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Abstract

This paper presents a dynamic general equilibrium model of a taxi mar-
ket. The model is estimated using data from New York City yellow cabs.
Two salient features by which most taxi markets deviate from the efficient
market ideal is the need of both market sides to physically search for trading
partners in the product market as well as prevalent regulatory limitations on
entry in the capital market. To assess the relevance of these features we use
the model to simulate the effect of changes in entry and an alternative search
technology. The results are contrasted with a policy that improves the inten-
sive margin of medallion utilization through a transfer of medallions to more
efficient ownership. We use the geographical features of New York City to
back out unobserved demand through a matching simulation.
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1 Introduction

This paper estimates a dynamic general equilibrium model of the New York City
(NYC) taxi-cab market. The estimated model is used to assess the importance
of regulatory entry restrictions and of search frictions. The ability to overcome
these barriers to trade has been a key element for the success of new technology
entrants such as Uber, which have expanded supply in many local markets and
introduced a novel dispatch technology to reduce search frictions. Our counter-
factual results isolate the relative importance of these two effects. We also show
that segmenting the taxi market between Uber and traditional taxis could lead to
a reduction in market thickness that worsens search frictions in the aggregate.

Taxi services offer limited room for product differentiation and markups. More-
over, a firm in this market is of relatively low organizational complexity. In its
simplest form it consists of a unit of capital (a car) plus the labor (a driver) needed
to operate it. The labor skill requirements are relatively modest and the capital
is in vast supply. Finally, in a city like NY, taxi drivers take many decisions in-
dependently, with little real-time information about aggregate conditions. Thus,
absent regulatory interventions, this market could serve as a textbook example
of a “perfectly competitive” industry with many firms making decisions inde-
pendently, jointly affecting aggregate market conditions. It therefore presents an
interesting case study of an important benchmark.

We first document some important patterns in this market. In most cities taxi
markets are subject to stringent regulations on entry and fares. NYC is no excep-
tion. Under the current system at most 13,520 yellow cabs can serve the market,
and we provide evidence that these restrictions are strongly binding. If there
were no other friction, one might therefore expect all taxis to be utilized at least
during the day-time. However, activity is often well below capacity, highlighting
the importance of understanding the intensive margin in labor supply decisions.

Because of regulations, there is no price flexibility in this market. This, to-
gether with the limits in capacity, means that regular patterns of variation in
demand for rides during the day (e.g., rush hours) lead to large variations in
the delays for matches between passengers and taxis. Drivers’ earnings and the
number of active taxis vary during the day depending on how long drivers need
to spend searching for their passengers. The average search time for an active taxi
between dropping off a passenger and picking up the next one ranges between 5
and 20 minutes depending on the time of day. Absent price adjustments, passen-
ger wait times and taxi search times serve as the market clearing variables.1

In our model, drivers make daily entry and hourly stopping decisions. Medal-
lions are scarce, so entry is only possible for inactive medallions. Hourly profits
are determined by the number of matches between searching taxis and waiting

1This form of rationing is common in other markets.
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passengers. Ceteris paribus, increasing the number of taxis increases the search
time for a driver to encounter the next passenger and drives down expected
hourly income. The number of taxis is determined endogenously as part of the
competitive equilibrium in this market. Stopping (exit) decisions are determined
by comparing a random terminal outside option with hourly earnings minus a
marginal cost of driving that is increasing in the length of a shift. Starting (entry)
decisions result from a comparison between an outside option and the expected
value of a shift (given optimal stopping behavior).

To estimate the model we make use of rich data on the NYC taxi market from
the years 2011 and 2012. This data includes every single trip of the yellow cab
fleet in this time span. The data entry of a trip includes the fare, tip, distance,
duration as well as geo-spatial start and end points of the trip. We have a panel
identifier for the medallion as well as the driver. This allows us to account for
an important source of heterogeneity in drivers’ characteristics (namely, owner-
operators vs. fleet drivers) that affects the intensity of utilization.

On the demand-side, we face a challenge because neither the passengers’
waiting time nor the number of hailing passengers is observed in the data. How-
ever, we can take advantage of the geographical nature of the search process to
recover how many people must have been waiting for a cab given the number
of passenger pickups we observe (successful matches), how long taxis search for
passengers, the number of cabs on the street, and the speed at which traffic is
flowing; all of which are variables we observe in our data. While the empiri-
cal literature on search and matching typically uses known inputs and observed
number of matches to infer the functional form of the matching function, we go
the opposite direction and use a specific matching process as well as observed
matches to infer one of the inputs to the matching function.

With the recovered demand data in hand, we proceed to estimate a demand
function in terms of the expected waiting time for a cab (recall that fares are fixed).
We find relatively modest elasticities of demand with respect to waiting time, but
this elasticity does play a significant role in the counterfactuals.

Our first counterfactual evaluates the effects of additional entry. An increase
in the number of medallions of 10 percent leads to an increase of 7.5 percent in the
number of active taxis.2 The reason for the less than proportionate increase is that
drivers respond to reduced earnings by choosing shorter shifts, highlighting the
importance of modeling the intensive margin on the supply side. However, the
increase in activity would be a lot smaller if we did not incorporate in the model
the dependence of passenger demand on expected wait times. The increase in
the number of taxis leads to a reduction in wait time, which leads to an increase
in the number of passengers, which in turn moderates the reduction in earnings
caused by the increase in the number of medallions.

2There is some difference in the extent of the increase in activity at different hours of the day.
This number is an average across the day for a typical weekday.
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Our second counterfactual considers an improved matching technology in
line with the dispatch system of the Uber platform and other startup ride hailing
services. We first consider a polar opposite of the NYC decentralized decision
making model by introducing a centralized dispatcher for the entire fleet. We
show relatively large gains for both sides of the market due to reductions in wait
times for both passengers and taxis. Interestingly, the number of active taxis in-
creases by almost the same amount as in the counterfactual with 10 percent more
medallions, despite the fact that the number of medallions is left unchanged. The
number of matches increases by 13%, almost double the increase in the activity
of taxis because frictions drop significantly.

We then consider the consequences of partial coverage by a dispatcher, with
the remainder of the market functioning with the traditional street-hailing sys-
tem. This is analogous to partial market penetration by an entrant such as Uber
which operates on a separate dispatch platform. We show that there is a large liq-
uidity effect that emerges from the market segmentation on different platforms.3

Partial coverage by a dispatcher has two effects: there is improvement of match-
ing in the covered market but, there is a segmentation of the market that makes
both segments thinner, with the consequence of longer average distances be-
tween a random taxi and a random passenger. When we consider the case of
a 50-50 split between dispatch and decentralized platforms, we find that the sec-
ond effect dominates, and therefore, aggregate outcomes become worse than in
the baseline case. Interestingly, the effects are quite different during the daytime
relative to night-time hours, reflecting the importance of the initial thickness of
the baseline market environment. Finally, we discuss a case which combines en-
try with the dispatch technology: 10% additional taxis, all of which are on the
dispatch platform. In this counterfactual, waiting times improve relative to the
baseline, but not relative to the case of the same amount of additional entry with-
out the separate dispatch technology. This is again due to market segmentation.

Lastly, we use the estimated model for a policy evaluation specific to NYC
that is of some interest because it highlights the importance of firm organization
even in environments where the production process is simple. A peculiarity of
the regulation in NYC is the restriction that about 40% of all medallions have to be
owned and operated by individuals. The remaining medallions are unrestricted
and are operated by several dozen companies which are known as minifleets.
These vary in size, with the largest operating hundreds of taxis. We find siz-
able differences in the utilization rates across medallion types. Owner-operated
medallions have significantly lower utilization rates and markedly slower transi-
tions between shifts. The city has recently presented a proposal to convert owner
operated medallions to regular medallions without these additional restrictions.4

3Uber seems to be well aware of this effect and therefore subsidizes drivers, especially when
they first enter a city.

4See, http://www.nyc.gov/html/tlc/downloads/pdf/proposed_rule_omd_repeal.pdf and

4

http://www.nyc.gov/html/tlc/downloads/pdf/proposed_rule_omd_repeal.pdf


This policy change leads to an increase in consumer surplus that is approximately
half of the one that we computed for the case of a 10% increase in the number of
medallions. This policy change would also lead to gains in the value of medal-
lions and depress driver wages only modestly. As such, it seems a politically
more feasible policy relative to an increase in the number of medallions.

2 Related Literature

This project combines elements from the entry/exit literature, neoclassical labor
supply models and search. Structural estimation of entry and exit models goes
back to Bresnahan and Reiss (1991). This entry/exit perspective on the prob-
lem is motivated by the fact that drivers in the New York Taxi industry, like in
many other cities, are private independent contractors and decide freely when to
work subject to the regulatory constraints. The labor supply decisions of private
contractors have for example been studied in Oettinger (1999), who uses data
from stadium vendors. In the spirit of the entry/exit literature we recover a sunk
cost, which is in our case the opportunity cost of alternative time use from ob-
served entry and exit decisions and their timing. One distinguishing feature of
our work relative to the typical I.O. literature is that our market contains tens of
thousands of entrants. Entrants therefore are competitive and only keep track of
the aggregate state of the market, which is summarized in the hourly wage that
is determined in equilibrium as a function of aggregate entry and exit decisions.
Another distinguishing feature is that previous papers on the topic, see for in-
stance Bresnahan and Reiss (1991), Berry (1992), Jia (2008), Holmes (2011), Ryan
(2012), Collard-Wexler (2013), and Kalouptsidi (2014), feature relatively long-term
entry decisions (building a ship, building a plant, building a store, etc.) making
both entry and exit somewhat infrequent. In our setting, entry and exit decisions
are made daily creating a closer link between realized payoffs and expected pay-
offs.

A direct application of spatial search to the taxi market is provided in Lagos
(2003), which calibrates a general equilibrium model (with frictions) of the taxicab
market, and includes some heterogeneity among locations. However, he assumes
that all medallions are active throughout the day and thus does not model the
labor supply decision nor does he allow demand to be elastic to wait time.5 Using
the model, he quantifies the impact of policies increasing fares and the number
of medallions.

Buchholz (2015) also estimates a structural model of the NYC yellow cab mar-
ket but focuses on the spatial dimension of the drivers’ choice, while taking the
intertemporal supply of taxis as exogenous. Buchholz (2015) relies on spatial vari-

http://www.nydailynews.com/new-york/tlc-plans-nix-owner-drive-rule-article-1.2543202
5Lagos (2003) does not have data on hourly or daily decisions by taxi drivers.
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ation in fares due to the the two components of fares, i.e., a fixed fare and a fare
that is variable in the travel distance, to estimate demand as a function of price. In
contrast, absent aggregate intertemporal variation in fares, we allow demand to
depend on the expected passenger waiting time. While we do not study the spa-
tial dimension of drivers’ choices, taxi activity is endogenous in our model and
we attempt to match the patterns of daily activity allowing for different behavior
for fleet versus owner operators. Hence, while his paper can explore counter-
factuals with respect to fare structure our paper ours can investigate ownership
structure as well as relaxing entry restrictions. Similarly, although one of our
counterfactual is related, namely our analysis of a (fully) centralized dispatcher,
the responses in Buchholz (2015)’s model are entirely spatial, whereas in ours
total taxi activity also responds.

Some earlier papers have used NYC trip sheet taxi data to investigate individ-
ual labor supply decisions. Camerer et al. (1997) find a sizable negative elasticity
of daily labor supply and they argue that this is inconsistent with neoclassical
labor supply analysis. This interpretation has been challenged by Farber (2008).
Crawford and Meng (2011) estimate a structural model of the stopping decision
by a taxi driver allowing for a more sophisticated version of reference-dependent
preferences. They do not consider the entry decision by a cab driver and do
not analyze the industry equilibrium. We opted to stay within the neoclassical
framework to study the general equilibrium of the taxi market, in contrast to
these papers that all focus on the intensive margin of daily individual labor sup-
ply decisions. We note that although it may very well be that some drivers do not
fit this assumption, the aggregate patterns are consistent with a standard model,
and it fits the data quite well. Hence, a standard model of labor supply seems
to be a reasonable starting place.6 This perspective is also supported by the new
evidence in Farber (2014), who uses the TPEP data and shows that only a small
fraction of drivers exhibit negative supply elasticities.7

3 Industry Details and Data

3.1 Industry Details

Operating a yellow cab in NYC requires ownership of a medallion. In the time

6Note also that our models fits aggregate patterns relatively well, hence any gains from allow-
ing for a richer labor supply decision would be small in aggregate.

7Other papers are not directly relevant, for instance Haggag and Paci (2014) that study the
impact of suggested tips in the NYC taxi driver payment screen for clients on the realised tip.
Haggag et al. (2014) who study how taxi drivers learn driving strategies based on the experiences.
Finally, Jackson and Schneider (2011) find evidence of moral hazard in the behavior of taxi drivers
and document that this problem is moderated if drivers lease from fleets owned by someone in
their social network.
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period covered by the data only yellow cabs are allowed to pick up street-hailing
passengers.8 This differentiates them from other transportation services such as
black limousines for which rides have to be pre-arranged via a phone call or the
internet.9 Yellow cab rides cannot be ordered via phone or internet unlike in
many other American cities. The yellow cab market is regulated by New York’s
Taxi and Limousine Commission (TLC), which sets rules for most aspects of the
market such as the fare that drivers can charge, the qualifications for a taxi-driver
license, the insurance and maintenance requirements, and restrictions on the leas-
ing rates (daily or weekly) that medallion owners can charge drivers.

Approximately 40% of the medallions, called owner-operated, require that
the owner of the medallion drive the taxi for at least 210 shifts in a year. The re-
maining 60% of medallions, which are called minifleets, are operated by approx-
imately 70 fleet companies that operate an average of 115 taxis each, although
some fleet owners operate more than one thousand taxis.10 Fleet companies
therefore manage many medallions and rent taxis out to drivers on a daily or
weekly basis.11 The presence of owner-operated medallions prevents concentra-
tion of ownership and therefore guarantees a fraction of “small businesses” in
the industry. We later show that the requirement of owner-operated medallions
leads to less flexible rental arrangements and lower utilization, implying that it is
important to allow for heterogeneity among ownership types in our estimation.

The TLC imposes several restrictions on the terms of the leases between medal-
lion owners and drivers. Leases can either be for a shift or an entire week. A
rental for a shift has to last twelve consecutive hours and a weekly lease seven
consecutive days. Minifleets must operate their cabs for a minimum of two nine
hour shift per day every day of the week.12 The TLC also specifies a cap on the
price that medallion owners can charge that varies with the time of the lease and
the type of vehicle.13 The fixed fare for transporting a passenger is $2.50 and the
fare for an additional unit is $0.4.14

8In the time period that we consider, Uber was not yet a significant presence
9The TLC recently established a possibility to hail cabs via a a mobile app, which was not

possible during our observation period.
10Source: http://www.nycitycab.com/Services/AgentsandFleets.aspx
11Fleet companies not only operate medallions that they own for themselves but might also

operate medallions for medallion agents who lease them to the fleet companies.
12See TLC Rules and Regulations, paragraph 58-20 (a) (1)

http://www.nyc.gov/html/tlc/html/rules/rules.shtml.
13The leasing rate caps are between $115 and $141 for a day-shift depending on the Weekday,

the vehicle type, as well as whether it is a night-shift or day-shift. Rate caps for weekly rentals
vary between $690 and $812.

14What constitutes a unit depends on the speed of driving. If the cab is slower than 12 mph a
unit is 60 seconds and above that speed it is 1/5 of a mile. On weekdays there is an additional
fixed surcharge of $ 1 for trips between 4:00 pm and 8:00 pm and $0.50 for trips between 8:00 pm
and 6:00 am. Trips from JFK airport to Manhattan are subject to a flat fare of $45.00 while those to
other borrows and trips from La Guardia are still governed by a variable fare.
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3.2 Data

Our main data source is the TLC’s Taxicab Passenger Enhancements Project (TPEP)
which creates an electronic record of every yellow cab trip. For each trip it records
a unique identifier for the driver as well as the medallion; the length, distance,
and duration of the trip, the fare and any surcharges, and the geo-spatial start
and endpoint of the trip. The TPEP data can be obtained from the TLC. In this
project we only use a subset of the data from 2011 and 2012, which ranges from
the October 1st, 2011 to November 22nd, 2011; and August 1st, 2012 to Septem-
ber 30th, 2012. The data from 2012 encompasses the time at which the unit charge
was increased from $ 0.4 to $ 0.5. During the time spanned by our data we see
the universe of 13,520 medallions. We also observe all 37,406 licensed drivers that
have been active in that period. We complement this data with information about
the medallion type (minifleet or owner-operated), and the vehicle type.

We will focus most of our analysis, including all of the counterfactuals, on
Monday through Thursday. The average activity of these days looks almost iden-
tical whereas Friday, Saturday, and Sunday each have some peculiarity. The rea-
son we do not further differentiate between weekdays is that it would then be
computationally prohibitive to obtain counterfactuals

4 Descriptive Evidence

We now provide some background information and descriptive evidence about
the functioning of the market. We also offer evidence for each of the following
features of the market that are later incorporated in the model and will be ad-
dressed in the counterfactual calculations: (1) entry restrictions, (2) daily patterns
of activity, and (3) search frictions.

4.1 Entry Restrictions

As we mentioned in the introduction, there are tight entry restrictions in most taxi
markets. In NYC, the number of medallions during the time-period of our data
is 13,520. This is an absolute limit on the number of possible taxis on the street
at any moment in time. Prices of medallions are an indicator of the quantitative
importance of the entry restriction.15 During the period we consider these prices
exceed half a million dollars. Of course, such medallions would not be valuable
in a market with no entry restriction. We have also verified that the percentage
of medallions that are driven at least once a day is close to 97% from Tuesday to
Thursday, and 92% even on Sunday. Given that there will be some natural failure

15Medallions are often traded in auctions and prices are public data.
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rate of vehicles and other idiosyncratic reasons why taxis may fail to be utilized,
this seems to be a very intense rate of utilization.16

4.2 Daily Patterns of Activity

Figure 1 displays the fraction of taxis that are active at each hour of the day for a
typical (Monday-Thursday) weekday, distinguishing whether it is a minifleet or
an owner-operated medallion.17

Figure 1: Comparing Activity of Owner-operated and Fleet Medallions.
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We wish to draw attention to several features of this figure. First, fleet medal-
lions are more intensely utilized for every hour of the day. To place this in per-
spective the difference in utilization is larger than the difference between Uber
and taxis reported by Cramer and Krueger (2016). Second, there is substantial
intra-day variation in activity, but this variation does not seem to fully reflect ex-
pected patterns of intra-day variation of demand, despite the fact that activity is
well below capacity for the entire day.18 Third, there is a large reduction in activ-
ity precisely during the evening rush hour. This is known in NYC as the witching
hour. This drop in activity is stronger for fleet medallions.

Our model of the supply-side of the market will incorporate features that al-
low it to match all these data patterns of daily activity. In particular, these pat-
terns imply the need to take into account the intensive margin of supply and its
variation during the day, as well as the importance of allowing for differences
between fleet and owner-operated medallions.

16As we will see, this is quite different from the utilization rates for a typical hour, which also
depends on drivers hourly stopping behavior.

17An owner is required to drive at least 210 shifts (nine-hour minimum) per year. Thus, for this
type of medallion, one owner cannot manage multiple medallions. However, they can lease the
taxi to another driver for the shifts he does not himself drive.

18Below we provide evidence that activity is indeed less variable than demand.
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One of our counterfactuals aims to understand the quantitative importance of
the restriction on owner-operated medallions. We will discuss other features of
this difference when we present that discussion.

4.3 Search Frictions

An important friction in this market relative to the ideal of a Walrasian market
arises from the fact that drivers and passengers have to physically search for trad-
ing partners. Figure 2 describes the fraction of time that an average taxi spends

Figure 2: Search-time Relative to Delivery Time During the Day
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Notes: This plot shows the ratio of time a taxi spends searching for a passenger
as a percentage of total time spent driving. For the plot we take the average
over those ratios using data from Monday to Thursay. The plot shows that
search time is highest in the nighttime hours and lowest during the “witching”
hour when demand picks up for the evening rush hour and many medallions
are transitioned between shits.

searching for passengers relative to the total time it is active, i.e., the unemploy-
ment rate for taxis.

Two notable features are the following: First, the fraction of time taxis spend
searching is almost never lower than thirty percent and shows substantial varia-
tion throughout the day, going as high as 65% at some points of the day. It is im-
portant to note that, under the current system of fixed fares, most inter-temporal
variation in driver profits and customer welfare are created by variation in delays
in finding a partner. Indeed, a simple linear model reveals that variation in taxi
search time explains about 60% of the variation in drivers’ hourly wages.19 The
low point of the time taxis spend searching is reached at 5PM when many medal-
lions become inactive because of shift changes. One interesting observation from
Figure 3 in conjunction with Figure 2 is that waiting time for both passengers and
taxis increases during the night although the ratio of passengers to taxis is rela-
tively stable (the wait time for passengers is inferred from our simulation, which

19Most of the remaining variation is explained by trip-length and the rate that is charged per
minute of driving. This rate varies with the speed of traffic due to the mixture of time-based and
distance-based metering.
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Figure 3: Search Time for Taxis (from data) and Wait Time for Passengers (from
simulation)

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

● ●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

Cabs Passenger

6

8

10

12

14

16

2

4

6

0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
Hour of day

M
in

ut
es

Notes: The left panel shows search time for taxis in minutes, averaged for each hour
of the day. The right panel shows waiting time for passengers as recovered by our
simulation, again averaged for each hour of the day. Only data from Monday to Thursday
is considered.

is described in detail later). This illustrates an “economy of density” that implies
that both market sides benefit from the fact that density facilitates the matching
process.

Additional evidence for the presence of search frictions can be obtained by
comparing the actual travel time between observed drop-off location and pick-
up locations (the start and endpoint of the search process) with the travel time
of the fastest route between these points. To obtain the latter we query Google’s
distance API for the travel time between 1500 randomly selected drop-off and
pick-up locations from our data. For each of these observations we computed
the ratio of the actual time taxis spent traveling between the two points over the
suggested fastest time and find that taxis spend on average 220% more time to
travel between these points.

5 Model and Estimation

5.1 Demand Side Model

In the estimation we focus on Manhattan, which, with 93% of all trips in the data
accounts for most of the activity.

Since the NYC taxi market operates under a fixed fare system, the endoge-
nous variables of interest that adjust to clear the market are the wait time wt for
passengers to find a taxi, and the search time st for taxis to find a passenger.

There are two separate challenges regarding the estimation of the demand
function. The first problem is that, while we observe the number of matches
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between passengers and taxis, we do not directly observe either the number of
waiting passengers (demanded quantity in equilibrium) or their waiting time (the
price). The second problem is the issue of simultaneity, which is the typical chal-
lenge in the estimation of demand. In this section, we explain how we deal with
the first problem to recover the demand data that we need to estimate a demand
function. In section 5.1.3, we then describe the instrumental variable approach to
deal with endogeneity concerns.

Given a number of searching taxis (which we observe), the average time that
a taxi spends searching (which we also observe) reveals information about the
number of passengers that must have been waiting on the street. To be more
concrete, imagine two scenarios, both have the same number of searching cabs
c1 = c2, but the time they search is higher in scenario one, s1 > s2. Assume also
that all other relevant factors (such as the speed of traffic) are the same in the
two scenarios. Then, more passengers must have been waiting on the street in
scenario two. Our approach uses this basic intuition.

Let i ∈ {1, ..., I} be the index of an area in the city. The total number of
waiting passengers is dt and they are split up across areas of the city accord-
ing to proportions {pd

i |i = 1, ..., I}.20 We denote the vector of waiting passengers
dt = (dt · pd

1, ..., dt · pd
I ). The matching process is captured by a function g that

maps a vector of waiting passengers dt, and searching taxis ct=(c1t, ..., cIt) as well
as other exogenous time varying variablesφt into an aggregate search time st and
wait time wt: (

st
wt

)
= g(dt, ct,φt) (1)

If we knew g (·), then, for given values of ct, and φt, inverting this function
from st allows us to infer dt as long as the search time st itself is decreasing every-
where in dt. Without knowledge of the shape of g (·), this inversion is, of course,
not feasible. However, we can use our knowledge about the geographical nature
of the matching process to infer the form of g(·). In particular, we simulate the
matching process of waiting passengers and searching taxis on a grid that repre-
sents an idealized version of the Manhattan street grid.

5.1.1 Implementing the Simulation

In the simulation, which provides an approximation of g(·), we assume that pas-
sengers are waiting at fixed locations on a two-dimensional grid. The map con-
sists of nodes whose spacing is proportional to 1/20th of a mile. Each of these
nodes serves as a spot at which passengers potentially wait. Street blocks are as-
sumed to be 40th of a mile wide (east-west) by 1/20th of a mile long (north-south),

20These proportions are inferred from the data, see 5.1.1 below for explanation
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which corresponds to the approximate block size in Manhattan. Figure 4 shows
the structure of the resulting grid. Gray nodes represent intersections between
streets and avenues, at which cabs can change direction of travel. Turns at (gray)
nodes are random with equal probability for each feasible travel direction.

Figure 4: Schematic of the Simulation Grid
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We assume that the effect of time varying factors can be summarized by the
speed mpht at which the traffic flows and the average distance milest to deliver a
passenger from his fixed position on the grid to the destination. Both factors are
included in φt, and both are directly observed in our data by using the average
hourly speed of the entire taxi fleet as well as the average distance of all trips
on an hourly basis. For each combination of variables that we feed into g, we
simulate the resulting average waiting time for passengers and search time for
taxis over an hour long time interval. Every ten minutes d/6 potential passengers
are born and placed on the map for a total of d passengers during the hour.

To account for the fact that the number of trips originating from different parts
of the city varies, we divide Manhattan in eight equally spaced areas (see Fig-
ure 18 for details). Passengers appear on the corresponding parts of the grid in
proportion to the observed pick-up probabilities of those areas and cabs reap-
pear according to the observed drop-off probabilities. In other words, for each of
the passengers placed on the map, we first randomly determine an area accord-
ing to a multinomial distribution with probabilities { p̂d

i |i = 1, ..., 8} and then a
node within an area, where each node has equal probability. The probabilities
{ p̂d

i |i = 1, ..., 8} are estimated as the fractions of trips originating in these areas.
Similarly, cabs re-appear on the map in area i according to multinomial proba-
bilities { p̂c

i |i = 1, ..., 8} and with equal probability on each node within an area.
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The probabilities { p̂c
i |i = 1, ..., 8} are measured as the frequencies of drop-offs in

those areas.21 While in this way we partially account for heterogeneity across city
locations, we do not endogenize location choices as in Buchholz (2015).

Note that except for the multinomial probabilities none of the steps so far re-
quired the use of observed data. This simply generates a representation of g()
for any point in its domain.22 This procedure gives us a simulated version ĝ of
the matching function. As long as the simulation approximates the true match-
ing process closely enough, we can use ĝ to back out dt for each combination
of hourly averages of search time st, number of taxis ct, traffic speed, and trip
distance observed in the data. Once the number of passengers is known we can
insert it into ĝ to determine wait-time wt as well. Additional details on the simu-
lation, including the algorithm, are provided in Appendix B.

5.1.2 Properties of the Matching Function

Figure 5 graphically illustrates properties of the matching function. The figure
on the left shows what happens to wait time and search time as the market be-
comes thicker. On the horizontal axis the number of taxis and passengers vary
while keeping constant the ratio between the two. Both passenger wait-time and
search-time decrease as the market becomes thicker, but the improvements de-
crease relatively quickly. It should be noted that the average number of daily
taxis is about 7800. At this number of taxis and passengers, additional returns to
market thickness are fairly small, especially for drivers. However, this would not
be the case in more sparsely populated cities.

The figures on the right give a sense of how market tightness affects outcomes
for both market sides. On the top right panel, the number of passengers is in-
creased while holding fixed the number of taxis at the median observed in the
data. In the bottom right panel, the number of taxis varies, holding fixed the
number of passengers at the median. Both figures also display level changes due
to differences in traffic speed, one of the exogenous inputs to the matching func-

21Note that conditional drop-off and pick-up probabilities would only be of interest if the iden-
tity of drivers were to make a difference. For the purpose of this simulation, however, driver
identities are irrelevant. We will hold those probabilities fixed throughout, since we treat them as
an exogenous process.

22Due to computational limitations, it is not feasible to repeat this simulation for each point in
the domain of g. If, for example, we assume that in an hour there are at most 70, 000 passengers
waiting, and multiply this by the maximal number of medallions, we would already obtain 945
million different points in the domain without even considering variation in φ. We therefore
simulate g for a lower number of grid points and we interpolate linearly between those points to
obtain the image for points in between. For each of the four independent variables of g(.), we
pick eight different evenly spaced grid points. Because the outcome of the matching process is
random, we have to repeat the simulation multiple times for each of those points. In practice we
have found that the average of these simulations does not change much after ten iterations, which
is therefore what we use to produce this average.
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Figure 5: Graphical Illustration of Matching Function
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tion. The dotted line is obtained under a traffic speed that is one standard devi-
ation below the median and the solid line is for traffic speed that is one standard
deviation above the median. While faster traffic speed is unequivocally good for
passengers, there are two contrasting effects for cabs. On the one hand, faster
traffic speed allows an individual cab to more quickly reach a waiting passenger,
thereby reducing search time. On the other hand, faster traffic speed speeds up
aggregate deliveries of passengers, and therefore leads to an increase in competi-
tion, effectively increasing the number of available cabs. At the median number
of observed passengers, the latter effect outweighs the former at about 4000 cabs.
We will make use of this effect in our demand instrument.

Figure 6 shows the wait time and the number of passengers for an average
weekday as well as the number of passengers for an entire average week based
on an inversion of our simulated ĝ(.). The passenger figures confirm an expected
pattern of strong rush hour demand in the morning and evening hours on all
weekdays. On Sundays we find that demand is lower than during weekdays,
and there is also no clear division between morning and evening rush hours.
This, again, appears to be reasonable. One can see that the wait time in the morn-
ing rush hour spikes exactly when demand peaks between the hours of 7AM to
10AM. This stands in contrast to the peak in wait time in the evening that occurs
at 5PM, before the spike in demand occurring at 7PM. The reason for this pattern
is the coordinated shift change (witching hour) that leads to the more unfavorable
ratio of active cabs to searching passengers.
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Figure 6: Graphical Results of Demand and Wait Time
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5.1.3 Estimating the Demand Function

Now that we have obtained the number of passengers and the wait time, we
need to estimate a demand function that relates these two variables. We assume
a constant elasticity demand function of the following form:23

dt = exp(β0 +∑
ht

βht · 1{ht}+ x ·βx) · wηt · exp(ξt). (2)

The multiplicative component exp(β0 + ∑ht βht · 1{ht}+ x · βx) captures ob-
served exogenous factors that may shift demand, as well as persistent unob-
served components through dummy variables and ξt captures unobserved time
varying conditions that shift demand. The main parameter of interest is η, the
elasticity of demand with respect to waiting time. Taking logs, demand can be
estimated as a linear model:

log(dt) = β0 +∑
ht

βht · 1{ht}+ x ·βx + η · log(wt) +ξt. (3)

23Since we break up the data down to hourly levels and only use a subset of weekdays, we are
left with slightly more than 700 observations for this estimation. The assumption of log-linearity
is common in such a case, see for example Kalouptsidi (2014).
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A potential problem is that the wait time itself is a function of the number
of passengers as well as the number of cab drivers. In particular, unobserved
factors that shift demand will directly appear in wt. Furthermore, drivers may
condition their decisions on factors included in the error term ξt, which would
lead to a decrease in waiting time. For both of these reasons we have to expect
that the error term ξt and the wait time wt are correlated. This would, of course,
introduce a bias in the estimation of η. To address this concern we instrument for
the wait time. We need a variable that is correlated with wait time and that affects
demand only through wait time. A supply shifter satisfies this requirement. In
our preferred specification, we instrument for the wait time with the traffic speed
outside of Manhattan.

Table 1: Different Specifications for Demand Estimation.

First First Second Second
Stage Stage Stage Stage

log(wt) log(wt) log(dt) log(dt)

log(mpht)|OutsideManhattan 0.800**
(0.167)

log(mpht)|InsideManhattan -3.252** -2.373** -2.597** -2.379**
(0.223) (0.113) (0.571) (0.104)

Shift Instrument 0.392**
(0.0165)

log(wt) -0.596* -0.396**
(0.237) (0.0442)

Observations 714 714 714 714
Hour FE
2-Hour FE
R2 0.923 0.870 0.965 0.957
F 4168.9 2019.8

Note: + p < 0.10, ∗ p < 0.05, ∗ ∗ p < 0.01, All regressions are based on our subset
of 2011 and the August 2012 trip sheet data (we only use the 2012 data before the fare
change), excluding Fridays, Saturdays and Sundays. An observation is comprised of
an hourly average over all trips in that hour. Standard errors clustered at the date
level.

The first stage shows that, controlling for traffic speed inside of Manhattan, the
sign of traffic speed outside of Manhattan is positive. Traffic speed has two op-
posing effects on drivers earnings, on the one hand it increases search time (since
trips are finished faster and more taxis therefore search, see Figure 5). On the
other hand, earnings per minute of driving time are higher on faster trips due
to the structure of metered fares. The latter effect outweighs the former if travel
distances are longer, and trips outside of Manhattan are on average much longer.
It seems plausible that high traffic speed makes it differentially more attractive to
serve the outer boroughs, reducing the number of cabs in Manhattan.24 We have

24A substantial fraction of taxi rides outside Manhattan are airport rides. We have in fact veri-
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explored an alternative instrument based on the shift transition of taxis. Ap-
pendix D provides an institutional explanation for why shift transitions can be
considered a good instrument for supply shifts. Since this is a coarse instrument,
it limits the extent to which this specification allows us to control for persistent
unobservables. For instance, under this specification, we cannot control for time
of day dummies at the hourly level. Partly for this reason, we prefer the specifi-
cation with the traffic speed instrument. In any event, the two instruments lead
to estimates of demand elasticities that are of similar magnitude. Table 1 shows
the results of our demand estimation. The first two regressions are the first stages
for both respective instruments. In our preferred specification we use the traffic
speed outside of Manhattan as a supply shifter. The latter two specifications are
the second stages. All second stage regressions include traffic speed in Manhat-
tan as a control. Our preferred specification leads to an estimated elasticity of
approximately −0.6, whereas the specifications in which we use the shift change
as an instrument reduces this estimate to approximately −0.4. It is also worth
pointing out that the high R2 in the specifications with dummy variables high-
light the fact that most of the hourly variation in the market is captured by these
relatively parsimonious specifications.

Figure 7: Demand Function Evaluated at the Mean of Wait-time

●
● ● ● ● ●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

10000

20000

30000

40000

50000

0 2 4 6 8 10 12 14 16 18 20 22
Hour of day

D
em

an
d

 a
t m

ea
n 

of
 w

ai
tt

im
e

Figure 7 shows what demand would be if the waiting time was held fixed at
the daily mean throughout the day. This highlights how the inelastic portion of
demand is varying throughout the day. All else being equal, demand would be
highest in the evening hours between 5PM and 7PM and lowest in the morning
hours from 2AM to 7AM.

fied that the fraction of taxis that wait for rides at JFK airport is in fact increasing in traffic speed
from the airport into Manhattan.

Note, however, that the sign of traffic speed outside of Manhattan is only positive after con-
trolling for traffic speed inside of Manhattan. This could be because traffic speed, in general, is
also a proxy for unoberved demand shocks and also might shift the relative attractiveness of ride
hailing transportation relative to the subway.
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5.2 Supply Side Model

In modelling the driver’s problem, we wish to incorporate the regulatory and
organizational constraints imposed by the medallion system that we discussed in
section 3. In our model agents make their decisions in discrete hourly intervals.
We interpret those as representative hours of a weekday.

At each hour t there are Nt active and Mt inactive medallions, which sum
up to the total number (13,520) of medallions issued by the city. Each hour an
empty medallion is probabilistically filled with a driver, depending on the out-
side option of drivers and their optimal strategy. Active drivers make an hourly
stopping decision. As mentioned above, we focus on Monday-Thursday. Agents
form expectations about earnings for each weekday hour. We let ht be an index
denoting hours from the set H = {1, ..., 24}.

In section 3 and section 4 we highlighted the fact that minifleet medallions
are more heavily utilized than owner-operated medallions, and are also more
likely to transition between shifts at 5PM, and therefore over-proportionally con-
tribute to the supply shortage at that time of the day. Because of these differences
between types of medallion, we allow for two types of heterogeneity: the first
captures the medallion type, the second captures the time at which a medallion
typically transitions between shifts. For a driver i the index zi ∈ {Fleet, Own}
denotes the ownership of the medallion and takes on those values depending on
whether it is a minifleet or an owner-operated medallion. We allow the model
parameters to be different for minifleet and owner-operated medallions. The in-
dex ki ∈ K captures the time at which the medallion transitions between day-shift
and night shift. We allow for four possible transitions in the morning and four
in the evening. Drivers have to pay fines when they return the case after the end
of their shift. The transition type determines when those fines need to be paid.
If, for example, the most common transition time in the morning (as measured
by the mode) is 5PM, we assume that a driver has to pay a fine for handing in
the medallion later than this.25 To sum up, the model allows medallions to vary
along two dimensions, one is the type (minifleet vs. owner operated) and the
second is the transition time.

We first discuss the optimal stopping decision for a driver who is already on a
shift, then we discuss the decision to start a shift. The value of a shift conditional

25Assuming such fixed times for fines partially endogenizes transition time and gives the model
some flexibility to match patterns where drivers drive longer than in normally the case. How-
ever, transition times are in principle endogenous and one could imagine that drivers take into
consideration daily variation in the value of day-shifts and night-shifts to time the transition in a
negotiation process. Such a fully endogenous model is currently outside the scope of this paper.
However, as we argue in Appendix D, the current regulatory arrangements limits the flexibility
of transitions.
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on state (xit, πt,εit) is given by:

V(xit, πt,εit) = max{εit0, πt − Czi ,ht(lit)− f (ht, ki) +εit1

+Eπt+1 ,εi(t+1) [V(xi(t+1), πt+1,εi(t+1))|ht+1]}
(4)

At the beginning of each hour the driver decides whether she wants to collect
the flow payoff from driving plus the continuation value of an active shift, or the
random value of the outside option.26 This expression depends on an observ-
able state vector xit = (ht, lit, zi, ki), the realization of hourly earnings πt (drawn
from an endogenous distribution Fπ(.|ht) that depends on the hour). as well as
an idiosyncratic unobservable vector εit = (εi0,εit1), assumed to be distributed
according to i.i.d. T1EV distributions with scale parameter σε. The cost of driv-
ing Czi ,ht(lit) is a function of the length lit of the shift. It allows for an increasing
(effort) cost of driving as the shift gets longer. The parameters of this function are
indexed both by the medallion type zi and by the hour-weekday combination ht.
We interpret this cost function as a combination of the hourly opportunity cost of
driving, which may vary throughout the day, as well as the disutility of driving.
We assume that the cost function takes the following form:

Czi ,ht(lit) = λ0,zi ,ht + λ1,zi · lit + λ2,zi · l
2
it.

27

While the fixed cost components can depend on the hour, we only allow for two
different values of λ0 for each 12-hour shift.

The term f (ht, ki) is a fine that has to be paid if the medallion is delivered late
to the next driver. Such fines are very common to insure that drivers do not oper-
ate the cab longer than contractually specified. Since fines are not directly observ-
able we estimate them as parameters. We use the fact that we can see the same
medallions operate over a long period of time to classify each into a category ki of
morning and evening transition times. For each medallion we compute the most
common starting hour (the mode) in the morning as well as in the evening. We
then assume that a morning driver has to pay a fine fzi whenever he goes past the
common night shift starting time and analogously for a night driver. The fine is
again indexed by zi to account for the fact that owner-operated medallions seem
to have less stringent transition times. We denote by hki the set of hours for which
a driver of medallion ki is subject to the fine when driving. We therefore have:
fzi(ht, ki) = fzi · {ht ∈ hki}.

We now discuss the decision of whether to start a shift. For each hour t dur-
26We assume that there is no discounting since these are hourly decisions.
In the estimation the maximal shift length at we allow is 13 hours. This is longer than the

regulatory maximum of 12 hours and it is surpassed only in a very small number of cases.
27We have also explored a specification with higher order polynomials but this does not make

a difference in the results.
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ing which a medallion is inactive, a driver i has an opportunity to be matched
with this medallion. He decides to enter if the value of driving is higher than
his outside option over the expected optimal length of a shift. If he decides not
to enter, then the medallion will be available to another potential driver the fol-
lowing hour. We assume that the utility from the outside option is comprised
of a fixed value µz that depends on the medallion type and on whether it is a
day or night shift, as well as an idiosyncratic random component vit0. The utility
of driving depends on the entire expected value of a shift (described below) as
well as an idiosyncratic component vit1.28 We assume that vit0 and vit1 are i.i.d.
random variables distributed according to a Type 1 Extreme Value (T1EV) with
scale parameterσv.29 Drivers also have to pay a daily rental fee r that depends on
whether they drive during the day shift or the night shift. If they own the medal-
lion they have an opportunity cost of driving equal to r . We set rht equal to the
rate caps, which, according to anecdotal evidence, were always binding during
the data period.30 The deterministic part of the state vector is xit = (ht, lit, zi, ki).
Note that ht as well as lit progress deterministically and that zi and ki do not
change over time.

To summarize, the utility of the outside option is given by:

uit0 = µht ,k + vit0,

and the utility of starting a shift is given by:

uit1 = Eπt+1 ,εi(t+1) [V(xi(t+1), πt+1,εi(t+1))]− rht + vit1.

As is well known, a convenient feature of assuming a T1EV distribution for
the error terms is the closed form expression for the choice probabilities. De-
noting by q(xit) the probability that an inactive driver starts a shift at time t,
conditional on state xit, we obtain:

q(xit) =
exp((Eπt+1 ,εi(t+1) [V(xt+1, πt+1,εi(t+1))|ht+1]− rht)/σv)

exp((Eπt+1 ,εi(t+1) [V(xt+1, πt+1,εi(t+1))|ht+1]− rht)/σv) + exp(µht/σv)
.

28Of course, all that matters for drivers’ choices is the difference between vit0 and vit1.
29The scale parameter σv is identified because Eπt+1 ,εt V(xt+1, πt+1|ht+1) is a given value from

the stopping problem and not pre-multiplied by any parameter.
30Recall that the sample period is before UBER became important in NYC. In 2015 it had already

become clear that rental rate caps were no longer binding.
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5.2.1 Equilibrium Definition

Hourly earnings πt are determined by the equilibrium distributions of active
medallions Fc(.|ht) and searching passengers Fd(.|ht). Drivers forecast their
earnings according tothe distribution of earnings Fπ (.|ht). The distributions
Fc(.|ht) and F d(.|ht) determine a distribution of wait times Fw(.|ht) and search
time Fs(.|ht) in a way that depends on the matching process.

Definition 1 A competitive equilibrium in the taxi market is a set of distributions {Fs(.|ht),
Fw(.|ht), Fc(.|ht), Fd(.|ht),Fπ(.|ht) : ht ∈ H}, such that:

1. Fd(|ht) results from the demand function dt (wt) under the distribution of waiting
times Fw(.|ht) and demand shocks ξt.

2. Fs(.|ht) and Fw(.|ht) result from Fd(.|ht) and Fc(.|ht) under the matching func-
tion g(.).

3. Fc(.|ht) results from optimal starting and stopping under Fπ(.|ht).

4. Fπ(.|ht) results from the distribution of search times Fs(.|ht).

It is worth pointing out that the main sources of aggregate uncertainty in the
model are shocks to demand, traffic speed, and trip length.31 The idiosyncratic
uncertainty on the supply side, such as the random outside options, averages
out across the large number of taxis. We do not allow for autocorrelation in the
shocks or earnings. An inspection of the demand regressions in Table 1 shows
that most of the variation is explained by hourly fixed effects (which enters the
structural model through our specification for the demand function). Most of the
variation in search and wait times is alsocaptured by hour of day fixed effects.
Allowing for autocorrelation in earnings or idiosyncratic shocks would therefore
change results only slightly albeit adding significantly to computational cost.

5.3 Identification of Supply Side Parameters

In this section we briefly discuss how the primitives of the model are identified.
The cost function has multiple components: (1) There is a term that varies with
the duration of the shift, (2) an hourly fixed component, (3) the fines, (4) the stan-
dard deviation of the hourly outside option, (5) the mean of the daily outside
option, and (6) the standard deviation of the daily outside option. The identifica-
tion of (1) can be best understood by using backwards induction for the driver’s

31Hourly earnings are determined as e(miles,mph)
e(miles,mph)+s(d,c,miles,mph) · 60 · π0, where e is the expected

trip length and π0 is the rate that drivers earn per minute of driving. Search time s is determined
under the matching function g(d, c, miles, mph).
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decision problem. At the maximum allowed shift length (drivers are not allowed
to drive more than 12 consecutive hours), the continuation value is zero; thus, the
driver only compares expected income in that last hour against the cost of driv-
ing. The value of the cost function for lmax is therefore determined to match the
expected income in the last shift hour, which is a data object. Once the value of the
cost function in the last hour is identified, it determines the continuation value
from the perspective of the preceding hour. Hence, the second to last value of the
cost function is identified: earnings in that hour and the continuation value are
composed of data and identified objects. We can repeat the argument until we
reach the first hour of the shift. However, (2) is also dependent on the hour of
the day. This part of the cost function is identified by systematic inter-temporal
variation in the stopping probabilities throughout the day even after condition-
ing on shift-length and earnings. For example, the stopping probability increases
sharply after 12pm even though there is not a contemporaneous sharp decline
in the earnings. This kind of variation in the data identifies the differences in
the λ0 values. (3) is identified by the increase in the stopping probabilities at
those times, again after conditioning on shift-length and expected earnings. (4)
is identified by the variation in the earnings πt. This concludes the identification
of the value function, which can be treated as a known object for the discussion
of the primitives of the entry decision. The varying values throughout the day
of Eπt+1 ,εi(t+1) [V(xi(t+1), πt+1,εi(t+1))]− rht , which is composed of data and iden-
tified objects, identify the different values of µht (5) and their dispersion, i.e., the
value of σv (6).

5.4 Estimation

5.4.1 Constructing the Data for Supply Side Estimation

To estimate the model, the trip based TPEP data has to be transformed into shift
dataset where the unit of observation is a medallion-hour combination. For esti-
mation we use data from 2011 as well as the August data from 2012.

Shifts are defined following Farber (2008) who determines them as a consec-
utive sequence of trips where breaks between two trips cannot be longer than
five hours. This definition might sometimes lead to long breaks within a shift if
there is a long interval between two trips. This conflicts with our assumption that
drivers plan with the conditional steady state distribution of wages Fπ(.|ht) for
each hour of their shift. Since we do not model breaks we instead assume them
to be an exogenous process. To that end we estimate the likelihood of a break for
each hour conditional on the state and compute hourly earnings as the expected
wage that is earned while searching for passengers multiplied by the probability
that the driver is not on a break. Formatting the data this way leads to 9,562,892
medallion-hour observations during which medallions have been active in a shift
as well as 5,747,837 medallion-hour observations during which medallions have
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been inactive. From this data we drop shifts that are only one hour long, which
make up less than 0.3% of the active shift data. The reason for this is that the
chance of stopping is slightly higher after the first hour than after the second
hour, whereas it is monotonically increasing afterwards. This indicates that these
disparate hours might be part of an interrupted longer shift and that this is not
captured by the shift definition used here.

The wait time for passengers links the aggregate market conditions to the
hourly earnings potential of drivers. Remember from the discussion above that
earnings are a result of a combination of time-based and mile-based metering.
We first calculate the actual hourly based rate π0

t for each trip by dividing the total
fare of each trip by the duration of a trip. These rates also include the tip that
drivers earn. Since tips are only recorded for credit card transactions, we im-
pute tips for trips that have been paid in cash.32 For each hour we also compute
the average search time for a taxi to find a passenger as well as the average trip
length. Before we compute these averages all variables are winsorized at the 1%
level to avoid averages being driven by large outliers in the data. Based on these
hourly averages we can then compute a realization of the hourly wage rate as
πt = π0

t · (et/(et + st)), i.e. the actual hourly rate times the fraction of the time
the driver is delivering a passenger as opposed to searching.

5.4.2 Estimation Procedure

For the estimation of supply side parameters we make use of the fact that, given
a known set of distributions for hourly equilibrium earnings, Fπ(.|h) ∀h ∈ H,
we can compute the supply side problem as if it were a single agent decision
problem against these equilibrium earnings. In other words, since we observe
equilibrium earnings directly in the data, there is no need to compute equilibria
in the estimation. For the estimation of the supply side problem we also make use
of the fact that the dynamic decision problem can be formulated as a constraint
on the likelihood for starting and stopping probabilities of drivers. This approach
is known as mathematical programming with equilibrium constraints (MPEC).33

In our case this constraint comes from the assumption that the data is gener-
ated by a model of optimal starting and stopping decisions. Since the latter is a
dynamic decision problem, one would normally iterate on the contraction map-

32We first run a regressions with hourly dummy variables predicting the tip rate for each hour
of the day. Predicted rates are then used to impute the tips for trips where the tip is not observed.
About 47% of all transactions are paid by creadit card.

33Su and Judd (2012) demonstrates the computational advantage of MPEC over a nested fixed
point computations (NFXP) in the classical example of Rust’s bus engine replacement problem,
Rust (1987). Applications of MPEC to demand models and dynamic oligopoly models can be
found in, for example Conlon (2010) and Dubé et al. (2012). An intuitive explanation for the
computational advantage of MPEC is that the constraints imposed by the economic model are
not required to be satisfied at each evaluation of the objective function.
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ping to solve for the value function for each parameter guess θ̂.34 MPEC allows
the constraint imposed by the value function to be slack during the search but
makes sure that they are satisfied for the final set of recovered parameters.35

We specify a likelihood objective function. Following the model discussion
above, we allow all parameters to be different for minifleet and owner-operated
medallions. For a driver j we allow for two different daily outside option µz j , a
parameter from 5AM to 5PM and one for the remaining time. We also allow the
fine fht ,z j to depend on whether the driver is on a night f0,z j or day shift f1,z j .

The constant part of the cost function is allowed to vary by hour in the follow-
ing way: from 12AM to 5AM, from 5AM to 12PM, and from 5PM to 12AM. The
other two parameters of the cost function λ1,z j and λ2,z j are assumed to be time
invariant. The remaining parameters are the standard deviation of the idiosyn-
cratic shocks to the starting decisionσv,z j and the stopping decisionσε,z j . We will
refer to the combined vector of parameters as θ.

5.5 Parameter Estimates

Table 2 gives an overview of the estimated parameters. Results are shown sepa-
rately for minifleet and owner-operated medallions. Standard error calculations
are bootstrapped: we drew 50 samples with replacement at the medallion level.

Table 2: Parameter Estimates (standard errors in parentheses)

parameter description minifleet (z j = F) owner-operated (z j = NF)
µz j ,0 outside-option, 6pm-4am 354.16 (15.79) 476.34 (20.45)
µz j ,1 outside-option, 5am-5pm 372.23 (16.44) 472.49 (20.58)
f0,z j fine (nightshift) 95.68 (3.61) 105.92 (4.0)
f1,z j fine (dayshift) 94.92 (3.3) 88.92 (2.99)
λ0,z j ,0 fixed cost (1am-5am), 38.9 (0.51) 59.92 (1.14)
λ0,z j ,1 fixed cost (6am-12pm), 14.42 (0.69) 22.41 (0.67)
λ0,z j ,2 fixed cost (1pm-5pm), 0.0 (1.03) 17.85 (0.73)
λ0,z j ,3 fixed cost (6pm-12am), 10.06 (0.94) 16.39 (1.01)
λ1,z j linear cost coefficient 0.0 (0.0) 0.0 (0.0)
λ2,z j quadratic cost coefficient 0.5 (0.01) 0.58 (0.02)
σε sd iid hourly outside option 56.82 (2.0) 80.0 (2.78)
σv sd iid daily outside option 59.5 (2.09) 61.75 (2.28)

34Note that there are other suggestions in the literature that would avoid the nested fixed point
computation, such as Bajari et al. (2007) where value functions are forward simulated.

35A second advantage of MPEC is that it provides a convenient way of specifying an optimiza-
tion problem in closed form, which allows the use of a state of the art non-linear solver. In this
paper we use the JuMP solver interface (Lubin and Dunning (2013)), which automatically com-
putes the exact gradient of the objective function as well as the exact second-order derivatives.
JuMP also automatically identifies the sparsity pattern of the Jacobian and the Hessian matrix.
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The mean values of the outside option for night (µz j ,0) and daytime ( µz j ,1)
are estimated to be $354.16 and $372.23 for minifleet drivers and $476.34 and
$472.49 for owner-operated drivers. As we discussed in the identification sec-
tion, these values are pinned down by the values of starting a shift. The value for
minifleets is therefore lower at all times of the day, consistent with the descriptive
evidence that minifleet shifts last longer. The estimated fines f0,z j and f1,z j for vi-
olating the shift constraint are $95.68 (nightshifts) and $94.92 (dayshift) for mini-
fleet medallions. For owner-operated medallions the night-shift fine is $105.92
and the dayshift fine is $88.92. The fixed part of the cost function parameters
for minifleets are estimated at $38.9 from 1am to 5am, $14.42 from 6am to 12pm,
$0.0 from 1pm to 5pm and $10.06 from 6pm to 12am. For owner-operated medal-
lions the corresponding values are $59.92, $22.41, $0.0, and $0.58. The linear pa-
rameter of the hourly increase in cost is estimated to be zero for both minifleet
and owner-operated cabs and the quadratic parameter are 0.5 for minifleets and
0.58 for owner-operated medallions. The standard deviations of the hourly out-
side option (conditional on driving) is 56.82 for minifleet medallions and 80.0 for
owner-operated medallions. The standard deviations of the daily outside option
is 59.5 for minifleet medallions and 61.75 for owner-operated medallions.

5.5.1 Discussion of Parameter Estimates

A few observations about the estimates are worth highlighting. As shown in
Figure 1, minifleet medallions follow the 5AM to 5PM shift pattern much more
stringently than owner-operated taxis. This is reflected in the estimates. Owner-
operated medallions have a higher standard deviation in the hourly error terms,
which are the random parts that determine stopping behavior. This leads to their
stopping behavior being “smoother”, i.e. having a higher percentage of short
shifts. Ceteris paribus, a larger standard deviation moves the stopping probabili-
ties towards one-half as can be seen by inspecting Equation 8. To induce stopping
of medallions near the end of the shift, the cost function and the fines therefore
have to be higher for owner-operated medallions compared to minifleets, which
is indeed the case. Lastly, we see that the daily outside option for owner-operated
medallions is larger than for minifleets. This outside option captures all the sur-
plus from driving, which is the wage plus the continuation value minus the cost
of driving. This surplus is larger for owner-operated medallions because the cost
function is steeper (Figure 13 in Appendix A ), and the expected random term
for continuing to drive is larger because of the larger standard deviation of the
hourly outside option.

5.5.2 Model Fit

To evaluate the model fit we transform the drivers decision problem into a law
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of motion for medallions. Medallions that are “available” for starting drivers
are those that are unutilized or in the last hour of their shift. The probability
that an active medallion becomes inactive is the probability that the driver who
utilizes stops and no other driver decides to utilize it in the same hour: p̂M(t) =
p̂(ht) · (1− q̂(ht)). The probability that an inactive medallion becomes active is
the probability that a driver starts utilizing an inactive medallion q̂M = q̂(ht). The
stopping probabilities unconditional on the shift length are obtained from the
conditional stopping probabilities. Let Nt be the number of inactive medallions
and Mt be the number of active medallions. The law of motion for medallions
discretized into hourly intervals is: Nt = (1 − pM

t ) · Nt + qM
t · Mt and Mt =

(1− qM
t ) ·Mt + pM

t · Nt.
The model fit for the law of motion is presented in Figure 8, which shows that

we are able to replicate the daily pattern of supply activity quite well.

Figure 8: Model Fit
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6 Counterfactual Experiments

As we argued earlier, two important inefficiencies in the taxi market are regula-
tory entry barriers and search frictions. Part of the success of startup ride hailing
services can be attributed to the fact that they address both of these inefficien-
cies.36 Our first set of counterfactuals tries to separate out the effects of addi-
tional entry and of more efficient matching. We also investigate whether market
segmentation between different operators may lead to inefficiencies: the intro-
duction of a dispatch system à la Uber that only covers part of the market may
reduce overall market thickness. Our last counterfactual is motivated by a re-
cent policy proposal of the TLC, which wants to lift the requirement of owner

36An additional effect is that supply is made more responsive through surge pricing. Since we
have no estimate of price elasticities we cannot address this issue here.
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operation. The model allows us to look at a policy that assigns all medallions to
minifleet companies, which utilize medallions more, as we show in Figure 1.

For all counterfactuals we highlight changes in the average number of active
cabs, the number of passengers, hourly driver revenues, discounted medallion
revenues, as well as consumer surplus (measured in wait time), which we com-
pute as

CS(w∗) = ∑
h∈{0...23}

∫ ∫ dh(w∗h)

0
(wh(dh)− w∗h))ddhdF(dh). (5)

Medallion revenue streams are obtained via simulation: we compute the num-
ber of times a medallion can be rented out in a year and then use this to compute
the present discounted revenue under an annual interest rate of 3%. Revenues
are averaged over the different types of medallions according to their observed
fractions in the data.

All counterfactuals are computed in two steps. We first compute an equilib-
rium in which we do not allow demand to expand. This scenario is then com-
pared to the full counterfactual in which demand is allowed to adjust.

In the estimation there was no need to compute market equilibria since the
supply side parameters were estimated using the observed process of hourly
earnings. For counterfactuals we have to address the challenge of equilibrium
computation, which is demanding since all endogenous objects vary by hour of
day. Instead of an exact solution, which would require iteration over 48 distribu-
tions (one demand distribution and one supply distribution for each hour of day),
we approximate these by normal distributions. Thus, for each hour one needs to
keep track of the first two moments of each endogenous distribution, leaving us
with 94 endogenous variables. We iteratively solve for the supply and demand
side parameters, holding the variables of the respective other side of the market
fixed until updates on both sides of the market fall below a threshold. The exact
algorithm is described in detail in item C.
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Table 3: Counterfactual Results

hourly active hourly passenger taxi hourly taxi consumer number of trips medallion
cabs demand waittime searchtime revenues surplus (minutes) per day revenue

Baseline 7759.0 25111.0 4.01 7.62 40.14 2.67 Million 556987.0 2.54 Million
Entry 8343.0 26315.0 3.7 7.93 39.5 2.85 Million 589536.0 2.49 Million
∆% 7.52 4.79 -7.53 4.09 -1.59 6.85 5.84 -1.69
Entry (PE) 8156.0 25111.0 3.54 8.33 38.76 2.97 Million 565454.0 2.44 Million
∆% (PE) 5.12 0.0 -11.73 9.33 -3.44 11.29 1.52 -3.79
Dispatcher 8314.0 27440.0 3.48 6.63 42.34 2.97 Million 629090.0 2.67 Million
∆% 7.15 9.28 -13.17 -12.94 5.48 11.14 12.95 5.4
Dispatcher (PE) 7927.0 25111.0 3.21 7.45 40.83 3.15 Million 578569.0 2.57 Million
∆% (PE) 2.17 0.0 -19.85 -2.24 1.73 18.16 3.87 1.46
Dispatcher (%50) 7663.0 24492.0 4.19 7.8 39.9 2.56 Million 545466.0 2.5 Million
∆% -1.23 -2.47 4.55 2.46 -0.59 -3.91 -2.07 -1.2
Dispatcher (%50) (PE) 7799.0 25111.0 4.25 7.63 40.1 2.55 Million 558378.0 2.53 Million
∆% (PE) 0.52 0.0 5.99 0.12 -0.1 -4.29 0.25 -0.2
Dispatcher (%10) 8335.0 25968.0 3.8 7.94 39.78 2.78 Million 589018.0 2.5 Million
∆% 7.43 3.41 -5.15 4.27 -0.88 4.15 5.75 -1.47
Dispatcher (%10) (PE) 8241.0 25111.0 3.66 8.28 39.18 2.88 Million 573257.0 2.46 Million
∆% (PE) 6.22 0.0 -8.72 8.65 -2.4 7.87 2.92 -3.12
Ownership 8104.0 25814.0 3.83 7.84 39.72 2.75 Million 575678.0 2.62 Million
∆% 4.45 2.8 -4.35 2.94 -1.05 3.09 3.36 3.26
Ownership (PE) 7969.0 25111.0 3.8 8.04 39.32 2.79 Million 560287.0 2.59 Million
∆% (PE) 2.71 0.0 -5.15 5.55 -2.03 4.74 0.59 2.05

Note: The changes are a mean over all 24 hours of the day. The wait-time and search time averages over hours are weighted by the number of trips and the hourly driver profits are weighted
by the number of active drivers across hours. PE means partial equilibrium and holds demand fixed to give a sense of how much the demand expansion changes counterfactual results. The
percentage changes ∆% are the changes of the means over all hours compared to the baseline. Consumer surplus is computed under the assumption that the demand function is truncated
above the maximal waiting time observed in the data. The reason is that for our parameter specifications consumer surplus would be infinite is we integrated over all waiting times. This
issue results from the assumption of constant elasticity, log-linear demand. A similar issue arises, for example, in Wolak (1994), who also truncates the demand distribution. Note, however,
that except for the limit case, the absolute difference in consumer surplus will be well defined and the same, no matter how high we choose the truncation point.
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6.1 Relaxing Entry Restrictions

To explore how additional entry affects the market, we increase the number of
medallions by 10%, from 13,500 to 14,850. To put this policy change in perspec-
tive, Uber served 4% of the total number of trips in 2014 and 13% at the begin-
ning of 2015.37 Figure 9 compares the counterfactual outcomes to the baseline

Figure 9: Entry Counterfactual Results as Compared to Baseline
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for each hour for four key quantities, while Table 3 gives a more detailed ac-
count aggregated at the daily level. The figures show that the number of cabs on
the street expands throughout the day, with larger changes during the day time,
and only moderate ones during the night. On average, taxi activity expands by
8.36%, less then proportionally to the medallion increase, because earnings drop,
causing drivers to work less. This increase in available taxis reduces wait time
for passengers and, as a result, demand expands moderately. On average, the
expansion of demand is 7.28%, while the average reduction in wait-time for pas-
sengers over all hours is 7.5%.38 The demand expansion moderates the drop
in taxi earnings caused by increased supply. This is a sizable effect: if demand
were held fixed, supply would only expand by 5.12%. The demand expansion al-
most completely compensates drivers for the additional competition: taking the

37See http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-
from-taxis/. This is based on data that the city obtained from Uber for a traffic study.

38All averages across hours are weighted in proportion to the number of trips taken in each
hour.

30

http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-from-taxis/
http://fivethirtyeight.com/features/uber-is-taking-millions-of-manhattan-rides-away-from-taxis/


mean over all changes in hourly income, the hourly wage of drivers would be
decreased by only 1.6%. This small change is partly explained by demand ex-
pansion: wages would fall by 3.5% if demand were held constant. The increase
in the number of matches (or total number of trips) is 5.84%, not far from the
increase in demand, but lower because additional entry increases frictions over-
all. The present discounted revenue stream from a medallion decreases by 1.7%,
much less than if demand did not increase (in which case it would be 3.8%). Con-
sumer surplus would be higher with no demand response.39 Note first that wait
time drops a lot more when demand does not adjust than when it does. Second,
the additional gain in the number of serviced trips when demand adjusts is rel-
atively small, partly because of the modest demand elasticity. Thus, the gain in
the inframarginal trips that are already served in the scenario with no demand
adjustment.

Our model does not account for the traffic externality and adverse environ-
mental effects due to additional taxis on the street. While environmental damage
is hard to assess, the traffic externality has recently been investigated by the city.
Their finding was that ride-hailing services are only a minor contributing factor
to the recent decline in NYC traffic speed.40

Table 4: Entry Counterfactual

Baseline Entry
Total Consumer Surplus (per day) 2.67 Million Minutes 2.85 Million Minutes
Driver Revenue (hourly income) $40.14 $38.76
Medallion Revenue (present value) $2.54 Million $2.49 Million

6.2 Improved Matching

6.2.1 Universal dispatcher

We now consider a counterfactual in which a dispatcher is available to match each
empty (searching) cab with a waiting passenger. The dispatcher matches a pas-
senger with the closest empty cab, if one is available within a one-mile radius.41

This matching process is a natual alternative to the street hailing system and ap-
proximates the one used, for instance, by Uber. The reason we restrict matches to
a one-mile radius is the following. Ideally, a matching algorithm would not only
search across empty taxis but would also take into account the possibility that a
soon to be empty taxi may be closest to a passenger. Such an algorithm would

39This is also the case for other counterfactuals. The reason is the same as the one outlined here.
40See http://www1.nyc.gov/assets/operations/downloads/pdf/For-Hire-Vehicle-

Transportation-Study.pdf
41Passegers who do not find an immediate match wait for other opportunities to match. Taxis

that are unmatched drive randomly until matched.
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be difficult to compute so we focus on a simpler case. But, since our dispatcher
does not optimize in a forward looking way, it will in general not be efficient to
allow for matches of passengers and cabs that are too far apart. The restriction to
one-mile radius alleviates this problem.42

Table 5: Dispatch Counterfactual

Baseline Dispatch
Total Consumer Surplus (per day) 2.67 Million Minutes 2.97 Million Minutes
Driver Revenue (hourly income) $40.14 $42.34
Medallion Revenue (present value) $2.54 Million $2.67 Million

Before presenting the counterfactual results, it is useful to simulate the dis-
patch matching function over a range of outcomes as in Figure 10 and to contrast
it with the decentralized search process that we have assumed so far. The figure
on the left shows that wait time for passengers increases as the market tightens.
The figure on the right repeats the exercise for taxis, holding passengers fixed at
the median number observed in the data. We can see that the dispatch system
leads to lower search times for cabs of about half a minute on average. For pas-
sengers, wait times can become longer (relative to search) when the ratio of cabs
to passengers is high. The reason for this potentially surprising outcome is re-
lated to the argument detailed above: passengers may be better off waiting for a
random cab that is currently delivering a passenger and therefore not available
for dispatch. However, this only takes place for numbers that are low relative
to daytime traffic in NYC. We now describe results under the different dispatch
scenarios, starting with the extreme case of an entire market operating under the
dispatcher. Figure 11 gives an overview of the changes across different hours.
The panel for each respective variable shows the difference between what hap-
pens in the baseline case minus what happens in the counterfactual. We see that
both demand and supply expand at all hours of the day, with wait times and
search times going down, particularly at night, demonstrating the higher returns
to a dispatcher under a more sparsely populated map. In this counterfactual
there is an increase in the number of active taxis (7.15%), and a substantial re-
duction in the search time for taxis (−13%). (If we didn’t allow for an expansion
of demand in response to reduced wait times, the supply increase would only be
2.17%.) Passenger wait time is reduced by 13.17%, consumer surplus increases

42The following extreme-case illustrates why a pure spatial global search may not be optimal.
Consider a scenario in which there is only one passenger left waiting, only one empty cab search-
ing, and they are on opposite ends of the grid. The remaining cabs are delivering passengers. If
the dispatcher were to commit them to a match, there is a high chance that a better outcome could
be obtained by waiting. The passenger is likely to obtain a faster match by waiting for one of the
busy cabs to finish its trip and become available. Analogously, for the empty cab a new passenger
may appear on the map closer to its position. A dynamic algorithm that searches spatially as well
as across time could account for these better match opportunities.
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Figure 10: Comparing Matching Functions

0

1

2

3

4

5

6

5000 10000 15000 20000 25000 30000 35000 40000
Number of waiting passengers (holding taxis fixed)

Pa
ss

en
ge

r 
w

ai
t t

im
e

0

2

4

6

8

10

12

14

2000 4000 6000 8000 10000 12000
Number of searching taxis (holding passengers fixed)

C
ab

 s
ea

rc
h 

ti
m

e

Matching dispatch search

by 11.14%, and the number of trips increases more than proportionally to de-
mand by 12.95% (because frictions were also reduced). The value of medallions
would increase by 5.4%. In this counterfactual scenario, all stakeholders benefit
from the introduction of the dispatch technology.

6.3 Partial Dispatching and Liquidity Externality

A potentially important consequence of the introduction of a more efficient match-
ing technology is the resulting segmentation of the market. If consumers are di-
vided between competing platforms, both segments of the market become thin-
ner. The resulting reduction in market thickness could potentially lead to larger
losses than the improvements due to better matching within the dispatch plat-
form. To explore whether this is a plausible outcome, we first look at a scenario
where we keep the total number of medallions fixed, and half of the medallions
operate on the search platform (baseline), half on the dispatch platform. We also
divide up demand across platforms, by simply pre-multiplying the constant elas-
ticity demand function d(wt) by the shares of 0.5. This ensures that, if the wait-
time in the two platforms were the same, total demand would add up the base-
line total demand.43 We do not allow passengers to choose among platforms.44

In particular, we assume that both the driver and the passenger are committed
to this match: neither can cancel should another match option become avail-

43For the results we weight wait-times, driver earnings, etc. by the respective hourly number of
trips taken on both market sides and report those averages. The exception are medallion values,
where we directly multiply the results by the respective share of issued medallions, in this case
50% of each type.

44In our current setup one platform would generically dominate, so we would observe a tipping
phenomenon if we allowed for a choice of platforms. A richer model would allow for heterogene-
ity among passengers, as well as additional heterogeneity among platforms.
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Figure 11: Counterfactual Results as Compared to Baseline, Full Dispatch
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able sooner.45 Figure 15 in Appendix A shows that the dispatch platform always
serves more than 50% of the rides and that this share is highest during the night,
where it can account for more than 60% of all rides.46 This is because the dispatch
platform has lower wait times, and therefore, higher demand. Figure 16 in Ap-
pendix A, however, illustrates that, in the aggregate, compared to the baseline,
the reduction in market thickness has negative consequences that are larger than
the better matching in the segment of market served by the dispatcher. Regard-
less of the hour, there are fewer active cabs and lower demand. Wait time and
search time are marginally larger during the day, while search time decreases for
some night-time hours. This shows that when the dispatch platform accounts
for significant market share, all stake-holder may be harmed, despite the tech-
nological improvement. Consumer surplus decreases by about 110,000 Minutes
per day, hourly driver income decreases by about 0.59%, and medallion revenue
decreases by $40,000.

45For example it might happen that a waiting passenger, who is promised to a cab, encounters
a cab that was not previously available before the promised cab arrives.

46This advantage of the dispatch platforms in hours with lower demand density is related to the
findings in Cramer and Krueger (2016). They show that Uber’s advantage in capacity utilization
than taxis (defined as the fraction of time delivering passengers) is relatively minor in NYC but
large in other cities which are less dense.
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Table 6: Segmented Market 50%

Baseline Dispatch
Total Consumer Surplus (per day) 2.67 Million Minutes 2.56 Million Minutes
Driver Revenue (hourly income) $40.14 $39.9
Medallion Revenue (present value) $2.54 Million $2.50 Million

In NYC, no ride hailing service has achieved a market share close to 50%, and
the entry of ride hailing serviced has been associated with by-passing the medal-
lion system, and therefore increased entry. To understand how important the
trade-off between matching efficiency and market thickness is for a more realistic
market share we now combine the entry counterfactual with the dispatch coun-
terfactual: we add 10% new medallions that operate under the dispatch system.
As in the previous case we split demand by multiplying the estimated demand
function by 0.1 for the dispatch market and 0.9 for the remaining market.

During the day, fewer than 10% of the trips are served by the dispatch plat-
form. The reason for this is that the thinness of the dispatch market overwhelms
the better matching technology. However, as the number of passengers decreases
during the night, the relative advantage of the dispatch solution increases and,
starting from 11PM, the dispatch platform starts serving more than 10% of the
market, reaching more than 35% market share at 4AM. Overall, in this scenario
we observe an increase in daily consumer surplus, of the order of 110,000 min-
utes. For drivers the increase in competition due to the additional entry out-
weighs the matching efficiencies and leads to a slight decrease in earnings of
about 0.88%. The decreased incentives for drivers to rent medallions is reflected
in the loss of medallion revenues, of about $40,000, or 1.5%.

Table 7: Segmented Market, 10 %

+10% dispatched
Baseline +10% Medallions Medallions

Total Consumer Surplus (per day) 2.67 Million 2.85 Million 2.78 Million
Driver Revenue (hourly income) $40.14 39.5 $39.78
Medallion Revenue (present value) $2.54 Million $2.49 Million $2.50 Million

6.4 Removing Ownership Restrictions

The final counterfactual is motivated by the observation that, as discussed above
(see Section 3), fleet-owned medallions are more heavily utilized and have more
coordinated shift changes. We now discuss additional features of the differences
between fleet and owner-operated medallions.

A natural question is whether owner-operated medallions are managed as
efficiently as minifleet medallions, whose owners specialize in managing other
drivers and may benefit from scale economies of managing multiple medallions.
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Figure 12: Histogram of Utilization Separated by Medallions
minifleet owner−operated
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Notes: Each observation in these histogram is a medallion-average of the fraction of time
that this medallion spends delivering a passenger out of the total time we observe these
medallions. Note that the rest of the time the medallion could either be searching for a
passenger or be idle and not on a shift at all. The histograms shows stark differences
between owner-operated and minifleet medallions. The lower tail of low utilization is
much thicker for owner-operated medallions.

Figure 12 shows the cross-sectional distribution of the fractions of time a medal-
lion spends delivering a passenger out of the total time that we observe a medal-
lion. The distribution for owner-operated cabs displays a much thicker left tail of
low utilization rates and is overall more dispersed.47

The left panel of Figure 14 in Appendix A shows the length of time a medal-
lion is inactive conditional on the stopping time of the last shift. Since most day
shifts start around 5AM and most night shifts around 5PM, the time of non-
utilization is minimized for stops that happen right around these hours, while
a stop at any other time causes the medallion to be stranded for a longer time pe-
riod. We see that minifleets typically return a medallion to activity faster after
each drop-off. This difference is particularly large after the common night shift
starting times (6PM and later), which suggests that minifleets have access to a
larger pool of potential drivers, and this in turn makes it easier for them to find a
replacement for someone who does not show up at the normal transition time. In
the structural model we allow for a different set of parameters for minifleets and
owner-operated to capture these differences. The right panel of Figure 14 in Ap-
pendix A shows the number of shift that end conditional on the hour. We see that
minifleet medallions have a more regular pattern with most day-shifts ending at
4PM. This is also reflected in Figure 1 which shows a stronger supply decrease
for minifleets before the evening shift relative to owner-operated medallions.

47The observed differences might be due to the fact that minifleets enables a more efficient
utilization; but another plausible argument is a selection-effect.
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We now simulate what would happen if all medallions were operated by
minifleets (fleet counterfactual). An actual implementation of this policy would
be to allow fleets to purchase owner-operated medallions, which currently sell at
a substantial discount. The counterfactual is computed by changing the primi-
tives of the model for the fraction of owner-operated medallions to those that we
estimated for fleets (as shown in Table 2).

Taxi activity in this counterfactual increases by 4.45%, which compares to 2.7%
if we did not allow demand to adjust. Demand in this counterfactual would
increase by 2.8%, wait time goes down by 4.35%. Search time for cabs increases
by 3%. The hourly income for drivers is reduced by 0.18%, which means that
drivers are again nearly fully compensated by the demand adjustment compared
to the case where demand would not go up, which imply a reduction in wages
of about 1.5%. Taking everything into account consumer surplus rises by 2.81%.
Medallion revenues go down by 1% and the number of trips rises by 3.4%.

7 Conclusion

This paper develops and estimates a dynamic general equilibrium model of the
NYC Taxi market, which we use to understand the magnitude of the effects of
entry restrictions and matching frictions. Drivers hourly revenue is determined
by the equilibrium number of searching cabs and waiting passengers mediated
by the time it takes to find the next passenger. Passengers’ demand is affected
by the waiting time for a cab. To estimate the model we back out unobserved
demand by making use of the geographical nature of the matching process.

Counterfactual results from the model show that an improvement in the match-
ing technology leads to substantial increases in consumers welfare as well as
drivers’ earnings. However, our results also point to the fact that competition
among dispatch platforms can lead to decreases in welfare because it leads to
market segmentation and lower market thickness. Our analysis of segmented
platforms is only suggestive as the model does not allow for any additional het-
erogeneity among the platforms and assumes exogenous assignments of passen-
gers to platforms. Including such richness is not within the scope of the current
paper but it would be interesting the extend the analysis to study this issue in
more depth.48 We have found that more efficient utilization of existing medal-
lions due to the elmination of favored treatment for owner-operators can lead to
comparable gains as a policy that allows for a substantial number of additional
entrants. This points to the potential importance of regulations favoring small
firms. Such regulations exists in many industry and countries. Few studies have
explored and quantified the potential impact of such restrictions.

48Cantillon and Yin (2008) study a related question in their analysis of competition among fi-
nancial exchanges that trade the same securities.

37



We have not considered the issue of surge pricing. In order to study this ques-
tion, one would need to estimate a richer demand system that allows for depen-
dence on both prices and wait time, while recognizing that the likely correlation
between consumers responsiveness to wait time and to prices. Uber data may be
helpful for studying such a question.
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A Additional Figures

Figure 13: Cost functions at different times of day
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Figure 14: Time medallion is unutilized conditional on hour of drop off.
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Figure 15: Fraction of Trips Served by Dispatcher (50% Dispatch)
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Figure 16: Counterfactual Results as Compared to Baseline, 50% Dispatch
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Figure 17: Counterfactual Results as Compared to Baseline (10% additional
medallions, Dispatch)
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B Details on Simulation

The goal of the simulation is to obtain a mapping of the number waiting passen-
gers and searching cabs within an hour to the waiting-time and search-time of
those passengers and cabs. The mapping is used to infer the number of waiting
passengers from observed number of active cabs and their search time. Waiting
and search-time are also influenced by other exogenous factors, which therefore
need to be arguments of the matching function. These factors are the speed mpht
at which the traffic flows, the average trip length milest requested by passengers.
Table 8 provides an overview both over the taxi search time observed in the data
as well as the observed inputs to the matching function.

Table 8: Summary Statistics for Simulation Variables.

Variable Mean SD Median Min Max
Miles per Hour 13.6 3.6 12.4 8.4 22.8
Average Trip Length (Miles) 3.0 0.5 2.8 2.3 4.9
Number of Cabs 7789.3 3084.2 9109.5 1262 11448
Average Wait time for Cabs 13.3 7.0 10.9 5.1 32.0

Note: Based on the available 2012 trip sheet data excluding the days Friday to Sunday. Statistics are
reported after winsorizing variables at the 0.01 and the 0.99 percentile to account for some nonsensi-
cal outliers.

The baseline simulation is performed under the assumption that cabs search
randomly for passengers. The search is performed on an idealized map of Man-
hattan. Figure 4 provides a schematic of the grid that we use for the simulation.
In line with the topography of Manhattan we require the area to be four times
as long in north-south direction (yt) than wide in east west-direction (xt). Cabs
are moving on nodes that are 1/20 mile segments apart from each other, which
is based on the average block length in north-south direction. In the north-south
direction they can turn at each node whereas in the east-west direction they can
only turn at every fourth node. Figure 4 highlights nodes on which cabs can turn
as gray. This corresponds to the block structure of Manhattan where a block is
approximately 1/20 miles long in north-south and 4/20 miles wide in east-west
direction. Under the random search assumption cabs take random turns at nodes
with equal probability weight on each permissible direction. However, we as-
sume that they never turn back to the direction from which they were coming
(i.e. no U-turns).

Since we only model the Manhattan market (below 128th street), our grid
corresponds to an area of 16 square miles. Figure 18 shows the modeled part
on the map in its division in the eight equally sized different areas for which we
separately compute the pick up and drop-off probabilities. Correspondingly, our
grid is divided into eight equal parts, which correspond to those areas.
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Figure 18: Division of Manhattan
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Each node on the grid is a possible passenger location. For each hourly sim-
ulation dt

6 passengers are placed in ten minute intervals randomly on the map.
Those dt

6 are divided up and placed in proportion to the corresponding (observed)
pickup probabilities on the eight areas on the grid. Within those areas passengers
appear with equal probability on each node.

If a cab hits a node with a passenger a match occurs. There are no additional
frictions on a node (which corresponds to a street corner) and the number of
matches is the minimum of the number of passengers and the numbers of taxis on
the node, which corresponds to the assumption of a Leontieff matching function
on each node. Once the match takes place the cab is taken of the grid for 60 · milest

mpht
minutes, i.e. the average measured delivery time from the data, after which is has
delivered the passenger and is again placed randomly on the map with a random
travel direction. Cabs reappear in locations on the grid in proportion to observed
drop-off locations of the eight areas (Figure 18).

The full algorithm is described in pseudo-code below. It takes the following
inputs: the number of cabs c, the number of passengers d, the trip length miles,
and the trip speed mph. A unit of time in the algorithm is scaled so that it al-
ways represents the time it takes a cab to travel from one node to the next since
there is no need for a smaller time unit. Passengers are added to the map for
one hour in ten minute intervals. Since nodes are spaced 1/20 miles apart, the
last time passengers are added to the map is at t̄ = 20 ·mph. The set of times at
which new passengers arrive is given by: {t̄/6 · k|k = 1, ..., 6}. The following ad-
ditional variables are used to describe the algorithm: npick refers to the number
of matches that have already taken place, deliverytimei to the remaining delivery
time of taxi i, and searchtimei to the time that taxi i has spent searching since the
last delivery, total_searchtime refers to the total time that taxis have spent search-
ing for passengers, and total_waittime to the total wait time that passengers have
been waiting.
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while npick < d do
t = t + 1 (time units represent travel time from one node to the next,
scales with mph);

if t ∈ {t̄/6 · k|k = 1, ..., 6} then
add d/6 passengers to random nodes on map, stratified by eight
areas;

end
for i = 1 : c do

if deliverytimei = 0 (cab i is not occupied) then
update the node of cab i. Cabs only take turns on gray nodes
(Figure 4) and do not make u-turns. All feasible travel
directions are chosen with equal probability;

if new node of cab i has a passenger then
cab becomes occupied, set deliverytimei to 20 ·miles, and add

searchtimei to total_searchtime;
else

searchtimei = searchtimei + 1
end

else
deliverytimei = deliverytimei - 1;
if deliverytimei == 0 then

place cab in random area on map according to observed
drop-off probabilities (all nodes within area equal
probability), give cab random feasible travel direction;

end

end

end
Add one to total_waittime for each passenger that is on the map;

end
Result: Use total_waittime and total_searchtime to compute the average

search time for taxis and average wait time for passengers.

In the dispatcher simulation we assume that each cab - as soon as the previous
passenger has been delivered - is matched with the closest passenger available.
We also assume that neither the driver nor the passenger has an option to cancel
this match for another match option. It might for example happen that a waiting
passenger, who is promised to a cab, encounters a cab that was not previously
available before the promised cab arrives. The option to cancel might in some
instances be beneficial to a market-side because our search for the optimal match
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is only over the currently available cabs and passengers and does not take into
account cabs and passengers that will soon appear somewhere close on the map.

It is not feasible to perform the simulations for each point in the domain of the
matching function. We therefore perform them for the Cartesian product of the
sets: c ∈ {500, 1000, ..., 17000}, d ∈ {3000, 6000, ..., 75000}, miles ∈ {1, 2, ..., 7},
mph ∈ {4, 8, ..., 24}. To obtain the search-time and wait-time for other points we
interpolate linearly between the grid points.

B.1 Details on Estimation.

As defined in the text, let πt be a realization of the earnings and xit denote the
other part of the observable state (the shift length, the hour of the day as well
as the medallion invariant characteristics). Let p(xit, πt) be the theoretical prob-
ability that an active medallion/driver i stops at time point t and q(xit) be the
probability that a inactive medallion/driver i starts at t. Correspondingly, let dA

be the indicator that is equal to one if an active driver stops and dI be an indica-
tor that an inactive driver starts. Using this notation we maximize a constrained
log-likelihood that we formulate as an MPEC problem. MPEC does not perform
any intermediate computations, such as value function iterations, to compute
the objective function. It instead treats these objects as parameters. This means
that the solver will be maximizing both over the parameters of interest θ and an
additional set of parameters δ. The parameter vector δ consists of all p(xit, πt),
q(xit), Eπ ,ε[V(xi(t+1), πt+1,εi(t+1))|ht] for xi(t+1) ∈ X, πt ∈ supp(Fπ(.|ht)). In
other words, δ consists of expected values and choice probabilities for each point
in the observable state space. Note, however that πt follows a continuous distri-
bution and it is therefore not possible to specify a constraints for each value in the
support of its distribution. We instead approximate the distribution of πt with a
discrete number of nodes π̃ and weights using gauss-hermite integration.49

With this notation in place we can express the maximization problem as fol-
lows

min
θ,p(xit ,πt),q(xit),Eπ ,ε[V(xi(t+1) ,πt+1 ,εi(t+1))|ht]

∑
j∈J

∑
t∈Tj

dA
it · log(p(xit, πt)) + (1− dA

it )

·(log(1− p(xit, πt))) + dI
it · log(q(xit)) + (1− dI

it) · (log(1− q(xit))))

(6)

subject to:

49We use six nodes.
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Eπ ,ε[V(xi(t+1), πt+1,εi(t+1))|ht] = σε · log
(

exp
(

1
σε

)
+ exp

(
πt − Czi ,ht(lit)− f (ht, ki) +Eπt+1 ,εi(t+1) [V(xi(t+1), πt+1,εi(t+1))|ht+1]

σε

)
+γ ∗σε∀xit ∈ X , ∀πt ∈ π̃ (7)

p(xit, πt) =
exp

(
1
σv

)
exp

(
1
σv

)
+ exp

(
πt−Czi ,ht (lit)− f (ht ,ki)+Eπt+1,εi(t+1)

[V(xi(t+1) ,πt+1 ,εi(t+1))|ht+1]

σv

)
∀xit ∈ X , ∀πt ∈ π̃ (8)

q(xit) =

exp
(

Eπt+1,εi(t+1)
[V(xi(t+1) ,πt+1 ,εi(t+1))|ht+1]−rht

σv

)
exp

(
Eπt+1,εi(t+1)

[V(xi(t+1) ,πt+1 ,εi(t+1))|ht+1]−rht
σv

)
+ exp

(
µht+1
σv

) ∀xit ∈ X (9)

The constraint given by equation Equation 7 ensures that the starting and
stopping probabilities obey the intertemporal optimality conditions imposed by
the value functions. The log-formula is the closed form expression for the ex-
pectation of the maximum over the two choices of stopping and continuing,
which integrates out the T1EV unobserved valuations. Equation 8 and Equa-
tion 9 are again the closed form expressions for the choice probabilities under ex-
treme value assumption. We also restrict the search for the cost-functions to the
domain of increasing functions by requiring λ0,z j ,0, λ1,z j ,0 and λ2,z j ,0 to be larger
than zero.

C Details on the Computation of Counterfactuals

Define the follwoing six steps as Block1(i) for iteration i.

1. For each hour simulate values from N (αc,i,ψc,i
h ) and N (αd,i,ψd,i

h ) as well as
the observed empirical distributions of speed of traffic flow and the length of re-
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quested trips to determine the distributions of search time for taxis F i
s(.|h), h ∈

{0, . . . , 23} under g(.).

2. Simulate drivers earnings F i
π(.|h), h ∈ {0, . . . , 23} from the ratios of passen-

ger delivery time over delivery and search time (computed in step 2) and rate
earned per minute of driving. Simulate new distribution of passengers F i

d(.|h),
h ∈ {0, . . . , 23} from the distribution of waiting times and the estimated demand
function d(wt).

3. Compute the optimal starting and stopping probabilities pi(x, π ;θ), qi(x;θ) un-
der the new distribution of earnings (computed in step 3). The distribution of
earnings is approximated using gauss-hermite integration in the stopping problem
of drivers.

4. Use pi(x, π ;θ) and qi(x;θ) to simulate a new distributionsF i
c(.|h), h ∈ {0, . . . , 23}.

For each medallion type (z,k) we simulate thirty medallions, where each medal-
lion starts inactive at 12PM and iterate forward for 48 hours. Across these thirty
medallions we then compute the fraction of times the medallion has been active in
this hour (using only the last 24 hours) and multiply this by the total number of
medallions. We repeat this 30 times and then compute the average and the standard
deviations across these simulations.50

5. Computeαc,i
h as the first and ψc,i

h as the second moment from F i
c(.|h).

6. Compute sumsq1 = ∑h(α
c,i
h −α

c,(i−1)
h )2 + ∑h(ψ

c,i
h −ψ

c,(i−1)
h )2.

Define the following four steps as Block2(i) for iteration i.

1. For each hour simulate values from N (αc,i,ψc,i
h ) and N (αd,i,ψd,i

h ) as well as the
observed empirical distributions of speed of traffic flow and the length of requested
trips to determine the distributions of waiting time F i j

w (.|h), h ∈ {0, . . . , 23} for
passengers.

2. Simulate new distribution of passengers F i
d(.|h) , h ∈ {0, . . . , 23} from the dis-

tribution of waiting times and the estimated demand function d(wt).

3. Computeαd,i
h as the first and ψd,i

h as the second moment from F i
d(.|h).

4. Compute sumsq2 = ∑h(α
d,i
h −α

d,(i−1)
h )2 + ∑h(ψ

d,i
h −ψ

d,(i−1)
h )2.

50We have also experimented with different numbers in this step, for example simulating each
medallion for more than 48 hours or increase the number of simulations. For the final counterfac-
tual results this does not seem to make a large difference.
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Using those definitions, the algorithm can be described as follows:

while STOP 6= 1 do
Compute sumsq1 using Block1(i).
if sumsq1 < tol then

STOP=1
else

while sumsq1 > tol do
Block1(i)

end
end
Compute sumsq2 using Block2(i).
if sumsq2 < tol then

STOP=1
else

while sumsq2 > tol do
Block2(i)

end
end
i = i + 1

end

D Shift Transition Instrument

We now argue that the timing of the shift transition is such a supply side driven
shifter. The kink in the number of active taxis in the later afternoon hours is
clearly visible in Figure 1 and ?? shows that this is due to the transitioning of
shifts.51 New Yorker’s refer to this as the witching hour. There may be multiple
reasons that lead to most shifts being from 5AM to 5PM and 5PM to 5AM, but
the data (and the rules) suggests that some factors are key.

First, the rules are such that minifleets can only lease for exactly two shifts per
day: they must operate a medallion for at least two shifts of 9 hours and the lease
must be on a per day or per shift basis.52 Second, there is a cap on the lease price
for both day and night shifts. Anecdotal evidence from the TLC and individu-
als in the industry suggests that these lease caps are binding. Given those rules,
minifleets may try to equate the earning potentials for the day and night shifts,
as a way to ensure they will get similar number of drivers willing to drive each
shifts. A similar argument applies for owner drivers that might want to ensure
they always find a driver for the second shift, which they do not drive themselves.
Figure 19 shows the earnings for night and day-shifts under different hypotheti-
cal shift divisions. The x-axis shows each potential division-point, i.e. each point

51Shifts are defined following the definition used by Farber (2008) who determines them as a
consecutive sequence of trips where breaks between two trips cannot be longer than five hours.

52See section 58-21(c) in TLC (2011).
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Figure 19: Earnings of Day and Night Shift for Different Split Times
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Notes: This graphs shows the average earnings that would accrue to the night-
shift and day-shift driver for each possible division of the day. The x-axis
shows the end-hour of the day shift and the start-hour of the night shift.
Since these earnings are a function of the current equilibrium of the market,
they have to be understood as the shift-earnings that one deviating medallion
would give to day and night-time drivers. The graph shows that earnings are
almost equal at 5PM, the prevailing division for most medallions.

at which a day shift could end and a night shift start. The y-axis reports the earn-
ings for the day-shift (black dots) and night-shift (white diamonds).53 As can be
seen, the 5-5 division creates two shifts with similar earnings potential. Com-
bined with the above observation, the difference in rate caps for day and night
shifts may reflect different disutility from working at night. Hence, requiring two
shifts and imposing a binding cap on the rates results in most medallions having
shifts that start and end at the same time. Since transitions do not happen instan-
taneously, this correlated stopping therefore leads to a negative supply shock at a
time of high demand during the evening rush hour. We use the interaction term
between the traffic flow and shift transition times as a supply shifter. Since taxis
are transitioned at predefined locations, variation in the traffic creates variation
in the time needed to transition cabs and how long they “disappear”

53Clearly this comparison ignores any equilibrium effects of changing the sifts structure. The
graph can therefore be understood as the earnings that one deviating medallions could have
under the current system.
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