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Term Structure of Interest Rates with
Short-Run and Long-Run Risks

Abstract

Interest rate variance risk premium (IRVRP), the difference between implied and
realized variances of interest rates, emerges as a strong predictor of Treasury bond
returns of maturities ranging between one and ten years for return horizons up to six
months. IRVRP is not subsumed by other predictors such as forward rate spread or
equity variance risk premium. These results are robust in a number of dimensions,
such as in various subsamples, with additional return predictors, and with alternative
data sets for Treasury bond returns. We rationalize our findings within a consumption-
based model with long-run risk, economic uncertainty, and inflation non-neutrality. In
the model interest rate variance risk premium is related to short-run risk only, while
standard forward-rate-based factors are associated with both short-run and long-run
risks in the economy. Our model qualitatively replicates the predictability patter of

IRVRP for bond returns.
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1 Introduction

The failure of the expectations hypothesis first documented by Fama and Bliss (1987) and Camp-
bell and Shiller (1991b) has attracted enormous attention in the asset pricing literature over the
past decades. Various plausible risk factors that appear to capture bond return predictability—
forward spread (Fama and Bliss, 1987), forward rates factor (Cochrane and Piazzesi, 2005), jump
risk measure (Wright and Zhou, 2009), hidden term structure factor (Duffee, 2011), and macroeco-
nomic factor(s) (Ludvigson and Ng, 2009; Huang and Shi, 2012), among many others—have been
proposed. Despite this impressive progress, the fundamental challenge for uncovering a particular
economic mechanism behind bond return variation still remains. Understanding such an economic
mechanism is equally important for market participants as well as for monetary policy makers.
Our paper focuses on (a) finding a robust empirical factor that would capture bond return vari-
ation across maturities and for different horizons and (b) rationalizing the this empirical factor
within a consumption-based long-run risk model.

Our main empirical findings exploit the informational content of the interest-rate variance risk
premium (IRVRP) constructed from the U.S. interest rate swaps and swaptions markets. The
interest-rate derivatives markets represent the largest segment of the U.S. fixed-income market
because interest-rate derivatives represent an important tool for corporate treasurers, asset man-
agers, and public institutions to hedge interest rate risk.! According to the Bank of International
Settlements, as of June 2012, the outstanding notional value of interest rate swaps and swaptions
exceeded $379 and $50 trillion, respectively, on a net basis. This outstanding notional value com-
bined together is much larger than the $52 trillion of all exchange-traded interest rate futures and
options, such as Treasury futures and futures options traded on Chicago Mercantile Exchange. In
addition, a 2009 survey by the International Swaps and Derivatives Association reports that 88.3%
of the Fortune Global 500 companies use swaps and swaptions for hedging interest rate risk. Last

but not least, Dai and Singleton (2000) pointed to similarities between the U.S. Treasury yields,

'Interest rate swaps play a central role in the whole financial system as swap rates reflect term financing rates of
major financial institutions. In fact, the floating leg of a plain vanilla swap is usually tied to the 3-month LIBOR,
which serves as a benchmark rate for corporate treasurers, mortgage lenders, and credit card agencies.



swap rates, and swaption prices. Thus, it appears likely that the interest-rate derivatives markets
can be informative for explaining variation in Treasury yields.

Our first empirical finding connects the variation in the relatively short-horizon (one- to six-
month) bond risk premiums to variation in the interest-rate variance risk premium, the factor
that we term IRVRP, which is the difference between the risk-neutral and objective expectations
of variation in interest rates. IRVRP always loads positively on Treasury excess returns in the data,
and high (low) values of IRVRP are associated with subsequent high (low) Treasury excess returns.
Depending on the return horizon and maturity of Treasury securities, IRVRP alone explains a
nontrivial share of the variation in bond returns. Thus, for one-month holding period return
and intermediate maturities (2 to 5 years) IRVRP explains from 75 to 56 percent of variation,
respectively, for three-month holding period return and and the same maturities it explains 62
to 28 percent of variation, and for six-month holding period return and the same maturities it
explains 38 to 10 percent of variation. For longer maturities (6 to 10 years), IRVRP still explains
a considerable, albeit smaller, amount of variation, than for intermediate maturities. For one-,
three-, and six-month returns for longer maturities, it explains 50 to 32, 23 to 13, and 8 to 5
percent of variation, respectively. IRVRP is also significant for longest maturities (15 and 20 year)
in our sample and for one- and three-month returns, but not for six-month returns. IRVRP is
not significant for any maturities at one-year horizons. So sum up, IRVPR appears to capture
relatively short-run variation in Treasury excess returns across entire term structure, that is, its
informational and predictive content is most important for relatively short holding periods of
Treasury securities.

Our second empirical result is that equity variance risk premium (EVRP), a robust predictor
for equity excess returns (Bollerslev, Tauchen, and Zhou, 2009) does not explain well variation
of Treasury excess returns, although its predictive content for Treasury excess returns increases
slightly with maturity of Treasury securities.

Our third empirical finding is that forward spread (FS), a classical predictor of Treasury excess

returns, also explains a nontrivial share of bond return variation. However, corresponding R?



statistics are much lower than those implied by IRVRP regressions. In addition, FS-implied R*’s
increase with maturity with most explanatory power concentrated at maturities of 3 to 5 years.

Figure 2 is the main figure in our paper that illustrates these empirical findings. To summarize,
IRVRP tends to capture variation in bond returns at shorter horizons, thus we associate IRVRP
with the short-run risks, while EVRP and F'S appear to capture variation of bond returns at longer
horizons, thus, we associate these factors with long-run risks. We also find that neither EVRP,
nor FS subsume significance and predictive power of the IRVRP. So, the informational content of
IRVRP appears to go beyond standard predictors for equity and bond returns.

We also run a number of robustness checks. First, we perform a subsample analysis to verify
that our results are not driven by short turbulent periods in the financial markets, such as financial
crisis of 2008-2009. Second, we control for additional bond return predictors, such as Cochrane and
Piazzesi (2005) factor as well as two macro factors including economic growth, expected inflation,
as well as Ludvigson and Ng (2009) macro principal component factors. Lastly, we also consider
an alternative data set of Treasury bond portfolios. None of these modifications of our empirical
analysis materially change our results.

To rationalize our empirical findings, we propose a stylized general equilibrium model as an
extension of long-run risk models in Bansal and Yaron (2004, BY) and short-run risk models in
Bollerslev, Tauchen, and Zhou (2009, BTZ). Bansal and Yaron (2004) emphasize importance of the
long-run risk in consumption growth for explaining the equity premium, while Bollerslev, Tauchen,
and Zhou (2009) show that richer volatility dynamics in consumption growth can be successful
in capturing short-horizon stock return predictability. Our model includes both long-run risk and
certain nontrivial volatility dynamics in consumption growth. It generates a two-factor volatility
structure for the endogenously determined bond risk premium, in which the factors are explicitly
related to the underlying volatility dynamics of consumption growth where different volatility
concepts load differently on the fundamental risk factors and capture separately short-run and
long-run risks of Treasury excess returns. In particular, IRVRP effectively isolates the short-run

risk factor associated with the volatility-of-volatility of consumption growth. The long-run risk



factor associated with volatility of consumption growth appears to be captured by Fama and Bliss
(1987) forward spread.

Finally, our calibration exercise suggests that the model fits remarkably well the upward-sloping
nominal yield curve. The key two ingredients in fitting the nominal yield curve are the presence
of the long-run risk in the model and inflation non-neutrality. As such, the long-run risk state
variable from the real side of the model affects nominal prices via inflation channel. We reasonably
calibrate inflation process (Zhou, 2011), while leaving the real side model parameters similar to
the ones in BY and BTZ. The most important feature of the inflation process is the negative
correlation with consumption volatility shock, consistent with recent empirical findings (Piazzesi
and Shneider, 2007; Campbell, Sunderam, and Viceira, 2013; Bansal and Shaliastovich, 2013).
Without this feature, the nominal yield curve is downward-sloping.

The idea of economic uncertainty as a potential risk factor has gained attention recently,
both for explaining variation in stock returns (Bollerslev, Tauchen, and Zhou, 2009; Bloom, 2009;
Drechsler, 2013) and in bond returns (Wright, 2011; Bansal and Shaliastovich, 2013; Giacoletti,
Laursen, and Singleton, 2015). The last two papers are especially relevant to our study. Bansal
and Shaliastovich (2013) link bond excess return variation to variation in volatility of real activity
and inflation—variables they interpret as uncertainty, although they do not explicitly model the
uncertainty process. Giacoletti, Laursen, and Singleton (2015) find that dispersion of beliefs about
future interest rates — interpreted as investors’ uncertainty about interest rates—is distinct from
information about the macroeconomy and can be useful in explaining variation in bond returns.

While bond pricing empirical literature (see, Fama and Bliss, 1987; Campbell and Shiller,
1991b, among numerous studies) has documented predictability of long-horizon bond returns,
bond predictability in the short run did not receive much attention until very recently (Fama,
1984; Stambaugh, 1988; Zhou, 2009). A growing literature argues for the existence of the short-
run and long-run risk components of the aggregate volatility to study the variation of stock returns
(see, Adrian and Rosenberg, 2008; Christoffersen, Jacobs, Ornthanalai, and Wang, 2008; Branger,

Rodrigues, and Schlag, 2011; Zhou and Zhu, 2012, 2013, among others). A recent paper by



Ghysels, Le, Park, and Zhu (2014) emphasizes a short-run volatility component of bond yields as
a useful predictor for future excess returns, as opposed to a long-run volatility component that
has no predictive power.

To the best of our knowledge, our paper is the first one that explores short-horizon bond
return predictability and explains the empirical findings within a consumption-based structural
framework of two-factor volatility dynamics. While the volatility-of-volatility of consumption
growth (short-run risk factor) seems to drive the variation in the short-horizon Treasury excess
returns, the variation in long-horizon returns appears to be mainly driven by a different kind,
possibly a longer-run risk factor of consumption growth. The long-run risk factor iwith money-
non-neutrality is also important for matching the term structure of nominal interest rates.

The rest of the paper is organized as follows. Section 2 describes all relevant data to our empir-
ical exercise and methodology of constructing IRVRP, Section 3 presents our empirical results and
robustness checks, Section 4 presents our long-run risk model with two different volatility factors
and inflation non-neutrality, and derives asset pricing implications of the model, Section 5 discusses

calibration of the U.S. Treasury yield curve implied by our model, and Section 6 concludes.

2 Data and Our Measures

2.1 Measure of Interest Rate Variance Risk Premium
2.1.1 Methodology

We measure the interest rate variance risk premium as the difference between the market’s expec-
tation of the interest rate variation under the risk-neutral measure and that under the physical
measure. To capture the risk-neutral expectation, we employ a model-free approach and construct
an implied variance measure of swap rates using interest rate swaptions, similar to Bollerslev,
Tauchen, and Zhou (2009) and Carr and Wu (2009) in measuring equity variance risk premium

using equity options. Specifically, let D (t,T,,) be the time—t price of a zero-coupon bond maturing



at time 7,,,, and S, () be the time-t forward swap rate, i.e., the rate for a fixed versus floating
interest rate swap contract with a start date 7, and maturity date T,,. The forward swap rate
becomes the spot swap rate Sy, ., (T;,) at time t = T,,,.

A swaption gives its holder the right but not the obligation to enter into an interest rate swap
either as a fixed leg (payer swaption) or as a floating leg (receiver swaption) with a pre-specified
fixed coupon rate. In particular, let T}, be the expiration date of the swaption, K be the coupon
rate on the swap, and T, be the final maturity date of the swap. The payer swaption allows the
holder to enter into a swap at time T}, with a remaining term of 7,, — T,, and to pay the fixed
annuity of K. At time ¢, this swaption is usually called a (T, — t) into (T,, — T},) payer swaption,
also known as a (7,, —t) by (T,, — T,,) payer swaption, where (T,, —t) is the option maturity
and (7, — T},,) is the tenor of the underlying swap. Equivalently, the payer (receiver) swaption
allows the holder to receive (pay) periodic coupon payments according to the floating influential
interest rates. Hence, the payer (receive) swaption is effectively a call (put) option on the interest
rate. By analogy to equity options, payer swaptions contain valuable information on the upside
movements of interest rates, whereas receiver swaptions are about downside. The difference from
equity options is that the underlying security of a swaption is a forward interest rate swap contract
that has a maturity (7, — T,,), but the underlying of equity index option — the S&P 500 index —
has an infinite maturity.

Let Ppn(t; K) and R, ,(t; K) denote the time-t value of a European payer and receiver swap-
tion, respectively, expiring at T, with strike K on a forward start swap for the time period
between T,,, and T,,. As shown by Li and Song (2014) and Mele and Obayashi (2012) extending
the algorithm used by CBOE in constructing VIX to interest rate swaps, the markets risk-neutral
expectation of the interest rate variation over [t, T,,] can be computed as the following “model-free”

portfolio of swaptoins:
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where A, (t) = >°7_,, ., D (t,T;) is the present value of an annuity associated with the fixed leg
of the forward swap contract.?

In order to quantify the variation of interest rates under the physical measure, we follow
Bollerslev, Tauchen, and Zhou (2009) to use the realized variance measure. Specifically, let s, ,(t)

be the logarithm of the forward swap rate Sy, (t). The realized variation over the comparable to

the IV, ,, (t) discrete-time interval [t — (T, — t),?] can then be measured in a “model-free” way

as follows:
Rvmn(w_Tml_ti[smn(t (T~ 1) + (T, t)) sm,n(t (T —t)+ L, t)>r,

which will converge to the quadratic variation of s,, ,, over the interval [t — (T, — t),t] as M — oo,
that is, on an increasing number of within-the-period observations (see Carr and Madan (2001),
Barndorff-Nielsen and Shephard (2004), Hansen and Lunde (2006), and so on).

The interest rate variance risk premium measure is then computed as the difference between
the market’s risk-neutral and physical expectations of the swap rate variation over [t, T},,], proxied

by IV, (t) and RV, , (t), respectively:

TRVRP,,.0 () = IV, (£) — RV, (£). (3)

2.1.2 Swaptions Data and Estimates

To construct the implied variance measure IV, , (), we combine monthly (end-of-month) obser-
vations of (European) swaption prices from J.P. Morgan and Barclays Capital, two of the largest
inter-dealer brokers in interest rate derivatives markets.® The swaption prices from J.P. Morgan

are available from March 1993 with five strikes, namely, at-the-money-forward (ATMF), ATMF +

2To be precise, this calculates the market’s expectation of the swap rate variation over [t, T},,] under the so-called

annuity measure A" ", which is an equivalent probability measure to the risk-neutral measure Q such that d‘%&’" =

— [Tm r(s)ds Am.n(Tm)
€ Amn ()

3Market participants quote the swaption prices using both the log-normal implied volatility of Black (1976) and
the normalized (absolute or basis point) implied volatility of a pricing formula based on normal distribution.



100, and ATMF =+ 50 basis points. The swaption prices from Barclays are available from January
2005 with thirteen strikes, namely, ATMF, ATMF + 200, ATMF + 150, ATMF + 100, ATMF
+ 75, ATMF 4+ 50, and ATMF + 25 basis points. In our empirical analysis, we use swaption
prices from J.P. Morgan from March 1993 through December 2004 and those from Barclays from
January 2005 to February 2013. to obtain the maximum sample coverage.* Moreover, we use
12-month swaptions on multiple tenors, including 1, 2, 5, 10, and 20 years, which are likely to
eliminate idiosyncratic movements associated with one single tenor and help capture the common
dynamics of the market volatility risk.

To compute A,,,, (t) that is needed to compute the implied variance measure (see equation
(1)), we obtain LIBOR rates with maturities of 3, 6, 9, and 12 months, as well as 2-, 3-, 4-, 5-,
7-, 10-, 15-, 20-, 25-, and 30-year spot swap rates over our sample period, from J.P. Morgan and
Barclays. We use a standard bootstrap procedure to obtain zero-coupon curves from the swap
rates, and then compute A,,, (t).> We also compute the forward swap rates S, , (t) based on
these bootstrapped zero-coupon curves.

We approximate the integral involved in equation (1) by a discrete sum, a standard practice in
the literature (Carr and Wu (2009); Bollerslev, Tauchen, and Zhou (2009); Gao, Gao, and Song
(2015)). To obtain prices of payer swaption P, ,(t; K) and receiver swaption R, ,(¢; K) on a
dense set of strikes for the accuracy of the approximation, we follow the literature to interpolate
implied volatilities across the range of observed strikes and use implied volatility of the lowest
(highest) available strike to replace those of the strikes below (above). Specifically, we generate
200 implied volatility points that are equally spaced over a strike range with moneyness between
0.9 X Spp(t) and 1.1 x S, ,(t), where S, ,(t) is the current forward swap rate on each day. This
implied volatility /strike grid together with A,,, (t) and forward swap rates allows us to compute
the empirical counterpart of the implied variance IV,, ,, () in equation (1).

We then construct the realized variance RV, , (t) in (2) using daily series of 12-month forward

4All our empirical results remain little changed should we only use the J.P. Morgan swaption data.

5We first use a standard cubic spline algorithm to interpolate the swap rates at semiannual intervals from one
year to 30 years. We then solve for the zero curve by bootstrapping the interpolated par curve with swap rates as
par bond yields. The day count convention is 30/360 for the fixed leg, and Actual/360 for the floating leg.



swap rates on 1-, 2-; 5-, 10-, and 20-year tenors, with M = 22 (We use high-frequency intraday
series of swap rates for robustness checks in subsection 3.4). We take the difference between
the implied and realized variance measures to compute the interest rate variance risk premium
measure IRVRP,, ,(t), according to equation (3), for each of the five tenors n=1, 2, 5, 10, and 20
years.® To obtain the market-level measure of interest rate variance risk premium, we then use

the simple average of the five individual measures:

IRVRP; = > IRVRP,.(t)/5, (4)

n=1,2,5,10,20
where m=12 months.

Panel A of Table 1 reports summary statistics of IRVRP. We observe that IRVRP seems to be
quite persistent with an AR(1) coefficient of 0.97. The top panel of Figure 1 plots monthly series
of the interest-rate variance risk premium measure IRVRP;. We observe that IRVRP increased
dramatically around 2002 and during the recent financial crisis. In addition, IRVRP also increased

notably amid the European financial crisis in the second half of 2011.

2.2 Asset Returns

To compute Treasury bond returns, we use the zero-coupon Treasury yield data of Giirkaynak,
Sack, and Wright (2007) with 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, and 20-year maturities from
March 1993 to February 2013. Specifically, let pl(f) be the log price of a T—year zero-coupon
Treasury security at time ¢. Its h—period log return is

T T—h T
7'§+)h = pl(t+h )~ pg )v (5)

6Note that such estimates essentially use the lagged time-t realized variance to proxy for the physical expectation
of the future realized variance over [t, T},]. Alternatively, we follow the literature to use the forecasting model
heterogeneous autoregressive volatility model of realized volatility (HAR-RV) of Andersen, Bollerslev, and Diebold
(2007) and Corsi (2009) in computing the physical expectation of the future realized variance (see Andersen,
Bollerslev, Christoffersen, and Diebold (2006)) and Bollerslev, Tauchen, and Zhou (2009) for more discussions).
Results using these alternative estimates are similar.



where h = 1, 3,6, and 12 months. The corresponding excess returns are

T T h
T"E5+)h = r§+)h - yg g (6)

where yt(h) is the h—period zero-coupon rate at time ¢t. Furthermore, we use the continuously

compounded returns on the S&P 500 index at the monthly frequency, including dividends, from
Center for Research in Security Press (CRSP), as equity market returns.

Summary statistics of annualized excess returns (in percentage points) of the Treasury securities
and equity market are presented in Panel B of Table 1. We observe that (time-series) average
excess returns increase with the tenor of the underlying security for all four different holding
horizons. Holding the tenor fixed, the average excess returns also increase monotonically with
the holding horizon. In particular, average excess returns of Treasuries are mostly negative up to
the 6-month holding horizon, and turn positive for the 12-month holding horizon. Moreover, the
autocorrelation of the excess returns series is higher for shorter tenors and longer holding horizons,
though being low for long-tenor assets including the Treasuries of longer than 10 years and equity

market at the 1-month holding horizon.

2.3 Additional Return Predictors

In our empirical analysis, we compare our interest rate variance risk premium mainly with two
established return predictors in the literature, the equity variance risk premium of Bollerslev,
Tauchen, and Zhou (2009) and the forward spread of Fama and Bliss (1987). The equity variance
risk premium is also constructed as the difference between option-implied variance and realized
variance, and hence may capture a similar fashion of volatility risk as our interest rate variance risk
premium. It is thus important to investigate if the IRVRP is associated with a distinctive channel
of volatility risk and possess different return predictive power. The forward spread is considered
because our interest rate variance risk premium is constructed using derivative prices on interest

rates, and hence it is important to study whether the IRVRP only captures information that is
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already in the yield curve.

The bottom panel of Figure 1 plots monthly series of the equity variance risk premium measure,
and panel A of Table 1 reports its summary statistics. We observe that the equity variance risk
premium spikes around 1998, and reaches a deeply negative value in 2008. Moreover, it is much
less persistent, with the AR(1) coefficient about 0.23. In sum, the interest rate and equity variance
risk premium seems to exhibit distinctive dynamics.

Panel A of Table 1 also reports the summary statistics of the forward spreads, defined as the
difference between one-year forward rate 7 (2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20) years ahead and
the one-year zero coupon yield, using the Treasury yield data of Giirkaynak, Sack, and Wright
(2007). We observe that the forward spread increases with the tenor 7, and is mostly as persistent
as the interest rate variance risk premium, with AR(1) coefficients between 0.92 and 0.97.

In addition to the interest rate and equity variance risk premium as well as the forward spreads,
we also consider two sets of bond and equity return predictors, respectively, as additional controls.
For bond returns, we include the economic growth measured by the three-month moving average
of the Chicago Fed National Activity Index and the expected inflation measured by the forecast
consensus of future inflation from Blue Chip Financial Forecasts. These two macro variables have
been shown to drive the term structure dynamics significantly (Jostlin, Priebsch, and Singleton
(2014); Ludvigson and Ng (2009)). For the equity market return, we include traditional predictors
including the log dividend price ratio, the log earnings price ratio, the net equity expansion factor
of Goyal and Welch (2008) (obtained from Amit Goyal’s webpage), and the default spread equal

to the difference between Moodys BAA and AAA corporate bond spreads.

3 Empirical Results

In this section, we report empirical results of (both bond and equity) return predictive regressions
for 1-, 3-, 6-, and 12-month holding horizons. We start with simple univariate regressions to

document the role of our main explanatory variable, i.e., interest rate variance risk premium. We
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then include the equity variance risk premium and forward spread in the predictive regressions
to document the differential predictive power of these three factors for different tenors of the
underlying assets. Finally, we control for other well-known predictors of bond and equity risk
premia for robustness.

The start date for all regressions is March 1993. All regressions are standardized, in the sense
that each variable is first demeaned and then divided by its standard deviation. Such standardized
regressions make slope coefficients comparable across different regressors, allowing a comparison
of both statistical and economic significance. We report t-statistics adjusted for Newey and West
(1987) standard errors, with the optimal lag length determined according to Newey and West

(1994) for each estimated coefficient.

3.1 Return Predictability with Interest Rate Variance Risk Premium

We first assess the predictive power of the interest rate variance risk premium for Treasury and

equity excess returns by the following univariate regressions:

raih = 87+ 67 (h) - IRVRP, + €7, (7)

ii)h is the h—period excess return for a Treasury security with tenors of 7 (=2, 3, 4, 5, 6,

where rz
7, 8,9, 10, 15, and 20) years, and the equity market portfolio with 7 = oo tenor, and IRVRP, is
the interest rate variance risk premium measure.

The regression results are reported in Table 2. We observe that IRVRP significantly predicts
short-horizon bond excess returns positively with solid ¢-statistics based on Newey-West robust
standard errors, up to 6-month holding horizons. For example, one standard deviation increase in
IRVRP leads to a 201 (=0.568 3.53%), 181 (=0.364 4.96%), and 146 (=0.221 6.60%) basis point
increase (slope coefficient times the standard deviation of the 10-year bond excess return) increase

in expected 10-year bond excess returns, at the 1-, 3-, and 6-month holding horizons, respectively.

Adjusted R%s range from 5% for the 6-month holding horizon to 32% for the 1-month holding

12



horizon.

Furthermore, both the economic and statistical significance of IRVRP monotonically decrease
with the tenor of the asset. For example, the regression coefficient, t-statistics, and adjusted R?s
all decreasing functions of the asset tenor, and IRVRP loses the significance for equity market
returns that has a tenor of co. Top panels of Figure 2 plot the univariate regression results for the
3-month holding horizon, with the estimated coefficient 5] (3) of IRVRP in the top left panel, and
the associated adjusted R? in the top right panel, against the tenor 7. The regression coefficients
monotonically decrease from about 0.8 to 0.2 for Treasuries when the maturity increases from 2
years to 20 years and to about 0.1 for the equity market return. Correspondingly, the adjusted
R? decreases from about 60% to 3% and to less than 2% for Treasuries and equities, respectively.

To summarize, IRVRP is a strong predictor of short-horizon asset excess returns, and its

predictive power has a sharp monotonically decreasing pattern with the tenor of the asset.

3.2 Interest Rate vs Equity Variance Risk Premium

Our interest rate variance risk premium is constructed in a similar way to the equity variance
risk premium — both are the difference between option-implied variance and realized variance.
Moreover, as shown in the last subsection, the predictive power of IRVRP remains the strongest
at short-holding horizons, the same pattern as the EVRP’s predictive power for the equity market
return as first established by Bollerslev, Tauchen, and Zhou (2009). Hence, it is natural to expect
that IRVRP and EVRP both capture a similar fashion of “short-horizon” volatility risk. But do
they capture the same type of volatility risk? If not, what is the channel in distinguishing them?

In this subsection, we study the predictive power of the equity variance risk premium for
both the bond and equity market excess returns. Most importantly, we document distinguishing
patterns of return predictive power of IRVRP and EVRP, which shed light on different potential
channels of volatility risk in driving asset prices. In particular, we first consider the univariate

regressions:
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ra\D, = B + 87 (h) - EVRP, + €7, (8)

()

i+, 18 the h—period excess return for a Treasury security with tenors of 7 (=2, 3, 4, 5, 6,

where rz
7, 8,9, 10, 15, and 20) years, and the equity market portfolio with 7 = oo tenor, and EVRP; is
the equity variance risk premium measure constructed by Bollerslev, Tauchen, and Zhou (2009)
using S&P 500 index options.

The regression results are reported in Table 3. We observe that EVRP significantly predicts
short-horizon excess returns of the long-term Treasury securities and equity market return. The
regression coefficient for the equity market return is positive, and remains the most significant at
the 3-month holding horizon with t-statistics about 8.67 and adjusted R? about 12%, consistent
with Bollerslev, Tauchen, and Zhou (2009). For bond returns, the regression coefficient is negative,
consistent with the negative correlation between the equity and Treasury in the recent decades,
as documented in Campbell, Pflueger, and Viceira (2015).

To compare with the return predictive power of IRVRP, we report the univariate regression
results for 3-month holding horizon in middle panels of Figure 2, with the estimated coefficient
B7(3) of EVRP in the middle left panel, and the associated adjusted R? in the middle right panel,
against the tenor 7. For the convenience of comparing the economic significance, we report the
absolute values of the regression coefficients on EVRP for bonds. We find that the regression
coefficients and adjusted R2s of EVRP all monotonically increase with the tenor of the asset,
in sharp contrast to the decreasing predictive power of IRVRP. This sharp contrast suggests
distinguishing economic effects of interest rate and equity variance risk premium: IRVRP seems
to capture the volatility risk of short tenor, while EVRP seems capture the volatility risk of long
tenor.

Given the distinctive pattern of return predictive power of the interest rate and equity variance

risk premium, we expect the return predictability of IRVRP is robust to the inclusion of EVRP.
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To verify this conjecture, we run the following multivariate return predictive regressions:
rall, = 87 + 87 (k) - IRVRP, + 57 () - EVRP, + €[] (9)

Results are reported in Table 4. Controlling for the equity variance risk premium, the predictability
of the interest rate variance risk premium is almost unchanged. Its monotonically decreasing

significance as a function of the asset tenor remains the same.

3.3 Interest Rate Variance Risk Premium vs Forward Spread

It has been well established in the literature that yield-based factors are strong predictors of bond
returns (Fama and Bliss (1987), Campbell and Shiller (1991a), and Cochrane and Piazzesi (2005)).
As our interest rate variance risk premium measure is constructed using prices of swaptions that
are derivatives on yields in principal, it is natural to ask whether IRVRP is a mere reflection of
information already contained in the yield curve.

Most term structure models use the first three principal components of the yield curve as factors
because they capture most of the variation in yields. Among the three principal components, the
slope factor or the spread between long-term and short-term yields has been shown to possess
significant predictive power for bond risk premia (Fama and Bliss (1987) and Campbell and Shiller
(1991a)). In this subsection, we study the predictive power of the forward spread, as proposed
in Fama and Bliss (1987), for both the bond and equity market excess returns, and compare its
return predictive power with that of the interest rate variance risk premium. Importantly, we
document that the pattern of return predictive power of IRVRP is distinct from and robust to
that of the FS (We also differentiate the return predictive power of interest rate variance risk
premium from that of the ten-shape yield factor of Cochrane and Piazzesi (2005) as a robustness

check in subsection 3.4).
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In particular, we first consider the following univariate regressions:

”Ct+h = /80 + 5(7)( h)-F S(T) + €t+)hv (10)

(1)

where rz, h

is the h—period excess return for a Treasury security with tenors of 7 (=2, 3, 4, 5,
6, 7, 8,9, 10, 15, and 20) years, and the equity market portfolio with 7 = co tenor, and FSiT) is
the forward spread between the one-year forward rate 7-year ahead and the on-year zero coupon
yield.

The regression results are reported in Table 5. We observe that the forward spread significantly
predicts short-horizon Treasury excess returns, similar to both the interest rate and equity variance
risk premium. The regression coefficient is positive with solid ¢-statistics based on Newey-West
robust standard errors, consistent with Fama and Bliss (1987). Different from the interest rate
and equity variance risk premium, however, neither the economic nor statistical significance of the
forward spread is a monotonic function of the asset tenor; instead, its predictive power seems to
peak at the medium tenor, around five years.

To have a sharp comparison, we report the univariate regression results of the forward spread
for the 3-month holding horizon in bottom panels of Figure 2, with the estimated coefficient 57 (3)
of FS in the bottom left panel, and the associated adjusted R? in the bottom right panel, against
the tenor 7. We observe that both the regression coefficients and adjusted R2s of the forward
spread increase from short tenor to medium tenor, and hence decrease moving to long tenor.

This distinctive pattern of return predictive power suggests that our interest rate variance
risk premium captures a distinctive economic channel of risk premia than the forward spread, a
well-established yield-based factor in the literature. To formally substantiate this conclusion, we

run the following multivariate return predictive regressions:
ral) = 857 + B (h) - IRVRP, + 857 (h) - FS{™) + €, (11)

Results are reported in Table 6. We find that controlling for the forward spread, the predictability
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of the interest rate variance risk premium weakens somewhat, especially at the 6-month holding
horizon. However, the strong return predictive power remains strongly at the very short holding
horizons, especially at the 1-month horizon. Moreover, the pattern of monotonically decreasing
significance as a function of the asset tenor remains the same.” This empirical result is rationalized
within our long-run-risk type model presented in Section 4, where we show that the IRVRP is
driven by only one state variable, namely, vol-of-vol factor ¢; (see eq. (A.44) in the Appendix A.6)
that reflects the nature of short-run risks, whereas the forward spread is the function of all state

variables (see eq. (A.33) in the Appendix A.5), and thus captures both short- and long-run risks.

3.4 Robustness Checks
3.4.1 Subsample Analysis

One may be concerned that the recent financial crisis could be the single important driver of
our empirical results. To address this concern, we run the return predictive regressions for two
subsamples, from March 1993 to December 2003 and from January 2004 to February 2013. Table 7
reports the subsample regression results. We find that the interest rate variance risk premium
has similar significant return predictive power in the two subsample periods, and is in fact even
stronger, if anything, in the first subsample excluding the recent financial crisis. The monotonically
decreasing significance of the interest rate variance risk premium as a function of the asset tenor

remains little changed.

3.4.2 Realized Variance based on High-Frequency Swap Rates

Our baseline measure of interest rate variance risk premium has the realized variance measure
constructed using daily series of swap rates. In this section, we check the robustness of our results

using high-frequency data of swap rates to construct the measure of realized variance. In particular,

"We also run multivariate regressions of asset excess returns on the interest rate variance risk premium, control-
ling for both the forward spreads and the equity variance risk premium, as reported in Table B1. Results further
confirm the differential return predictive power of our interest rate variance risk premium factor from the other
two.
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we obtain the intraday 10-year swap rates from February 11, 2002 to January 31, 2013, provided
by Barclays. We follow the literature to use the 5-minute series to strike a balance between
the accuracy that increases with frequency in econometric theory and the microstructure issues
such as price discreteness, bid-ask spreads, and non-synchronous trading effects that increase with
frequency in practice (Andersen, Bollerslev, Diebold, and Labys (2000), Hansen and Lunde (2006),
Bollerslev, Tauchen, and Zhou (2009)). In consequence, we use about 80 five-minute observations
each day from 8:20 am to 3:00 pm US EST to estimate the realized variance according to (2).
We then take the difference between the implied variance using swaptions on 10-year swap rate
and this realized variance to get the alternative measure of interest rate variance risk premium,
denoted as IRVRP) ™",

Table 8 repeats our baseline regression (7) using the alternative measure IRVRP? """ of interest
rate variance risk premium. The return predictive power becomes weaker than the baseline results
in Table 2, probably because IRVRP?™"" only captures information in the 10-year tenor while
our baseline measure of interest rate variance risk premium combines information from multiple
tenors. Yet, we still observe pretty significant predictive power of IRVRP?™™" at the 1-month
horizon. Most importantly, the sharp monotonically decreasing significance with the asset tenor

remains the same as the baseline regressions.

3.4.3 Alternative Treasury Datasets

We check the robustness of the return predictive power of the interest rate variance risk premium
using two alternative Treasury datasets in this section. First, we use the Fama-Bliss discount
bond database from CRSP, which contains Treasury notes with maturities of 1, 2, 3, 4, and 5
years, to compute the Treasury excess returns. The Fama-Bliss database is also used in Fama and
Bliss (1987), Cochrane and Piazzesi (2005), and so on. Panel A of Table 9 repeats our baseline
regression (7) using the Treasury excess returns based on the Fama-Baliss database. We find that
both the significant predictive power and the monotonically decreasing significance with the asset

tenor, of the interest rate variance risk premium, remain the same.
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Second, we use actual traded bonds from the Fama dataset in CRSP, different from the inter-
polated bond yields in both the Giirkaynak, Sack, and Wright (2007) and Fama-Bliss datasets,
to compute the Treasury excess returns. This dataset combines actually traded Treasury bonds
into portfolios of different maturity buckets, and computes an equal weighted average of 1-month
holding period returns of all bonds in the portfolio. We obtain monthly return series and compute
returns in excess of the 3-month T-bill rate. Panel B of Table 9 repeats our baseline regression
(7) using the Treasury excess returns based on this Fama bond portfolios. We observe that the
interest rate variance risk premium still possess strong and significant return predictive power,
with t-statistics above 11 and adjusted R%s above 37%. The monotonically decreasing significance

with the asset tenor remains the same.

3.4.4 Control for Additional Return Predictors

We now control for additional predictors of Treasury and equity returns. For Treasuries, we
control for the tent-shape yield factor of Cochrane and Piazzesi (2005) (CP) as well as two macro
factors including the economic growth (GRO) and the expected inflation (INF) (Table B2 in the
Appendix reports the results controlling for the macro principal component factors of Ludvigson
and Ng (2009)). For the equity market return, we control for traditional predictors including the
log dividend price ratio (d/p), the log earnings price ratio (e/p), the net equity expansion (NTIS)
factor of Goyal and Welch (2008), and the default spread (DS).

Table 10 reports the regression of the Treasury and equity excess returns on the interest
rate variance risk premium, controlling for these additional return predictors. We find that the
interest rate variance risk premium still possess strong and significant return predictive power
for Treasuries, controlling for the CP, GRO, and INF factors. Its return predictive power for the
equity market excess returns becomes more significant, with ¢-statistics around two at the 1- and 3-
month holding horizons, controlling for the traditional equity return predictors. The monotonically

decreasing significance with the asset tenor remains the same as the baseline results.
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4 Model and Asset Pricing

We have shown in Section 3 that the interest rate variance risk premium robustly predicts nominal
Treasury bond returns especially at short maturities. We have also shown that its predictive power
declines with the maturity of the Treasury security and the holding period horizon. In addition, we
have shown that other predictors, such as forward spread, drive longer-maturity Treasury bond
returns and at longer holding-period horizons. To reconcile these findings with the theory, we
propose a consumption-based asset pricing model, which explains these predictability patterns with
short-run and long-run risk factors. Specifically, we propose a long-run-risk-type consumption-
based asset pricing model with consumption (short-run growth) risk, expected consumption (long-
run growth) risk, consumption volatility (long-run volatility) risk, and consumption volatility-of-
volatility (short-run volatility) risk. Such a framework delivers a two-factor structure for the bond
risk premium, which is perfectly spanned by the bond variance risk premium (loaded only on

short-run volatility) and forward spread (loaded on both short-run and long-run volatilities).

4.1 Preferences

We consider a discrete-time endowment economy with recursive preferences introduced by Kreps

and Porteus (1978), Epstein and Zin (1989), and Weil (1989):

[

"™, (12)

1—y

U= [(1-0)C,7 +6(EULY)

S

where ¢ is the time discount factor, v > 0 is the risk aversion parameter, ¢ > 0 is the intertemporal

elasticity of substitution (IES), and 6§ = 11__1 . Preference for early resolution of uncertainty implies
v > i, which, in general, implies 8 < 1. We will assume throughout the paper that v > 1 and
1 > 1, which implies # < 0 and refer to preference for early resolution of uncertainty as consistent

with 6 < 0.% A special case of recursive preferences—expected utility—corresponds to the case of

8Bansal, Kiku, and Yaron (2012, BKY) discuss the wide range of regression-based estimates of the IES in
the literature and their sensitivity to the presence of measurement errors. They argue that a better approach is
undertaken in Bansal, Kiku, and Yaron (2007) and Hansen, Heaton, Lee, and Roussanov (2007) who use a large set
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y=75(0=1).
Epstein and Zin (1989) show that the log-linearized form of the associated real stochastic

discount factor m, is given by:

0
My = 0Ind — Egt—i-l + (0 — D)regqn, (13)

where g;11 = log (%—T) is the log growth of the aggregate consumption, r.;1; is the log return

on an aggregate wealth portfolio that delivers aggregate consumption as its dividend each time
period. Note that the return on wealth is different from the observed return on the market portfolio
because aggregate consumption is not equal to aggregate dividends. Consequently, the return on
wealth is not observable in the data. The nominal discount factor m}, ; is equal to the real discount

mi, = — 7 (14)
t+1 t+1 t+1-

4.2 Economy Dynamics

To solve for the equilibrium asset prices we specify consumption and inflation dynamics. Con-
sumption dynamics features time-varying consumption growth rate g, and expected consumption

growth rate z;, time-varying volatility of consumption growth 037,5 and time-varying volatility-of-

of instruments to estimate conditional Euler equations for the real bond and find that the IES is larger than one.
Beeler and Campbell (2012) disagree in a sense that aggregate consumption growth does not appear to respond to
the real risk-free rate fluctuations in a manner consistent with IES being greater than one. They report, however,
that their instrumental variables estimation approach of the BKY model yields the median estimates above 1.3.
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volatility of consumption growth ¢;:

Tiy1 = Pzt + ¢egg,tzx,t+1>

Gi+1 = Mg + Tt + 0g 129441,
(15)
2 2
Ogi+1 = Qo+ Pe0gy + /Gt Zot+1,

Q41 = Qg + PeGt + G/ Ut Zq 415

where the parameters satisfy a, > 0, a, > 0, |p,| < 1, |p,] < 1 and ¢, > 0. The vector of shocks
(Zat415 Zgt+1s Zott1, Zqi+1) follows i.i.d. normal distribution with zero mean and unit variance
and shocks are assumed to be uncorrelated among themselves. The second pair of equations in
(15) is new compared to Bansal and Yaron (2004) and Bansal and Shaliastovich (2013). Stochastic
volatility U;t 41 represents time-varying economic uncertainty in consumption growth with time-
varying volatility-of-volatility (vol-of-vol) measured by ¢;.” Since a;t directly affects variation in
xy, the predictable component in consumption growth, we will refer to ag’t as the state variable
that captures the long-run risk. The volatility-of-volatility process ¢; can be thought of as the
volatility risk or, the short-run risk. As we saw earlier, this terminology was supported by our
empirical findings.

In order for the real economy model (15) to have realistic implications for nominal bond risk
premiums, we conjecture a fairly rich inflation process motivated by previous literature. Indeed,
Bansal and Shaliastovich (2013) allow for expected inflation shocks to be correlated (negatively)
with expected consumption growth, and Zhou (2011) allows for a vol-of-vol shock to affect inflation.

We incorporate both of these features into expected inflation dynamics m;1:

Tiyl = Qn + PrTy + P21 + OrgOgiZg41 + Pron/ Ao, (16)
where p, is a persistence and 1f—’; is the long-run mean of the inflation process. There are three

9Recent studies provided empirical support in favor of time-varying consumption growth volatility, e.g., Bekaert
and Liu (2004), Bansal and Yaron (2005), Lettau, Ludvigson, and Wachter (2008), Bekaert, Engstrom, and Xing
(2009), among others.
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shocks that drive inflation process: (1) a constant volatility part ¢, with an autonomous shock
Zri41; (2) a stochastic volatility part ¢r,0,, that works through consumption growth channel
Zg¢+1; and (3) another stochastic volatility part ®ro4/q: that works through the volatility channel
Zs141. Exogenous inflation shock z;y; does not generate inflation risk premium even in the
presence of the time-varying volatility of this shock.'® In contrast, the second and the third shocks
generate inflation risk premium because real side shocks (stochastic volatility of consumption
growth and uncertainty) affect inflation. In addition, since ¢, and ¢, control inflation exposures
to the growth and uncertainty risks, this process implicitly violates inflation neutrality in the short

run, but not in the long run.!

4.3 Pricing kernel

In equilibrium, the log wealth-consumption ratio z; is affine in expected consumption growth x,

stochastic volatility of consumption growth 2, and the vol-of-vol factor g;:
ze = Ag + Apxy + Agait + Ayq:. (17)
Campbell and Shiller (1988) show that the return on this asset can be approximated as follows:

Tetrl = Ko + K1Zi41 — 2 + Gig1, (18)

where kg = In(1 + exp(2)) — K12, K1 = 1'1%(5();)7 and Z is the average wealth-consumption ratio:
z=Ay(2) + A, (2)5” + A, (2)q. (19)

10The inability of the expected inflation process with only one (autonomous) shock even with stochastic volatility
to generate inflation risk premium is examined in Zhou (2011).
HThere is no violation of inflation neutrality in the long run because unconditional expectation of inflation

process (16) is Em, = 22—
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The equilibrium loadings for (17) are derived in Appendix A.1:

1
A -
1 - R1Pg
A= 1 0— 2\ 4 (bmAntn)?
7 20(1 — Kips) Y ffa@e) | (20)
4 I — Kipg — \/(1 - Hlpq)Q - 02%%(?2143
o 0(k1¢q)° .

As in Bansal and Yaron (2004), recursive preferences along with the early resolution of un-
certainty are crucial in determining the sign of the equilibrium loadings of the state variables in
our model. When the intertemporal elasticity of substitution @) > 1, the intertemporal substi-
tution effect dominates the wealth effect. In response to higher expected consumption growth,
agents invest more and, consequently, wealth-consumption ratio increases. Therefore, the wealth-
consumption ratio loading on the expected consumption growth is positive (4, > 0) whereas
loadings on the volatility and volatility-of-volatility of consumption growth are both negative
(A, < 0 and A, < 0) as in times of high volatility and/or uncertainty agents sell off risky assets
driving the wealth-consumption ratio down.!?

The persistence of expected growth shock p, and time-varying volatility p, magnify the effect
of the changes in these state variables on the valuation ratio since investors perceive such macroe-
conomic changes as long-lasting. Contrary to that, persistence of the volatility-of-volatility, p,,
roughly cancels out in the A, loading. This provides further support for interpretation of ¢; as a
state variable that captures relatively short-run economic risks.'3

Using the solution for the wealth-consumption ratio above, we show in Appendix A.3 that the
conditional mean of the stochastic discount factor m;; is linear in the fundamental state variables

and the innovation in myy; pins down the fundamental sources of (and compensations for) risks

12The solution for A, represents one of a pair of roots of a quadratic equation, but we pick the one presented in
Eq. (20) as the more meaningful one. We elaborate on this choice in Section A.1.

13Bansal, Kiku, and Yaron (2012) check that their approximate solutions are very accurate when compared
against numerical solutions, used, e.g., in Binsbergen, Brandt, and Koijen (2012).
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in the economy:

myy1 — Et[mt+1] = —)\gUg,tZg,tH - )\ng,th,tH - )\a\/aza,t—&—l - /\q\/azq,t—kla (21)

where the quantities of risks are time-varying volatility and volatility-of-volatility of consump-
tion growth, oy, and /q;, respectively; and Ay, Az, Ay, Ay represent the market prices of risk of

consumption growth, expected consumption growth, volatility, and volatility-of-volatility:

= (1 — (9)/11140-,
(1 — Q)KlAq¢q.

)‘g:%

Ao
(22)
Ao = (1= O)riAsde, A

The market price of consumption risk A\, is equal to the coefficient of relative risk aversion -.
Other risk prices crucially depend on our preference assumptions.

When agents have preference for early resolution of uncertainty (6 < 0), the market price of
expected consumption risk is positive: A, > 0. In this case, positive shocks to consumption and
expected consumption cause risk premium to decrease as agents buy risky assets and drive wealth-
consumption ratio up. On the contrary, market prices of risk of volatility and volatility-of-volatility
are negative (A, < 0 and A\, < 0): Consistent with the so-called leverage effect, in response to
either type of volatility positive shock, agents sell risky assets and drive wealth-consumption ratio
down and volatility risk premiums up. It is worth noting that these effects are not based on
the statistical linkages between return and volatility, as the endowment and volatility shocks are
uncorrelated; but arise endogenously in the equilibrium. In the absence of recursive preference

1

for an early resolution of uncertainty (v = 7 and # = 1), there would be no compensations for

investors for baring risks in expected consumption, volatility, or volatility-of-volatility.

25



4.4 Asset Prices

We focus in this paper on the nominal yield curve and nominal bond return predictability. Hence

in this section we provide the model solutions for the nominal quantities in our economy.*
Nominal risk-free rate. The nominal risk-free rate is the negative of the (log) price of the

nominal one-period bond. Thus, it is equal to the real risk-free rate plus inflation compensation.

The closed form expression for the nominal risk-free rate is derived in Appendix A.3:

1
7“?,5 = —0Ino +yuy+ ar — (0 — 1)[ro + (k1 — 1) Ao + k1(Apas, + Aga,)] — §¢72T

+ [y = (0 = 1) Au(k1ps — 1)]

|0 D Au g = 1) = 307 = 50 - D ai)? -

1
9 5 72rg - 'Yﬁbﬂg} Ug,t (23)

2

+ {—(9 — DA (kipg — 1) — %(0 — 1)%K3(A% + A2¢3> — %(bfm + (6 — 1)/£1A0<;5m] G

+ PrTt.

Since inflation is not an autonomous process, it affects loadings on ¢ and ¢; in (23) via additional
terms, related to ¢4 and ¢, coefficients, respectively, besides having a direct effect on the nominal
rates, p,7m;. This results in inflation short-run non-neutrality, which means that inflation is affected
by future real growth in the economy.

Nominal n—period bond price. A general recursion for solving for the n—period nominal

bond price is as follows:

$n $.n—
P — [Mfﬂpm 1]. (24)

We assume that the (log) price of the n—period nominal bond pf ™ follows an affine representation

of the real state variables z;, o2, ¢; and inflation 7;:

pf’” — Bg’” + Bf’"xt + B§’”af + Bi’nqt + Bf’nﬂt- (25)

1The corresponding real quantities are can be computed similarly and available upon request.
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We solve for the nominal bond state loadings Bf’", ¢t = 0,...,4 using initial conditions BZ‘B’O =
0,i=0,...,4 (since pf’o = 0) and the above recursion, see Appendix A .4.
Nominal bond risk premium. Nominal bond risk premium brpf "™ is given by the negative

1

of covariance between the nominal pricing kernel mffl_ and the nominal bond price pffl_l (see

Appendix ?7? for details):

8, $,n—1
brp;" = —Cov; [mt-l—laptfl }

= [(r+ 60 By — (0= D AL BT 2] o

g,t
[ (0 = D)k1Ag — dro)(BE"™ 4 BS" ) + (0 — DA, B 92| g (26)
B n— 1¢2

Eﬁ n—1 2 +6$n 1qt+B§,nfl¢72r'

Bond risk premium (26) is driven by two volatility factors: consumption volatility factor ait and
volatility-of-volatility factor ¢.'?

The effect of expected growth risk captured by A, equilibrium loading on the wealth-consumption
ratio amplifies the overall contribution of the consumption risk, o,,. This effect is absent in Zhou
(2011) and Mueller, Vedolin, and Zhou (2011), and thus, makes it more difficult to explain the
upward sloping term structure of the nominal yield curve. The two volatility factors a;t and ¢; are
inherently latent factors in bond risk premium. While consumption volatility risk U;t represents
the classic risk-return tradeoff and is the standard factor in consumption-based models, ¢; factor
did not receive a lot of attention with the exception of Bollerslev, Tauchen, and Zhou (2009) paper.
The next section demonstrates how ¢; factor can be empirically isolated from Ug,t factor.

Nominal bond variance risk premium. Bollerslev, Tauchen, and Zhou (2009) show that
the equity variance risk premium—the difference in expectations of the equity variance under
risk-neutral and physical measures—is driven entirely by the vol-of-vol factor ¢; and is a useful

predictor of time variation in aggregate stock returns. Motivated by this result, we derive the

15 The third constant term provides a correction for inflation risk through ¢,, due to the autonomous inflation
shock .
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nominal bond variance risk premium (BVRP)—the difference in expectations of the bond return
variance under risk-neutral and actual measures. We show in this section that the BVRP also
loads entirely on the ¢, factor.

By definition, nominal bond variance risk premium is given by the covariance of the nominal

bond return variance o’ , 4, with the nominal stochastic discount factor my

$
E(S‘) [O-f$,t+1} — By [03$,t+1] = Cov; [Uf$,t+17mt+1:| : (27)
In terms of the model parameters, the nominal bond variance risk premium is given by:

BVRP}" |o% | =B % | — B o2

r8 t+1

Appendix A.6 provides derivation details for (28).

A first and central observation here is that the time variation in the nominal BVRP is solely
due to the time variation in ¢; state variable. If volatility-of-volatility is constant, ¢, = ¢, eq. (28)
reduces to a constant (6 — 1)k {(A(, — Gno) {(Bf’n_%be)z + (Bi’”_ngﬂg) 2} } q, contrary to em-
pirical evidence presented earier in the paper that the nominal bond variance risk premium is
time-varying. A second observation is that, although consumption growth risk ag,t does not affect
the nominal bond variance risk premium directly, it still has an indirect effect through the pric-
ing solution. If consumption volatility aﬁyt is not stochastic, then the wealth-consumption ratio
equilibrium loadings A, = 0 and A, = 0 by construction, and bond variance risk premium is zero.
A third observation is that if there is no recursive preference (0 = 1), then bond variance risk
premium is zero by construction. Lastly, positivity of the nominal bond variance risk premium is

guaranteed by negative ¢ along with negative A, and A,.

28



5 Calibration

In this section we discuss calibration of the nominal yield curve implied by our model (15) and
inflation process (16). We consider two benchmark cases, Bansal and Yaron (2004, BY) and
Bollerslev, Tauchen, and Zhou (2009, BTZ). Compared to BY, BTZ incorporate the time-varying
vol-of-vol factor, but in the absence of the long-run risk channel. We differ from BTZ in two
aspects: (1) we have the long-run risk state variable in the real side model; and (2) we model
inflation process in order to derive implications for the nominal bond prices. We present all three

models’ parameters (BY, BTZ, and ours) in Table 11.

5.1 Calibration Parameters

Panel A provides calibration values for the real economy dynamics. We set preference parameters
§ = 0997, v = 8, and ¢ = 1.5.% Consumption growth parameters u, = 0.0015, p, = 0.979,
¢. = 0.001 are consistent with BY (and BTZ except for p, = ¢. = 0). Volatility persistence
po = 0.978 is the same as in BY and BTZ, and a, = (1 — p,)Eo is set so that the unconditional
expectation Eo? = 0.0234%, which is slightly higher than in BY and BTZ because we find that
this value matches better the nominal yield curve in the model. We set the expected volatility-of-
volatility level Eq = a,(1 —p,)~' = 1079 so that a, = 27'° given p, = 0.8. In addition, ¢, = 10~*.
Our choice of p, and p, is broadly consistent with the estimates of Bollerslev, Xu, and Zhou
(2013), who find that the long-run risk (proxied by o7 ,) is more persistent than the short-run risk
(proxied by ¢;). Thus, the calibrated model is connected with the earlier empirical section where
we show that these two types of risks in the nominal bond premium are disentangled.

Panel B provides calibration parameters for the inflation dynamics. We set the average annu-
alized inflation rate Er = 2% and persistence parameter p, = 0.95 in accordance with the current

Fed’s inflation target and Great Moderation period overall.!” Implied a, on a monthly basis is

6BY and BTZ use v = 10, but in our model slightly lower value of v works reasonably well.

1"These numbers may be justified by the data after 1980s and especially after 2008, when Fed launched unprece-
dented measures of accommodative monetary policy, namely, quantitative easing. Our expected inflation rate is
lower than the one in Bansal and Shaliastovich (2013), who set it at 3.61% (see their Table 5).
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equal to Ex(1—p,) = 0.02/12 x 0.05 = 8 x 10~°. The total unconditional variance of the inflation

process (16) is given by:

Var(e) = 7= (62 + 2, 0% + 62, ). (29)

We calibrate variance-related parameters of (29) so that the total annualized unconditional infla-
tion volatility is 2%. Since p, = 0.95, Eo? = 0.02342, Eq = 1077, the term in parentheses in (29)
on a monthly basis is: ¢7 + ¢2, x 0.0234* + ¢2, x 107 = 0.022/12 x (1 — 0.95%) = 3.25 x 107°.
Further, we assume that the first (autonomous) shock contributes one half to the total variance
while the other two shocks contribute equally to the remaining half of the total variance of the
inflation process.'® Thus, the contribution of the first shock to the total inflation variance is
0.5 x 3.25 x 1075 = 1.625 x 1079, implying ¢, = 0.0013. The contribution of the second and third
shocks are equal to each other and to 0.25 x 3.25 x 1076 = 8.125 x 10~7. Therefore, the implied
Grg = (8.125 X 10_7/0.02342)1/2 = —0.0385. The negative sign of ¢, is motivated by previous
empirical findings (Piazzesi and Shneider, 2007; Campbell, Sunderam, and Viceira, 2013; Bansal
and Shaliastovich, 2013). In particular, Bansal and Shaliastovich (2013) use SPF survey data
for one-year ahead consensus inflation forecast over 1969-2010 sample and a latent factor for the
expected consumption growth to estimate relationship between the two. They find that expected
inflation negatively affects future consumption growth thus suggesting non-neutrality of inflation.

Last, the implied ¢r, = (8.125 x 10-7/10~9)"/* = 28.5.

5.2 Calibration Results

Figure 3 reports our calibration results. Both panels show the average nominal yield curve out to
10 years (blue solid line) in sample period from January 1991 to December 2010 and the calibrated
nominal yield curve (red dashed line) implied by our model (Panel A) and by our modified model

in the absence of the long-run risk channel z; (Panel B). It is obvious from Panel A that our model

18FEqual distribution of variance among the shocks results in slight overshooting of the model-implied interest
rates levels relative to those in the sample.
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matches very well the levels of the nominal yields and captures the slope of the yield curve too.
The 1-, 5-, and 10-year model-implied yields are 3.71%, 5.14% and 5.58% relative to observed
yields of 4%, 4.95%, and 5.65% at corresponding maturities. Panel B of Figure 3 shows that
without long-run risk the model is not successful in fitting the nominal upward-sloping yield curve
as it generates downward-sloping yield curve, even with the presence of time-varying economic
uncertainty.'’

To understand the effect of the long-run risk factor better, it is useful to write down the nominal

yields as an affine combination of state variables:
n 1 n n n n n
v = = [BY" + By w+ Yot + BYqu+ B (30)

where BY™", Bg ’n, Bg " B%™ are model-implied nominal bond price loadings provided in Appendix A.4.
The equilibrium nominal yield loadings are plotted in Figure 4.2° In our model, nominal yields
hedge expected consumption and inflation risks. As the top left panel of Figure 4 shows, nominal
yields increase when expected consumption is high because —Bf ™ > 0, and the effect is stronger
for higher n. Intuitively, a negative shock to expected consumption drives bond prices up and
yields down and a positive shock to expected consumption drives bond prices down and yields
up. The same effect is obvious for expected inflation as —Bf’n > () and this loading is also in-
creasing with maturity (bottom right panel). The top right panel shows the effect of consumption
volatility shock on nominal yields. Corresponding loading —Bg” manifests negative correlation of
expected inflation and consumption growth that we discussed above. Initial effect of both positive
consumption volatility and volatility-of-volatility shocks on yields is negative although this effect
mean-reverts in the long-run. Given that the steady state values of consumption volatility and
volatility-of-volatility processes are relatively small, long-run risk has the largest effect on nom-

inal yields and helps to fit the upward-sloping nominal yields curve predominantly. Therefore,

9Bansal and Shaliastovich (2013) fit the term structure of interest rates for the short- and intermediate-term
yields (up to five years only), whereas our model quantitatively matches the level and slope of the nominal term
structure from one- to ten-year interest rates.

20Nominal yield loadings are nominal bond price loadings with a negative sign.

31



the slope of the term structure of interest rates appears to be tightly linked to the slow-moving

predictable component in consumption growth.

5.3 Model-implied Predictability

In this section we discuss model-implied predictability results using the model-implied slope and
R? coefficients of bond risk premiums on the bond variance risk premiums regressions provided in
the Appendix A.7. Figure 5 shows the model-implied slope coefficient b from regression (A.45).
Consistent with our empirical evidence, the model-implied slope coefficient is positive everywhere,
highest at the shortest maturities and declines rapidly with the horizon in a similar fashion to the

top panels of Figure 2.

6 Conclusion

We study the bond pricing implications in the context of the long-run risks asset-pricing model
with two types of volatility risks—long-run consumption volatility and short-run consumption
volatility-of-volatility risks—and inflation non-neutrality. The model is promising in explaining
important stylized facts of the Treasury market returns.

First, our reasonably calibrated version of the model with long-run and short-run volatility risks
matches well the upward-sloping yield curve out to ten years, and the long-run risk plus inflation
non-neutrality appear to be the main driving forces behind this result. Second, the interest-rate
variance risk premium (IRVRP) constructed from interest rate derivatives markets drives short-
horizon (one- and three-month) Treasury excess returns, while other popular predictive variables,
such as Fama-Bliss forward spread or Cochrane-Piazzessi forward-rate factor drive variation in
longer-horizon (one-year) Treasury excess returns.

Inside our model, time-varying bond risk premium is driven by two volatility factors—volatility
of consumption and volatility-of-volatility of consumption; whereas bond variance risk premium

loads entirely on the vol-of-vol factor, forward rate loads on both consumption volatility and vol-
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of-vol factors plus growth and inflation factors. Since variance risk premium explains a significant
part in variation in short-horizon Treasury excess returns, we interpret vol-of-vol factor as a short-
run volatility risk factor. Since the forward-rate-related factors appear to explain time-variation
in long-horizon Treasury excess returns, we interpret these factors as related to the long-run
volatility risk factor. Thus, our model and empirical findings provide useful insights on different
volatility risks in driving bond risk premium dynamics. These insights should be useful for market

participants and monetary policy makers in practice.
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Table 1: Summary Statistics

Mean  SD Min Max  AR(1) Mean  SD Min  Max AR(1)
A: Variance Risk Premium Measures and Forward Spreads
IRVRP 1.54 091 0.58 3.86 097 FST7y 2.18 1.65 -0.40 5.37 0.97
EVRP  0.17 0.23 -2.19 1.16 0.23 FS 8y 2.39  1.73 -0.37 5.72 0.97
FS 2y 0.46  0.53 -0.64 1.96 0.93 FS9y 2.55 1.78 -0.39 5.82 0.98
FS 3y 0.88  0.87 -0.78 3.02 0.95 FS10y 267 1.80 -0.43 5.72 0.98
FS 4y 1.27 115 -0.71 3.53 096 FS15y 275 1.77 -0.64 5.69 0.98
FS 5y 1.62  1.37 -0.56 4.09 0.97 FS20y 240 1.72 -0.80 5.35 0.97
FS 6y 1.93  1.53 -0.44 4.72 0.97
: Asset Returns
1-month holding period 3-month holding period
2y -3.18  2.16 -6.63 0.56 0.94 -2.52  1.93 -6.26 0.93 0.95
3y -3.12 2.27 -6.72 1.04 0.88 -2.36  2.28 -7.36 2.99 0.90
4y -3.07 241 -7.29 1.66 0.80 -2.21  2.68 -8.49 4.80 0.86
S5y -3.03 257 -7.99 2.36 0.72 -2.07  3.09 -9.47 6.34 0.83
6y -2.98 2.75 -8.62 3.86 0.65 -1.93 348 -10.61 7.62 0.80
Ty -2.94 2.93 -9.18 5.40 0.59 -1.82 387 -11.73  8.69 0.78
8y -2.91  3.13 -9.68 6.93 0.53 -1.72 424 -12.77  10.34  0.77
9y -2.88 3.33  -10.13 8.39 0.47 -1.63 4.60 -13.75 1240 0.75
10y -2.86 3.53  -10.85 9.77 0.42 -1.56 496 -14.65 14.40 0.74
15y -2.78 448 -15.64 14.89 0.26 -1.32  6.61 -18.83 23.38 0.70
20y -2.74 531 -19.35 17.35 0.19 -1.19 823 -22.83 31.61 0.69
Equity  6.02 52.50 -204.90 130.50 0.09 6.08 31.79 -133.26 93.31 0.73
6-month holding period 12-month holding period

2y -1.55  1.64 -5.19 2.62 0.94 0.23 1.18 -2.70 3.12 0.94
3y -1.24 235 -6.56 5.79 0.90 0.86  2.33 -5.15 6.69 0.93
4y -0.94  3.06 -7.78 8.58 0.88 1.46  3.34 -7.10 9.67 0.92
Sy -0.67 3.74 -8.84 10.95 0.86 2.01 4.24 -8.67 12.12  0.91
6y -0.42  4.38 -9.86 12.93 0.85 2.50 5.07 -10.36 14.13 091
Ty -0.20 498 -11.11  14.55 0.84 293 585 -11.94 1590 0.90
8y -0.01  5.55 -12.28  15.88 0.83 330 6.58 -13.56 17.64 0.89
9y 0.15 6.09 -13.38 16.94 0.82 3.62 728 -15.09 19.14 0.89
10y 0.29 6.60 -1441 1791 0.82 3.88 795 -16.55 20.80 0.88
15y 0.72 896 -18.74 26.74 0.80 4.72  10.86 -23.18 30.68 0.87
20y 0.96 11.24 -26.64 35.58 0.80 5.16 13.55 -30.21 39.01 0.87
Equity  6.09 24.04 -102.99 68.33 0.86 6.16 18.11 -54.24 42.65 0.94

Note: This table presents summary statistics, including the mean, standard deviation (SD), minimum (Min),

maximum (Max), and AR(1) coefficient, of our interest rate variance risk premium measure (IRVRP), the equity

variance risk premium measure of Bollerslev, Tauchen, and Zhou (2009) using S&P 500 index options, and forward

spreads equal to the difference between one-year forward rate 7 years ahead and the one-year zero coupon yield (in

Panel A), and of the Treasury and equity market excess returns (in Panel B). Both the forward spreads are excess

returns are in percentage points. We consider forward spreads and Treasury excess returns with tenors of 7=2, 3,
4,5,6,7,8,9, 10, 15, and 20 years. Four holding horizons of returns are included, 1-, 3-, 6-, and 12-months. Data
is monthly and runs from March 1993 through February 2013.
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Table 9: Bond Returns using the Fama-Bliss and Fama Maturity Portfolio Dataset

A: Fama-Bliss

2y 3y 4y 5y
1-month holding period
IRVRP 0.888**  (.850** 0.802%* 0.768**
(11.792) (11.686) (11.693) (13.364)
R? 0.747 0.685 0.610 0.559
3-month holding period
IRVRP 0.816**  0.696** 0.602** 0.552%*
(10.652)  (9.624) (8.315) (8.119)
R? 0.612 0.445 0.333 0.280
6-month holding period
IRVRP 0.648%*  0.476** 0.397** 0.369**
(7.607)  (5.759) (4.697) (4.458)
R? 0.372 0.201 0.140 0.121
12-month holding period
IRVRP 0.028 0.073 0.139 0.216™
(0.225)  (0.586) (1.105) (1.709)
R? 0.001 0.004 0.015 0.037

B: Fama Maturity Portfolios
T<2y T<by 5Hy<T<10y T >10y

IRVRP 0.886%*  (0.821%* 0.787** 0.614%*
(12.325) (13.319) (13.719) (11.546)
R? 0.784 0.674 0.620 0.377

Note: This table presents results of the univariate regression (7) using two alternative Treasury datasets to calculate
the Treasury excess returns. The first is the Fama-Bliss discount bond database from CRSP, which contains
Treasury notes with maturities of 1, 2, 3, 4, and 5 years, while the second is the Fama dataset from CRSP, which
contains actually traded Treasury securities combined into portfolios of different maturity buckets. The t-statistics
presented in parentheses are calculated using Newey and West (1987) standard errors with the optimal lag length
determined according to Newey and West (1994). All variables are standardized to have mean zero and a standard
deviation of one. Data is monthly and runs from March 1993 through February 2013. Significance levels: ** for
p < 0.01, * for p < 0.05, and T for p < 0.1, where p is the p-value.
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Table 11: Model calibration

Type Parameters BY BTZ GSZ
Panel A: Real economy dynamics
) 0.997 0.997 0.997
Preferences vy 10 10 8
) 1.5 1.5 1.5
Ltg 0.0015 0.0015 0.0015
Px 0.979 0 0.979
Endowment De 0.001 0 0.001
Qg 1.20463e-05 1.20463e-05 1.20463e-05
Po 0.978 0.978 0.978
aq 2e-07 2e-10
Uncertainty Pq 0.8 0.8
b4 0.001 0.0001
Panel B: Inflation dynamics
Constant ar 8.33333e-05
Persistence Pr 0.95
Autonomous ¢, 0.0013
Consumption  ¢ng -0.0385
Uncertainty Do 28.5044
Panel C: Campbell-Shiller constants
Ko 0.3251 0.3251 0.3251
K1 0.9 0.9 0.9

Note: This table reports the calibrated parameters used in previous studies and in our paper.
Column “BY?” refers to the choice of parameters in Bansal and Yaron (2004), column “BTZ”
— to that in Bollerslev, Tauchen, and Zhou (2009), and column “GSZ” refers to our choice
of parameters.
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Figure 1: Time series of interest rate and equity variance risk premium
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This figure plots monthly series of the interest rate variance risk premium (top panel) and equity variance risk
premium (bottom panel). The former is computed as the simple average of the five individual interest rate variance
risk premium measures on 1-, 2-; 5-, 10-, and 20-year tenors based on 12-month swaptions on corresponding tenors,
while the latter is based on S&P 500 index options, as in Bollerslev, Tauchen, and Zhou (2009). The sample period
is March 1993 — February 2013.
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Figure 2: Univariate regression coefficients
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This figure plots the estimated coefficients (left panels) and adjusted R2s (right panels) of univariate regressions
of the Treasury and equity market excess returns on the interest rate variance risk premium, the equity variance
risk premium, and the forward spread, in top, middle, and bottom panels, respectively. The shaded areas in the
left panels represent confidence levels of the regression coefficients at the 95% significance level. All variables
are standardized to have mean zero and a standard deviation of one. Data is monthly and runs from March
1993 through February 2013. The holding horizon of the excess returns is three months, and both the estimated
coefficients and adjusted R?s are plotted against the asset tenor 7, equal to 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20

years for Treasuries, and oo for the equity market portfolio.
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Figure 3: The model-implied nominal yield curve
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(b) No LRR component

The figure plots the average zero-coupon nominal Treasury yield curve as observed in the data using the sample
of January 1991 - December 2010 monthly data as the solid blue line in both Panels (a) and (b). The figure also
plots the model-implied yield curve with the long-run risk component (Panel (a)) and without the long-run risk
component (Panel (b)) as the dashed red line.
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Figure 4: Equilibrium nominal bond yield loadings
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The figure plots the model-implied nominal bond yield loadings on expected consumption growth (top left panel),
consumption volatility (top right panel), consumption volatility-of-volatility (bottom left panel), and expected
inflation (bottom right panel). Maturity on horizontal axes is in months.
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Figure 5: Model-implied predictability
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The figure plots the model-implied slope of the predictive regression of the nominal bond risk premium to the
nominal bond variance risk premium: brp;$ M =a+bx BVRP;$ n [a% . +1} + €. Maturity on horizontal axes is in

months.
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A Appendix

A.1 Solution for the consumption-wealth ratio coefficients

Euler equation imposes equilibrium restrictions on the asset prices:
Elexp(m+1 + ri41)] = L. (A1)

Since this Euler equation should hold for any asset, it should also hold for the wealth-consumption
ratio z;. Thus, the return on this asset 7., should satisfy (A.1). Using it and the wealth return
equation (18), obtain:

0
E; [exp(ms1 + 1ei1)] = Ey {GXP (9 Inj — @9&1 + 97"c,t+1)1 =1, (A.2)
or, in log-linearized dynamics:
0 1 0
Et flnd — Egt_;,_l + 07"07t+1 + §Vart flnd — agﬂ_l + 9T07t+1 = 0. (Ag)

Substituting out 7..1 in terms of z; dynamics (17) and consumption growth g1, we can solve
for the equilibrium wealth-consumption ratio loadings Ag, A,, A2, Ay

0
E0Ind — @(,ug + &y + 0g12g041) + O(Ko + k1 (Ao + Azir + A(,a;Hl + Agrs1)—

Ao — Ay — Aadit — Ay + g + T+ g1 2g 1) |+

A4
%Vart [O1nd — %(,ug + 2+ 0gizge41) + 0(Ko + k1 (Ao + Apeyr + Aga;tﬂ + Agqri1)— .
Ay — Apxy — Aaait — Ayqi+ g + 1+ 0412410401)] = 0.
To solve for Ay, set constant terms under the expectation in (A.4) equal to zero:
0Iné + 0(ko + K1 (Ao + Asa, + Ajay)) — Ao + (49 — %) g =0 =
) (A.5)
Ay = - Ind + ko + k1 (Asa, + Agay) + <1 — E) ,ug} )
To solve for A,, match the terms in front of x;:
0 1
ot 0(k1Aupe — Ax+1)=0 = A, = ﬁ (A.6)

%)



To solve for A,, match the terms in front of ait:
g 1 0 ,
(0r1Agps — 0A)0, , + §Vart —Eag,tzgﬂg“ +O0r1 A0y i2p 141 + 005129101 =

1 0
0A,(K1ps — 1)03775 + EVart {<¢9 — E) OgtZgi+1 + 0&1A$¢eag,tzx7t+1} =0 =

1 (A.7)

0A,(k1pe — 1) + 3 =0 =

(9—§)2+(9;{A¢)2
w 14z Pe

\)

A=t (9—§)2+(9HA¢)2
o 29<1_/ﬁ?1,00-) w 1z Pe

To solve for A,, match the terms in front of ¢ and set equal to zero:

1
(Q’ﬁAqPq - eAq)Qt + §Vart [QKIAU\/@ZCHH + 9H1Aq(pqqt + ¢q\/azq1s+1) - HAqqt] =
1
0A,(kipg, — Vg + 5\/&1"(9/@1140\/@zgt+1 +0k1 A0/ U 2g,,) =0 =

1 1
5(9/@1%)2142 +0(k1pg — 1) Ay + 5(9/11140)2 =0 or, equivalently,
(0r109)* A2 + 20(k1pg — 1) A + (051 A,)* = 0.

The solution for A, represents the solution to a quadratic equation and is given by:

AT — L —ripg £ \/<1 — K1Pg)? — (OK{PgAs)*
! 6(51¢q)2 '

As Tauchen (2011) notes, a “positive” root A} has an unfortunate property limg, o gbgA; £ 0,
which is, essentially, a violation of the transversality condition in this setting: though uncertainty
q; vanishes with ¢, — 0, the effect of it on prices is not. Therefore, we choose A root as a viable
solution for A,:

(A.9)

L= r1py = (L= k1p,)? — P12 A2
t 0(K169)* .

To insure that the determinant in (A.10) is positive, we also impose a constraint on ¢, —the
magnitude of the shock zg41:

A

(A.10)

(1-— ’flpq)2

qbg < Ry (A.11)
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A.2 Solution for the real pricing kernel and the real risk-free rate

Using the solutions for A’s obtained in A.1, we solve for the expected value E;[m;;;] and the
variance Vary[my,] of the real pricing kernel my:

0
Ei[my ] = 0Iné — EEt[gH-l] + (0 — 1)Ei[res] =

0
=0lnd — E(,ug + ) + (0 — 1)Ei(ko + K12e41 + 9t — 2t)

0
=0Iné — E(ug + 1) + (0 — 1)[ro + £1(Ao + Aepas + As(as + poo,) + Aglag + poar))

+ g + @ — Ay — Ay — Aoy — Agg] (A.12)

=0Ilno+ ((0 —1) - %) pg + (6 — 1)Ko + (k1 — 1) A + k1(Asras + Agay)]

~
0
T (0 = D[(Ac(rrpe — 1) + Dy + Ay (8195 — L)og, + Ag(k1pg — 1)ai]
=0Ind —y(pg + 1) + (0 — 1)[ko + (k1 — 1) Ag + k1 (Asas + Ajay)]
+ (0 = D[As(krpe — Dy + Ag(k1pe — Doy, + Ag(k1pg — 1)ai].

and

0
Vart[mtﬂ] = Vart |:9 Ind — Jgt_;'_l + (0 — 1)rc,t+1

0
= Var, |:_Egt+1 + (0 = V)[r1(Ao + Agir + Ao o0 + Aggesn) + gira

0
= Var {((9 -1)- E) Ogi2gt+1 + (0 — 1)K1(AePe0g 120141 + Aon/QZo i1 + Agdg/Qzq141)
= V2U§,t + (0 —1)%k7 [Aieﬁffﬁ,t + (A2 + Agﬂ%)%] .

(A.13)

The real risk-free rate is the negative of the (log) real pricing kernel with the Jensen’s correction.
Using the solutions (A.12) and (A.13) for the real pricing kernel, the model-implied real risk-free

rate is given by:
1 1
Tt = =Dy = —Ei[mega] — §Vart[mt+1]

= —0Ind +ypuy — (0 — 1)[ko + (k1 — 1) Ag + k1 (Asa, + Agay)]
+y = (0 = DAs(k1pe — 1)] 7
] } ) (A.14)

1
+ {—(9 — DAs(r1ps = 1) = 5(0 = 1)*K{AZ07 — 5’72 ;

g,t

[0 - D sapy = 1) - 50 - DAL+ A2 .
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Note that the time variation of the risk-free rate (A.14) crucially depends on the assumption of
the preference for early resolution of uncertainty (6 < 0). Without it (f = 1) the time variation in
the risk-free rate depends only on the variation of the predictable consumption growth component
x; (long-run risk) and equals to: 77, = —Ind + y(pg + 1) — %720;75. Moreover, in the absence of
the long-run risk, it is nearly constant (ignoring the time-varying Jensen’s inequality correction):

Tre=—1n0 4y, — %yzait. In the steady state the real risk-free rate can be written as:

ry = _[CO €1 C2 03] X []- Ez E02 Eq],- (A15)
where steady-state loadings ¢;, @ = 0,...,3 are given by:

co=0Ind —yu,+ (0 — 1)Ko + (k1 — 1)Ag + k1(Asa, + Agay)],
Ci = —7% + (6 - 1)Az</’{'1px - 1)7

= %72 + %(9 — 1224262 + (0 — 1) Ay (k1ps — 1), (A.16)
1
c3 = 5(9 — 1)2,%%(14(2, + A2¢3) + (0 —1)A,(kipg — 1).

A.3 Solution for the nominal one-period risk-free rate
Similarly to the real risk-free rate (A.14), the nominal one-period risk-free rate is the negative of

the (log) nominal pricing kernel with the Jensen’s correction:

1
i, = =B [mf,] - QVart [mf, 1]

1 1
= _Et [mt—i-l - 7Tt+1} — §Vart [th] — §Vart [7Tt+1] + COVt [th, 7Tt+1] (A )
A7

1
=15+ Eymgq] — évart[ﬂ-t—&—l] + Cove[mys1, Teya)

1
=Tpp+ Qr + prTy — 5[(?,2, + @200+ O qr] + Covelmyir, mpa).

We need to compute the last term in (A.17) to complete the expression for the nominal risk-free
rate in closed form:

COVt[mt+1, 7Tt+1] = Et[(mt+1 — Etmt+1) X (7Tt+1 — Etﬂ-t—i-l)]- (A18)
The unexpected components of the pricing kernel m;,; and inflation m;,, are given by:

mi41 — Et[mt+1] = —Y0gtZgt+1 t+ (9 - 1)K1(Ax¢ezz,t+1 + Aamza,t+l + Angq\/azq,t—&—l);

A.19

o1 — Ee[TMei1] = Onzrii1 + OrgOgi2g1e1 + Oro/UZo 41, ( )
which implies for (A.18):

Et[(mt-i-l - Etmt+1) X (7Tt+1 - Etﬂt+1)] = —v%gait + (9 - 1)K1Aa¢mqlt- (A-QO)

Combining together (A.14), (A.17), and (A.20), we obtain the closed-form expression for the
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nominal risk-free rate in terms of the model parameters and state variables:

1
rf{t =—0Ind +ypuy+ ar — (0 — 1)Ko + (k1 — 1) Ao + k1 (Asas + Agay)] — §¢727

+ [y — (0 = DA (r1pe — 1)) 2
1, 1

[0 D Admape = 1) = 307 L0 - 1P uAi)? -

1
57— 5 —¢2, — 7%} ol (A.21)

2
1 1

+ |:_(9 - 1)Aq("€lpq - 1) - 5(9 - 1)2"{‘%(‘43 + A(2]¢2> - §¢72ra + (9 - 1)/€1AU¢TI'O':| qt

+ PrTt-

The nominal steady-state risk-free rate can be expressed similarly to that of the real risk-free rate:

T;sé =SS S S x 1B, Epe By B, (A.22)
where the nominal risk-free rate loadings Cf, t = 0,...,4 are related to the real risk-free rate
loadings ¢;, © = 0,...,3 as:

1
o =co— ar + 502,
2
C? = (1,
1
Cg =Cy + §¢72rg + ’ngﬂg) <A23>

Cg =3+ _(b?ra - (0 - 1)/€1A0¢7r07
& =—p
A.4 Solution for the nominal n—period bond price
The nominal n—period bond (log) price PP is given by:

pf’ = E [mfﬂ] + §Vart [mf—l-l} + Ey [pi’d 1] + QVart [pflrl 1] + Cov; [mf—i-l?pfjrl 1] . (A24)

The first and the second terms in (A.24) are known from the nominal risk-free rate calcula-
tions (A.17). The last three terms can be computed using an affine pricing conjecture:

P = B B B 4 B B, (A.25)
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Then the expected nominal bond price is:

$.n $n— $.n— $n—
E; [pt+1 1} = By ' + By lpxl‘t + By 1(aa + Pa‘ﬁ,t)

+ Bgnil(aq + qut) + Biynilmfr + pxr)

(A.26)
— [Bg,n—l _'_ Bi’n_laa + B$,n—1aq _'_ B$,’I’L—1aﬂ-
+ B pay + By pe0, + By pgq + B pam,
The shock to the nominal bond price is given by:
pfﬁl ' — E [pf—ﬁl 1} - Bf’ﬂ_lqbeag,tzcc,tﬂ + Bivn_l\/@'zmtﬂ + Bgn_lqbq\/azqi-&-l (A.27)
+ Bf’nil[ﬁf)w%,tﬂ + OrgOg12g141 + Oro/Ut %o t41]-
Thus, the variance of the nominal bond price is given by:
2
$.n $.n $,n $,n— $,n—
Var,[pyly 1] E, [pt+1 '—E [pt—H 1” = |:<Bl 1¢e)2 +(By 1¢7rg)2] Ug,t
(A.28)

¥ {(BS’"1+B§’“¢m)2+(B§’“¢q)2] wt (B0.)

Lastly, covariance between between the nominal pricing kernel and the nominal bond price equals
to:

$,n—1 $,n—1 $,n—1
Covy [mfﬂaptfl ] E [(mt+1 Etmfﬂ) (ptfl Etptﬁl >] ’ (A.29)
where the shock to the nominal pricing kernel in terms of state variables is:

merl - Etm§+1 = My — Eymyp — (M1 — Eymegn)
= —Y0gtZgt+1 T (9 - 1)51 (Ax¢e<fg,t2’z,t+1 + Aa\/@%,tﬂ + Aqaﬁq\/@zq,m) (A-30)
- ngrZTr,t—‘rl - ¢7rgo-g,tzg,t+1 - @m\/@%,ﬁh

and the shock to the nominal bond price, pfjH Etpt +1 , is given in (A.27). Thus, a final
expression for a covariance term in (A.24) is:

Covy |:m;$+1?pffl 1] = [(9 — D A By T R — (y + ¢7rg)B$n 1¢ﬂg} Tg,t
+ [((9 — Di1Ag — ¢re)(BS™ 1 4+ BS" ,) + (0 — l)mAqu’"_lgbgqt} a (A.31)
- By o
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Combining together (A.17), (A.26), (A.28), and (A.31), the nominal n—period bond price is:
- n— n— n— 1 n— 2
BS™ = ¢y — ay + [ijv" LB la, + BY a, + BY 1%} + 502 (va b 1)
BY" = ¢ + B¥"p,

$n _ pS$n-1 1 2 1 2 $,n—1 2
By" = B, po + (0 — 1)AU(’€IPU —-1)+ _(7 + ¢7r9) + §¢e (9 - 1)“1Ax + By

2
1, sn e
+ 5(35 1¢7rg)2 -(v+ Qbﬂg)Bj 1¢7rg (A.32)
n n— 1 n— n— 2
By = By" ' pg+ (6 — D Ay(r1py — 1) + 3 [(9 — D1 Ay + By + b (Bi’ - 1)]

1 b]?
+5 (0= 1ma,+ B

B =), (Bf"*1 . 1) .

A.5 Solution for the forward spread

Let f2™ be the one-year forward rate starting n — 1 periods ahead: f7" = nyp™ — (n — 1)yP" !,

then the forward spread F' Sf =" = yf ! is the difference between the forward rate and the
one-period nominal bond yield yf 1 Using the affine pricing conjecture (A.25), show that the
forward spread is the function of all four model state variables:

$n $.n $n— $, $.n— $.n $,
FS)" =ny" — (n— 1)y, l_ytlzpt l_pt _ytlz
<B§,7’Z—1 _ Bg,n) _|_ (Bf,n—l _ Bf,n) I’t + (Bé&n—l _ Bi,n) O_;’t + <B§,n—1 _ B§,TL> qt+

<Bi,n—1 . Bf,n) T

1 1 1
<_<CO —ax + 5(?,3) —cxy — (c2 + §¢ig + Vrg)on, — (3 + §¢3m — (0 = 1)k1Agro)qs — mm)

- Fg’” + Ff’"mt + F2$’"0§’t + F3$’nqt + Ff’"wt.
(A.33)

Using the nominal bond loadings in (A.32), obtain the constant term and the factors for the state
variables in the forward spread equation (A.33). The constant term Fi™ in (A.33) is:

B . 1

g = (B = BY") 4 (co = an + 502) =
A.34
B$,n71 $,n—1 $,n—1 1 2 $,n—1 2 ( )
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The F" loading on z; is:
Fin (va"*l - ny”) e =B (1 - py). (A.35)
The F5™ loading on o, is:

n— n 1 " .
(Bi’ L ) (2 500y +10mg) = By N1 = po) = (0= D A0 By (A.36)

1 n— 2 1 n— n—
S0 (BY ) = (B 6rg + (7 + 60g) BY g,

The F;n loading on ¢; is:

n— n 1 n—
<B§7 1 Bgf’ ) + (C3 + §¢3rcr — (0 - 1)K1A0¢7r0) = B? 1(1 - pq) - (0 - 1)Aq(’f1pq - 1)

1 n— n— 2 1 n— 2
- [(9 DAy + B 4 g (Bf’ 1_ 1)} -5 [(9 — 1)k A, + BS 1] $2
1
+ (03 + §¢3m — (9 — 1)/€1A0¢7m).
(A.37)
and the F, f "™ loading on m; term is:
(B = BY") = o) = BE" (1= py). (A.38)

A.6 Solution for the nominal bond variance risk premium (BVRP)

$n—1

2 _ $n $n $n 2
Define 05, = Varg [Tt7t+1], where /),y =piy —pp ,800

r$ ,t

= Var; [pffl_l}. Similarly, 03% "=

Var; 4 [pff{ﬂ . We need the conditional variance at time ¢+ 1 because time-¢ conditional variance

is known and therefore, variance risk premium is constant. To derive the nominal bond variance
risk premium recall the affine pricing conjecture (A.25):

py" = By" + BY"x, + By"o? + By"q, + By (A.39)
Therefore:
2
Uf$7t+1 = Vary [pff;ﬂ =K [pffz_z —E [pffz_QH =
2 2 2 2
{(Bf’”‘{"cbe) + (B 0r) }Ui,m + {(33’”‘2+B§’”‘2¢m) + (B0, ]Qt+1 (A.40)

2
+ (B 0)
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and its expectation equals to:

E; |:0-72‘$7t+1j| = {(Bf’n_%be)Q + (Bin_%bwy) 2] (ar + Paaz,t)
(A.41)

2 2 2
+ {(Bi’”‘HBLT’"‘%m) + (B5"%,) ] (ay + puat) + (B 6.

The nominal BVRP is defined as the difference in expectations of the variance under risk-neutral
Q and actual measures, which is given by the covariance between the variance of the nominal bond
price and the nominal stochastic discount factor:

Q| 2 2 _ 2 $
Et |:Or$7t+l:| — Et |:0r$,t+1:| = COVt |:O'T$7t+1,mt+1:|

(A.42)
= Ey [(03$,t+1 - Et‘7§$,t+1> X (mfﬂ - Etmfﬂ)] :
The unexpected part of the variance of the nominal bond price is given by:
2 2 $n-2 )2 $,n—2 2
o~ B0k = [ (BY70.) + (BY" P0ny) | Vatzoss
(A.43)

2 2
+ [(BS’“ B 0r ) + (B0, } V.

and the unexpected part of the nominal pricing kernel is given by (A.30). Taking the expectation
of the product of (A.30) and (A.43), we obtain the nominal BVRP (A.42) in the closed form as a
function of model parameters:

BVRP}" |o% | = B2 [0 1| — B [0k 1] =

r8t+1 r¥t+1

(0 = 1y {(AU — 6r0) [(3?“@)2 - (Bff’“mgﬂ + (A.44)

A6 [(BS’”‘Q FB0,) 4 (B?;’"—%qﬂ } a

Note that the nominal BVRP in (A.44) has a superscript n, meaning that it is maturity-dependent.
Although the nominal BVRP in (A.44) is a function of (n — 2)—period bond price parameters, it
is indexed by n superscript because it is assessed at time ¢ when the nominal bond has n periods
to maturity. The notational leap from n — 2 to n happens because we assess time-t expectation of
the time-(¢ 4+ 1) conditional variance af$’ 441 Of the time-(¢ +2) nominal bond price pf_’f{Q.

A.7 Model-implied predictive regression coefficients

In this subsection we provide model-implied coefficients of the predictive regression of the nominal
bond risk premium (??) on the nominal BVRP (A.44):

bpf" = a+bx BVRP}™ [o% ] + e (A.45)
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Ignoring the error term, the slope coefficient is given by:

Cov [brpt " BVRP™ [0’% tHH
b= : : (A.46)
Var |BVRP" 0% ||
and the R? coefficient is given by:
b x Var [BVRPY" o3, ||
R = i (A.47)

Var [brpt "}

Using that brp,” = f’n_lajt + 85" g + B¥ g2 from (??) and that BVRP, = (6 — 1)kyvq,,
where v = {...} in (A.44), and ignoring the constant inflation adjustment term Bi™ '¢2 in the

nominal bond risk premium expression obtain

Cov [brpf’", BVRP™" [02 H = Cov [ f’”_lagjt + 85"y, (0 — Diywg | = (0—1)k1085" WVar(q,),

rSt+1
(A.48)
because Cov [oit, qt} = 0 according to the dynamics of the model state variables. Accordingly,
model-implied variance of the bond variance risk-premium is:

Var [BVRP?’" [02 H = (6 — 1)*kjv*Var(q,). (A.49)

r8t4+1
Then the model-implied slope coefficient b is:

b — (9 — 1),{‘11//85’”71 — é&nil (A 50)
(0 —1)2k22Var(q;) (0 — V)ryv’ '

and the slope coefficient R? is:

ﬁ$,n71 2 9 92 9 $n_1 2
) X (0 —1)*kiv*Var(q;) ’ Var(q;)
R? = <(9 2l ) : = < - ) . (A51)

(5t ) Nar(a) + (A7) arta - (50) Var(ag + (487) Varta
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