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Abstract

The objective of this paper is to estimate three functions—the natural probabilities,

pricing kernel, and discount rate—from observed state prices more accurately. Since

these three functions appear as a single piece of information in the marketplace, we are

unable to discern each function’s specific contribution to a change in price. To solve

this problem, Ross (2015) proposed the univariate Recovery Theorem (RT), where the

transition probability matrix is based on the current level of the S&P 500. In contrast,

I derive a transition probability matrix using a multivariate Markov chain. I employ

a mixture transition distribution where the proposed states depend on the level of the

S&P 500 index and its options’ implied volatilities. I include volatility because the

transition path between states depends on the propensity of an underlying asset to vary.

An asset that is highly volatile is more likely to transition to a far-away state. This

multivariate method improves significantly upon the univariate RT because the latter

does not include volatility in the state transition, which makes its transition probabilities

less precise. The forecast results indicate that the multivariate Markov chain produces

superior results over the univariate RT. Using quarterly forecasts (updated monthly) for

the 1996-2015 period, the out-of-sample R-square of the RT increases from around 12%

to 30%.
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ington’s Center for Studies in Demography and Ecology. All errors are my own.
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1 Introduction

Ross’s (2015) Recovery Theorem (RT) is a breakthrough in asset forecasting. Using

the RT, we can obtain the market’s best estimate of future expected returns and risk

aversions by separating the components of state prices (the discount rate, pricing kernel,

and natural probability distribution). As such, not only does it allow us to use option

prices to obtain an out-of-sample non-parameterized expected future distribution of an

option’s underlying asset, but it constitutes one of the best asset forecasting models

available today. However, it has certain shortcomings that this paper aims to address.

Borovička et al. (2016) have shown that the RT’s transition matrix may not be

unique. This paper’s theoretical contribution is that it changes the original univariate

model to a multivariate one. The original RT derived the transition matrix using a

simple constrained linear regression which assumed that the probability of transitioning

to a new state was dependent on the previous state. Yet, a growing literature argues

for volatility persistence in financial markets (Patton and Sheppard, 2015). If volatility

is indeed persistent and option prices reflect the conditional variance of the underlying

asset (Engle and Mustafa, 1992), then the transition matrix should control for volatility

(Page et al., 2006).

Including volatility into the transition probability estimation also makes intuitive

sense. It is analogous to a basic continuous time process thought to model asset

prices well: a geometric Brownian motion. The geometric Brownian motion has two

major parameters: a drift term and a diffusion term. The drift term is a deterministic

component and can be thought of as the overall trend in the return process. The

diffusion term is a random component and can be thought of as the volatility of the

return process. In a world characterized by a geometric Brownian motion, the path

that an asset takes is highly dependent on the random components as well as the overall

trend. For example, if we assume that the drift and diffusion parameters are both equal

to 10%, McDonald (2006) shows that the diffusion term contributes approximately

four times more change in the asset price than the drift term for one-month price
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changes. The path which the asset follows is driven more by the randomness—the

diffusion (or the volatility) process—than by the overall trend. The key insight for

us here is that, although trend (measured by the level) is important for long-term

forecasting, the majority of market movements are dictated by the volatility for shorter-

term forecasts. This is why I argue that including volatility in the derivation of the

transition probabilities is critical to the proper specification of the Recovery Theorem.

One of the key assumptions of the RT is that markets are complete. In reality,

markets are not complete. To construct state prices that are complete and behave

normally, it is necessary for the data to be as detailed as possible. The original RT was

tested empirically using over-the-counter (OTC) data, which is richer1 than publicly

traded options data. However, it is unlikely that Ross’s OTC dataset includes, for

example, options with strike prices at every $1 interval. Moreover, the transition

matrix requires that we assume time homogeneity. To make this assumption, we must

extrapolate option data based on time-to-expiration. This paper uses a methodology

that I developed (see companion paper (Sanford, 2016b)) where I extrapolate readily

available exchange traded option data on both the strike price and time-to-maturity

dimensions by expanding on methods proposed by Figlewski (2008) and Chen (2011).

This methodology makes the RT usable in any circumstance where we have sufficient

data to estimate smooth splines. Because the extrapolation method proposed is not

directly comparable to the results of Ross (no access to his OTC data), I compare

my results to those derived using Aït-Sahalia and Lo’s (1998) method. I test both

in multivariate and univariate Markov chain settings. The forecast results indicate

that the multivariate Markov chain (using my proposed extrapolation methodology)

produces superior results over the univariate RT. Using quarterly forecasts (updated

monthly) for the 1996-2015 period, the out-of-sample R-square of the RT increases

from around 12% to 30%.

Empirically, this paper constitutes one of the first exhaustive analyses of Ross’s
1The notional amount for outstanding OTC equity-linked options is estimated to be $4.244 trillion
while it is estimated to be $1.972 trillion for exchange traded options BIS (2012).
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Recovery Theorem. In addition, it compares the efficacy of the multivariate Markov

chain RT at various forecasting horizons. Results indicate that, surprisingly, the RT

at shorter-term horizons (e.g. daily and weekly forecasts) is less reliable, and is more

effective in the one-to-three-month forecast range.

The paper is divided into five main sections. Section 2 explains the original and

multivariate RTs, and discusses the steps required to implement the theorem. Section

3 introduces the data. Section 4 presents the results. Section 8 simulates data using

Monte Carlo simulations and tests both the univariate and multivariate RTs on this

artificial data. Finally, section 5 explores possible extensions and concludes.

2 Model

The RT’s ultimate goal is to obtain the natural probability distribution for equity re-

turns. It accomplishes this by first deriving state prices using equity options. Using

these state prices, we can then disentangle the discount rate, the risk-aversion parame-

ter, and, ultimately, the natural probability distribution. To understand this paper and

its contributions, it is necessary to briefly introduce and provide the intuition behind

the original RT. I break down the original RT into four major steps:

1. construct the state prices,

2. construct the transition probability matrix,

3. use the Perron-Frobenius (Meyer, 2000) theorem to extract what Ross calls the

“natural probability transition matrix,” and

4. produce what Ross calls the “natural marginal distributions,” which can then be

used to obtain the recovered statistics (of which the recovered expected return

and expected volatility are of particular interest).

To facilitate comparison, I adopt the same terminology and notation as Ross wherever

possible. I do not present all of the proofs from the original RT since those can be found
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in Ross’s paper. I limit the proofs in this paper to those that are new or crucial to the

understanding of the model. Once I have provided the background for the original RT,

I move on to the intuition and derivation for the Recovery Theorem with a multivariate

Markov chain proposed in this paper.

2.1 The Univariate Recovery Theorem

Financial markets price assets as the present value of all future cash flows (Cochrane,

2009). However, if we are referring to risky assets, as is the case in this paper, these

prices are subject to adjustments since the future payoffs are not guaranteed and, by

extension, are considered risky. We call this adjustment for the riskiness of the asset

price the risk premium. The risk premium is defined as the risk aversion and the overall

level of risk of the asset being priced. We can refer to the price of an asset using the

following equation(Cochrane, 2009):

p

t

= E

t

(m
t+1xt+1) (1)

where p

t

is the price of an asset at some time t, E
t

is the expectation operator, m
t+1 is

a stochastic discount factor, and x

t+1 is the future cash flow of the asset. The variable

m

t+1 in equation 1 is what gives us the risk premium because it is the adjustment

to the price of an asset that makes it worthwhile for investors to purchase that asset

given its level of risk. Part of the problem in pricing equities, however, is in defining

this stochastic discount factor. In markets like the bond market, we can derive the

forward rates. We obtain forward rates by comparing the yields of bonds with different

expirations, which allows us to obtain the market’s estimate of the stochastic discount

factor. The same cannot be done with the equity market. So how can we estimate

the risk premium? As Ross (2015) notes, we currently estimate the risk premium for

equity markets by relying on historical returns or using opinion polls. Historical returns

assume that the past estimate of the risk premium is a good indicator of the future

risk premium while opinion polls assume that the opinions of the analysts being polled
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reflect the entire market’s overall sentiment. Both of these methodologies are flawed.

In an effort to address these issues, Ross (2015) uses options. Options, like forward

rates, are forward-looking instruments with varying maturities. Hence, there is hope

that we may use these securities to estimate the risk premium. That being said, option

prices themselves do not explicitly depend on, or allow us to solve for, the risk premium.

This is the question that motivates the original Recovery Theorem: how can we use

option prices to obtain the risk premium? The RT provides a framework through which

we use options to estimate state prices, which then allow us to estimate the underlying

asset’s risk premium.

2.1.1 State Prices (S)

Ross proposes that the starting point in deriving the equity risk premium is to obtain

state prices from option prices. Why do we need state prices? We want a security that

can be defined as a function of a pricing kernel and the true (or, as Ross calls them,

“natural”) probabilities. This is in essence a forward rate: a function of a pricing kernel

and a probability. However, forward rates are not naturally found in equity markets,

so we use option prices instead. Recall the definition for forward rates: today’s rate

for an asset that has a guaranteed payoff at some future point. Can these types of

securities be obtained using equity options? A put option can be defined as a function

of the discount rate, the risk aversion parameter, and the probability of downside risk.

However, we are not looking for an asset that is only a function of the left side of the

returns distribution. Instead, we can construct a portfolio of options. We are going

to call these portfolios “state prices.” Formally, state prices correspond to the price

of a security at some initial time, t0, such that, at some future time T , the security

pays a pre-specified amount (normalized to $1) if the market is at a pre-specified state

of the world and pays nothing otherwise. For example, assuming that the level of

the S&P 500 today is 1,000, a state price would be the price of an asset that pays

you 1$ in, say, three months if the level of the S&P 500 is 1,500 at that time. The
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problem is that this type of security is not readily traded. Breeden and Litzenberger

(1978) produce a method to derive state prices, beginning with the continuous time

Black-Scholes-Merton equation (Black and Scholes, 1973; Merton, 1973) as follows:

C(K,T ) =

Z 1

0

[S
t,p

�K]+p(S
t,p

, T )dS
t,p

=

Z 1

K

p(S
t,p

, T )dS
t,p

, (2)

where C(K,T ) is today’s price for a call option with a strike price K and time-to-

maturity T . Taking the second derivative with respect to strike price K gives the

following result in continuous time:

s(K,T ) = C

00(K,T ) (3)

which is Breeden and Litzenberger’s (1978) result. In discrete time, we can estimate

equation 3 using a butterfly spread. A butterfly spread is a portfolio of three call

options: buy a call option at strike price K1, sell two call options at strike price K2,

and buy a call option at strike price K3. Mathematically, this corresponds to the

following equation:

s(K,T ) ⇡ �C

K1 + 2C
K2 � C

K3 (4)

which, once standardized, gives a guaranteed payoff of $1 at expiration T if the market

ends at K2. Hence, we have defined and derived state prices. These state prices are

the foundation of the Recovery Theorem.

Recall that I defined state prices as a function of the discount rate, risk aversion,

and natural probability distribution. This can be expressed as follows:

s

i,j = p

i,j

�

i,j (5)

where p

i,j is the state price transition matrix, �i,j represents the pricing kernel (or the

stochastic discount factor), and s

i,j represents the state prices. All of the components

in equation 5 have already been defined with the exception of the state price transition
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matrix (see section 2.1.2).

According to Ross (2015), knowing the state price of a single state is not enough to

be able to solve equation 5. We need m equations but only have one set of equations,

which implies that we cannot solve the system. However, if we knew the state prices

for a complete set of states (m states in this example), we would have m equations and

could start solving the system of equations (see appendix A for more details).

Below, I provide an example of a state price matrix with 11 state levels. Exam-

ples for the state price transition matrix and the natural probability distribution are

presented in section 2.2, where I also detail my proposed improvements to the RT.

State Price Results - An Example I obtain state prices by summing the butterfly

spreads (with $1 strike price increments) between s

i�1+s

i

2 and s

i

+s

i+1

2 . As a numerical

example, in table 1, for a state 676, s

i�1+s

i

2 is 649 and s

i

+s

i+1

2 is 708.2 Hence, the values

in table 1 can be interpreted as follows: the greyed out price, $0.42, represents the

price of an asset that guarantees a $1 payoff if the market ends between 649 and 708

in 6 months (expiration).

State/ 3 6 9 12 15 18 21 24 27 30 33 36
TTM (mths)

476 0.002 0.000 0.000 0.000 0.001 0.017 0.040 0.000 0.000 0.000 0.001 0.001
504 0.002 0.001 0.001 0.001 0.002 0.006 0.011 0.000 0.000 0.000 0.000 0.000
538 0.007 0.007 0.008 0.011 0.016 0.022 0.030 0.000 0.000 0.000 0.000 0.000
577 0.023 0.023 0.024 0.025 0.028 0.031 0.036 0.000 0.000 0.000 0.000 0.000
622 0.150 0.150 0.145 0.139 0.131 0.117 0.099 0.000 0.000 0.000 0.000 0.000
676 0.524 0.420 0.363 0.321 0.282 0.238 0.190 0.000 0.000 0.000 0.000 0.000
740 0.272 0.324 0.330 0.322 0.305 0.277 0.240 0.000 0.000 0.000 0.000 0.000
816 0.018 0.060 0.096 0.129 0.161 0.193 0.225 0.000 0.001 0.001 0.001 0.001
910 0.001 0.009 0.023 0.041 0.064 0.092 0.124 0.000 0.000 0.001 0.001 0.001
1023 0.000 0.001 0.003 0.005 0.007 0.007 0.004 0.000 0.997 0.996 0.995 0.994
1162 0.000 0.004 0.006 0.005 0.002 0.000 0.000 0.998 0.000 0.000 0.000 0.001

Note: 0.000 corresponds to a non-zero value; 0 corresponds to a zero value.

Table 1: State Prices on the S&P 500 for 1 April 1996

2 si�1+si
2 = 622+676

2 = 649 and si+si+1

2 = 676+740
2 = 708.
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2.1.2 Transition Probability Matrix (P)

In equation 5, I defined state prices as being a function of a pricing kernel, m, and

a state price transition matrix, p. Formally, this is the probability of transitioning

from a previous state, i, to a new state, j. More intuitively, we can define the state

price transition matrix as an intermediate-step forward rate. In other words, it is the

price of an asset in the future that guarantees a payoff of $1 if the state of the world

transitions from state i to state j at an intermediate time-step t+⌧ , where ⌧ > 0. This

is analogous to obtaining the forward rate at some future time-step. An intermediate

time-step forward rate is the expected rate at time t0 for rolling over a bond at some

future time t+ ⌧ for a desired investment horizon that is at time T . This bond price is

not known at the initial time, t0. For example, if we assume an investment horizon of

one year, we can decompose it into two six-month periods. We have the choice between

investing in a one-year bond or investing in a six-month bond today and investing in

another six-month bond in six months (rolling over the investment). The forward rate

is thus the price at time zero (or the rate in this case) of the six-month bond that we

will purchase six months from now for our total investment horizon of one year. The

intuition for the state price transition matrix is the same. If we think about the state

transition price using the same horizons as the example for the forward rates, we have

the price of a security that pays $1 if the market starts at state i in six months and

expires at state j in 12 months. Compared to the state prices estimated in the previous

section, here we are estimating state prices for state levels that are hypothetical, rather

than the current actual state level. This understanding might seem trivial but it will

be important later when I derive the multivariate Markov chain. The analogy to a

forward rate will be used to demonstrate that the proper derivation of the transition

matrix is multivariate rather than univariate.

Before deriving the transition matrix, I need to introduce an assumption that is

crucial to its derivation.

Assumption 1 (Time-Homogeneity). Time homogeneity implies that the state price
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transition probability matrix, P , is not dependent on time.

Using assumption 1, Ross (2015) estimates the state price transition matrix using the

following traditional transition matrix equation:

s

t+1 = s

t

P, t = 1, ...,m� 1 (6)

mX

i=1

P

i

= 1 and P � 0

where m is the number of states and P is the state price transition probability ma-

trix. Assumption 1 allows me to obtain the state price transition probabilities using

equation 6. Time homogeneity assumes that the transition probabilities are the same

regardless of which time-step we are trying to estimate. Jensen et al. (2015) propose a

methodology to remove this assumption. The impact of removing this assumption in

the multivariate case is not examined in this paper.

Ross (2015) notes that he adds a unimodality condition to his regression (p
i,i

� p

i,j

).

He argues that this is necessary to minimize the error (however, it is unclear what error

is being minimized). The unimodality condition ensures that the probability on the

diagonal of the transition probability matrix is the largest. This condition implies that

the market’s best estimate of the future state is the current state. Although this might

seem intuitive, it may not always be the case. Suppose, for example, that there is a

strongly held belief that an event at time t + 1 will adversely affect the S&P 500. It

should be possible for market participants to believe that the most likely scenario would

be for the index to decline. However, imposing unimodality removes this possibility.

Since our goal is to capture as much market information as possible, it seems sensible to

remove this assumption. Results show that the market often assumes that the highest

transition probability is for the market to remain at its current level. However, some

situations exist where it thinks that the market might move to the next state. If we

imposed unimodality, we would remove this possibility.

Now that I have derived the state price transition matrix, I can rewrite equation 5
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as follows:

p

i,j

= �(✓
i

, ✓

j

)f
i,j

(7)

where p

i,j

is a state price transition probability, �(✓
i

, ✓

j

) is the kernel factor, and f

i,j

is the natural probability that we are ultimately trying to derive. This equation stems

directly from the fact that state price transition probabilities are simply state prices

at some point in the future. They can therefore be defined similarly to equation 5

with the exception that, here, we are referring to terminal probabilities instead of

transition probabilities. This is why we change the transition probability, p

i,j

, to a

natural probability, f
i,j

.

Once the transition matrix has been obtained, the rest of the RT is derived using

the Perron-Frobenius theorem along with some matrix algebra. At this point, we have

all of the necessary components to solve for the“natural” probability matrix.

2.1.3 Natural Probability Transition Matrix (F)

At this point in the derivation, we are combining all of the elements from the previous

sections to obtain the natural probability matrix. The natural probability matrix rep-

resents the market’s best estimate of the future distribution of returns for the original

option’s underlying asset. This section describes the required theorem, assumptions,

intuition, and methodologies to obtain the natural probability matrix. The first as-

sumption is time-separable utility, which can be defined as follows:

Assumption 2 (Time-Separable Utility). Time-separable utility implies that we can

define the pricing kernel �() as:

�(✓
i

, ✓

j

) = �

U

0(c(✓
j

))

U

0(c(✓
i

))
(8)

where � is a discount rate such that � 2 (0, 1], and U

0
> 0 is the marginal utility for

state j or i.

Intertemporal additive utility is assumed because it generates a transition independent
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kernel. It follows from the setup of an intertemporal model with a representative agent

that has additive time-separable preferences. More details can be found in Ross (2015).

Once we have obtained the transition matrix from section 2.1.2, we can apply Ross’s

RT. The proof is available in Ross (2015).

Using a discrete time setup and assumption 2, I can rearrange equation 7 as:

U

0
i

p

i,j

= �U

0
j

f

i,j

, (9)

where U

0
i

is the marginal utility such that:

U

0
i

⌘ U

0(c(✓
i

)) (10)

which can then be written in terms of the normalized kernel:

�

j

⌘ �(✓1, ✓j) = �(
U

0
j

U

0
1

) (11)

where ✓1 is the current state. In continuous time, Ross defines the kernel as:

�(✓
i

, ✓

j

) = �

h(✓
j

)

h(✓
i

)
(12)

Using equation 12 and assuming transition independence, we have:

p(✓
i

, ✓

j

) = �(✓
i

, ✓

j

)f(✓
i

, ✓

j

) = �

h(✓
j

)

h(✓
i

)
f(✓

i

, ✓

j

) (13)

where h(✓) = U

0(c(✓)), and p(✓
i

, ✓

j

) is the state price transition function that was

derived in section 2.1.2. From there, the objective is to solve the unknowns: the

natural probability transition function f(✓
i

, ✓

j

), the kernel �(✓
i

, ✓

j

) = �

h(✓
j

)
h(✓

i

) , and the

discount rate �. Back to the discrete time specification, we can rewrite equation 13 in

matrix form as:

DP = �FD (14)

14



where P is the m x m state price matrix defined in section 2.1.1, F is the m x m

matrix that we are calling the natural probabilities and is the matrix of interest for

this section, and D is the diagonal matrix of undiscounted kernels or a diagonal of

marginal rates of substitution as follows:

D =
1

U

0
1

2

6664

U

0
1 0 0

0 U

0
i

0

0 0 U

0
m

3

7775
=

2

6664

�1 0 0

0 �

i

0

0 0 �

m

3

7775
1

�

(15)

Rearranging equation 14, we get:

F =
1

�

DPD

�1 (16)

We obtained P in section 2.1.2, so now D must be estimated. Up to this point, the

RT has not provided us with additional insight into disentangling the discount rate,

pricing kernel (risk aversion), and natural probability distribution because there were

not enough variables and equations to solve our system of equations. The key, however,

is to notice that F is a stochastic matrix which, be definition, implies that the rows of

F are transition probabilities and so they must sum to 1. Hence, we have the following

equation:

Fe = e (17)

where e is simply a vector of ones. Substituting equation 17 into equation 16, we

obtain:

Fe =
1

�

DPD

�1
e = e (18)

and if we define z ⌘ D

�1
e, we can rewrite equation 18 as:

Pz = �z (19)

This still does not allow us to solve for D. However, we can make some assump-

15



tions about P that will allow us to use the Perron-Frobenius Theorem (Meyer, 2000).

Namely, we can assume that the option prices have no arbitrage opportunities (which,

by definition, must be the case). No arbitrage implies that the transition matrix will be

nonnegative. Probabilities are, by definition, nonnegative and this was specified in the

derivation of the state price transition matrix in section 2.1.2. The second necessary

assumption is that the matrix P be irreducible. A matrix is said to be irreducible if we

can reach any state in k-steps. As Ross (2015) argues, even if some of the transition

probabilities in P are zero, it should still be possible to reach the desired state via an

intermediary state (or states). As such, since P is nonnegative and irreducible, we can

apply the Perron-Frobenius Theorem (Meyer, 2000), which states that all nonnegative

and irreducible matrices have a unique positive characteristic root (eigenvector) z, and

a Perron root �. This then allows us to solve for D, which we can introduce in the true

distribution equation:

F =
1

�

DPD

�1 (20)

The description provided in the previous paragraph provides the mechanics of ob-

taining the true distribution. However, the question still remains as to what the appli-

cation of the Perron-Frobenius theorem has allowed us to accomplish? As previously

mentioned, the Perron-Frobenius theorem provides us with two critical pieces to the

derivation of the true distribution: the discount factor and the risk-aversion. The

discount factor is characterized by � whereas the risk-aversion is characterized by D

through the marginal rate of substitution which was defined in equation 15. The com-

ponents to the marginal rate of substitution are simply the marginal utilities between

consuming today versus consuming tomorrow. What the Perron-Frobenius theorem

allows us to do is to determine the single unique discount factor and marginal util-

ities that dictates the transition paths between states. In others words, under the

assumptions necessary for the Perron-Frobenius theorem to hold, there is only one set

of marginal utilities and a discount factor that will hold. Basically, they are relating the

discounted willingness for the representative agent to consume today versus consuming
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at some other period in the future given certain transition probabilities.

Please note that the derivation of the RT described above also applies to the multi-

variate Markov chain (MVMC) derivation described in section 2.2.1. The key difference

between the univariate and the multivariate Markov chain is that, in the multivariate

case, we are introducing an additional variable for the derivation of the state price

transition matrix. For the purposes of this paper, the added variable is implied volatil-

ity (see section 2.2.1 for more details). By introducing volatility into the derivation,

we can obtain a much more robust and precise transition matrix. As Page et al. (2006)

describe, path dependence is critical in producing an accurate transition matrix. If the

transition matrix is inaccurate in the first place, the RT will be inaccurate as well.

Once we have the true probability matrix, obtaining the market forecast becomes

trivial. We divide state prices by the kernel to obtain the natural marginal probabilities.

We multiply the natural marginal probabilities by the state levels to obtain an expected

return for each time interval. Similarly, we can use the probability and state levels to

derive expected standard deviations. I present an example below.

True Probability Matrix Results - An Example The true probabilities are de-

rived by applying the RT to the transition probabilities. Table 2 shows the expected

distribution of returns for the �-forward period (three months in this case). I high-

lighted the 1.000 value in table 2 because it might appear to be an absorption state.

However, this is only the case because of rounding in the table. It is true that the

probability of any other state occurring if the market is at �0.29 is highly unlikely but
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it is not impossible.

State/State -0.35 -0.29 -0.23 -0.16 -0.08 0 0.09 0.19 0.3 0.41 0.54
-0.35 0.271 0.326 0.366 0.080 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-0.29 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-0.23 0.000 0.435 0.468 0.038 0.053 0.000 0.000 0.000 0.000 0.000 0.000
-0.16 0.000 0.279 0.302 0.313 0.068 0.036 0.000 0.000 0.000 0.000 0.000
-0.08 0.000 0.110 0.119 0.124 0.254 0.395 0.000 0.000 0.000 0.000 0.000

0 0.001 0.001 0.003 0.010 0.091 0.564 0.281 0.022 0.002 0.000 0.003
0.09 0.000 0.000 0.000 0.000 0.171 0.405 0.388 0.000 0.000 0.000 0.000
0.19 0.033 0.037 0.040 0.041 0.056 0.097 0.160 0.387 0.007 0.007 0.016
0.3 0.004 0.005 0.006 0.006 0.008 0.014 0.014 0.018 0.891 0.006 0.014

0.41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.548 0.530
0.54 0.020 0.022 0.023 0.022 0.030 0.050 0.045 0.052 0.086 0.077 0.575

Note: 0.000 corresponds to a non-zero value; 0 corresponds to a zero value.

Table 2: True Probabilities on the S&P 500 for 1 April 1996

Forecast Summary - An Example From the true distribution above, we divide the

state prices by the kernel to obtain a marginal distribution. Multiplying the marginal

distribution by the state levels, we obtain the forecast results seen below for April 1,

1996:

Statistic/ 3 6 9 12 15 18 21 24 27 30 33 36
Horizon

Mean 0.021 0.052 0.080 0.099 0.112 0.127 0.146 0.298 0.927 0.926 0.928 0.929
Sigma 0.019 0.044 0.070 0.087 0.098 0.107 0.119 0.096 0.049 0.055 0.065 0.084

Table 3: Expected Return and Standard Deviation on the S&P 500 for 1 April 1996

Note that these results are not annualized, and therefore correspond to the expected

returns and standard deviation for the number of months indicated in the table. As an

example of the interpretation of this table, the grey value means that the RT forecasts

the 3-month return to be 2.1%. The sigma row represents the expected standard

deviation for the forecast horizon.
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2.2 The Multivariate Recovery Theorem

2.2.1 Multivariate Transition Probability Matrix (P)

Why should we use a multivariate Markov chain in the specification of the transition

matrix for the RT? The reasons are twofold. First, if markets are inefficient, it makes

sense to include variables for which we may not have accounted completely through

the state prices observed in the market. Second, if I argue that the transition matrix

can be thought of as a forward rate, then our measure of the transition is actually

for a time in the future, t + ⌧ . Although markets are likely to incorporate a lot of

information, we cannot observe all possible future paths of the so-called forward rates.

As such, it becomes necessary to account for these possible path dependencies in the

regression equation. I discuss these two arguments in greater detail below.

The first argument for including volatility in the derivation of the transition matrix

concerns market inefficiencies. If options were priced rationally, prices should reflect

all observable data or information. However, whether options are actually priced ac-

curately remains a question. Aıt-Sahalia et al. (2001) compare the cross-section of the

time-series of the S&P 500 index and the state price densities (SPD) and find that

options are not priced accurately. Specifically, in continuous time, they find noticeable

differences between the diffusion process of the SPDs and that of the S&P 500. As

such, we should expect that the �

U

0(c
j

)
U

0(c
i

) (equivalent of the stochastic discount factor

(SDF) in this paper) is not accurately specified if we do not control for other variables,

such as volatility. In other words, since we derive the kernel, which is the marginal

rate of substitution (MRS), from the state price transition matrix, the resulting kernel

may be misspecified if the state price transition matrix did not include volatility.

In this paper, I propose to add volatility to the estimation of the transition proba-

bility matrix to account for market inefficiencies and path dependence of option prices.

By deriving the transition matrix using the state level and volatility, I am controlling

for changes in the distribution of the implied volatility. The objective is to capture some
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of the characteristics in the distribution of implied volatilities that lead to mispricings.3

The second, and most important, argument for including volatility in the derivation

of the transition matrix is that we are pricing securities at some point in the future.

Recall, that a forward rate is defined as the expected rate at time t0 for rolling over

a bond at some future time t + ⌧ for a desired investment horizon that is at time T .

Given the assumption of time homogeneity, we assume that the transition matrix for an

asset priced today is the same as the transition matrix for an asset priced tomorrow.

However, given the persistence of volatility, it is likely that the implied volatilities

will be different in the future. Hence, implied volatilities should be included in the

derivation of the transition probabilities. Furthermore, since these “forward rates” are

not actually observed in the market, we cannot assume that the state prices today

would accurately reflect state prices tomorrow.

For example, assume that we are deriving the “forward rate” today for a security

that we would purchase in six months and that expires in one year. In pricing these “for-

ward rate,” we assume that the information set of investors today accurately reflects

all information in the market (market efficiency). Thanks to our time-homogeneity

assumption, we can use the state prices that we observe today for our rates in six

months. However, information/uncertainty between today and our investment date in

six months is not included in today’s state prices. Some of this information can be

captured through implied volatilities. By including Markov states for implied volatili-

ties, we are not only controlling for implied volatilities, but also for the various paths

that these volatilities can take. We are adding information that the market could price

into state prices if it was able to observe them between today and our investment date

six months from now. This becomes particularly important when the forecast horizon

is shorter since the proper specification of the transition probability matrix is more

dependent on volatilities (or randomness) than on the overall trend.

It is easier to see the importance of the transition path by assuming a model of
3Aıt-Sahalia et al. (2001) note that it may be useful to estimate the implied volatility distribution by
defining the volatility distribution using higher moments and/or jump diffusion processes.
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asset prices. Here, I propose to use a geometric Brownian motion because it is fairly

simple to understand and is generally thought to model asset prices quite well. The

transition probabilities being estimated in the RT are for states of the world which have

not actually occurred (theoretical states of nature). In other words, we are estimating

probabilities for possible paths (like the forward rate described above) which an asset

can take at a future point in time.

The geometric Brownian motion has two major parameters: a drift term and a

diffusion term. The drift term is a deterministic component and can be thought of as

the overall trend in the return process. The diffusion term is a random component

and can be thought of as the volatility of the return process. The key for a geometric

Brownian motion is that the path that an asset takes, especially in the shorter-term,

is highly dependent on the random components rather than simply the overall trend.

Hence, the path that describes the asset’s evolution is more heavily influenced by the

short-term noise rather than the long-term valuation (the drift).

Assume that we characterize the changes in asset prices using a geometric Brownian

motion (GBM) written as follows:

dS(t) = µS(t)dt+ �S(t)dZ(t) (21)

where the percentage change in asset prices is normally distributed with an instanta-

neous mean, µ, and an instantaneous variance, �2. We can think of the instantaneous

mean as a the trend of the process over time. The variance term can be thought of

as the randomness of the process over time. Asset prices follow a general trend, but

deviations from that trend can be attributed to randomness. The drift term is µS(t)dt

and the diffusion term is �S(t)dZ(t).

I use the GBM here for two major reasons: 1) it models stock prices in the Black-

Scholes model quite well (Hull, 2006), and 2) it will be used later to simulate artificial

option prices. There are, however, a few shortcomings to the model. The most no-

table of these issues is that the GBM assumes that the underlying process is normally
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distributed. The second issue is that it assumes that volatility is constant and that

there are no jumps in stock prices. That being said, it still provides insight into the

importance of volatility in modeling asset returns.

Now that we have chosen a model for our asset prices, I must demonstrate that

the transition probability matrix is dependent on volatilities. In the short term, the

primary driver of changes in asset prices is volatilities rather than the overall trend,

which is important since we are applying the RT to relatively short-term forecasts

(forecast intervals of less than one year).

Hypothesis 1. For a short-term forecasting period, the primary driver of changes in

asset prices is the diffusion (volatility) rather than the drift (trend). The opposite is

true for longer-term forecasts.

Proof. First, assume a discrete counterpart to the geometric Brownian motion as fol-

lows:

S(t+ ⌧)� S(t) = µS(t)⌧ + �S(t)
p
⌧

Now, if we define the ratio of the diffusion and the drift as follows:

�S(t)
p
⌧

µS(t)⌧
=

�

µ

p
⌧

For simplicity, I assume that � = µ. If ⌧ < 1, the process that drives the change

in asset prices is dominated by the diffusion (volatility). If ⌧ > 1, the drift process

dominates the changes in asset prices. This result can be summarized as follows:

If ⌧ < 1 diffusion process �S(t)
p
⌧ dominates drift process µS(t)⌧

If ⌧ = 1 diffusion process �S(t)
p
⌧ and drift process µS(t)⌧ contribute equally

If ⌧ > 1 drift process µS(t)⌧ dominates diffusion process �S(t)
p
⌧
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In other words, for forecast horizons that are shorter than one year, the path taken

by asset prices is more heavily dependent on the volatility rather than on the level.

The ratio, �

µ

p
⌧

, means that, as long as ⌧ < 1, the numerator (diffusion process) will

be the more important factor in the path of asset prices. A simple numerical example

should provide additional insight into the theorem.

Assume that a drift term and a diffusion term are both equal to 10% (µ = � = 10%).

If we are interested in a five-year forecast, we would have 0.1·
p
5

0.1·0.5 = 0.447. Here, the result

is less than one, which indicates that the drift process (denominator) is dominating

the changes in the asset prices. If, on the other hand, I assume that we are interested

in a three-month forecast, ⌧ = 0.25, which implies that 0.1·
p
0.25

0.1·0.25 = 2. For the quarterly

forecast, the diffusion process (and by extension the volatility) dominates the change

in asset prices.

Since I focus primarily on a three-month forecast in this paper, the result from this

simple numerical example closely aligns with the overall improvements generated by

the multivariate model I propose. For instance, where the drift and diffusion of the

process are similar, we see an improvement in the model by a scale of approximately

two. This simplified example reinforces the link between the inclusion of volatility in

the estimation of the transition probability matrix and the end result.

Now let us derive the multivariate Markov chain. Mathematically, this paper argues

that:

p

i,j

= P (s
t+1 = i0|st = i1,�t

= i1) (22)

where i

t

, ..., i0 2 {1, ...,m} is a state, s is the state price, and � is an additional

variable necessary for a more accurate derivation of the state price transition matrix.

The transition probability for s
t+1 is not dependent only on the previous period’s state

price (s
t

), but also on other variables. In this specific case, volatility is the other

variable in question.

The general specification for the multivariate Markov chain used in this paper was
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first introduced by Raftery (1985) and is as follows:

min
�

i,j

min
P

[[
X

�

i,j

s

t

P � s

t+1]P ] (23)

where it must, by definition, be the case that:

mX

i=1

P

i

= 1

P � 0 and � � 0
X

�

i,j

= 1

More specifically, for the purposes of this paper, I can rewrite the general specifi-

cation in equation 23 to a two-variable Markov chain as follows:

min
�

i,j

min
P,�

[[�
i,j

s

t

P + (1� �

i,j

)�
t

� � s

t+1]P,�] (24)

mX

i=1

P

i

= 1 and
mX

i=1

�

i

= 1

P � 0 and � � 0

A simple specification of the multivariate model is to assume that the transition is

solely dependent on state prices, but that we need to control for the the volatility in

the regression. This implies that we estimate the transition matrix using a multivariate

Markov chain as follows:

s

t+1 = s

t

P + vol

t

�, t = 1, ...,m� 1 (25)

where vol

t

is the volatility state at time t. In other words, equation 25 assumes that

� = 1 in equation 24. This gives us a third dimension in the Markov chain and therefore

results in a matrix of size (m � 1)3. Note that, in equation 25, I add the volatility

variable, but we could just as easily add some other variable that affects state prices.
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Theoretically, we could add more variables to the regression equation. Since I estimate

the Markov chain based on 11 states, however, it is best not to add too many variables

to the regression equation because there will be too few degrees of freedom to consider

the transition probability matrix result reliable.

Ideally, we would include a forecast of future volatility (see section 5) in the model

because we want to estimate future state prices. However, present-day volatility fore-

casting models are not ideal. As a result, I include current volatility as a measure

of future volatility in the transition probability regression based on the assumption

that volatilities are persistent over short periods. However, please note that whenever

there is a fundamental shift in volatility, the current volatility (equation 25) may not

incorporate this “new” information.

Including the volatility into the model, I solve the following equation:

min
P,�

ks
t+1 � s

t

P � vol

t

�k2 (26)

where it must, by definition, be the case that:

X
P = 1 and

X
� = 1

P � 0 and � � 0
(27)

Equation 27 holds that the rows in our transition matrix should sum to one. Since P

corresponds to probabilities, this is merely ensuring that the probability for each state

transition sums to one. We also include a non-negativity condition in our regression

such that P � 0. This is a necessary assumption for us to apply the Perron-Frobenius

theorem in the next section. The assumption also makes intuitive sense since proba-

bilities, by definition, are nonnegative.

Transition Matrix Results - An Example Here, I present a portion of the tran-

sition probability matrix obtained from the multivariate Markov chain using equation

26. It is based on the volatility (level) for April 1st, 1996. In reality, we have a three-
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dimensional table that contains a number of volatility state levels (similar to the state

levels presented in table 1, but for volatility instead of underlying asset levels). Pre-

senting a full three-dimensional table is not practical, so I present the section of the

table based on the current volatility level. In section 2.1.2, I noted that I removed the

unimodality condition (p
i,i

� p

i,j

). If table 4 included the unimodality condition, the

diagonal of the matrix would be greater than or equal to any of the components in the

row. As the table shows, without the unimodality condition, the diagonal is not always

the largest value. The value next to it is the largest in the row in some cases (in bold).

This result indicates a market belief that there will likely be a slight movement in the

S&P 500 over the next three months.

State/State -0.35 -0.29 -0.23 -0.16 -0.08 0 0.09 0.19 0.3 0.41 0.54
-0.35 0.096 0.447 0.340 0.220 0.029 0.005 0.016 0.054 0.114 0.001 0.000
-0.29 0.069 0.344 0.212 0.145 0.023 0.006 0.011 0.027 0.045 0.000 0.000
-0.23 0.007 0.206 0.310 0.345 0.077 0.023 0.037 0.063 0.083 0.001 0.000
-0.16 0.000 0.000 0.266 0.483 0.148 0.052 0.070 0.073 0.052 0.002 0.000
-0.08 0.000 0.000 0.093 0.591 0.347 0.170 0.213 0.132 0.000 0.005 0.001

0 0.002 0.002 0.007 0.023 0.150 0.524 0.272 0.018 0.001 0.000 0.000
0.09 0.000 0.000 0.115 0.599 0.404 0.229 0.317 0.246 0.000 0.009 0.003
0.19 0.000 0.064 0.323 0.545 0.236 0.087 0.143 0.227 0.290 0.005 0.002
0.3 0.022 0.239 0.368 0.472 0.136 0.039 0.074 0.153 0.237 0.002 0.001

0.41 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.501 0.666
0.54 0.182 0.692 0.530 0.473 0.041 0.000 0.029 0.207 0.655 0.002 0.000

Table 4: Transition Probabilities on the S&P 500 for 1 April 1996

The interpretation of table 4 is as follows: the market believes that there is a 0.447

probability of transitioning from a market level of -0.35 of the current S&P 500 to

-0.29 in a three-month period. This particular case is an example of a situation where

the diagonal is not the largest value. For an initial state of -0.35 of the current S&P

500 level, the most probable transition is -0.29 rather than the same future level of

-0.35. Note also that the sum of the rows is equal to one (since rows correspond to

probabilities and the sum of the probabilities should equal one).

26



2.2.2 MVRT - Natural Probability Matrix (F)

The derivation of the natural probability matrix for the MVRT is the same as for the

univariate RT. The only difference is that the estimation of the natural probabilities

will be more accurate if we start from a transition matrix that is more accurate. In

section 4, I compare the results of using the univariate chain with those of a multivariate

chain.

As was the case in section 2.1.3, the natural probability matrix is derived using the

following equation:

F =
1

�

DPD

�1 (28)

where P is obtained using the multivariate Markov chain derived in section 2.2, �

is the discount rate estimated using the Perron root, and D is estimated using the

characteristic root of P .

In the next two sections, I present the data and results for this paper.

3 Data

Data for this paper are available from the Wharton Research Data Services (WRDS)

database. I use daily options prices on the S&P 500, the S&P 500’s closing price,

and the risk-free rate. The risk-free rate is the one-month Treasury Bill rate, which

can be found in the Fama & French factors data. S&P 5004 prices are from the CRSP

dataset. The S&P 500 is generally thought to be the best proxy for the market portfolio.

I obtained all of the option data from OptionMetrics through the Wharton Research

Data Services (WRDS) database. The data is used to obtain forecasts at intervals that

range from one day to one quarter. This paper covers the time period from January

1996 to July 2015, the entire timeframe included in the OptionMetrics database. I use

this sample for two major reasons. First, one of the forecast horizons in this paper is

quarterly. A quarterly forecast requires a large enough sample size to test the efficacy
4SECID 108105
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of the RT and this twenty-year sample provides me with approximately 80 data points.

Second, it allows me to divide the sample into subsamples and test my model in periods

that experience various shocks (such as the tech bubble and the recent financial crisis).

Strike prices on the options obtained from OptionMetrics are quoted for lots of

1,000 securities. The Black-Scholes-Merton equation requires strike prices that are on

a per-stock basis, so I divided the strike price by 1,000. Time-to-maturity is converted

from a date to a fraction of years to expiration, also a required input for the Black-

Scholes-Merton equation. Option price is replaced with the midpoint of the bid-ask

spread. This is consistent with Figlewski (2008), who argues that bid and ask prices

are continuously quoted for almost all strikes regardless of whether a trade takes place.

The alternative, transaction prices, occurs irregularly (Figlewski, 2008) and would

make it more difficult to extract a proper implied volatility curve (see section 2.1.1). I

compare my estimated implied volatilities to those provided by OptionMetrics. Since

the difference between the two is negligible, I use my more complete set of estimates

instead of the OptionMetrics data. Summary statistics appear in appendix A.

One of the difficulties of applying/replicating the RT is in constructing state prices.

Ross (2015) uses over-the-counter data rather than the more limited publicly available

data because it offers a significantly larger number of traded strikes and maturities.

This paper uses readily available data from WRDS instead. Despite this difference, one

of the benchmarks tested here obtains results that are very close to the results produced

by Ross (see section 4). Another difficulty is that Ross (2015) does not explain how he

derives state prices. Theoretically, state prices are easy to understand, but in practice,

there is a lot of debate on how to construct them. Appendix A proposes a way to

derive the extrapolated data required to construct state prices for this paper.
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4 Results - Real-World Data

4.1 Forecast Results

Table 5 compares the results of Ross with my results, providing an overall summary

of what the reader can expect in the upcoming section. The first column of table 5

shows Ross’s results and the second column shows the results for the RT methodology

proposed in this paper (Sanford multivariate method5). At first glance, the Sanford

method seems to provide superior results compared to the methodology proposed by

Ross.

Ross method Sanford method
(Apr 09–Apr 13) (Apr 09–Apr 13)

(1) (2)

Intercept �0.06054⇤ 0.027675⇤⇤

(0.035068) (0.009153)
Forecast 5.710293⇤⇤ 0.338864⇤⇤⇤

(1.95258) (0.070478)

Observations 46 49
R2 0.2162744 0.329701

Adjusted R2 0.143715 0.315439
F statistic 0.005436 1.6e�05

Note:

⇤
p < 0.05; ⇤⇤

p < 0.01; ⇤⇤⇤
p < 0.001

Table 5: Ross Subsample - Summary Results

Please note that all of the results presented in this section are out-of-sample. Careful

readers will notice that the very nature of the RT is such that in-sample results are

not possible since there is no need for calibration. This fact about the RT makes the

results even more powerful.
5The method proposed in this paper uses the new extrapolation methodology proposed in appendix
A and the multivariate RT derived earlier.
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4.1.1 Regression Tables

In this section, I compare results from Ross (2015) to results using the extrapolation

method of Aït-Sahalia and Lo and to the results for my proposed method. Each results

table is divided into four columns. The first column shows Ross’s results for his specific

subsample. In the second column, the model is identical to the one proposed by Ross

in his paper with the exception that the option prices are extrapolated using the Aït-

Sahalia and Lo (ASL) method. The transition matrix is derived using a univariate

Markov chain. The third column represents the results of extrapolating with the Aït-

Sahalia and Lo method and including a multivariate Markov chain in the derivation

of the transition matrix (ASLMV). The final set of results (column 4) corresponds to

the multivariate Recovery Theorem proposed in this paper (Sanford method). The

forecast regression is as follows:

R

t

= ↵ + �

t

E

t�1[Rt

] + ✏

t

(29)

where ↵ is the intercept, �

t

is the forecast coefficient, and E

t�1[R1] is the previous

period’s RT forecast. In the first iteration of these results, the forecast horizon is held

to a quarter so t corresponds to 0.25 year. One of the criteria for the efficiency of the

forecast is the forecast error. This error is defined as the residual, ✏
t

, found in equation

29 and graphed in section 4.1.2. The errors are used as a way to ensure that the model

is accurately specified. Moreover, the errors are also used to compare the overall fit

with other models. In general, the smaller the errors, the better the forecast.
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Ross method ASL method ASLMV method Sanford method
(Apr 09–Apr 13) (Apr 09–Apr 13) (Apr 09–Apr 13) (Apr 09–Apr 13)

(1) (2) (3) (4)

Intercept �0.06054⇤ 0.00103 0.00215 0.027675⇤⇤

(0.035068) (0.00144) (0.00561) (0.009153)
Forecast 5.710293⇤⇤ 0.12816⇤⇤ 0.23223⇤⇤⇤ 0.338864⇤⇤⇤

(1.95258) (0.03905) (0.06020) (0.070478)

Observations 46 49 49 49
R2 0.2162744 0.1832232 0.2404717 0.329701

Adjusted R2 0.143715 0.1662070 0.224311 0.315439
F statistic 0.005436 0.001929 0.000348 1.6e�05

Note:

⇤
p < 0.05; ⇤⇤

p < 0.01; ⇤⇤⇤
p < 0.001

Table 6: Results for the four methods, using the Ross subsample

In table 6, the sample sizes are slightly different from those of Ross. I suspect that

some of the months in his sample were left out, since there are 49 months between

April 1996 and April 2013. That being said, it seems unlikely that three months of

additional data would significantly change his or my results. Since the dates were

reported by Ross, I decided to keep the same dates and report a difference in the

number of observations because I do not know which months were not included in his

sample.

Since I do not have access to the same data as Ross, it was important to find a

benchmark that could produce results similar to those of the original Ross RT. The

results from columns 1 and 2 of table 6 are very similar, which indicates that the ASL

method could be an appropriate benchmark to proxy Ross’s method.

The adjusted R

2 is about 0.144 for Ross and 0.166 for the ASL. The only major

difference between the two sets of results is the forecast coefficient: 5.710 for Ross and

0.128 for ASL. I suspect that the large difference in the scale of the coefficient is a

result of a scaling that Ross may have done. Since the sign of the coefficient and the

overall fit seems to be quite similar, I argue that this method is a suitable benchmark

for the RT with the original methodology proposed by Ross (2015).

31



When I add the multivariate Markov chain to the ASL method (column 3), the coef-

ficient increases both in scale and in significance. Moreover, the adjusted R

2 increases

by almost 6%. This significant increase is consistent across samples and indicates

that the multivariate Markov chain provides significantly better results than previous

methods. This is also supported by the results for the Sanford method (column 4).

Here, the adjusted R

2 increases to almost 32% all while increasing the overall statis-

tical significance of the model. In this set of results, there is a large increase in the

adjusted R

2 between the ASL method and the Sanford method. Based on this sample,

it would appear that the extrapolation methodology I propose has a significant impact

on the overall performance of the model. In comparison, the full sample, as will be

discussed shortly, shows that the most significant improvement is from the multivariate

component. This is further indication that the Sanford model as a whole significantly

increases the forecasting ability of the RT.

In table 7, I reduce the sample to include time-series data from October 2002 to

August 2015. I chose to use this subsample because it excludes some of the original

data where a pattern could be observed in the residual regression plot (see figure 2).

Ross method ASL method Sanford method
(Apr 09–Apr 13) (Oct 02–Aug 15) (Oct 02–Aug 15)

(1) (2) (3)

Intercept �0.06054⇤ �0.00104 0.008863
(0.035068) (0.00106) (0.005871)

Forecast 5.710293⇤⇤ 0.146706⇤⇤⇤ 0.336237⇤⇤⇤

(1.95258) (0.03509) (0.052532)

Observations 46 154 154
R2 0.2162744 0.103107 0.212301

Adjusted R2 0.143715 0.097206 0.207118
F statistic 0.005436 4.9e�05 1.82e�05

Note:

⇤
p < 0.05; ⇤⇤

p < 0.01; ⇤⇤⇤
p < 0.001

Table 7: Results for the four methods, using the Ross subsample

Table 7 still indicates a significant improvement over the original Ross results. The
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adjusted R

2 for the Sanford method (column 3) is still almost 1.5 times larger than

Ross’s original results. The striking difference here is between column 2 and column 3

where the adjusted R

2 more than doubles.

The following table (table 8) extends the analysis to the full sample of S&P 500

options data available in OptionMetrics. The general patterns apparent in table 6 seem

to persist throughout the entirety of the sample.6 Here, however, we can see an even

greater difference between the univariate and the multivariate models in columns 2 and

3. The adjusted R

2 increases from 0.11850 in the univariate case to 0.267522 in the

multivariate case. The results for my proposed method (column 4) are even stronger:

they more than double Ross’s R

2 despite the increase in sample size. In all columns,

the forecast coefficient maintains its statistical significance.

Ross method ASL method ASLMV method Sanford method
(Apr 09–Apr 13) (Apr 96–Aug 15) (Apr 96–Aug 15) (Apr 96–Aug 15)

(1) (2) (3) (4)

Intercept �0.06054⇤ �0.00103 �0.00287 0.004841
(0.035068) (0.00092) (0.00632) (0.004626)

Forecast 5.710293⇤⇤ 0.16609⇤⇤⇤ 1.29653⇤⇤⇤ 0.424605⇤⇤⇤

(1.95258) (0.02928) (0.14003) (0.042434)

Observations 46 232 232 232
R2 0.2162744 0.122664 0.270679 0.302375

Adjusted R2 0.143715 0.11850 0.267522 0.299355
F statistic 0.005436 4.24e�08 1.46e�17 8.19e�20

Note:

⇤
p < 0.05; ⇤⇤

p < 0.01; ⇤⇤⇤
p < 0.001

Table 8: Results for the four methods, using the full OptionMetrics sample (except
column 1)

Table 9 shows the results for a random sample selected by R.7 The sample shown is

from the beginning of the available data (April 1996) to April 2013, or 204 months. The

forecast coefficients are still highly statistically significant (p < 0.001). The adjusted
6Please note that the results for the Ross column (column 1) are still the same as in the previous
table because it is impossible for me to extend Ross’s analysis without his data.

7I will include more subsamples in the final paper.
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R

2 increases from around 12% in the original benchmark (ASL) to around 31% for my

proposed method. The magnitude of the coefficients are also quite similar to those

from previous samples. To provide a visual representation of the results, I describe

time series plots in the following section.

Ross method ASL method ASLMV method Sanford method
(Apr 09–Apr 13) (Apr 96–Apr 13) (Apr 96–Apr 13) (Apr 96–Apr 13)

(1) (2) (3) (4)

Intercept �0.06054⇤ �0.00113 �0.00275 0.003038
(0.035068) (0.00092) (0.00706) (0.005131)

Forecast 5.710293⇤⇤ 0.16484⇤⇤⇤ 1.34295⇤⇤⇤ 0.450346⇤⇤⇤

(1.95258) (0.03136) (0.15186) (0.047678)

Observations 46 204 204 204
R2 0.2162744 0.120316 0.278112 0.308482

Adjusted R2 0.143715 0.115961 0.274556 0.305025
F statistic 0.005436 3.72e�07 4.52e�16 9.59e�18

Note:

⇤
p < 0.05; ⇤⇤

p < 0.01; ⇤⇤⇤
p < 0.001

Table 9: Results for the four methods, using a random subsample (except column 1)

4.1.2 Plots for Sanford Method (Proposed Method)

The results presented in this section are limited to my proposed model (Sanford

method) and the benchmarks I included in section 2. I am unable to present vi-

sual representations for the results of Ross’s exact specification because I do not have

access to the data he used.

The time series plots compare the actual time series for the quarterly return of

the S&P 500 (calculated monthly) to the corresponding forecasted recovered quarterly

returns (Sanford method). In other words, the results of the RT are fed through

the regression equation from the previous section to obtain predicted values that are

plotted against the actual returns. For all of the time series graphs discussed in this

paper, the red line corresponds to the specific method of the section (in this case, the

Sanford method) while the blue line represents the S&P 500’s actual return. Figure 1
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is the time series of the predicted values from my proposed method plotted against the

actual S&P 500 returns for the entire sample. The peaks and troughs of the forecasted

and actual S&P 500 returns line up quite nicely, apart from a few exceptions. In

particular, around June 2012 and May 2014, there are large spikes in the forecast that

are not accompanied by spikes in the actual return. It would be interesting to examine

what happened during those times to see if perhaps there were some macroeconomic

announcements that may have caused overreaction by market participants.

Figure 1: Sanford method vs S&P 500 return

Figure 2 shows the residuals from the regression equation. More specifically, it is

the graphical representation of the following:

✏
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which implies that a negative value occurs whenever the actual return is larger than the

forecasted return. In figure 2, there does appear to be a pattern from the beginning

of the sample, in April 1996, to about November of 2002. The pattern is a slight

downward slope in the residuals. Along with the ACF/PACF plots discussed next,

this may be an indication that there is something odd about the model specification

for the first few years of the analysis. In order to verify this, I will analyze the same

graphs excluding the time-series from mid-1996 to late-2002. Beyond 2002, most of the

points seem to cluster near or around the zero line and the points are quite symmetric

around zero. However, the negative residuals are larger than the positive residuals,

which means that the forecast does not forecast extreme values very well.

Figure 2: Residual plot: Sanford method vs actual S&P 500 return

In order to assess the overall quality of the model, I also present the ACF and PACF

plots for the regression residuals for all models. The ACF and PACF plots can help
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us determine if there is any autocorrelation in the residuals. Figure 3 shows both the

autocorrelation function (ACF) and the partial autocorrelation function (PACF) for the

regression residuals. Results from this figure indicate that some autocorrelation persists

through the fifth lag. In order to confirm this finding, I conducted a Durbin-Watson

(Durbin and Watson, 1951) test and a Breush-Godfrey (Breusch, 1978; Godfrey, 1978)

test (LM test for serial correlation). For both tests, I reject the null hypothesis that

the autocorrelation of the residuals is equal to zero. This could indicate that there

is still some information that is unexplained and that could be exploited in order to

obtain a better forecast. Please note that the autocorrelation persists even with the

inclusion of lags into the regression equation.

Figure 3: Regression residual ACF and PACF: Sanford method vs S&P 500 return

In the following two figures, I present the results for a subsample (from October

2002 to August 2015) that excludes the dates that exhibited a downward pattern in
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the residual plot. I do not, however, include the time series plot since it is identical to

the one in figure 2.

Figure 4: Regression residual (Oct 02–Aug 15): Sanford method vs S&P 500 return

As expected, figure 4 no longer exhibits any patterns throughout the subsample.

Apart from a few outliers, everything seems to be behaving normally.
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Figure 5: Regression residual ACF and PACF (Oct 02–Aug 15): Sanford method vs
S&P 500 return

Comparing figure 5 to figure 3, there is clearly less autocorrelation. However, there

is still autocorrelation up to the third lag. Again, this indicates that there is room for

improvement in this model.

Below, I present the same figures as above, but for an even smaller subsample. I

chose the sample dates of April 2009–April 2013 because they are the dates that Ross

chose to use in his presentation of the RT.

Figure 6 gives a better picture of how well the Sanford method performs. Although

the Sanford method does not forecast the exact levels of the S&P 500 returns, it does

track the overall trends quite well. As was the case in the full sample (figure 1),

the Sanford method has an occasional overreaction, which, in this subsample, occurs

around March 2013. The residual plot illustrates this finding more clearly. One possible
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explanation of these overreactions might be that they are caused by structural breaks

in the underlying asset’s prices.

The graphs for the ASL and ASLMV models can be found in appendix A. Most

of the figures are quite similar to the ones found in this section. There is, however,

one exception: the ACF graph. In the ACF graph for the ASLMV (figure 15), I find

no indication of autocorrelation of the residuals. This is one of the biggest differences

between figures 15 and 3. It seems that the extrapolation method I use impacts the

final results since we can see autocorrelation in the residuals. As of now, I do not have

an explanation for this finding.

Figure 6: Sanford method vs S&P 500 return (Ross subsample)

Figure 7 is the residual plot for the forecast regression equation for the Ross sub-

sample. The observations for this subsample are, once again, similar to observations

for the entire sample (figure 2). There are no obvious patterns in the residuals and
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the distribution of points is fairly symmetric around the zero line. One distinction is

that, if we connect the outer dots in this subsample, there appears to be a very slight

decreasing trend. However, the trend is very slight, so I do not believe that this is a

major issue. The occasional outliers lead me to believe that the forecasting model does

not accurately forecast large movements in the underlying asset (in this case the S&P

500).

Figure 7: Sanford method regression residual (Ross subsample)

Figure 8 shows the ACF and PACF for the Ross subsample. The ACF does not

exhibit as much autocorrelation with the lags as it did in the full sample. In figure 3,

we could discern autocorrelation until a lag of five, whereas the autocorrelation tapers

off starting after the first lag here. This is a sign that, at least for this subsample, the

model is correctly specified.
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Figure 8: Sanford method regression residual ACF and PACF (Ross subsample)

4.1.3 Comparing the Sanford method to the Dividend-Price Ratio

In table 10, I compare the Sanford method to the dividend-price ratio (Cochrane,

2008).8 Although it is not directly related to the work in this paper, the dividend-price

ratio is often considered to be a benchmark for equity market forecasting. For this

reason, I have included a comparison in this paper. In order to obtain table 10, I used

the Matlab code that Cochrane provides on his website (Cochrane, 2008). The first

column shows the results for the dividend price ratio, column 2 presents the results for

the log of the dividend price ratio, and column 3 presents the results for the Sanford

method proposed in this paper. The Sanford method is a significant improvement

over the dividend/price ratio model in terms of R

2. This is not so surprising since
8Readers may want to consult Cochrane (2008) and Campbell and Thompson (2008) for more infor-
mation and comparisons of the various forecasting models.
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the forecast horizon here is three months. The Sanford model seems to explain a

much larger fraction of return variation. It would be interesting to see if, like the

dividend/price ratio, the Sanford method performs better at longer forecast horizons

when I add lags into the forecast regression.

Relating back to the importance of adding volatility into the transition matrix

estimation, in long-run forecasting models like the dividend price ratio, we are not so

interested in the volatility estimation because we are mostly concerned with the long-

run drift term, which gives us an idea of the overall trend for the underlying process.

However, when we are attempting to estimate shorter-term asset prices, the volatility

term becomes very important because it contributes to the likelihood of certain paths.

This explains why the results for the dividend price ratio presented here are so dismal.

These models are meant to capture long-run trends rather than short-term movements.

One important consideration, however, is the fact that the dividend price ratio is

substantially faster to compute when compared to any of the RT methods presented

in this paper. In part, this is because extrapolation of option prices is necessary

(unless I use the OTC data obtained by Ross) and takes a significant amount of time.

Furthermore, estimating the individual components required by the RT is considerably

longer (in terms of computation time) compared to a simple regression between two
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variables.

D
t

/P
t

d
t

� p
t

Sanford method
monthly sample monthly sample monthly sample
(Jan 96–Jan 15) (Jan 96–Jan 15) (Jan 96–Jan 15)

(1) (2) (3)

Intercept 13.9252 0.4055 0.004841
(10.6287) (0.9395) (0.004626)

Forecast 1.3102⇤⇤ 0.4316 0.424605⇤⇤⇤

(0.0076) (0.2405) (0.042434)

Observations 232 232 232
R2 0.0299 0.0368 0.302375

Adjusted R2 N/A N/A 0.299355
F statistic N/A N/A 8.19e�20

Note:

⇤
p < 0.05; ⇤⇤

p < 0.01; ⇤⇤⇤
p < 0.001

Table 10: Comparison of dividend-price ratio and Sanford method RT

4.1.4 Comparing the Sanford Method to the CAY Variable

In table 11, I show the comparison between the results for the Sanford method and

the consumption-wealth ratio (CAY) of Lettau and Ludvigson (2001). Their paper

shows that the ratio of aggregate consumption to wealth has forecasting power of

stock returns. Moreover, and in contrast to the dividend-price ratio presented above,

the CAY ratio is meant to forecast shorter-term fluctuations in stock prices. Hence,

it constitute a good benchmark to compare the forecast obtained by the Recovery

Theorem. The data for the CAY ratio was obtained from the companion webpage

from the authors of the paper (Lettau and Ludvigson, 2001) and is for the period that

matches the available data from OptionMetrics (from April 1996 to August 2015). The

forecast is a quarterly forecast updated quarterly (which is different from the quarterly

forecast updated monthly in the previous tables). The forecast is updated quarterly

since that is the frequency at which the CAY ratio is obtained. Clearly, the Sanford

method introduced in this paper is significantly better than the CAY method. However,
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for this period, the CAY method does not produce great results. That being said, even

if I compare the Sanford results to those presented in the original paper by Lettau and

Ludvigson (2001), the results for the RT are still significantly better. More specifically,

the adjusted R

2 for the entire sample presented by Lettau and Ludvigson (2001) is 0.09

which is still about only about a third of the adjusted R

2 from the Sanford method.

CAY Sanford method
quarterly sample quarterly sample
(Apr 96–Aug 15) (Apr 96–Aug 15)

(1) (2)

Intercept 0.01936 0.014709
(0.008357) (0.010762)

Forecast 0.650148 0.617909⇤⇤⇤

(0.487169) (0.147358)

Observations 78 78
R2 0.022898 0.235753

Adjusted R2 0.010041 0.222346
F statistic 0.186011 9.70e�05

Note:

⇤
p < 0.05; ⇤⇤

p < 0.01; ⇤⇤⇤
p < 0.001

Table 11: Comparison of CAY and Sanford method RT

5 Conclusion

The purpose of this paper was to improve the estimation of the natural probabilities

derived from the Recovery Theorem (RT). The major contribution of this paper is

that it extends the RT by changing the univariate transition probability matrix to a

multivariate one. By changing the derivation of the transition matrix to a multivariate

Markov chain, I argue that the transition probabilities are more accurately defined. I

also add the variable of volatility, which results in significant improvements in the RT

results. I show, using a geometric Brownian motion, that the inclusion of volatility

in the multivariate chain improves the model. For shorter-term forecasts, the path
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of asset prices is mostly dominated by the diffusion process rather than the drift.

Since the diffusion process is, in essence, the volatility, the inclusion of volatility in

the multivariate RT is critical. The forecast regression’s R2 increases from 0.144 using

Ross’s specification to 0.315 using the Sanford method (outlined in this paper).

The Recovery Theorem was a giant leap forward in the forecasting of asset returns.

This paper improves on those results and will make it possible to use this methodology

for other asset pricing endeavors. A number of extension are possible. For example,

since the multivariate RT extracts the market’s true distribution of returns, we can

extend this research to the question of hedging. A future research direction may be

to explore whether firms change their hedging behavior in response to certain shocks,

where the shocks are derived from the true distribution (Fillebeen and Sanford (2016)).

The multivariate RT could also be used in portfolio construction applications. For

instance, we could use the true distribution obtained from the multivariate RT as an

actual returns distribution for a portfolio optimization problem. The portfolio weights

can then be selected such that a measure that uses the distribution of returns (e.g.

expected tail loss) is minimized (see for example Sanford (2016a)). We may also want

to use the exponential GARCH model (Bollerslev, 1986) to model the behavior of

volatility. We can expect to obtain a better forecast if we incorporate a forward-

looking volatility model rather than looking only at current volatility, as I do in this

paper.

Finally, research should focus on whether the Recovery Theorem might apply in a

setting where markets are incomplete. The RT assumes that the market is complete

and, by extension, that it is possible to construct state prices. A natural question

therefore arises: what assumptions would be necessary to apply the Recovery Theorem

to an incomplete market? This would be a valuable extension to the literature.
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A Appendix A - Implied Volatility Extrapolation

In this section, I introduce my proposed implied volatility extrapolation method and

show how extrapolated prices lead to a dense set of option prices. I then briefly define

and derive the benchmark extrapolation method used in this paper: the Aït-Sahalia

and Lo model. For more information on the extapolation methodology defined in this

section, see Sanford (2016b).

A.1 Strike Price Extrapolation

The first step for the MVRT involves extrapolating the volatility surface with respect

to two dimensions: strike prices and time-to-maturity. We extrapolate in terms of

strike prices because there are only a certain number of strikes that are traded on any

given day. For example, table 12 shows the (unique) strike prices for call options on

the S&P 500 for 1 April 1996. However, for this specific day, we would need a set of

strike prices ranging from about 350 to 1,200 in order to produce a complete volatility

surface. Thus, extrapolation is necessary.9

400.00 425.00 450.00 475.00 500.00 510.00 520.00 525.00 530.00 540.00 545.00
550.00 560.00 565.00 570.00 575.00 580.00 585.00 590.00 595.00 600.00 605.00
610.00 615.00 620.00 625.00 630.00 635.00 640.00 645.00 650.00 655.00 660.00
665.00 670.00 675.00 680.00 685.00 690.00 695.00 700.00 725.00 750.00

Table 12: Strike Prices on S&P 500 call options for 1 April 1996

The strike price extrapolation is based on a slightly modified risk-neutral density

estimation methodology proposed by Figlewski (2008). Figlewski (2008) shows that

one of the more precise ways to extrapolate a volatility surface is to use a smoothed

quartic spline regression with a single at-the-money (ATM) knot. That being said, I

have found that using smoothed B-splines rather than quartic splines provides a better

overall fit. This is what I used in this paper.
9Extrapolation based on strike price is common practice in the volatility surface literature (Jackwerth
and Rubinstein, 1996; Rubinstein, 1994; Figlewski, 2008).

50



We can derive the coefficient estimate for the smoothed spline by first defining the

criterion function to be minimized as follows:

min
�
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where n is the number of knots, x is the actual knot, g() are the B-spline basis functions,

⌦ is the penalty matrix, and � is the smoothing parameter. Next, we need to define

what we mean by a B-Spline basis function.10 We can define the B-Spline function as

follows:
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where G

i

corresponds to the control points, B() is the basis function of order j, and x

corresponds to the knots. Then, we can define the basis function from the B-spline as

follows:

B

i,1(�IV

) =

8
><

>:

1, if �
IV,i

 �

IV

< �

IV,(i+1)

0, otherwise
(35)
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IV,i
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IV,i

B

i,j�1(�IV

) +
�

IV,(i+j) � �

IV

�

IV,(i+j) � �

IV,(i+1)
B

i+1,j�1(�IV

) (36)

Finally, we obtain the smoothing spline estimate at the knot C:

r̂(C) =
nX

j=1

�̂

j

g

j

(�
IV

) (37)

10Note that the notation here is slightly different from traditional notation in order to be consistent
with the notation in the rest of the paper.
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A.2 Time-to-Maturity Extrapolation

Table 13 shows the TTM on S&P 500 call options for 1 April 1996 in number of years.

The time interval between each of the TTMs is not constant. Therefore, I need to

extrapolate the data such that TTM follows a constant interval (for now, this interval

is set to a constant three-months).11

0.05 0.13 0.23 0.47 0.72 0.97 1.22 1.72

Table 13: Time-to-maturity on S&P 500 call options for 1 April 1996

For the TTM extrapolation, I use a method devised by Bloomberg (Chen, 2011)

as an extension of Heston (1993). First, let us define the extrapolated call price as

follows12:

C(T,K) =
NX

l=1

p

l

(T ) · BSP (⇠
l

(T )S0,p, K, r

f

,⌃
l

(T )/
p
T ) (38)

where BSP corresponds to the traditional Black-Scholes equation (Black and Scholes,

1973) where each variable is a regular Black-Scholes input with certain parameters

adjusted for extrapolation. The extrapolation details and the parameters in equation

38 are discussed in greater detail later in this section.

I start by defining two functions, ↵(t) and ⌘

l

(t), for notational simplicity:

'(t) =
T

i+1 � t

T

i+1 � T

i

(39)

⌘

l

(t) = log(
⇠

l+1(t)

⇠

l

(t)
) (40)

where ⌘

l

(t) uniquely determines ⇠

l

(t) under the assumption that
P

l

p

l

(t)⇠
l

(t) = 1,

⇠

l

(T ) � 0 is the time-dependent multiplicative means of the l-th lognormal, 0  p

l

(T ) 

1 is the time-dependent weight of the l-th lognormal, t is the market maturity at which

we want to extrapolate, and i is the index for each of the observed time-to-maturities.
11Later in the paper, I test various interval lengths.
12Note that it is trivial to show that extrapolating the option price is the same as extrapolating the

option price as long as the inputs for the equation are the same but where the volatility is, in fact,
the implied volatility.
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If we assume a Poisson default process and a survival probability D(t) = 1�Q(t),

we obtain the hazard rate ⇤(t) that is consistent with the survival probability:

D(t) = 1�Q(t) =
X

l

p

l

(t) = e

�⇤(t)t (41)

where the initial ⇤(t) is obtained from the Bloomberg survival probability data. Once

we have the benchmark hazard rate and survival probability, we need to estimate four

equations (the new ⇤(), p
l

(), ⌘
l

(), and ⌃
l

()) and use the values as inputs for equation

38. The specific equations are dependent on whether we are extrapolating between

TTMs, we are doing a shorter-term TTM extrapolation (less than three months), or a

longer-term TTM extrapolation (greater than six months).13 Each of these is derived

and discussed in its own section below.

Shorter-Term Extrapolation A shorter-term extrapolation is an extrapolation

that occurs either within three months of an available datapoint, or an extrapola-

tion at a TTM below the lowest available TTM (but still less than six months from

the lowest available TTM). First, we need the hazard rate �(t) in order to obtain p

l

(t).

This is obtained as follows:

⇤
new

= ⇤e
x

2
m

�x

2

2T
t (42)

⇤̂
new

= ⇤
new

e

x

2

2 ( 1
T0

� 1
t

) (43)

where x

m

= K

min

/F (T
i

), x = K/F (T
i

), T
i

is the closest TTM, F () is obtained from

the Put-Call Parity: C()�P () = 1
r

f

(F �K) (Stoll, 1969), T0 is the smallest TTM, and

t is the TTM of interest. Here, we are effectively dampening the hazard rate estimate.

Once we have adjusted this hazard rate, we can easily obtain p

l

(t) by ensuring that
13The longer-term extrapolation is used only occasionally since we usually have data within six months

of extrapolations of interest.
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its weights have the same ratio as what we would have at the lowest TTM.14 Then,

we can obtain the time-dependent standard deviation of the l-th lognormal, ⌃
l

(t), and

the means of each lognormal as:

⌃
l

(t) =
⌃

l

(T1)t

T1
(44)

⌘

l

(t) = ⌘

l

(T1)

r
t

T1
(45)

Now, we have all of the necessary components to solve equation 38 (Black and Scholes,

1973).

Extrapolation between Time-to-Maturities Here, we need to extrapolate be-

tween available TTMs. First, we derive the dampened hazard rate using equation 42.

The only difference is that we adjust K

min

by defining it as follows:

K

min

= '(t)Ki

min

+ (1� '(t))Ki+1
min

(46)

Once we have estimated the dampened hazard rate, we can proceed to estimate the

multiplicative means, ⇠
l

(T ), the time-dependent weight, p
l

(T ), and the time-dependent

standard deviation, ⌃
l

(T ) using the following equations:

p

l

(t) = (
p

l

(T
i

+ 1)

D(T
i+1)

p
t�

p
T

ip
T

i+1 �
p
T

i

+
p

l

(T
i

)

D(T
i

)

p
T

i+1 �
p
tp

T

i+1 �
p
T

i

)D(t) (47)

⌃2
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(t) = (1� '(t))⌃2
l

(T
i+1) + '(t)⌃2

l

(T
i

) (48)

⌘

2
l

(t) = (1� '(t))⌘2
l

(T
i+1) + '(t)⌘2

l

(T
i

) (49)

Longer-Term Extrapolation At longer time horizons, we do not dampen the haz-

ard function. We want the full effects of the potential for default. We obtain the
14In other words, we are making sure that the weights at pl(t) are the same as the ratio of weights

pl+1

pl
that we would have at T1.
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time-dependent weights as:

p

l

(t) = p

l

(T
n

)
D(t)

D(T
n

)
(50)

where T

n

is the largest available datapoint with respect to TTM and recalling that

we define the survival probability, D(t), using equation 41. We then obtain the time-

dependent volatility as:

⌃2
l

(t) = ⌃2
l

(T
n

)
t

T

n

(51)

Finally, we need to derive the means as follows:

⌘

l

(t) = ⌘

l

(T
n

)

r
t

T

n

(52)

A.3 Implied Volatility Surface and Option Prices

Implied Volatility Surface Figure A.3 illustrates the skew of the extrapolated

implied volatilities on 1 April 1996. The implied volatility increases at low strike prices,

decreases as the strike price becomes higher, and finally increases again at higher strike

prices, displaying a volatility skew (although in this case it is almost a volatility smirk).

The figure confirms that the extrapolation produced the desired characteristics.

Figure 9: Implied Volatility Surface, 1 April 1996
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Option Prices Once we have obtained a matrix with implied volatilities at the

required strike prices (outlined in section A.1)15 and TTMs (outlined in section A.2),

we can proceed to obtain option prices by inputting the data in the Black-Scholes-

Merton equation (Black and Scholes, 1973):

C(S0,p, t) = N(d1)S0,p �N(d2)Ke

�r

f

(T�t) (53)

where
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2

2
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[ln(
S0,p

K

� (r
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+
�

2

2
)(T � t)]

where N() is a value from the normal distribution. The above produces a matrix of

call prices at our required strike prices and TTMs.

A.4 Aït-Sahalia and Lo Model Extrapolation

The method proposed by Aït-Sahalia and Lo (1998) is a non-parametric option pric-

ing/volatility extrapolation methodology. For reference, the implied volatility extrap-

olation equation is the following:
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where K is the strike price, ⌧ is the TTM, �
IV,i

is the implied volatility, and F

t

=

S

t,p

e

(r
t

��

t

)⌧ . For the sake of brevity, I recommend that the interested reader refer to

the original article (Aït-Sahalia and Lo, 1998).
15In this paper, I use $1 increments for strike prices.

56



B Appendix B

B.1 Time Series and Residual Plots for ASL Method (Aït-

Sahalia and Lo, Univariate Markov Chain)

The following figures present the results for the extrapolation method of Aït-Sahalia

and Lo. The same figures as in section 4.1.2 are presented: a time series graph, a

regression residual graph, and an ACF/PACF graph. For the sake of brevity, I have

opted to display and discuss the graphs for the entire sample. The Ross sample graphs

are omitted because they show the same general patterns as for the entire sample.

Figure 10 shows a comparison between the forecasted return using the extrapolation

method of Aït-Sahalia and Lo (red line) and the actual monthly return of the S&P

500 (blue line) for the entire sample (April 1996 to April 2015). These results do not

include the multivariate Markov chain that this paper proposes. As discussed above

(see table 8), the ASL methodology produces results that are closest to the original

results of Ross. From figure 10, it is clear that, although the RT does not perfectly

forecast the level of the underlying asset’s return, it does manage to forecast the peaks

and troughs quite accurately. Intuitively, this makes sense since we are using market

prices at time t to forecast returns at time t+1. Since there is a significant amount of

noise between time t and time t+1, we would expect some kind of over/underreaction

to expected market movements. While general sentiment or perceived value seems

fairly accurate using the RT, over/underreaction is to be expected.
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Figure 10: ASL RT Forecast vs Actual S&P 500 Return

In the residual plot (figure 11), a negative value means that the RT forecast was

smaller than the actual return. We can see that the forecast residuals are clustered

around the zero line as we would hope. Moreover, there does not appear to be a clear

pattern, which is another desirable property of residual plots. One difference between

this graph and the graphs of the results for the Sanford method is that the value of

the residuals is smaller for the outlier residuals. Also, there are fewer outliers here

compared to the Sanford results.
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Figure 11: ASL RT Forecast vs Actual S&P 500 Return - Residual Plot

In figure 12, both the ACF and the PACF behave the way we would expect them

to behave. They do not appear to exhibit any autocorrelation in the residuals which

means that I have appropriately defined the forecasting model.
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Figure 12: ASL vs S&P 500 Return Regression Residual ACF and PACF

B.2 Time Series and Residual Plots for ASLMV Method (Aït-

Sahalia and Lo, Multivariate Markov Chain)

Figure 13 shows the results for the Aït-Sahalia and Lo extrapolation technique with

the multivariate Markov chain. The figure illustrates that the multivariate component

significantly improves the forecast. Yet, the results from the multivariate Markov

chain seem more susceptible to exaggerations. This method appears more sensitive to

the market’s perceptions of large future changes, especially for negative events. This

observation will become more apparent when I compare figure 14 and figure 11.

60



Figure 13: ASLMV Forecast vs Actual S&P 500 Return

The first, and probably most obvious, observation when we compare residual plots

across the two Aït-Sahalia and Lo models (figures 14 and 11) is the fact that the

the regression residuals are slightly more widely spread when the transition matrix is

obtained using a multivariate Markov chain. This appears to be caused by the fact that

the RT with a univariate Markov chain includes fewer fluctuations in the time series

when compared to the multivariate Markov chain. In other words, the time series

with the univariate chain is more of a straight line through zero rather than actually

forecasting the levels of the S&P 500. As such, even if the residuals are smaller for the

ASL method, its forecasting is actually inferior to the ASLMV method. Other than

that, the residuals do appear to be behaving randomly as expected.
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Figure 14: ASLMV Forecast vs Actual S&P 500 Return - Residual Plot
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Figure 15: ASLMV vs S&P 500 Return Regression Residual ACF and PACF
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