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Abstract

We develop a model in which asset prices depend on long run growth, long
run volatility, habit, and a persistent residual. We estimate the model using
Bayesian methods which account for the entire likelihood of the data on
consumption growth, dividend growth, and the price-dividend ratio. The
residual is dominant, accounting for more than 80% of the variance of the
price-dividend ratio across a variety of priors and specifications. Moreover,
the filtered residual tracks most of the recognizable features of the U.S.
stock market, such as the late 1990’s boom and bust. Long run volatility,
long run growth, and habit contribute in crises, but overall have a low cor-
relation with the price-dividend ratio between 1929 and 2014. These results
show that while long run risks and habit play a non negligible role, some-
thing else is driving the bulk of stock market fluctuations. We categorize
and discuss theories which are consistent with our results.
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1. Introduction

Models of asset prices have come a long way since Mehra and Prescott (1985).

We now have several explanations of aggregate stock market fluctuations. Ar-

guably the most prominent are habit formation, long run risks, and rare dis-

asters. But there are more, including limited participation, intermediary-based

models, and learning.1

In this paper, we evaluate the relative importance of these explanations. Our

evaluation focuses on a model in which the price dividend ratio depends on four

sources of market volatility: habit, long run growth, long run volatility, and a

persistent residual. Habit and long run risks are related to consumption and div-

idends in the usual way (Campbell and Cochrane (1999), Bansal, Kiku, and Yaron

(2012a)). The residual accounts for all other sources of stock price movements:

disaster probability movements, shifts in beliefs about returns, etc.

We estimate the model using Bayesian methods and data on consumption

growth, dividend growth, and the price dividend ratio. The estimated parameters

and latent states allow us to decompose the variance of the price dividend ratio

into contributions from each source of market volatility.

We find that the residual is the most important source of market volatility,

accounting for the vast majority of the variance of the price dividend ratio. The

residual accounts for more than 80% of the variance across a variety of priors and

specifications. Moreover, the filtered residual tracks most of the recognizable

features of the U.S. stock market’s history, such as the booms and busts of the

1960s and late 1990s. Long run volatility, long run growth, and habit have large

effects in the Great Depression and 2008 Financial Crisis, but overall they display

a low correlation with asset prices between 1929 and 2014. These results show

that, while long run risks and habit have a non-negligible effect, something else

is the key driver of market volatility.

Importantly, the dominance of the residual is independent of our choice of

target moments, as our Bayesian estimation accounts for the entire likelihood

1Here we list just a couple references for each literature. For habit formation see Constan-
tinides (1990) and Campbell and Cochrane (1999). For long run growth and volatility risks see
Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012a). For rare disasters see Rietz (1988),
Barro (2006), Gabaix (2012), Wachter (2013). For limited participation, Mankiw and Zeldes (1991)
and Guvenen (2009). For intermediary-based models see He and Krishnamurthy (2013) and
Brunnermeier and Sannikov (2014). For learning models see Adam, Marcet, and Beutel (2015)
and Adam, Marcet, and Nicolini (2016).
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of consumption, dividends, and the price dividend ratio. This methodology cuts

through the problem of weighing disparate pieces of evidence that arise from the

moment matching literature. How much should we discount long run risks since

it predicts counterfactually strong dividend predictability? How important is the

fact that habit implies a counterfactual link between asset prices and lagged con-

sumption growth? What do we make of models that are not evaluated against

these particular moments? By accounting for all moments, our Bayesian ap-

proach and variance decomposition provides a succinct answer to these ques-

tions.

Fluctuations in the residual are a kind of excess market volatility: The residual

moves closely with asset prices, but is unconnected to real economic growth and

real economic volatility. This description matches several theories in the litera-

ture which fit into two broad categories: tractable models with hard-to-observe

shocks to risk (such as variable disaster risk) and more complex models which

directly link expected returns to observables other than aggregate consumption

(such as intermediary-based models). We discuss these theories and avenues for

future research, but we cannot distinguish among these theories in this paper.

Models with hard-to-observe risk lead to several observationally equivalent

structural models. This equivalence motivates us to focus on a semi-structural

model— that is, we simply assume that the log price-dividend ratio is linear

in the four state variables rather than derive the coefficients from assumptions

about preferences and market structure. But there are additional considerations

which compel us to deviate from the standard approach of looking for equilib-

rium among optimizing agents.

The semi-structural model lets the estimator speak freely. It ensures that the

estimation results are due to properties of the data rather than functional form

restrictions imposed by our choice of model economy. Similarly, the reduced

form is much less costly for the reader to work through. This is especially im-

portant as our model includes several sources of risk. Lastly, an agnostic model

seems appropriate considering the vast disagreement in the literature about the

economic structure underlying stock prices (see, for example, Gabaix (2012) and

Cochrane (2016) for some contrasting perspectives).

Our estimator uses the entire likelihood, but the low correlation between

price/dividends and real growth or real volatility drives the results. To demon-

strate this, we replicate our main finding with a simplified version of our estima-

3



tor. Specifically, we use the Bayesian estimator to construct state paths using only

consumption and dividend data. We then use OLS to regress the price-dividend

ratio on the states. The variance decomposition from these procedure uses only

correlations between price/dividends and the estimated states, and this infor-

mation leads to OLS estimator to conclude that the residual explains the vast

majority of market volatility.

Though our approach does not require choosing moment targets, we do need

to take a stand on a few modeling and econometric issues. In every case we make

choices that favor simplicity for its various scientific virtues. Simple formulations

are easier to dissect, communicate, replicate, and extend. Indeed, the lack of

replicability of economic research has been recently highlighted by Chang and

Li (2015).

Simplicity has costs, however. Specifically, our desire for simplicity requires

that we offer two caveats regarding our conclusion that residual is dominant.

The first caveat is that our approach may favor the residual because of our use

of an annual model. We argue that an annual model is ideal, not only because it

is the simplest approach, but also because the striking seasonality in sub-annual

data suggests that risk is best understood at an annual frequency. The fact that

we recover similar parameters to the cash flow only estimates of Schorfheide,

Song, and Yaron (2016)’s mixed frequency model is reassuring. Nevertheless,

some studies suggest that a monthly model is critical for matching asset prices

with both long run risks (Bansal, Kiku, and Yaron (2012a)) and habit (Campbell

and Cochrane (2000)), and adding this layer of complexity may decrease the role

of the residual.

The second caveat is that our approach may favor the residual because we

use relatively simple formalizations of habit and long run risks. More subtle

formalizations, such as the use of several volatility processes for long run risk

(Schorfheide, Song, and Yaron (2016)) or the incorporation of additional shocks

to habit (Bekaert, Engstrom, and Xing (2009)) may also decrease the residual con-

tribution.

Relation to the Literature Our paper fits into the growing literature that com-

pares the empirical performance of macro asset pricing models. Bansal, Gal-

lant, and Tauchen (2007), Beeler and Campbell (2012), Bansal, Kiku, and Yaron

(2012a), and Barro and Jin (2016) use moment matching methods to compare the
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empirical performance of habit, long run risks, and rare disasters. The picture

that emerges from this approach is somewhat muddled, as the preferred model

depends on which moments one considers important. For example, habit is pre-

ferred if one places a large weight on accounting for the Shiller (1981) volatility

puzzle. On the other hand, long run risks are preferred if one is particularly con-

cerned with matching time-varying consumption volatility.

Aldrich and Gallant (2011) attempt to clarify the picture by comparing habit,

long run risks, and prospect theory in a likelihood-based Bayesian framework.

Our results echo theirs: long run risks is critical for addressing the volatile 1930s,

but less important for other time periods. We differ from Aldrich and Gallant,

however, by allowing for a residual / missing risk factors to drive asset prices.

The importance of including a residual is seen in more recent papers which

find that neither long run risks nor habit formation is capable of matching some

interesting stylized facts. Van Binsbergen, Brandt, and Koijen (2012) exam-

ine dividend strips and equity options, Dew-Becker et al. (2015) examine vari-

ance swaps, and Muir (2015) examines international wars and financial crises.

We complement these papers by showing that one does not need to introduce

derivative markets nor international data to empirically challenge long run risks

and habit formation. The time series of U.S. consumption and stock prices is

sufficient for showing that something outside these two kinds of risks is critical

for understanding stock market volatility.

In terms of econometrics, our paper owes a large intellectual debt to

Schorfheide, Song, and Yaron (2016). They also use a particle filter and Bayesian

MCMC methods (Herbst and Schorfheide (2014)) to estimate a model with long

run risks. We follow their approach closely, adopting their elegant state space

system and filtering procedure. Our results complement theirs in that we also

find strong evidence of long run risks in consumption and dividends, and indeed,

similar posterior estimates, using an annual model and annual data. We deviate

from Schorfheide, Song, and Yaron (2016), however, by allowing for a persistent

residual in the price dividend ratio. Thus, our estimation is a much more strin-

gent test of the long run risks model. We also assume a simpler version of long

run risk, which highlights the importance of the multiple volatility states in their

model.
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2. Model, Estimation, and Main Results

This section begins with the model and ends with the main results: decom-

positions of the price-dividend ratio (Section 2.6). Along the way, we cover the

model frequency, data, and parameter estimates.

2.1. Semi-Structural Model with Multiple Sources of Risk

Our key variable of interest is the log price-dividend ratio pdt . pdt is linear

in four state variables

pdt =µpd + Ax xt + AV σ̃
2
t + As s̃t + Ae et . (1)

where xt and σ̃2
t correspond to the long run growth and volatility risk, s̃t is the

habit (surplus consumption), and et is a residual.

Residuals are not usually called “state variables,” but our residual is persis-

tent, plays an important role in accounting for the data, and can be interpreted

to through several economic models (Section 5). The tildes over σ̃t and s̃t indi-

cate that they’re demeaned (σ̃2
t =σ2

t −E(σ2
t )), which implies that µpd is the mean

log price-dividend ratio.

Our goal is to estimate the coefficients Ax , AV , As , Ae and filter out the histor-

ical paths of the states xt , σ̃2
t , s̃t and et . The coefficients and state paths provide a

simple description of the importance of each source of market volatility.

We do not derive (1) from an equilibrium model in order to let the estimator

speak freely. However, there are several ways to derive (1). For example, one can

extend Yang (2015)’s Epstein-Zin habit model to include time-varying disaster

probability.

Most of the states are identified by their linkages with the other observables:

consumption and dividends. The long run risk states xt , σ̃2
t are identified by their

relationship with consumption and dividend growth

∆ct =µc +xt−1 +σt−1ηc,t (2)

∆dt =µd +φx xt−1 +φηcσt−1ηc,t +ϕdσt−1ηd ,t

ηc,t ,ηd ,t ∼ N (0,1) i.i.d.,

6



where long run growth xt evolves according to the standard heteroskedastic AR1

xt = ρx xt−1 +ϕx

√
1−ρ2

xσt−1ηx,t (3)

ηx,t ∼ N (0,1) i.i.d.,

and long run volatility σt evolves according to

ht = ρhht−1 +σh

√
1−ρ2

hηh,t (4)

σt = σ̄exp(ht ).

ηh,t ∼ N (0,1) i.i.d.

These specifications borrow some technical fixes from Schorfheide, Song, and

Yaron (2016), but otherwise the above consumption and dividends are identi-

cal to that in Bansal, Kiku, and Yaron (2012a).2 This specification ensures that

volatility is always positive, and also help for specifying a good prior.

Importantly, our specification does not include the multiple volatility pro-

cesses of Schorfheide et al. This choice keeps things simple and closer to the bulk

of the long run risk literature, but is restrictive in some ways. Specifically, our

simpler specification assumes that the impact of volatility on the price-dividend

ratio can be identified with realized consumption growth.

The demeaned habit state s̃t is also identified by consumption growth. This

link comes from the transition equation

s̃t = ρs s̃t−1 +λ(s̃t−1)(∆ct −Et−1∆ct ) (5)

λ(s̃t−1) =


1
S̄

p
1−2s̃t−1 −1, s̃t ≤ 1/2(1− S̄2)

0, otherwise.

which is equivalent to the formulation in Campbell and Cochrane (1999). Section

4, shows that having surplus consumption respond to consumption growth itself

(rather than consumption innovations) does not affect the main results.

The residual, however, is not identified by either consumption or dividends.

2To see the mapping, note that σ2
t − σ̄2 ≈ ρh

(
σ2

t−1 − σ̄2
)+2σh

√
1−ρ2

hηh,t .
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It is simply an AR1

et = ρe et−1 +σeηe,t (6)

ηe,t ∼ N (0,1) i.i.d.

and is thus identified by the price-dividend ratio. et captures everything drives

market volatility that is not long run growth, long run volatility, or habit.

2.2. Model Frequency and Data

We assume the model frequency is annual, the same frequency as the data we

use. This differs from the typical approach in the literature which tests monthly

models against annual data moments.

We choose this approach for two reasons. The first is that monthly consump-

tion and dividends exhibit stark seasonality which is entirely unaccounted for by

models. The enormous end-of-quarter boosts to dividend growth and spikes in

consumption at the end of the year suggest that risk is properly understood at

an annual horizon. Indeed, if monthly risk is relevant to agents in the economy,

why would we observe such stark seasonality in equilibrium?

Moreover, modeling this seasonality is not a simple task. Simple determinis-

tic month or quarter fixed effects do a poor job, leading to the sophisticated Cen-

sus Bureau’s X-13ARIMA-SEATS seasonal adjustment approach. As discussed in

Ferson and Harvey (1992), the Census Bureau adjustments are forward-looking:

They boost the current month’s observation if the future months are high. The

resulting series is difficult to interpret in a model of consumption risk.

The second reason we use an annual model is that the robustness of asset

pricing frameworks to changes in model frequency is an interesting question

in itself. The annual frequency is particularly relevant, as annual data is far

more accessible and uncontroversial. Indeed, the nondurable consumption at

the monthly level is never directly observed, and instead is calculated by hold-

ing fixed shares observed every five years (Wilcox (1992)). Time-aggregating a

monthly model to the annual horizon is possible but dramatically increases the

complexity of model evaluation (Schorfheide, Song, and Yaron (2016)).

Thus, we estimate the model using annual consumption, dividend, and stock

price data from the Bureau of Economic Analysis and the Center for Research

on Security Prices. Consumption is real non-durable and services consumption.
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Dividends and prices correspond to the CRSP index. The sample runs from 1929

to 2014.

2.3. Estimation Method

The model contains a significant number of unobserved state variables, so it’s

important to use an estimation approach which takes full advantage of the data

available. To this end, we estimate the model using Bayesian MCMC methods.

Such methods utilize the full likelihood of the data, while maintaining computa-

tional tractability. This approach also avoids the potentially contentious choice

of moment conditions.

To evaluate the likelihood of our nonlinear model, we use a particle fil-

ter (Herbst and Schorfheide (2014)). We also take advantage of the condition-

ally Gaussian nature of the model to adapt the filter, using the approach of

Schorfheide, Song, and Yaron (2016). To estimate the model parameters, we em-

bed the filter in a standard random-walk Metropolis-Hastings algorithm. Details

of the particle filter and Metropolis-Hastings algorithms can be found in the Ap-

pendix.

We fix some parameters outside of the estimation that are uninteresting or

difficult to identify. The (uninteresting, for our purposes) means of all observ-

ables µpd ,µc ,µd are fixed to be their sample means.

S̄ and As are difficult to identify separately as they both control the volatility

of the habit contribution to the price-dividend ratio. Thus we chose S̄ = 0.06,

close to the Campbell and Cochrane (1999) value. In Section 4 we estimate this

parameter and find that it is poorly identified but does not affect the main results.

Experiments with assuming alternative values of S̄ also did not have a significant

impact on the main results.

Similarly, σe and Ae both control the volatility of the residual contribution.

Thus, we set σe = 1.

2.4. Prior Parameters

Priors are chosen to be as diffuse as possible, while maintaining the economic

interpretation of the model. Overall, our consumption and dividend priors are

similar to those in Schorfheide, Song, and Yaron (2016). However, the main re-

sults are not at all sensitive to the choice of prior, as we show in Section 4.
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Prior distributions are independent and uniform for simplicity. Uniform pri-

ors are also useful because they imply that the posterior is simply a plot of the

likelihood function.3

The left half of Table 1 shows the range spanned by the priors. The priors are

diffuse. For example, our prior persistence parameters are uniform between 0

and 1, and consumption volatility is between 0.1% and 4.0% annually. The upper

bound on the relative volatility of long run growth is 0.20, an order of magnitude

larger than Bansal, Kiku, and Yaron (2012a)’s choice of 0.038. Nevertheless, we

will see that the data suggest that these priors need to be revised significantly,

and that there is a large predictable component.

We chose priors on the price dividend ratio coefficients that allow for the pos-

sibility that each individual state variable can account for 100% of the variance

of the price dividend ratio at the standard parameters in the literature. Explicitly,

for the long run growth coefficient, we choose the upper bound on Ax to solve

Var(∆pdt ) ≈ Axϕxσ̄ (7)

whereϕx = 0.038 and σ̄= 0.0072×p
12 as in Bansal, Kiku, and Yaron (2012b), and

Var(∆pdt ) = 0.23 in our data sample. We use the analogous expressions to equa-

tion (7) for the other state variables. The signs of the price dividend coefficients

are also restricted to be intuitive. That is, we restrict the coefficients on long run

growth and surplus consumption to be positive, and we restrict the coefficients

on long run volatility and to be negative.

2.5. Posterior Parameter Estimates

The right half of Table 1 shows the posterior estimates. The posteriors on

simple consumption and dividend parameters are standard. The steady state

consumption volatility σ̄ is about 1% per year, and dividends are roughly 6 times

as volatile as consumption.

The estimator finds evidence of significant long run risks in real economic

3This is just the result of Bayes Rule and the constancy of uniform priors

p(parameters|data) = [Constants]p(data|parameters)p(parameters)

= [Constants]p(data|parameters).
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Table 1: Parameter Estimates

Model (equations (1) - (6)) and parameters are annual. All priors distributions are uni-

form. Posteriors are computed using annual consumption, dividend, and stock prices

from 1929-2014, particle filter, and Metropolis Hastings. σe = 1 and S̄ = 0.06 are chosen

outside of the estimation. Plots of the distributions can be found in the Appendix.

Parameter Prior Posterior
0% 100% Mean 5% 50% 95%

Simple Consumption and Dividends
Consumption Vol σ̄ 0.001 0.04 0.0098 0.0047 0.0094 0.0162
Div Loading on Cons Shock φηc 0 10 1.15 0.396 1.2 1.75
Relative Vol of Dividends ϕd 0 10 6.13 5.37 6.19 6.71

Long Run Risks
Persistence of LR Growth ρx 0 1 0.892 0.842 0.886 0.96
Relative Vol of LR Growth ϕx 0 1 0.183 0.14 0.443 0.562
Div Loading on LR Growth φx 0 10 2.37 1.85 2.38 2.84
Persistence of LR Vol ρh 0 1 0.895 0.85 0.895 0.943
Volatility of LR Vol σh 0 1.5 0.954 0.864 0.964 1.01

Habit and Residual
Persistence of Habit ρs 0 1 0.933 0.804 0.954 0.999
Persistence of Residual ρe 0 1 0.939 0.891 0.94 0.983

Price Dividend Coefficients
LR Growth Coefficient Ax 0 243 39.1 22.4 37.9 59.2
LR Vol Coefficient AV -2.4e4 0 -87.7 -149 -84.2 -39.4
Habit Coefficient As 0 0.93 0.282 0.0818 0.294 0.45
Residual Coefficient Ae 0 0.23 0.147 0.11 0.147 0.186
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Figure 1: Long Run Risk Parameter Estimate Details. Plots show posterior dis-
tributions of long run risks parameters from Table 1. The estimator finds signifi-
cant evidence of persistent changes in expected growth and volatility.

growth— that is, expected consumption growth and consumption volatility both

contain highly persistent components, with autocorrelations of about 0.90 annu-

ally. Since the identification of long run risk is an important issue in the literature,

Figure 1 takes a closer look and plots the parameter distributions.

The figure shows that the high persistence of long run growth and volatility

are estimated rather precisely. The entire the distribution of these parameters is

above 0.80. These long run risks vary over time, that is, the relative volatility of

long run growthϕx and the volatility of long run volatility σh are statistically and

economically significant. In terms of magnitudes, these parameters are similar

to Schorfheide, Song, and Yaron (2016)’s estimates which omit asset price data.

Moving down Table 1, habit is estimated to be highly persistent with an auto-

correlation of about 0.95, similar to Campbell and Cochrane (1999)’s calibration.
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The persistence of the residual is also about 0.95, and moreover it is precisely

estimated, with a lower bound of about 0.90. This high persistence illustrates a

critical issue with long run risks and habit: The portion of asset prices that they

can’t explain is very long lived.

Now we come to the main parameters of interest: the price-dividend ratio co-

efficients. These parameters determine the contribution of each state to market

volatility.

Critically, the residual coefficient is estimated to be quite high at about 15%

per quarter. These parameters imply that the residual has an unconditional

volatility of above 50%, more than large enough to account for the entire un-

conditional volatility of the log price dividend ratio (roughly 40%).

The large role of the residual is seen in the small posteriors of the other price-

dividend coefficients. Since the priors were chosen so that each individual state

could account for 100% of movements in the price dividend ratio, most coeffi-

cients are shrunk dramatically toward zero.

2.6. Main Result: Price Dividend Ratio Decompositions

With parameter estimates in hand, we can now address the main question of

the paper: Which source of risk is the most important?

Figure 2 shows the estimated contributions of each state variable to the his-

torical price dividend ratio. To create this plot, we find expected states using a

particle filter and mean posterior parameters from Table 1. We then multiply

the expected states by their respective posterior coefficients (the contribution of

long run growth is AxE(xt )).

The figure shows that the residual (yellow bars) played a dominant role in

market volatility between 1929 and 2014. The residual is responsible for the rel-

atively low asset prices in the 1940s and 50s, the bear market of the mid-1970s,

and the big boom in the late 1990’s. Indeed the residual closely tracks the price

dividend ratio (blue line) for the vast majority of the sample.

Long run risks and habit play a non-trivial role. In particular, they weigh

heavily on asset prices during the Great Depression and Great Recession. Long

run growth and habit also boost prices somewhat in the 1960s.

Compared to the residual, however, long run risks and habit are relatively

13



Figure 2: Decomposition of the Historical Log Price-Dividend Ratio. We apply
a particle filter to data on consumption, dividends, and stock prices using mean
posterior parameter values (Table 1). A state’s contribution to price/dividends is
computed by multiplying the state’s estimated price dividend ratio coefficient by
the filtered mean state (see equation (1)). The residual contribution is dominant
and closely tracks the price-dividend ratio.
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Figure 3: Price/Dividend Variance Decomposition. Shares are the percent of the
variance of price/dividends accounted for by the given state variable. We draw
parameters from the posterior, use the draw to filter expected states, and calcu-
late variance contributions according to equation (8). The residual’s dominant
role is robust to estimation uncertainty.

unimportant. Outside of crises, long run volatility does almost nothing. And

while long run growth and habit have more consistent effects, their effects are

often the opposite of the overall pattern in asset prices. Indeed, while economic

growth declined slowly between 1940 and 2014, the price-dividend ratio has

trended up.

Figure 2 is created using mean posterior parameters, which do not account

for estimation uncertainty. Is the dominant role of the residual robust to the un-

certainty seen in the posterior parameters (Table 1)?

Figure 3 shows that the answer is yes. The figure plots variance decomposi-

tion of the price dividend ratio using the entire distribution of posterior param-

eters. The variance decomposition is calculated with covariances

Var(pdt ) = Cov(Ax xt , pdt )+Cov
(

AVσ
2
t , pdt

)
+Cov(As st , pdt )+Cov(Ae et , pdt ) (8)

which can lead to negative shares if a state variable has a negative in-sample

15



correlation with pdt .

Figure 3 shows that the residual’s share of price dividend variance is almost

entirely above 75%. Indeed, its posterior mean share is 93%, showing that it ac-

counts for essentially all of the market volatility we have seen in the past 100

years.

Some of the distribution of the residual’s share lies above 100%. This excess

share is accounted for by the negative shares of long run growth and habit. Long

run growth has declined over the sample while asset prices have grown, which

sometimes leads to a negative share. Habit faces a similar correlation problem.

We discuss both of these issue in depth in Section 3.2.

Long run growth, long run volatility, and habit have very small shares over-

all. On average, the three risks account for just 10% of the variance of price-

dividends. There is some uncertainty in these estimates, however. The distribu-

tions of the shares for long run growth and volatility cover up to 25% and 15%

respectively.

This section illustrates the main message of the paper: while long run risks

played a non-trivial role in asset prices, something else is behind the vast major-

ity of market volatility between 1929 and 2014. This result is robust to estimation

uncertainty, and indeed, Section 4 shows that it is also robust to several prior and

model specifications.

3. Supporting Results

We now present evidence in support of our main results. We show that the

estimated states are intuitive—that is, they match the related observables and

narrative descriptions of economic history. We also show a simple OLS version

of our price-dividend decomposition that generates similar results.

3.1. Estimated States Match Observables

Likelihood-based estimations generate historical estimates of latent states.

These estimates provide an intuitive check on the price-dividend decomposi-

tions. With them we can ask: does the estimator do a good job describing eco-

nomic history?

Figures 4 and 5 show the answer is yes. These plots show estimated historical
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Figure 4: Baseline: Filtered States and Observables Part 1 of 2. We apply a par-
ticle filter to data on consumption, dividends, and stock prices, using mean pos-
terior parameter values (Table 1). Scattered x’s plot observables for comparison.
The estimated states capture historical shifts in growth and volatility.

paths for long run growth, long run volatility, habit, and the residual. These paths

are computed by using mean posterior parameter values (Table 1) and a particle

filter.

The top panel of Figure 4 shows the estimated history of long run growth,

along with demeaned consumption growth. Estimated long run growth path

does a good job of capturing historical shifts in growth. The state identifies the

Great Depression, the booming 60s, as well as the productivity slowdown of the

1970s. Interestingly, the estimator finds that growth has slowed since the 2008

Financial Crisis.

The bottom panel of Figure 4 shows the estimated history of long run volatil-

ity, along with the absolute value of demeaned consumption growth. The estima-

tor does a good job of picking up key historical patterns: the decline in volatility
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Figure 5: Baseline: Filtered States and Observables Part 2 of 2. We apply a par-
ticle filter to data on consumption, dividends and stock prices using mean pos-
terior parameter values (Table 1). Habit is surplus consumption (equation (5)).
x’s plot observables for comparison. The top panel shows consumption growth
scaled by the steady state λ(st ). The bottom panel shows the demeaned log price
dividend ratio divided. Surplus consumption responds intuitively to consump-
tion, and the residual closely tracks price-dividends.

after the war, the return of volatility in the 1970s, the Great Moderation, as well

as the recent return of volatility in 2008.

Figure 5 shows the remaining two states: habit and the residual. The top

panel shows habit, that is, surplus consumption, along with scaled consumption

growth. Consumption growth is scaled by subtracting out its mean, and then

multiplying by the steady state λ(st ), to imitate the “shock” term in the habit

process (5).

Habit responds intuitively to consumption shocks. Surplus consumption is

persistent, but responds to large changes in consumption growth. In particular,

surplus consumption plummets in the Great Recession, as noted in Cochrane
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(2011).

The bottom panel of Figure 5 shows the estimated residual, along the log

price-dividend ratio. The panel shows that the two series closely follow each

other. Notably, the residual tracks the broad historical patterns of the stock mar-

ket: the rise in the 1960s, drop in the late 70s, and the 1990’s boom. This close

relationship does not necessarily follow from the fact that the residual is not ob-

servable in consumption or dividends. The residual follows the observable only

if the explanatory power of the other variables is small.

3.2. OLS Price-Dividend Decomposition

Using the likelihood makes the estimator comprehensive: It accounts for all

moments of the observables. But it also makes it non-trivial to dissect. What

moment is driving the results?

This section provides a simple analysis of the driver. The price-dividend ratio

has a relatively low correlation with consumption growth, consumption volatil-

ity, and past consumption growth. This low correlation leads to a large role for

the residual.

To demonstrate this explanation, we perform a simplified version of estima-

tion. Specifically, we construct state histories using only data on consumption

and dividends. We then use OLS to regress the price-dividend ratio on the states.

The resulting variance decomposition uses only correlation information, and the

correlations lead OLS to conclude that a residual explains most of market volatil-

ity.

Long run risk states are constructed by running our Bayesian estimator using

only consumption and dividend data. The long run risk parameter estimates are

shown in Figure 6. Even without asset prices, the estimator finds evidence of

significant long run risks in consumption and dividends. Both states are highly

persistent, and quite volatile.

Figure 7 show the resulting state histories. The top and middle panels show

that the estimated state paths are largely unaffected by the use of asset price data.

The paths pick up the same features as in the baseline estimation (see Figure 4).

The bottom panel shows a simple construction of the habit process. Surplus

consumption is constructed by initializing at the Campbell and Cochrane (1999)
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Figure 6: Long Run Risk Parameter Estimates: Consumption and Dividends
Only. Even without asset prices, the estimator finds evidence of significant long
run risks in consumption and dividends.
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Figure 7: Simple State Histories. Long run growth and long run volatility are
computed from an estimation using just consumption and dividend growth. Sur-
plus consumption is constructed with (5) assuming that consumption growth is
constant and applying parameter values from Campbell and Cochrane (1999).
The bottom panel shows consumption growth scaled by the steady state λ(st ).
The state paths are similar to Figures 4 and 5 and relatively unaffected by omit-
ting asset prices.
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steady state and then applying the surplus consumption process (5) under the

assumption that consumption is i.i.d. The habit process parameters use Camp-

bell and Cochrane (1999)’s parameter values. The resulting surplus consumption

path looks much like the baseline estimation too (see Figure 5).

Comparing all three panels, Figure 7 shows that long run growth, long run

volatility, and habit capture only the crisis periods of stock market history. In the

panels we can see market crashes of the Great Depression and 2008 Financial

Crisis. But nowhere can we see the extended stock market boom of the 1960s,

the subsequent decade-long decline, or the dramatic bull market of the 1990s.

Table 2 provides a quantitative statement of this story. The table shows OLS

regressions of the price-dividend ratio on the states in Figure 7— that is, an OLS

estimate of our main equation of interest (1).

Table 2: OLS Price-Dividend Equation Estimates

We regress log price-dividends on the long run growth, long run volatility, and habit (Fig-

ure 7). All variables are scaled to have zero mean and a standard deviation of 1. The R2

shows that most of the variance of log price-dividends is explained by a residual.

Long Run Long Run Surplus
Growth Volatility Consumption

Coefficient 0.15 -0.48 -0.48
s.e. (0.14) (0.12) (0.16)

R2 0.17

The R2 of this regression is 0.17, indicating that the residual accounts for the

vast majority of the variance of price-dividends. Indeed, this R2 is overstated,

since the surplus consumption coefficient has the wrong sign. The baseline

Bayesian estimation avoids these wrong sign by imposing priors, leading to an

even larger role for the residual (Figure 3).

Figure 8 illustrates where the coefficients come from. The figure plots the

state paths along with price-dividends. Long run growth generally trends down-

ward over the sample period, while price-dividends grows. Thus, even though

there are periods over which the two variables move together, the overall corre-

lation is small, and the OLS estimates an insignificant coefficient.

Surplus consumption lags the price dividend ratio. It crashes after the stock
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Figure 8: Simple States vs the Price-Dividend Ratio. All variables are scaled to
have zero mean and a standard deviation of 1. Long run growth is estimated
without asset prices, and surplus consumption is constructed using parameters
from Campbell and Cochrane (1999). All states move in crises but otherwise are
uncorrelated with price-dividends.
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market crashes in both in the Great Depression and Great Recession. As the mar-

ket recovers after these crashes, this leads to a negative correlation and the neg-

ative OLS coefficient.

Overall, Figure 8 shows that tricky mental maneuvers are required to line up

asset prices with long run growth, long run volatility, and habit. There is some

semblance of a relationships between the state variables and asset prices, but

overall the correlations are low.

4. Robustness

As with any model-based econometrics, our method could potentially be

sensitive to the model specification. The Bayesian approach raises the additional

concern that the results could be sensitive to the choice of priors.

This section shows that our main result is quite robust. As long as the

specification allows for the possibility of a large residual, the estimator con-

cludes that the residual is dominant and closely follows the historical path of

price/dividends. This result holds in (1) our baseline specification, (2) if we spec-

ify that the prior conditional volatility and persistence of long run risks are inde-

pendent, (3) if we specify that habit responds to consumption growth rather than

innovations, (4) if we model just long run risks and the residual, (5) if we model

just habit and the residual, (6) if we rescale price dividend coefficients for the

variance of the states. Indeed, this result holds for every specification that we

have examined in the course of writing this paper (that allows for a residual).

Table 3 summarizes the robustness results. The table shows the shares of vari-

ance accounted for by long run growth, long run volatility, habit, and the residual

across 6 model and prior specifications (see Equation 8). Under all 6 specifica-

tions, the residual accounts for the vast majority of market volatility, with a min-

imum share of 83%.

Figure 9 plots the residual under these 6 model specifications. Regardless of

the specification, the residual is very highly correlated with the price dividend

ratio and marks most key events in stock market history. Indeed, the role of the

residual is very consistent: it tracks the stock market outside of the Great Depres-

sion and Great Recession.
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Table 3: P/D variance shares in alternative model specifications.

Figures show percent contributions to the variance of the log price-dividend ratio follow-

ing equation (8) under alternative model specifications. The table shows the mean and

standard deviation (in parentheses) of the posterior distribution of the shares. Shares are

computed using the filtered states evaluated at a sample of 5,000 draws from the poste-

rior distribution.

(1) (2) (3) (4) (5) (6)

Variance share Baseline alt. ϕx alt. habit no LRR no habit A rescaled

Long-run Growth 9.3 4.9 4.1 - 10.7 9.9
(6.6) (9.2) (3.9) (2.8) (2.9)

Long-Run Volatility 3.7 11.8 4.0 - 4.3 2.1
(3.0) (6.8) (2.3) (4.3) (3.0)

Habit -2.7 0.2 -0.8 8.8 - 1.0
(3.3) (1.9) (3.6) (5.5) (1.3)

Residual 89.6 83.1 92.7 91.2 85.0 87.0
(5.5) (10.4) (5.0) (5.5) (4.8) (3.6)

Figure 9: Historical residual contributions to pd in alternative model specifica-
tions.
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The alternative specifications have intuitive motivations. The remainder of

this section discusses these motivations and some details of each result.

Our baseline assumes that the prior parameters are independent, but of

course this implies that other properties of the model are correlated. The alt.

ϕx (Column (2) of Table 3) tests the importance of our independence structure.

Specifically, we replace Equation (3) with

xt = ρx xt−1 +ϕxσt−1ηx,t ,

thus removing the adjustment term
√

1−ρ2
x for the autocorrelation in the long-

run growth process. We then place a uniform prior on the relative volatility of

long-run growth: ϕx ∼U ([0,0.2]). Under this specification, the variance share of

long-run growth is somewhat lower than in the baseline, and the share of long-

run volatility is higher. The dominant share of the residual remains.

Another concern readers may have about our specification is that we assume

a specific relationship between long run risks and surplus consumption. We as-

sume that habit responds to consumption innovations, which leads to the two

state variables interacting in a specific way. The alt. Habit specification (Table 3

Column (3)) shows that an alternative and intuitive specification leads to similar

results. Specifically, we replace Equation (5) with

s̃t = ρs s̃t−1 +λ(s̃t−1)(∆ct −µc ).

Under this alternative habit process, surplus consumption changes in response

to all changes in consumption growth, not only unexpected changes. This means

that long-run growth xt−1 also enters the current habit state. This alternative

specification introduces a strong theoretical correlation between the long-run

growth state and the habit state, but is closer to the original formulation of

Campbell and Cochrane (1999). Under this alternative, the residual takes up

even more of the variation in the price-dividend ratio than in the baseline.

A common theme in our results is that long run risks and habit both capture

crises. A natural concern is that this correlation pollutes our results regarding

the residual’s share of market volatility. The no LRR (Table 3, Column (4)) and no

habit (Column (5)) specifications examine this concern. We remove in turn the

habit and long-run risk factors from the price-dividend ratio equation (1). When

long-run risks are removed, the estimation assigns a variance share of about 9%
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to habit, while when habit is removed, long-run risks account for a variance share

of about 15%. These results make it clear that the high share of the residual is

not due to competition between the different macro-asset pricing factors, but a

robust feature coming from the data.

Finally, some readers may be concerned about our price-dividend coefficient

priors, as these are not a standard type of variable to place priors over. Indeed,

baseline prior for these variables was chosen for simplicity rather than a careful

statistical or economic argument (Section 2.4).

The A rescaled specification (Table 3, Column (6)) places a different prior

structure on the four coefficients of the price-dividend equation (1). Specifi-

cally, we choose the priors such that the theoretical variance of the factors in the

price-dividend equation are identically and log-normally distributed. In doing

so, we avoid as much as possible that the prior favors of any state variable in the

variance decomposition, which is our prime object of interest in this paper. We

construct four independent random variables Tx ,TV ,Ts ,Te that are log-normally

distributed with Ti ∼ logN
(
µT ,σ2

T

)
, i = x,V , s,e. We then construct the Ax co-

efficients conditional on the values of the remaining model parameters θ as fol-

lows:

Ax =
√

Tx

V [xt | θ]
, AV =−

√
TV

V [σ̃t | θ]
,

As =
√

Ts

V [s̃t | θ]
, Ae =

√
Te

V [et | θ]
. (9)

Here,V [xt | θ] etc. are the theoretical variances of the state variables conditional

on the other model parameters. Note that we restrict the signs of the coefficients

to conform to economic intuition. That is, we restrict the coefficients on long run

growth and surplus consumption to be positive, and that on long run volatility

to be negative. The result of this prior choice is that the prior distribution of the

variances of the factors conditional on any θ are given simply by the Ti ’s, and in

particularly iid among each other. We set σ2
T = 2 and µT such that the uncon-

ditional prior variance of the price-dividend ratio equals the observed variance

in the data. Other, similarly diffuse distributions of the Ti ’s produce very similar

results. Column (6) makes it clear that the prior structure on the factor loadings

in Equation (1) do not matter much for the historical variance decomposition:

The results are very similar to the baseline.
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5. Interpretation of the Residual

We’ve shown that the residual is responsible for the bulk of market volatility.

But what does this residual represent?

Broadly speaking, the fluctuations in the residual are a kind of excess stock

market volatility. The residual moves closely with the price-dividend ratio, is un-

related to average economic growth (past or future), and is also unrelated to real

volatility.

This description matches several theories in the literature. The theories fit

into two broad categories: tractable representative agent models with hard-to-

observe shocks to risk (such as variable disaster risk) and more complex models

that link expected returns to observables other than consumption and dividends

(such as incomplete market models). We cannot distinguish among these theo-

ries in this paper, but this section explains how these theories are consistent with

our evidence, and suggests avenues for future resarch.

5.1. The Residual as a Hard-to-Observe, Time-Varying Risk

As the residual represents excess volatility, it naturally maps to hard-to-

observe variations in risk. This kind of modeling has the virtue of being highly

tractable, and thus leads to explicit predictions about a variety of asset market

phenomena (Tsai and Wachter (2015)).

To see how the residual can be modeled as hard-to-observe variations in risk,

suppose consumption growth experiences rare disaster shocks Jt

∆ct =µc +σηc,t + Jt (10)

∆dt =µd +φηcσηc,t +ϕdσtηd ,t +φJ Jt

Jt =
 J̄ , with prob et

0, otherwise
(11)

and that the probability of a disaster et is an AR(1) process

et = ē +ρe et−1 +σeηe,t . (12)

Close the model with a representative Epstein-Zin household, and standard log-
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linear approaches show that the price-dividend ratio is approximately

pdt ≈µpd + Ae (et − ē) (13)

Ae =−
exp

[
(φJ −γ) J̄

]−1+ γ− 1
ψ

1−γ
(
exp

[
(1−γ) J̄

]−1
)

1−κ1ρe

σe√
1−ρ2

e

. (14)

where ψ and γ are the intertemporal substitution and the risk aversion parame-

ters of the representative household.

Equations (10)-(13) show that the price-dividend ratio moves around in re-

sponse to a variable et that is almost entirely unconnected to consumption and

dividend growth. et shows up in equation (10) as the probability that Jt > 0, but

the rare nature of these disasters means that (10) is empirically equivalent to one

in which Jt = 0 all the time. More formally, simulating this model and applying

our Bayesian estimation to the simulated data would result in Ae coefficients that

are similar to what we found in U.S. data.

Thus, the probability of disaster functions just like a residual in the price-

dividend equation. But other kinds of hard-to-observe risks act similarly, for ex-

ample, the changes in the magnitude of ambiguity (Sbuelz and Trojani (2008))

or white noise shocks to habit (Bekaert, Engstrom, and Xing (2009)). Indeed,

one could add hard-to-observe shocks to other models of asset prices and likely

achieve a similar results.

The simplicity of this modeling approach means that it has the potential

to be extended to generate additional quantitative predictions. In production

economies, increases in hard-to-observe risks lead to clearly visible declines in

output and investment (Gourio (2012), Ilut and Schneider (2014)). Similar real

effects are seen in response to changes in habit (Chen (2016)) or beliefs (Win-

kler (2016)). Whether production economies can help distinguish between these

theories is an interesting question for future research.

5.2. More Complex Models of the Residual

Directly linking the residual to observables other than aggregate consump-

tion is possible, but requires more complicated models. Broadly speaking, there

are two kinds of complications that achieve this result: (1) incomplete markets,

and (2) imperfectly rational agents.
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Incomplete market assume consumption risk is not shared efficiently, so ag-

gregate consumption is no longer relevant for asset prices. This notion has a long

history going back to Mankiw (1986). The most parsimonious way to model in-

complete markets is by introducing idiosyncratic income risk (for example, Con-

stantinides and Duffie (1996)). Schmidt (2015) finds that this channel can be

made quantitatively significant with idiosyncratic disaster risk and Epstein-Zin

preferences. The time series of idiosyncratic disaster risk is not readily observ-

able, but Schmidt (2015) argues that initial claims for unemployment is a rea-

sonable proxy, and finds that this measure is highly correlated with the price-

dividend ratio.

Incomplete markets can also be modeled by focusing on institutional fea-

tures, namely the fact that financial intermediaries appear to play a critical role

in asset prices (Muir (2015)). In such models, only a subset of agents in the

economy trade stocks, and these agents are capital constrained (He and Krish-

namurthy (2013), Brunnermeier and Sannikov (2014)). As a result of these con-

straints, financial sector leverage becomes closely tied to the price-dividend ra-

tio. As all sector valuations tend to move together, this proxy most certainly has

a high correlation with the aggregate price-dividend ratio.

Models with imperfectly rational agents goes back to De Long et al. (1990).

Most of this literature assumes irrational expectations motivated by psychology

(for example, Hirshleifer, Li, and Yu (2015)). Barberis et al. (2015) apply this ap-

proach in a heterogeneous agent model that is qualitatively consistent with the

data on survey expectations of returns. This qualitative relationship is difficult to

match in completely rational models (Amromin and Sharpe (2013), Greenwood

and Shleifer (2014), Koijen, Schmeling, and Vrugt (2015)).

A more recent literature assumes agents are rational, but form beliefs from

a misspecified law of motion for stock prices (Adam and Marcet (2011), Adam,

Marcet, and Nicolini (2016)). Since agents rationally update beliefs about stock

prices based on observables, this approach naturally leads to relationships be-

tween the price-dividend ratio and non-consumption data. Adam, Marcet,

and Beutel (2015) find that this approach leads to predictions about the price-

dividend ratio and past returns which are quantitatively consistent with the data.

Their model is also able to match the evidence on valuations and surveys expec-

tations of returns.
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6. Conclusion

We develop a model of asset prices that involves multiple sources of risk: long

run growth, long run volatility, habit, and a persistent residual. The model is es-

timated using Bayesian methods which account for the entire likelihood of the

data. We find that the residual is the most important source of risk, accounting

for at least 80% of the variance of the price dividend ratio, as well as most recog-

nizable historical features of the price-dividend series. Long run risks and habit

play a role, but primarily in crisis periods.

This analysis raises the bar for asset pricing models. Many macro finance

models which are quite successful at matching moments struggle when con-

fronted with the entire likelihood of the data. Simply put, the conditional cor-

relations between asset prices and real variables is too small for the estimator to

put a lot of stock in real factors.

Models with hard-to-observe changes in risk (such as variable disaster risk)

pass these tests, but only do so because they hide the mechanism from empirical

scrutiny. Indeed it is difficult to falsify a model in which asset prices are driven

by fluctuations in the conditional density of rare events. More complex models

can link risk changes to observables, but typically can only be evaluated based

on their qualitative predictions.

Nevertheless, the results of this paper illustrate the importance of unobserv-

able drivers of asset price data. Policy makers, market participants, and aca-

demic economists which desire to understand why valuations are currently el-

evated, or why valuations have recently plummeted should be careful when at-

tributing these changes to movements in long run growth, long run volatility, or

habit-based risk aversion.
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7. Appendix

7.1. State Space Formulation

To estimate the model, we write it in a state space formulation following

Schorfheide, Song, and Yaron (2016). We make some small altertations to their

approach to accommodate habit and to simplify the large matricies.

In the end, we have transition equations

ht = ρhht−1 +σh

√
1−ρ2

h wt (15)

st =Φ(st−1)st +Σs(st−1)ηt .

and observation equations

yt =µy +Z s + AV σ̄
2(exp(2ht )−exp(2σ2

h)) (16)

where st , yt are vectors of augmented states and observables, wt ,ηt ,εt are vec-

tors of standard normal independent noise, and Φ(st−1),Σs(st−1),µy , Z are vec-

tors and matricies that describe the evolution of the system. Note that these

vectors and matricies can depend on the previous state or on the current time

period.

We’ll now derive these vectors and matricies.

Observables and States Denote the innovations on consumption and divi-

dends by:

η̃c,t = σ̄exp(ht )ηc,t (17)

η̃d ,t = σ̄exp(ht )ηc,t
(
φηcϕdηd ,t

)
. (18)

Further, denote the log surplus consumption ratio by ut . Stack the non-

volatility standard state variables zt ≡ [xt ,ut ,et ]′. Then we can map observables
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to an augmented state st (as in (16)) with:


∆ct

∆dt

pdt


︸ ︷︷ ︸

yt

=


µc

µd

µpd


︸ ︷︷ ︸

µy

+


0 1 1 0 0 0

0 φx 0 1 0 0

[Ax , As ,σe ] 0 0 0 0 0

0 Ax 0 0 As σe


︸ ︷︷ ︸

Z



zt

xt−1

η̃c,t

η̃d ,t

ut−1

et−1


︸ ︷︷ ︸

st

+ AV σ̄
2(exp(2ht )−exp(2σ2

h)).

State Transition Finally, we can relate the augmented state st to its lag as in

(15):



zt

xt−1

η̃c,t

η̃d ,t

ut−1

et−1


︸ ︷︷ ︸

st

=




ρx 0 0

λ(ut−1) ρu 0

0 0 ρe

 0 0 0 0 0

[
1 0 0

]
0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0[
0 1 0

]
0 0 0 0 0[

0 0 1
]

0 0 0 0 0


︸ ︷︷ ︸

Φ



zt−1

xt−2

η̃c,t−1

η̃d ,t−1

ut−2

et−2


︸ ︷︷ ︸

st−1

+




ϕxσ̄exp(ht−1)

0

0




0

λ(ut−1)σ̄exp(ht−1)

0




0

0

σe

 0

0 σ̄exp(ht−1) 0 0

0 0 0 ϕd σ̄exp(ht−1)

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

Σs (st−1)


ηx,t

ηc,t

ηe,t

ηd ,t


︸ ︷︷ ︸

ηt

.
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7.2. Particle Filter Details

We first describe the big picture of the algorithm. We then go on to give the

details of how each distribution is defined. Index particles by a superscript i =
1, ..., M .

1. Begin with a set of particles [si
t−1,hi

t−1] and weights πi
t−1.

2. Draw hi
t ∼ q(hi

t |pd i
t ,hi

t−1, si
t−1) for each i (q will be defined later)

3. Draw si
t ∼ p(st |yo

t ,hi
t ,hi

t−1, si
t−1) for each i (p will be derived later)

4. Update particle weights using

πi
t =πi

t−1[update factor]i (19)

[update factor]i = p(yo
t |hi

t ,hi
t−1, si

t−1)

[
p(hi

t |hi
t−1)

q(hi
t |pdt ,hi

t−1, si
t−1)

]
(20)

We’ll explain how to derive this update factor later.

5. Estimate log-likelihood contribution

log p̂(yo
t ) = log

(∑
i
πi

t−1[update factor]i

)
(21)

6. Resample: if 1

M 2 ∑
i
(
πi

t

)2 < 0.5 redraw {πi
t } using a multinomial distribution

with probabilities {πi
t }.

Since the remainder of this section discusses operations applied to every par-

ticle i , we drop the superscript for ease of reading.

7.2.1. Proposal Distribution for ht ∼ q(ht |pdt ,ht−1, st−1)

We draw ht based off of pdt . This differs from Schorfheide, Song, and Yaron

(2016) and helps a bit in making the filter more accurate.

The basic idea is that we want to draw ht as close to the true prob-

ability p(ht |pdt ,ht−1, st−1) as possible. Unfortunately, the relationship be-

tween pdt and ht is nonlinear, so we have to work with an approximation for
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q(ht |pdt ,ht−1, st−1) ≈ p(ht |pdt ,ht−1, st−1) based off of the linear system

pdt = pd0 + ÃV ,t ht + σ̃pdηpd ,t (22)

ht = ρhht−1 +σh

√
1−ρ2

h wt

where ηpd ,t ∼ N (0,1)i .i .d . and

pd0 =Ω0pd +Ωpd (Zt0 +Zt st |t−1 + AV σ̄
2 [

exp(2ρhht−1)(1−2ρhht−1)−exp(2σ2
h)

]
ÃV = AV σ̄

22exp(2ρhht−1)

σ̃pd =
√

(Ωpd ZΣs)2 +σ2
pd

That is, (22) is based off Taylor expanding (1) around ht = ρhht−1. We find this

approximation is good for relevant parameter values.

We apply a Kalman filter to system (22) to obtain ht |t ,V ht ,t . Finally, we draw

using q(ht |pdt ,ht−1, st−1) ∼ N (ht |t ,V ht ,t ).

7.2.2. The proposal distribution for st ∼ p(st |yo
t ,ht ,ht−1, st−1)

to be completed

7.2.3. Simplifying the Update Factor

We simplify the particle filter update step by taking advantage of the condi-

tional Gaussian properties of the model and using Bayes’ theorem.

The standard generic particle filter update follows

πt =πt−1update weight (23)

where the update weight is

update weight ≡ p(yt |st ,ht )
p(st ,ht |st−1,ht−1)

q(st ,ht |st−1,ht−1, yt )

and q is the proposal distribution in the propogation step (see Herbst and

Schorfheide (2014)). We can simplify the update weight by using the the proper-
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ties of the proposal distribution as well as Bayes’ rule.

update weight = p(yt |st ,ht )
p(st |st−1,ht−1)

p(st |yt ,ht , st−1,ht−1)

p(ht |ht−1)

q(ht |yt ,ht−1, st−1)
(24)

= p(yt |ht ,ht−1, st−1)

[
p(ht |ht−1)

q(ht |yt ,ht−1, st−1)

]
(25)

7.3. Bayesian MCMC Method

We wrap the filter in a standard Random Walk Metropolis-Hastings algorithm

in order to derive parameter estimates (Herbst and Schorfheide (2014)). We run

standard initial tuning runs of the algorithm in order to choose a good proposal

distribution. That is, we begin by finding the highest likelihood on a short ran-

dom search over the prior distribution (500 vectors). We then run a 500 vector

chain and use the variance of the posterior as a step direction. Last we test vari-

ous step sizes using 500 vector chains in order to find a step size which produces

an acceptance rate of about 0.3. The final MCMC chain is 500,000 parameter

vectors long and we burn the first 100,000 vectors to focus on the ergodic distri-

bution.

7.4. Detailed Baseline Posteriors

This section shows the prior and posteriors for all of the parameters. XXX
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Figure 10: Baseline: Posterior Details 1 of 2.

Figure 11: Baseline: Posterior Details 2 of 2.
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