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Abstract

We study a collaboration model in continuous time, with a positive arrival rate of a

success in both the good and the bad state. If the project is bad, players may privately

learn about it. At any time, players can choose whether to exit and secure the positive

payo� of an outside option, or to stay with the project and exert costly e�ort. A player's

e�ort not only increases the probability of success, but also serves as an investment in

private learning.

We identify an equilibrium with three phases. In all phases, uninformed players exert

positive e�ort. Players who become informed and learn that the project is bad never

exert e�ort. Because players bene�t from the e�ort of the others, informed players may

not exit immediately. In the �rst, �no-exit� phase, informed players do not exit. In the

subsequent, �gradual-exit� phase, they exit with a �nite rate. In the �nal, �immediate-

exit� phase, informed players exit immediately. We �nd that e�ort levels may increase

in the no-exit phase. Surprisingly, increasing the payo� of the outside option encourages

collaboration.
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1 Introduction

A wide range of team projects, from co-authorship to large-scale global corporate projects,

exhibits the feature that team members have only very limited understanding of how hard

it will be to complete the project. A priori the probability of a success is uncertain and

collaborators may learn it over time. By working on the project, team members not only

increase the probability of a success but also become more familiar with the project. They

may privately learn about a challenge inherent in the project and hence �nd out that it has

a low likelihood of success. How should an informed player use this information? Should he

leave the partnership and opt for his outside option, or should he remain with the project and

use the information to free-ride on his partner's e�ort? How does this a�ect the motivation

of an uninformed team member to exert e�ort?

The situation described here is a problem that researchers commonly face in joint projects,

entrepreneurs face when collecting funds to secure the survival of their joint venture, and

companies face in product development or in the implementation of new software. For ex-

ample, when implementing new software like SAP or Oracle, IT-consultants team up with

experts in the company in order to adjust the software to the company's needs. At the

beginning of such a large-scale project, there is uncertainty about its success rate. Through-

out the course of the project, team members may learn about the challenges. For example,

they may �nd out about compatibility issues or �white space risk��some required activities

that were not identi�ed in advance. Privately observing such a bad signal reveals to them

that the project has a low success rate. Still, even though keeping workers engaged in a

project is costly, there are numerous examples of project managers holding on to projects

even though various signs point to likely failure. Similarly, at the start of a research project,

there is uncertainty about its success rate. By working on the project, co-authors increase

the probability that a success will arrive, but may also discover, for example, tractability

issues. This would reveal that the success rate of the project is low. An informed co-author

now has the option to quit the project�thereby revealing his information�or to stay with

the project and shirk. Some �xed costs are associated with staying with the project, such as

e-mail correspondence and revising the paper.

In this paper, we are interested in understanding this kind of team problems. Speci�cally,

we analyze the implications that arise from the new feature that players may privately learn

about the state and can choose whether to disclose this information by exiting or not.

We consider a two-person team problem in which players can exert costly e�ort in order

to increase the probability of a success. A success arrives according to a Poisson process and

rewards both team members with a lump-sum payo�. The success rate depends on the sum
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of e�ort exerted by the players, and on the state of the project, which can be good or bad.

The model has the following features: (i) If players exert e�ort, then in both states, there

is a positive probability of success. Hence, a success is nonconclusive. The arrival rate of

success is higher in the good state than in the bad state. (ii) If the state is bad, players who

exert e�ort may observe a private, fully-revealing signal (a bad-state-revealing signal). Such

a signal is conclusive but private. (iii) Players have a positive outside option and can exit.

Exits are public and irreversible.

Notice that e�orts serve a dual purpose. On the one hand, they are a contribution to

the joint task and increase the probability of a success. On the other hand, they are an

investment in private learning. Exerting e�ort increases the probability of observing a private

signal, which opens up the option to free-ride. Speci�cally, a player who learns that the state

is bad has two options: He can stop exerting e�ort but remain with the project, hoping that

the other player' e�ort will result in a success. Alternatively, he can choose to exit and secure

the positive payo� from the outside option.

Consider an informed player who has learned that the state is bad. Assume that for

him it is not pro�table anymore to actively engage in the project and to exert costly e�ort.

Still, it is not obvious that an informed player's best option is to quit the project. If he

quits, he secures the positive payo� of his outside option. However, an informed player may

want to remain with the project, hoping that his collaborator's e�ort will eventually result

in a success. An informed player has an incentive to free-ride in this way. Consider now an

uninformed player, who is uncertain about whether his opponent is informed about the state.

This uncertainty a�ects the uninformed player's incentive to put forth e�ort. In this paper,

we analyze how an informed player's exit decision and an uninformed player's e�ort choice

a�ect each other.

Our model is an inconclusive good-news model. Hence, if no success arrives, then players

become more pessimistic about the state being good and hence about the arrival rate of a

success being high. However, the bad-state-revealing signal creates a countervailing e�ect.

If a player does not observe a bad-state-revealing signal, he becomes more optimistic about

the state being good. In the analysis, we focus on the parameter region in which a single

player's belief that the state is good is weakly decreasing if no success or signal arrives.1

We start by analyzing the special case in which a single player's belief of the good state

stays constant if no success or bad-state-revealing signal arrives. We call this the stationary

case. In this case, we identify a symmetric equilibrium which consists of two phases. The �rst

is a no-exit phase, in which an informed player, who has observed a signal, does not exit.

Instead, he remains with the project, exerts no e�ort, and free-rides on the e�ort exerted by

1This seems to be the natural assumption in the applications that we have in mind.
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his opponent. Throughout this phase, both players get more and more pessimistic that their

opponent is still uninformed and hence exerting e�ort. As time passes and no success arrives,

the risk to an informed player of �nding himself in an inactive project eventually becomes

so high that an informed player exits with a positive probability. At this transition time,

equilibrium play enters the second, gradual-exit phase. In this gradual-exit phase, the beliefs

and the e�ort level of an uninformed player are constant, and an informed player exits at a

constant, �nite rate. If a player exits, this reveals to his opponent that the state is bad; the

opponent then also exits immediately.

In the gradual-exit phase, the positive exit rate of an informed player helps to balance

beliefs. In the absence of a success or a signal, an uninformed player gets more pessimistic

about whether his opponent is still exerting e�ort. But now, the failure of the other player

to exit is good news, indicating that the other player may still exert e�ort and the state may

be good. This creates an encouragement e�ect: uninformed players are encouraged to keep

exerting e�ort at a constant rate. For an informed player, knowing that his opponent exits

with positive probability if he is informed makes it less risky to remain with the project and

to free-ride. However, staying with the project is only attractive if the uninformed player is

su�ciently optimistic, and hence exerts enough e�ort. In equilibrium, the exit rate and the

e�ort level are such that an uninformed player is indi�erent between exerting a bit more

e�ort today or tomorrow, and an informed player is indi�erent between staying with the

project and exiting.

In the general, nonstationary case, the arrival rates are such that a single player gets more

pessimistic about the state being good if no success or bad-state revealing signal arrives. In

this case, we identify an equilibrium which consists of three phases, a no-exit, a gradual-exit,

and an immediate-exit phase. The �rst two phases are parallel to the stationary case, with

the di�erence that in the gradual-exit phase the e�ort level, exit rate, and beliefs are not

constant. Instead, in the gradual-exit phase the belief that the state is good now decreases

over time as more e�ort is put into the project. The equilibrium e�ort of uninformed players

decreases. Hence, it becomes less attractive for informed players to stay with the project,

and so the exit rate of informed players increases. As a consequence, if players observe no

exit, their belief that the opponent is uninformed increases over time. At the transition time,

the exit rate goes to in�nity, and for players who are still with the project, the belief that

their opponent is uninformed goes to one.

The equilibrium play then enters the immediate-exit phase, in which an informed player

exits immediately. Hence, if a player observes that his opponent does not exit, he knows for

sure that his opponent is uninformed. The situation is as if signals were public. Uninformed

players exert positive e�ort, but the belief about the state being good and the e�ort level
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decrease over time. After some �nite time, uninformed players are so pessimistic that they

do not want to remain with the project, and both players exit.

There are two sources of ine�ciencies in the present setting. Our setup is a team problem

with moral hazard. Hence, it is known that players have incentives to reduce and postpone

e�orts.2 The second ine�ciency, delayed information transmission, arises from the new fea-

tures in our model. A privately informed player has the incentive to delay exiting and to

free-ride on the other player's e�ort.

The identi�ed equilibrium exhibits various novel properties. In the no-exit phase, the

e�ort level may be decreasing or increasing. This is in stark contrast to the �ndings in

the previous literature, in which e�ort levels typically decrease as players become more

pessimistic. Our model shares with the previous literature the feature that players have the

incentive to procrastinate. If a player postpones exerting a bit more e�ort until tomorrow,

then the e�ort exerted by his opponent today may yield a success or the opponent may exit.

In both cases, this player saves the e�ort he had postponed. This creates an incentive to

procrastinate. However, during the no-exit phase, an uninformed knows that his opponent,

if informed, does not exit. Therefore, this uninformed player does not expect to learn from

observing whether or not his opponent exits. At the same time, an uninformed player knows

that it becomes more and more likely that his opponent is informed and exerts no e�ort.

This further diminishes an uninformed player's incentive to procrastinate. Instead players

may wish to compensate for the lack of e�ort of their informed opponents. We identify

conditions on the parameters under which the e�ort level during the no-exit phase increases.

At the transition point between the no-exit and the gradual-exit phases, the uninformed

player's e�ort level drops discontinuously. Intuitively, if an informed player exits with a

positive probability, an uninformed player has more incentive to postpone his e�ort in order

to learn from the potential exit of his opponent. Hence, at the threshold time, e�ort levels

must drop.

Finally, we �nd that increasing the payo� of the outside option, and hence making it

more attractive for a player to leave the project, encourages collaboration. More speci�cally,

increasing the payo� of the outside option diminishes both ine�ciencies, procrastination and

delayed information transmission. The ratio of the equilibrium payo� over the cooperative

payo� is increasing in the outside option. This may be surprising at �rst, since making it

more attractive for players to switch to the outside option will reduce players' incentives

to remain with the project�an e�ect that is detrimental to a partnership. However, within

the partnership, players have an incentive to procrastinate and also to delay revealing their

private information that the state is bad. Increasing the payo� of the outside option dimin-

2This �procrastination� e�ect was identi�ed and discussed in Bonatti and Hörner (2011).
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ishes these two e�ects and leads to a better alignment of players' incentives. For su�ciently

high payo�s of the outside option, the equilibrium payo� equals the cooperative payo�.

Uninformed players exert full e�ort, and informed players exit immediately.

Related Literature Our paper contributes to the nascent literature on private learning

in experimentation models. Some recent, related papers are Akcigit and Liu (2015), Das

(2014), and Bimpikis and Drakopoulos (2014). Akcigit and Liu (2015) examine an innovation

competition between two �rms which decide whether to pursue a risky or a safe project. Only

the �rst success of a project is rewarded. The risky project may be a success or a dead end, and

�rms may privately �nd out about dead ends. Since a �rm bene�ts when its competitor works

in a less rewarding direction, it never reveals dead-end �ndings�competition suppresses

information sharing. By contrast, in our model information sharing may be delayed since an

informed player has an incentive to free-ride on his opponent's e�ort. Das (2014) examines

a situation in which two players can work on a risky project or a safe project, and only the

�rst player who obtains a public success is rewarded. If the state is good, then in addition to

a public success, the risky project may also generate private good news, which encourages

an informed player to stay with the risky option forever. Depending on the prior, players

experiment either too much or not enough.3

Bimpikis and Drakopoulos (2014) study a strategic experimentation model in which play-

ers' actions are private. Information generated through experimentation is private, but can

be credibly disclosed. They show that e�ciency is improved if all players commit to share

no information up to a time and to fully disclose all available information at that time.

Unlike our paper, their setting involves information externality only and no payo� external-

ity. Heidhues et al. (2015) study a strategic experimentation game with observable actions

and private payo�s. They show that private payo�s can diminish the free-rider problem,

and identify cases in which the cooperative solution can be supported as a perfect Bayesian

equilibrium.

Campbell et al. (2014) study a partnership in which players work on a joint project with

a deadline and have private information about the success of their e�orts. In equilibrium,

players initially reveal their information but exert ine�ciently low e�ort. As the deadline

draws closer, players hide their information about successes to encourage their partners to

work more. They show that private information about successes bene�ts welfare, compared

to the case in which successes are public.

Our model also ties into the literature on dynamic games with exit options. McAdams

3Bergemann and Hege (2005) study agency problems regarding the timing of the termination of funding
for R&D projects with uncertainty about the probability of success. They �nd that in equilibrium funding
stops ine�ciently early.
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(2011) analyzes stochastic partnerships in which players can either stay with the current

partner, or exit and get anonymously rematched. Players' actions are publicly observed;

stage game payo�s vary stochastically and are common knowledge. McAdams (2011) shows

that performance inside the partnership decreases with the attractiveness of players' outside

options. By contrast, in our model we obtain the opposite e�ect: increasing the attractive-

ness of the outside option encourages collaboration within the partnership. Moscarini and

Squintani (2010) study an R&D, winner-takes-all setting, in which players hold private infor-

mation about the arrival rate of success. Staying in the race is costly, but players can choose

to publicly exit. Players learn from exit decisions of their competitors, and the equilibrium

exhibits a strong �herding� e�ect. Even if players di�er strongly in their costs and bene�ts,

they may exit at almost the same time. This is attributed to the survivor's curse: at any

time in the game, a player is more optimistic about the state and his opponent's information

than if he knew that his opponent would exit in the next instant. Murto and Välimäki (2011)

examine information aggregation in an exit game in which players are uncertain about their

payo� types, and their types are correlated.4 Good types should stay in the game whereas

bad types are better o� exiting. By staying with the project, good-type players may privately

learn about their type. They show that information aggregates in randomly occurring exit

waves.

More broadly, this paper is related to the literature on experimentation. (See, for instance,

Bolton and Harris (1999), Keller et al. (2005), and Bonatti and Hörner (2011)). Our model is

based on the collaboration model of Bonatti and Hörner (2011). They analyze moral hazard

in teams, and show that the incentive to free-ride on other players' e�orts leads to reduction

of e�ort and procrastination. Their model is incorporated as a special case in our setting, in

which the payo� of the outside option and the arrival rates of a private signal or a success

in the bad state are all zero. As in Keller and Rady (2010), and the related bad-news model

Keller and Rady (2015), we assume that the arrival rate of a success is positive in both

states.

2 The Model

There are two players, i ∈ {1, 2}, engaged in a common project. Time is continuous with

in�nite horizon, t ∈ [0,∞). At each instant t, a player �rst decides whether to remain engaged

in the project, or to exit the project and take the outside option with (�ow-)payo� U > 0.

A player's exit decision is publicly observable.5 Once a player exits the project, he cannot

4A related exit-game models with common values and private learning is studied in Rosenberg et al.
(2007).

5The outside option can be interpreted as the expected payo� from starting a new project, or as the
opportunity cost associated with staying with the project that can be avoided by quitting.
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return to it. If a player decides to stay with the project, he chooses at which level to exert

e�ort, ki(t) ∈ [0, 1]. E�ort is costly, and the instantaneous cost to player i of exerting e�ort

ki(t) is cki(t). The e�ort choice is, and remains, unobserved.

The probability of successfully completing the project depends on the players' e�orts, and

on an unknown binary state which is either good g or bad b. Both players share a common

prior belief p0 ∈ (0, 1) of the state being good. At any time t the instantaneous probability

of success depends on players' e�orts {k1(t), k2(t)} and the state. If the state is good, the

arrival rate of a success is λg(k1(t) + k2(t)); if the state is bad, the arrival rate of a success

is λb(k1(t) + k2(t)), with λg > λb > 0. The arrival of a success is public, and a success is

worth a net value of h > 0 to each of the players. As long as no success occurs, players reap

no bene�ts from the project. The project generates at most one success. We assume that,

for an individual player, exerting e�ort is ex-ante productive if and only if the state is good,

hλb < c < hλg. Throughout the paper, we assume that the prior belief is high enough, such

that a priori e�orts at time 0 are productive, that is, h (p0λg + (1− p0)λb)− c ≥ 0.

Assumption 1 (Productive E�orts). At time 0, e�orts are productive, that is, the prior

belief satis�es

p0 ≥
c− hλb

h(λg − λb)
.

If the state is bad, and player i exerts e�ort ki(t) at time t, then player i may receive a

private signal with instantaneous probability equal to βki(t), with β ≥ 0. In the good state

such a signal is never realized, and hence the arrival of the signal reveals that the state is

bad. We call the signal a bad-state-revealing signal.6 Moreover, we say that a player who

knows that the state is bad is informed, while a player who is uncertain about the state is

uninformed.

Players discount future bene�ts and costs at a common discount rate r. If players ex-

ert e�ort {k1(t), k2(t)}t≥0 and player i exits at time τ ≤ ∞ before a success occurs, the

normalized discounted payo� to player i is

−r

∫ τ

0

e−rscki(s)ds+ e−rτU.

If a success occurs at time t before player i exits, player i's payo� is

−r

∫ t

0

e−rscki(s)ds+ e−rt(rh+ U).

6For simplicity, we assume that a player obtains at most one private signal. Since the �rst signal fully
reveals that the state is bad, this assumption does not a�ect our results.
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We assume that every player takes the outside option immediately after a success occurs.7

The player's objective is to maximize his expected payo� by choosing the e�ort level and

time to exit.

In our model, we have to keep track of public and private histories. At any time t, the

public history hp,t captures whether and when a player has exited or a success has arrived.

Player i's private history ĥi,t consists of his past e�orts and whether and when he has observed

a private signal. For player i, the history at time t consists of both the public and his private

history and is denoted hi,t =
(
hp,t, ĥi,t

)
.

If a player exits, the information set of the other player changes. Similarly, if a player

observes a private bad-state-revealing signal, his beliefs about the state and about the other

player's information and past actions change. Hence, a player may want to react immediately

to a bad-state-revealing signal or to another player's exit decision. It is well known that this

may create modeling issues regarding the timing of events in continuous time models. To

circumvent this problem, we adopt an approach similar to the one in Murto and Välimäki

(2013) and Akcigit and Liu (2015), and model the game as a stage game with a random

number of stages.

We describe the stage game from the perspective of player i. The game begins with Stage

Null, in which player i has not obtained a private signal, and player i's opponent has not yet

exited. The game proceeds to the next stage if (i) player i obtains a private signal, or (ii)

player j exits.8 In each of these events, player i updates his beliefs and immediately enters

the next stage. Upon observing a private signal, player i becomes informed and immediately

enters Stage Informed. Upon observing an exit of player j, player i immediately enters Stage

Exit. The further evolution of stages and public and private histories follows the same pattern.

From Stage Exit, the game proceeds to Stage Exit-Informed, if player i obtains a private

signal. From Stage Informed, the game proceeds to Stage Informed-Exit, if player j exits.

The evolution of stages is illustrated in Figure 1. It should be noted that transitions induced

by private signals lead to private stages. For example, the Stage Null and Stage Informed of

player i are indistinguishable for player j, and hence are private stages for player i.9

For every stage m ∈ M := {Null, Informed,Exit, Informed-Exit,Exit-Informed} of player
i, we let τi(m) denote the random time at which the game enters stage m for player i.

Player i enters the stage Null at the deterministic time 0. His history at time 0 is simply

7This is without loss of generality. Since the project can generate at most one success, it is dominant to
take the outside option after the success occurs.

8It is possible that a certain stage of player i ends because player i himself has exited or a success arrives.
In both cases, there is no need to specify his strategy afterwards.

9Similarly, Stages Informed-Exit, Exit, and Exit-Informed are private stages of player i. The concept of
private stages is also used in Akcigit and Liu (2015).
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Stage Null

No exit/signal
i ob

tain
s si

gna
l S. Informed

j exits
S. Informed-Exit

j exits

S. Exit
i obtains signal

S. Exit-Informed

Figure 1: Stages of the game for player i.

hi,0 = {τi(Null) = 0}. If player i receives a private signal and thus enters stagem′ = Informed

at time τ ′, his history at time τ ′ consists of his e�ort level before τ ′ as well as the time of

transition to stage Informed. That is, hi,τ ′ =
{
{ki(s)}s≤τ ′ , τi(m

′) = τ ′
}
. If player i then

observes player j exit at time τ ′′ and thus enters stage m′′ = Informed-Exit, his history at

time τ ′′ consists of player i's e�ort level before τ ′′ as well as the previous transition times

between di�erent stages. That is, hi,τ ′′ =
{
{ki(s)}s≤τ ′′ , τi(m

′) = τ ′, τi(m
′′) = τ ′′

}
. For any

other stage m and any transition time τi(m), player i's history at τi(m) can be de�ned

similarly.

For any given stage m, we let Hi(m) denote the set of all possible histories up to τi(m)

for player i for all possible transition times τi(m):

Hi(m) =
{
hi,τi(m) : for all feasible τi(m)

}
.

Given stage Null and τi(Null) = 0, the set of all histories up to time 0 consists of one element,

Hi(Null) = {hi,0}. For any stagem other than stage Null,Hi(m) includes all possible histories

up to τi(m) for all possible random times τi(m) at which the game enters stage m for player

i.

For any given stage m, a strategy for player i includes two measurable functions, which

specify the e�ort and exit decision conditional on staying in stage m:

km
i : R+ ×Hi(m) → [0, 1]

fm
i : R+ ×Hi(m) → [0,∞] .

Here, km
i (t, hi,τi(m)) and fm

i (t, hi,τi(m)) specify the e�ort level and the exit rate at time

t + τi(m), respectively. A strategy of player i consists of a strategy of player i for every

possible stage m, that is, {(km
i , f

m
i )}m∈M . Here, (km

i , f
m
i ) speci�es player i e�ort level and

exit rate in stage m.
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The equilibrium concept is perfect Bayesian equilibrium. We focus on symmetric equi-

libria. Any strategy pro�le of e�ort and exit levels induces public and private beliefs of the

players (Bayesian updating). A strategy pro�le {{(km
i , f

m
i )}m∈M}i∈{1,2} is a PBE of the game

if (i) beliefs are consistent, and (ii) for all i and all hi,t, the continuation of {(km
i , f

m
i )}m∈M

after hi,t is a best-response to player j's strategy. In most of the paper, within each stage

we focus on (pure) Markov strategies that depend only on the player's (public and private)

beliefs.

Throughout most of the paper, it will be clear from the context in which stage players

are. Hence, by a slight abuse of notation, we will use ki(t) as the e�ort level of an uninformed

player and use fi(t) the exit rate of an informed player, respectively.10

3 Cooperative Solution and Single-Player Solution

We �rst analyze the cooperative problem in which N players work cooperatively to maximize

their average expected payo� by jointly choosing a strategy pro�le. It is without loss to

focus on symmetric strategy pro�les. Here, N = 1 corresponds to the single player's optimal

strategy.

In the cooperative solution, an average player internalizes the e�ect of his e�ort on the

other players' payo�s. A success generates a payo� of h to each player, and an individual

player incurs cost c per unit of e�ort. Hence, given the belief pt that the state is good, the

�ow payo� rate generated by an individual player from exerting e�ort is

Nh (ptλg + (1− pt)λb)− c.

If this payo� rate is higher than the outside option U , it is optimal for all players to exert

full e�ort. Otherwise, all the players should take the outside option.

If Nλbh − c ≥ U , then the �ow payo� (per player) from staying with the project and

exerting full e�ort is higher than the outside option, even if the state is bad. Therefore, even

if a player observes a bad-state-revealing signal, he still exerts full e�ort and chooses not to

exit. The optimal cooperative solution is for all players to exert full e�ort until they obtain

a success.

If Nλbh − c < U , then it is optimal for all players to take the outside option if they

learn that the state is bad. If a player is informed, the optimal continuation play is for the

informed player to exit immediately, and for his teammates to follow. Hence, if no player

has exited, this means that no player has observed a bad-state-revealing signal yet. Players

10In equilibrium, informed players do not exert e�ort and uninformed players do not exit before a �nal
time, at which time all players exit and the game ends.
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always share a common belief that the state is good. At any time t, given current belief pt,

if players exert e�orts (k1, . . . , kN) over the interval [t, t+ dt), then the posterior belief is

given by

pt + dpt =
pte

−(
∑N

i=1 ki)λgdt

pte
−(

∑N
i=1 ki)λgdt + (1− pt)e

−(
∑N

i=1 ki)(λb+β)dt
. (1)

It is easy to see that the belief of state g stays constant if β = λg − λb. In this case,

the lack of a bad-state-revealing signal exactly o�sets the lack of a success, and the belief

of state g stays constant as long as no success or signal arrives. We call this special case

the stationary case. In the general case in which β < λg − λb, the lack of a signal does not

compensate for the lack of a success. The players become more pessimistic that the state is

g if no success or signal arrives.

In both the stationary and the general cases, it is optimal for all the players to exert full

e�ort if the �ow payo� (per player) from full e�ort is above the outside option. This requires

the belief of state g to be su�ciently high. For lower beliefs, all players take the outside

option. We summarize the cooperative solution in the following proposition. The proof is

relegated to Appendix A.

Proposition 1 (Cooperative Solution).

In the cooperative problem, under the optimal solution players share a common belief of the

good state. This belief evolves according to (1). There exists a cooperative threshold

pc,∗ :=
c−Nhλb + U

Nh(λg − λb)
, (2)

such that whenever the belief is above this threshold, all players exert full e�ort. If the belief

is below pc,∗, and after a success, all players take the outside option.

The cooperative threshold pc,∗ in (2) is the belief at which the �ow payo� per player

from full e�ort is equal to the outside option. The cooperative threshold does not depend

on β, and decreases in N . Hence, the cooperative threshold in the team problem (N ≥ 2) is

lower than the single player's threshold. Assumption 1 guarantees that a priori, e�orts are

productive, such that for a single player (as well as teams of any size) it is optimal to exert

full e�ort at t = 0.11

In the cooperative game, the trade-o� for the team members is between keeping the

project active by exerting costly e�ort in order to generate a success, and exiting and securing

the payo� of the outside option. Each player exerts full e�ort if the belief of stage g is above

pc,∗. No player procrastinates in putting forth e�ort. When a player observes a bad-state-

11If the prior belief is below pc,∗, all players take the outside option at time 0.
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revealing signal, he reveals this information immediately by exiting. His team mates learn

from his exit decision that the state is bad, and follow suit immediately. Therefore, there is

no delay in information transmission. We will show later that neither of these observations

holds in the noncooperative game. Depending on the parameter region, an uninformed player

may have an incentive to shirk from full e�ort, and an informed player may delay his exit

(and hence information transmission) in order to free-ride the other players' e�ort inputs.

The role of the exit option

When we move to the noncooperative game, it may (and will) happen that neither player

exits during a certain phase. In such a phase of the equilibrium, the situation will be as if

players cannot exit before a success occurs. That is, players do not have the exit option. The

following thought experiment should help to better understand some e�ects that will appear

in equilibrium:

Consider a single player who can take the outside option whenever he likes. Given the

belief pt of state g, this single player is willing to stay and exert full e�ort if the �ow payo�

from full e�ort is higher than the outsider option:

h(ptλg + (1− pt)λb)− c ≥ U.

Otherwise, he switches to the outside option. The higher U , the higher the threshold belief

at which this single player optimally exits. In this case, a higher outside option diminishes a

player's incentive to stay and exert e�ort.

Now consider a single player who cannot switch to the outside option before a success

occurs. If one can enjoy the �ow payo� U only after a success, this is as if the value of a

success is h+U/r instead of h. Here, U/r is the discounted sum of the �ow payo�s from the

outside option. Given the belief pt of state g, this single player is willing to exert full e�ort

if and only

(ptλg + (1− pt)λb)

(
h+

U

r

)
− c > 0.

Taking away the exit option changes the player's incentive signi�cantly. The higher U , the

lower the threshold belief at which this player stops exerting e�ort. Therefore, higher U leads

to higher incentive to exert e�ort. Moreover, U/r decreases in r, so a more patient player has

a lower threshold belief. With slight abuse of notation, we refer to the left-hand side term

as the markup of e�ort given the belief pt.

Consider a single player who knows that the state is bad. Given our assumption that

λbh < c < λgh, if this player can switch to the outside option whenever he likes, he exerts

no e�ort and exits immediately. However, if this player can switch to the outside option only

13



after a success, the outside option adds to the value of a success. It is worthwhile for the

player to exert e�ort if U/r is high enough. Even if the state is bad, this player chooses to

exert full e�ort if (h+U/r)λb− c > 0, i.e., if the markup of e�ort in the bad state is positive.

Otherwise, he exerts no e�ort.12

4 Stationary Case:

We begin with the stationary case β = λg − λb in which for a single player, the nonarrival of

a bad-state-revealing signal exactly o�sets the non-arrival of a success, β = λg −λb. A single

player's belief of state g does not change as long as no success or signal arrives. We identify

a symmetric equilibrium for the stationary case.

Notice that after a success, both players exit immediately. Hence, we can reduce the

problem and only need to keep track of players beliefs conditional on no success having

arrived yet. The relevant probabilities are an uninformed player's posterior beliefs at any

time t ∈ [0,∞) that (i) the state is good, (ii) the state is bad and the other player is

informed, and (iii) the state is bad and the other player is uninformed. We denote these

beliefs by pg(t), pbi(t), pbu(t), respectively. All of these beliefs are conditional on no success

having arrived yet. From these beliefs we can derive the belief of an informed player that his

opponent is uninformed and hence still exerts e�ort. This is the probability that a player is

uninformed conditional on the state being bad,

qu(t) :=
pbu(t)

pbi(t) + pbu(t)
. (3)

When a player obtains a private signal, he learns that the state is bad. In the bad

state, the �ow payo� from exerting e�ort is negative, i.e., λbh − c < 0. From an informed

player's perspective, the e�ort input is not longer pro�table, and hence it is optimal for him

to stop exerting e�ort. However, it is unclear whether an informed player should take his

outside option immediately. Instead, he may want to remain with the project, in the hope

that his opponent is not informed yet, and hence is still exerting su�ciently high e�ort.

More speci�cally, the �ow payo� of an informed player from staying with the project is

proportional to the product of (i) the probability that his opponent is exerting e�ort and

(ii) his opponent's e�ort level. If this �ow payo� is strictly higher than U , an informed player

strictly prefers to stay with the project.

12The property, that in our model players choose whether to exit or not, and moreover choose how much
e�ort to exert is the reason why both terms h(ptλg + (1− pt)λb)− c (cf. Assumption 1) and the markup of
e�ort (h+ U/r) (ptλg + (1− pt)λb)− c are relevant for our analysis. In models without an exit option, like
Bonatti and Hörner (2011), the distinction between those two terms is not relevant and the payo� of the
outside option can be normalized to zero.
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t
Uninformed player No exit/positive e�ort

Informed player

t∗0
No exit Gradual exit

Figure 2: The two-phase equilibrium for the stationary case

The highest �ow payo� that an informed player can obtain from staying with the project

is λbh. This is the payo� rate in the case that the informed player's opponent exerts full

e�ort with probability one. If the outside option U is higher than λbh, then it is a dominant

strategy for an informed player to take the outside option immediately after he obtains a

private signal. By exiting, the informed player reveals that the state is bad. His opponent

optimally follows suit and exits as well. This is as if the private signal had been publicly

observed. We discuss the details of this case in Subsection 4.2. First, we examine the case

where U < λbh, in which an informed player may want to delay his exit.

4.1 Two-phase Equilibrium

In this section, we analyze the case where U < λbh. We present a symmetric equilibrium,

which consists of two phases: the no-exit and the gradual-exit phase. In the no-exit phase,

an informed player stays with the project and free-rides on his opponent's e�ort. In the

gradual-exit phase, an informed player is indi�erent between staying and exiting. He exits

at a �nite rate. The structure of this equilibrium is illustrated in Figure 2, where t∗ denotes

the transition time. In both phases, uninformed players do not exit and exert positive e�ort.

The uninformed player chooses his e�ort level such that his uninformed opponent has no

incentive to either postpone or expedite his e�ort.

In the �rst, no-exit phase, an informed player knows that the state is bad. However,

his belief that his opponent is still uninformed and hence is exerting e�ort is high enough

such that the expected payo� from staying with the project is higher than the payo� from

the outside option. Hence, an informed player stays with the project and free-rides on the

expected e�ort from his opponent.

Over time, players become more and more pessimistic about their opponent still being

uninformed. For an informed player, it becomes more likely that the other player is also

informed and hence the project has reached a deadlock. For an uninformed player, it becomes

more likely that the state is bad and his opponent is informed and free-riding. At some

threshold time t∗ ∈ [0,∞), equilibrium play enters the second, gradual-exit phase. In the

gradual-exit phase, an informed player is indi�erent between staying and exiting, and exits

at a constant rate. Hence, observing that the opponent has not exited is good news and

encourages uninformed players to keep exerting e�ort.

Throughout the analysis, we use superscripts N,G to represent the no-exit and the
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gradual-exit phases, respectively. We now discuss the equilibrium behavior, based on heuris-

tic arguments. The proofs are relegated to the appendix.

No-exit phase: In the no-exit phase, no player exits on the equilibrium path. As discussed

before, given that the �ow payo� from exerting e�ort is negative in the bad state, an informed

player never exerts e�ort. Hence, we only need to characterize an uninformed player's e�ort

level. Moreover, an informed player must prefer to stay with the project over exiting. For

an informed player i, the �ow payo� from staying with the project � which is proportional

to the probability that his opponent is uninformed and his e�ort level � must be (weakly)

higher than the payo� from the outside option,

qu(t)kj(t)λbh ≥ U. (4)

Any player � informed or uninformed � assigns the same probability qu(t) to the event that his

opponent is uninformed, conditional on the state being bad. Another conditional probability

that is relevant for an uninformed player's e�ort choice is the probability that the state is

good, conditional on neither player being informed:

qg(t) :=
pg(t)

pg(t) + pbu(t)
. (5)

Given that β = λg − λb, the belief q
g(t) that the state is good conditional on neither player

being informed, stays constant. It is always equal to p0. As a result, there is only one degree

of freedom for the beliefs pg, pbi, pbu.13

Suppose that an uninformed players beliefs at time t are
(
pg, pbi, pbu

)
. If uninformed

players i, j exert e�ort (ki, kj) over the interval [t, t+ dt), then by Bayes' rule, conditional

on no success, the uninformed player i's posterior beliefs at time t+ dt are

pg + dpg =
pge−λg(ki+kj)dt

pge−λg(ki+kj)dt + pbie−(β+λb)kidt + pbue−(βki+λb(ki+kj))dt
,

pbi + dpbi =
pbie−(β+λb)kidt + pbu

(
1− e−βkjdt

)
e−(βki+λb(ki+kj))dt

pge−λg(ki+kj)dt + pbie−(β+λb)kidt + pbue−(βki+λb(ki+kj))dt
, (6)

pbu + dpbu =
pbue−(β+λb)(ki+kj)dt

pge−λg(ki+kj)dt + pbie−(β+λb)kidt + pbue−(βki+λb(ki+kj))dt
.

An uninformed player decides at any instant how much e�ort to exert. For ease of expo-

13At any time t in the no-exit phase, the beliefs have to satisfy pg(t) + pbi(t) + pbu(t) = 1 as well as
qg(t) = p0.
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sition, we de�ne the following arrival intensities as functions of the beliefs pg, pbi, pbu:

λs(pg) :=pgλg + (1− pg)λb

λs,I(pg) :=λs(pg) + (1− pg)β (7)

λU(pg, pbu) :=pgλg + pbuλb.

Here, λs(pg) is the intensity of an instantaneous success generated by player i's own e�ort,

and λs,I(pg) is the intensity of an instantaneous success or signal generated by player i's own

e�ort. Moreover, λU(pg, pbu) is the intensity of an instantaneous success generated by player

j's e�ort, given that player j exerts e�ort only if he is uninformed.

In equilibrium, an uninformed player has no incentive to either postpone or advance

e�orts. For time t, suppose that an uninformed player i exerts e�ort ki over the interval

[t, t+ dt) (today) and e�ort k′
i over the interval [t+ dt, t+ 2 dt) (tomorrow). Now, consider

the e�ect if player i decreases his e�ort today by ε and increases his e�ort tomorrow by the

same amount. Note that, conditional on reaching t + 2dt without a success or a signal, the

resulting beliefs are unchanged, and therefore so is the continuation payo�.

Exerting a bit more e�ort today increases the probability of the arrival of an instantaneous

success or a bad-state-revealing signal, at rate λs,I(pg)ε. In either event, player i will save the

costs of planned e�ort tomorrow, which is cki. If instead player i waits and plans to increase

tomorrow's e�ort by ε, then there is a chance that this extra e�ort will not have to be carried

out. This is the case if a success or a bad-state-revealing signal arrives, the probability of

which is λs,I(pg)ki + λU(pg, pbu)kj. The cost saved is cε. Given that players are impatient,

there is also another cost of postponing. The markup of e�ort
[
λs(pg)

(
h+ U

r

)
− c

]
· ε is

delayed at a cost. Postponing e�ort to tomorrow is pro�table if and only if14

(
λs,I(pg)ki + λU(pg, pbu)kj

)
c︸ ︷︷ ︸

saved costs upon arrival

of a success or signal

− r

(
λs(pg)

(
h+

U

r

)
− c

)
︸ ︷︷ ︸

cost of delayed

markup of e�ort

≥ λs,I(pg) · cki.︸ ︷︷ ︸
bene�t of

advancing e�ort

(8)

In equilibrium, the uninformed player i has no incentive to either postpone or expedite

e�ort. From (8), it follows that the equilibrium e�ort must satisfy

kN
j =

(hr + U)λs(pg)− cr

cλU(pg, pbu)
. (9)

Suppose that the above e�ort level is interior. For this case, by combining (9) with the

14A formal analysis of this is provided in the appendix.
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evolution of the beliefs (6), we solve for the equilibrium e�ort level as a function of time:

kN,∗(t) =
C1

C2eC1t + λg

, (10)

where

C1 =
(hr + U)

(
λ2
b(1− p0) + λ2

gp0
)

cλs(p0)
− r, C2 =

(1− p0)(λg − λb)(λb(hr + U)− cr)

cr − (hr + U)λs(p0)
. (11)

The no-exit phase cannot last forever. From an informed player's perspective, it becomes

increasingly likely that his opponent is also informed and provides no e�ort. The probability

qu(t) that the opponent is uninformed, conditional on the state being bad, decreases in t.

The expected instantaneous e�ort qu(t)kN,∗(t) exerted by the opponent also decreases over

time.15 At some point, abandoning the project becomes a better option. Nonetheless, there

cannot be a period of time during which (i) an informed player exits for sure, and (ii) an

uninformed player never exits. If this were the case, then an uninformed player who does not

observe his opponent exit at that time would believe that neither player has obtained a signal.

Consequently, he would update his belief that the state is good to p0, the prior belief at time

0. An uninformed player is then willing to exert su�ciently high e�ort, thereby diminishing

an informed player's incentive to exit. This explains why, after the no-exit phase, equilibrium

play enters a gradual-exit phase in which informed players exit at a �nite rate.

Gradual-exit phase: In the gradual-exit phase, informed players exit at a �nite rate.

Uninformed players are never the �rst to exit on the equilibrium path. Hence, an exit reveals

to an uninformed player that the state is bad and so he also exits immediately. For a player's

e�ort and exit decision, the relevant probabilities at any time t ∈ [0,∞) are the same as in

the no-exit phase. However, the way beliefs are updated changes since now we have to take

into account the exit decision by informed players.

Given beliefs
(
pg, pbi, pbu

)
at some time t in the gradual-exit phase, suppose that over

the interval [t, t+ dt), uninformed players exert e�orts (ki, kj) and informed players exit at

rates (fi, fj). If the uninformed player i observes no success or signal and his opponent does

15A formal statement and proof of this property is provided in Lemma 3 the appendix.
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not exit, then player i's updated beliefs at time t+ dt are given as follows:

pg + dpg =
pge−λg(ki+kj)dt

pge−λg(ki+kj)dt + pbie−(ki(β+λb)+fj)dt + pbue−(βki+λb(ki+kj))dt
,

pbi + dpbi =
pbie−((β+λb)ki+fj)dt + pbu

(
1− e−βkjdt

)
e−(βki+λb(ki+kj))dt

pge−λg(ki+kj)dt + pbie−(ki(β+λb)+fj)dt + pbue−(βki+λb(ki+kj))dt
, (12)

pbu + dpbu =
pbue−(β+λb)(ki+kj)dt

pge−λg(ki+kj)dt + pbie−(ki(β+λb)+fj)dt + pbue−(βki+λb(ki+kj))dt
.

In the gradual-exit phase informed players exit at a �nite rate. Hence, they must be indi�erent

between exiting and staying. At any time t during the gradual-exit phase, an informed

player's �ow payo� from staying with the project must be equal to the �ow payo� of the

outside option, that is:

qu(t)kG
j (t)hλb = U. (13)

Moreover, the equilibrium e�ort level is such that an uninformed player i has no incentive

to either postpone or expedite e�ort. Again, we consider the e�ect if an uninformed player

i decreases his e�ort today by ε and increases his e�ort tomorrow by the same amount.

Conditional on reaching t + 2dt without a success, a signal, or an exit, the resulting beliefs

are unchanged.

In the gradual-exit phase, in addition to the e�ects that appear in the no-exit section,

we have to take into account the e�ects resulting from the positive exit rates of informed

players. If player i chooses to wait, there is a chance that his opponent exits today. The

instantaneous probability of this event is pbifj. If player j exits, then player i saves the cost

of the planned e�ort tomorrow cε, but he also forgoes the chance of an instantaneous success,

which would yield an expected payo� hλbε. Combining this with the analysis of the no-exit

region, it follows that postponing e�ort is pro�table if and only if:

(
λs,I(pg)ki + λU(pg, pbu)kj

)
c︸ ︷︷ ︸

saved costs upon arrival

of a success or signal

+ pbifj · (c− hλb)︸ ︷︷ ︸
cost and bene�t

of opponent's exit

− r

[
λs(pg)

(
h+

U

r

)
− c

]
︸ ︷︷ ︸

costs of delayed

markup of e�ort

≥ λs,I(pg) · cki.︸ ︷︷ ︸
bene�t of

advancing e�ort

(14)

In equilibrium, e�ort levels and exit rates are such that uninformed players have no

incentive to postpone or expedite e�ort. Moreover, informed players are indi�erent between

exiting and not. Combining (13) and (14), we obtain that the equilibrium e�ort level and
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exit rate during the gradual-exit phase have to satisfy:

kG
j =

1− pg

pbu
· U

hλb

, fG
j =

r
[
λs(pg)

(
h+ U

r

)
− c

]
− λU(pg, pbu)c (1−pg)U

pbuhλb

(1− pg − pbu)(c− hλb)
. (15)

We still need to determine the time at which the game proceeds from the no-exit phase

to the gradual-exit phase. There exists a (unique) vector (pg, pbi, pbu) with pbu

pg+pbu
= p0, such

that this vector remains constant over time if e�ort and exit levels are given by (15), and

beliefs evolve according to (12). Let kG,∗ and fG,∗ denote the corresponding e�ort level and

exit rate, respectively, given these beliefs. We let qu,∗ denote player i's equilibrium belief

that player j is uninformed, conditional on state b. By (13), qu,∗ = U/(hkG,∗λb). It is easily

veri�ed that kG,∗ is the unique positive root of the following equation:

hkG,∗λb(c− hλb)(k
G,∗λg + r)

U(λg(hr + U)− c(kG,∗λg + r))
=

p0
1− p0

, (16)

and that the constant exit rate is given by

fG,∗ =
kG,∗λb(hk

G,∗λg − U)

hkG,∗λb − U
.

The transition time t∗ from the no-exit to the gradual-exit phase is the time at which the

belief qu(t) in the no-exit phase decreases to qu,∗. It is given by:

t∗ =
log

(
λb(U−hkG,∗λg)

C2hkG,∗λb−U(C2−λb+λg)

)
C1

, (17)

with C1 and C2 as in (11).

To sum up, the game starts with the no-exit phase, in which uninformed players exert

e�ort kN,∗(t) and informed players do not exit. Over time, a player's belief that his opponent

is informed increases; the belief qu(t) decreases. At time t∗, the belief qu(t) has decreased

to qu,∗, and the no-exit phase ends. Equilibrium play then enters the gradual-exit phase, in

which uninformed players choose the constant e�ort kG,∗, whereas informed players exit at

the constant rate fG,∗.16

Depending on the parameters and prior beliefs, it may be the case that the equilibrium

16We can also interpret the constant exit rate fG,∗ as choosing an exit time according to a certain distri-
bution. In particular, a player who is informed at τ ≥ t∗ chooses to exit at t ≥ τ according to the distribution

1 − e−fG,∗(t−τ). A player who is informed at τ < t∗ chooses to exit at t ≥ t∗ according to the distribution

1− e−fG,∗(t−t∗).
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does not exhibit two phases. In order for a two-phase equilibrium with a no-exit and a

gradual-exit phase to exist, the prior belief must be high enough such that initially informed

players want to remain with the project. This is the case if the prior belief satis�es:

p0 ≥
(c− hλb)

h(λg − λb)
· (hλbr + λgU)

hλbr
=: pI . (18)

For lower prior beliefs, there exists an equilibrium with just one, immediate-exit phase. This

is discussed in more detail in Subsection 4.2.

Moreover, we focus on the case in which the e�ort levels (during the no-exit and the

gradual-exit phases) are interior. The next lemma provides conditions that guarantee interior

e�ort levels.

Lemma 1. Suppose that 0 < U < λbh and p0 > pI . Then, if r > min{ λbU
c−hλb

, λg(c−U)

λgh−c
}, there

exists some p ∈ (pI , 1] such that the equilibrium e�ort levels kN,∗(t) and kG,∗ are always

interior if and only if p0 < p. If r ≤ min{ λbU
c−hλb

, λg(c−U)

λgh−c
}, the equilibrium e�ort levels kN,∗(t)

and kG,∗ are always interior, and we de�ne p to be 1.

For su�ciently patient players, e�orts are always interior. Otherwise, there exists an

upper bound on the prior belief such that e�ort levels are always interior if and only if prior

beliefs are below this bound.

We are now ready to state the main result of this section.

Proposition 2. Suppose that 0 < U < λbh and p0 > pI . Suppose p0 is below p as de�ned

in Lemma 1. Then there exists a symmetric perfect Bayesian equilibrium which consists of

two phases: a no-exit phase, t ∈ [0, t∗), and a gradual-exit phase, t ∈ [t∗, ∞). The transition

time t∗ ∈ [0,∞) is given by (17). In equilibrium:

(i) an uninformed player never exits, chooses the e�ort level kN,∗(t) in the no-exit phase,

and chooses the e�ort level kG,∗ in the gradual-exit phase.

(ii) an informed player exerts no e�ort, does not exit in the no-exit phase, and exits at a

constant rate fG,∗ in the gradual-exit phase.

(iii) if a player observes that his opponent exits, he exits immediately.

In the no-exit phase, an uninformed player becomes more pessimistic about the state

being good, as well as that the other player is uninformed and hence still exerting e�ort.17

Consequently, one may expect that the equilibrium e�ort level kN,∗(t) is decreasing in t.18

17 A single player's belief of state g stays constant in the absence of a success or a signal given that
β = λg − λb. In the game, an uninformed player gets more pessimistic that the state is g since he attaches
a positive probability to the event that his opponent is informed. However, his belief of state g remains
constant if he conditions on the event that his opponent is uninformed.

18This is also what is typically observed in the previous literature (e.g. Bonatti and Hörner, 2011).
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However, we �nd that in the no-exit phase, an uninformed player's e�ort level may be an

increasing or decreasing function of time. In the stationary case, we have a clear-cut condition:

Proposition 3. The equilibrium e�ort level in the no-exit phase kN,∗(t) increases over time

if

r <
λbU

c− hλb

. (19)

It decreases otherwise.

Condition (19) can be easily interpreted as the case in which the markup of e�ort in

the bad state is positive, that is, r
[
λb

(
h+ U

r

)
− c

]
> 0. Consider an uninformed player i's

incentive to exert e�ort. Conditional on the event that his opponent is uninformed, player i's

belief that the state is good remains constant. Therefore, if his opponent's e�ort level remains

the same as the e�ort level at time 0, player i remains indi�erent among all e�ort levels.

Conditional on the event that his opponent is informed and hence has stopped working, the

uninformed player strictly prefers to exert e�ort if the markup of e�ort in the bad state is

positive.19

The combined e�ect of these two events makes player i strictly prefer to exert e�ort, if

the e�ort level of player i's uninformed opponent remains the same as the e�ort level at time

0. Therefore, to make player i indi�erent among all e�ort levels, his uninformed opponent's

e�ort level must increase over time. (Recall that players' e�ort inputs are substitutes.)

Similarly, if the markup of e�ort is negative, uninformed player i strictly prefers to shirk

conditional on the event that his opponent is informed and hence has stopped working. To

counteract this incentive to shirk, the e�ort level of player i's uninformed opponent must

decrease over time.

The equilibrium strategies of the equilibrium identi�ed in Proposition 2 are illustrated in

Figure 3 and Figure 4. Figure 3 illustrates the equilibrium strategy when the markup of e�ort

kG∗

t∗ t

ki(t)

0

fG∗

t∗ t

fi(t)

0

Figure 3: Equilibrium e�ort level and exit rate

in the bad state is negative.20 The left-hand side is the e�ort level of an uninformed player

19This is discussed in Section 3 and more formally in the online appendix.
20Parameters are λg = 1, λb = 1/2, β = 1/2, h = 1, c = 2/3, U = 1/20, r = 1, p0 = 1/2.

22



as a function of time, and the right-hand side is the exit rate of an informed player. Figure 4

illustrates equilibrium strategies when the markup of e�ort in the bad state is positive. In

this case, the e�ort level increases initially.21

kG∗

t∗ t

ki(t)

0

fG∗

t∗ t

fi(t)

0

Figure 4: Equilibrium e�ort level and exit rate when ki(t) increases

Notice that at the threshold time t∗, there is a discontinuity in the e�ort level. Intuitively,

when the game transitions from the no-exit to the gradual-exit phase, an uninformed player

has more incentive to procrastinate, since he can learn from observing whether or not his

opponent exits. To counterbalance this e�ect, the e�ort level must drop at the transition

time. The drop decreases the incentive of an uninformed player to procrastinate, since his

opponent's lower e�ort level reduces the bene�t from postponing his own e�ort.

4.2 Other Parameter Regions�Immediate-Exit Equilibrium

We now analyze the cases in which p0 ≤ pI or U ≥ λbh. We show that, in these cases,

there exists an equilibrium with just one phase in which informed players exit immediately.

Throughout, we use superscript I to mark e�ort and exit rates in the immediate-exit phase.

Suppose that upon observing a bad-state-revealing signal, an informed player exits im-

mediately. His opponent optimally follows suit, since an exit reveals to him that the state is

bad. The situation is as if the private signal were publicly observed. We only need to char-

acterize an uninformed player's e�ort level and his exit decision conditional on both players

being uninformed. Depending on the parameters, an uninformed player may exert interior

or full e�ort, or he exits at time 0.

Suppose e�ort levels are interior. Then as in the no-exit and gradual-exit phase we can

use heuristic arguments to derive the equilibrium e�ort level of an uninformed player. Given

belief pg at some time t, suppose that an uninformed player i exerts e�ort ki over the interval

[t, t+ dt), and k′
i over the interval [t+ dt, t+ 2dt). Again, we compare exerting a bit more

e�ort today with exerting a bit more e�ort tomorrow.

Exerting a bit more e�ort today would increase the probability of the arrival of an

instantaneous success or a signal at rate λs,I(pg)ε. In this case, player i will not have to

21Parameters are λg = 1, λb = 1/2, β = 1/2, h = 1, c = 2/3, U = 1/20, r = 1/10, p0 = 4/5.
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pay the cost of the planned e�ort tomorrow, which is kic. If instead player i waits and

exerts a bit more e�ort tomorrow, then�as in the no-exit and gradual-exit phases�if a

success or a signal arrives or player j exits, the planned extra e�ort for tomorrow would

not have to be carried out. The probability of this event is λs,I(pg)(ki + kj) and the cost

saved is cε. Again, there is also a cost of postponing, given that players are impatient. This

cost is proportional to the markup of e�ort, which in the immediate-exit phase is given by

λs(pg)
(
h+ U

r

)
+ (1− pg)β U

r
− c. It follows that postponing e�ort is pro�table if and only if

λs,I(pg)(ki + kj)c︸ ︷︷ ︸
saved costs upon arrival

of a success or signal

− r

[
λs(pg)

(
h+

U

r

)
+ (1− pg)β

U

r
− c

]
︸ ︷︷ ︸

costs of delayed markup of e�ort

≥ λs,I(pg)kic.︸ ︷︷ ︸
bene�t of

advancing e�ort

(20)

There are three di�erences between (20) and (8). First, the opponent is informed with

probability zero, pbi = 0. Therefore, pbu equals 1 − pg. Second, whenever the opponent is

informed, he reveals the signal immediately by exiting. Hence, the postponed e�ort is saved

in that event. Third, player i, if informed, also takes the outside option immediately, so the

markup of e�ort is adjusted accordingly.

In equilibrium, the equilibrium e�ort level is chosen such that players have no incentive

to postpone or expedite e�ort. From (20), we obtain that the equilibrium e�ort is given by:

kI
j (t) =

r(hλs(pg)− c)

cλs,I(pg)
+

U

c
. (21)

At any time t, as long as no success, signal, or exit has yet occurred, a player assigns

zero probability to the event that his opponent is informed. Moreover, given the assumption

that β = λg − λb, the belief p
g(t) that the state is good always remains p0. The equilibrium

is stationary and the uninformed player's equilibrium e�ort level is constant and given by

kI,∗
j =

r(hλs(p0)− c) + λgU

cλg

. (22)

Again, we can identify the parameter regions for which e�ort levels are interior. We also

identify immediate-exit equilibria for the other cases, in which either uninformed players

exert full e�ort, or both players exit at time zero.22 The following proposition summarizes

these results.

Proposition 4. Suppose that Assumption 1 holds and that p0 ≤ pI or U ≥ λbh. There

exists an immediate-exit equilibrium in which an informed player exits immediately and his

22The details of the discussion are relegated to the appendix.
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opponent follows suit.

(i) If U ≤ c and p0 ≤ min{pI , c−hλb+(c−U)λg/r

h(λg−λb)
}, then an uninformed player exerts e�ort

min{kI,∗
j , 1}, with kI,∗

j as in (22).

(ii) If U ≥ c and p0 > pc,∗, an uninformed player exerts full e�ort. If U ≥ c and p0 < pc,∗,

both players take the outside option at time 0.

A

pI(U) pc,∗(U)C

B

D

E

b

b

b

b

λbh c λgh0

p0
1

U

c−λbh
λgh−λbh

2-phase
equilibrium
(delayed exit)

Imm. exit
Interior e�ort

Imm. exit
Full e�ort

Both players
exit at t = 0

Figure 5: Immediate-exit equilibrium

Figure 5 illustrates the di�erent equilibria that we identi�ed for the stationary case as

the outside option (on the x-axis) and the prior belief (on the y-axis) vary.23 The quadrangle

(A,B,C, (0, 1)) bounds the area of (U, p0) for which there exists a two-phase equilibrium as

characterized in Subsection 4.1. Informed players delay their exit, which results in delayed

sharing of their private information. When p0 < pI and U ≤ λbh, or λbh ≤ U < c and

p0 ≤ c−hλb+(c−U)λg/r

h(λg−λb)
, then an informed player exits immediately and an uninformed player

chooses an interior e�ort level. This is the area of (U, p0) in the triangle (A,B,D). The

solid line DE corresponds to the condition that p0 is equal to pc,∗(U). The area (C,B,D,E)

above this line contains pairs (U, p0) for which an immediate exit equilibrium exits in which

an uninformed player exerts full e�ort. If (U, p0) lies below and to the right of DE, then

both players exit at time t = 0.

4.3 Comparative statics

For a �xed prior probability p0, Figure 6 shows the ratio of the equilibrium payo� over the

cooperative payo� as U increases. It corresponds to the sectional view indicate by the dashed

blue line in Figure 5.24

For low values of the outside option, a 2-phase equilibrium as identi�ed in Section 4

exists. The prior probability is high enough such that an informed player chooses to stay

23Parameters in the �gure are λg = 1, λb = 1/2, h = 1, c = 2/3, r = 1.
24Parameters are λg = 1, λb = 1/3, β = 2/3, h = 1, c = 2/3, r = 1/2, p0 = 4/5.
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Interior e�ort
Immediate exit

U2

Full e�ort
Immediate exit

U3

Both players
exit at t=0

Figure 6: The ratio of equilibrium over cooperative payo� as U varies

with the project and delays his exit decision. This leads to delayed information transmission.

Moreover, uninformed players have an incentive to procrastinate and hence only exert inte-

rior e�ort. In this parameter region there are two types of ine�ciencies: delayed information

transmission and procrastination. As U increases, the outside option becomes more attractive

and for payo�s U ≥ U1, informed players exit immediately. The ine�ciency due to delayed

information transmission disappears. Uninformed players still only exert interior e�ort. The

ine�ciency due to procrastination remains in the team problem. A further increase in U

makes the outside option more attractive, and diminishes an uninformed player's incentive

to procrastinate. For U ≥ U2 uninformed players exert full e�ort. At this point there are no

ine�ciencies in the team problem anymore. Both ine�ciencies, delayed information trans-

mission and procrastination have disappeared. Finally, if the payo� of the outside option is

so high that the prior probability is below the cooperative threshold, then both players exit

immediately. This is the case if U ≥ U3 where U3 is the value at which p0 = pc,∗.

Both U1 and U3 are increasing functions of p0, while U2 decreases in p0. Moreover, as can

be seen from Figure 5, depending on the given prior p0 not all types of equilibria need to

exist.

The following proposition provides some more detailed comparative statics for the 2-phase

equilibrium region.

Proposition 5. All else equal, for U ∈ (0, U1), the e�ort and exit level in the gradual-exit

phase, kG,∗ and fG,∗, increase in U . The belief qu,∗ at the transition time t∗ increases in U .

The transition time t∗ decreases in U with the limits limU→U1 t
∗ = 0 and limU→0 t

∗ = ∞.
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5 General Case

In this section, we use the results from the stationary case to extend the analysis and solve

the general case, in which β < λg−λb. In the general case, if signals were public, then players

would become more pessimistic about the state being good, as long as no success or private,

bad-state-revealing signal arrives. This is in contrast to the stationary case, in which the

belief of state g would remain constant. As before, if everything else is �xed, the lack of a

signal makes a player more con�dent about the state being good when β > 0 than in the

case in which β = 0. In the general case, however, the arrival rate of the signal is not high

enough for the lack of a signal to fully o�set the nonarrival of a success.

We present an equilibrium which consists of three phases: the no-exit phase, the gradual-

exit phase, and the immediate-exit phase.25 In contrast to the stationary case, an additional,

immediate-exit phase exists, since in the general case the gradual-exit phase cannot last

forever. When β < λg − λb, even if an uninformed player is certain that his opponent is also

uninformed, the �rst player becomes more pessimistic about the state being good as more

e�ort is put into the project. Therefore, there exists no pair of a constant e�ort level and

exit rate under which players' beliefs stay constant in the absence of any success, signal, or

exit. The incentives to exert e�ort during the no-exit and the gradual-exit phase are similar

to the ones in the stationary case, described in Section 4. Unlike in the stationary case,

the equilibrium exit rate increases to in�nity during the gradual-exit phase. At the end of

the gradual-exit phase, if a player's opponent has not exited, the player believes that his

opponent is uninformed with probability one. At the same time, uninformed players become

rather pessimistic about the state, and are not willing to exert high e�ort. The game proceeds

to the immediate-exit phase: any player who becomes informed exits immediately, because

the equilibrium e�ort is su�ciently low that the �ow payo� from staying is strictly less than

the level of the outside option, even if the opponent is uninformed and exerting e�ort with

probability one. The immediate-exit phase lasts until the �ow payo� to uninformed players

from staying drops to the level of the outside option, at which point both players opt for the

outside option.

In all three phases, uninformed players do not exit, and exert positive e�ort. We let t∗1 and

t∗2 denote the threshold time at which the game proceeds from the no-exit to the gradual-exit

phase, and from the gradual-exit to the immediate-exit phase, respectively. Let t∗3 denote the

time when the immediate-exit phase ends and uninformed players exit. The structure of this

equilibrium is illustrated in Figure 7.

As for the stationary case, we �rst examine an equilibrium for the parameter region

25This is the natural counterpart to, and generalization of the equilibrium discussed in Section 4.
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t
Uninformed player No exit/positive e�ort

Informed player
t∗1 t∗2 t∗30

No exit Gradual exit Immediate exit

Figure 7: The three-phase equilibrium for the general case

in which a three-phase equilibrium exists. We then discuss equilibria for other parameter

regions in Subsection 5.2.

5.1 Three-phase Equilibrium

In this section, we examine the case U < λbh , in which a player who observes a private

signal may want to stay with the project instead of taking his outside option immediately.

We present a symmetric equilibrium with three phases: the no-exit, the gradual-exit, and the

immediate-exit phase. We discuss each of theses phases separately. Here, we rely heavily on

the analysis of the stationary case in Section 4. Moreover, we present the assumptions under

which the equilibrium consisting of three phases exists. As in Section 4, we use superscripts

N,G, I to represent these three phases, respectively. As in the stationary case, by Assump-

tion 1, at time 0, the prior belief that the state is good is su�ciently high that players do

not exit, but stay with the project and choose a positive e�ort level.

No-exit phase: Throughout the no-exit phase, conditional on the state being bad, the

product of (i) the probability that a player is still uninformed and (ii) the e�ort level by an

uninformed player is su�ciently high that an informed player strictly prefers to stay with the

project. As in the stationary case, the motion of beliefs follows (6), and the equilibrium e�ort

kN,∗(t) is given by expression (9). It guarantees that uninformed players have no incentive to

either postpone or expedite e�ort. However, in the general case, we cannot obtain a closed-

form e�ort level anymore. Nevertheless, the equilibrium e�ort level follows as a solution to

an ODE.26 It is derived by combining (9) and the evolution of the beliefs (6).

Gradual-exit phase: Analogous to the stationary case, the equilibrium e�ort level and

exit rate are given by (15); beliefs evolve according to (12). The equilibrium e�ort level and

exit rate are such that (i) an informed player is indi�erent between staying with the project

and exiting, and (ii) an uninformed player is indi�erent between exerting a bit more e�ort

today and doing so tomorrow. However, given the assumption that β < λg − λb, we cannot

�nd a constant e�ort level and constant exit rate such that an uninformed player's beliefs

about the state, and about his opponent's information about the state, stay constant over

time. The reason the beliefs (pg, pbi, pbu) cannot stay constant is that the probability qg(t)

that the state is good, conditional on neither player being informed, decreases over time as

26The formal details are in the appendix.
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more e�ort is put into the project. The equilibrium e�ort level decreases, and the equilibrium

exit rate increases. Moreover, in the gradual-exit phase, an informed player's belief qu(t) that

his opponent is uninformed increases over time. There exists a �nite time t∗2 at which the

conditional belief qu(t) approaches one, and the equilibrium exit rate goes to in�nity. At

this time, a player who has not observe an exit is certain that his opponent has obtained no

signal and is still uninformed. The game proceeds to the immediate-exit phase.27

Immediate-exit phase: In the immediate-exit phase, an informed player exits imme-

diately. The situation is as if signals were public. Hence, from an uninformed player i's

perspective, the probability pbi that the state is bad and the opponent is informed is zero.

We thus have pg + pbu = 1. On the equilibrium path, both players are uninformed.

At any given time t in the immediate-exit region, suppose player i's belief is pg. If the two

players exert e�orts (ki, kj) over the interval [t, t+ dt), conditional on no success, signal, or

exit, player i's updated belief at time t+ dt is

pg + dpg =
pge−λg(ki+kj)dt

pge−λg(ki+kj)dt + (1− pg) e−(β+λb)(ki+kj)dt
. (23)

Equilibrium e�ort levels kI,∗(t) are given by (21), which guarantees that the players have

no incentive to postpone or expedite e�ort. In contrast to the stationary case, e�ort levels

are not constant in the immediate-exit region. It is easily veri�ed that the e�ort level (21)

increases in pg. Since the belief pg decreases over time in the immediate-exit phase, so does

the equilibrium e�ort level kI,∗(t).

We now need to determine the transition times t∗1, t
∗
2 at which the game proceeds from

the no-exit to the gradual-exit phase, from there to the immediate-exit phase; and the �nal

exit time t∗3 at which uninformed players exit.

To determine the time interval [t∗2, t
∗
3) of the immediate-exit phase, notice that for an

informed player to be willing to exit immediately, it must be the case that kI,∗
j (t)λbh ≤ U .

Combined with (21), this imposes an upper bound on the belief that the state is good in the

immediate-exit phase:28

pg(t) <
(c− hλb)(U(β + λb) + hλbr)

U(β + λb − λg)(c− hλb) + h2λbr(λg − λb)
:= pI ∀ t ∈ [t∗2, t

∗
3) . (24)

Notice, that in the stationary case this coincides with the belief threshold that separates

27We can also interpret the exit rate f(t) for t ∈ [t∗1, t
∗
2) as choosing an exit time according to a certain

distribution. In particular, a player who is informed at τ ∈ [t∗1, t
∗
2) chooses to exit at t ≥ τ according to the

distribution 1 − e−
∫ t
τ
f(s)ds. A player who is informed at τ < t∗1 chooses to exit at t ≥ t∗1 according to the

distribution 1− e
−

∫ t
t∗1

f(s)ds
.

28Notice that in the stationary case (24) reduces to (18).
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prior beliefs for which a two-phase equilibrium exists, from those for which there exists an

immediate-exit equilibrium. This is expected since we are �back to start� in the sense that,

at time t∗2 � as at time t = 0 � the probability that a player is informed is back to zero.

The immediate-exit phase lasts until the belief that the state is good drops to the level

such that hλs(pg)− c = 0. At this point, the marginal bene�t from e�ort, hλs(pg), is exactly

equal to the marginal cost c. Uninformed players are indi�erent between all e�ort levels and,

according to (21), choose the e�ort level at kj = U/c. For an uninformed player i�who

bene�ts from his opponent's e�ort�this e�ort level generates a �ow payo� at the same level

as the outside option, that is, kj · hλs(pg) = U/c · c = U . At this time, t∗3, the belief that the

state is good reaches a level such that the marginal bene�t from e�ort equal the marginal

cost. Players therefore take the outside option.

At the transition time, t∗2, between the gradual-exit and the immediate-exit phases, the

belief qu(t) that the opponent is uninformed, conditional on the bad state, must approach

one, which is equivalent to requiring that pbi(t) approaches zero. Moreover, at the transition

time t∗2, (24) must be satis�ed, that is, the belief qg(t) that the state is good, conditional

on neither player being informed, must be less or equal to pI .29 We show that there exists a

unique transition time t∗1 such that there exists a transition time t∗2 at which beliefs satisfy

these two required conditions: (i) qu(t∗2) = 1, and (ii) pg(t∗2) ≤ pI . Moreover, the latter

condition is binding.30

Depending on the parameter region, a three-phase equilibrium may not exist. In order for

such an equilibrium to exist, the prior belief must be high enough for there to be an initial

no-exit phase. This is the case if and only if the prior belief is (strictly) above pI , as de�ned

in (24). Moreover, the belief that the state is good must decrease to pg(t) ≤ pI . Hence, for a

three-phase equilibrium to exist, it must be the case that pI ∈ (0, 1). This imposes a lower

bound on the discount rate r.

Assumption 2. The discount rate satis�es:

r >
λgU(c− hλb)

hλb(hλg − c)
.

Again, we identify conditions that guarantee that the e�ort levels in all three phases are

interior, and hence the boundary constraint 0 ≤ ki(t) ≤ 1 does not bind.

Lemma 2. Suppose that Assumption 1 and 2 hold, 0 < U < λbh, and p0 > pI . Then, if

r ≤ min{ λbU
c−hλb

, λg(c−U)

λgh−c
}, the equilibrium e�ort levels in all three phases are always interior.

29Notice that in the immediate-exit phase qg(t) = pg(t)
pg(t)+pbu(t)

= pg(t).
30The formal proof is in the appendix.
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Otherwise, there exists a p̃ ∈
(
pI , 1

)
such that equilibrium e�ort levels are always interior if

p0 ≤ p̃.

As in the stationary case, for su�ciently patient players, e�ort levels are always interior.

Otherwise, there exists an upper bound on beliefs, such that for all prior beliefs below it,

equilibrium e�ort levels are always interior.

We are now ready to state the main result for the general case.

Proposition 6. Suppose that Assumption 2 holds, 0 < U < λbh, and p0 ∈
(
pI , min{p̃, 1}

]
.

Suppose that one of the three conditions in Lemma 2 holds. Then there exists a symmetric

perfect Bayesian equilibrium which consists of three phases: a no-exit phase, t ∈ [0, t∗1); a

gradual-exit phase, t ∈ [t∗1, t
∗
2); and an immediate-exit phase, t ∈ [t∗2, t

∗
3). In equilibrium:

(i) an uninformed player exerts the e�ort level kN,∗(t) (9) in the no-exit phase, the ef-

fort level kG,∗(t) (15) in the gradual-exit phase, and the e�ort level kI,∗(t) (21) in the

immediate-exit phase. Both uninformed players exit at time t∗3.

(ii) an informed player exerts no e�ort. He does not exit in the no-exit phase, exits at �nite

rate fG,∗(t) (15) in the gradual-exit phase, and exits immediately in the immediate-exit

phase.

(iii) if a player observes that his opponent exits, this player exits immediately.

(iv) the beliefs (pg(t), pbi(t), pbu(t)) equal (p0, 0, 1−p0) at time 0. The beliefs evolve according

to (6) in [0, t∗1), according to (12) in [t∗1, t
∗
2), and according to (23) in [t∗2, t

∗
3).

Figure 8 illustrates the equilibrium e�ort as a function of time.31

t∗1 t∗2 t∗3 t

ki(t)

0

No exit Gradual exit Immediate exit

Figure 8: Equilibrium e�ort level for the general case

31Parameters are λg = 1, λb = 1/3, β = 1/3, h = 1, c = 2/5, U = 1/20, r = 1/10, p0 = 1/4.
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O�-path beliefs and behavior.

Here, we brie�y discuss players' behavior o� path. Suppose that an uninformed player devi-

ated in such a way that, at time t, the aggregate e�ort of player i over the interval [0, t) is

lower than it would have been on path. This means that player i is more optimistic than he

would have been on path. His optimism leads him to exert maximal e�ort until the time at

which his private belief reverts to the common belief. At this time he reverts to the common

strategy. If a player deviates in such a way that his realized aggregate e�ort is greater than

in equilibrium, he is more pessimistic and provides no e�ort until the private belief reverts

to the common belief again. Regardless of his past deviation, an informed player assigns the

same belief to the event that his opponent is informed. Therefore, o� path, it is still optimal

for him to follow the equilibrium exiting strategy. If the opponent has not exited by time

t > t∗3, an informed player believes that his opponent is exerting zero e�ort, and thus the

informed player exits immediately. An uninformed player also believes that his opponent is

exerting zero e�ort and decides whether to exit based on his private belief that the state is

good. This private belief is calculated based on his own and his opponent's aggregate e�ort

over the interval [0, t∗3). At time t∗3 an uninformed player remains with the project and exerts

e�ort if and only if his belief is above the single-player threshold.

5.2 Other Parameter Regions�Immediate-Exit Equilibrium

As in the stationary case, it may be that for certain parameter regions, no three-phase

equilibrium exists. In this section, we discuss equilibria for these parameter regions. As in

Subsection 4.2 we focus on immediate-exit equilibria.

In any immediate-exit equilibrium, if a player becomes informed, he immediately exits

and takes the outside option. Hence, the situation is as if signals were public, and the belief

p(t) that the state is good, conditional on no success, signal, or exit, is:

p(t) =
p0e

−λg
∫ t
0 2ki(s)ds

p0e
−λg

∫ t
0 2ki(s)ds + (1− p0)e

−(β+λb)
∫ t
0 2ki(s)ds

. (25)

We only need to characterize an uninformed player's e�ort level and exit behavior. Players'

incentives to exert e�ort are the same as in the immediate-exit phase. However, the e�ort

level does not necessarily coincide with equation (21). When U is su�ciently large, the e�ort

level given by (21) exceeds 1. In this case, players initially exert the maximum e�ort level,

until their belief that the state is good becomes su�ciently low that (21) drops below 1.

Then, they exert the interior e�ort level (21). The equilibrium e�ort is min{kI,∗
j (t), 1}, with

kI,∗
j (t) given by (21).

Over time, if no success, signal, or exit arrives, uninformed players get more pessimistic
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about the state being good. When the belief that the state is good decreases to c−hλb

h(λg−λb)
,

uninformed players are then indi�erent among all e�ort levels, and their �ow payo�s equal

U . At this time, both players take the outside option.

Proposition 7. Suppose that p0 ≤ pI or U ≥ λbh. Suppose that the e�ort is productive a

priori as in Assumption 1. There exists an immediate-exit equilibrium in which an informed

player exits immediately and his opponent follows suit immediately.

(i) If U ≤ λbh and p0 < pI or λbh < U < c, an uninformed player exerts e�ort min{kI,∗
j , 1}

with kI,∗
j de�ned as in (21), and exits when the belief of state g decreases to c−hλb

h(λg−λb)
.

(ii) If U ≥ c and p0 > pc,∗, an uninformed player exerts full e�ort, and exits when the belief

of state g decreases to pc,∗.

(iii) If U ≥ c and p0 ≤ pc,∗, an uninformed player exits at time 0.

6 Conclusion

In this paper, we studied a team problem in which the success rate of the joint project

is unknown and collaborators may privately receive discouraging news. Players can choose

whether and when to share this information with their collaborators by choosing when to

exit the project. We analyzed how the possibility of receiving private discouraging news

a�ects the incentive of collaborators to exert e�ort and the timing thereof, as well as players'

optimal strategy for exiting and revealing discouraging news.

We characterized equilibria with no-exit, gradual-exit and immediate-exit phases and

identi�ed two types of ine�ciencies. On the one hand, players have an incentive to pro-

crastinate e�ort and to free-ride on the e�ort of their collaborators. On the other hand,

equilibrium behavior displays delayed and di�used information transmission. This may lead

to a deadlock of the project, in which both players do not exert e�ort anymore and the

project is inactive. Remarkably, e�ort levels in the no-exit phase may increase, since players

may want to compensate for the lack of e�ort of informed competitors. Moreover, increasing

the payo� of the outside option diminishes both ine�ciencies and encourages collaboration.

Our results raise a number of intriguing questions to explore in future research. We have

already begun to investigate how to generalize the results to the n-player case, as well as

to a larger set of arrival rates. Moreover, we plan to investigate the e�ect of deadlines,

and the optimal transparency policy that a social planner would choose. Speci�cally, we are

interested in understanding whether it is optimal to force team member to immediately make

their information public, or if it may be bene�cial to delay the sharing of discouraging news

among team members.

33



Appendix

A Proofs

Proof of Proposition 1. In the cooperative game, it is without loss to focus on symmetric

strategies. If Nλbh−c ≥ U , it is optimal to exert full e�ort until a success occurs. The payo�

is given by

V c = (1− p0)
Nλb(hr + U)− cr

Nλb + r
+ p0

Nλg(hr + U)− cr

Nλg + r
.

If Nλbh− c < U , the belief of state g evolves according to (1). Given the belief p of state g,

the �ow payo� per player if all players choose the e�ort level k̃ is

(Nhλs (p)− c) k̃,

with λs(p) := pλg + (1 − p)λb. By the Principle of Optimality, the value function of the

cooperative game satis�es

V (p) = max
k̃∈[0,1]

{
r (Nλs(p)h− c) k̃dt+ e−rdtNλs,I(p)k̃dt(U − V (p+ dp)) + e−rdtV (p+ dp)

}
.

Substituting V (p + dp) = V (p) − V ′(p)Nk̃(1 − p)p(λg − λb − β)dt, using 1 − rdt as an

approximation to e−rdt and rearranging, we obtain the Bellman equation:

V (p) = max
k̃∈[0,1]

{
(Nhλs(p)− c)k̃ − Nk̃(1− p)p(λg − λb − β)V ′(p)

r
+

(U − V (p))Nk̃λs,I(p)t

r

}
.

The linearity in k̃ of the maximand in the Bellman equation immediately implies that it is

always optimal to choose either k̃ = 0 or k̃ = 1. In the latter case, V satis�es the �rst-order

ODE:

V (p) = Nhλs(p)− c+
1

r

[
Nλs,I(p) (U − V (p))−N(1− p)p(λg − λb − β)V ′(p)

]
.

Let pc,∗ denote the cuto� belief at which players are indi�erent between staying with the

project while exerting full e�ort and taking the outside option. The value matching V (pc,∗) =

U and smooth pasting V ′(pc,∗) = 0 conditions allow us to solve for the cuto� belief pc,∗ and

the constant of the integration in the solution to the above ODE. The cooperative threshold

pc,∗ satis�es

Nh (λgp
c,∗ + (1− pc,∗)λb)− c = U.

34



If the belief is above the cooperative threshold, players stay with the project and exert full

e�ort. Otherwise they take the outside option.

Lemma 3. The expected instantaneous e�ort qu(t)kN,∗(t) exerted by a player in the no-exit

region, decreases over time.

Proof of Lemma 3. In the no-exit region, based on the equilibrium e�ort (10) and the evo-

lution of beliefs (6), the posterior beliefs pg(t) and pbu(t) are given by:

pg(t) =
p0

(
C2e

C1t + λg

)
eC1t(C2 + (1− p0)(λg − λb)) + λb(1− p0) + λgp0

,

pbu(t) =
(1− p0)

(
C2e

C1t + λg

)
eC1t(C2 + (1− p0)(λg − λb)) + λb(1− p0) + λgp0

.

The belief qu(t) equals pbu(t)/(1− pg(t)). The product qu(t)kN,∗(t) is equal to:

C1

eC1t(C2 − λb + λg) + λb

,

which decreases in t given that p0 is above (c− λbh)/(λgh− λbh).

Proof of Lemma 1. We want to derive conditions under which the e�ort level in (10) is

interior for all t ∈ [0, t∗) with t∗ as in (17).

(i) Suppose that r ≤ min{ λbU
(c−hλb)

, λg(c−U)

λgh−c
}.

If r ≤ λbU/(c−hλb), it can be shown that the e�ort level in (10) is increasing (this is formally

established in Proposition 3). Hence, the constraint ki(t) ≤ 1 does not bind if and only if it

does not bind at t∗. Based on the formula in (10), the left-hand limit of ki(t) at t
∗ is

lim
t↑t∗

kN,∗(t) =
hkG,∗λb(1− p0)(λb(hr + U)− cr) + p0U(λg(hr + U)− cr)

cUλ(p0)
. (26)

Given the assumption that r < λbU
(c−hλb)

, this limit increases in p0 and kG,∗. On the other

hand, kG,∗ given by (16) increases in p0. Therefore, the left-hand limit limt↑t∗ k
N,∗(t) is an

increasing function of p0. It is easy to check that for p0 = 1 the right-hand side of (26) is

less or equal to 1 if and only if r
[
λg

(
h+ U

r

)
− c

]
≤ cλg, which is equivalent to r ≤ λg(c−U)

λgh−c
.

Hence, under this condition, for any prior belief p0, ki(t) ≤ 1 does not bind, given that the

right-hand side of (26) is increasing in p0. This proves the �rst part of the lemma.

35



(ii) Now suppose that r > min{ λbU
(c−hλb)

, λg(c−U)

λgh−c
}.

Case 1: Suppose λg(c−U)

λgh−c
< r ≤ λbU

(c−hλb)
. In this case, given that (26) is increasing in p0, there

exists a unique p̄ such that

hkG,∗λb(1− p0)(λb(hr + U)− cr) + p0U(λg(hr + U)− cr)

cUλ(p0)

∣∣∣∣
p0=p̄

= 1.

Whenever the prior belief is below p̄, then equilibrium e�orts are interior.

Case 2: If r ≥ λbU
(c−hλb)

, the e�ort level in (10) is decreasing (cf. Proposition 3). Hence, e�orts

are interior if and only if the boundary constraint ki(t) ≤ 1 does not bind at time 0. It is easy

to check that the equilibrium e�ort in the no-exit phase given by (10) satis�es ki(0) ≤ 1, if

and only if,

p0 ≤
cr

c−hr−U
+ λb

λb − λg

. (27)

In this case, p̄ is given by the right-hand side of (27), and equilibrium e�orts in the no-exit

phase are always interior if p0 ≤ p̄.

Proof of Proposition 2.

We �rst discuss some details on how we obtain the equations that determine equilibrium

e�ort and exit rates. We then verify stage by stage that the strategy pro�le described in

Proposition 2 is an equilibrium.

Part 1: E�ort levels and exit rates

Consider the no-exit phase. For given e�ort levels (ki(t), kj(t)) the evolution of beliefs follows

(6). Given the beliefs and the e�ort choice at time t, let QN
1 denote the probability that a

success occurs, and QN
2 is the probability that no success occurs and player i obtains a signal

in interval [t, t+ dt):

QN
1 = pg

(
1− e−λg(ki+kj)dt

)
+ pbi

(
1− e−λbkidt

)
+ pbu

(
1− e−λb(ki+kj)dt

)
, (28)

QN
2 =

(
pbie−kiλbdt + pbue−λb(ki+kj)dt

) (
1− e−βkidt

)
.

Player i's continuations payo� at time t can be written as

Vi,t = r(QN
1 h− ckidt) + e−rdt

(
QN

1 U +QN
2 Wi,t+dt + (1−QN

1 −QN
2 )Vi,t+dt

)
,

where Wi,t+dt denotes player i's continuations payo� at t+ dt if he is informed.
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We apply the same expansion to Vi,t+dt to obtain

Vi,t =r(QN
1 h− kicdt) + e−rdt

(
QN

1 U +QN
2 Wi,t+dt

)
+ e−rdt(1−QN

1 −QN
2 )

·
[
r(QN

1

′
h− k′

icdt) + e−rdt(QN
1

′
U +QN

2

′
Wi,t+2dt + (1−QN

1

′ −QN
2

′
)Vi,t+2dt)

]
,

where QN
1

′
, QN

2
′
denote the probability that a success occurs, respectively the probability

that no success occurs and player i obtains a signal in interval [t+ dt, t+ 2dt). Note that

an informed player i's continuation payo� Wi,t+dt,Wi,t+2dt only depends on the probability

that j is uninformed, and on j's e�ort level if uninformed. The e�ort choices ki, k
′
i of an

uninformed player do not a�ect Wi,t+dt,Wi,t+2dt. The evolution of Wi,t is given by:

W ′
i,t =rWi,t −

kjλbp
bu(hr + U −Wi,t)

1− pg
(29)

The second term is proportional to the product of the probability that the other player's

e�ort generates a success, conditional on the state being bad. A success yields payo� hr+U

but also has an opportunity cost equal to the continuation payo� Wi,t.

In order to analyze the e�ect of postponing e�ort, consider decreasing ki by ε and increas-

ing k′
i by the same amount. Note that, conditional on reaching t+2dt without a breakthrough

and without becoming informed, the resulting beliefs are unchanged, and therefore so is the

continuation payo� Vi,t+2dt. To ease interpretation of the e�ect of postponing e�ort, we use

the Taylor expansion to the third order.32 Assuming that ki, kj,Wi,t are continuous, and

letting dt → 0, we are left with

dVi,t/dε

dt2
=β(1− pg)W ′

i,t +
[
βλbp

bu(hr + U −Wi,t) + cr(λbp
bu + λgp

g)
]
kj (30)

+ r [cr − β(1− pg)Wi,t − (hr + U)(pgλg + (1− pg)λb)] .

Postponing e�ort is pro�table for player i if and only if
dVi,t/dε

dt2
≥ 0. By substituting (29) into

(30) and rearranging, we obtain (8). In equilibrium e�ort levels are such that uninformed

players have no incentive to postpone or expedite e�ort. It follows that e�ort levels must

satisfy (9). If one of the conditions in Lemma 1 holds, the e�ort level is interior. We obtain

that the e�ort level is given by (10).

Consider the gradual-exit phase. Given e�ort levels ki, kj, exit rates fi, fj and beliefs

at time t, the probability QG
1 that a success occurs during [t, t + dt) is given by the same

expression as in the no-exit phase. Let QG
2 denote the probability that (i) no success occurs

32 For instance, e−rdt = 1− rdt+ r2dt2/2 +O
(
dt3

)
.
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and (ii) player i becomes informed or player j exits:

QG
2 = pbie−kiλbdt

(
1− e−(fj+βki)dt

)
+ pbu

(
1− e−βkidt

)
e−λb(ki+kj)dt.

If no success occurs, player i is not informed, and player j does not exit, player i's updated

beliefs at time t+ dt are given by (12).

Player i's continuation payo� at time t has to satisfy the following recursion:

Vi,t =r(QG
1 h− kicdt) + e−rdt(QG

1 +QG
2 )U + e−rdt(1−QG

1 −QG
2 )Vi,t+dt,

where Vi,t+dt = r(QG
1

′
h− k′

icdt) + e−rdt((QG
1

′
+QG

2

′
)U + (1−QG

1

′ −QG
2

′
)Vi,t+2dt).

Note that if player i becomes informed, his continuation payo� is U , since an informed player

is indi�erent between exiting and not.

Again, we consider the e�ect of decreasing ki by ε and increasing k′
i by the same amount.

It is given by:

dVi,t/dε

rdt2
=pbi(c− hλb)fj + (βpbuhλb + c(λbp

bu + λgp
g))kj − β(pbi + pbu)U

− r

[
λ(pg)

(
h+

U

r

)
− c

]
. (31)

Substituting (13) into (31), we obtain that postponing e�ort is pro�table if and only if (14)

holds. The equilibrium e�ort level is such that an uninformed player i has no incentive to

postpone or expedite e�ort. Combining this with the condition (13) which guarantees that

informed players are indi�erent between staying with the project and exiting yields (15).

Part 2: Verifying the equilibrium strategy pro�le

We now verify stage by stage that the strategy pro�le described in Proposition 2 is an

equilibrium.

Step 1: We begin with Stage Informed, the stage in which player i has observed a private

signal, but no success or exit yet. If player i enters Stage Informed at time t̂, he learns that

the state is bad. De�ne t∗ to be the time, at which play enters the gradual-exit phase from

the no-exit phase. That is, for all t < t∗, the exit rate is zero, fN,∗(t) = 0, and the �ow payo�

of an informed player is weakly higher than the outside option.

Suppose that t < t∗, and that player j follows the equilibrium strategy, that is, if he is

uninformed his e�ort kN
j (t) is given by (9). Then conditional on no success and the fact that

he himself is informed, player i assigns the following probability to the event that player j
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is uninformed:

qu(t) =
pbu(t)

pbi(t) + pbu(t)
=

λge
−λg

∫ t̂
0 kj(s)ds

λg − λb

(
1− e−λg

∫ t̂
0 kj(s)ds

) , (32)

Note that the belief in (32) does not depend on the amount of experimentation that player

i has conducted before time t. The �ow payo� that player i obtains from staying with the

project is given by:

qu(t)kN,∗
j (t)λbh =

C1hλb

eC1t(C2 − λb + λg) + λb

,

which, as discussed, is weakly greater than U . Hence, an informed player i �nds it optimal

not to exit. At time t∗, the conditional probability that player j is uninformed, as speci�ed

in (32), decreases to U/(hkG,∗λb). From t∗ on, play enters the gradual-exit phase, in which

an informed player j exits at a constant rate fG,∗ > 0. Player i becomes more con�dent that

player j is uninformed if player j has not exited. On the other hand, player i becomes less

con�dent that player j is uninformed given that there is no success. The e�ort level kG,∗ in

(16) and the corresponding exit rate fG,∗ are chosen so that the probability that player i

assigns to the event that player j is uninformed, conditional on no exit and no success, stays

constant at U/(hkG,∗λb). Also, given that an uninformed player j's e�ort level is kG,∗, the

�ow payo� that player i obtains from staying with the project is exactly U . Hence, player i

is indi�erent between exiting and staying.

If player i enters Stage Informed at t > t∗, it is easy to check that he believes that player j

is uninformed with probability U/(hkG,∗λb), so he is indi�erent between exiting and staying.

If player i observes the exit by an opponent (that is, entering Stage Exit or (Informed,

Exit)), then he assigns probability 1 to the bad state. He is now in the single-player case,

and hence it is optimal for him to take the outside option.

Step 2: Next we show that for an uninformed player it is optimal to choose the e�ort level as

speci�ed in Stage Null. Recall that Stage Null is the stage in which no success or signal has

occurred yet. Hence, in Stage Null, the initial values are pg(0) = p0 = 1− pbu(0), pbi(0) = 0,

and the sum of pg(t), pbi(t), pbu(t) always equals 1.

Claim 1: The evolution of player i's beliefs pg(t), pbi(t), pbu(t) given player j's strategy does

not depend on the e�ort that player i actually exerts.

Indeed, in the no-exit phase, that is when t ≤ t∗, if player i chooses the e�ort level

k̃i(t) over the interval [t, t+ dt), his updated beliefs given that he obtains no public success

or private signal are given by (6) (with ki = k̃i). Substituting β = λg − λb and pbi(t) =
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1− pg(t)− pbu(t), the corresponding derivatives are33

pg ′(t) = −kj(t)p
g(t)(λg(1− pg(t))− λbp

bu(t)),

pbu
′
(t) = −kj(t)p

bu(t)(λg(1− pg(t))− λbp
bu(t)),

which do not depend on k̃i(t). Substituting the equilibrium e�ort level kN
j (t) from (9) and

the initial values, we derive explicitly player i's beliefs in the no-exit phase (for t ≤ t∗):

pg(t) =
p0

(
C2e

C1t + λg

)
eC1t(C2 + (1− p0)(λg − λb)) + λb(1− p0) + λgp0

,

pbu(t) =
(1− p0)

(
C2e

C1t + λg

)
eC1t(C2 + (1− p0)(λg − λb)) + λb(1− p0) + λgp0

.

At time t∗, these beliefs are

pg(t∗) =
p0U

p0U + hkG,∗λb(1− p0)
, pbu(t∗) =

U(1− p0)

p0U + hkG,∗λb(1− p0)
. (33)

In the gradual-exit phase, when t > t∗, suppose that player j follows the equilibrium

strategy, that is, chooses the e�ort level kG,∗ if uninformed, and exits at the rate fG,∗ if

informed, given by (16). If an uninformed player i chooses the e�ort level k̃i(t), the derivatives

of his beliefs given that he obtains no success or signal and that player j has not exited are:

pg ′(t) = pg(t)
[
fG,∗ (1− pg(t)− pbu(t)

)
− kG,∗ (λg(1− pg(t))− λbp

bu(t)
)]

,

pbu
′
(t) = pbu(t)

[
fG,∗ (1− pg(t)− pbu(t)

)
− kG,∗ (λg(1− pg(t))− λbp

bu(t)
)]

.

Substituting kG,∗, fG,∗ and the initial values pg(t∗), pbu(t∗), we obtain that beliefs stay con-

stant: pg(t) = pg(t∗) and pbu(t) = pbu(t∗) for t ≥ t∗. This shows that, on and o� path,

pg(t), pbi(t), pbu(t) are constant for any t ≥ t∗. For ease of exposition, we denote these prob-

abilities by pg,∗, pbi,∗, pbu,∗. This veri�es Claim 1.

We can now verify an uninformed player's equilibrium e�ort levels.

We �rst analyze player i's incentive to exert e�ort in the gradual-exit phase, i.e., when

t ≥ t∗. Let V (t) denote the (normalized) continuation payo� of player i at time t > t∗ if he

is uninformed and his opponent has not exited yet. The equilibrium is stationary, so we can

33We omit the sequence pbi(t) since pbi(t) = 1− pg(t)− pbu(t).
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ignore the subscript t. The payo� must satisfy the Bellman equation:

V = max
k̃i∈[0,1]

{
r
[
(pg,∗λg + pbu,∗λb)(k̃i + kG,∗)h+ pbi,∗λbk̃ih− ck̃i

]
dt+ e−rdtV

+ e−rdt
[
(pg,∗λg + pbu,∗λb)(k̃i + kG,∗) + pbi,∗λbk̃i + pbi,∗fG,∗ + (pbi,∗ + pbu,∗)k̃iβ

]
(U − V )dt

}
.

Note that if a success occurs, or player i's opponent exits, or player i becomes informed, the

continuation payo� of player i is equal to the outside option U . Otherwise, the continuation

payo� is V . Substituting e−rdt = 1− rdt and rearranging, we obtain the Bellman equation:

V = max
k̃i∈[0,1]

{[
(pg,∗λg + pbu,∗λb)(k̃i + kG,∗)h+ pbi,∗λbk̃ih− ck̃i

]
+

1

r

[
(pg,∗λg + pbu,∗λb)(k̃i + kG,∗) + pbi,∗λbk̃i + pbi,∗fG,∗ + (pbi,∗ + pbu,∗)k̃iβ

]
(U − V )

}
.

Substituting the probabilities in (33) and the equilibrium e�ort level k̃i = kG,∗, we solve for

V and obtain:

V =
kG,∗hλg(λb(hr + U)− cr)− U(λg(hr + U)− cr)

kG,∗hλbλg + hr(λb − λg)− λgU
. (34)

Substituting V into the Bellman equation, we verify that the FOC with respect to k̃i indeed

equals zero:

[
h(λb(p

bi,∗ + pbu,∗) + λgp
g,∗)− c

]
− 1

r
((β + λb)(p

bi,∗ + pbu,∗) + λgp
g,∗)(V − U) = 0.

Therefore, an uninformed player i is indeed indi�erent among all e�ort levels. The �rst term is

the incremental payo� from exerting e�ort. However, exerting e�ort increase the probability

of obtaining a success or a signal. In both cases, the continuation payo� decreases from V

to U , as captured by the second term.34

We now analyze an uninformed player i's incentive to exert e�ort in the no-exit phase,

when t < t∗. Let V (t) denote the (normalized) continuation payo� of player i if he is unin-

formed:

V (t) = max
k̃i∈[0,1]

{
r
(
QN

1 h− ck̃idt
)
+ e−rt

[
QN

1 U +QN
2 W (t+ dt) +

(
1−QN

1 −QN
2

)
V (t+ dt)

]}
,

where QN
1 is the probability to obtain a success, and QN

2 is the probability that no success

occurs and player i obtains a signal, as given in (28). Here, W (t) is player i's continuation

payo� if he is informed at time t. From the analysis above, we know that the choice of k̃i does

34Note that V must be weakly greater than U , because an uninformed player always has the option to
exit immediately and obtain U .
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not a�ect V (t+dt) or W (t+dt).35 Substituting V (t+dt) = V (t)+V ′(t)dt and rearranging,

we obtain the Bellman equation:

V (t) = max
k̃i∈[0,1]

{(
QN

1 h− ck̃idt
)
+

1

r

[
QN

1 U +QN
2 W (t)− (QN

1 +QN
2 )V (t) + V ′(t)

]}
. (35)

We �rst calculate the value function W (t). Recall that qu(t) is the probability that player

j is uninformed conditional on state b and kj(t) is the e�ort rate.

W (t) =rqu(t)kN
j (t)λbhdt+ e−rdt

[
qu(t)kN

j (t)λb(U −W (t+ dt))dt+W (t+ dt)
]
.

Substituting the probabilities and the equilibrium e�ort level, we obtain an ODE of W (t).

The boundary condition W (t∗) = U allows us to determine the unique solution for W (t):

W (t) =
e(t−t∗)(C1+r)

(
U(C1 + r)(C2 − λb + λg)e

C1t∗ + λbr(U − C1h)
)
+ C1λb(hr + U)

(C1 + r) (eC1t(C2 − λb + λg) + λb)
.

From the FOC with respect to k̃i, we can solve for V (t) in terms of W (t):

V (t) =
−cr + (λg − λb) [p

g(t)(hr + U) + (1− pg(t))W (t)] + λb(hr + U)

λg

.

Substituting the value function V (t),W (t) and the equilibrium e�ort into the Bellman equa-

tion (35), we can easily verify that the Bellman equation is satis�ed. Moreover, limt↑t∗ V (t)

is equal to the stationary value as in (34).

Notice, that the lower bound on the prior belief p0 ≥ pI implies fG,∗ ≥ 0. The exit rate is

positive and hence well-de�ned. Moreover, if one of the conditions in Lemma 1 holds, then

the e�ort level in the no-exit phase is interior and equal to (10).

Drop in e�ort levels at t∗ We next show that at t∗, the e�ort level decreases discontinu-

ously. That is, limt↑t∗ k
N,∗
i (t) > kG,∗. Solving p0 as a function of kG,∗ and substituting p0 into

limt↑t∗ k
N,∗
i (t) > kG,∗, the inequality is equivalent to

(ckG,∗λg + cr − λg(hr + U))
(
hkG,∗λb(c− hλb)(k

G,∗λg + r)− U(r(c− hλg) + ckG,∗λg − λgU)
)

< 0.

This can be shown to be true, based on the observation that ckG,∗λg+cr−λg(hr+U) < 0.

35Note that time always moves forward, so only the right-hand derivative of the value functions V,W
matter here. It turns out that V,W are not of class C1.
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Proof of Proposition 3. The derivative of kN,∗(t) as de�ned in (10) with respect to t is

dkN,∗(t)

dt
= − C2

1C2e
C1t

(C2eC1t + λg)
2 ,

which is positive if and only if C2 < 0. It is easily veri�ed that C2 < 0 if and only if

r > λbU
c−λbh

.

Proof of Proposition 4. Let V denote the value function. Suppose an informed player exits

immediately. Then for an uninformed player i's e�ort level ki to be a best-response against

his opponent's strategy, the value function V has to solve the following Bellman equation:

V = max
k̃i∈[0,1]

{
r
[
λs(p0)h

(
k̃i + kj

)
− ck̃i

]
+ λg

(
k̃i + kj

)
(U − V )

}
. (36)

Taking the derivative of the Bellman equation with respect to k̃i and setting it to zero allows

us to solve for V :

V =
r (hλs(p0)− c) + λgU

λg

.

Substituting V into the Bellman equation, we solve for the symmetric e�ort level, and obtain

(22).

It is easy to check for both cases (i) and (ii), that for e�ort levels given by (22) it holds

that kI,∗
j λbh < U , and hence it is optimal for informed players to exit immediately.

(i) For U ≤ λbh and p0 < pI , the e�ort level kI,∗
j given by (22) is interior. If informed

players exit immediately, on-path players attach probability 1 to their opponent being

uninformed.

If λbh < U < c, then for equilibrium e�orts given by (22) to be interior, it must hold

that

p0 ≤
c− hλb + (c− U)λg/r

h(λg − λb)
.

Otherwise, uninformed players exert full e�ort.

(ii) For U ≥ c, is holds that kI
j (t) ≥ 1, and hence uninformed players exert maximal e�ort

in equilibrium. In order to guarantee that uninformed players want to stay with the

project and exert e�ort, it must be that the value function V given by (22) is greater

than U . This is the case, if and only if

p0 ≥
c− 2λbh+ U

2h(λg − λb)
= pc,∗, (37)

that is, if the prior belief is higher than the cooperative threshold.
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Proof of Proposition 5. The belief qu,∗ equals U/(hkG,∗λb). De�ne x
G := U/kG,∗. The depen-

dence of xG, kG,∗ on U is omitted when no confusion arises. The variable xG satis�es the

following equation
hλb(c− hλb)(λgU + rxG)

xG(xG(λg(hr + U)− cr)− cλgU)
=

p0
1− p0

.

The left-hand side is positive, so the value xG is bounded from below by cλgU

λg(hr+U)−cr
. The

derivative (xG)′(U) is given by

λgr(x
G)2(hλg − xG)

xG(2λgU + rxG)(λg(hr + U)− cr)− cλ2
gU

2
.

The numerator is strictly positive given that xG = hλbq
u is strictly below hλg. The denomina-

tor increases in xG for all xG ∈ [0, hλb]. Substituting xG = cλgU

λg(hr+U)−cr
into the denominator,

we obtain a lower bound
cλ3

gU
2(hr+U)

λg(hr+U)−cr
on the denominator. Since this lower bound is strictly

above 0, the derivative (xG)′(U) is strictly positive.

The e�ort level kG,∗ satis�es the following equation:

hkG,∗λb(c− hλb)(k
G,∗λg + r)

U(λg(hr + U)− cr − ckG,∗λg)
=

p0
1− p0

The derivative (kG,∗)′(U) is given by

kG,∗(kG,∗λg + r)(−ckG,∗λg − cr + hλgr + 2λgU)

U(kG,∗λg(−ckG,∗λg − 2cr + 2λg(hr + U)) + r(λg(hr + U)− cr))
.

Both the numerator and the denominator of the above expression are strictly positive given

that λg(hr + U)− cr − ckG,∗λg > 0. Therefore, (kG,∗)′(U) is strictly positive.

The exit rate fG,∗ can be written as

fG,∗ = λbk
G,∗hλg − xG

hλb − xG
.

Since hλg−xG

hλb−xG increases in xG given that λb < λg, f
G,∗ increases in U .

The transition time is given by

t∗ =
log

(
λb(U−hkG,∗λg)

C2hkG,∗λb−U(C2−λb+λg)

)
C1

.
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As U approaches U1, the e�ort level k
G,∗ approaches

r(h(λb(1− p0) + λgp0)− c)

λg(c− hλb)
.

Substituting U = U1 and this corresponding e�ort level into t
∗, we obtain that limU→U1 t

∗ = 0.

As U approaches 0, the corresponding e�ort level kG,∗ = p0(hλg−c)

hλb(1−p0)(c−hλb)
U+o(U). Substituting

this e�ort into t∗, we obtain that limU→0 t
∗ = ∞.

We then prove that t∗ decreases in U . It is easily veri�ed that C1 is positive and increases

in U . Therefore, we only need to show that the
(

λb(U−hkG,∗λg)

C2hkG,∗λb−U(C2−λb+λg)

)
decreases in U .

Substituting C2 and xG = U/kG,∗ and taking the derivative with respect to U , we obtain

that this derivative is negative if

cr(λb(p0 − 1)− λgp0) + (hr + U)
(
λ2
b(1− p0) + λ2

gp0
)
≥ 0,

which is true given that p0 ≥ pI .

Proof of Lemma 2.

Notice that in the gradual- and immediate-exit phase, the equilibrium e�ort levels are de-

creasing. Hence, it su�ces to identify conditions under which the equilibrium e�ort level in

the no-exit phase is always interior, that is, we identify su�cient conditions under which the

boundary constraint kN,∗
i (t) ≤ 1 does not bind.

At any time t ∈ [0, t∗1), the equilibrium e�ort in the no-exit phase is given by

kN,∗
i =

cr((qu − 1)qg + 1) + (hr + U)(λb(q
g − 1)− λgq

uqg)

cqu(λb(qg − 1)− λgqg)
.

The dependence of kN,∗
i , qu, qg on t is omitted. During the no-exit phase, both beliefs qu, qg

decrease in t. If cr ≥ λb(hr + U), both partial derivatives ∂ki/∂q
g and ∂ki/∂q

u are posi-

tive. Therefore, the highest e�ort during the no-exit phase occurs at time 0. The boundary

constraint ki ≤ 1 does not bind if and only if

p0 ≤
cr

hr+U−c
− λb

λg − λb

.

Setting p̃ equal to the right-hand-side, this proves the result for this case. This is the same

condition as in the stationary case.

If cr < λb(hr + U), the partial derivative ∂ki/∂q
u is negative. The partial derivative
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∂ki/∂q
g is positive if and only if

qu ≥ 1− cr(λg − λb)

λb(λg(hr + U)− cr)
:= q∗.

Note that if qg = p0 and qu equals q∗ as de�ned above, the derivative (qu)′(t) is negative.

Therefore, the beliefs (qu, qg) during the no-exit phase is con�ned to the region [q∗, 1]×[0, p0],

and must satisfy the condition that (qu)′(t) > 0. It is easily veri�ed that when cr < λb(hr+U),

there exists a unique q∗∗ ∈ (q∗, 1) such that (qu)′(t) = 0 when (qu, qg) = (q∗∗, p0). (Note that

q∗∗ is a function of p0.) The beliefs (qu, qg) during the no-exit phase is further con�ned to

the region [q∗∗, 1] × [0, p0]. The boundary constraint kN,∗
i ≤ 1 does not bind if it does not

bind when (qu, qg) = (q∗∗, p0). It is readily veri�ed that q∗∗ decreases in p0. Since ki increases

in qg and decreases in qu, kN,∗
i at (q∗∗, p0) increases in p0. When p0 equals 1, q∗∗ and ki at

(q∗∗, p0) are given by

q∗∗ =
cλgU

hλb(λg(hr + U)− cr)
, kN,∗

i =
λg(hr + U)− cr

cλg

.

If λg(hr+U)−cr

cλg
> 1, there exists a p̃ < 1 such that kN,∗

i at (q∗∗, p0) equals 1 when p0 = p̃.

The boundary constraint kN,∗
i ≤ 1 does not bind if p0 ≤ p̃. If λg(hr+U)−cr

cλg
≤ 1, the boundary

constraint kN,∗
i ≤ 1 does not bind for all p0 ∈ (0, 1). We let p̃ equal 1 in this case.

To sum up, the boundary constraint kN,∗
i ≤ 1 does not bind if p0 ≤ p̃.

Proof of Proposition 6 .

We show that under the conditions in Proposition 6, there exist a three-phase equilibrium.

This is done by verifying that the strategy and belief pro�le identi�ed in Proposition 6 is an

equilibrium.

Step 1:

When the discount rate r is su�ciently small, that is r ≤ U(λg−λb−β)(c−hλb)

h2λb(λg−λb)
, the threshold

belief pI is negative. It is readily veri�ed that, for any p0 ∈
(

c−λbh
λgh−λbh

, 1
)
, the e�ort level

based on the immediate-exit formula (21) satis�es the condition that kI,∗
j λbh < U . There

exists an equilibrium consisting of just one immediate-exit phase. From now on, we focus on

the parameter region such that r > U(λg−λb−β)(c−hλb)

h2λb(λg−λb)
, in which case the threshold belief pI is

strictly positive.

If the prior belief p0 is below pI , there exists an equilibrium consisting of just one

immediate-exit phase. If there exists p0 ∈ (0, 1) such that p0 > pI , it must be true that
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pI < 1. The constraint pI < 1 is equivalent to

r >
λgU(c− hλb)

hλb(hλg − c)
. (38)

For all lower discount rates r, pI ≥ 1. Therefore, for any p0 ∈
(

c−λbh
λgh−λbh

, 1
)
, the e�ort level

based on the immediate-exit formula (21) satis�es the condition that kI,∗
j λbh < U . There

exists an equilibrium consisting of just one immediate-exit phase. From now on, we focus on

the parameter region such that (38) holds and p0 > pI .

Step 2: Verifying equilibrium e�ort levels and exit rates

Suppose player j follows the equilibrium strategy (k∗
j , f

∗
j ). We want to show that player i

�nds it optimal to choose the equilibrium e�ort and exit levels. To do so, we formulate player

i's problem as a control problem with free endpoint: The uninformed player i chooses his

e�ort level and when to exit.

Conditional on no success and no exit of the opponent, let pg(t), pb,ii(t), pb,iu(t), pb,ui(t),

pb,uu(t) denote the following probabilities: (i) the state is good; (ii) the state is bad and

both are informed; (iii) the state is bad and only i is informed; (iv) the state is bad and

only j is informed; (v) the state is bad and no player is informed. With the complementary

probability, either a success has occurred or the opponent has exited. In both cases, player i

has switched to the outside option. According to the construction of the equilibrium strategy

(k∗
j , f

∗
j ) (cf. Section 5), an informed player prefers to stay with the project in the no-exit

phase, is indi�erent between staying and exiting in the gradual-exit phase, and strictly prefers

to take the outside option in the immediate-exit phase. If player j exerts e�ort kj(t), then

an uninformed player i's �ow payo� (net of U) at time t is given by

f0(t) =h
[
(λgp

g(t) + λbp
b,uu(t))

(
k̃i(t) + kj(t)

)
+ λb

(
k̃i(t)p

b,ui(t) + kj(t)p
b,iu(t)

)]
−

(
ck̃i(t) + U

)
(pg(t) + pb,ui(t) + pb,uu(t))

+ (pb,ii(t) + pb,iu(t))max

{
0,

pb,iu(t)

pb,ii(t) + pb,iu(t)
kj(t)λbh− U

}
.

We de�ne two state variables

w1(t) = e−λg
∫ t
0 k̃i(s)ds, w2(t) = e−(λb+β)

∫ t
0 k̃i(s)ds,

and let γ1(t) and γ2(t) be the associated costate variables. For ease of exposition, we also let

x1(t) = e−λg
∫ t
0 kj(s)ds, x2(t) = e−(λb+β)

∫ t
0 kj(s)ds.
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Since kj is given, x1(t) and x2(t) are given functions of time. Substituting w′
1 = −λgk̃iw1

and w′
2 = −(β + λb)k̃iw2, we obtain the Hamiltonian of this problem:

H
(
k̃i, w1, w2, γ1, γ2, t

)
= e−rtf0(t)− k̃i(t) [(β + λb)γ2(t)w2(t) + λgγ1(t)w1(t)] .

During the no-exit phase, the probabilities pg(t), pb,ui(t), pb,uu(t) are given as follows:

pg(t) = p0w1(t)x1(t), pb,ui(t) = (1− p0)
βw2(t)(1− x2(t))

β + λb

, and (39)

pb,uu(t) = (1− p0)w2(t)x2(t).

The probability that player i is informed is

pb,ii(t) + pb,iu(t) =
β(1− p0)(1− w2(t))(β + λbx2(t))

(β + λb)2
,

and the probability that player j is uninformed conditional on player i being informed is

qu(t) =
pb,iu(t)

pb,ii(t) + pb,iu(t)
=

(β + λb)x2(t)

β + λbx2(t)
.

An informed player i (weakly) prefers to take the outside option if qu(t)kj(t)λbh−U ≤ 0. Sub-

stituting the above probabilities into H
(
k̃i, w1, w2, γ1, γ2, t

)
, we obtain that the Hamiltonian

is linear in the state variables w1, w2.
36 The derivative ∂H

∂k̃i(t)
equals zero for all t ∈ [0, t1) if and

only if both
∂(∂H/∂k̃i(t))

∂t
and ∂H

∂k̃i(t)
equal zero for all t ∈ [0, t1). Substituting γ

′
1, γ

′
2, w

′
1, w

′
2, x

′
1, x

′
2

into the equation
∂(∂H/∂k̃i(t))

∂t
= 0, we obtain the equilibrium e�ort

kj(t) =
pg(t)(λg(hr + U)− cr) + (pb,ui(t) + pb,uu(t))(λb(hr + U)− cr)

c(λbpb,uu(t) + λgpg(t))
.

This corresponds to the formula (9) that we obtain from the heuristic argument in Section 4.

Notice that the equation de�ning the e�ort level is the same as in the stationary case.

However, e�orts in the general case generically di�er, since the motion of beliefs in (6)

depend on β. The condition ∂H
∂k̃i(t)

= 0 requires that for all t ∈ [0, t1)

(β + λb)γ2(t)w2(t) + λgγ1(t)w1(t) = e−rt((hλb − c)(pb,ui(t) + pb,uu(t)) + pg(t)(hλg − c)). (40)

Let t∗1 denote the transition time from the no-exit to the gradual-exit phase, and t∗2 denote the

36It will turn out that the Hamiltonian is linear in w1, w2 during the gradual-exit and immediate-exit
phase as well.
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transition time from the gradual-exit to the immediate-exit phase. During the gradual-exit

phase, an informed player i is indi�erent between exiting and not. The last term in f0(t) is

always zero. the evolution of pg(t), pb,uu(t) is the same as in the no-exit phase. The evolution

of pb,ui(t) incorporates player j's exit behavior:

pb,ui(t) = w2(t)e
Fj(t)

(
β(1− p0)

∫ t

t1

e−Fj(s)kj(s)x2(s)ds+
pb,ui(t1)

w2(t1)

)
,

where Fj(t) = −
∫ t

t1
fj(s)ds. The derivative

∂H
∂k̃i(t)

equals zero for all t ∈ [t∗1, t
∗
2) if and only if

both
∂(∂H/∂k̃i(t))

∂t
and ∂H

∂k̃i(t)
equal zero for all t ∈ [t∗1, t

∗
2). Substituting γ′

1, γ
′
2, w

′
1, w

′
2, x

′
1, x

′
2 into

the equation
∂(∂H/∂k̃i(t))

∂t
= 0, we obtain the equilibrium exit rate:

fj(t) =
pb,uu(t)(U(β + λb) + hλbr − λbkj(t)(βh+ c)− cr) + pg(t)(λg(hr + U)− c(λgkj(t) + r))

pb,ui(t)(c− hλb)

+
(U(β + λb)− cr + hλbr)

(c− hλb)
.

This corresponds to the formula (15) that we obtain from the heuristic argument. The

condition ∂H
∂k̃i(t)

= 0 requires that for all t ∈ [t∗1, t
∗
2)

(β + λb)γ2(t)w2(t) + λgγ1(t)w1(t) = e−rt((hλb − c)(pb,ui(t) + pb,uu(t)) + pg(t)(hλg − c)). (41)

From the construction of (k∗
j , f

∗
j ), we know that lim

t↑t∗2
pb,ui(t) = 0.37 Informed players strictly

prefer to exit immediately after t∗2. Therefore, if an player i observes no exit of his opponent,

he believes that his opponent is uninformed. Thus, pb,ui(t) remains zero for all t ≥ t∗2. Player

i's �ow payo� (net of U) at time t is given by

h
[
(λgp

g(t) + λbp
b,uu(t))

(
k̃i(t) + kj(t)

)]
−

(
ck̃i(t) + U

)
(pg(t) + pb,uu(t)).

The derivative ∂H
∂k̃i(t)

equals zero for all t ∈ [t∗2, t
∗
3) if and only if both

∂(∂H/∂k̃i(t))
∂t

and ∂H
∂k̃i(t)

equal

zero for all t ∈ [t∗2, t
∗
3). Substituting γ′

1, γ
′
2, w

′
1, w

′
2, x

′
1, x

′
2 into the equation

∂(∂H/∂k̃i(t))
∂t

= 0, we

obtain the equilibrium e�ort level:

kj(t) =
pb,uu(t)(U(β + λb) + r(hλb − c)) + pg(t)(λg(hr + U)− cr)

c(β + λb)pb,uu(t) + cλgpg(t)
.

This corresponds to the formula (21) that we obtain from the heuristic argument. The

37We will formally verify this in Step 3.
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condition ∂H
∂k̃i(t)

= 0 requires that for t ≥ t∗2

(β + λb)γ2(t)w2(t) + λgγ1(t)w1(t2) = e−rt(pb,uu(t)(hλb − c) + pg(t)(hλg − c)).

This is consistent with (40) and (41) since pb,ui(t) equals zero for t ≥ t∗2. The exit time of an

uninformed player is denoted by t∗3. It is chosen such that the posterior belief that the state

is good, that is qg(t) = pg(t)
pg(t)+pb,uu(t)

, equals c−λbh
(λg−λb)h

. In this case, the equilibrium e�ort at t∗3
is equal to U/c. Player i's �ow payo� at t∗3 is exactly zero.

Step 3: Transition times

Next, we determine the transition times t∗1, t
∗
2. We show that there exists a unique pair

t∗1, t
∗
2 such that, if the game proceeds to the gradual-exit phase at t∗1, the probability pb,ui(t)

approaches zero at t = t∗2. We know moreover that, for informed players to be willing to exit

immediately starting from t∗2, the belief that the state is good at time t∗2 must be below pI .

Consider the two probabilities:

qg(t) :=
pg(t)

pg(t) + pb,uu(t)
, qu(t) :=

pb,iu(t)

pb,ii(t) + pb,iu(t)
.

Here, qg(t) is the probability of state is good conditional on both players being uninformed;

and qu(t) is the probability that the opponent is uninformed conditional on player i being

informed. Both qg(t) and qu(t) are in [0, 1], and hence well-de�ned. The evolution of the

beliefs qg(t), qu(t) during the no-exit phase is given by (39). An informed player is willing to

stay during the no-exit phase, if and only if qu(t)kN,∗
j (t)λbh ≥ U . Let t̂1 be the minimum time

at which this inequality holds with equality. The transition time t∗1 must satisfy t∗1 ∈ [0, t̂1].

Substituting the equilibrium e�ort level and the exit rate, we obtain the evolution of the

beliefs qg(t), qu(t) during the gradual-exit phase:

qg ′(t) = −2(1− qg(t))qg(t)U(λg − β − λb)

hλbqu(t)
, qu′(t) =

H1(q
u(t))qg(t) +H2(q

u(t))

hλb(1− qg(t))(c− hλb)
,

where the functions H1(·) and H2(·) are de�ned as follows:

H1(q
u) = hλb(λg(hr + U)− cr) (qu)2 + (hλbr(c− hλb)− cλgU)qu + U(β + λb)(c− hλb),

H2(q
u) = (hλb − c)(U(β + λb) + hλbq

ur).

Note that if qu(t) ever reaches 1, it must be the case that qu(t) increases to 1 from below.

This means that if lim
t→t̂2

qu(t) = 1, then ∃ε > 0 such that qu′(t) ≥ 0 for all t ∈
(
t̂2 − ε, t̂2

)
.

Substituting qu(t) = 1 and qu′(t) ≥ 0, we obtain that qg(t) ≥ pI . On the other hand, it is
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required that when the game proceeds to the immediate-exit phase at t∗2, q
u(t∗2) = 1 and

qg(t∗2) ≤ pI . Therefore, if such a t∗2 exists, it must be the case that q
g(t∗2) = pI .

Notice that qg ′(t) is always negative. The sign of qu′(t) depends on the location of the vec-

tor (qg(t), qu(t)) ∈ [0, 1]2. If the parameters are such that H1(q
u) is positive for all qu ∈ [0, 1],

then qu′(t) is positive if and only if (qg(t), qu(t)) lies above the line de�ned by

qg(t) = −H2(q
u(t))

H1(qu(t))
.

If the parameters are such that H1(q
u) is negative for some qu ∈ (0, 1), it is readily veri�ed

that the equation H1(q
u) = 0 has two roots in (0, 1). For all qu ≤ 1 that are above the larger

root, qu′(t) is positive if and only if (qg(t), qu(t)) lies above the line qg = −H2(qu)
H1(qu)

. Let us

summarize some important observations:

(i) The beliefs at time zero are (qg(t), qu(t)) = (p0, 1). This vector lies above the line

qg = −H2(qu)
H1(qu)

;

(ii) if the �rst phase ended at t̂1, the beliefs at t̂1, (q
g(t̂1), q

u(t̂1)), are such that qu′(t) is

strictly negative;

(iii) The only legitimate belief at which the game can transition from the gradual-exit to the

immediate-exit phase is (qg(t), qu(t)) = (pI , 1). This vector is on the line qg = −H2(qu)
H1(qu)

.

This shows that there exists a t∗1 ∈ (0, t̂1) such that if the game transitions from the �rst to the

second phase at t∗1, there exists a t
∗
2 > t∗1 such that at t

∗
2 it holds that (q

g(t∗2), q
u(t∗2)) = (pI , 1),

and the game moves to the immediate-exit phase.

1

1

0
Pr (uninf.|b)

Pr (g|both uninf.)

p0

pI

Pr (uninf.|b) ⇑

Pr (uninf.|b) ⇓

Ab
BbCb

D
b

Figure 9: Evolution of the conditional beliefs
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Figure 9 illustrates an example.38 The solid line corresponds to the equation qg = −H2(qu)
H1(qu)

.

The derivative qu′(t) is positive above it and negative below it. The dashed line illustrates

how the beliefs (qg(t), qu(t)) evolve in the no-exit phase. The beliefs start at (p0, 1) and move

toward the origin along the dashed line. The point D corresponds to the belief at time t̂1 if

the no-exit phase lasts until t̂1. We need to choose a point on the dashed line at which the

game proceeds to the gradual-exit phase. If the game proceeded to the gradual-exit phase at

point B, the beliefs would exit the triangle ABC at point B (because qu′ > 0). If the game

proceeded to the gradual-exit phase at point C, the beliefs would exit the triangle ABC at

point C (because at C, qu′ = 0 and qg ′ < 0). By continuity, there exits a point between B

and C such that the beliefs exit the triangle ABC at point A.

Proof of Proposition 7.

(i): Given that kI
j (t)λbh < U , it is optimal for an informed player to exit immediately. Let

pg(t) denote the probability that the state is good and no success, signal or exit has occurred

by time t, and pb(t) the probability that the state is bad and no success, signal or exit has

occurred by time t:

pg(t) = p0e
−λg

∫ t
0 (k̃i(s)+kj(s)ds, pg(t) = (1− p0)e

−(β+λb)
∫ t
0 (k̃i(s)+kj(s)ds.

We de�ne two state variables w1(t) = e−λg
∫ t
0 (k̃i(s)+kj(s))ds and w2(t) = e−(β+λb)

∫ t
0 (k̃i(s)+kj(s))ds

with γ1(t) and γ2(t) being the corresponding costate variables. The Hamiltonian of this

problem is given by

H(k̃i, w1, w2, γ1, γ2, t) =e−rt
[
p0w1(t)(k̃i(t)(hλg − c) + hλgkj(t)− U) (42)

+(1− p0)w2(t)(k̃i(t)(hλb − c) + hλbkj(t)− U)
]

− (k̃i(t) + kj(t)) [(β + λb)γ2(t)w2(t) + λgγ1(t)w1(t)] .

We want to show that the equilibrium e�ort is given by (21), where p(t) is the belief that

the state is good conditional on no success, signal or exit by time t, which is given by

p(t) =
p0w1(t)

p0w1(t) + (1− p0)w2(t)
.

Taking the derivative of ∂H/∂k̃i(t) with respect to t and substituting w
′
1(t), w

′
2(t), γ

′
1(t), γ

′
2(t),

38Parameters are λg = 1, λb = 1/3, β = 1/3, h = 1, c = 2/5, U = 1/20, r = 1/4, p0 = 1/4.
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we obtain that the sign of
∂(∂H/∂k̃i(t))

∂t
is the same as the sign of

kj(t)−H(p(t)), where H(p(t)) :=

r(hλ(p(t))−c)
β(1−p(t))+λ(p(t))

+ U

c
.

If H(p0) is smaller than 1, kj(t) is chosen such that
∂(∂H/∂k̃i(t))

∂t
equals zero throughout. Then,

the derivative ∂H/∂k̃i(t) is also equal to zero throughout. If H(p0) is greater than 1, kj(t) is

equal to 1 whenever H(p(t)) > 1 holds. Note that H(p(t)) increases in p(t). Therefore, there

exists a time when p(t) is su�ciently low such that H(p(t)) drops below 1. From then on,

kj(t) equals H(p(t)) until p(t) drops to c−hλb

h(λg−λb)
, at which point both players opt out. Given

this choice of the e�ort level, it is easily veri�ed that ∂H/∂k̃i(t) is positive when H(p(t)) is

above 1, and is zero when H(p(t)) drops below 1. The �rst order condition with respect to

the control k̃i(t) is satis�ed.

(ii): Given that U ≥ c > λbh, it is optimal for an informed player to exit immediately. Again,

the Hamiltonian of this problem is given by (42). We want to show that the two players exert

full e�ort until the equilibrium belief of state g equals pc,∗. First, given k̃i(t) = kj(t) = 1, the

posterior belief of state g at time t is

p0e
−λg2t

p0e−λg2t + (1− p0)e−(β+λb)2t
,

which is a strictly decreasing function at t. Let T c denote the time at which the posterior

belief drops to pc,∗. It is easily veri�ed that the �ow payo� at T c given k̃i(t) = kj(t) = 1 is 0.

Second, the evolution of γ1, γ2 is given by

γ′
1(t) = p0e

−rt(k̃i(t)(c− hλg)− hλgkj(t) + U) + λgγ1(t)(k̃i(t) + kj(t))

= p0e
−rt(c− 2hλg + U) + 2λgγ1(t),

γ′
2(t) = (β + λb)γ2(t)(k̃i(t) + kj(t))− (p0 − 1)e−rt(k̃i(t)(c− hλb)− hλbkj(t) + U)

= 2(β + λb)γ2(t)− (p0 − 1)e−rt(c− 2hλb + U).

and the boundary condition γ1(T
c) = γ2(T

c) = 0. Lastly, we show that the derivative of H
with respect to k̃i(t) is positive. Substituting γ1(T

c) = γ2(T
c) = 0, we obtain the derivative

∂H
∂k̃i

at time T c:

e−rt((p0 − 1)w2(t)(c− hλb) + p0w1(t)(hλg − c)).
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This is positive since c−λbh
h(λg−λb)

> pc,∗. The derivative of ∂H
∂k̃i

with respect to t is

∂
(
∂H/∂k̃i

)
∂t

=e−rt
[
p0e

−2λgt(c(λg + r)− λg(hr + U))

+(1− p0)e
−2t(β+λb)(c(β + λb)− U(β + λb) + r(c− hλb))

]
.

This is negative for all t ≤ T c. Therefore, ∂H/∂k̃i decreases in t, and is positive for all t ≥ T c.

The Hamiltonian is concave in the state variables w1, w2, so these conditions are su�cient.

B Formal discussion of the single-player optimal policy

As discussed in Section 3 when the belief that the state is good is above the single-player

threshold ps,∗, the optimal strategy is to exert full e�ort until either a success or a signal

arrives, and to then take the outside option. Here we provide a more formal argument of this

result.

At any belief pt, if a player exerts full e�ort ki(t) = 1, his value function V s(pt) must

satisfy the following recursion.

V s(pt) =r (h(λb(1− pt) + λgpt)− c) dt

+ e−rdt [((1− pt) (β + λb) + ptλg) dt(U − V s(pt+dt) + V s(pt+dt)] ,

where pt+dt is given by pt − (1− pt)pt (λg − λb − β) dt and V s(pt+dt) is

V s(pt+dt) = V s(pt)− (1− pt)pt(λg − λb − β)(V s)′(pt)dt.

Here, the �rst part captures the instantaneous bene�ts and costs from exerting e�ort, where

(λb(1− pt) + λgpt) is the probability of an instantaneous success. The second term captures

the expected payo�s tomorrow. If a success or a signal arrives today, then tomorrow's payo�

will be U , otherwise the player's payo� equals tomorrow's continuation payo�, V s(pt+dt).

Let ps,∗ be the threshold at which the player takes the outside option. The value-matching

condition V s(ps,∗) = U and the smooth-pasting condition (V s)′(ps,∗) = 0 allow us to solve

for the unique value function V s(pt) and the threshold ps,∗. It is readily veri�ed that ps,∗ is

chosen such that the �ow payo� from exerting full e�ort hλs(ps,∗)− c equals U . If the prior

belief is below ps,∗, it is optimal for a single player to take the outside option at time 0.
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