. The t-statistics in
parentheses are calculated using White (1980) standard errors.

Panel A: Average RC and RC cyclicality

Slope t-stat 2.5% 97.5% R2

GV ol 0.404 (2.45) 0.064 1.000 0.14

GFI 0.867 (5.14) 0.176 1.054 0.32

TED 1.151 (7.31) 0.348 1.638 0.50

V IX 0.409 (2.66) 0.148 0.892 0.15

Panel B: Average CRP and CRP cyclicality

Slope t-stat 2.5% 97.5% R2

GV ol 0.163 (2.63) 0.006 0.198 0.22

GFI 0.248 (8.98) 0.108 0.282 0.63

TED 0.203 (6.57) 0.073 0.262 0.48

V IX 0.198 (3.73) 0.064 0.232 0.33
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Table 5

Correlations of FX correlation dispersion measures and market variables

This table reports the correlation coefficients between the FX correlation dispersion mea-
sures FXC and FXCUNC , the global equity volatility measure used in Lustig, Roussanov,
and Verdelhan (2011) (GV ol), the global funding illiquidity measure of Malkhozov, Mueller,
Vedolin, and Venter (2015) (GFI), the CBOE VIX (V IX), and the TED spread (TED).
Monthly data from January 1996 through December 2013.

FXC FXCUNC GV ol GFI TED V IX

FXC 1.00 0.86 0.35 0.48 0.42 0.45

FXCUNC 0.86 1.00 0.26 0.44 0.41 0.39

GV ol 0.35 0.26 1.00 0.53 0.59 0.81

GFI 0.48 0.44 0.53 1.00 0.57 0.61

TED 0.42 0.41 0.59 0.57 1.00 0.43

V IX 0.45 0.39 0.81 0.61 0.43 1.00
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Table 6

FXC-beta-sorted portfolios

The table reports summary statistics for three G10 currency portfolios sorted on exposure to
the correlation risk factor FXC. Exposure is measured by regressing currency excess returns
on innovations in the correlation risk factor over the preceding 36 months. Portfolio 1 (Pf1C)
contains the three currencies with the lowest pre-sort FXC betas whereas Portfolio 3 (Pf3C)
contains the three currencies with the highest pre-sort FXC betas. HMLC , denotes the long-
short portfolio that invests in the high correlation beta currencies (Pf1C) and shorts the low
correlation beta currencies (Pf1C). Monthly data: for Panel A from January 1996 through
December 2013, for Panel B from January 1984 through December 2013, for Panel C from
January 1984 through July 2007 and for Panel D from January 1996 through July 2007.

Panel A: January 1996–December 2013

Pf1C Pf2C Pf3C HMLC

Mean 4.04 0.99 -2.38 -6.42
StDev 10.26 9.11 7.86 7.83
t-stat 1.67 0.46 -1.28 -3.47
Skewness -0.66 0.06 0.01 0.44
Kurtosis 6.57 3.53 3.09 4.75
Sharpe Ratio 0.39 0.11 -0.30 -0.82

Panel B: January 1984–December 2013

Pf1C Pf2C Pf3C HMLC

Mean 4.37 1.58 0.65 -3.72
StDev 9.62 9.44 8.87 8.37
t-stat 2.48 0.92 0.40 -2.43
Skewness -0.43 -0.24 -0.26 0.06
Kurtosis 6.09 3.73 3.96 3.71
Sharpe Ratio 0.45 0.17 0.07 -0.44

Panel C: January 1984–July 2007

Pf1C Pf2C Pf3C HMLC

Mean 4.36 1.61 0.91 -3.45
StDev 8.00 9.05 9.00 8.02
t-stat 2.64 0.87 0.49 -2.09
Skewness 0.18 -0.22 -0.28 -0.19
Kurtosis 3.81 3.79 4.04 3.13
Sharpe Ratio 0.54 0.18 0.10 -0.43

Panel D: January 1996–July 2007

Pf1C Pf2C Pf3C HMLC

Mean 3.84 0.74 -3.51 -7.35
StDev 7.34 8.07 7.56 6.68
t-stat 1.78 0.31 -1.58 -3.74
Skewness 0.17 0.49 0.11 -0.01
Kurtosis 3.35 3.10 2.76 2.92
Sharpe Ratio 0.52 0.09 -0.46 -1.10
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Table 7

Estimating the price of correlation risk

This table reports the results for the estimation of the market price of correlation risk. Panel
A reports factor betas and Newey and West (1987) standard errors (in parentheses) for the
first stage regressions for various test assets. The test assets include three correlation portfolios
(PfC) sorted based on exposure to the correlation risk factor FXC from Table 6, three interest
rate sorted portfolios (PfF) that are constructed by sorting on the interest rate differential as
well as the nine individual G10 currencies. Panel B reports the Fama and MacBeth (1973)
factor prices and standard errors (in parentheses). Shanken (1992)-corrected standard errors
are reported in brackets. Overall, we consider four sets of test assets. Set (1) considers only
the three correlation and three carry portfolios from Panel A, while for set (2) we add the
individual nine G10 currencies as test assets. For sets (3) and (4) we construct four correlation
and interest rate sorted portfolios each but with an extended set of currencies to match those
used in Lustig, Roussanov, and Verdelhan (2011) (further details are given in Section 1). Set
(3) includes developed currencies only while the portfolios in set (4) are constructed using the
all currencies. The first stage beta estimates for sets (3) and (4) are provided in the Online
Appendix. Monthly data from January 1996 through December 2013.

Panel A: Factor betas

α DOL HMLC R2

Pf1C -0.01 (0.07) 1.03 (0.05) -0.52 (0.03) 0.40

Pf2C -0.02 (0.09) 1.11 (0.06) 0.00 (0.04) 0.10

Pf3C -0.03 (0.07) 1.03 (0.05) 0.48 (0.03) -0.20

Pf1F -0.06 (0.10) 0.98 (0.06) 0.33 (0.06) -0.12

Pf2F -0.03 (0.08) 1.03 (0.04) -0.05 (0.04) 0.12

Pf3F 0.03 (0.09) 1.16 (0.07) -0.32 (0.06) 0.30
AUD -0.09 (0.13) 1.20 (0.08) -0.52 (0.08) 0.39
CAD -0.04 (0.11) 0.66 (0.07) -0.19 (0.07) 0.17
CHF 0.04 (0.14) 1.24 (0.08) 0.31 (0.07) -0.05
EUR -0.09 (0.11) 1.22 (0.07) 0.07 (0.05) 0.08
GBP 0.10 (0.13) 0.75 (0.09) 0.08 (0.06) 0.03
JPY 0.04 (0.22) 0.63 (0.12) 0.57 (0.10) -0.25
NOK 0.03 (0.13) 1.24 (0.09) 0.02 (0.08) 0.11
NZD 0.06 (0.15) 1.27 (0.08) -0.39 (0.11) 0.32
SEK -0.10 (0.11) 1.29 (0.07) -0.05 (0.06) 0.14

Panel B: Factor prices

λDOL λHMLC
R2

Set (1) 0.09 (0.15) [0.15] -0.58 (0.15) [0.15] 0.99
Set (2) 0.09 (0.15) [0.15] -0.54 (0.20) [0.20] 0.93
Set (3) 0.13 (0.15) [0.15] -0.51 (0.17) [0.18] 0.90
Set (4) 0.15 (0.14) [0.14] -0.67 (0.22) [0.23] 0.81
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Table 8

Time series correlations for RC, IC, and CRP

This table reports the time series correlations between realized correlations (RC) and implied
correlations (IC), and between realized correlations and correlation risk premia (CRP) for all
FX pairs. In addition to the means, we report t-statistics and 95% bootstrapped confidence
intervals. Correlation risk premia (CRP) are defined as the difference between the implied
and realized correlations. Implied correlations (IC) are calculated from daily option prices
on the underlying exchange rates. Realized correlations (RC) are calculated using past daily
log exchange rate changes over a three month window. Monthly data from January 1996 to
December 2013 (options data for EUR start in January 1999).

Correlation RC/IC Correlation RC/CRP

FX Pair Mean t-stat 2.5% 97.5% Mean t-stat 2.5% 97.5%

(1) (2) (3) (4) (5) (6) (7) (8)
AUD CAD 0.843 22.88 0.800 0.875 -0.102 -1.49 -0.243 0.046
AUD CHF 0.844 22.97 0.805 0.877 -0.695 -14.15 -0.756 -0.627
AUD EUR 0.923 32.01 0.901 0.941 -0.714 -13.59 -0.782 -0.638
AUD GBP 0.876 26.54 0.844 0.905 -0.656 -12.71 -0.732 -0.566
AUD JPY 0.892 28.89 0.855 0.922 -0.695 -14.13 -0.764 -0.610
AUD NOK 0.744 16.28 0.679 0.807 -0.213 -3.18 -0.317 -0.091
AUD NZD 0.872 26.01 0.833 0.906 -0.457 -7.52 -0.646 -0.212
AUD SEK 0.870 25.82 0.840 0.902 -0.618 -11.49 -0.723 -0.490
CAD CHF 0.856 24.22 0.827 0.885 -0.684 -13.73 -0.756 -0.594
CAD EUR 0.864 22.86 0.822 0.899 -0.702 -13.17 -0.785 -0.602
CAD GBP 0.825 21.34 0.776 0.869 -0.518 -8.86 -0.640 -0.371
CAD JPY 0.777 18.03 0.708 0.829 -0.680 -13.57 -0.737 -0.622
CAD NOK 0.780 18.26 0.723 0.838 -0.316 -4.88 -0.465 -0.168
CAD NZD 0.784 18.48 0.730 0.838 0.161 2.39 0.011 0.308
CAD SEK 0.813 20.44 0.766 0.856 -0.137 -2.02 -0.241 -0.024
CHF EUR 0.846 21.21 0.717 0.946 -0.603 -10.09 -0.743 -0.278
CHF GBP 0.816 20.63 0.757 0.862 -0.640 -12.17 -0.715 -0.554
CHF JPY 0.835 22.19 0.788 0.874 -0.733 -15.76 -0.785 -0.665
CHF NOK 0.725 15.42 0.632 0.816 -0.671 -13.23 -0.763 -0.525
CHF NZD 0.724 15.35 0.661 0.783 -0.532 -9.19 -0.619 -0.428
CHF SEK 0.757 16.94 0.668 0.832 -0.560 -9.88 -0.683 -0.386
EUR GBP 0.774 16.33 0.707 0.837 -0.592 -9.80 -0.697 -0.463
EUR JPY 0.858 22.29 0.811 0.898 -0.760 -15.60 -0.813 -0.704
EUR NOK 0.704 13.23 0.628 0.776 -0.632 -10.87 -0.773 -0.379
EUR NZD 0.770 16.12 0.703 0.830 -0.467 -7.04 -0.597 -0.329
EUR SEK 0.721 13.89 0.659 0.786 -0.549 -8.76 -0.697 -0.326
GBP JPY 0.824 21.30 0.770 0.867 -0.713 -14.87 -0.778 -0.634
GBP NOK 0.332 5.14 0.149 0.477 -0.710 -14.77 -0.771 -0.644
GBP NZD 0.812 20.32 0.773 0.852 -0.350 -5.47 -0.498 -0.199
GBP SEK 0.644 12.31 0.575 0.717 -0.615 -11.41 -0.747 -0.462
JPY NOK 0.795 19.15 0.743 0.837 -0.572 -10.21 -0.657 -0.473
JPY NZD 0.831 21.83 0.777 0.875 -0.680 -13.55 -0.746 -0.603
JPY SEK 0.825 21.34 0.775 0.865 -0.699 -14.29 -0.762 -0.627
NOK NZD 0.699 14.29 0.630 0.764 -0.157 -2.32 -0.267 -0.051
NOK SEK 0.701 14.36 0.643 0.761 -0.347 -5.42 -0.521 -0.148
NZD SEK 0.750 16.58 0.684 0.805 -0.158 -2.34 -0.253 -0.053
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Table 9

Parameter values

This table reports the parameter values for the calibrated version of the model. All countries
share the same parameter values except for γ: γ0 is the parameter for the domestic (base)
country, whereas the values for the foreign γi are linearly spaced on the interval [γmin, γmax].

SDF parameters

α χ φ κ δ γ0 γmin γmax

0.0067 0.89 0.06 0.04 2.78 0.36 0.22 0.49

Pricing factor parameters

λ z̄ ξ λw z̄w ξw

0.09 0.0077 0.0322 0.01 0.0209 0.0132

Inflation parameters

π̄ ζ σ
-0.0031 0.25 0.00372
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Table 10

Simulated moments: Interest rates, inflation, and exchange rates

This table reports empirical moments (first column) and simulated moments (second column) for the full
model with ρ = 0 (identical local pricing factors). The first panel reports annualized means and standard
deviations of real U.S. interest rates and cross-sectional averages of mean and standard deviation of
foreign interest rates. The second panel reports cross-sectional averages of exchange rate volatility
and autocorrelation. The third panel reports the average and standard deviation of U.S. inflation and
cross-sectional averages of mean and standard deviation of foreign inflation. The fourth panel reports
annualized means and standard deviations of nominal U.S. interest rates and cross-sectional averages of
mean and standard deviation of foreign interest rates. The fifth panel reports cross-sectional averages of
the volatility and autocorrelation of nominal exchange rates. The sixth panel reports the average excess
return on the HMLFX factor and the last panel reports the cross-sectional average of the standard
deviation of the real and nominal log SDF.

Moment Data Model

E
(

rU.S.
)

0.28% 0.24%
Std

(

rU.S.
)

1.35% 1.34%
Ecross

(

E
(

rFGN
))

1.15% 0.30%
Ecross

(

Std
(

rFGN
))

1.19% 1.35%

Ecross (Std (∆qt+1)) 10.82% 9.41%
Ecross (AC (∆qt+1)) -0.01 0.00

E
(

πU.S.
)

2.32% 2.34%
Std

(

πU.S.
)

1.27% 1.70%
Ecross

(

E
(

πFGN
))

1.56% 2.35%
Ecross

(

Std
(

πFGN
))

1.12% 1.69%

E
(

r$,U.S.
)

2.60% 2.58%

Std
(

r$,U.S.
)

0.62% 1.36%

Ecross

(

E
(

r$,FGN
))

2.70% 2.64%

Ecross

(

Std
(

r$,FGN
))

0.44% 1.37%

Ecross (Std (∆st+1)) 10.76% 9.59%
Ecross (AC (∆st+1)) 0.01 0.00

E
(

rxHML
t+1

)

5.41% 2.62%

Ecross (Std(mt+1)) - 0.59

Ecross

(

Std(m$
t+1)

)

- 0.60
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Table 11

Simulated moments: FX correlations and risk premia

This table reports empirical moments (first column) and simulated moments for the full model with
ρ = 0 (identical local pricing factors) and for the full model with ρ = 1 (independent local pricing
factors) (second and third column, respectively). All moments refer to nominal exchange rates. The
first panel reports the cross-sectional mean and the 2.5 and 97.5 percentiles of average realized FX
correlations, respectively. The second panel reports the cross-sectional mean and the 2.5 and 97.5
percentiles of average implied FX correlations. The third panel reports the cross-sectional mean and
the 2.5 and 97.5 percentiles of average FX CRP. The fourth panel reports the cross-sectional correlation
between average realized and average implied FX correlation and the cross-sectional correlation between
average realized correlation and average CRP. The fifth panel reports the cross-sectional average of the
correlation between realized and implied FX correlation and the cross-sectional mean as well as the 2.5
and 97.5 percentiles of the correlation between realized correlation and CRP.

Moment Data Model

Identical z Independent z

2.5%cross (E(RC)) 0.13 0.01 0.29
Ecross (E(RC)) 0.45 0.39 0.39
97.5%cross (E(RC)) 0.83 0.65 0.45

2.5%cross (E(IC)) 0.22 0.02 0.29
Ecross (E(IC)) 0.48 0.39 0.39
97.5%cross (E(IC)) 0.82 0.64 0.45

2.5%cross (CRP ) -6.24% -0.15% 0.01%
Ecross (CRP ) 1.58% 0.13% 0.03%
97.5%cross (CRP ) 8.85% 0.49% 0.04%

corrcross (E(RC), E(IC)) 0.98 1.00 1.00
corrcross (E(RC), E(CRP )) -0.55 -0.99 0.95

Ecross (corr(RC, IC)) 0.79 1.00 1.00
2.5%cross (corr(RC,CRP )) -0.74 -0.83 -0.08
Ecross (corr(RC,CRP )) -0.52 -0.68 -0.04
97.5%cross (corr(RC,CRP )) -0.07 -0.35 -0.02
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Appendix F Figures
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Figure 1. Realized correlations and cyclicality

This figure illustrates the relationship between measures of cyclicality of FX correlations and
average realized correlations. Cyclicality is measured by the correlation between the realized
correlation time series for a FX pair and a business cycle proxy. The proxies considered are the
global equity volatility measure from Lustig, Roussanov, and Verdelhan (2011) (GV ol, Panel
A), the global funding illiquidity measure (GFI, Panel B) from Malkhozov, Mueller, Vedolin,
and Venter (2015), the TED spread (TED, Panel C), and the CBOE VIX (V IX, Panel D).
Monthly data from January 1996 to December 2013.
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Figure 2. FX correlation dispersion measures and market variables

Panel A plots the FX correlation dispersion measure FXC calculated as the difference between the
average high and low correlation FX pairs (solid line). The two groups consist of the highest and lowest
decile of realized correlations across all 36 G10 FX pairs. The deciles are rebalanced every month.
FXC is calculated for the period from January 1996 to December 2013. The alternative dispersion
measure FXCUNC is calculated as the difference of correlations between the decile of high correlation
pairs and the decile of low correlation pairs measured over the whole sample period. Panel B plots the
global equity volatility measure used in Lustig, Roussanov, and Verdelhan (2011) (GV ol), the global
funding illiquidity measure of Malkhozov, Mueller, Vedolin, and Venter (2015) (GFI), the CBOE VIX
(V IX), and the TED spread (TED). All series are standardized to have zero mean and a standard
deviation of one. The shaded areas depict NBER recessions.
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Figure 3. Portfolios sorted on exposure to correlation risk

The figure displays average portfolio excess returns for different subsamples. Currencies are
sorted at time t into portfolios based on exposure to correlation risk at the end of period
t − 1. The exposure is measured by regressing currency excess returns on innovations in the
correlation risk factor over the preceding 36 months. Portfolio 1 (Pf1) contains the currencies
with the lowest pre-sort correlation beta whereas Portfolio 3 or 4 (Pf3 or Pf4) contains the
currencies with the highest pre-sort correlation beta. The average portfolio excess returns are
calculated for the various sample periods starting either in January 1984 or January 1996 and
ending in December 2013 or July 2007 (i.e., excluding the financial crisis). Panel A presents
the results for the three G10 currency portfolios sorted based on the exposure to innovations in
the correlation risk factor FXC. Panels B and C present the portfolio excess returns for four
currency portfolios sorted based on the exposure to innovations in the correlation risk factor
FXC using an extended set of currencies (either developed currencies only or the full set as
described in Appendix 1).
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Figure 4. Model performance with various test assets

The figure plots the actual annualized mean excess returns in percent versus the predicted
excess returns for various test assets using a linear pricing model that includes the dollar
factor DOL and the HMLC correlation factor. Panel A displays the results for the nine G10
currencies and the three interest rate (Pf1F to Pf3F) and correlation (Pf1C to Pf3C) portfolios
for the G10 currencies. Panels B and C display the results for the four interest rate (Pf1F

to Pf4F) and correlation (Pf1C to Pf4C) portfolios constructed using all or only developed
currencies, respectively. Monthly data from January 1996 to December 2013.
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Figure 5. G10 realized correlation and correlation risk premia

This figure plots the average correlation risk premia for all 36 G10 exchange rate pairs
against their average realized correlations. Correlation risk premia and correlations are
expressed in percentage points. Monthly data from January 1996 (EUR since January
1999) to December 2013.
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Figure 6. Correlation risk premia cyclicality and CRP

This figure illustrates the relationship between measures of cyclicality of correlation risk premia
and average correlation risk premia. Cyclicality is measured by the correlation between the
realized correlation (or correlation risk premia) time series for a FX pair and a business cycle
proxy. The proxies considered are the global equity volatility measure from Lustig, Roussanov,
and Verdelhan (2011) (GV ol, Panel A), the global funding illiquidity measure (GFI, Panel B)
from Malkhozov, Mueller, Vedolin, and Venter (2015), the TED spread (TED, Panel C), and
the CBOE VIX (V IX, Panel D). Monthly data from January 1996 to December 2013.
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Figure 7. Model-implied FX correlations: identical local pricing factors

The figure displays the properties of conditional real FX correlation in the model with identical
local pricing factors. Panels A, C and E plot conditional FX correlation as a function of the
global pricing factor zw, holding the local pricing factor z constant: Panel A refers to the
conditional FX correlation of the similar FX pair (1,2), Panel C refers to the conditional FX
correlation of the dissimilar FX pair (1,3) and Panel E refers to difference in the conditional
FX correlation between the two pairs. In each panel, the circles, solid line and squares plot the
conditional FX correlation conditional on the local pricing factor z being equal to 0.2, 1, and 5
times its steady-state value z̄, respectively. Panels B, D and F plot conditional FX correlation
as a function of the local pricing factor z, holding the global pricing factor zw constant: Panel
B refers to the conditional FX correlation of the similar FX pair (1,2), Panel D refers to the
conditional FX correlation of the dissimilar FX pair (1,3) and Panel F refers to difference in
the conditional FX correlation between the two pairs. In each panel, the circles, solid line and
squares plot the conditional FX correlation conditional on the global pricing factor zw being
equal to 0.2, 1, and 5 times its steady-state value z̄w, respectively. To plot the figures, we set
the model parameters equal to their calibrated values in Table 9.
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Figure 8. FX correlation and FX carry factors

The figure plots the return on HMLC , the long-short portfolio that invests in the high correlation beta
currencies (Pf1C) and shorts the low correlation beta currencies (Pf1C) (solid line) and the (negative
of) the FX carry factor HMLFX from Lustig, Roussanov, and Verdelhan (2011) (dashed line). All
series are standardized to have zero mean and a standard deviation of one. The shaded areas depict
NBER recessions. Monthly data from January 1996 to December 2013.
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Figure 9. Model-implied FX correlations: independent local pricing factors

The figure displays the properties of conditional real FX correlation in the model with independent
local pricing factors. Panels A, C and E plot conditional FX correlation as a function of the global
pricing factor zw, holding all the local pricing factors constant: Panel A refers to the conditional FX
correlation of the similar FX pair (1,2), Panel C refers to the conditional FX correlation of the dissimilar
FX pair (1,3) and Panel E refers to difference in the conditional FX correlation between the two pairs.
In each panel, the circles, solid line and squares plot the conditional FX correlation conditional on
the domestic pricing factor z0 being equal to 0.2, 1, and 5 times its steady-state value z̄, respectively,
and all the foreign pricing factors being equal to their common steady-state value z̄. Panels B, D and
F plot conditional FX correlation as a function of the domestic pricing factor z0, holding the global
pricing factor zw constant: Panel B refers to the conditional FX correlation of the similar FX pair (1,2),
Panel D refers to the conditional FX correlation of the dissimilar FX pair (1,3) and Panel F refers to
difference in the conditional FX correlation between the two pairs. In each panel, the circles, solid line
and squares plot the conditional FX correlation conditional on the global pricing factor zw being equal
to 0.2, 1, and 5 times its steady-state value z̄w, respectively, and all the foreign pricing factors being
equal to their steady-state value z̄. To plot the figures, we set the model parameters equal to their
calibrated values in Table 9.
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