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Abstract

Small farms and fragmented plots are hallmarks of the agricultural sector in less-

developed countries and there is evidence of high potential returns to land consolida-

tion and reallocation. Yet reaching an efficient land allocation through private bilateral

trade is difficult and slow, due to complementarities, hold-up and asymmetric infor-

mation. Market design therefore has the potential to improve the allocation of land

and contribute to the development process. The design needs to address the specific

market failures thought to be impeding land trade, as well as to be understandable to

participants, many of whom may be poor and have limited education or experience

in trading large assets. As a first step in this agenda we present the results of a series

of framed field experiments with farmers in Kenya, comparing the performance of

a range of two-sided land auction designs. Our results show that farmers were able

to achieve high degrees of efficiency, and to comprehend and gain from a relatively

complicated package auction design.

1 Introduction

Increasing agricultural labor productivity is key to reducing cross country income dis-

parities. This is because poor countries are relatively less productive in agriculture and
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allocate the bulk of workers to agriculture. Recent work supports a conjecture that a

poor allocation of agricultural land may play an important role in determining agricul-

tural labor productivity. Labor productivity is increasing in farm size, but pour countries

have much smaller farms (Adamopoulos and Restuccia 2014), there is direct evidence of

increasing returns at the plot level in India with the advent of mechanization, but farm-

ers do not operate at the optimal scale (Foster and Rosenzweig 2011), and some work

suggests high degrees of heterogeneity in farmer productivity, but very low correlation

between farmer productivity and land holdings (Restuccia 2016).1

While a great deal of work has investigated the role of secure property rights in

allowing trade to efficiently allocate land (for a review see Besley et al. 2010), little work

in economics considers how the market for land should be designed. We argue that both

theory and evidence implies that efficient trade requires both secure property rights and a

careful consideration of market design, and take some first steps toward understanding

appropriate market designs.

Formal empirical evidence from the US shows that even in the presence of secure

property rights, uncoordinated land markets may take decades to reach efficiency. Bleak-

ley and Ferrie (2014) study land openings on the Georgia Frontier. In the early 19th cen-

tury, land was allocated to settlers according to lottery. Allocated plots were of arbitrary

sizes that were unlikely to be optimal in all (or even any) locations. Bleakley and Ferrie

show that 80 years later, plot sizes correlate nearly one to one with allocated plot sizes and

that the correlation does not disappear until 150 years after the initial allocation. These

results show two things: first, that the correlation eventually disappears implies that the

initial allocation was not optimal, and second, the persistence shows that, even in the

presence of one of the strongest property rights systems in the world (the US), uncoor-

dinated land trade leads to efficient reallocation only very slowly. Bleakley and Ferrie

estimate that the initial misallocation reduced land prices (and hence productivity) by

20%.
1Some of these results may seem at odds with the large literature on the inverse relationship between

farm (or plot) size and output per hectare, and the potential gains from equalizing land holdings. (see, e.g.,
Deininger and Feder (2001)). There are several key issues/differences. First, we are interested in labor pro-
ductivity, envisaging a potential move of labor out of agriculture, while much of the literature is concerned
with land productivity, presumably assuming that the population cannot move out of agriculture. Second,
reallocating land to more efficient farmers may be inequality reducing if poorer farmers are more efficient.
Third, the advent of mechanization seems to have removed the inverse plot size productivity relationship
in India, and the existence of mechanization may itself be endogenous to the size of land holdings.
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Anecdotal evidence from land consolidations programs in Europe also suggest that

formal property rights are insufficient to allow farmers to make all the trades they desire.

Throughout the currently developed world (Europe and the US), agriculture was at some

point characterised by severe fragmentation: farmers owning multiple small plots of land.

At least since the mid 1700’s this fragmentation has been dealt with through government

land consolidation programs.2 This fact alone suggests demand for a more centralized

market, but the most compelling evidence comes from the Danish case (see Hartvigsen

2014 for a review of the institutions). In Denmark land consolidation is undertaken on

a voluntary basis: no land holder has to participate in the trade. A group from the land

office works with a “village” for a period of about 4 years to generate a new plan for the

allocation of land, for everyone that accepts the new plan, contracts of sale are drawn up

and executed simultaneously. Figure 1 below shows an example of the change in land

structure resulting from one of these programs. The change is striking, and is made more

so by two observations: first, Denmark’s institutions clearly allow free trade of land even

in the absence of the land consolidation program, and second, the trade is completely

voluntary meaning that every land owner was happy with the the change. These two

facts together suggest that farmers wanted to defragment their land, but were not able to

do so without the help of a coordination mechanism.

Figure 1: Agricultural Plots in Oster Stillinge Village, Denmark Before and After Land
Consolidation. Image taken from Hartvigsen (2014).

There are also clear theoretical reasons to expect that uncoordinated land markets

2The FAO have a nice review of land consolidation programs available at http://www.fao.org/docrep/
006/Y4954E/Y4954E00.HTM
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would not perform well. First, uncoordinated land markets in the presence of fragmen-

tation and increasing returns at the plot level are likely to be very thin. The most advan-

tageous trades will be those that create contiguous plots and so a buyer of land is limited

to purchase from a very small set of possible sellers. This thinness will lead to Myerson-

Satterthwaite type problems. Second, markets are likely subject to significant exposure

risk. Suppose that it is always optimal to hold two contiguous plots and a farmer starts

with two fragmented plots. This farmer will need to undertake two separate trades to

defragment her plots, and the first trade may need to take place at a loss. If the farmer

cannot guarantee that the second trade will take place (perhaps because of hold-out or

simply because of changing circumstances) then she will rightly be reticent to engage in

the first trade. Finally, the efficient set of trades is likely to be complex. Efficient trades

often involve multiple parties in a chain and there are multiple different possible trades

and trading mechanisms that could be used.

A centralized market design can solve each of the theoretical problems, and relative

to the land consolidation programs described above, can likely do so in a more efficient

and timely manner.3 In particular a package auction with XOR bidding that allows for

sufficiently complex packages increases market thickness by allowing farmers to bid on

multiple consolidated farms independent of their initial allocation, removes the exposure

problem by allowing all trades to take place at once, and reduces complexity because both

chains and trading rules are defined by the auction environment.

Ultimately our goal is to determine whether a centralized market design imple-

mented in a rural land markets can improve efficiency. A first key step is to demon-

strate that the target population, which consists of small holder farmers with little formal

eduction, is able to trade efficiently using potentially complex market mechanisms in a

simplified setting. Toward this aim, we designed a simple land trading environment, and

implemented a framed field experiment in rural Kenya.

Our environment was designed to capture several key aspects of rural land trading

problem, but in a simplified setting. First, there are increasing returns at the plot level,

so defragmenting land is efficient. Second, both farmers and land are heterogeneous in

terms of productivity, and a complementarity means that efficiency requires more efficient

3We see the historical land consolidation programs as akin to the comparative hearings discussed in the
market design literature on spectrum auctions (Milgrom 2004). Even if these institutions allocate goods
efficiently (which is debatable), they are costly, time consuming and open to political intrigue.
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farmers to farm more productive land. We are thus able to study the ability of different

market designs to efficiently defragment land, and to efficiently sort land to its highest

value use (or reduce land misallocation). Third, there is a potential for exposure risk in

our environment, which we believe to be a characteristics of real land markets. The setting

is, however, much simpler than a real land market. While typical land consolidation

programs in Denmark have involved between 50 and 100 land holders each with more

between 2 and 10 plots of land, in our environment there were only 12 plots of land, with

each land holder starting out with 2 plots.

We implemented three different market mechanisms, each operated through a cen-

tralized computerized exchange. In our first treatment, farmers were able to trade single

plots of land in a continuous double auction with a broker who facilitated communication

between farmers (CDA-Broker). Our second treatment was identical to the first, except

that farmers could also specify swaps – that is they could offer to buy (or sell) one plot of

land conditional on selling (or buying) one piece of land (CDA-Swap). Our final treatment

(CDA-Package) was the same as CDA-Swap, except that farmers could also make package

offers with a maximum of 2 buys and two sells. That is, they could offer to sell (or buy)

up to two plots of land conditional on buying (or selling) up to two plots of land.4 Recent

work by Goeree and Lindsay (2016) shows that package auctions of this type can signif-

icantly increase efficiency in a setting with exposure risk. In all our markets bids were

XOR, so that farmers could make multiple bids without fearing that they would all be

fulfilled at once. This should increase market thickness. Farmers were also able to freely

communicate throughout the trading rounds.5

We show several key results in our environment. First, efficiency is high. Farm-

ers were able to extract more than 70% of the total efficiency gains across all treatments.

We believe this is an important result as it demonstrates that our target sample are able

to understand the market and to trade. Second, we show that, as conjectured, the more

complicated CDA-Package mechanism achieves higher efficiency, increasing efficiency by

over 7% or 5.6 percentage points. This again shows that our target population are able to

make use of complicated market design features that one may conjecture are too complex

4In our context additional packages (for example sell 3 and buy 3) have no theoretical value because
optimal allocation are always owning two plots.

5We feel that communication would be part of any implementable auction design and so wanted to
include this feature in our experiments.
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in this setting. In some sense this result is surprising given the recent results in Goeree

and Lindsay (2016) which show, in a related environment with undergraduates as sub-

jects, that the efficiency gains of package auctions are mostly achieved by allowing free

communication. Third, we show that farmers were able to reap most of the gains from

defragmenting land, but fewer of the available gains from sorting farmers to their most

efficient plots. Importantly all three mechanisms perform similarly in terms of defrag-

mentation, but CDA-Package performs better at sorting farmers to their appropriate land.

Finally, while there is significant variability in farmer’s performance, a farmer’s Shapley

value is highly correlated with performance in the auction and explains nearly 90% of the

variation in the data. This last result suggests that strategic risk from exposure plays little

roll in our mechanisms, but we also show suggestive evidence that CDA-Package further

reduces strategic risk.

2 Experimental Design

2.1 Overview

We conducted 48 sessions, each consisting of 6 farmers who played 8 auctions. Farmers

were recruited by taking a census of two villages in Kiambu County, Kenya, and inviting

individuals who identified as farmers, who owned land, and were between 18 and 55

years of age. Approximately 70 per cent of invitees attended sessions. Early pilots showed

that females were more likely to attend than Males, so Males were oversampled from the

census.

At the beginning of each session, farmers were randomly assigned a computer and

an enumerator (or bidding assistant) who read the instructions to each subject in their

preferred language. The enumerator remained with their assigned farmer for the du-

ration of the experiment and acted as a bid assistant. Following reading instructions,

their role was to answer any questions concerning the trading rules, calculate the surplus

generated from any potential package upon request, and input bids into the computer

system. Enumerators also recorded payments for each period and marked whether sub-

jects communicated with the other subjects in a given auction. These enumerators were

given three days training on the mechanics of the game prior to the first session. We were
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clear with the enumerators that they were not to suggest particular trades to farmers, and

enumerators did not financially benefit from farmer performance.

After the instructions, farmers participated in one 15 minute practice period where

they were encouraged to make bids into the system using the mechanism assigned to

their session. In the sessions that allowed for packages, the enumerator encouraged their

farmer to use all possible packages and to make multiple bids.

Farmers next participated in 8 auctions each lasting 10 minutes. As discussed in the

interface section, subjects could see their current allocation and current bids on their own

screen and all subjects could see the plots for which there was activity on a centralized

screen. An additional enumerator was available in each session who acted as a “broker.”

The broker would take oral messages between any two farmers but was discouraged from

actively organizing trades.6

Farmers had a 30 minute break after the fourth auction and were fed a light snack.

Payments occurred at the end of each session using mobile payments. An experiment

lasted about 3.5 hours and farmers received 483.3 shillings on average. This was roughly

1.5 days wage for the represented population.

2.2 Auction Environment

2.2.1 Production Functions

We designed a simple experimental environment to study two key aims: de-fragmentation;

and efficient sorting. Fragmentation occurs if plots are not contiguous, and is conjectured

to reduce productive efficiency. An effective market design should be able to de-fragment

an initially fragmented allocation. An efficient market design should also be able to allow

land to flow to the most productive farmer, leading to efficient sorting.

In each experiment 6 farmers traded 12 plots of land located on a simplified map.

The map is presented in Figure 2. Each farmer was initially allocated two plots.

There were two dimensions of heterogeneity. First, there are three land types: blue

land is the most productive, red the second most productive and green land the least

productive. Second, there are three player types: high productivity farmers, medium

6We allow for oral communication in this experiment since we are interested in developing exchanges
that can be used in conjunction with current institutions. Given that communication is a feature in our
target environment we consider it an important part of our design.
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Figure 2: Map Representation of Available Land

productivity farmers and low productivity farmers. In all sessions there were two of each

type of farmer. Panel A of Figure 3 shows total production profit for each farmer and

land combination. In all cases the high productivity farmer earns twice as much as a

low productivity farmer and a medium productivity farmer earns one and a half times.

Red land is twice as productive as green land, and blue land is one and a half times as

productive. This setup induces a complementarity. The gain for moving from green to

blue land is 200 for a high type, but only 100 for a low type. Hence, efficiency requires the

high type to farm the blue land, the medium type to farm the red land and the low type

to farm the green land.

	

   Panel A: Profits  Panel B: Adjacency Bonus 
   Land Type  Land Type 

  Red Blue Green  Red Blue Green 

Fa
rm

er
 T

yp
e High   400 300 200 

 
160 120 80 

Medium   300 225 150 
 

120 90 60 

Low    200 150 100 
 

80 60 40 

Figure 3: Land and Farmer Types

In addition to the two dimensions of heterogeneity, there is a bonus for operating

adjacent plots, and a cost from operating too-many plots. If a farmer operates two ad-

jacent plots of the same colour they receive a bonus as shown in Panel B of Figure 3. A

farmer who operates more than two plots of land earns profits equal to that of the two

most profitable plots.

This simple setup allows for an increase in productivity from de-fragmentation (due

to the adjacency bonus). The design also allows us to study sorting because there is a
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complementarity. The fact that a third plot is not productive gives us a way to study these

issues with a simple to explain production function, but without the efficient outcome

having all land owned by one farmer. This requirement was explained to participants as

a simple span of control constraint, a farmer simply does not have enough time to tend to

more than two plots.

The maps and production functions remained constant across all auctions. All play-

ers knew their own production function. They also knew that there were three types of

players. They did not know the type of the other players in the room, and they were not

initially informed who owned which plots.

2.2.2 The Initial Allocation of Types

We conjectured that the ease of achieving defragmentation and efficient sorting would

depend on the initial allocation of plots. To study this issue, we created 8 different initial

land allocations. The different allocations are shown in Figure 4. In each case, players 1

& 2 are high types, players 3 & 4 are medium types and players 5 & 6 are low types. The

maps are symmetric within farmer type: players 1 & 2 are interchangeable, as are 3 & 4,

and 5 & 6.

The allocations shown in Figure 4 are in order of our pre-experimental assessment of

how difficult it would be to reach full efficiency. We considered four different dimensions

of difficulty. First, for each individual, how many CDA-Broker trades are necessary to get

to their efficient allocation. If an allocation requires two CDA-Broker trades, it requires

only one CDA-Swap trade. If an allocation requires four CDA-Broker trades, it requires

two CDA-Swap trades or one CDA-Package trade. Second, we considered how many peo-

ple would need to be involved in any efficient CDA-Swap trade. Third, we considered

whether money is required to reach an efficient trade. Finally, we considered strategic

issues, for example the propensity to hold-out.

Map 1 is the simplest map. For each player reaching efficiency requires only one

CDA-Swap trade and only two individuals are involved in that trade. No money is re-

quired because all efficient trades increase all participants surplus equally. Map 2, is sim-

ilar to Map 1, but money is required because efficient trade for some participants reduce

their surplus. Map 3 is similar to map 1 and in principle requires no money. However,

players 2, 4 and 6 appear to have a strategic motive to holdout. Map 4 can be solved
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Map 1 Map 2

Optimal Owner Optimal Owner

(1,2) – BLUE 1 2 1 2 (1,2) – BLUE 1 3 2 5

(3,4) – RED 3 4 3 4 (3,4) – RED 4 6 1 3

(5,6) – GREEN 5 6 5 6 (5,6) – GREEN 2 5 4 6

Map 3 Map 4

Optimal Owner Optimal Owner

(1,2) – BLUE 1 2 2 1 (1,2) – BLUE 1 3 2 4

(3,4) – RED 3 4 4 3 (3,4) – RED 3 5 4 6

(5,6) – GREEN 5 6 6 5 (5,6) – GREEN 5 1 6 2

Map 5 Map 6

Optimal Owner Optimal Owner

(1,2) – BLUE 3 5 4 6 (1,2) – BLUE 5 6 5 6

(3,4) – RED 1 5 2 6 (3,4) – RED 1 2 1 2

(5,6) – GREEN 1 3 2 4 (5,6) – GREEN 3 4 3 4

Map 7 Map 8

Optimal Owner Optimal Owner

(1,2) – BLUE 5 6 6 5 (1,2) – BLUE 1 2 3 4

(3,4) – RED 1 2 2 1 (3,4) – RED 3 4 5 6

(5,6) – GREEN 3 4 4 3 (5,6) – GREEN 5 6 1 2

Endowment Endowment

Endowment Endowment

Endowment Endowment

Endowment Endowment

Figure 4: Initial Land Allocations
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with only one CDA-Swap trade per player, but those trades have to have at least 3 people

involved. Money is required, but there is no strategic motive apparent. Map 5 is more

complex, each participant must make two CDA-Swap trades, or one CDA-Package trade.

Each of those trades involves only two players, money is required and their does not ap-

pear to be a strategic motive. Map 6 again requires two CDA-Swap trades, but in this case,

some of those trades require at least 3 participants. Again, money is required and their

does not appear to be a strategic motive. Map 7 is similar to map 6 but appears to have

a holdout problem. Finally, we judged map 8 to be the most complex. It requires two

CDA-Swap trades per player and some of those trades require at least 4 participants, and

may require all parties to participate.

It should be noted that in coming to our ex-ante assessments of difficulty we tried

to determine how hard it would be to reach full efficiency. We did not consider whether

initial allocations differed in the ease with which partial efficiency could be achieved. We

return to this point below.

2.2.3 Cash Constraints and Exposure Risk

Building on the work of Goeree and Lindsay (2016) we conjectured that a key impediment

to trade would be exposure risk. Paraphrasing Goeree and Lindsay, there is exposure risk

if reaching a desired allocation requires at least one player to make a loss on an early trade.

This potential loss may make the trader reluctant to make the first trade if subsequent

trades may not happen.

For example, consider the following initial allocation where high type player 1 wishes

to buy high productivity land from medium type player 3 and 4, and sell medium pro-

ductivity land to them. The initial and efficient allocations are:

3 4

3 1 1 4

and

1 1

3 3 4 4
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Initially the land values are 720, 525 and 525 for 1, 3 and 4 respectively, while after

trade they are 960, 540 and 540 so there exists a sequence of trades that is mutually bene-

ficial. However, if 1 first buys from 3, he holds three plots and cannot farm all of them. In

fact, because of the adjacency bonus to his medium quality land, his intermediate land-

holding is still worth 720, while farmer 3’s has decreased to 225. Since the surplus from

this trade is negative (-300), at least one of 1 and 3 must make a loss on the trade. Simi-

larly, if 1 first sells to 3, 1’s land value decreases to 300 while 3’s increases to 540. The net

gain is negative (-285) and one must make a loss on the trade.

There are several reasons why simple trades may have negative surplus in our set-

ting. First, as in the example, the purchased plot may not initially be farmed because

the buyer already has two plots, so output is lost until the buyer sells another plot (this

is the perfect substitutes feature of the production function). Second, the buyer may pro-

duce less from the purchased plot than the seller because of type productivity differences.

Third, the sale might break up a previously consolidated plot.

We additionally introduced an experimental design feature (cash constraints) to in-

crease the likelihood that trades suffer from exposure risk. In half of all auctions, farmers

started with cash of 750. This would be sufficient to compensate a high productivity

farmer with two consolidated high quality plots for selling one - (land value before is 960,

after is 400, a difference of 560). In the other half, the cash endowment was 250. This is

only enough to compensate a high type for an unconsolidated low quality plot, a medium

type for an unconsolidated medium plot or a consolidated low plot, or a low type for an

unconsolidated high plot or any other plot.

As a result in a low cash treatment in some positive surplus trades one party must

make a loss. For example, consider the following initial allocation where 1 and 3 own

only one plot of medium quality land each.

1 3

If 1 sells to 3 the surplus is positive (40). However the plot is worth 300 to 1, so 3 may not

be able to compensate him.
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2.2.4 Trading Mechanisms

We consider three trading mechanisms each based on the continuous double auction: a

simple CDA-Broker mechanism where farmers can communicate via the broker but can

place only buy or sell orders to the market, a CDA-Swap mechanism where subjects can

place buy orders, sell orders, or packages orders consisting of one sale and one purchase,

and a CDA-Package mechanism where subjects can place buy orders, sell orders, and pack-

age orders consisting of up to two sales and two purchases. Communication through the

broker is available in all three mechanisms and there are no other differences in the mar-

ket mechanism other than the packages that are allowed.

Our mechanisms are based on the winner determination rule and surplus division

rule outlined in Goeree and Lindsay (2016) with some modifications that were made to

allow for larger packages.7 As in their mechanisms, let the set of farmers, F, be indexed

by i ∈ {1, . . . , 6} and the set of plots, L, be indexed by l ∈ {1, . . . , 12}. Farmers submit

orders o = (m, x) consisting of the minimum amount of money they must receive, m, and

a vector of demanded plots, x ∈ {−1, 0, 1}12. A negative number indicates that a farmer is

offering money or is offering to sell a plot while a positive number indicates that a farmer

must receive money or wants to buy a plot. For instance, an order of (−500, 〈1, 0, ..., 0〉)
indicates that a farmer is willing to pay up to 500 points in order to acquire plot 1 while

an order of (0, 〈1,−1, 0, ..., 0〉) implies that the farmer is willing to buy plot 1 and sell plot

2 as long as he pays no money.

Orders placed by a farmer must be legal. Denote the plots owned by farmer i at time

t as ωt
i ∈ {0, 1}12 and denote the cash of farmer i at time t as ct

i . A bid (m, x) is legal if at

the time of placing the order, ct
i +m ≥ 0 and ωt

i + x is either zero or one in all dimensions.

A bid is thus legal if the farmer has more cash than the amount of money he offers, he sells

only land that he owns, and he buys only land that he does not own. Orders placed by a

farmer are also restricted by the mechanism used in each treatment as outlined above.

Legal orders are sent to the order book in the order that they arrive and transactions

occur any time that there exists a set of legal orders where (i) supply equals or exceeds

demand for all plots, (ii) only a single order is used for each farmer, and (iii) the total

amount of money demanded in the set of bids is less than zero. Formally, let Ot denote

7Their continuous auction design is in turn influenced by the RAD design of Kwasnica et al. (2005).
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the legal orders in the order book at time t and index its elements, oj = (mj, xj), by j =

{1, . . . , |Ot|}. Let d = {0, 1}|Ot| be a vector of orders from the order book, where dj = 1 if

an order j is winning and dj = 0 otherwise. Let Ot
i be the active orders of farmer i and let

Wi = {oj ∈ Ot
i |dj = 1} be the orders of farmer i that are winning.

At each time t we find:

V∗ ≡ max
d

∑
j
−mjdj

subject to

∑
j

xl
jdj ≤ 0 ∀l ∈ L, and

|Wi| ≤ 1 ∀i ∈ F.

Trade is triggered if V∗ ≥ 0.8

When a transaction is triggered, we return plots that were not demanded back to

their original owners and transfer all other plots according to the set of winning orders.

If there is a positive surplus (i.e., V∗ > 0), we divide the remaining surplus amongst the

winning farmers as follows: let W = {oj ∈ Ot|dj = 1} be the set of winning orders

and Ŵ = {oj ∈ Ot|oj ∈ Ot
i , |Wi| = 1} be the set of all orders made by the winning

farmers. Likewise, denote the set of orders made by non-winners by NW = Ot \ Ŵ. Let

p ∈ {0, . . . , 10000}12 be a vector of (integer) prices and denote the surplus generated by

order j at prices p as sj(p) = −mj − p · xj.9

As is standard in these problems, we find the set of prices that lexicographically

maximizes the minimum surplus of winning farmers subject to the revealed preference

8Note that the restriction of legal trades ensures that there is no short selling and that all budget con-
straints are met. We handle these on the client side to minimize the computation time of the winner allo-
cation problem. Relative to Goeree and Linday (2016), the additional cardinality constraint prevents more
than one order from a farmer being used in each transaction. This constraint ensures that orders submitted
by each farmer are considered XOR.

9We use integer prices in the experiment in the range of 1 and 10000 so that trade prices are similar to
ones that farmers are likely to encounter when buying and selling goods in Kenya Shillings on a day-to-day
basis.
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constraints of the losing orders.10 Finding these prices is equivalent to solving:

min
p ∑

j
dj

[
sj(p)− V∗

|W|

]2

subject to:

sj(p) ≥ 0 ∀oj ∈W,

sj(p) ≤ 0 ∀oj ∈NW, and

∑
j

djsj(p) = V∗.

Each winner pays or receives p · xj and losing farmers pays and receive nothing. In the

case of ties, we use the first solution found by the solver.11

As can be seen by the optimization rule above, lexicographically maximizing the

minimum surplus is equivalent to minimizing the squared difference between the surplus

of each winner and the equal split subject to an additional constraint that all surplus is

allocated. We explain our surplus division rule using this logic. Farmers are told that we

try to split the surplus as evenly as possible between the farmers but that we want to make

sure that farmers who do not trade are not disadvantaged. In training our enumerators

we gave two main examples — one where there is a single buy order and a single sell

order and where the surplus is divided equally and one where there are two buy orders

and a single sell order and where the non-winning buy order pins down prices.

After a transaction is triggered, we make all other non-winning orders made by

farmers in the winning coalition inactive and allow them to renew any legal order that

they might want to maintain. Orders that are made illegal (for instance, other orders that

contain sales offer of objects no longer owned) are hidden from a farmer’s offer book

but can be renewed if later transactions make them legal. Farmers have the ability to
10The revealed preference constraints ensure that a losing farmer would not prefer to be winning once

the surplus is reallocated given the information that was submitted to the market.
11The underlying algorithms were written in Minizinc, a free open-source constraint modeling language

and solved using GECODE. In general, the winner determination problem could be solved in under 200
milliseconds for order books containing under 100 legal orders. The surplus division rule was slightly
slower but usually completed in 600 milliseconds. To ensure that the system was able to continue in real
time, we built timeouts into the surplus division rule that would end the solver and consume all the surplus
if no solution was found in 10 seconds. This circumvented potential issues that could occur if prices weren’t
fully pinned down by the orders. In practice, we never had the timeouts trigger in a session.
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withdraw legal orders at any time.

2.2.5 Interfaces

All bids were entered through a computer interface. The interface displayed the farmers

basic valuations and current allocation on a geospatial map as in Figure 2, and provided

a calculator that could be used to calculate the value of different allocations. Players

(or their bidding assistant) could click on sets of plots on the map (depending on the

treatment) and enter a willingness to pay or willingness to accept to make the trade. Only

legal bids were accepted by the computer. The interface also showed a list of all current

bids placed by that player. A screenshot of the individual interface is shown in Figure 5.

In addition to the individual interface, a projector showed a map indicating which

plots of land were currently offered for sale, or had offers to purchase.

Figure 5: Computer Interface Used for Entering Bids
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2.2.6 Treatment Randomization

We played 48 sessions in total. Each session consisted of 8 auctions and was assigned

to one trading mechanism: CDA-Broker, CDA-Swap, or CDA-Package. In each session the

first four auctions had the same cash treatment and the second four the alternative cash

treatment. Hence, each session could be assigned to one of six possible treatments:

{BrokerLH, BrokerHL, SwapLH, SwapHL, PackageLH, PackageHL} where BrokerLH de-

notes a CDA-Broker treatment that plays low cash for the first four auctions and then high

cash for the last four. These treatments were block randomized. The set of 48 sessions

was divided into 8 blocks each consisting of 6 consecutive sessions. The 6 treatments

were then randomly assigned within the block.

Each lab session required one lead enumerator to introduce the environment and

implement the computer programs, 6 bidding assistants to assist the players in making

calculations and entering bids, and one broker. Two labs (labeled red and black) ran in

parallel, each playing one session in the morning and one in the afternoon. Lead enu-

merators were assigned to a specific lab (red or black) and stayed in that lab throughout.

Bidding assistants were randomly assigned to a specific player and lab (e.g. player 4 red)

for each session. Brokers were randomly assigned to a lab for each session.

Because subjects arrived slowly over time (it was hard to get farmers to all arrive at

9am), the first session of the day alternated between the red and black lab. The first 6 farm-

ers to arrive were randomly assigned to a player number between 1 and 6 and then played

in the lab that was operating the first session. The next six farmers to arrive were similarly

assigned a player number and played in the second lab. Each player played four auctions

as their initial player number and was then moved to a different player number. Player

1 became player 3, player 2 become player 5, player 3 became player 1, player 4 became

player 6, player 5 became player 2 and player 6 became player 4. Because of the symmetry

within farmer type this sequence implies that every subject had an equal chance of being

assigned to play one of the six possible sequences {HM; HL; MH; ML; LH; LM}.
Finally, the 8 maps displayed in Figure 4 were assigned to sessions. Every session

played every map, and they were played in one of 8 orders. These orders were devised

to minimize ordering effects: we wanted to have difficulty approximately even across the

session to minimize the impact of learning effects. The 8 map orders are displayed in

Figure 6. The maps orders were then randomly permuted, and the first session played
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the permuted map orders in order 1 to 6, the second session played the map orders 2 to 7

in order, etc.

Order 1 5 1 3 7 6 2 4 8
Order 2 7 3 1 5 8 4 2 6
Order 3 6 2 4 8 5 1 3 7
Order 4 8 4 2 6 7 3 1 5
Order 5 3 7 5 1 4 8 6 2
Order 6 1 5 7 3 2 6 8 4
Order 7 4 8 6 2 3 7 5 1
Order 8 2 6 8 4 1 5 7 3

Figure 6: Map Orders

Overall, this method gives assignment to the main auction treatments and cash treat-

ments that are orthogonal to the other elements of the design, as well as maps that are

assigned orthogonally to the treatments and also randomly across time and session. We

also have balance across all main elements of the experimental design.

3 Results

3.1 Data Overview and Summary Statistics

Table 1 provides summary statistics for our sample. Despite oversampling men we had

nearly 60% female participants, likely reflecting greater availability during daytime hours.

Recall that each of these participants had indicated that they own land and are responsible

for farming decisions on that land. Average age was 43 years, and the average attendee

had about 12 years of school, indicating that our sample was slightly better educated than

anticipated. Most farmers owned very little land (just less than 1 acre) and on average one

plot. This low ownership of plots likely reflects the fact that many women own a small

fraction of the family land. Very few of the farmers have every traded land.

As discussed in the design section, we provided enumerators with 3 days of train-

ing prior to the start of the experiment where they learned how to use the interfaces,

how to calculate payoffs, how to place bids, and how prices were set. In the training ses-

sions, enumerators also practiced giving instructions to each other. Despite this training,
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Table 1: Summary Statistics

CDA-Broker CDA-Swap CDA-Package Total

Female 0.604 0.633 0.520 0.586
(0.489) (0.482) (0.500) (0.493)

Age 42.93 43.28 41.49 42.56
(11.31) (9.324) (10.51) (10.46)

Education (years) 11.55 11.63 12.53 11.90
(3.515) (3.026) (3.257) (3.307)

Married 0.720 0.711 0.800 0.743
(0.449) (0.454) (0.400) (0.437)

Household size 4.034 3.953 4.217 4.068
(1.759) (1.685) (1.630) (1.696)

Employed 0.426 0.453 0.507 0.462
(0.495) (0.498) (0.500) (0.499)

Owned land (acres) 1.063 0.767 0.790 0.877
(1.908) (0.866) (1.335) (1.451)

# plots owned 1.252 1.279 1.259 1.263
(0.524) (0.623) (0.573) (0.573)

Bought/sold land last 12mo 0.0735 0.0222 0.0784 0.0583
(0.261) (0.148) (0.269) (0.234)

Risk aversion (1-10) 3.188 3.523 3.256 3.318
(3.000) (3.370) (3.115) (3.162)

Standard deviations in parentheses.
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our lead enumerators raised concerns that the enumerators did not fully understand the

rules of the package auctions in early sessions. As the enumerators were responsible for

translating the instructions and teaching farmers, it is likely that farmers didn’t fully un-

derstand the mechanisms in early treatments. Looking at the data, the first two sessions

in each treatment accounted for 43% of observations where efficiency was in the bottom

decile and accounted for all observations where efficiency was negative. Figures 7a and

7b show the evolution over time of efficiency, broken down by treatment.12 Figure 7a

shows that there is a marked improvement in efficiency over time for all treatments, but

that this is much stronger for the more complicated package treatments. This makes sense

if enumerators found those treatment difficult to explain. Figure 7b is the same as Figure

7a but a linear fit is added to the data only after block one. This figure shows that if we

remove block one learning seems to be even across the three treatments.
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Figure 7: Mean Efficiency by Experimental Session

Given these observations we display all our results in three ways. First, we use all

the data and no time trends. Second, we present results that exclude the first block of

results. Third, we include a linear time trend. In all specifications we also include block

(strata) fixed effects as well as controls for the gender composition of the session and the

identify of the lab (red or black). Unless otherwise stated, we analyze the data at the

auction level with errors clustered at the session level.

We lost one session due to the accidental reformatting of the server computers prior

12Efficiency is formally defined below.
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to the session being backed up.13 We also drop three sessions: one where a configuration

was repeated and two where the wrong mechanism was used. In total our data consists

of 366 sessions, 2928 auctions and 2196 farmers.

3.2 Efficiency

We begin our analysis of the data by studying how much of the potential gains from trade

was captured by farmers. In each auction, we calculate efficiency:

E =
∑n

i=1 s f inal
i − sinitial

i

∑n
i=1 soptimal

i − sinitial
i

(1)

where s f inal
i is the surplus generated by farmer i’s final land allocation, sinitial

i is the surplus

generated by farmer i’s initial land allocation, and soptimal
i is the surplus generated by

farmer i’s land allocation at the group optimum. Efficiencies are bounded above by 1 and

are never negative in the set of auctions that we analyze. We thus interpret efficiency as

the percentage of possible gains that are realized in a given auction.

Result 1 Average efficiency of all three treatments is above 70 percent. There is a 5 - 6 percentage

point increase in efficiency in the CDA-Package mechanism relative to the CDA-Broker mecha-

nism.

Support for result one is given in Figure 8 and Table 2. Figure 8a shows average

efficiency and 95% confidence intervals for each of the three market mechanisms.14 As can

be seen, average efficiency is high under all three mechanisms with an average efficiency

rate of over 70% in all treatments.

The CDA-Broker mechanism has the lowest average efficiency of 70.9%. This ef-

ficiency is high relative to the work of Goeree and Linday (2016) who document poor

performance of a CDA auction in a house auction with exposure risks. As indicated in

13Our experiments took place in a village where there was no internet access and we used two laptops
as servers. Following the last session, these laptops were confused by staff with the computers we used
as clients and the hard drives were formatted in order to reuse the machines for other projects. The last
session run was not backed up.

14As with all auction level results, we report confidence intervals using errors that are clustered at the
session level.
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Figure 8: Efficiency and Brokerage levels Across Treatments

Table 2: Efficiency

(1) (2) (3) (4) (5) (6)
Efficiency Efficiency Efficiency Efficiency Efficiency Efficiency

CDA Swap Auction -0.006 -0.023 0.025 0.005 0.008 -0.010
(0.031) (0.041) (0.030) (0.044) (0.029) (0.040)

CDA Package Auction 0.044 0.052 0.056** 0.042 0.062** 0.071*
(0.027) (0.038) (0.028) (0.041) (0.025) (0.035)

Low Cash Treatment -0.006 -0.012 -0.008 -0.030 -0.006 -0.012
(0.022) (0.043) (0.023) (0.048) (0.022) (0.043)

CDA Swap × low cash 0.035 0.040 0.036
(0.053) (0.058) (0.053)

CDA Package × low cash -0.018 0.029 -0.018
(0.056) (0.059) (0.056)

Block fixed effects X X X X X X

Gender & Lab controls X X X X X X

Drop Block 1 X X

Linear time trend X X

N 366 366 318 318 366 366
R-squared 0.173 0.175 0.094 0.095 0.180 0.181
Control group mean 0.713 0.713 0.739 0.739 0.713 0.713

Standard errors clustered at session level in parentheses. * p<0.10, ** p<0.05, *** p<0.01. “Effi-
ciency” measures the fraction of the potential welfare increase realized in a given auction. Block
fixed effects control for stratification block (8 in total). Gender and lab controls are a variable mea-
suring the fraction of female participants and a lab dummy. Time trend controls linearly for session
ID (takes values 1-48).
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the introduction, a major difference in our designs is that we allow for communication be-

tween farmers through a broker, which allows farmers to mitigate exposure risk through

informal agreements. Our auction periods were also 10 minutes while theirs were 3 min-

utes. The longer time period of our auctions likely helped farmers to find mutually ad-

vantageous exchanges.

To see how communication is likely to be influencing exchanges in each of our mech-

anisms, we look at the transaction level data. Based on observations from our pilots,

farmers that negotiate deals through the broker typically submit offsetting bids at exactly

the same price to the computer system. Such bids register in the system as having no

surplus to divide (i.e., V∗ = 0). We use the proportion of trades with zero surplus as a

measure of brokered transactions.

Figure 8b shows that a very large proportion of trades are brokered in all three

mechanism but that the proportion of brokered transactions are declining as the avail-

able package size grows. As can be seen, nearly 40% of transactions in the CDA-Broker

treatment are brokered, while brokered transactions account for 20% of transactions in

the CDA-Swap mechanism and just over 16% of transactions in the CDA-Package auction.

All differences between the mechanisms are significant in a simple OLS regression with

session-level clusters (p-value < .01 for all comparisons). This difference is not driven by

a greater number of bids in the package auctions, in fact the package and swap treatments

had fewer bids in all. Our data thus suggests partial substitution between communication

and the extent to which packages can ameliorate exposure.

Table 2 reports the relative treatment effects of the three mechanisms using OLS. Our

preferred specification is (3), which has block fixed effects and leaves out the first block as

discussed above. Under this specification, the CDA-Package mechanism has significantly

higher efficiency than the CDA-Broker mechanism. From a base of 74% efficiency, the

CDA-Package mechanism increases efficiency by 5.6 percentage points, or 7.5%.

As discussed above, we also changed the amount of cash that farmers started with

across configurations. This was designed to alter the degree of exposure risk. As can be

seen in all specifications the low-cash treatment does not appear to statistically signifi-

cantly affect efficiency, and this lack of an impact is the same regardless of the mechanism

used. It should be noted that we have low power to detect these interaction effects.

To better understand the relationship between the three mechanisms, we also com-
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pare fragmentation rates and the optimal sorting of farmers to land across the three mech-

anisms. We define defragmentation similarly to our measure of efficiency as the change

in the number of adjacency bonuses because of trading divided by the total change pos-

sible. Similarly we define the decrease in misallocation as the change in the proportion of

plots held by the optimal owner, divided by the efficient increase in the number of plots

owned by the optimal owner.

Result 2 Defragmentation rates over 80% in all three auction formats with no statistically sig-

nificant difference in defragmentation across the treatments. The treatments are less successful

at reducing misallocation, with a 26% reduction in misallocation in the CDA-Broker treatment.

There is weak evidence that the CDA-package treatment performs better, decreasing misallocation

by a further 10 percentage points.

Table 3 reports the treatment effects of our mechanisms on fragmentation. Looking

at the control group mean, CDA-Broker achieves 84% of the possible adjacency bonuses.

This fragmentation rate is surprisingly low, suggesting that subjects are effective at ag-

glomerating land even in mechanisms that do not allow for packages. Somewhat sur-

prisingly, the CDA-Swap mechanism has similar fragmentation rates to the CDA-Broker

mechanism, suggesting that the ability to swap one piece of land for another did not sig-

nificantly improve on the ability of farmers to eliminate fragmentation. The CDA-Package

auction appears to have slight lower fragmentation than the other two treatments, but the

differences are far from statistically significant.

Table 4 reports the treatment effects on the percentage reduction in misallocation.

As seen can be seen from the control group means, the CDA-Broker mechanism increased

the number of farmers owning their optimal plots by only 26% of the optimum. Relative

to this there is no evidence that CDA-Swap performed better in terms of reducing misal-

location, but there is some evidence (column 5) that CDA-Broker reduces misallocation by

10 percentage points more.

Taken together, our efficiency, fragmentation, and misallocation results suggest that

there is a small improvement in performance in the CDA-Package auction relative to the

other two formats and that this improvement in performance is being driven by an im-

provement in positive assortative matching. Relative to earlier studies, the difference in

efficiency across our three mechanisms is small suggesting that communication and infor-
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Table 3: Defragmentation

(1) (2) (3) (4) (5) (6)
Defrag. Defrag. Defrag. Defrag. Defrag. Defrag.

CDA Swap Auction -0.012 -0.057 -0.001 -0.057 -0.009 -0.055
(0.027) (0.038) (0.026) (0.042) (0.027) (0.038)

CDA Package Auction 0.014 0.012 0.031 0.010 0.017 0.016
(0.024) (0.032) (0.025) (0.035) (0.026) (0.034)

Low Cash Treatment -0.011 -0.041 -0.004 -0.053 -0.011 -0.041
(0.022) (0.044) (0.023) (0.049) (0.022) (0.044)

CDA Swap × low cash 0.090 0.110* 0.090
(0.056) (0.061) (0.056)

CDA Package × low cash 0.003 0.042 0.003
(0.053) (0.056) (0.053)

Block fixed effects X X X X X X

Gender & Lab controls X X X X X X

Drop Block 1 X X

Linear time trend X X

N 366 366 318 318 366 366
R-squared 0.143 0.151 0.070 0.080 0.144 0.151
Control group mean 0.836 0.836 0.860 0.860 0.836 0.836

Standard errors clustered at session level in parentheses. * p¡0.10, ** p¡0.05, *** p¡0.01.
“Defrag.” measures the fraction of the potential defragmentation achieved, i.e. the
fraction of initially unrealized adjacency bonuses realized at the end of the auction.
Block fixed effects control for stratification block (8 in total). Gender and lab controls
are a variable measuring the fraction of female participants and a lab dummy. Time
trend controls linearly for session ID (takes values 1-48).
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Table 4: Decrease in misallocation

(1) (2) (3) (4) (5) (6)
∆ Misalloc. ∆ Misalloc. ∆ Misalloc. ∆ Misalloc. ∆ Misalloc. ∆ Misalloc.

CDA Swap Auction -0.020 0.031 0.004 0.052 0.014 0.066
(0.050) (0.053) (0.052) (0.058) (0.048) (0.050)

CDA Package Auction 0.063 0.072 0.092 0.082 0.110** 0.120
(0.058) (0.088) (0.063) (0.097) (0.054) (0.075)

Low Cash Treatment -0.017 0.023 -0.014 0.011 -0.016 0.024
(0.039) (0.049) (0.042) (0.056) (0.039) (0.048)

CDA Swap × low cash -0.102 -0.097 -0.104
(0.071) (0.082) (0.071)

CDA Package × low cash -0.019 0.020 -0.020
(0.103) (0.110) (0.103)

Block fixed effects X X X X X X

Gender & Lab controls X X X X X X

Drop Block 1 X X

Linear time trend X X

N 274 274 238 238 274 274
R-squared 0.100 0.104 0.089 0.094 0.128 0.132
Control group mean 0.262 0.262 0.270 0.270 0.262 0.262

Standard errors clustered at session level in parentheses. * p¡0.10, ** p¡0.05, *** p¡0.01. “∆ Misalloc.” measures
the fraction of potential misallocation eliminated, i.e. the fraction of plots that were initially not owned by
farmers of the optimal type that were owned by farmers of the optimal type at the end of the auction. Block
fixed effects control for stratification block (8 in total). Gender and lab controls are a variable measuring the
fraction of female participants and a lab dummy. Time trend controls linearly for session ID (takes values
1-48). Note: misallocation defined as number of plots held by wrong farmer type. Initial misallocation is zero
in maps 1 and 3.
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mal agreements is an imperfect substitute for packages. Looking deeper at the transaction

level data, it appears that there is a substitution away from brokered trades and toward

trades that utilize the centralized system as the ability to construct packages improves.

3.3 Efficiency and Initial Land Allocation

As discussed above, we conjectured that the ability to achieve full efficiency would de-

pend on the initial allocation of plots and we tentatively ranked our 8 initial allocations

in order of how hard we believed it would be to reach full efficiency. Figure 9 show effi-

ciency, defragmentation and reduction in missallocation by initial allocation. In each case,

F-statistics for a joint test of the hypothesis that all initial allocations perform the same are

displayed below the figure.

Result 3 Efficiency gains depend on the initial allocation of plots, but are not monotonically de-

creasing in our pre-experimental assessment of difficulty.

Overall the results support the hypothesis that the initial allocation is important

for determining the level of efficiency reached. In each case that F-statistic suggests that

there are significant differences across the maps. However, it is not the case that efficiency

achieved is monotonically decreasing as we anticipated. In retrospect, we ranked maps

by a conjecture on whether or not full efficiency would be reached. On this basis, we

believed, for example, that map 8 was very hard, and map 5 less difficult. Inspection of

Figure 9a, however, implies that this was not the case. Figures 9b and 9c give some idea

as to why this is the case, map 8 was easy to defragment, but map 5 was not. Looking

at the initial allocations (presented above in Figure 4) suggests why: for map 5 defrag-

mentation (and efficiency) requires a CDA-Swap chain with three people involved. On

the other hand, while full efficiency in Map 8 requires a CDA-Swap chain with at least 4

people, defragmentation requires only a CDA-Swap chain with 2 players. Thus 8 is easy

to defragment and hard to remove misallocation, but 5 is hard to defragment. Because

our auctions mostly reduced defragmentation, map 8 turned out to be easier than map 5.

We leave further exploration of these issues for future work.
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(b) Mean defragmentation
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Figure 9: Efficiency, Defragmentation and Misallocation by Initial Allocation
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3.4 The Division of Surplus

Thus far we have seen that efficiency levels are high across all of our mechanisms and that

package mechanisms generate modest improvements in efficiency. A next question of in-

terest is how the surplus is divided between participants. A natural concern in our setting

is that some participants would not understand the mechanisms and may do particularly

poorly, falling foul of exposure risk during trading.

At a fundamental level, the exposure problem is predicted to arise in our thin-

market setting because there is limited competitive pressure and individuals are likely

to bargain over the surplus on a transaction-by-transaction basis. An individual farmer

who must make a series of transactions to agglomerate land or move to higher quality

land may fear that investment costs made in early transactions will not be taken into ac-

count in subsequent interactions. Players that do not understand this issue face serious

strategic risk.

In contrast, cooperative game theory suggests that coalitions are likely to be able

to arrive at the Pareto frontier and that surplus division is based on the value that each

individual brings to the grand coalition relative to the value that an individual brings

when interacting with smaller coalitions. The cooperative model would thus suggest that

the main drivers of surplus division is the value that an individual can generate in the

various potential coalitions that could form, rather than strategic ability. If players reach

a cooperative solution, there is little roll for the strategic risk that is our main concern.

A remarkable result in cooperative game theory shown in Shapley (1953) is that

there is a unique division of surplus that arises under the reasonable axioms of symmetry,

efficiency, linearity, and invariance to dummy players. In our environment, these Shapley

values are constructed as follows: let v be a function from the set of all coalitions (26) to the

set of real numbers R, which returns the maximal value that can be obtained by optimally

reallocating the land owned by farmers in the coalition. The Shapley value of player i, is

given by

φi(v) = ∑
S⊆F\{i}

|S|!(n− |S| − 1)!
6!

(v(S ∪ {i})− v(S)), (2)

where F \ {i} is the coalition of all farmers except for farmer i, and S is a subset of this

coalition. The Shapley value can be viewed as the average surplus that a farmer adds over

all possible permutations of the coalitions that can be formed. By construction ∼i φi(v)
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add up to the value of the grand coalition, V∗.

As an initial exploration into the division of surplus, we construct the Shapley value

for every individual and every auction. We take the total surplus available to any coali-

tion S to be the total value of land held by the coalition when distributed efficiently. This

definition excludes the cash that the players bring to the game. The Shapley value as-

sumes that participants will reach efficiency, which is not the case in our experiments.

To account for this, we scale the Shapley values in a given auction by the total surplus

gained. This is equivalent to assuming that the share of surplus given to each player is

the same as that suggested by the Shapley value, even away from the Pareto frontier.

Result 4 The Scaled Shapley Value is a strong predictor of the shares received by farmers in all

three mechanisms.

Evidence for this result is shown in Figure 10 and Table 5. Figure 10 shows the tight

fit between the Scaled Shapley Value and profit. In Table 5 the odd numbered columns

show regressions with net profit as the left hand side variable and the Scaled Shapley

Value as the explanatory variable. As above, our preferred specification (column 3) drops

the first block and includes block and map fixed effects and gender and lab controls. The

results are quite striking. First, the coefficient on the Shapley Value is almost exactly 1

and the intercept is very precisely estimates to be zero (in column 1), suggesting that on

average the Shapley Value does an excellent job of predicting the distribution of surplus.

Second, the R2 is extremely high: in the regression without any fixed effects it is over 90%,

suggesting that there is very little variability in the distribution that is not explained by

the Shapley Value. This we see as the most important result: the Shapley Value suggests

that there will be inequality in the division of surplus because different players make

different marginal contributions (much as there is inequality in any competitive market),

however, there is very little additional inequality generated by our game forms.

To investigate further the claim that there is little variation not explained by the

Shapley Value, in the even columns in Table 5 we regress the squared residuals from the

regression on the different mechanism treatments. Because CDA-Package should eliminate

all exposure risk, we conjectured that there will be less residual variability in the CDA-

Package treatments. The results provide weak support for this conjecture. The average of

the squared residuals are reduced by around one quarter relative to CDA-Broker, and this
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Table 5: Net Profit Regressed on Shapley Value

(1) (2) (3) (4) (5) (6) (7) (8)
Net Profit Sq. resid. Net Profit Sq. resid. Net Profit Sq. resid. Net Profit Sq. resid.

Scaled Shapley 1.006*** 1.006*** 1.003*** 1.006***
(0.005) (0.005) (0.005) (0.005)

CDA Swap Auction 24.102 -11.280 -1131.857* 10.263
(878.928) (761.663) (671.227) (700.333)

CDA Package Auction -1092.844 -1100.135 -1140.044* -1074.522*
(655.227) (663.968) (649.872) (634.812)

Low Cash Treatment -498.028 -499.184 -317.761 -498.594
(469.274) (469.298) (493.508) (468.427)

Constant -1.891
(3.174)

Block fixed effects X X X X X X

Gender & Lab controls X X X X X X X X

Drop Block 1 X X

Linear time trend X X

N 2196 2196 2196 2196 1908 1908 2196 2196
R-squared 0.989 0.003 0.914 0.012 0.921 0.008 0.914 0.012
Mean dep. variable 542.311 3761.695 542.311 3761.568 546.947 3423.564 542.311 3761.562

Standard errors clustered at session level in parentheses. * p¡0.10, ** p¡0.05, *** p¡0.01. Block fixed effects control
for stratification block (8 in total) and map fixed effects for the starting allocation map used (8 in total). Gender
and lab controls are a variable measuring the fraction of female participants and a lab dummy. Time trend
controls linearly for session ID (takes values 1-48).
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Figure 10: Scaled Shapley Values Predict Profit

effect is marginally significant in two of the four specifications presented in Table 5.

A final concern is that some players may lose money as a result of participating

in land auctions. Overall, only 4.4% of auction player pairs end in a loss, and almost

no players lost money across all 8 auctions.15 There are no significant differences in the

number of people losing money across the treatments.

Overall, our results suggest that farmers in our groups bargain quite effectively as a

group and that bargaining is influenced by position in the ways predicted by the Shapley

outcome. In addition to increasing efficiency there is weak evidence that our CDA-Package

treatment also reduces strategic risk, suggesting that it is an improvement in both dimen-

sions.
15These players were compensated with a show up fee, and so did not lose money as a result of partici-

pating in the experiment.
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4 Conclusion

We implemented a framed field experiment in rural Kenya to understand the extent to

which smallholder farmers can understand and benefit from a market design approach

to land trade. Our results suggest that farmers understood and were able to benefit from

our simple auction experiments. The results also suggest that a package auction, despite

being more complicated to explain, performed better than a simple continuous double

auction, both in terms of efficiency and in reducing risk. We see these results as an encour-

aging first step in a project to bring a centralized market to rural land trade in developing

countries.
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