
Disagreement in Optimal Security Design

Juan Ortner and Martin C. Schmalz⇤

December 20, 2015

Abstract

Which security does a firm optimally issue when it is more optimistic than its fi-

nanciers about the characteristics of the asset? In our basic model, either debt or debt

plus barrier options are optimal. When multiple assets with identical characteristics are

available, pooling can be strictly preferred to selling optimal securities backed by the in-

dividual assets. When investors disagree amongst themselves, selling multiple tranches

can be optimal. In a stylized dynamic extension, convertible securities commonly used

in VC financing naturally emerge.
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1 Introduction

Which security does a firm optimally issue when firm and market agree to disagree about

the firm’s cash-flow distribution? We consider an issuer who has more optimistic views about

the firm’s future profits than the market does, consistent with empirical evidence (e.g., Mal-

mendier et al., 2007, 2011).1 We show that such disagreement can generate various commonly

observed financial contracts.

We study a model in which an issuer owns an asset that will pay uncertain cash-flows

at a future date. To raise capital, the issuer designs a security backed by this asset, with

the objective to sell the security to the market. Following DeMarzo and Du�e (1999), we

assume the issuer discounts future cash-flows more than the market does. Such di↵erences in

discounting arise naturally when the issuer has profitable investment opportunities, or when

the issuer faces credit constraints. Our key assumption is that the issuer is more optimistic

about the asset’s cash-flow distribution than her financiers, who find bad outcomes relatively

more likely. The issuer’s problem is to design the monotonic security that maximizes her

expected payo↵s, which are given by the market price of the security (based on the market’s

less optimistic beliefs) plus the expected discounted retained cash-flows (evaluated with her

own more optimistic beliefs).

Our analysis delivers four main results. First, we characterize conditions under which debt

or debt plus barrier options, respectively, are optimal. Second, we show that selling a security

backed by a pool of several underlying assets can be strictly preferred to selling individual

asset-backed securities. Third, when market participants disagree among themselves, selling

separate tranches instead of a single security can be optimal. Fourth, in a model with multiple

1Kreps (1990) and Morris (1995) argue that economic theory lacks a fundamental rationale for the
ubiquitous common prior assumption. Disagreement generally arises when agents have heterogeneous priors,
even when they have access to the same information (Aumann, 1976; Acemoglu et al., 2006); it can also
arise when agents are ambiguity averse and use a max-min decision rule (Gilboa and Schmeidler, 1989). Of
course, managerial optimism can be time-varying (Shleifer et al., 2015), as can be the market’s expectations
(Greenwood and Shleifer, 2014), implying time-variation in the optimal security design.

2



financing rounds, the optimal security is convertible preferred stock, a security commonly

used in venture capital (VC) financing.

The intuition for the optimality of debt is straightforward. Because the issuer is more

optimistic than the market, she finds it optimal to sell cash-flows in the left tail of the cash-

flow distribution. By contrast, it is optimal for the issuer to retain the cash-flows in the

right tail, since the market assigns a relatively low value to them. Under some conditions,

the security that implements the desired trade is debt; under others, it is optimal to add a

barrier option to the debt contract.2 This result may help explain why a large fraction of

corporate bonds are callable (Du↵ee, 1998),3 and also rationalizes “write-o↵ bonds” (Vallée,

2013). When pre-existing debt encumbers the balance sheet, debt overhang obtains – that

is, the firm optimally stops selling securities. This prediction contrasts with that of some

asymmetric information theories, in which over-levered firms issue equity (e.g., Fulghieri et

al., 2013). Moreover, in the traditional “pecking order” model (Myers and Majluf, 1984),

only the worst firms issue equity. The fact that firms issue equity when stock prices and

sentiment are high (e.g., Marsh, 1982; Baker and Wurgler, 2002; Erel et al., 2011; McLean

and Zhao, 2014; Farre-Mensa, 2015) is inconsistent with that prediction. By contrast, firms

in our model only sell the firm when investors are more confident – consistent with the above

evidence – and when agreement between issuer and market is high – documented empirically

by Dittmar and Thakor (2007).

The pooling result is more intricate. With heterogenous beliefs, pooling several assets

allows the issuer to design securities that are better tailored to the relatively pessimistic

beliefs of investors. Intuitively, while outside investors might be very pessimistic (relative to

the issuer) about the probability of an individual asset delivering high profits, they may not

2Excessive betting between contracting parties such as discussed in Börgers (2014) does not arise in our
context as we study the design of an asset-backed security under limited liability. In contrast to Caballero
and Farhi (2014), we allow the market to be complete.

3Indeed, the combination of debt plus a barrier option can be interpreted as callable debt.
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be as pessimistic about the event that at least one of several assets pays o↵ a high return.

As a result, an issuer who owns multiple assets may find it strictly optimal to combine them

and sell a “senior” security backed by the pool of assets. The following example illustrates

this result.

Example 1. Consider first an issuer who owns a single asset, which can either pay a return

of 1 or a return of 0. The market believes that the probability of the asset paying o↵ is 1
3 ; the

issuer is believes in an upside probability of 2
3 . The issuer discounts future cash-flows with a

factor of 0.6, whereas the market does not discount. The market is therefore willing to pay

1
3 for the asset, whereas the asset is worth 2

3 · 0.6 = 0.4 to the issuer. Because 0.4 > 1
3 , the

issuer retains the asset.

Consider now an issuer who owns two of these assets with iid returns. The issuer’s payo↵

from retaining the two assets is 0.8, which is strictly larger than her payo↵ from selling

two individual securities, each backed by an asset. Suppose instead that the issuer sells a

“senior” security backed by the pool of assets that pays 1 if at least one asset pays o↵ and

zero otherwise. Because the market believes the probability that both assets don’t pay o↵

is
�

2
3

�2
, investors are willing to pay 1 �

�

2
3

�2
= 5

9 for the security. At the same time, the

security is worth
⇣

1�
�

1
3

�2
⌘

· 0.6 = 8
15 < 5

9 to the issuer. Because the issuer retains a cash-

flow of 1 in the event that both assets pay o↵, her expected payo↵ from selling this security

is 5
9 +

�

2
3

�2
0.6 ⇡ 0.822 > 0.8.

In our model, di↵erences in beliefs between the issuer and the market – and not changes in

the level of risk as reflected in the literature (e.g., Coval et al., 2009) – are crucial for pooling

to be strictly optimal. Indeed, because the issuer discounts future cash-flows more than the

market, with homogenous beliefs it is always optimal for the issuer to sell the entire cash-

flows of the assets that she owns. As a result, when issuer and market share the same beliefs,
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the issuer is indi↵erent between pooling her assets or selling them as separate concerns.4

We then extend our analysis to allow for multiple types of investors, who have di↵erent

beliefs about the asset’s cash-flow distribution. We show that, with divergence of beliefs

among investors, it can be optimal to o↵er to the market separate tranches instead of a

single security. This can include retention of the most junior tranche by the issuer.

Finally, in a stylized extension with multiple financing rounds, securities with a conversion

feature become optimal. Such securities are used in most VC financing contracts (see, e.g.,

Gompers and Lerner, 2001; Kaplan and Strömberg, 2003, 2004). As before, we assume that

the issuer (here: the entrepreneur) is more confident about the project’s prospects than

the lender (here: the VC).5 Because the entrepreneur assigns a relatively low probability to

states in which performance is bad, she finds it relatively cheap to rescind cash-flows to the

VC in such states, who values these states more highly. At the time of initial contracting,

the entrepreneur also secures an option for a future financing round that enables her to

expand the project conditional on good interim performance.6 Because the VC finds good

performance relatively unlikely, she finds it cheap to write that option to the entrepreneur,

who is more optimistic. Conditional on refinancing, the VC obtains an equity stake, allowing

her to break even.7

The paper proceeds as follows. Section 2 discusses the related literature. Section 3 in-

4We also show that the pooling result breaks down when the correlation between the underlying assets
increases, as was the case in the recent financial crisis. This feature is consistent with the dynamics of
securitization reported, e.g., in Coval et al. (2009); Chernenko et al. (2013).

5See Bernardo and Welch (2001); Cooper et al. (1988); Koellinger et al. (2007); Puri and Robinson (2007)
for supportive evidence.

6Our predictions do not rely on assuming that the strike of the refinancing option is determined with
certainty at the time of initial contracting. Indeed, the fact that disagreement is reduced by learning about
project quality over time is one of the key reasons for using convertible securities in early-stage financing,
rather than securities that require a precise agreed-upon valuation of the project at the time of contracting.

7Importantly, the key assumption that makes the financier secure part of the upside is that the project’s
required investment and the upside potential are high – in other words, when the payo↵ profile is highly
skewed. Indeed, in practice many less risky entrepreneurial ventures are financed with straight (bank) debt,
whereas VC financing with convertibles obtains only for projects with relatively high investment needs and
high potential payo↵s (Cochrane, 2005).
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troduces the basic model and derives the optimality of debt. Sections 4 and 5 present the

results on pooling and tranching. In section 6, convertibles naturally arise in a setting with

multiple financing rounds.

2 Related Literature

While this paper is the first to formally investigate the role of disagreement in optimal

security design, informal mentions of the idea go back at least to Modigliani and Miller

(1958). These authors write (excerpts from p. 292): “Grounds for preferring one type of

financial structure to another still exist within the framework of our model. If the owners

of a firm discovered a major investment opportunity which they felt would yield much more

than [the market’s discount rate], they might well prefer not to finance it via common stock.

A better course would be to finance the project initially with debt. Still another possibility

might be to [issue] a convertible debenture.”

The model we o↵er is “non-informational” because we do not assume asymmetric infor-

mation between firm and investors; instead, the two parties knowingly disagree. In contrast

to Brunnermeier et al. (forthcoming); Simsek (2013b,a), the disagreement is not between

di↵erent sets of traders, but between the issuer and the market. A similarity of our basic

setting to Simsek’s is that optimists borrow from pessimists. However, the contract used is

endogenous in our setting.

Several previous papers invoke optimistic issuers or other non-standard beliefs to explain

financing and capital structure choices (Heaton, 2002; Coval and Thakor, 2005; Dittmar and

Thakor, 2007; Hackbarth, 2008; Landier and Thesmar, 2009; Boot and Thakor, 2011; Gervais

et al., 2011; Bayar et al., 2011; Adam et al., 2014; Bayar et al., forthcoming) as well as asset

prices (Geanakoplos, 2010). However, these papers do not study optimal security design in

the sense of Allen and Gale (1988) because the state space and/or contracting space is more
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constrained.8 An exception is Garmaise (2001), who shows that tranching can be optimal in

a model in which there is disagreement among investors and in which the prices of securities

are determined through a first price auction. By contrast to Shleifer et al. (2015), who study

the influence of managerial beliefs on investment, we take the asset – i.e., the investment

project – as given, and study how insiders’ versus outsiders’ beliefs a↵ect how the asset is

optimally financed.

Because there is open disagreement in our model rather than asymmetric information be-

tween issuer and market, our contribution is sharply distinguished from contributions that

rationalize particular security designs, including the predominance of debt, with adverse se-

lection or an informational advantage of insiders over the market (Myers and Majluf, 1984;

Innes, 1990; Nachman and Noe, 1994), from papers that point out the fragility of the same

“pecking order” result to the choice of specific o↵-equilibrium beliefs (Noe, 1988), to who has

the private information (Inderst and Mueller, 2006; Axelson, 2007), and to particular distri-

butional assumptions (e.g., Nachman and Noe, 1990, 1994; Fulghieri et al., 2013). Similarly,

the pooling results in DeMarzo (2005) rely on asymmetric information whereas ours don’t;

hence, our result is robust to the critique that informational asymmetries oftentimes are not

overcome by pooling (Arora et al., 2013).9 Our theory also makes no use of moral hazard as

a driver of the optimal security as in Admati and Pfleiderer (1994); Bergemann and Hege

(1998); Schmidt (2003); Antic (2014); Hébert (2014). Lastly, investors in our model do not

su↵er from limited channel capacity, which can also render debt optimal (Yang, 2013).

In sum, previous papers have investigated the e↵ect of disagreement on several financial

decisions including the choice of leverage; others have investigated the e↵ect of informational

and other frictions on optimal security design. Our paper contributes to this literature by

8Disagreement is related to outcome variables other than capital structure by Boot et al. (2006, 2008),
Adrian and Westerfield (2009), and Dicks and Fulghieri (2015). The observation that the optimal securities
can be sold also to employees relates our paper to Hellman and Puri (2000), Oyer and Schaefer (2005), and
Bergman and Jenter (2007).

9The pooling results are loosely related to mergers and divestitures, e.g., Fluck and Lynch (1999).
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providing a full and formal analysis of the e↵ect of disagreement on optimal security design.

The insight that disagreement can generate rich predictions that previous models generated

with other frictions is important, because di↵erent empirical proxies capture these di↵erent

frictions. The paper hence contributes a starting point for a more nuanced empirical investi-

gation of precisely which securities firms issue, and why. Moreover, our comparatively simple

model of disagreement can generate a variety of securities for which the literature thus far

as employed separate models.

3 Basic Model

3.1 Payo↵s, Beliefs, and Objectives

The model that we study is as follows. At date t = 0, there is an issuer who owns an asset

which will yield state-contingent payo↵s X 2 RK
+ at date t = 1. That is, there is a finite set

of possible states of nature S = {1, .., K}, and the issuer’s asset pays an amount Xs 2 R+

at state s 2 S. We assume that Xs > 0 for all s 2 S (i.e., even in the worst state the asset

generates strictly positive cash-flows) and that there exists at least one pair of states s, s0 2 S

such that Xs > Xs0 (i.e., the asset is risky). Without loss of generality, we order the states

in a way such that X1  X2  ...  XK .

The issuer’s problem is to design a security F 2 RK
+ backed by the cash-flows X in

order to sell it in the market. Thus, security F must be such that 0  Fs  Xs for all

s 2 S. Let ⇡I be the probability distribution over S that represents the issuer’s beliefs. We

assume that ⇡I
s > 0 for all s 2 S. After selling the security, the issuer retains X � F of

the cash-flows generated by the asset. Following DeMarzo and Du�e (1999) we assume that

the issuer discounts retained cash-flows at a rate that is higher than the market rate (which

is normalized to 1).10 Thus, the issuer attaches a value of �
P

s2S ⇡
I
s (Xs � Fs) to retained

10The assumption that the issuer discounts future cash-flows at a higher rate than the market is a
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cash-flows, where � < 1 is the issuer’s discount rate. The payo↵ of an issuer who sells to the

market a security F at a price p is then given by

p+ �
X

s2S

⇡I
s (Xs � Fs) .

The new feature of our analysis is the way in which the market evaluates the security

that the issuer designs. We assume that the market has di↵erent beliefs about the cash-flow

distribution of the underlying asset than the issuer. Let ⇡M be the probability distribution

over S that describes the market’s beliefs, with ⇡M
s > 0 for all s 2 S. For most of our results,

we assume that ⇡I first-order stochastically dominates ⇡M (i.e., for all s 2 S,
P

s0s ⇡
I
s0 

P

s0s ⇡
M
s0 ), so that the issuer is more optimistic about the asset’s return than the market.11

The price that the market is willing to pay for security F is

p(F ) :=
X

s2S

⇡M
s Fs.

Overall, the issuer’s payo↵ from selling security F is

U(F ) := p(F ) + �
X

s2S

⇡I
s (Xs � Fs) .

Definition 1. We say that security F is monotonic if Fs and Xs � Fs are both increasing

in s.

metaphor for example for a situation in which the issuer has some profitable investment opportunity. Also,
the assumption will hold if the issuer faces credit constraints or, as in the case of financial entities, minimum-
capital requirements.

11There is an alternative interpretation for the di↵erences in beliefs in our model: if we interpret ⇡I and
⇡M as risk-neutral probabilities, then ⇡I and ⇡M will be di↵erent whenever issuer and market have di↵erent
preferences, even if they share the same beliefs over S. If issuer and market are expected utility maximizers
and share the same beliefs over S, then the issuer’s risk-neutral probabilities ⇡I will first-order stochastically
dominate the market’s risk-neutral probabilities ⇡M only under the assumption that the issuer is less risk-
averse than the market. Because the standard assumption is that the risk-bearing capacity of the market is
larger than that of the issuer, we find the heterogeneous-beliefs interpretation more adequate.
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We will assume that the issuer is restricted to sell monotonic securities. The restriction to

monotone securities is standard in the literature of optimal security design; see, for instance,

Innes (1990); DeMarzo and Du�e (1999). In Appendix B we show how our results change

when we relax this restriction.

Let F be the set of feasible securities

F :=
�

F 2 RK : 0  Fs  Xs8s 2 S and F monotonic
 

.

The issuer’s problem is to find the security F within the set of feasible securities F that

maximizes her payo↵, taking as given the market’s beliefs (that diverge from the issuer’s),

and thus recognizing how much the market will pay for the security. Formally, the issuer’s

problem is

sup
F2F

U (F ) . (1)

3.2 Optimal Security Design with Divergent Beliefs

In this section we present the solution to problem (1). We start with two preliminary results.

All proofs are in Appendix A.

Lemma 1. If F solves the issuer’s problem (1), then there exists s 2 S such that Fs = Xs.

Lemma 1 says that an optimal security must pay all available cash-flows at least at

one state. The intuition behind this result is as follows. Regardless of how pessimistic the

market’s beliefs ⇡M are, the market will always value additional risk-free cash-flows at their

face value. Since the issuer discounts retained cash-flows at a higher rate than the market

does (i.e. since � < 1), it is strictly optimal to add these risk-free cash-flows to a security. As

a result, a security F such that Fs < Xs can never be optimal.12

12Note that our model has a “variable capital raised” property – it is endogenous how much capital will
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Our next result shows that the optimal security pays all of the asset’s cash-flows at states

at which cash-flows are below some given cuto↵. For any s 2 S, let As := {s, s+ 1, ..., K}

be the event that the asset yields cash-flows weakly larger than Xs. For all s 2 S, let

⇡I(As) :=
P

s0�s ⇡
I
s0 and ⇡M(As) :=

P

s0�s ⇡
M
s0 be, respectively, the probability that the issuer

and market assign to event As. The assumption that ⇡I first-order stochastically dominates

⇡M implies that ⇡I(As) � ⇡M(As) for all s 2 S.

Lemma 2. Suppose there exists a state k 2 S such that ⇡M(As) > �⇡I(As) for all s  k.

Then, if F solves (1), Fs = Xs for all s  k.

To see the intuition for Lemma 2, consider a state s  k (so that ⇡M(As) > �⇡I(As)),

and let F ✏ be a security with F ✏
s0 = ✏1{s0:s0�s} for all s0 2 S; i.e., F ✏ pays ✏ > 0 if the state is

weakly larger than s and pays zero otherwise. Since ⇡M(As) > �⇡I(As), the market values

security F ✏ strictly more than the issuer does. As a result, any security F 2 F with Fs < Xs

is strictly dominated by security F̃ 2 F with F̃s0 = Fs0 + F ✏
s0 for all s

0 2 S.

Since ⇡M(A1) = ⇡I(A1) = 1, there is always a state k 2 S such that ⇡M(As) > �⇡I(As)

for all s  k. This, together with Lemma 2, implies the following remark.

Remark 1. There exists k 2 {1, 2, ..., K} such that the optimal security has Fs = Xs for all

s  k.

Remark 1 states that the optimal security must always be a combination of debt plus

(possibly) another security which only pays at states s > k. The face value of the debt

included in the optimal security depends on the degree of belief heterogeneity between the

issuer and the market.

The following result builds on Lemmas 1 and 2 to characterize the optimal security.

Proposition 1. An optimal security is given by:

be raised. This feature is in contrast to other models in the literature that operate under the assumption
that a fixed amount of capital needs to be raised for investment.
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(i) F1 = X1;

(ii) For all s 2 S\1:

Fs =

8

>

>

<

>

>

:

Xs �Xs�1 + Fs�1 if ⇡M(As) � �⇡I(As),

Fs�1 if ⇡M(As) < �⇡I(As).

Proposition 1 characterizes the optimal security when issuer and market have di↵erent

opinions about the underlying asset’s performance. The key value that determines the shape

of the optimal security at each state s is the ratio between ⇡M(As) and ⇡I(As); i.e., the

ratio of the probability that the market and issuer assign to profits being larger than Xs. If

⇡M (As)
⇡I(As)

� �, the optimal security F pays the largest possible amount in state s; if ⇡M (As)
⇡I(As)

< �,

the optimal security pays the least possible amount (in both cases, subject to the constraint

that F is monotonic).

The following corollaries immediately follow.

Corollary 1. If ⇡M(As) � �⇡I(As) for all s 2 S, then it is optimal to sell the entire firm;

i.e., Fs = Xs for all s 2 S.

Corollary 2. If ⇡M(As) < �⇡I(As) for all s > 1, then risk-less debt is an optimal security;

i.e., Fs = X1 for all s 2 S.

Corollary 3. Suppose there exists k 2 S\{1, K} such that ⇡M(As) � �⇡I(As) if and only if

s  k. Then, risky debt with face value Xk is an optimal security; i.e., Fs = min {Xs, Xk}

for all s 2 S.

Corollaries 1, 2 and 3 show that the optimal security can take the form of a debt contract.

The face value of the debt contract ranges from the lowest state, which makes risk-less debt
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the optimal security, to risky debt with face value Xk 2 (X1, XK), to risky debt that always

defaults (because the face value is equal to the highest possible cash-flow), which can be

interpreted as an equity issuance.

In sum, our model predicts that firms issue debt when there is much disagreement between

optimistic issuers and less optimistic markets, whereas the entrepreneur sells the whole firm

when the market is less pessimistic. This prediction is in stark contrast to several theories of

security design based on asymmetric information. Most prominently, the traditional “pecking

order” hypothesis holds that firms issue equity only as a “last resort” (e.g., Myers, 1984) –

hence, only the worst firms that have run out of other options issue equity. The empirical

evidence is arguably more consistent with the disagreement prediction that the relative

optimism of investors versus firms drives issuance decisions: Farre-Mensa (2015) analyses

firms that are hit with negative cash-flow shocks and thus face a need to issue securities (a

decrease in � in our model), and shows that firms whose stock is overvalued issue equity,

whereas undervalued firms issue debt. Similar in spirit, Erel et al. (2011) and McLean and

Zhao (2014) find that equity issuance is cyclical and higher amid positive investor sentiment,

whereas firms turn to issuing safer securities during market downturns.

Optimality of debt

Corollary 3 establishes conditions under which the optimal security is debt. These conditions

are satisfied under natural assumptions on the beliefs of the issuer and market. Indeed,

suppose that ⇡I and ⇡M are such that ⇡I
s

⇡M
s

is increasing in s; i.e., ⇡I
s

⇡M
s

satisfy the Monotone

Likelihood Ratio Property (MLRP). Note that ⇡I
s

⇡M
s

increasing in s implies that ⇡M (As)
⇡I(As)

is

decreasing in s. In this case, if � 2
⇣

⇡M (AK)
⇡I(AK) ,

⇡M (A2)
⇡I(A2)

i

, the optimal security F is such that Fs =

min {Xs, Xk} for some k 2 S\{1, K}. The following corollary summarizes this discussion.

Corollary 4. If ⇡I
s

⇡M
s

satisfy MLRP and � 2
⇣

⇡M (AK)
⇡I(AK) ,

⇡M (A2)
⇡I(A2)

i

, there exists k 2 S\{1, K} such
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that the optimal security is debt with face value Xk.

Debt plus barrier options

The following corollary to Proposition 1 shows that securities other than straight debt can

also be optimal.

Corollary 5. Suppose that there exists k, k0 2 S, with k+1 < k0
, such that ⇡M(As) � �⇡I(As)

if and only if either s  k or s = k0
. Then, the optimal security is

Fs =

8

>

>

<

>

>

:

min {Xs, Xk} if s < k0,

Xk0 �Xk0�1 +Xk if s � k0.

The security in Corollary 5 can be thought of as a combination of debt with face value Xk

plus a barrier option that pays Xk0 �Xk0�1 in the event that the asset yields a payo↵ weakly

larger than Xk0 .13 Such a security can be interpreted as a write-o↵ bond: the face value, and

thus the payo↵, of such contracts is discontinuously higher when cash-flows exceed a certain

threshold (Vallée, 2013).14

In appendix B, for completeness we relax the standard assumption (which can be micro-

founded with hidden managerial actions) that the security to be issued must be monotonic.

The analysis shows that the function of the assumption is similar to the one it serves in the

existing literature (Innes, 1990).

13In their model with asymmetric information, Nachman and Noe (1994) also show that securities similar
to the one in Corollary 5 can be optimal.

14The security in Corollary 5 can also be interpreted as callable debt.
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3.3 Debt Overhang

We now extend our baseline setting to consider the problem of an issuer who has debt out-

standing that is backed by the cash-flows that her asset will generate, and who is considering

to issue a new security backed by the remaining cash-flows. Formally, suppose the issuer has

debt outstanding with face value D < XK . The issuer wants to design a security F 2 RK
+

to sell to the market, with F backed by the remaining cash-flows she owns; i.e., F such

that 0  Fs  Xs � min{Xs, D} for all s 2 S. As before, we restrict the issuer to design

securities such that both the cash-flows that she pays and the cash-flows that she retains

are monotone in the underlying asset’s cash-flows; that is, securities F such that Fs and

Xs � Fs �min{Xs, D} are increasing in s. Let FD denote the set of feasible securities; i.e.,

FD := {F 2 RK : 0  Fs  Xs �min{Xs, D}8s 2 S and Fs and Xs � Fs �min{Xs, D} are

increasing in s}.

The issuer’s problem is

sup
F2FD

UD(F ), (2)

where for any F 2 FD,

UD(F ) := p(F )+�
X

s2S

⇡I
s(Xs�min{Xs, D}�Fs) =

X

s2S

⇡M
s Fs+�

X

s2S

⇡I
s(Xs�min{Xs, D}�Fs).

Let sD = max{s 2 S : Xs  D}, and note that any security F 2 FD must be such that

Fs = 0 for all s  sD. The next proposition shows that the issuer may cease to issue any

security when she has pre-existing debt outstanding.

Proposition 2. Suppose the issuer already has debt outstanding with face value D. Then,

if ⇡M(As) < �⇡I(As) for all s > sD, the solution to (2) is Fs = 0 for all s 2 S.

This result shows the consistency of our approach with the well-known debt overhang
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problem. Notably, our firm stops the issuance of all securities when it becomes over-levered.

While the result in This prediction contrasts with that of informational theories of security

design, in which the firm may start to issue equity instead of debt when it has preexisting

debt (see Fulghieri et al., 2013 for an excellent discussion). These opposing predictions can

in principle be used to test apart these two theories (i.e., disagreement vs. asymmetric

information). The empirical evidence in Erel et al. (2011) indicates that low market sentiment

can indeed lead firms to not access credit markets.

4 Pooling

This section shows how an issuer who has more optimistic beliefs than the market can

strictly benefit from pooling di↵erent assets and designing a security backed by the cash-

flows generated by the pool of assets. By exploring a new mechanism that can lead to pooling,

this result speaks to a key question in security design that has become a central item of the

policy discussion in the aftermath of the financial crisis. We begin by illustrating this result

by means of a simple example.

4.1 A Simple Example

Suppose that there are two possible states, S = {1, 2}. Let 0 < X1 < X2 be the cash-flows

that the issuer’s asset generates under each of the states, and let ⇡I 2 (0, 1) and ⇡M 2 (0, 1)

be, respectively, the probability the issuer and market assigns to state 1. As above, we assume

that the issuer is more optimistic than the market, so ⇡I < ⇡M .

Consider first the problem of designing a security backed by the asset described above.

By Lemma 1 and the restriction to monotonic securities, an optimal security F has F1 = X1

and F2 � F1 = X1. The market price of security F is p(F ) = ⇡MX1 + (1� ⇡M)F2, and the
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issuer’s payo↵ from selling this security is

p(F ) + �(1� ⇡I)(X2 � F2) = X1 + (1� ⇡M � �(1� ⇡I))(F2 �X1) + �(1� ⇡I)(X2 �X1).

The optimal security has F2 = X1 if ⇡M > 1� �(1� ⇡I) and F2 = X2 if ⇡M < 1� �(1� ⇡I).

Consider next the case in which the issuer has two identical assets, X1 and X2, with

cash-flows that are independently and identically distributed. Each of the assets can produce

cash-flows in {X1, X2}. As before, the issuer (market) believes that asset X i yields cash-flow

X1 with probability ⇡I (⇡M). Assume that ⇡M > 1� �(1� ⇡I), so that the optimal security

backed by asset X i has Fs = X1 for s = 1, 2. The issuer’s profits from selling the securities

separately are

2p(F ) + 2�(1� ⇡I)(X2 � F2) = 2X1 + 2�(1� ⇡I)(X2 �X1). (3)

Suppose instead that the issuer pools the two assets and sells a single security backed by

the cash-flows generated by the pool. Let Y = X1 + X2, and consider a security FY =

min{Y,X1+X2}; i.e. FY is debt with face value equal to X1+X2. The price that the market

is willing to pay for security FY is p(FY ) = (⇡M)22X1 + (1 � (⇡M)2)(X1 + X2), and the

issuer’s payo↵ from selling this security is

p(FY ) + �(1� ⇡I)2(2X2 �X2 �X1) = 2X1 + (1� (⇡M)2 + �(1� ⇡I)2)(X2 �X1) (4)

Comparing equations (3) and (4), the issuer strictly prefers to pool the assets and sell security

FY if ⇡M <
p

1� �(1� (⇡I)2). Therefore, for ⇡M 2
⇣

1� �(1� ⇡I),
p

1� �(1� (⇡I)2)
⌘

,

pooling is strictly optimal for the issuer.15 This simple example suggests that changes in

belief divergence between issuers and the market may relate to the time-series variation in

15Note that
p

1� �(1� ⇡2) > 1� �(1� ⇡) for all ⇡ 2 (0, 1).
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the issuance of asset-backed securities (Chernenko et al., 2013).

4.2 General Framework

We now present a general result. Consider an issuer who owns two assets, X1 and X2, with

iid returns. Let S = {1, ..., K} and let {Xs}s2S be the possible cash-flow realizations of asset

X i. Without loss of generality we assume that X1  X2  ...  XK .

Let ⇡I and ⇡M be two probability distributions over S, with ⇡I and ⇡M representing,

respectively, the beliefs of issuer and market. The issuer is more optimistic than the market,

and we model this by assuming that ⇡I first-oder stochastically dominates ⇡M . As before,

we assume that the issuer discounts future profits at rate � < 1, whereas the market dis-

counts future profits at rate 1. The following definition generalizes Definition 1 to the current

environment:

Definition 2. We say that security F backed by asset Y = X1 +X2 is X1X2
-monotonic if:

(i) for all s0 2 S, Fs,s0 and Xs +Xs0 � Fs,s0 are increasing in s, and

(ii) for all s 2 S, Fs,s0 and Xs +Xs0 � Fs,s0 are increasing in s0.

Let FY be the set of feasible securities:

FY :=
n

F 2 R|Ŝ| : 0  Fs,s0  Xs +Xs08(s, s0) 2 Ŝ and F is X1X2-monotonic
o

.

The price that the market is willing to pay for security F 2 FY is

pY (F ) :=
X

s2S

X

s02S

⇡M
s ⇡M

s0 Fs,s0 . (5)
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The issuer’s payo↵ from selling security F 2 FY is

UY (F ) := pY (F ) + �
X

s2S

X

s02S

⇡I
s⇡

I
s0 (Xs +Xs0 � Fs,s0) .

The optimal pooled security solves

sup
F2FY

UY (F ). (6)

Let F ⇤ 2 F be the optimal security backed by a single asset X i. The issuer’s payo↵

from selling two individual securities, each backed by one asset, is 2U(F ⇤). The following

result provides su�cient conditions under which supF2FY
UY (F ) > 2U(F ⇤); i.e., under which

pooling the securities is strictly optimal.

Proposition 3. Assume that:

(i) there exists k 2 S\{K} such that ⇡M(As) � �⇡I(As) if and only if s  k, and

(ii)

⇡M (Ak+1)
�⇡I(Ak+1)

> 2�⇡I(Ak+1)
2�⇡M (Ak+1)

.

Then, supF2FY
UY (F ) > 2U(F ⇤).

Proposition 3 generalizes the example of section 4.1 to the current setting. As in the

example, pooling the assets allows the issuer to design securities that are better tailored to

the relatively pessimistic beliefs of investors. In turn, this makes the issuer strictly better o↵

than selling the two securities as separate concerns.

We stress that the restrictions in Definition 2 do not necessarily imply that security

F 2 FY will be monotonic in Y = X1 + X2; that is, F (Y ) and Y � F (Y ) need not be

increasing in Y . To restric attention to securities that are monotonic in Y , let S̃ = {1, ..., k2}

be a relabeling of the set of states in Ŝ = S ⇥ S such that Ys̃+1 � Ys̃ for all s̃ 2 S̃. Let ⇡̃I

and ⇡̃M be, respectively, the issuer’s and market’s beliefs over S̃ (which are derived from
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⇡I and ⇡M). Since ⇡I first-oder stochastically dominates ⇡M , it follows that ⇡̃I first-order

stochastically dominates ⇡̃M . With this notation, security F backed by asset Y is monotonic

in Y if Fs̃ and Ys̃ � Fs̃ are both increasing in s̃. Let

F⇤
Y :=

n

F 2 R|S̃| : 0  Fs  Ys8s 2 S̃ and F is monotonic
o

.

When restricted to issue securities in F⇤
Y , the issuer’s problem is

sup
F2F⇤

Y

UY (F ). (7)

Note that the solution to (7) is characterized by Proposition 1 (using beliefs ⇡̃I and ⇡̃M in-

stead of ⇡I and ⇡M). With the solution to (7) in hand, one can easily check if supF2F⇤
Y
UY (F ) >

2U(F ⇤).16

We conclude the discussion of pooling by pointing out the limitations of our results.

Specifically, the underlying assets’ returns need not be iid, but the results depend on the

correlations not being too high. In Appendix C, we generalize the simple example presented

above for non-zero correlations and characterize the set of parameters for which pooling is

optimal. The fact that pooling ceases to be optimal when correlations between the underlying

assets increase too much is consistent with the time-series variation in the issuance of asset-

backed securities (Chernenko et al., 2013).

5 Tranching

This section extends our basic framework in section 3 to allow for heterogeneity of beliefs

among investors. We show that, in this setting, it may be optimal for the issuer to sell

16Note that the example in Section 4.1 already shows that supF2F⇤
Y
UY (F ) > 2U(F ⇤), since the pooled

security in that example is monotonic in Y .
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multiple tranches to the market.

As in section 3, we consider an issuer who owns an asset which will yield state-contingent

payo↵s at date t = 1. Let {Xs}s2S be the possible cash-flow realizations of the asset, where

S = {1, ..., K} is the set of possible states of nature. Let ⇡I be a probability distribution over

S representing the issuer’s beliefs about the possible state realizations. The issuer discounts

future cash-flows at rate � < 1, while market participants discount them at rate 1.

There are two types of investors in the market, ⌧ = t1, t2. The two types of investors

di↵er in their beliefs about the cash-flow distribution of the asset that the issuer owns. Let

⇡⌧ be a probability distribution over S representing the beliefs of investors of type ⌧ . We

assume that the issuer is more optimistic than both types of investors: for ⌧ = t1, t2, ⇡I

first-order stochastically dominates ⇡⌧ . To keep the analysis simple, we further assume that

for ⌧ = t1, t2, there exists s⌧ 2 S\{1, K} with st1 6= st2 such that ⇡⌧ (As) � �⇡I(As) if and

only if s  s⌧ . Without further loss of generality, assume that st1 < st2 .

For any security F 2 F , the price that investors of type ⌧ are willing to pay is p⌧ (F ) :=
P

s ⇡
⌧
sFs. The profits that the issuer gets from selling security F to investors of group ⌧ are

U ⌧ (F ) := p⌧ (F ) + �
X

s

⇡I
s(Xs � Fs).

For ⌧ = t1, t2, let F ⌧ be the security that solves supF2F U ⌧ (F ). By Proposition 1 and our

assumptions on beliefs, F ⌧ has F ⌧
s = min {Xs, Xs⌧} for all s 2 S. Note that if the issuer

designs a single security F 2 F to sell to the market, the largest payo↵ she can obtain is

max{U t1(F t1), U t2(F t2)}.

Consider next an issuer who designs two di↵erent securities, F 1 and F 2, both of them

backed by the cash-flows generated by asset Xs; i.e., with 0  F 1
s + F 2

s  Xs for all s 2 S.

Definition 3. We say that securities F 1 and F 2 are jointly monotonic if F 1
s and F 2

s are

increasing in s and if Xs � F 1
s � F 2

s is increasing in s.
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Let FT be the set of feasible securities

FT :=
�

F 1, F 2 2 RK
+ : 0  F 1

s + F 2
s  Xs8s 2 S and F 1 and F 2 are jointly monotonic

 

.

For any F 1, F 2 2 FT , let

UT (F 1, F 2) := max{pt1(F 1), pt2(F 1)}+max{pt1(F 2), pt2(F 2)}+ �
X

s

⇡I
s(Xs � F 1

s � F 2
2 ),

be the payo↵ that the issuer obtains from selling this pair of securities to the market. The

issuer’s problem is

sup
(F 1,F 2)2FT

UT (F 1, F 2). (8)

Our goal is to identify su�cient conditions on the investors’ beliefs under which o↵ering two

tranches is strictly better than selling one security; i.e., under which sup(F 1,F 2)2FT UT (F 1, F 2) >

max{U t1(F t1), U t2(F t2)}.

Assumption 1. There exists ŝ 2 S with ŝ+ 1  st1 such that

P

ss0 ⇡
t1
s <

P

ss0 ⇡
t2
s for all

s0  ŝ and

P

ss0 ⇡
t1
s �

P

ss0 ⇡
t2
s for s0 � ŝ+ 1, with strict inequality for s0 6= K.

Assumption 1 states that the c.d.f’s ⇧⌧
s :=

P

ss0 ⇡
⌧
s of the two types of investors cross at

exactly one point. When the two types of investors assign the same value to the underlying

asset (i.e., when
P

s ⇡
t1
s Xs =

P

s ⇡
t2
s Xs), Assumption 1 implies that ⇡t1 second-order stochas-

tically dominates ⇡t2 ; i.e., type t2 investors perceive the asset to be more risky than type t1

investors. Note that Assumption 1 implies that ⇡t1(As) > ⇡t2(As) for all s  ŝ+1, s 6= 1 and

⇡t1(As) < ⇡t2(As) for all s > ŝ+ 1.

Proposition 4. Under Assumption 1, sup(F 1,F 2)2F UT (F 1, F 2) > max{U t1(F t1), U t2(F t2)}.

Proposition 4 establishes that tranching can be optimal when an issuer faces di↵erent

types of investors, with di↵erent beliefs about the cash-flow distribution of the issuer’s asset.
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We prove Proposition 4 by showing that, when Assumption 1 holds, selling an individual

security is strictly dominated by selling securities (F 1, F 2) 2 FT , with F 1
s = min{Xs,Xŝ+1}

(i.e., F 1 is debt with face value Xŝ+1) and

F 2
s =

8

>

>

>

>

<

>

>

>

>

:

0 if s  ŝ+ 1,

Xs �Xŝ+1 if s 2 (ŝ+ 1, st2 ],

Xst2
�Xŝ+1 if s > st2 .

Security F 1, which can be thought of as a senior tranche, is bought by investors of type

t1. Security F 2, which can be thought of as a junior tranche which only pays o↵ when the

asset’s returns are larger than Xŝ+1, is bought by investors of type t2. Finally, the issuer only

retains cash-flows Xs �Xst2
at states s > st2 .

6 Convertibles

This section provides a simple dynamic extension of the disagreement framework. The styl-

ized version of the model presented here introduces the possibility of financing a project in

multiple stages and contracts between the issuer (here called an entrepreneur) and investor

(the bank or venture capitalist) that can depend on interim performance. We show that

convertible securities that are used in venture capital financing naturally arise under the

assumption that the issuer and investor’s beliefs di↵er; a key assumption is that the invest-

ment project requires a relatively large investment and has high upside potential – i.e., a

highly skewed payo↵ profile. To be able to most clearly illustrate the role of belief di↵er-

ences, we abstract away from some more intricate features of VC contracts and the frictions

that generate them, including the role of moral hazard, adverse selection, taxes, control and

monitoring rights, etc..

The setup is as follows. The entrepreneur is endowed with an investment opportunity,
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which requires an initial investment I0 at time t = 0, and o↵ers in period t = 2 a risky payo↵.

There are two states of nature, {H,L} (high or low). In the interim period, t = 1, a public

and contractible signal is observed, which we specify below. In response to the signal, there

are two options for the project:

• the project can be left as is, in which case the returns of the investment at state

s 2 {H,L} are Xs, with XH > XL > 0;

• the project can be expanded by way of an interim investment I1 > 0, in which case

the returns of the investment at state s 2 {H,L} are K ⇥Xs, where K > 1.

Let ⇡E 2 (0, 1) and ⇡V C 2 (0, 1) be, respectively, the entrepreneur’s and the venture capi-

talist’s initial beliefs that the realized state at t = 2 will be H. We assume that ⇡E > ⇡V C ,

so the entrepreneur is more optimistic about the project’s outcome than the VC.

The interim signal at time t = 1, �, can take either of two values: � 2 {h, l}. We assume

that signals � = h, l are informative about the state of nature: the entrepreneur and the VC

believe that

P (� = h|s = H) = P (� = l|s = L) = ↵ >
1

2
.

For � 2 {h, l} and for i = E, V C, let ⇡i(�) denote the probability that i assigns to the state

being H after observing signal �:

⇡i(l) =
(1� ↵)⇡i

(1� ↵)⇡i + ↵(1� ⇡i)
< ⇡i ⇡i(h) =

↵⇡i

↵⇡i + (1� ↵)(1� ⇡i)
> ⇡i.

The contract, in exchange for which the entrepreneur receives funding from a competitive

VC sector, specifies two things:

24



(i) an expansion decision 1(�) 2 {0, 1} to be made at t = 1 as a function of the signal �;

1(�) = 1 denotes expanding the firm and 1(�) = 0 denotes not expanding the firm;

and

(ii) repayments z = (zL(�), zH(�)) from the entrepreneur to the VC to be made at t = 2:

for s 2 {H,L} and � 2 {h, l}, zs(�)⇥ (1 + (K � 1)1(�)) is the repayment at state s if

signal � was observed at the interim stage (with zs(�) 2 [0, Xs]).

To show how convertible securities can be optimal under belief heterogeneity, we make

the following parametric assumptions:

Assumption 2. (i) the VC believes that the project is profitable enough to invest I1 at

t = 1 only after observing signal � = h:

(K � 1)
�

⇡V C(h)XH + (1� ⇡V C(h))XL

�

> I1 > K
�

⇡V C(l)XH + (1� ⇡V C(l))XL

�

.

(ii) the VC believes that the project is profitable but risky:

⇡V CXH + (1� ⇡V C)XL > I0 > XL.

The entrepreneur’s expected payo↵ from contract (z,1) is

UE (z,1) :=
⇥

(1� ↵)⇡E(XH � zH(l)) + ↵(1� ⇡E)(XL � zL(l))
⇤

(1 + 1(l)(K � 1))

+
⇥

↵⇡E(XH � zH(h)) + (1� ↵)(1� ⇡E)(XL � zL(h))
⇤

(1 + 1(h)(K � 1)).(9)
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The VC’s payo↵ from this contract is

UV C (z,1) :=
⇥

(1� ↵)⇡V CzH(l) + ↵(1� ⇡V C)zL(l)
⇤

(1 + 1(l)(K � 1))

+
⇥

↵⇡V CzH(h) + (1� ↵)(1� ⇡V C)zL(h)
⇤

(1 + 1(h)(K � 1)) (10)

�⇢l1(l)I1 � ⇢h1(h)I1 � I0,

where ⇢l and ⇢h denote, respectively, the probability that the VC assigns to the signal taking

values l and h, respectively, i.e., ⇢l = (1�↵)⇡V C +↵(1�⇡V C) and ⇢h = ↵⇡V C +(1�↵)(1�

⇡V C).

The problem of the entrepreneur is

max
(z,1)

UE (z,1) s.t. (11)

UV C (z,1) � 0, (BE)

K
�

⇡V C(�)zH(�) + (1� ⇡V C(�))zL(�)
�

� I1 if 1(�) = 1. (EC)

Constraint (BE) is the VC’s break-even condition. Constraint (EC) requires that, if the VC

expands the project at t = 1, her expected return should cover the investment cost.

Proposition 5. If Assumption 2 holds, the solution to (11) is such that:

(i) the project is expanded if and only if � = h; i.e., 1(l) = 0 and 1(h) = 1;

(ii) for � 2 {l, h}, zL(�) = XL;

(iii) zH(l) and zH(h) are such that (BE) holds with equality.

Proposition 5 characterizes the main properties of the solution to (11). Part (i) follows

immediately from Assumption 2. Part (ii) follows from the fact that the entrepreneur is
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relatively more optimistic than the VC, and so the cheapest way to satisfy the VC’s break-

even condition is to repay the entire cash-flows at the low state. (This feature is reminiscent

of the results in the optimality of debt in section 3.2.)

Proposition 5 does not pin down what the exact payments at state H are.17 However,

under further parametric conditions, convertible preferred stock is an optimal contract:

⇢HKXL + ⇢lXL < I0 + ⇢hI1 < K
⇥

(1� ↵)⇡V CXH + ↵(1� ⇡V C)XL

⇤

+ ⇢lXL. (12)

The first inequality in equation (12) states that the VC does not break even under a

contract that specifies repayments zs(�) = XL for s 2 {L,H} and � 2 {l, h}. The second

inequality in equation (12), on the other hand, states that the VC makes a strict profit under

a contract that specifies repayments zH(l) = zL(l) = zL(h) = XL and zH(h) = XH .

Corollary 6. Suppose that Assumption 2 and (12) hold. Then, the following contract solves

(11):

(i) the project is expanded if and only if � = h; i.e., 1(l) = 0 and 1(h) = 1;

(ii) zL(�) = XL for � 2 {l, h}.

(iii) zH(l) = XL and zH(h) 2 (XL, XH) such that (BE) holds with equality.

The optimal contract in Corollary 6 can be implemented by convertible security that

promises min{R,K ⇥XL} (where R is the return of the project) to the VC, and gives the

VC the following options: (i) after observing interim performance, choose whether or not to

invest in expanding the project; and (ii) if the project is expanded, choose whether or not

17Indeed, given the linearity of the entrepreneur and the VC’s payo↵s, there is a continuum of optimal
contracts. Increasing zH(l) by � allows the entrepreneur to reduce zH(h) by 1�↵

↵
1
K� (so that the break

even constraint is still satisfied with equality). This change in the contract leaves the entrepreneur indi↵erent
since ��⇡E(1� ↵) + 1�↵

↵
1
K�↵⇡EK = 0.
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to convert the original security into a fraction zH(h) of equity after observing the realized

profits.

This example illustrates that our disagreement-based theory of security design can explain

the emergence of convertible contracts between entrepreneurs and financiers in a natural way:

the entrepreneur’s relative optimism that the project will go well is the driving force not only

behind the entrepreneur’s venture itself, but also behind the financing vehicle that helps her

realize the project. Aside from its simplicity, an attractive feature of the model presented here

is that highly skewed projects (those with high investment needs and high potential payo↵s

when everything goes well) receive financing with convertible securities as typically used in

VC; optimistic entrepreneurs with less ambitious projects can also finance their ventures

with straight debt.

Lastly, while we emphasize the role of disagreement, of course, other frictions including

moral hazard, asymmetric information, and taxes are also important in the context of financ-

ing young firms and can explain other more intricate features of VC contracts from which

our model abstracts away. Indeed, previous work on VC financing has highlighted how these

frictions shape the types of contracts that a VC will optimally o↵er to an entreprenuer. For

instance, Schmidt (2003) shows how convertibles can be an optimal way of inducing both the

entreprenuer and the VC to put costly e↵ort into the project. Bergemann and Hege (1998)

show that convertible securities can be optimal in a dynamic environment with moral hazard

in which both the entreprenuer and the VC need to learn about the feasibility of the project.

Finally, convertible securities can be an optimal way of allocating control rights when these

rights cannot be separated from cash-flow rights (i.e., Marx (1998)). Our theory complements

these studies by highlighting a new force that makes convertibles optimal. Moreover, unlike

theories based on control-rights, convertible securities are optimal in our theory even when

control rights can be separated from cash-flow rights, which is typically the case in real world

VC financing (i.e., Kaplan and Strömberg (2003)).
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7 Conclusion

This paper o↵ers a theory of optimal security design based on the premise that the issuer

is more optimistic about the asset’s return than the market. In particular, disagreement

about the right tail of the cash-flow distribution determines which security will be issued.

As information about the tails, by definition, is scarce, and therefore agreement about the

precise tail characteristics is generally unlikely, we think of the theory as widely applicable.

The most frequently issued security – debt – indeed arises as an optimal security in our

model. Risk-free debt and equity arise as special cases – the former when there is more

disagreement about the right tail, and the latter when the market is more confident about

the likelihood of right-tail outcomes and hence there is less disagreement. A mild variation

in distributional assumptions generates call provisions that are common features of debt

contracts in the real world. Moreover, we find that when the balance sheet is encumbered

with pre-existing debt, debt overhang occurs and the firm ceases to issue any security. We

also show that issuing securities backed by a pool of assets (instead of issuing one security

per asset) can be optimal. When there is disagreement among investors, the issuer optimally

sells di↵erent tranches to the market. Finally, in a stylized setting with multiple financing

rounds, convertible securities similar those observed in typical venture capital contracts are

optimal.

In sum, we find that disagreement between issuer and market helps explain a variety of

real-world security designs that have thus far required multiple distinct models and frictions

as explanations. For tractability, our model abstracts away from frictions that are known

to be important for security design, such as moral hazard, adverse selection, taxes, etc.

Combining disagreement with these frictions may help researchers explain other intricate

features of real-world financial contracts.
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A Proofs

Proof of Lemma 1

Proof. Suppose F solves (1), but Fs < Xs8s 2 S. Thus, there exists � > 0 such that

Fs + �  Xs8s 2 S. Let F 0 denote the security with F 0
s = Fs + �8s 2 S. Note that, if F is

monotonic, then so is F 0. If the issuer sells security F 0 instead of F her total payo↵ is given

by

U (F 0) =
X

s2S

⇡M
s F 0

s + �
X

s2S

⇡I
s (Xs � F 0

s)

=
X

s2S

⇡M
s Fs + �+ �

X

s2S

⇡I
s (Xs � Fs)� ��

= U (F ) + � (1� �) > U (F ) .

Hence, F cannot be optimal.

Proof of Lemma 2

Proof. Suppose that ⇡M(As) > �⇡I(As) for all s  k and let F be an optimal security.

Towards a contradiction, suppose that Fs < Xs for some s  k. Let j = min{s  k : Fs <

Xs} and let ✏ > 0 be such that Fj + ✏ = Xj. Let F 0 be a security with F 0
s = Fs = Xs for all

s < j and F 0
s = Fs + ✏ for all s � j. Since F is a monotonic security, it follows that F 0

s  Xs

for all s and that F 0 is also monotonic; i.e., F 0 2 F . Note that

U(F 0) =
X

s2S

⇡M
s F 0

s + �
X

s2S

⇡I
s(Xs � F 0

s)

=
X

s2S

⇡M
s Fs + �

X

s2S

⇡I
s(Xs � Fs) +

�

⇡M(Aj)� �⇡I(Aj)
�

✏

= U(F ) +
�

⇡M(Aj)� �⇡I(Aj)
�

✏ > U(F ),
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where the last inequality follows since ⇡M(As) > �⇡⇤(As) for all s  k and since ✏ > 0. This

contradicts the assumption that F is an optimal security. Hence, it must be that Fs = Xs

for all s  k.

Proof of Proposition 1

Proof. The proof is by induction on s. Let F be an optimal security. Note first that, from

Lemma 2 and Remark 1, there exists k 2 S such that ⇡M(As) > �⇡I(As) and Fs = Xs for

all s  k. Let k⇤ 2 S be the largest such k, and note that the statement in the proposition

is true for all s  k⇤.

Suppose next that the statement in the proposition is true for all s  s0 for some s0 � k⇤.

We now show that the statement is also true for s = s0 +1. There are two cases to consider:

(i) ⇡M(As0+1) � �⇡I(As0+1), and (ii) ⇡M(As0+1) < �⇡I(As0+1). Consider first case (i). Since F

is monotonic, it must be that Fs0+1 2 [Fs0 , Fs0 +Xs0+1 �Xs0 ]. Suppose by contradiction that

Fs0+1 < Fs0 +Xs0+1 �Xs0 and define ✏ := Fs0 +Xs0+1 �Xs0 � Fs0+1 > 0. Let F̃ be a security

such that F̃s = Fs for all s  s0 and F̃s = Fs + ✏ for all s � s0 + 1. Since F is monotonic, it

follows that F̃ 2 F . Note that

U(F̃ ) =
X

s2S

⇡M
s F̃s + �

X

s2S

⇡I
s(Xs � F̃s),

=
X

s2S

⇡M
s Fs + �

X

s2S

⇡I
s(Xs � Fs) +

�

⇡M(As0+1)� �⇡I(As0+1)
�

✏

� U(F ),

where we used ⇡M(As0+1) � �⇡I(As0+1). Since F was assumed to be optimal, security F̃ with

F̃s0+1 = F̃s0 +Xs0+1 �Xs0 is also optimal.18

18Note that U(F̃ ) > U(F ) whenever ⇡M (As0+1) > �⇡I(As0+1); i.e., in this case security F is not optimal.
When ⇡M (As0+1) = �⇡I(As0+1), securities F and F̃ give the issuer the same payo↵.
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Consider next case (ii), and suppose that Fs0+1 > Fs0 . Let F̂ be a security such that

F̂s = Fs for all s  s0 and F̂s = Fs � (Fs0+1 � Fs0) for all s � s0 + 1. Since F is monotonic,

F̂ 2 F . Moreover,

U(F̂ ) =
X

s2S

⇡M
s F̂s + �

X

s2S

⇡I
s(Xs � F̂s),

=
X

s2S

⇡M
s Fs + �

X

s2S

⇡I
s(Xs � Fs)�

�

⇡M(As0+1)� �⇡I(As0+1)
�

(Fs0+1 � Fs0)

> U(F ),

where we used ⇡M(As0+1) < �⇡I(As0+1) and Fs0+1 > Fs0 . This contradicts F being an optimal

security. Therefore, if F is optimal it must be that Fs0+1 = Fs0 .

Proof of Proposition 2

Proof. Towards a contradiction, suppose that the security F 2 FD that solves (2) has Fs > 0

for some s > sD. Let s0 = min{s 2 S : Fs > 0}. Let ✏ 2 (0, Fs0), and let F 0 be the security

with F 0
s = Fs = 0 for all s < s0 and F 0

s = Fs � ✏ for all s � s0. Note that, since F 2 FD, it

must be that F 0 2 FD. Note further that

UD(F
0) =

X

s2S

⇡M
s F 0

s + �
X

s2S

⇡I
s(Xs �min{Xs, D}� F 0

s)

=
X

s2S

⇡M
s Fs � ⇡M(As0)✏+ �

X

s2S

⇡I
s(Xs �min{Xs, D}� Fs) + �⇡I(As0)✏

= UD(F ) + ✏(�⇡I(As0)� ⇡M(As0)) > UD(F ),

where the strict inequality follows since �⇡I(As0) > ⇡M(As0) for all s > sD and since ✏ > 0.

Hence, F cannot be an optimal security.
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Proof of Proposition 3

Proof. By Corollary 3, under assumption (i) the optimal security backed by a single asset

X i is F ⇤ = min{Xs, Xk}. Note that selling two individual securities F ⇤, each backed by one

of the assets, is the same as selling security F̃ 2 FY such that

F̃s,s0 =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Xs +Xs0 if s, s0  k,

Xk +Xs0 if s > k, s0  k,

Xs +Xk if s  k, s0 > k,

2Xk if s > k, s0 > k.

Consider security the following alternative security F 2 FY

Fs,s0 =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Xs +Xs0 if s, s0  k,

Xk+1 +Xs0 if s > k, s0  k,

Xs +Xk+1 if s  k, s0 > k,

Xk +Xk+1 if s > k, s0 > k.

Note that, for any beliefs ⇡ over S,

X

s

X

s0

⇡s⇡s0(Fs,s0 � F̃s,s0) =
k
X

s=1

⇡s

 

K
X

s0=k+1

⇡s0(Xk+1 �Xk)

!

+
K
X

s=k+1

⇡s

K
X

s0=1

⇡s0(Xk+1 �Xk)

= (2� ⇡(Ak+1))⇡(Ak+1)(Xk+1 �Xk). (13)
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Note then that

UY (F )� 2U(F ⇤) = UY (F )� UY (F̃ )

= pY (F )� pY (F̃ ) + �
X

s

X

s0

⇡I
s⇡

I
s0(F̃s,s0 � Fs,s0)

=
X

s

X

s0

⇡M
s ⇡M

s0 (Fs,s � F̃s,s0) + �
X

s

X

s0

⇡I
s⇡

I
s0(F̃s,s0 � Fs,s0)

=
�

(2� ⇡M(Ak+1))⇡
M(Ak+1)� �(2� ⇡I(Ak+1))⇡

I(Ak+1)
�

(Xk+1 �Xk) > 0,

where we used equation (13) and condition (ii) in the statement of the Proposition.

Proof of Proposition 4

Proof. Suppose the issuer sells two assets, F 1 and F 2, with F 1
s = min{Xs, Xŝ+1} and

F 2
s =

8

>

>

>

>

<

>

>

>

>

:

0 if s  ŝ+ 1,

Xs �Xŝ+1 if s 2 (ŝ+ 1, st2 ],

Xst2
�Xŝ+1 if s > st2 .

Note that (F1, F2) 2 FT .
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Note that for any security F with Fs increasing in s and for any beliefs ⇡ over S,

X

s

⇡sFs = ⇡1F1 +
X

s�2

⇡s(Fs � F1 + F1)

= F1 +
X

s�2

⇡s(Fs � F1 � F2 + F2)

= F1 + ⇡(A2) (F2 � F1) +
X

s�3

⇡s(Fs � F2 + F3 � F3)

...

= F1 +
X

s�2

⇡(As)(Fs � Fs�1) (14)

By equation (14), for ⌧ = t1, t2,

p⌧ (F 1) =
X

s

⇡⌧
sF

1
s = X1 +

X

s2[2,ŝ+1]

⇡⌧ (As)(Xs �Xs�1),

Assumption 1 implies that pt1(F 1) > pt2(F 1); i.e., t1-investors are willing to pay more for

security F 1 than t2-investors. Similarly, using again equation (14), for ⌧ = t1, t2,

p⌧ (F 2) =
X

s

⇡⌧
sF

2
s =

X

s2[ŝ+2,st2 ]

⇡⌧ (As)(Xs �Xs�1).

Assumption 1 implies that pt2(F 2) > pt1(F 2); i.e., t2-investors are willing to pay more for

security F 2 than t1-investors. Therefore,

UT (F1, F2) =pt1(F 1) + pt2(F 2) + �
X

s

⇡I
s(Xs � F 1

s � F 2
s )

=X1 +
X

s2[2,ŝ+1]

⇡t1(As)(Xs �Xs�1) +
X

s2[ŝ+2,st2 ]

⇡t2(As)(Xs �Xs�1)

+ �
X

s2[st2+1,K]

⇡I(As)(Xs �Xs�1), (15)
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where the second equality in (15) follows since, by equation (14),
P

s ⇡
I
s(Xs � F 1

s � F 2
s ) =

P

s2[st2+1,K] ⇡
I(As)(Xs �Xs�1).

On the other hand, the issuer’s highest payo↵ from selling a single security is max{U t1(F t1), U t2(F t2)}.

Since F ⌧
s = min{Xs, Xs⌧},

U ⌧ (F ⌧ ) =p⌧ (F ⌧ ) + �
X

s>s⌧

⇡I
s(Xs �Xs⌧ )

=X1 +
X

s2[2,s⌧ ]

⇡⌧ (As)(Xs �Xs�1) + �
X

s2[s⌧+1,K]

⇡I(As)(Xs �Xs�1). (16)

Using (15) and (16):

UT (F1, F2)� U t1(F t1) =
X

s2[ŝ+2,st2 ]

⇡t2(As)(Xs �Xs�1) + �
X

s2[st2+1,K]

⇡I(As)(Xs �Xs�1)

�
X

s2[ŝ+2,st1 ]

⇡t1(As)(Xs �Xs�1)� �
X

s2[st1+1,K]

⇡I(As)(Xs �Xs�1)

=
X

s2[ŝ+2,st1 ]

(⇡t2(As)� ⇡t1(As))(Xs �Xs�1)

+
X

s2[st1+1,st2 ]

(⇡t2(As)� �⇡I(As))(Xs �Xs�1) > 0,

where the inequality follows since ⇡t2(As) > ⇡t1(As) for all s 2 [ŝ+ 2, st1 ] (Assumption (1))

and since ⇡t2(As) � �⇡I(As) for all s  st2 . Similarly,

UT (F1, F2)� U t2(F t2) =
X

s2[2,ŝ+1]

(⇡t1(As)� ⇡t2(A2))(Xs �Xs�1) > 0,

where the strict inequality follows since ⇡t2(As) < ⇡t1(As) for all s 2 [2, ŝ] (Assumption (1)).

Therefore, UT (F1, F2) > max{U t1(F t1), U t2(F t2)}.
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Proofs of Proposition 5 and Corollary 6

Lemma 3. Let (z,1) be a solution to (11). If zH(�) > 0 for � 2 {l, h}, then it must be that

zL(�) = XL.

Proof. Suppose by contradiction that zH(�) > 0 and zL(�) < XL for � 2 {l, h}. Suppose

first that � = h, and consider a contract (z̃,1) such that z̃s(l) = zs(l) for s = H,L, z̃L(h) =

zL(h) + ✏ and z̃H(h) = zL(h) � 1�↵
↵

1�⇡V C

⇡V C ✏, with ✏ > 0. Note that contract (z̃,1) gives the

VC the same expected payo↵ as contract (z,1). Note further that

UE (z̃,1)� UE (z,1) = (1 + 1(h)(K � 1))

✓

↵⇡E 1� ↵

↵

1� ⇡V C

⇡V C
✏� (1� ↵)(1� ⇡E)✏

◆

= (1 + 1(h)(K � 1))
(1� ↵)✏

⇡V C

�

⇡E(1� ⇡V C)� ⇡V C(1� ⇡E)
�

> 0,

where we used ⇡E > ⇡V C . This contradicts the assumption that (z,1) is optimal.

Suppose next that � = l. Consider a contract (z̃,1) such that z̃s(h) = zs(h) for s = H,L,

z̃L(l) = zL(l) + ✏ and z̃H(l) = zL(l)� ↵
1�↵

1�⇡V C

⇡V C ✏, with ✏ > 0. Note that contract (z̃,1) gives

the VC the same expected payo↵ as contract (z,1), and

UE (z̃,1)� UE (z,1) = (1 + 1(l)(K � 1))

✓

(1� ↵)⇡E ↵

1� ↵

1� ⇡V C

⇡V C
✏� ↵(1� ⇡E)✏

◆

= (1 + 1(l)(K � 1))
↵✏

⇡V C

�

⇡E(1� ⇡V C)� ⇡V C(1� ⇡E)
�

> 0.

Again this contradicts the assumption that (z,1) is optimal.

Lemma 4. Let (z,1) be a solution to (11). Under Assumption 2, zL(�) = XL for � 2 {l, h}.

Proof. Let (z,1) be a solution to (11). The conditions in Assumption 2 imply that, in order

for the VC to break even, it must be that zH(h) > 0 and/or zH(l) > 0. If both of these

quantities are strictly positive, then the result follows from Lemma 3.
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Suppose next that zH(h) = 0 and zH(l) > 0. By Lemma 3, zL(l) = XL. Towards a

contradiction, suppose zL(h) < XL. Let (ẑ,1) be an alternative contract with ẑL(�) = zL(�)

for � = h, l, ẑH(l) = zH(l) � ✏ and ẑH(l) = zH(h) +
1�↵
↵

1+1(l)(K�1)
1+1(h)(K�1)✏, with ✏ > 0. Contract

(ẑ,1) gives entrepreneur and VC the same expected payo↵ as contract (z,1), so its also an

optimal contract. But this contradicts Lemma 3, since ẑL(h) = zL(h) < XL and ẑH(h) > 0.

Hence, if (z,1) is an optimal contract with zH(h) = 0 and zH(l) > 0, it must that zL(�) = XL

for � 2 {l, h}.

Finally, consider the case with zH(h) > 0 and zH(l) = 0. By Lemma 3, zL(h) = XL.

Towards a contradiction, suppose zL(l) < XL. Let (ẑ,1) be an alternative contract with

ẑL(�) = zL(�) for � = h, l, ẑH(l) = zH(l) + ✏ and ẑH(l) = zH(h) � 1�↵
↵

1+1(l)(K�1)
1+1(h)(K�1)✏. Again,

contract (ẑ,1) gives entrepreneur and VC the same expected payo↵ as contract (z,1), so

its also an optimal contract. But this contradicts Lemma 3, since ẑL(l) = zL(l) < XL and

ẑH(l) > 0. Hence, if (z,1) is an optimal contract with zH(h) > 0 and zH(l) = 0, it must that

zL(�) = XL for � 2 {l, h}.

Proof of Proposition 5. Part (ii) follows from Lemma 4.

We now prove part (i). Note first that, under Assumption 2, any optimal contract (z,1)

must be such that 1(l) = 0: indeed, under the condition (i) in Assumption 2, there are no

feasible repayments z that satisfy constraint (EC) for � = l when 1(l) = 1.

We now show that, under an optimal contract, 1(h) = 1. Suppose that there exists an

optimal contract (z,1) with 1(h) = 0. Let (z̃, 1̃) be an alternative contract with 1̃(h) = 1,

1̃(l) = 1(l) = 0, z̃L(�) = zL(�) = XL, z̃H(l) = zH(l) and

z̃H(h) =
⇢hI1 + ↵⇡V CzH(h) + (1� ↵)(1� ⇡V C)zL(h)

K↵⇡V C
� 1� ↵

↵

1� ⇡V C

⇡V C
zL(h)

=
⇢hI1 + ↵⇡V CzH(h) + (1� ↵)(1� ⇡V C)XL

K↵⇡V C
� 1� ↵

↵

1� ⇡V C

⇡V C
XL,
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where the second equality follows since, under any optimal contract, zL(h) = XL. Note that

the VC’s expected payo↵ under contract (z̃, 1̃) is the same as her expected payo↵ under

contract (z,1). Note further that

UE(z̃, 1̃)� UE(z,1) = K↵⇡E(XH � z̃H(h))� ↵⇡E(XH � zH(h))

= ↵⇡E



(K � 1)XH + (K � 1)
1� ↵

↵

1� ⇡V C

⇡V C
XL � ⇢hI1

↵⇡V C

�

=
⇡E

⇡V C

⇥

(K � 1)↵⇡V CXH + (1� ↵)(1� ⇡V C)XL � ⇢hI1
⇤

> 0.

Hence, if (z,1) is an optimal contract it must have 1(h) = 1. This establishes part (i).

Finally, part (iii) follows since any optimal contract (z,1) must be such that UV C(z,1) =

0. Further, we note that if there exists an optimal contract (z,1) such that UV C(z,1) = 0

and such that (EC) is satisfied with slack, then there exists a continuum of optimal contracts.

Indeed, increasing zH(l) by ✏ allows the entrepreneur to reduce zH(h) by
1�↵
↵

1
K
✏ while still

satisfying the VC’s break even condition. This change in the contract leaves the entrepreneur

indi↵erent since �✏⇡E(1� ↵) + 1�↵
↵

1
K
✏↵⇡EK = 0.

Proof of Corollary 6. Parts (i) and (ii) follow from Proposition (5). Finally, when the first

inequality in (12) holds, the VC must get strictly more than XL at state s = H when � = l

and/or � = h (otherwise the VC does not break even). When the second inequality in (12)

holds, there exists z 2 (XL, XH) such that

I0 + ⇢hI1 = K
⇥

(1� ↵)⇡V Cz + ↵(1� ⇡V C)XL

⇤

+ ⇢lXL. (17)

By equation (17), the VC breaks even under a contract (z,1) with 1(h) = 1, 1(l) = 0,

zL(l) = zL(h) = zH(l) = XL and zH(h) = z. Finally, since I0 > ⇢LXL (by Assumption (2)),
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equation (17) implies that

K
⇥

(1� ↵)⇡V Cz + ↵(1� ⇡V C)XL

⇤

> ⇢HI1,

so that (EC) holds. Hence, by Proposition (5), contract (z,1) is optimal.

B Generalization to Non-monotonic Securities

Throughout section 3.2, we restricted the issuer to sell securities that are monotonic. For

completeness, we now briefly describe how our results are modified if we drop this restriction.

Let

Fu :=
�

F 2 RK : 0  Fs  Xs

 

be the unrestricted set of securities backed by asset X . Without the restriction to monotonic

securities, the issuer’s payo↵ is

sup
F2Fu

U(F ). (18)

The following result characterizes the optimal security when we relax the restriction to

monotonic securities.

Proposition 6. The solution to (18) is

Fs =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Xs if ⇡M
s > �⇡I

s ,

a 2 [0, Xs] if ⇡M
s = �⇡I

s ,

0 if ⇡M
s < �⇡I

s .

Proof. For any s 2 S, the payo↵ that the issuer gets from selling cash-flows Fs 2 [0, Xs]
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at state s is ⇡M
s Fs, while the payo↵ she gets from retaining those cash-flows is �⇡I

sFs. It is

optimal for the issuer to set Fs = Xs if ⇡M
s > �⇡I

s , and to set Fs = 0 if ⇡M
s < �⇡I

s . Finally,

the issuer is indi↵erent between setting Fs = a 2 [0, Xs] if ⇡M
s = �⇡I

s .

To gain intuition about the shape of the security that solves (18), suppose ⇡I
s

⇡M
s

is increasing

in s and let k = max
n

s : ⇡M
s
⇡I
s
� �
o

. Then, by Proposition 6, the security that solves (18) is

such that

Fs =

8

>

>

<

>

>

:

Xs if s  k

0 if s > k.

Hence, the restriction to monotonic securities imposed previously serves the same purpose

as in the existing literature: indeed, without this restriction, the same security obtains as in

a standard asymmetric information or moral hazard framework, see, e.g., Innes (1990). Also,

the security is the same as the one Simsek (2013a) obtains in a setting with disagreement

among investors.

C Generalization of the Simple Pooling Example

This appendix extends the example of section 4.1 to allow for non-zero correlation between

the assets to be securitized.

As in section 4.1, suppose the issuer owns two assets, X1 and X2, each of which can

generate a return in {X1, X2} (with X1 < X2). In contrast to section 4.1, suppose that the

returns of assets X1 and X2 are correlated. Let sk 2 Ŝ = {11, 12, 21, 22} denote the event

that asset 1’s return is Xs and asset 2’s return is Xk. The beliefs of the issuer and market over

the set of possible return realizations are, respectively, ⇡̂I and ⇡̂M . For j = I,M , ⇡̂j
sk denotes

the probability that j assigns to the event sk. We assume that the assets are symmetric, so

that ⇡̂j
12 = ⇡̂j

21 for j = I,M . The iid case of section 4.1 is the special case with ⇡̂j
sk = ⇡j

s⇡
j
k
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for j = I,M and for all sk 2 Ŝ. The case in which the issuer and market believe the two

assets to be positively and perfectly correlated has ⇡̂j
12 = ⇡̂j

21 = 0 for j = I,M .

Suppose first that the issuer sells two individual securities, each backed by an asset. By

Lemma 1 and the restriction to monotonic securities, an optimal security F has F1 = X1

and F2 � F1. The price that the market is willing to pay for security F is p(F ) = X1(⇡̂M
11 +

⇡̂M
12 ) + F2(⇡̂M

21 + ⇡̂M
22 ); the issuer’s payo↵ from selling this security is

p(F )+ �(X2�F2)(⇡̂
M
21 + ⇡̂M

22 ) = X1(⇡̂
M
11 + ⇡̂M

12 )+F2(⇡̂
M
21 + ⇡̂M

22 )+ �(X2�F2)(⇡̂
I
21+ ⇡̂I

22). (19)

The issuer finds it optimal to set F2 = X1 if �(⇡̂I
21 + ⇡̂I

22) > ⇡̂M
21 + ⇡̂M

22 and F2 = X2 if

�(⇡̂I
21 + ⇡̂I

22)  ⇡̂M
21 + ⇡̂M

22 ; that is, the issuer finds it optimal to set F2 = X1 whenever the

market assigns a su�ciently low probability to the event that an individual asset has high

returns. In what follows we maintain the assumption that �(⇡̂I
21 + ⇡̂I

22) > ⇡̂M
21 + ⇡̂M

22 , so that

an issuer who sells individual securities F 1 and F 2, each backed respectively by asset X1

and X2, finds it optimal to set F 1
s = F 2

s = X1 for s = 1, 2.

Suppose next that the issuer pools the two assets and sells a single security backed by

cash-flows Y = X1 + X2. Consider a security FY = min{Y,X1 + X2}. The price that the

market is willing to pay for security FY is p(FY ) = ⇡̂M
112X1 + (1 � ⇡̂M

11 )(X1 + X2), and the

issuer’s payo↵ from selling this security is

p(FY ) + �⇡̂I
22(X2 �X1) = ⇡̂M

112X1 + (1� ⇡̂M
11 )(X1 +X2) + �⇡̂I

22(X2 �X1). (20)

Comparing (19) and (20), the issuer strictly prefers selling security FY backed by the pool

of assets than selling the two individual securities F 1
s = F 2

s = X1 for s = 1, 2 if and only if

2⇡̂M
21+⇡̂M

22 = 1�⇡̂M
11 > �(1�⇡I

11) = �(2⇡̂I
21+⇡̂I

22). Combining this with �(⇡̂I
21+⇡̂I

22) > ⇡̂M
21+⇡̂M

22 ,
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the issuer strictly prefers to pool the assets and sell security FY if

⇡̂M
11 2

�

1� �(⇡̂I
21 + ⇡̂I

22)� ⇡̂M
21 , 1� �(2⇡̂I

21 + ⇡̂I
22)
�

. (21)

The condition in (21) is identical to the condition in section 4.1 when the two assets are

iid. If the issuer and the market both perceive the asset to be perfectly correlated (so that

⇡̂j
21 = 0 for j = 1, 2), the condition in (21) can never be satisfied, and hence pooling does

not obtain.19

19We can also consider the case in which the issuer believes that the two assets are perfectly correlated,
but the market believes that the correlation is less than perfect (i.e., ⇡̂I

21 = 0 < ⇡̂M
21 ). In this case, condition

(21) becomes ⇡̂M
11 2

�

1� �⇡̂I
22 � ⇡̂M

21 , 1� �⇡̂I
22

�

.
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