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Abstract

We estimate a continuous-time model with stochastic volatility and dynamic crash prob-

ability for the S&P 500 index and find that market illiquidity dominates other factors in

explaining the stock market crash risk. While the crash probability is time-varying, its

dynamic depends only weakly on return variance once we include market illiquidity as

an economic variable in the model. This finding suggests that the relationship between

variance and jump risk found in the literature is largely due to their common exposure

to market illiquidity. Our study highlights the importance of equity market frictions in

index return dynamics and explains why prior studies find that crash risk increases with

market uncertainty level.
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1 Introduction

What is the impact of market liquidity on the volatility and crash probability of the aggregate

stock market? To answer this question, we estimate a continuous-time model with stochastic

volatility and dynamic crash probability. The innovation of our method is the introduction of

market illiquidity as an economic factor driving the dynamics of volatility and jump intensity.

We measure daily market illiquidity (i.e., lack of market liquidity) as the average effective

bid-ask spreads of securities constituting the S&P 500 index estimated from high-frequency

trades.1 It can be thought of as the average cost of a round-trip trade for stocks in the index.

We estimate the model during 2004–2012 using daily S&P 500 index options, realized spot

variance, and market illiquidity, and find that 64% of the time-varying crash probability is

explained by the stock market’s exposure to market illiquidity.

Market liquidity, defined as the ease with which securities can be bought or sold without

significant price impact, has become an increasing concern in financial markets. This is evi-

denced, for example, by the “flash crash” of May 2010, when major US stock indices fell by

almost 10% before recovering quickly. Similarly, market-wide trading halts on August 24, 2015

generated spikes in asset price volatility across financial markets. These two incidents were

quickly identified as symptoms of market illiquidity because they occurred in the absence of

major news about fundamentals. As documented in Chung and Chuwonganant (2014), reg-

ulatory changes in the US markets have increased the role of non-bank traders in liquidity

provision, which has intensified the relationship between volatility and market liquidity. Thus,

the influence of market liquidity on the economy appears to be increasing in importance.

Market crashes refer to large, unexpected drops in asset prices. Crashes can occur in the

presence of news about fundamentals, as well in their absence. In the latter case, market

illiquidity is often the culprit. Huang and Wang (2009) show in an equilibrium framework

that when trading is costly, potential traders are deterred from participating in the market

continuously. They will enter the market only when large trading needs arise, i.e., when hit

by sufficiently large idiosyncratic shocks, and importantly more on the selling side.2 This is

because idiosyncratic shocks push investors away from their optimal positions, making them

more risk averse and less willing to hold the asset. The increase in risk aversion exacerbates

the selling-need for potential sellers, and dampens the demand for potential buyers. This, in

turn, leads to order imbalances in the form of excess supply, and therefore price decreases

in response. As also shown in Lo, Mamaysky, and Wang (2004), the asymmetry in desire to

trade between traders with offsetting shocks arises when trading becomes more costly.

1This measure is motivated by Aı̈t-Sahalia and Yu (2009) and Goyenko, Holden, and Trzcinka (2009) who
find strong empirical support for using effective bid-ask as a measure for market illiquidity.

2Gennotte and Leland (1990) develop a rational expectation model explaining why a large price drop can
occur when there is a relatively small amount of selling in the market.

1



While there exists some empirical evidence suggesting that crashes in the stock market are

often driven by market illiquidity, they are typically anecdotal (e.g., “flash crash”) or limited

to individual stocks.3 Relatedly, there is an extensive literature on index return models which

unanimously agrees that index prices “jump.”4 In these models, crashes are large negative

jumps in index returns that cannot be explained by the current level of the index’s volatil-

ity. More recently, several studies have advocated that the probability of observing crashes is

time-varying. The common approach is to let the jump arrival rate increase with the level

of the stock return variance.5 Although this modeling framework is parsimonious, it is in-

consistent with the notion that crashes are sudden price drops unexplainable by the current

volatility level.6 Therefore, the relationship between stock market crash risk and market re-

turn volatility remains an open discussion. Importantly, while recent studies agree that crash

risk is time-varying, they are silent on the economic variables driving its dynamic. Our study

contributes by providing economic underpinnings to models with time-varying crash risk, and

showing that much of the variation in jump intensity is driven by market trading frictions.

To motivate our subsequent modeling framework, we apply a predictive regression analysis

linking our market illiquidity measure to a non-parametrically estimated realized jump mea-

sure for daily S&P 500 index returns (e.g., Andersen, Bollerslev, and Diebold, 2007; Huang

and Tauchen, 2005). Realized jump variation measures the portion of daily return variance

that is due to stock price jumps, and we find that it significantly increases with the level of

market illiquidity on the previous day. Importantly, the effect of market illiquidity crowds out

the predictive ability of realized variance on realized jump variation, suggesting that market

illiquidity is the more robust predictor of crash probability for the stock market index. We

confirm this finding by running daily time-series regressions on changes in risk-neutral skew-

ness estimated from index option prices, as well as on changes in realized skewness estimated

from high-frequency index returns. In either case, we obtain similar conclusions confirming

the robust linkage between market illiquidity and crash risk.

Armed with the evidence above, we estimate a continuous-time model similar to the

stochastic volatility with jump model (SVJ) studied by Pan (2002) and Bates (2006), among

others. In this model, the jump arrival rate is affine in return variance. We extend this frame-

work by letting the time-varying jump intensity dynamic be a function of return variance,

3For instance, Jiang and Yao (2013) find that illiquid stocks have higher daily jump returns in the cross-
section. Brogaard, Li, and Xia (2016) show that enhanced stock liquidity decreases the firm’s default risk. For
an alternative view on individual stock liquidity and crash risk, see Chang, Chen, and Zolotoy (2016).

4This literature is too large to cite in full; see Pan (2002), Maheu and McCurdy (2004), Eraker, Johannes,
and Polson (2003), Eraker (2004), Broadie, Chernov, and Johannes (2007), and Bakshi, Carr, and Wu (2008).

5For examples, see Pan (2002), Andersen, Benzoni, and Lund (2002), and Bates (2006, 2012).
6Santa-Clara and Yan (2010) is a notable exception, as they model jump intensity as a quadratic function

of state variables. In an affine framework, Andersen, Benzoni, and Lund (2002) and Andersen, Fusari, and
Todorov (2016) find a statistically weak relationship between crash intensity and spot variance.
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market illiquidity, and a latent state variable. We estimate the model by extracting informa-

tion embedded in index options and high-frequency intraday trades. We use the unscented

Kalman filter (UKF) to extract daily state variables. This filtering method allows for sequen-

tial learning in the dynamics of latent jump intensity, variance, and illiquidity processes.

We refer to the most general model that we study as the stochastic jump with variance and

illiquidity (SJVI). In this model, the jump intensity dynamic is stochastic and affine in the

spot variance, the market illiquidity level, and the latent jump-intensity-specific variable de-

signed to capture the omitted risk factor. For comparisons, we estimate two other benchmark

models with jump intensity dynamics that are unrelated to the market illiquidity level. In all

specifications, we model the spot variance as a two-factor square-root process, with market

illiquidity being one of the factors. Our estimation results show a strong contemporaneous re-

lationship between market illiquidity and spot variance. On average, a one-standard-deviation

increase in the level of market illiquidity increases the spot variance by about 12%. This find-

ing lends support to previous studies that have documented a positive relationship between

return volatility and trading activity (e.g., Schwert, 1989; Lamoureux and Lastrapes, 1990;

Chae, 2005).

We find that the average jump probability is between 2 and 3 per year. When a jump occurs,

its average size is between −3.7% and −5.9% in daily return units, with a standard deviation

between 3.1% and 4.7%. Therefore, the jump dynamic that we estimate represents a large drop

of daily index price, a “crash,” and not a market surge. We find strong evidence that during

our sample period, crash risk in the S&P 500 index mostly reflects investors’ fear of market

illiquidity. We arrive at this conclusion by examining the contribution of market illiquidity to

the jump intensity dynamic in the new model and find a contemporaneous positive relationship

with a strong statistical significance. On the other hand, the contribution of market spot

variance is modest and statistically weak, which supports our preliminary evidence found

using regression analysis. Collectively, these findings suggest the reason previous studies find

that jump intensity increases with the level of spot variance is due to the strong positive

relationship between variance and market illiquidity.

In terms of economic magnitudes, we find that market illiquidity explains more than half

of the S&P 500 index’s crash probability level during our sample (64% on average). On the

contrary, the contribution of market spot variance to the jump intensity dynamic is only about

12%, with the remaining 24% coming from the latent jump-intensity-specific factor. However,

during the six-month period after the Lehman Brothers’ collapse in 2008, we find that market

spot variance dominates other factors in explaining the time-varying crash probability, with

the contribution as high as 70%. This finding suggests that investors’ fear of crash risk during

the subprime crisis reflects uncertainty about the market’s fundamentals, while outside the

crisis period, crash risk mostly reflects investors’ fear of market illiquidity.
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We emphasize that the relationship between market illiquidity and time-varying volatility

and crash risks is not due to market microstructure noise. The market illiquidity proxy that

we use is derived from effective spreads of 500 firms constituting the S&P 500 index and

not from trades on index funds nor index futures. We believe this measure is indicative of

the transaction cost of replicating the index, which directly affects the ability of authorized

participants to create and redeem shares of S&P 500 ETFs in order to keep their level at

a fair value. We confirm that our main conclusions hold using various robustness checks.

For instance, we show that our estimation results are qualitatively similar before and after

implementation of the “circuit breaker” in 2010. We re-estimate our models using alternative

market illiquidity measures including Amihud (2002), and reach the same conclusions.

In summary, our findings illustrate the importance of market illiquidity in explaining time-

varying volatility and crash risks, which is largely missing from prior empirical studies exam-

ining index return dynamics. That said, our results do not speak to what gives rise to the

initial need for liquidity.7 Our objective is to establish the empirical relationship between

market illiquidity and stock market crash risk, and quantify its economic magnitude.

The remaining parts of this paper proceed as follows. Section 2 describes the data and

sample selection, and reports preliminary evidence found using regression analyses. Section

3 describes the model and estimation procedure. Section 4 discusses estimation results and

interpretation of our findings. Section 5 demonstrates the robustness of our findings. Finally,

Section 6 concludes.

2 Data and Preliminary Evidence

The sample period goes from January 1, 2004 through December 31, 2012. We focus on the

recent period because the global financial market has gone through a drastic transformation,

e.g., new banking regulations, proliferation of algorithmic trading and exchanged-traded funds.

2.1 Market Illiquidity

We construct a time-series measure of market liquidity at the daily level. We focus on the

trading friction associated with the cost of participating in the stock market. We measure

7The lack of liquidity can arise due to various reasons, which can lead to “crashes.” For instance, het-
erogeneous future liquidity needs (Allen and Gale, 1994) and adverse selection costs (Grossman and Miller,
1988) facing liquidity providers can limit the supply of liquidity. As argued in Easley, López de Prado, and
O’Hara (2010), many high-frequency trading firms are in the business of liquidity provision and their ability
to vanquish quickly from the market when faced with toxic order flows portends episodes of sudden illiquidity,
and crashes. In a more recent study, Cespa and Foucault (2014) show that when liquidity providers learn
information about an asset from prices of other assets, illiquidity contagion can occur and is a source of market
fragility.
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this using effective bid-ask spreads following Goyenko, Holden, and Trzcinka (2009), who

find strong empirical supports for using intraday bid-ask spreads as the measure of market

illiquidity.

We obtain all transactions recorded on securities constituting the S&P 500 index from the

TAQ database. Then, for each stock i on day t, we calculate the effective spread of its kth

trade as

ILQi
t,k =

2|Si,Pt,k − S
i,M
t,k |

Si,Mt,k
, (1)

where Si,Pt,k is the price of the kth trade of stock i on day t, and Si,Mt,k is the midpoint of the

best prevailing bid and ask at the time of the kth trade. The daily effective spread of stock

i on day t is then computed as the dollar-volume weighted average effective spreads over all

trades during the day8

ILQi
t =

∑K
k=1DolV ol

i
t,kILQ

i
t,k∑K

k=1 DolV ol
i
t,k

. (2)

Lastly, we aggregate the effective spreads of firms constituting the S&P 500 index on each day

by equally weighting their daily illiquidity measures:

ILQt =
1

N

N∑
i=1

ILQi
t. (3)

Daily S&P 500 cash index returns are plotted in the top-left first panel of Figure 1, while

the top-right panel plots the daily time series of market illiquidity, ILQ. We plot the annualized

market illiquidity measure by multiplying their daily levels by 252. The mean annualized ILQ

measure is 16.85%, which translates to a 0.067% trading cost at the daily level. The standard

deviation of the annualized market illiquidity is 5.77% with an interquartile range of 13.90%

and 18.26%. We see that the market illiquidity measure rises significantly during the financial

crisis period but stays relatively stable in other periods, with occasional few spikes. Figure 1

shows a sharp spike on May 6, 2010, which is associated with the “flash crash” incident.

8Figure A.1 in the Appendix shows percentiles of daily dollar effective spread distribution for the S&P 500
constituents. For the majority of firms, their trading cost measured by the dollar effective spread is well above
one cent, which is the minimum tick size set by the exchanges. This finding suggests that the effective spread
measure that we use is minimally affected by the minimum tick-size rule.
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2.2 Realized Variance and Jump Variation

We construct daily realized variance and jump variation measures using intraday S&P 500

cash index returns obtained from TickData. Using the latest observation at each minute, we

construct a grid of one-minute intraday returns starting from 9:30 a.m. and ending at 4:00

p.m.

Calculations of realized variance and realized jump variation have been studied extensively

in the recent literature.9 We calculate the daily realized variance measure, RV, as the sum of

squared one-minute log returns: RV N
t =

∑N
i=1 r

2
i,t. This method measures the total quadratic

variation in returns. We measure the variation in daily index returns that is due to the

diffusive component using the jump-robust realized variance MinRV of Andersen, Dobrev,

and Schaumburg (2012). It is calculated as follows:

MinRV N
t =

π

π − 2
(

N

N − 1
)
N−1∑
i=1

min(|ri,t|, |ri+1,t|)2. (4)

Following Barndorff-Nielsen and Shephard (2004), we define daily realized jump variation,

RJV, as the component in total realized variance RV that is not explained by MinRV. On

each day, it is calculated as:

RJVt = max(RVt −MinRVt, 0). (5)

We can think of RJV as the proxy for jump risk in daily index returns. The bottom-left and

bottom-right panels in Figure 1 plot the annualized daily time series of MinRV and RJV,

respectively. The mean and standard deviation of the MinRV measure over this period are

2.36% and 6.55%, respectively. For the RJV measure, the mean and standard deviation are

0.33% and 0.94%. The daily index return variance is thus mostly composed of the continuous

component of stock price change.10

2.3 Predicting Realized Jumps

This section provides preliminary evidence on the economic relationship between market illiq-

uidity and jump risk. We estimate a predictive regression model on the realized jump variation

measure RJV. The objective is to identify the economic variables that robustly predict the

occurrence and magnitudes of jumps the next day.

We examine three variables of interest and their various combinations, namely, the market

9See Huang and Tauchen (2005) for a concise summary.
10This finding is consistent with Huang and Tauchen (2005) who find that jumps account for 7% of stock

market price variance.
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illiquidity measure ILQ, the diffusive quadratic variation measure MinRV , and the option-

implied volatility index VIX. The most general predictive regression specification is

RJVt+1 = β0 + β1MinRVt + β2ILQt + β3V IXt + β3Rett + β3RJVt + εt+1. (6)

We obtain daily VIX levels from the Chicago Board of Options Exchange (CBOE) that

represent the market’s fear index calculated as the 30-day implied volatility level of S&P 500

index options. We include lagged log return of the S&P 500 (Ret) and the autoregressive

term for RJV as control variables. Year and day-of-the-week fixed effects are present in all

regression specifications, but their estimates are not reported here to save space.

Table 1 summarizes the regression results for six specifications based on the general model

described in equation (6). We report the heteroskedasticity-consistent t-statistic (White, 1980)

in parentheses below each parameter estimate. Columns (1)–(3) show that when each of the

three variables enters in the regression model, it appears statistically significant in predicting

the realized jump variation the next day. We find that MinRVt, ILQt, and V IXt are positive

and highly significant at the 95% level or higher. These positive coefficients confirm the

intuition that jumps are more likely to occur following a day of more volatile and illiquid

market conditions. Looking at the size of the coefficients, we find that market illiquidity, ILQ,

is the dominant variable. A one-standard-deviation increase in market illiquidity today would

increase realized jump variation by 9.1% the next day.

Columns (4)–(5) report results for combining market illiquidity and the two volatility mea-

sures. The results clearly show that ILQt is the dominant variable in predicting daily realized

jump variation. When the market illiquidity measure ILQt is added to the regression, the

coefficients on MinRVt and V IXt variables lose statistical significance. Column (6) reports

results for the most general specification where all independent variables are included. We

find that the coefficient on ILQt decreases by half due to influences of the two market vari-

ance measures. Nevertheless, Column 6 shows that ILQt is the only variable that remains

statistically significant, confirming that it is the leading predictor of realized jump variation

in the stock market index.

We emphasize that the market illiquidity measure that we use is calculated from effective

spreads of 500 firms constituting the S&P 500 index while the dependent variable, RJV, is

constructed from one-minute log returns on the S&P 500 cash index. Market illiquidity and

realized return jump variations are thus not related. Further, our finding that market illiquid-

ity dominates return variance in explaining the time-varying market jump risk is confirmed

using both MinRVt and V IXt.

Overall, the results in Table 1 provide preliminary evidence for the importance of market

illiquidity in explaining time-varying jumps in index returns. Further, it shows that omission
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of the market illiquidity variable can lead to a different conclusion regarding the role of market

return variance in explaining jumps on the stock market index.

2.4 Market Illiquidity and Crash Risk

The realized jump variation RJV measure we used in the previous section captures the mag-

nitude of positive and negative jumps in index returns and therefore does not identify a stock

market crash from a stock market surge. We provide further evidence linking the role of mar-

ket illiquidity to crash risk by estimating the impact of ILQ on daily skewness of the S&P 500

index. Because crashes are large sudden drops in asset prices, a more negative skewness mea-

sure would signal a higher probability of crash risk (Chen, Hong, and Stein, 2001). Therefore,

if market illiquidity is strongly linked to the stock market crash, we expect that ILQt would

be negatively related to the stock market skewness measure.

We follow the nonparametric method developed by Bakshi and Madan (2000) and calculate

daily skewness from S&P 500 index options. We refer to this measure as risk-neutral skewness,

RNSkew. We obtained end-of-day S&P 500 index option prices from OptionMetrics. RNSkew

is calculated from option contracts with approximately one month to maturity. Therefore,

the measure RNSkewt on day t that we use represents investors’ forward-looking risk-neutral

expectation of the stock market crash risk from the end of day t to day t + 30. We discuss

details on the skewness measure in the Appendix A.

We examine the impact of market illiquidity on the stock market’s risk-neutral skewness

using the following regression model:

∆RNSkewt = β1∆MinRVt + β2∆ILQt +

p∑
i=1

αi∆RNSkewt−i +

q∑
j=1

δjεt−j + εt, (7)

where ∆ indicates that we are examining the change in daily variables, and εt is a normally

distributed error term. We estimate the model on change in daily skewness and not on its

level because RNSkewt is highly persistent with an autocorrelation of 0.98. As a result, the

explanatory variables we use are changes in daily MinRV and ILQ. The regression shown

in equation (7) is an autoregressive-moving-average model (ARMA) with p-order lag in the

autoregressive term and q-order lag in the error term. Although not shown in equation (7),

we include Ret, and day-of-the-week fixed effects as control variables in the regression model.

We estimate the model using maximum likelihood.

Table 2 reports estimation results for four regression specifications based on the general

model in equation (7). We choose the ARMA model with lags of p = 2 in the autoregressive

term and q = 1 in the error term. The number of lags is determined based the Ljung-Box test

corresponding to the most parsimonious model that sufficiently removes autocorrelations in
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the residuals. Column (1) provides the baseline regression results. It shows that the change

in risk-neutral skewness is negatively related to the index return and is strongly explained by

its autoregressive terms. Columns (2) and (3) show that when ∆MinRV and ∆ILQ are sepa-

rately included in the regression, they load negatively on the change in risk-neutral skewness.

However, ∆ILQ is the only statistically significant variable. The negative and highly signif-

icant coefficient on ∆ILQ suggests that when the average trading cost in the stock market

increases, investors’ expectation of the market crash risk also increases.

Column 4 reports results for the full regression model. We observe two striking findings.

First, the coefficient on ∆MinRV switches sign from negative to positive and is significant

at the 10% level. Second, the coefficient on ∆ILQ remains negative and significant but

approximately doubles in terms of magnitude. These results suggest that both MinRV and

ILQ are important determinants of daily stock market skewness, i.e., crash risk. The positive

coefficient on ∆MinRV , however, shows that an increasing market variance is related to a

less negatively skewed risk-neutral distribution of daily index returns. This finding is intuitive

because as the variance level increases, the index return distribution would become more

fat-tailed on both positive and negative sides, indicating an increasing likelihood of market

surges as well as market crashes. Consequently, the index return distribution appears more

symmetric, i.e., less negatively skewed, conditional on an increasing variance level. As a

robustness check, we verify this result by replacing MinRV with the total quadratic variation

(RV ) in Table 2 and obtain the same conclusion.

For comprehensiveness, we verify our results using realized skewness constructed from high-

frequency trades on the S&P 500 constituents. Our method follows that in Amaya, Christof-

fersen, Jacobs, and Vasquez (2015). We obtain the same conclusion when using daily realized

skewness. To save space, the results are reported in Appendix C, which shows that aggregate

market illiquidity is a leading determinant of stock market crash risk and that its influence

dominates the impact of market return variance. Motivated by this non-parametric evidence,

we develop a continuous-time model that allows market illiquidity to act as an economic

covariate in explaining the time-varying volatility and crash risks.

3 Model and Estimation

3.1 The SJVI Model

We begin by specifying the processes governing the log index price, spot variance, spot illiq-

uidity, and latent component of jump intensity dynamic under the risk-neutral measure (Q).

We use the notation St and Vt to denote index price and spot variance at time t. We let

Lt represent the spot market illiquidity, which measures the average cost of trading in the
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stock market at time t, with a higher value indicating a more illiquid market. We include

a stochastic process Ψt that is designed to capture the latent time-varying jump intensity in

index returns. Thus, the model consists of four factors that fully describe the return dynamics

under Q:

d log(St) = (r − 1

2
Vt − ξλt)dt+

√
Vt(
√

1− ρ2dW 1
t + ρdW 2

t ) + qtdNt (8)

dVt = κV (θV − Vt)dt+ γdLt + ξV
√
VtdW

2
t (9)

dLt = κL(θL − Lt)dt+ ξL
√
LtdW

3
t (10)

dΨt = κΨ(θΨ −Ψt)dt+ ξΨ

√
ΨtdW

4
t , (11)

where r denotes the risk-free rate and all Brownian motions dW i
t , for i = 1 to 4, are indepen-

dent of each other.

We assume the market illiquidity process Lt, and the latent jump intensity process Ψt,

in equations (10) and (11) follow the standard square-root model with long-run mean levels

of θL and θΨ, respectively. The variance dynamic in equation (9) follows Heston’s (1993)

square-root process with an additional term γdLt. We discuss our specification choice for the

variance dynamic later in this subsection.11

The log index price dynamic described in equation (8) follows a standard jump-diffusion

process where qtdNt denotes the jump component. Following the extant literature on index

return models, we assume that jumps follow a compound Poisson process with intensity λt

and each individual jump is independent and identically distributed (i.i.d.) normal with the

jump mean size θ and the jump size standard deviation δ. To ensure the discounted log stock

price is a martingale, we include the jump compensation term ξ = e(θ+ δ2

2
) − 1 in equation

(8). Lastly, to complete the model, we specify the dynamic of the time-varying jump intensity

λt as follows:

SJVI model: λt = Ψt + γV Vt + γLLt. (12)

This jump intensity specification is motivated by numerical tractability and ease of eco-

nomic interpretation. Equation (12) shows that the time-varying jump arrival rate is deter-

mined jointly by the levels of spot variance Vt, spot market illiquidity Lt, and state variable

Ψt. The latent state variable Ψt is designed to capture the portion of jump intensity dynamic

not explained by the covariates Vt and Lt. For the remaining parts of this paper, we refer to

this general specification as the SJVI model.

Equation (9) shows that the evolution of spot variance depends on its own mean-reverting

11Our main conclusions are unaffected when estimating a simpler model without illiquidity feedback in the
spot variance, i.e., γ = 0 in equation (9).
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drift, the diffusive component, and the market illiquidity process Lt. This specification allows

for changes in the market spot variance Vt and market illiquidity Lt to be contemporaneously

related, which is supported by Lamoureux and Lastrapes (1990) who find that daily trading

volume significantly explains daily return variance.

We choose a parsimonious modeling framework that lets dLt enter the dynamic of dVt, and

not vice versa. Besides parsimony, this choice is motivated by their joint time-series estimates,

which show that the change in market illiquidity leads the change in market spot variance. We

show this by estimating the Vector Autoregressive Moving-Average (VARMA) model below:(
∆MinRVt

∆ILQt

)
= δ + Φ

(
∆MinRVt−1

∆ILQt−1

)
−Θut−1 + ut, (13)

where δ is a 2 × 1 vector of coefficients, and ut is a 2 × 1 vector of normally distributed

residuals. Φ and Θ are 2× 2 matrices of VARMA model coefficients. The variables MinRV

and ILQ are defined in the previous section. We estimate the model above and find that

Φ̂ =

−0.149∗∗∗ 0.479∗∗∗

(−3.59) (4.50)
−0.023 0.237∗∗∗

(−1.47) (5.45)

 and Θ̂ =

0.717∗∗∗ −0.031
(19.97) (−0.39)
−0.014 0.730∗∗∗

(−1.18) (22.09)

 , (14)

where the t-statistic is reported in parentheses below each parameter estimate.

The diagonal elements in Φ measure the impact of autoregressive terms for ∆MinRVt and

∆ILQt, which, as we expected, are statistically significant. The off-diagonal elements in Φ

provide insight on the cross-impacts between ∆MinRVt and ∆ILQt. We find the coefficient

estimate measuring the impact of ∆ILQt−1 on ∆MinRVt is 0.479 with a t-statistic of 4.50.

This shows that a change in ILQt−1 on the previous day has a positive and statistically sig-

nificant impact on a change in MinRVt today. On the other hand, we do not find statistically

significant evidence that a change in ILQt today is driven by a change in MinRVt−1 on the

previous day; the coefficient estimate is −0.023 with the t-statistic of −1.47. As a robustness

check, we re-estimate the VAR model by replacing MinRV with RV in equation (13) and

obtain the same conclusion. Further, looking at the coefficient estimates in Θ, we find that

only the diagonal elements are statistically significant. This shows that the residual terms in

the market spot variance Lt and the market illiquidity level ILQt do not affect each other.

This result supports our modeling assumption in equations (9) and (10), where the Brownian

shocks dW 2
t and dW 3

t are independent.

Finally, we note that the variance dynamic that we consider in equation (9) falls under the

class of two-factor stochastic volatility models, which have been shown to effectively explain

the term structure of index option prices.12 Our model differs from the existing two-factor

12See for examples, Egloff, Leippold, and Wu (2010), and Andersen, Fusari, and Todorov (2015b).
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volatility literature in that we allow the expected future variance to depend on the level of

spot variance, Vt, and spot market illiquidity, Lt, as shown below:

Et[VT ] = θV + (Vt − θV )e−κV (T−t) + [(Lt − θL)
γκL

κV − κL
](e−κV (T−t) − e−κL(T−t)). (15)

This equation shows that the long-run mean of the spot variance is θV , and the mean-

reversion speed to the long-run variance is denoted by κV . It also shows that the current level

of market illiquidity positively affects the shape of the expected term structure of variance.

Its impact, however, dissipates as the time horizon increases. This is seen from the third term

on the right-hand side, which converges to 0 as time T goes to infinity.

3.2 Benchmark Models

We consider two nested specifications of the SJVI model. In the first specification, we shut

off the illiquidity channel in the time-varying jump intensity dynamic by setting γL = 0 in

equation (12). As the result, the probability of observing jumps depends on the level of spot

variance and the latent state component as follows:

SJV model: λt = Ψt + γV Vt. (16)

We refer to this as the stochastic jump intensity with variance (SJV) model. When Ψt is

constant, it nests the affine jump intensity dynamic, λt = γ0 + γV Vt, commonly adopted in

time-varying jump studies (e.g., Pan, 2002; Bates, 2006).

The second nested specification that we study shuts off the impact of both market illiquidity

and the spot variance on the jump probability. That is, we set γV and γL equal to zero in

equation (12). This yields

SJ model: λt = Ψt, (17)

We refer to this as the stochastic jump intensity model (SJ).

We keep all other aspects of the three models that we study identical. This allows us to

focus solely on the role of market illiquidity and spot variance in assessing time-varying jump

risk.

3.3 Filtering

Each of the three models we study contains three latent state variables: Vt, Lt, and Ψt. We

extract the latent state variables using the square-root unscented Kalman filter (UKF) of

12



Van der Merwe and Wan (2001). We apply the UKF method because the option prices data

that we fit the models to are non-linear in the state variables.13

The state variables in the filtering equations evolve under the physical probability (P)

measure. We therefore need to define the state variables’ dynamic under the physical measure.

We do not impose risk premiums on the Lt and Ψt processes for simplicity and also because

the literature has not yet provided clear guidance on how to model their risk premiums. As

a result, there is no change to these two processes from Q to P. We apply the commonly

used functional form of the variance price of risk to the spot variance process, which is given

by νV
√
Vt as in Heston (1993). This price of risk specification shifts the Brownian shock in

equation (9) by dW 2,P
t = dW 2

t −νV
√
Vtdt, where the superscript P denotes that it is evaluated

under the physical probability measure. Applying this transformation, the resulting variance

process under P can be written as

dVt = κPV (θPV − Vt)dt+ γdLt + ξV
√
VtdW

2,P
t , (18)

where we have the following parameter mappings κPV = κV − νV ξV and θPV = θV κV /κ
P
V .

We discretize the P-measure state dynamics using the conventional Euler scheme at the

daily interval. The discretized state-space system can be written as follows:

Vt+1 = Vt + κPV (θPV − Vt)∆t+ γκL(θL − Lt)∆t+ ξV
√

∆tVtε
1
t+1 + γξL

√
∆tLtε

2
t+1 (19)

Lt+1 = Lt + κL(θL − Lt)∆t+ ξL
√

∆tLtε
2
t+1 (20)

Ψt+1 = Ψt + κΨ(θΨ −Ψt)∆t+ ξΨ

√
∆tΨtε

3
t+1, (21)

where the error terms εit+1, for i = 1 to 3, are i.i.d. standard normal. In the above state-space

system, we set the time step ∆t = 1/252 to reflect the daily discretization interval. To keep

notation to a minimum, we apply the superscript P only to parameters under the physical

measure that differ in values from their corresponding risk-neutral parameters.

We next describe the functional relationships linking the latent state variables to the

observed data used in the estimation. The first observable is the illiquidity measure denoted

by ILQt, which we introduced earlier in Section 2. The other observables that we use are

daily at-the-money (ATM) and out-of-the-money (OTM) S&P 500 index options. These three

sets of observables are used in the measurement equations in the UKF procedure. We write

13For recent papers using UKF as the filtering method, see Bakshi, Carr, and Wu (2008) and Filipović,
Gourier, and Mancini (2016). We refer to Christoffersen, Dorion, Jacobs, and Karoui (2014) for technical
details and comparison between different filtering methods.
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the system of measurement equations as follows:

log(ILQt+1) = log(Et[

∫ t+1

t

Lsds]) + u1
t+1 (22)

ATMO
t+1 = ATMM

t+1(Vt+1, Lt+1,Ψt+1) + u2
t+1 (23)

OTMO
t+1 = OTMM

t+1(Vt+1, Lt+1,Ψt+1) + u3
t+1, (24)

where measurement errors uit+1, for i = 1 to 3, are independent normal random variables with

constant variances. The above filtering equations are applied to all trading days from January

2, 2004 to December 31, 2012, resulting in 2,262 observation days.

The latent spot illiquidity process in the state-space dynamic describes the instantaneous

level of illiquidity at each moment and not at the aggregated daily level. To filter Lt from

the daily observed market illiquidity measure, we integrate the spot illiquidity process over

the day as shown in equation (22). Because the spot illiquidity measure is assumed to follow

a square-root process, its daily integrated value is available in closed form. We use the log

effective spread in the measurement equation because the empirical distribution of effective

spreads is close to log-normal.

Following Pan (2002), we collect two time series of closing mid-price of options quotes that

we label ATM and OTM. We let ATM denote at-the-money call option that has moneyness,

defined as the ratio of forward-to-strike price, closest to 1. Similarly, OTM refers to out-of-

the-money put option that has moneyness closest to 0.95. For both ATM and OTM options,

we retain contracts that have time-to-maturity closest to 30 calendar days. Figure 2 plots

daily Black-Scholes option-implied volatilities calculated from the ATM and OTM contracts

that we use in our study. As argued by Pan (2002), we use OTM options in the measurement

equation as it provides the richest information on investors’ expectation of crash probability

in the stock market.

We follow Trolle and Schwartz (2009) and use Black-Scholes vega-weighted price as the

functional form in the measurement equations for options fitting in equations (23)–(24). This

method scales the value of options across time making their prices more comparable, which in

turn facilitates the assumption of the normally distributed errors in the measure equations.

Therefore, ATMO
t+1 and OTMO

t+1 in equations (23)–(24) represent the scaled ATM and OTM

option prices observed at the end of day t. Similarly, the variables ATMM
t+1 and OTMM

t+1

denote the model-implied option prices scaled by their market Black-Scholes vega.

The models that we study fall within the affine jump-diffusion framework. Therefore,

the conditional characteristic function of log stock price is available in exponential affine

form. Following Duffie, Pan, and Singleton (2000), we derive the log affine functional form of

the characteristic function in Appendix E. The coefficients in the characteristic function are
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not all available in terms of elementary functions, thus, we solve for them numerically in the

Ricatti system of equations. We use the fast Fourier transform (FFT) method first developed

by Carr and Madan (1999) to numerically evaluate option prices.

Lastly, we note that at this stage, we do not need to specify the risk premiums associated

with the first Brownian motion, dW 1
t , and the compound Poisson jumps, qdNt, because they

only alter the drift term of returns dynamics that is not part of the estimation. We discuss the

specification of equity and jump risk premiums in a later section, where they are estimated

using a time series of daily index returns.

3.4 Estimation

We estimate the models by maximizing the log-likelihood function resulting from the UKF

step. We assume the measurement errors are conditionally normal, therefore, the time t con-

ditional log-likelihood takes the following form:

lt(Θ) = −3

2
log(2π)− 1

2
log(det |Ωt|)−

1

2
(Yt − Ȳt)T (Ωt)

−1(Yt − Ȳt), (25)

where Ȳt and Ωt denote the ex ante forecasts of the mean and covariance matrix conditional

on time t− 1 information on observables Yt. We let Θ denote the set of all parameters to be

estimated.

In addition to the log-likelihood resulting from the measurement error equations, we follow

Andersen, Fusari, and Todorov (2015a) and add a penalizing term that compares the filtered

spot variance component, Vt, to the model-free estimate of spot variance calculated from high-

frequency data. Incorporating this penalizing term, the conditional log-likelihood function

that we estimate at time t is

Lt(Θ) = lt(Θ) + ω log( (
√
V n
t −

√
Vt)

2 ), (26)

where lt(Θ) is given in equation (25), V n
t is the realized spot variance computed using one-

minute grid returns from the S&P 500 index and Vt is the filtered spot variance from the UKF

procedure. We describe the construction of the realized spot variance measure in more detail

in Appendix F. Daily time-series dynamic of the realized spot volatility,
√
V n
t , is shown in

the bottom panel of Figure 2.

The tuning parameter ω in equation (26) is set equal to 0.05 following Andersen, Fusari,

and Todorov (2015a).14 The model parameters are then estimated by maximizing the sum of

conditional log-likelihoods over the sample period from January 2, 2004 to December 31, 2012.

14We verify that our main conclusions are unaffected to a reasonably large range of values for ω.
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4 Results

4.1 Maximum likelihood estimates

Table 3 reports parameter estimates for the three models. The first, second, and third columns

report results for the SJ, SJV and SJVI models, respectively. We report log-likelihood values

of the three models in the bottom row.

We find that parameters governing the square-root dynamic of spot variance are well es-

timated. Their parameter estimates are fairly consistent across the models. The correlation

estimates of the two Brownian shocks in return and spot variance, ρ, are about −35%, con-

firming the asymmetric return-variance relationship found in the extant literature. We find

that the spot market illiquidity level, Lt, significantly impacts the level of spot variance,

Vt. This is seen from the estimates of γ. We find that across the three models, the estimates

γ are about 0.12. This suggests that a one-standard-deviation increase in the spot market

illiquidity, Lt, would increase the spot variance level by about 12% after controlling for the

persistence dynamic of the variance process.

The strong relationship we find between market illiquidity and return variance lends sup-

port to previous studies examining the relationship between return volatility and market trad-

ing activity. In particular, motivated by the mixture of distribution hypothesis (MDH), which

assumes that volatility and volume simultaneously depend on a latent information process,

past research efforts have been devoted to studying the relationship between stock return

volatility and trading volume (e.g., Clark, 1973; Epps and Epps, 1976; Tauchen and Pitts,

1983). Nevertheless, the findings in this literature have been mixed and understanding the

relationship between information flows and trading activity has been an active research area.

For instance, Lamoureux and Lastrapes (1990) estimate a GARCH volatility model and find

that trading volume is the main driver of stock return volatility and that past stock return

innovations became insignificant once trading volume is included in the model.15 While we

find that market illiquidity significantly drives the dynamic of spot variance, its effect does

not eliminate the strong persistence in the variance dynamic. Further, the recent literature

agrees that trading volume is an inadequate measure of market liquidity.16 Given the recent

availability of intraday trading data, we can more precisely measure market illiquidity by

calculating the cost of participating in the stock market (i.e., transaction cost). Our results

estimated using a continuous-time model documenting a strong relationship between market

illiquidity and return variance therefore contribute to this stream of literature.

15In contrast, several studies find evidence conflicting with the MDH specification. These studies include
Hiemstra and Jones (1994), Lamoureux and Lastrapes (1994), Richardson and Smith (1994) and Andersen
(1996).

16See for examples, Lee, Mucklow, and Ready (1993), Jones (2002) and Fleming (2003).
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Estimates of the jump-size mean, θ, and the jump-size standard deviation, δ, in Table

3 indicate that the jump dynamic that we estimate corresponds to crash risk in the stock

market. The estimates of θ are negative and highly significant. The average jump mean size

in daily index return is between −3.7% (SJV model) and −5.9% (SJ model). Therefore, the

jump dynamic that we identify corresponds to large drops in daily S&P 500 index returns.

Table 3 shows that the SJ model has the largest magnitudes of θ and δ. This implies

that crashes in the SJ model are larger and more dispersed in magnitude relative to the

other two models. We next examine parameter estimates governing the time-varying jump

intensity. First, we look at the dynamic of the latent jump-intensity-specific factor, Ψt. The

magnitude of parameters driving the Ψt dynamic in the SJ model differs significantly from

those in the other two models. For instance, the long-run mean θΨ, the mean-reversion speed

κΨ, and the volatility ξΨ of the jump-intensity-specific factor are significantly larger for the SJ

model. These findings are expected because in the SJ model, jump intensity dynamic solely

depends on the latent state variable Ψt. Further, these results confirm that the dynamic of

jump intensity is time-varying and follows a mean-reverting process.

Table 3 shows that when we add covariates to the jump intensity dynamic in the SJV

and SJVI models, the log-likelihood value increases substantially. The improvement is large

with an increase of about 5% relative to the SJ model. We therefore find strong support for

modeling jump intensity as a function of economic covariates. Looking at the SJV model, we

find the impact of spot variance on jump intensity, γV , is positive and statistically significant

at the 5% level (t-statistic is 2.17). This finding is consistent with Pan (2002), Bates (2006),

and Andersen, Fusari, and Todorov (2015b).

For the SJVI model, we find that when we add the market illiquidity measure to the

jump intensity specification, the estimate of γV substantially decreases in magnitude and

its statistical significance diminishes (t-statistic is 1.61). On the other hand, the impact of

spot market illiquidity loads very strongly (t-statistic is 13.87). This finding shows that the

inclusion of market illiquidity as an economic covariate significantly weakens the relationship

between jump intensity and spot variance. This finding is consistent with our conclusions from

Table 1, which we obtained using regression analyses.

4.2 Time-Varying Volatility and Crash Risks

This section examines the time-series dynamics of market spot volatility and jump inten-

sity. Table 4 reports descriptive statistics of daily jump intensity λt, spot variance Vt, and

spot illiquidity Lt levels that we obtained using the UKF from 2004–2012. We find that the

sample moments of daily spot illiquidity are almost identical across the three models. This

suggests that its dynamic is well identified when we extract their information from the daily
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market illiquidity measure ILQt calculated using effective bid-ask spreads.

Figure 3 plots the daily annualized jump intensity for the three models. The jump intensity

dynamic of the SJ model is very volatile relative to the other two models. For instance, looking

at the time-series statistics of λt in Table 4, we find the average expected number of jumps

implied by this model is 1.19 per year, but with a median of 0.44 and a standard deviation of

5.95. This shows that the distribution of jump intensities filtered from the SJ model is highly

skewed and dispersed. The average jump intensity implied by the SJ model is about half of

the other models. However, the rarer nature of jumps observed in this model is compensated

by its larger jump mean size of θ = −5.9% per each jump as shown in Table 3. Figure 3 shows

the expected number of jumps in the SJ model increases dramatically during the 2008–2009

crisis period, while it is small outside the crisis period.

We find the jump intensity dynamic estimated from the SJV and SJVI models have com-

parable distributions with means of 2.2 and 2.9 jumps per year, respectively. In these two

models, the levels of jump intensity are relatively stable before mid-2007, but rise after and

peak in the fall of 2008. We believe the relatively more stable jump intensity dynamics ob-

served in the SJV and SJVI models are due to improved identification resulting from the use

of covariates in the jump intensity specification. This argument is supported by looking at

the models’ log-likelihood performance, which is substantially worse under the SJ model.

We next examine the economic contribution of the spot variance and market illiquidity

to the jump intensity dynamic. Figure 4 plots the decomposition of daily jump intensity

levels. Here, we decompose daily jump intensities filtered from the SJV model (top panel) and

from the SJVI model (bottom panel) into their respective components.

For the SJV model, the top panel of Figure 4 shows that the market’s spot variance is the

main component driving jump intensity dynamic. We find that on average, 61% of the jump

intensity level is explained by its covariation with the market’s spot variance. The time-series

average of its contribution is about 61%. We find the jump-intensity-specific factor Ψt explains

about 39%. This finding shows that a non-trivially large portion of jump intensity cannot be

explained by the dynamic of market’s spot variance.

The bottom panel of Figure 4 shows the decomposition of daily jump intensities estimated

from the SJVI model. Here, we find that the jump intensity dynamic is heavily dominated

by its co-movement with equity market illiquidity. We plot daily percentage contributions of

each jump intensity component in Figure 5. The results shown are largely consistent with the

findings in the bottom panel of Figure 4. We find that, on average, the market illiquidity

factor explains about 64% of the jump probability in the SJVI model. In contrast to our

findings for the SVJ model, we find the market’s spot variance explains, on average, only

12%, with the remaining 24% contribution coming from the jump intensity factor, Ψt. Once

we control for market illiquidity as an economic variable driving time-varying crash risk, the
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relative contribution of spot variance significantly diminishes.

The above findings offer important insight into the existing literature on index return

models that has increasingly documented the importance of time-varying crash risk (e.g.,

Bates, 2006, 2012; Maheu, McCurdy, and Zhao, 2013). The common practice is to let jump

intensity be an affine function of spot variance. This modeling approach is appealing because

it is parsimonious. It identifies time-varying jump intensity as a constant multiple of the spot

variance, thereby eliminating the need to introduce an additional state variable to the model.

We find that our estimation results for the SVJ model provide some support for this modeling

approach. However, we emphasize that the key economic variable that matters most from

our results for modeling time-varying crash probability is not the market spot variance, but

the market illiquidity factor. Lastly, our findings suggest the reason previous studies find a

positive relationship between the stock market’s time-varying crash risk and spot variance is

because of their common exposure to market illiquidity.

4.3 Impulse Response Function

We examine the impact of market illiquidity on the current and future crash probability using

impulse response functions (IRFs). The IRF tells how much current and future values of

crash intensity λt+τ respond to a one-standard-deviation increase in either the spot variance

Vt, the spot market illiquidity Lt, or the level of latent state variable Ψt. The SJVI model

that we propose yields an analytically tractable IRF for the jump intensity. We report the

IRF formula in Appendix G.

In Figure 6, we consider two dates where the levels of spot volatility are relatively high or

low. The left-hand-side panels plot the IRF on March 11, 2009, with high spot volatility. The

right-hand-side panels plot the IRF on January 8, 2004, which corresponds to the day with

low spot volatility.

Looking at the IRF plots on the day with high volatility (left panels), we find that the

impact of spot volatility dominates. A one-standard-deviation increase in the spot volatility

Vt translates to an increase of 0.11 in jump intensity on the same day. Importantly, the

impact of a shock to spot volatility is very persistent with a half life of about two months. A

one-standard-deviation increase in the market spot illiquidity Lt increases the jump intensity

by about 0.07. Looking at the impact of a shock to the latent factor Ψt, we find that it is

trivially small at both the short- and long-run horizons.

We next look at the IRF plots on the day with low spot volatility. The state variables

on this day are significantly less volatile and therefore the levels of IRF are much lower. On

this low-volatility day, Figure 6 shows that a shock to market illiquidity dominates in term of

magnitude as well as its lasting impact on the jump intensity. Similar to the day with high
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spot volatility, we find that the impact of a one-standard-deviation shock to the latent factor

Ψt is small. Overall, Figure 6 shows that shocks to the spot volatility Vt and the market

illiquidity Lt are highly persistent and drive most of the current and future increase in the

probability of crash risk. However, the relative importance of Vt and Lt depends on the level

of uncertainty in the market.

4.4 Forecast Error Variance Decomposition

We perform a forecast error variance decomposition (FEVD) on the jump intensity λτ dynamic

for the SJVI model. This method helps determine the amount of information each variable

contributes in explaining changes to the current and future crash probability.

The error from forecasting the jump intensity λt+τ with τ -period horizon conditional on

day t is defined as

ε̂λ,t+τ = λt+τ − Et[λt+τ ]. (27)

The idea behind FEVD is to find how much of the variation in ε̂λ,t+τ , i.e., Vart [ε̂λ,t+τ ], can

be explained by shocks to each state variable driving the jump intensity dynamic. In other

words, the FEVD asks how much of the unexpected change in the jump intensity is explained

by shocks to Vt, Lt, and Ψt. Derivation of the FEVD is tedious. For brevity, we report the

expression in Appendix H.

In Figure 7, we plot the proportion of forecast error variance explained by innovations to

the spot variance, Vt, and the spot market illiquidity, Lt, factors. The model parameters are

obtained from their MLE estimates in Table 3, and their state variables are set equal to their

long-run values. We do not plot the proportion of forecast error variance explained by Ψt

because it is trivially small. The top two panels of Figure 7 plot the proportion of forecast

error variance explained by Vt and Lt one day ahead, i.e., τ = 1. These results provide insight

on the source of information that most importantly impacts unexpected changes in the crash

probability at the very short horizon. We also plot the proportion of forecast error variance

at a longer horizon, i.e., τ = 250, which approximately corresponds to one year ahead. These

results are shown in the bottom two panels.

We find that errors in the short-term forecast of the crash probability are mainly explained

by shocks to the market illiquidity factor, with the exception of the crisis period when shocks

to the spot variance dominate. This finding is consistent with the results shown in Figure 5.

In contrast, when we look at the sources of risk that explain errors in the long-term forecasted

crash probability, we find that the market spot variance dominates. The bottom panels of

Figure 7 show that the diffusive variance component in index returns contributes about 62% to

unexpected changes in the long-run crash probability, while the market illiquidity component
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contributes around 38%. This finding suggests that changes in investors’ perception about

the long-run stock market crash risk is associated with the market uncertainty level. On the

other hand, unexpected changes in crash probability at the near horizon are mostly explained

by shocks to market illiquidity.

4.5 Option Fit

We also compare the three models based on their in-sample option fit. We define in-sample

option pricing error as the vega-weighted root mean squared error (VWRMSE) in fitting

observed Black-Scholes vega-weighted option prices obtained from the UKF procedure

VWRMSE(ATM) =

√√√√ 1

T

T∑
t=1

(ATMO
t+1 − ¯ATM

M
t+1)2, (28)

where ¯ATM
M
t+1 denotes the ex ante forecast of vega-weighted ATM option price at time t+ 1.

Option pricing error for OTM options are computed in a similar way.

Table 5 reports in-sample option pricing errors for the three models. We separate the

sample into three sub-periods of three years each. Overall pricing errors are very similar in

magnitude between SJ and SJV models, where the SJV model performs better during the crisis

period while the SJ model has lower pricing errors during normal times. More importantly,

the SJVI model has a superior in-sample option fit in most of the periods for both ATM and

OTM options. Thus, the improvement in fitting OTM options using the SJVI model suggests

that its jump intensity specification is better-suited for capturing the jump intensity dynamic

embedded in the index options.

4.6 Risk Premiums

Using the risk-neutral parameter estimates in Table 3 and daily filtered states variables

{V̂t, L̂t, Ψ̂t} estimated previously, we infer the risk premium parameters. This is done by

estimating the model on daily S&P 500 index returns from 2004–2012, and keeping the pa-

rameters that are not affected by the change of probability measures fixed. This approach to

identify risk premiums was also employed in Andersen, Fusari, and Todorov (2015b).

We assume the conventional form of the pricing kernel that preserves the affine structure

of the model under the physical measure. The prices of risk associated with the four Brownian
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motions are given by

dW 1,P
t = dW 1

t − ν1

√
Vtdt (29)

dW 2,P
t = dW 2

t − νV
√
Vtdt (30)

dW 3,P
t = dW 3

t (31)

dW 4,P
t = dW 4

t (32)

The parameter ν1 in equation (29) corresponds to the price of risk parameter for the first

Brownian innovation in the return process. Recall that νV is the price of risk parameter for the

volatility innovation that we estimated from options and realized spot variance as part of the

UKF. Its estimate is reported in Table 3. Recall also that we do not impose any risk premium

assumptions on the third and fourth Brownian motions corresponding to the liquidity and

latent jump intensity innovations, respectively.

We follow Pan (2002) and assume the difference between jump distributions under the

physical and risk-neutral measures derives from the jump-size risk premium, νθ, defined as

the difference between jump-size means, θP − θ. The dynamic of log-stock price under the

physical probability measure can be written as

d log(St) = (r − 1

2
Vt − ξPλt + (

√
1− ρ2ν1 + ρνv)Vt)dt+√

Vt(
√

1− ρ2dW 1,P
t + ρdW 2,P

t ) + qtdN
P
t (33)

where ξP = exp(θP + 1
2
δ2) is the jump compensator under the physical measure. Comparing

the P-measure return dynamic in equation (33) to the Q-measure return dynamic in equation

(8) shows that the equity risk premium, πt, can be written as

πt = (ξP − ξ)λt + (
√

1− ρ2ν1 + ρνV )Vt (34)

= (ξP − ξ)λt + νSVt, (35)

where we define νS =
√

1− ρ2ν1 + ρνv in equation (35).

Using the filtered state variables, {V̂t, L̂t, Ψ̂t}, we apply daily discretization to the return

process and estimate the risk premium parameters νθ and νS using MLE while fixing all other

parameters. The estimate for ν1 is then inferred from νS. Appendix F shows the discretization

of the continuous-time model, and presents the log-likelihood function for fitting the return

process.

Table 6 reports estimation results of the risk premium parameters. We find that the

jump risk premium parameter νθ is well identified in all models. The estimates for νθ are

statistically significant at a confidence level of 1% or greater. On the other hand, estimates
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of the diffusive risk premium parameter νS are only marginally significant. These findings are

consistent with Pan (2002) who finds that the jump risk premium is more easily identified

from index option prices, while risk premiums associated with the diffusive and variance risks

are more difficult to estimate. Table 6 also reports estimates for the price of risk coefficient ν1

associated with the first Brownian motion. Their values are inferred from the corresponding

estimates of νS in Table 6, and νV in Table 3. Because ν1 is indirectly inferred, we do not

report its t-statistic. This parameter can be usefully thought of as the price risk for exposure

to the diffusive component in index return.

Using the estimates reported in Tables 6 and 3, we quantify the economic magnitude of

each risk premium component in terms of annualized excess returns. Equation (35) shows that

the equity risk premium can be decomposed into two main components. The first component

represents the compensation for bearing stock market crash risk, (ξP − ξ)λt. The second com-

ponent represents the compensation for bearing stock market’s diffusive return and variance

risks, νSVt. For brevity, we refer to νSVt as diffusive risk in the equity risk premium.

We first look at the compensation for bearing stock market crash risk. For each model, we

calculate the long-run jump risk premium level (ξP − ξ)λ̄t, where λ̄t is the annualized time-

series mean of the jump intensity dynamic reported in Table 4. We find that the compensation

for bearing the market’s crash risk for the SJ, SJV, and SJVI models are 3.0%, 4.8%, and

4.8% in annualized excess returns, respectively. The jump risk premium estimate implied by

the SJ model is lower than the other two models. This finding reflects the relatively lower

jump intensity levels that we find for the SJ model. The jump risk premium estimates implied

by the SJV and SJVI models are mostly consistent with prior studies that estimate a time-

varying jump risk model on the S&P 500 index over a similar sample period. For instance,

Ornthanalai (2014) estimates the jump risk premium implied by the compound Poisson jump

process over the 1996–2012 period and finds that its magnitude is 4.5% per year. Using index

options and returns data from an earlier time period, i.e., 1989–1996, Pan (2002) finds that

the implied jump risk premium is 3.5% per annum.

We next look at the compensation for bearing stock market diffusive risk. This is calculated

as νSV̄t, where V̄t is the time-series mean of the annualized variance reported in Table 4. We

find the compensation for bearing diffusive risk for the SJ, SJV, and SJVI models is 7.48%,

4.15%, and 2.39% in annualized excess returns, respectively. The relatively larger magnitude

of diffusive risk premium found in the SJ model is expected. This is because the SJ model

has the lowest jump risk premium level and hence it must rely on the diffusive risk premium

component to match the level of equity risk premium found in the data.

The realized equity premium calculated using daily index returns data over the 2004–2012

period is 8.7% per year. The total equity premiums that we find for the SJ, SJV, and SJVI

models are 10.48%, 8.92%, and 7.14%, in annualized terms, respectively. Our estimates of the
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total equity premium are therefore consistent with the value calculated using daily returns

data. This finding suggests that the magnitudes of equity risk premium implied by our models

are economically plausible.

5 Robustness

5.1 Circuit Breakers

Following the flash crash incident on May 6, 2010, the Securities and Exchange Commission

(SEC) installed “circuit breakers” on 404 NYSE-listed S&P 500 stocks on June 16, 2010 to

halt trading for five minutes if any stock experiences more than 10% movement, either up

or down, in a five-minute period. This new trading rule potentially affects our aggregate

illiquidity measure constructed from individual firms’ effective spreads, thereby altering the

impact of market illiquidity on jump probability. We test whether this change in market-

trading rules alters our findings on the influence of market illiquidity on time-varying crash

risk.

We take June 16, 2010 as the date of exogenous shift in the market-trading structure.

Specifically, we divide our sample into two periods, one starting on January 4, 2004 and

ending on June 15, 2010, and the other starting on June 16, 2010 and ending on December 31,

2012. We use the same jump intensity specification as in the SJVI model for both subsamples,

as below. The model parameters are estimated separately, yielding two sets of parameter

estimates. We summarize the results below. For brevity, we report only coefficient loadings

on the covariates in the jump intensity dynamic. The t-statistic for each parameter is reported

in parentheses underneath its estimate.17

Before the circuit breaker: λt = Ψt+ 19.69 Vt+ 9.24 Lt (36)
(1.71)∗ (9.04)∗∗∗

After the circuit breaker: λt = Ψt+ 18.47 Vt+ 7.98 Lt. (37)
(1.47) (1.98)∗∗

We find that the loading coefficient on the market illiquidity factor is smaller in latter

period, being 7.98, relative to the estimate of 9.24 in the earlier period. This suggests that the

introduction of circuit breakers has slightly reduced the impact of market illiquidity on jump

intensity, perhaps, by eliminating sudden contiguous large movements in equity prices that

were often identified as symptoms of liquidity shortage. Nevertheless, equations (36)–(37) show

that the implementation of circuit breakers does not materially impact the importance of the

market illiquidity channel. Both coefficients are statistically significant at 1% and 5% levels,

17***, **, and * denote statistical significance at the 1, 5, and 10 confidence levels, respectively.
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respectively, with a lower t-statistic for the latter period because of its much smaller sample

size. The loading coefficients on market spot variance Vt for the pre- and post-circuit breaker

periods are 19.69 and 18.47, respectively. These magnitudes are similar to the estimate of 18.38

found using the full sample period. In both periods, the impact of the coefficient estimates

on Vt are statistically weak. These results confirm the robustness of our estimates in Table 3.

5.2 Alternative Iliquidity Measure

We have so far defined market illiquidity using the aggregate relative effective spread of S&P

500 constituents. This measure captures the aggregate transaction cost of participating in

the stock market and has been shown in Aı̈t-Sahalia and Yu (2009), and Goyenko, Holden,

and Trzcinka (2009) to be a good proxy for market illiquidity. This section tests whether our

results are robust to other illiquidity measures.

First, we use dollar effective spread as an alternative measure for the market-trading

cost. It is calculated as the absolute dollar difference between the transaction price and the

prevailing mid-price of each transaction instead of the relative percentage to the mid-price as

before. More precisely, the dollar effective spread measure associated with each transaction k

on day t for firm i is defined as

$ILQi
t,k = 2|Si,Pt,k − S

i,M
t,k |. (38)

We aggregate $ILQi
t,k across S&P 500 index constituents to construct the daily measure of

market illiquidity.

Our second alternative market illiquidity measure is from Amihud (2002). On each day t,

we compute the Amihud illiquidity measure for each firm i in the S&P 500 index as a fraction

of absolute return, |ri|, over dollar trading volume, DV oli,t, that day:

ALIQi
t =

N∑
i=1

|ri,t|
DV oli,t

. (39)

The daily Amihud market illiquidity measure for the stock market is then calculated as an

equally-weighted average of individual firms’ Amihud illiquidity measure.

The middle and bottom panels of Figure A.2 plot the time-series dynamic of the two

alternative market illiquidity measures. For a quick comparison, we plot the relative effective

spread in the top panel. All illiquidity measures are normalized to have the same sample

mean. This normalization method does not impact our results because the absolute level does

not matter for our specification. Figure A.2 shows that the dollar effective spread measure is

similar to the relative effective spread measure, although with some small differences during
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the crisis period. The Amihud illiquidity measure is much noisier than the other two measures

calculated from intraday bid-ask spreads.

We re-estimate the SJVI model using the market dollar effective spread and the Amihud

illiquidity measure. We report the results in Table 7. Overall parameter estimates are fairly

consistent compared with those estimated using relative effective spreads shown in Table 3.

We find the coefficient estimate γV is similar in magnitude and is not statistically significant

in either alternative illiquidity measures that we use. Meanwhile, the coefficient estimate for

γL is similar for the Amihud illiquidity measure, and even larger for the dollar effective spread

measure. In all cases, γL remains statistically significant. We find that in-sample option

pricing errors are higher using the Amihud illiquidity measure, which is expected due to the

noisiness of the measure. On the other hand, the in-sample options fit shows a small marginal

improvement using the dollar effective spread. To save space, the option pricing results are not

reported here. Overall, our main conclusions remain qualitatively unchanged. We conclude

that our main results are robust to different definitions of market illiquidity.

6 Conclusion

We study the role of market liquidity in explaining the time-varying market crash risk in

the S&P 500 index. We estimate a continuous-time model with stochastic volatility and

crash probability. We introduce market illiquidity as an observable variable to the model by

allowing it to affect the dynamics of spot variance and jump risk intensity. We follow the recent

empirical literature and measure the daily stock market illiquidity level using volume-weighted

intraday bid-ask spreads of all securities constituting the S&P500 index. We estimate the

model over 2004–2012 using daily S&P 500 index options, realized spot variance and market

illiquidity measure, and find that 64% of time-varying crash risk is due to the stock market’s

exposure to market illiquidity. The influence of market illiquidity dominates other factors

that we examined, including the market’s spot variance. This is with an exception of the 2008

crisis, when the influence of spot variance dominates and the contribution of market illiquidity

falls to about 30%.
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Table 1: Regression Model on Realized Jump Variation (RJV)

Realized Jump Variation Next Day: RJVt+1

(1) (2) (3) (4) (5) (6)

MinRVt 0.071*** 0.038 0.037
(2.63) (1.36) (1.31)

ILQt 0.091*** 0.061*** 0.070** 0.045**
(3.97) (4.25) (2.13) (2.01)

V IXt 0.046*** 0.014 0.011
(4.50) (1.19) (0.94)

Rett -0.058 -0.057 -0.038 -0.054 -0.050 -0.049
(-0.97) (-0.94) (-0.63) (-0.92) (-0.79) (-0.79)

RJVt -0.196 -0.075 -0.006 -0.185 -0.068 -0.177
(-1.19) (-0.94) (-0.09) (-1.22) (-0.85) (-1.15)

Adjusted R2 29.3% 30.5% 29.0% 32.1% 30.7% 32.2%

Notes: We report estimated coefficients and t-statistics from the predictive OLS regression
on the non-parametrically estimated variance component in daily S&P 500 index returns
that is due to jumps. The sample period is from January 2, 2004 to December 31, 2012.
The dependent variable is the realized jump variation (RJV ) calculated using high-frequency
intraday trades on S&P 500 cash index. The independent variables include lagged realized
variance estimator, MinRV, from Andersen, Dobrev, and Schaumburg (2012), which measures
variations in daily S&P 500 index returns that are associated with non-jump risk; market
illiquidity proxy, ILQ, measured by daily averaged effective spreads across firms in the S&P
500 constituents; option-implied volatility index, VIX, obtained from the CBOE; and log
return of S&P 500 index. All variables are lagged by one day. RJV, MinRV, ES, and VIX
are expressed in annualized terms by multiplying their daily measure by 252. We also include
the autoregressive term for RJV in the regression. Year and day-of-the week fixed effects are
included. Coefficient estimates on the fixed-effect terms are not reported here to save space.
We report heteroskedasticity-consistent t-statistic in parenthesis “( )” below each parameter
estimate. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% confidence
levels, respectively, based on the heterosedasticity-consistent t-statistic. Adjusted R-squared
for each regression model is reported in the bottom row.
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Table 2: Regression Model on Change in Risk-Neutral Skewness

Change in Risk-Neutral Skewness: ∆RNSkewt

(1) (2) (3) (4)

∆MinRVt -0.005 0.450*

(-0.03) (1.69)

∆ILQt -0.622* -1.144**

(-1.79) (-2.48)

Returnt -0.549*** -0.551*** -0.826*** -0.857***

(-3.28) (-3.00) (-3.40) (-3.70)

∆RNSkewt−1 0.455*** 0.455*** 0.449*** 0.451***

(18.93) (18.86) (18.59) (18.74)

AICC -2.181 -2.180 -2.182 -2.182

R2 23.4% 23.4% 23.5% 23.7%

Notes: We report regression results on daily changes in risk-neutral skewness of S&P 500
index returns, ∆RSkewt. The sample period is from January 2, 2004 to December 31, 2012.
Risk-neutral skewness, RSkewt, on day t is calculated from end-of-the-day S&P 500 index
option prices with maturity closest to 30 days. We use the nonparametric method of Bakshi
and Madan (2000) to calculate the 30-day forward-looking risk-neutral skewness measure. The
independent variables include change in realized variance estimator, ∆MinRV , from Ander-
sen, Dobrev, and Schaumburg (2012); change in market illiquidity proxy; ∆ILQ, measured
by daily averaged effective spreads across firms in the S&P 500 constituents; Return, log S&P
500 return. Each specification is estimated using maximum likelihood. We use an ARMA(2,1)
structure in the regression model, which is determined by the LjungBox test to sufficiently re-
move cross-correlations in the residuals. We control for seasonality due to the day-of-the-week
effect. We report coefficient estimates on the two autoregressive terms. For brevity, we do
not report coefficient estimates on the moving-average error term and day-of-the-week fixed
effects. Robust t-statistic is reported in parenthesis below each parameter estimate. ***, **,
and * indicate statistical significance at the 1%, 5%, and 10% confidence levels, respectively.
The last row reports regression diagnostics based on the Akaike information criterion (AICC)
and R2 metric.
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Table 3: Maximum Likelihood Estimates: 2004–2012

(1) SJ Model (2) SJV Model (3) SJVI Model
λt = Ψt λt = Ψt + γV Vt λt = Ψt+γV Vt+γLLt

Parameter Estimate Estimate Estimate

Panel A. Filtered state dynamics
κV 3.422 3.565 3.549

(7.75) (8.39) (4.73)
θV 0.031 0.031 0.031

(8.86) (11.00) (5.66)
ξV 0.336 0.343 0.346

(99.50) (22.97) (42.49)
νV 1.604 1.559 1.554

(1.06) (0.42) (0.71)
κL 2.416 2.344 2.353

(3.93) (1.27) (4.61)
θL 0.178 0.182 0.171

(7.64) (5.16) (6.69)
ξL 0.149 0.151 0.158

(37.50) (6.10) (36.80)
κΨ 0.972 0.661 0.662

(5.55) (0.83) (2.25)
θΨ 1.619 0.102 0.101

(5.00) (3.34) (1.66)
ξΨ 0.402 0.204 0.204

(2.47) (7.22) (1.79)
ρ -0.343 -0.351 -0.353

(19.03) (2.90) (5.92)

Panel B. Jump-size parameters
θ -0.059 -0.037 -0.037

(34.98) (10.41) (26.28)
δ 0.047 0.033 0.031

(55.16) (13.48) (29.84)

Panel C. Loadings on covariates
γ 0.120 0.117 0.118

(5.22) (3.52) (7.95)
γV 52.723 18.380

(2.17) (1.61)
γL 9.259

(13.87)

Log-Likelihood: 7,307.32 7,641.24 7,707.29

Notes: We report MLEs of the three time-varying jump models: SJ, SJV, and SJVI. The
sample period is from January 2, 2004 to December 31, 2012. Each model is estimated
using daily OTM and ATM S&P 500 index options, averaged effective spreads of S&P
500 constituents, and spot variance estimated from one-minute high-frequency S&P
500 futures data. We maximize the log likelihood function in equation (26). The state
variables are estimated using the UKF. We report t-statistic calculated using the outer
product of the gradient in parenthesis below each parameter estimate.
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Table 4: Descriptive Statistics of Filtered Jump Intensities and Spot Variances

(1) SJ Model (2) SJV Model (3) SJVI Model

λt = Ψt λt = Ψt + γV Vt λt = Ψt+γV Vt+γLLt

Panel A. Jump intensity λt

Mean 1.1922 2.2231 2.8772

Median 0.4367 1.3128 2.1420

Std. Dev. 5.9503 3.1282 2.6284

25 percentile 0.1818 0.7964 1.7096

75 percentile 0.8955 2.4995 3.1357

Panel B. Spot variance Vt

Mean 0.0258 0.0266 0.0213

Median 0.0159 0.0145 0.0147

Std. Dev. 0.0334 0.0390 0.0234

25 percentile 0.0099 0.0090 0.0090

75 percentile 0.0280 0.0251 0.0236

Panel C. Spot illiquidity Lt

Mean 0.1681 0.1681 0.1682

Median 0.1539 0.1538 0.1538

Std. Dev. 0.0558 0.0558 0.0560

25 percentile 0.1374 0.1375 0.1375

75 percentile 0.1741 0.1742 0.1742

Notes: We report the descriptive statistics of filtered jump intensities λt, spot variances Vt,
and spot illiquidity Lt for three models: SJ, SJV, and SJVI. The variables are reported
in annualized terms by multiplying their daily values by 252. We obtain the filtered state
variables from the UKF step in the MLE estimation. Parameter estimates of the three models
are reported in Table 3.
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Table 5: Vega-weighted Root Mean Squared Error of Different Models

(1) SJ Model (2) SJV Model (3) SJVI Model

λt = Ψt λt = Ψt + γV Vt λt = Ψt+γV Vt+γLLt

Panel A. VWRMSE by sub-period for OTM options

2004–2006 3.21% 3.38% 3.21%

2007–2009 10.41% 9.99% 8.72%

2010–2012 6.57% 6.57% 6.00%

2004–2012 7.34% 7.17% 6.39%

Panel B. VWRMSE by sub-period for ATM options

2004–2006 1.12% 1.68% 1.21%

2007–2009 7.69% 7.58% 5.82%

2010–2012 4.50% 4.70% 4.00%

2004–2012 5.18% 5.24% 4.14%

Notes: We report in-sample fit for the three models: SJ, SJV, and SJVI. The models are estimated
using MLE. Equation (26) shows the log likelihood function. Panel A reports in-sample option
pricing errors for OTM and panel B reports the pricing errors for ATM options. Option pricing
errors are obtained from the measurement equations in the UKF step. The numbers reported are
vega-weighted root mean squared error (VWRMSE). For ATM options, the VWRMSE is calculated
as

VWRMSE(ATM) =

√√√√ 1

T

T∑
t=1

(
ATMO

t+1 − ¯ATM
M
t+1

)2

where ¯ATM
M
t+1 denotes the ex ante forecast of vega-weighted ATM option price at time t + 1, and

ATMO
t+1 denotes the vega-weighted ATM option price observed in the data. We use option vega

reported in the Ivey Optionmetrics database to scale option prices, which makes their levels more
comparable across moneyness and time (Trolle and Schwartz, 2009). The VWRMSE for OTM options
is calculated similarly.
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Table 6: Risk Premium Parameters Estimated from Daily Returns: 2004–2012

(1) SJ Model (2) SJV Model (3) SJVI Model

λt = Ψt λt = Ψt + γV Vt λt = Ψt+γV Vt+γLLt

Parameter Estimate Estimate Estimate

νs =
√

1− ρ2ν1+ρνv 2.900 1.562 1.121

(1.89) (1.39) (1.54)

νθ 0.048 0.025 0.019

(11.76) (4.23) (2.24)

ν1 3.674 2.253 1.784

Log-Likelihood: 7,125.88 7,190.94 7,204.12

Notes: We report MLE estimates of the risk premium parameters for the three time-varying
jump models: SJ, SJV, and SJVI. Each model is fitted to daily S&P 500 return daily returns
data from January 2, 2004 to December 31, 2012. We obtain daily state values Vt, Lt, and Ψt,
as well as Q-measure parameters from the first-stage estimation results reported in Table 3.
The parameter νθ is the difference between jump-size means under the physical and risk-neutral
measures, i.e., θP − θ. The parameter ν1 corresponds to the price of risk coefficient associated
with the Brownian innovation in the return process; see equation (29). We report t-statistic
calculated using the outer product of the gradient in parenthesis below parameter estimates
for νs and νθ . To facilitate econometric identification, we estimate νs =

√
1− ρ2ν1 + ρνV

from daily returns MLE and later infer ν1 from its estimate together with the value of νV
reported in Table 3.
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Table 7: Maximum Likelihood Estimates: Alternative Illiquidity Measures

(1) SJVI: Amihud-ILQ (2) SJVI: $ES-ILQ

Parameter Estimate Estimate

Panel A. Filtered state dynamics
κV 3.553 3.553

(1.31) (4.44)
θV 0.032 0.031

(28.83) (227.78)
ξV 0.345 0.346

(7.55) (13.01)
νv 1.552 1.554

(0.55) (0.21)
κL 2.357 2.355

(1.18) (0.77)
θL 0.170 0.171

(1.75) (20.61)
ξL 0.158 0.144

(0.85) (5.62)
κΨ 0.661 0.661

(0.35) (0.32)
θΨ 0.101 0.101

(1.35) (5.23)
ξΨ 0.203 0.206

(1.43) (25.36)
ρ -0.344 -0.352

(1.38) (2.01)

Panel B. Jump-size parameters
θ -0.034 -0.037

(7.41) (30.05)
δ 0.032 0.027

(8.25) (16.34)

Panel C. Loadings on covariates
γ 0.119 0.118

(1.17) (1.04)
γV 18.180 19.372

(0.38) (0.47)
γL 9.686 13.584

(11.81) (3.21)

Notes: We report MLE parameter estimates for the SJVI model estimated using two alternative
illiquidity measures. The sample period is from January 2, 2004 to December 31, 2012. Each model
is estimated using daily OTM and ATM options, daily spot variance calculated from high-frequency
index returns, and daily illiquidity measure. In the first column, the daily illiquidity measure is
calculated using Amihud (2002). The second column reports results using dollar effective spread
as a measure of illiquidity. The daily illiquidity measure is calculated at the stock level, and then
aggregated across firms constituting the S&P 500 index to yield the daily market illiquidity measure.
See Section 5.2 for more details. All models are estimated by maximizing log likelihood from UKF.
T-statistic calculated using the outer product of the gradients is reported in parentheses.
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Figure 1: Daily Time Series of the Stock Market Variables
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Notes: This figure plots four daily time series of selected variables for the S&P 500 index. The
sample period is from January 2, 2004 to December 31, 2012. The top-left panel plots the
daily returns on the S&P 500 index. In the top-right panel, we plot the annualized illiquidity
measure calculated as the equally weighted average effective spread of intraday trades across
firms constituting the S&P 500 index. The bottom-left panel plots the annualized jump-
robust variance, MinRV, estimated using the one-minute grid returns of S&P 500 cash index.
It is calculated following the approach of Andersen, Dobrev, and Schaumburg (2012). In
the bottom-right panel, we plot the annualized realized jump variation, RJV, of daily index
returns.
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Figure 2: Implied Volatilities of OTM and ATM Options and Spot Volatility
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Notes: In the top panel, we plot the daily implied volatilities of OTM put options written
on the S&P 500 index from January 2, 2004 to December 31, 2012. In the second panel, we
plot the implied volatilities of ATM call options. Both options are chosen to have the time to
maturity to be closest to 30 calendar days. OTM options are chosen to have forward price-to-
strike ratio to be closest to 0.95 while ATM options have the same ratio being closest to 1. The
last panel plots the time series of spot volatility measure constructed using one-minute grid
of intraday returns at 4:30 p.m. each day, following Andersen, Fusari, and Todorov (2015b).
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Figure 3: Filtered Jump Intensity: λt

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

10

20

30
Filtered Annualized Jump Intensity from SJ Model 2004-2012

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

10

20

30
Filtered Annualized Jump Intensity from SJV Model 2004-2012

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

10

20

30
Filtered Annualized Jump Intensity from SJVI Model 2004-2012

Notes: We plot daily annualized jump intensities λt filtered for the three models that we study
from January 2, 2004 to December 31, 2012. The jump intensity specifications in the three
models can be summarized as follows:

SJ : λt = Ψt

SJV : λt = Ψt + γV Vt

SJVI : λt = Ψt + γV Vt + γLLt.

The top panel corresponds to the SJ model that has jump intensities solely driven by a
latent jump intensity term; the middle panel corresponds to the SJV model that has jump
intensity being driven by latent stochastic jump intensity and variance; and the bottom panel
corresponds to the SJVI model that has jump intensity being driven by latent stochastic jump
intensity, variance, and illiquidity.
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Figure 4: Decomposition of Jump Intensity: SJV vs. SJVI
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Notes: We plot the decomposition of daily annualized jump intensities λt filtered from the
SJV model (top panel) and the SJVI model (bottom panel) from January 2, 2004 to December
31, 2012. The top panel decomposes daily jump intensity dynamics of the SJV model into the
portion coming from the latent stochastic jump intensity term, Ψt, and the portion that is
due to the daily spot variance, γV Vt. In the bottom panel, we decompose daily jump intensity
dynamics of the SJVI model into the portion coming from the latent stochastic jump-intensity-
specific term Ψt, the portion that is due to the daily spot variance, γV Vt, and the portion that
is due to daily spot market illiquidity, γLLt.
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Figure 5: Relative Contribution to Jump Intensity: SJVI Model
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Notes: We plot the breakdown of daily annualized jump intensity, λt = Ψt + γV Vt + γLLt,
filtered from the SJVI model from January 2, 2004 to December 31, 2012. The top panel
plots the percentage contribution coming from the latent stochastic jump intensity term,
Ψt/λt. The middle panel plots the contribution coming from the variance term, γV Vt/λt. The
bottom panel plots the contribution from the illiquidity term, γlLt.
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Figure 6: Impulse Response Function of λτ : High vs. Low Volatility Days
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Notes: This figure plots the IRF describing the impact of one-standard-deviation shock to Vt,
Lt, and Ψt on the jump intensity λt+τ in the τ days ahead. The x-axis displays the horizon
τ in number of days and the y-axis corresponds to the response of λt+τ . We plot the IRF
from two days where the spot volatility levels are relatively high (left-column panels) and
low (right-column panels). In each column, the top, middle, and bottom panels plot the IRF
examining the impact of shocks to the spot volatility, spot illiquidity, and the latent state
variable, respectively. All model parameters and filtered state variables are taken from the
SJVI model estimates in Table 3. The date with high spot volatility (26.9%) corresponds to
March 11, 2009. The date with log spot volatility (9.2%) corresponds to January 8, 2004.
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Figure 7: Proportion of Forecast Error Variance (ε̂λ,t+τ ) Explained by Vt and Lt
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Notes: This figure plots the time series of FEVD for the jump intensity λt+τ at the short- and
long-run horizons. The top-row panels plot FEVD for the short-run horizon, i.e., τ = 1 day,
while the bottom-row panels plot FEVD at the long-run horizon, i.e., τ = 250 days. The y-axis
displays the proportion of the forecast error variance explained by the factors. The forecast
error for the jump intensity τ days ahead conditional on time t is defined as ε̂λ,t+τ = λτ−Et[λτ ].
We decompose the variance of the forecast error Vart [ε̂λ,t+τ ] into components associated with
shocks to the illiquidity factor Lt (right-column panels), and the spot variance Vt (left-column
panels). The contribution of the latent state variable Ψt in the variance ε̂λ,t+τ is very small
and for brevity, is not reported here. All model parameters and filtered state variables are
taken from the SJVI model estimates in Table 3.
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Appendix

A Risk-Neutral Skewness Measure

We use the model-free methodology implemented by Bakshi and Madan (2000) and Kozhan,
Neuberger, and Schneider (2014), among others, to compute the risk-neutral moments. A key
insight of this approach is that one can replicate any desired payoff by designing a portfolio
of OTM European call and put options over a continuum of strike prices.

For an overview of this approach, let S denote the underlying asset value and let G[S]
denote the payoff at maturity τ for a generic contingent claim written on S. By discounting
the contingent claim with the risk-free rate r, its price can be evaluated under the risk-neutral
expectation as EQ

t {e−rτG[S]}. Bakshi and Madan (2000) show that for any twice-continuously
differentiable payoff function G[S] with bounded expectation, the price of this contingent claim
contract can be spanned according to the formula

EQ
t {e−rτG[S]} = e−rτ (G[S]− SGS[S]) + GS[S]St +

∫ ∞
S

GSS[K]C(t, τ ;K)dK

+

∫ S

0

GSS[K]P (t, τ ;K)dK, (40)

where Gs[S] and Gss[K] represent the first and second derivatives of the payoff function G
evaluated at some asset value S and at the strike price K, respectively. The above equation
shows that the contingent claim price can be replicated using a portfolio consisting of a risk-
free bond, an underlying asset, and OTM calls and puts. The integrals in equation (40) can
be evaluated numerically. We use a cubic spline method to calculate the integrals across
moneyness.

To construct higher risk-neutral moments, we focus on the payoff function G with power
contracts. That is,

G[S] =

{
r2
t,τ the volatility contract
r3
t,τ the cubic contract,

(41)

where rt,τ denotes the log-return of asset price S from time t to t + τ . The risk-neutral
volatility and skewness are then computed as

V olQt,τ = {EQ
t [(rt,τ − EQ

t [rt,τ ])
2]}1/2, (42)

SkewQ
t,τ =

EQ
t [(rt,τ − EQ

t [rt,τ ])
3]

{EQ
t [(rt,τ − EQ

t [rt,τ ])2]}3/2
. (43)

We obtain data on S&P 500 index options between 2004 and 2012 from OptionMetrics. We use
the average of the bid and ask quotes for each option contract and filter out options with bids
of $0 as well as those whose average quotes are less than $3/8. We also filter out quotes that
do not satisfy standard no-arbitrage conditions. Finally, we eliminate in-the-money options
because they are less liquid than OTM and ATM options. We only estimate the moments for
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days that have at least two OTM call prices and two OTM put prices available. Finally, for
any given maturity of interest, i.e., 30-day, we implement a linear interpolation to calculate
the corresponding risk-neutral moments.

B Realized Skewness Measure

We construct the daily realized skewness measure, RSkew, following the method in Amaya,
Christoffersen, Jacobs, and Vasques (2015), which has been shown to significantly predict stock
returns. This realized skewness is calculated using one-minute log returns of the S&P500 cash
index as follows:

RSkewNt =

√
N
∑N

i=1 r
3
i,t

(RV N
t )3/2

, (44)

where N is the number of time intervals in a trading day. As N goes to infinity, the above
two measures converge to the cubic variations of jump component in the daily return, i.e., the
diffusive component is excluded in their measurement.

C Realized Skewness Regression

We also examine the impact of market illiquidity on daily realized skewness measure, RSkew. Un-
like risk-neutral skewness that represents a forward-looking measure of the stock market crash
risk, RSkew is calculated using historically observed high-frequency intraday index returns.
Therefore, a more negative daily realized skewness level would indicate an increasing proba-
bility that a crash in the stock market has occurred during that trading day.

We estimate a time-series regression for the change in realized skewness, ∆RSkewt+1,
similar to the general model shown in equation (7). However, we use a predictive regression
model for the change in realized skewness by lagging all independent variables by one day.
This is because RSkew is calculated from intraday trades observed during the day, which is
the same data period used for calculating MinRV and ILQ.18 This concern, however, does not
apply to the risk-neutral skewness regression because RNSkew is calculated using end-of-day
option prices and is derived from a different data source.

Table A.1 reports four sets of regression results on changes in daily realized skewness. We
use the ARMA model with p = 1 in the autoregressive term and q = 2 in the error term. These
lags are determined by the LjungBox test. The results shown in Table A.1 strongly support
the findings in Table 2, which are obtained using daily changes in risk-neutral skewness. That
is, an increase in market illiquidity is negatively related to the realized skewness. Column (2)
shows the negative coefficient on ∆MinRV is negligible in magnitude as well as in statistical
significance. However, when both ∆MinRV and ∆ILQ are added to the regression model,
the coefficient estimate on ∆MinRV becomes positive and statistically significant. These
findings are highly consistent with the results obtained in Table 2. Therefore, we find the
effect of market illiquidity on crash probability is robust to whether we measure the stock
market crask risk using the forwarding-looking risk-neutral skewness or the historical realized
skewness.

18Our conclusion is unaffected when we use a contemporaneous regression instead of a predictive regression.
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D High Frequency Spot Variance Measure

Following Andersen, Fusari, and Todorov (2015b) and Mancini (2009), we construct the con-
sistent estimator of spot variance at the end of each trading day using the one-minute grid of
S&P 500 futures returns as follows:

V̂
(n,mn)
t =

n

mn

n∑
i=n−mn+1

(ri,t)
2I(|ri,t| ≤ αn−ω). (45)

We use one-minute-grid returns over 6.5 hours in a trading day, thus resulting in n = 390
observations. The value of mn is set to be 75% of n for each day. Other tuning parameters
are set as follows: α = 4

√
BPVt and ω = 0.49 where BPV denotes the bi-power variation of

day t computed using full one-minute grid of returns.

E Coefficients in the Affine Characteristic Function

The model that we study is casted in affine framework, the conditional characteristic function
is exponential affine in the state variables following Duffie, Pan, and Singleton (2000). Its
function form is given by

Et[exp(iφ log(ST ))] = exp (α(τ) + β0(τ) log(St) + β1(τ)Vt + β2(τ)Lt + β3(τ)Ψt) (46)

We use the notation τ = T − t for simplicity. The coefficients satisfy the following system
of Ricatti ordinary differential equation (ODE) with the boundary conditions β0(0) = iφ and
α(0) = β1(0) = β2(0) = β3(0) = 0

dβ0

dτ
= 0

dα

dτ
= irφ+ (κV θV + γκLθL)β1 + κLθLβ2 + κΨθΨβ3

dβ1

dτ
=

1

2
ξ2
V β

2
1 + (ξV ρiφ− κV )β1 + (

1

2
(iφ)2 − (

1

2
+ γvξ)iφ+ γvθu)

dβ2

dτ
=

1

2
ξ2
Lβ

2
2 + (γξ2

Lβ1 − κL)β2 + (
1

2
γ2ξ2

Lβ
2
1 − γκLβ1 − γlξiφ+ γlθu)

dβ3

dτ
=

1

2
ξ2

Ψβ
2
3 − κΨβ3 + θu − ξiφ

where θu = (eθiφ+ 1
2
δ2(iφ)2 − 1). Equations for β0, β1, and β3 can be solved analytically in terms

of elementary functions while α and β2 need to be solved numerically. We employ fourth-order
Runge-Kutta method with the step size of ∆t = 1/252.
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F Discretization of Daily Returns and Estimation

We apply daily discretization to the physical return process in (33). This yields

rt+1 ' (r + (νS −
1

2
)V̂t − ξP λ̂t)∆t+

√
V̂t
√

∆tεt +
Nt∑
i=1

yi,t, (47)

where νS =
√

1− ρ2ν1 + ρνv, and εt is the standard normal innovation. The jump component

is represented a compound Poisson process
∑Nt

i=1 yi,t, where Nt is the number of jump arrival
with intensity λt on day t, and yi,t is i.i.d. normal with mean θP and variance δ2. Conditional
on the number of jumps Nt = j, we can write the likelihood as conditionally normal, thus,
the daily return likelihood can be analytically computed.

G Impulse Response Function

In this section we construct the impulse response function of the discretized SJVI model
under the physical measure. We follow the same Euler-discretization scheme applied to the
UKF procedure; see the main text. The discretized system under the P measure is written as

Vt+1 = Vt + κV (θV − Vt)∆t+ γκL(θL − Lt)∆t+ ξV
√

∆tVtε
1
t+1 + γξL

√
∆tLtε

2
t+1

Lt+1 = Lt + κL(θL − Lt)∆t+ ξL
√

∆tLtε
2
t+1

Ψt+1 = Ψt + κΨ(θΨ −Ψt)∆t+ ξΨ

√
∆tΨtε

3
t+1,

where error terms εit+1, for i = 1 to 3, are i.i.d. standard normal with the step size ∆t = 1/252.
We next expand the above system and rewrite them in terms of past innovation terms

only. The expansion for Lt+1 and Ψt+1 is straightforward and is given by

Lt+1 = θL +
∞∑
j=0

ρjLη
L
t+1−j (48)

Ψt+1 = θΨ +
∞∑
j=0

ρjΨη
Ψ
t+1−j, (49)

where the new coefficients are ρL = 1 − κL∆t, ρΨ = 1 − κΨ∆t, ηLt+1 = ξL
√

∆t
√
Ltε

2
t+1, and

ηΨ
t+1 = ξΨ

√
∆t
√

Ψtε
3
t+1. The expansion for Vt+1 is a bit more involved because there are two

independent shocks. After some algebraic work, we obtain

Vt+1 = θV + γηLt+1 +
∞∑
j=0

ρjV η
V
t+1−j + γ

∞∑
j=1

[
ρj+1
L − ρj+1

V −
(
ρjL − ρ

j
V

)
ρL − ρV

]
ηLt+1−j, (50)

where ρV = 1− κV ∆t and ηVt+1 = ξV
√

∆t
√
Vtε

1
t+1.

Plugging the expansions shown in equations (48)–(50) into the jump intensity dynamic,
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λt+1 = Ψt+1 + γV Vt+1 + γLLt+1, we can express λt+1 only in terms of shocks to the system as

λt+1 = θΨ + γLθL + γV θV +
∞∑
j=0

ρjΨη
Ψ
t+1−j + γV

∞∑
j=0

ρjV η
V
t+1−j + (γL + γV γ) ηLt+1

+
∞∑
j=1

(
γLρ

j
L + γV γ

[
ρj+1
L − ρj+1

V −
(
ρjL − ρ

j
V

)
ρL − ρV

])
ηLt+1−j, (52)

where ηVt+1, ηLt+1, and ηΨ
t+1 represent shocks specific to the variance, illiquidity, and latent

factors, respectively. Thus, the impulse response of a specific shock for τ periods ahead can
be calculated by simply setting j = τ in the coefficient associated with that specific shock in
equation (52).

H Forecast Error Variance Decomposition

This section presents the variance decomposition of forecast error in the conditional jump
intensity. The error from forecasting the jump intensity λt+τ with τ -period horizon conditional
on day t is defined as

ε̂λ,t+τ = λt+τ − Et[λt+τ ]. (53)

In the SJVI model, changes in jump intensity are driven by shocks to the spot illiquidity
Lt, the latent factor Ψt, and the spot variance Vt. Under a mild assumption of zero autocor-
relation among the three shocks, we can approximate the variance in the forecast error, ε̂λ,t+τ ,
associated with each shock as:

Vart [ε̂λ,t+τ ] ≈


(γV + γLγ)2 Vart

[
ηLt+τ

]
+
∑τ−1

j=1

(
γLρ

j
L + γV γ1[τ>1]

[
ρj+1
L −ρj+1

V −(ρjL−ρ
j
V )

ρL−ρV

])2

Vart
[
ηLt+τ−j

]
 (54)

+
{∑τ−1

j=0

(
ρjΨ
)2

Vart
[
ηΨ
t+τ−j

]}
+
{∑τ−1

j=0

(
γV ρ

j
V

)2
Vart

[
ηVt+τ−j

]}
.

Expressions in the first, second, and third brackets in equation (54) represent the approximate
forecast error variance that is associated with shocks to the illiquidity Lt, the latent factor
Ψt, and the variance Vt, respectively. The notations that we use in equation (54) are shown
in Appendix G.

We obtain the closed-form expression for each contribution factor in equation (54) by
computing the conditional variance of each shock explicitly. For example, the proportion of
the error variance explained by the variation in illiquidity is given by


(γV + γLγ)2 [ξ2

L∆t
(
θL + ρτ−1

L (Lt − θL)
)]

+
∑τ−1

j=1

(
γLρ

j
L + γV γ1[τ>1]

[
ρj+1
L −ρj+1

V −(ρjL−ρ
j
V )

ρL−ρV

])2 [
ξ2
L∆t

(
θL + ρτ−j−1

L (Lt − θL)
)]

+ξ2
V ∆t

∑τ−1
j=0

(
γV ρ

j
V

)2
(
γ (ρL − 1)

ρτ−j−1
L −ρτ−j−1

V

ρL−ρV
(Lt − θL)

)


Vart [ε̂λ,t+τ ]
. (56)
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The proportion explained by the variation in diffusive variance, Vt, can be written as

{
ξ2
V ∆t

∑τ−1
j=0

(
γV ρ

j
V

)2 (
θV + ρτ−j−1

V (Vt − θV )
)}

Vart [ε̂λ,t+τ ]
. (58)

Lastly, the proportion explained by the variation in latent factor, Ψt, is given by{∑τ−1
j=0

(
ρjΨ
)2 [

ξ2
Ψ∆t

(
θΨ + ρτ−j−1

Ψ (Ψt − θΨ)
)]}

Vart [ε̂λ,t+τ ]
. (60)
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Table A.1: Regression Model on Changes in Realized Skewness

Change in Realized Skewness: ∆RSkewt+1

(1) (2) (3) (4)

∆MinRVt -0.066 0.625*

(-0.33) (1.94)

∆ILQt -0.580*** -1.261***

(-2.63) (-2.75)

Returnt 0.010 0.006 -0.102 -0.189**

(0.12) (0.08) (-1.37) (-2.03)

∆RSkewt 0.766*** 0.767*** 0.775*** 0.773***

(13.62) (13.91) (14.16) (14.10)

AICC 1.630 1.642 1.638 1.636

R2 54.2% 54.2% 54.3% 54.4%

Notes: We report regression results on daily changes in realized skewness of S&P 500 in-
dex returns, ∆RSkewt+1. The sample period is from January 2, 2004 to December 31,
2012. The daily realized skewness measure, RSkew, on each trading day is constructed
from high-frequency data following the method in Amaya, Christoffersen, Jacobs, and Vasquez
(2015). The independent variables include lagged change in realized variance estimator, ∆MinRV ,
from Andersen, Dobrev, and Schaumburg (2012); change in market illiquidity proxy; ∆ILQ,
measured by daily averaged effective spreads across firms in the S&P 500 constituents; Re-
turn, log S&P 500 return. We lag all independent variables by one day because the daily
realized skewness measure is calculated from intraday trades observed over each day, which
overlap with the data period used for constructing independent variables. Each specification
is estimated using maximum likelihood. We use an ARMA(1,2) structure in the regression
model, which is determined by the LjungBox test to sufficiently remove cross-correlations in
the residuals. We control for seasonality due to the day-of-the-week effect. We report coef-
ficient estimates on the autoregressive term. We do not report coefficient estimates on the
moving-average error term and day-of-the-week fixed effects for brevity. Robust t-statistic is
reported in parenthesis below each parameter estimate. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% confidence levels, respectively. The last row reports
regression diagnostics based on the Akaike information criterion (AICC) and R2 metric.
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Figure A.1: Percentiles of Dollar Effective Spread: S&P 500 Constituents
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Notes: We plot the 5th, 25th, 50th, 75th, and 95th percentiles of the daily effective spreads
(in dollars) from the constituents of the S&P 500 index. For the majority of firms in the S&P
500 index, trades are executed with an effective spread above one cent, which is the minimum
tick size in the NYSE. This finding holds throughout our sample period going from January
2, 2004 to December 31, 2012.
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Figure A.2: Alternative Illiquidity Measures
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Notes: We plot three daily market illiquidity measures from January 2, 2004 to December 31,
2012 that we use to verify the robustness of our results. The top panel plots the annualized
relative effective spread measure defined in equation (1), which is the main illiquidity measure
that we use in the paper. The bottom two panels plot the annualized illiquidity measure that
we use to verify the robustness of our results. In the middle panel, we plot the daily market
illiquidity measure calculated from dollar effective spreads shown in equation (38). In the
bottom panel, we plot the Amihud (2002) illiquidity measure. It is calculated as the equally
weighted average Amihud illiquidity measure of all securities constituting the S&P 500 index
on each day; see equation (39). We normalize the dollar effective spread and Amihud illiquidity
measures to have the same in-sample mean as the illquidity measure that we calculated using
relative effective spreads.
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