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1 Introduction

In this paper, we develop a theory of equity premium for pre-scheduled macroeconomic

announcements. We demonstrate that the macro announcement premium provides an asset-

market-based evidence that highlights the importance of incorporating non-expected utility

analysis in quantitative macro and asset pricing models.

Macro announcements, such as the publication of the employment report and the

FOMC statements, resolve uncertainty about the future course of economic growth, and

modern financial markets allow asset prices to react to these announcements instantaneously,

especially with high-frequency trading. Empirically, a large fraction of the market equity

premium in the United States is realized within a small number of trading days with

significant macroeconomic announcements. During the period of 1961-2014, for example,

the cumulative excess returns of the S&P 500 index on the thirty days per year with

significant macroeconomic news announcements averaged 3.36%, which accounts for 55%

of the total annual equity premium during this period (6.19%). The market return realized

on announcement days constitutes 100% of the equity premium during the later period of

1997-2014, which more announcements are available.

To understand the above features of financial markets, we develop a theoretical model

that allows uncertainty to resolve before the realizations of macroeconomic shocks and

characterize the set of intermporal preferences for the representative consumer under which

an announcement premium arises.

Our main result is that resolutions of uncertainty are associated with realizations of

equity premium if and only if the investor’s intertemporal preference can be represented

by a certainty equivalence functional that increases with respect to second-order stochastic

dominance, a property we define as generalized risk sensitivity. The above theorem has

two immediate implications. First, the intertemporal preference has an expected utility

representation if and only if the announcement premium is zero for all assets. Second,

announcement premia can only be compensation for generalized risk sensitivity and cannot

be compensation for the risk aversion of the Von Neumann–Morgenstern utility function.

Therefore, the macro announcement premium provides an asset-market-based evidence

that identifies a key aspect of investors’ preferences not captured by expected utility analysis:

generalized risk sensitivity. Many non-expected utility models in the literature satisfy this

property. For example, we show that the uncertainty aversion axiom of Gilboa and Schmeidler

[30] provides a sufficient condition for generalized risk sensitivity. Therefore, the large

magnitude of the announcement premium in the data can be interpreted as a strong empirical

evidence for a broad class of non-expected utility models.
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From an asset pricing perspective, the stochastic discount factor under non-expected

utility generally has two components: the intertemporal marginal rate of substitution that

appears in standard expected utility models and an additional term that can be interpreted

as the density of a probability distortion. We demonstrate that the probability distortion is a

valid stochastic discount factor for announcement returns. In addition, under differentiability

conditions, generalized risk sensitivity is equivalent to the probability distortion being

pessimistic, that is, it assigns higher weights to states with low continuation utility and

lower weights to states with high continuation utility. Our results imply that the empirical

evidence on the announcement premium is informative about the relative importance of the

two components of the stochastic discount factor and therefore provides a strong discipline

for asset pricing models.

We present a continuous-time model with learning to quantitatively account for the

evolution of the equity premium before, at, and after macroeconomic announcements. In

our model, investors update their beliefs about hidden state variables that govern the

dynamics of aggregate consumption based both on their observations of the realizations

of consumption and on pre-scheduled macroeconomic announcements. We establish two

results in this environment. First, as in Breeden [12], because consumption follows a

continuous-time diffusion process, the equity premium investors receive in periods without

news announcements is proportional to the length of the holding period of the asset. At

the same time, macro announcements result in non-trivial reductions of uncertainty, and are

associated with realizations of a substantial amount of equity premium in an infinitesimally

small window of time.

Second, the equity premium typically increases before macro announcements, peaks at

the announcements, and drops sharply afterwards. The reduction in uncertainty right after

announcements implies a simultaneous decline in the equity premium going forward. At the

same time, after the current news announcement and before the next news announcement,

because investors do not observe the movement in the hidden state variable, uncertainty

slowly builds up over time, and so does the equity premium.

Related literature Our paper builds on the literature that studies decision making

under non-expected utility. We adopt the general representation of dynamic preferences of

Strzalecki [65]. Our framework includes most of the non-expected utility models in the

literature as special cases. We show that examples of dynamic preferences that satisfy

generalized risk sensitivity include the maxmin expected utility of Gilboa and Schmeidler

[30], the dynamic version of which is studied by Chen and Epstein [16] and Epstein and

Schneider [25]; the recursive preference of Kreps and Porteus [48] and Epstein and Zin [27]; the

robust control preference of Hansen and Sargent [36, 37] and the related multiplier preference
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of Strzalecki [64]; the variational ambiguity-averse preference of Maccheroni, Marinacci, and

Rustichini [54, 55]; the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji [46, 47];

and the disappointment aversion preference of Gul [31]. We also discuss the relationship

between our notion of generalized risk sensitivity and related decision theoretic concepts

studied in the above papers, for example, uncertainty aversion and preference for early

resolution of uncertainty.

A vast literature applies the above non-expected utility models to the study of asset prices

and the equity premium. We refer the readers to Epstein and Schneider [26] for a review

of asset pricing studies with the maxmin expected utility model, Ju and Miao [40] for an

application of the smooth ambiguity-averse preference, Hansen and Sargent [34] for the robust

control preference, Routledge and Zin [62] for an asset pricing model with disappointment

aversion, and Bansal and Yaron [9] and Bansal [6] for the long-run risk models that build

on recursive preferences. The nonlinearity of the certainty equivalence functionals in the

above models typically gives rise to an additional equity premium. However, the existing

literature has not yet identified an asset-market-based evidence for the nonlinearity of the

certainty equivalence functionals in the above models. Our results imply that the macro

announcement premium provides such an evidence.

Our findings are consistent with the literature that identifies large variations in marginal

utilities from the asset market data, for example, Hansen and Jagannathan [33], Bansal and

Lehmann [7], and Alvarez and Jermann [3, 4]. Our theory implies that quantitatively, most

of the variations in marginal utility must come from generalized risk sensitivity and not from

risk aversion in expected utility models.

The above observation is likely to have sharp implications on the research on

macroeconomic policies. Several recent papers study optimal policy design problems in

non-expected utility models. For example, Farhi and Werning [29] and Karantounias [43]

analyze optimal fiscal policies with recursive preferences, and Woodford [68], Karantounias

[42], Hansen and Sargent [38], and Kwon and Miao [51, 50] focus on preferences that fear

model uncertainty. In the above studies, the nonlinearity in agents’ certainty equivalence

functionals implies a forward-looking component of variations in their marginal utilities

that affects policy makers’ objectives. Our results imply that the empirical evidence of the

announcement premium can be used to gauge the magnitude of this deviation from expected

utility, and to quantify the importance of robustness in the design of macroeconomic policies.

Our empirical results are related to the previous research on stock market returns on

macroeconomic announcement days. The previous literature documents that stock market

returns and Sharpe ratios are significantly higher on days with macroeconomic news releases

in the United States (Savor and Wilson [63]) and internationally (Brusa, Savor, and Wilson
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[13]). Lucca and Moench [52] find similar patterns for equity returns on pre-scheduled FOMC

announcement days. Cieslak, Morse, and Vissing-Jorgensen [18] provide an extensive study

of the cyclical pattern of stock returns around FOMC announcements. Rosoiu [60] finds

similar patterns in high-frequency data.

The rest of the paper is organized as follows. We document some stylized facts for the

equity premium for macroeconomic announcements in Section 2. In Section 3, we present

two simple examples to illustrate how the announcement premium can arise in models that

deviate from expected utility. We present our theoretical results and discuss the notion of

generalized risk sensitivity in Section 4. We present a continuous-time model in Section 5 to

quantitatively account for the evolution of the equity premium around macroeconomic news

announcement days. Section 6 concludes.

2 Stylized facts

To demonstrate the significance of the equity premium for macro-announcements and to

highlight the difference between announcement days and non-announcement days, we focus

on a relatively small set of pre-scheduled macroeconomic announcements that is released at

the monthly or lower frequency. Within this category, we select the top five announcements

ranked by investor attention by Bloomberg users. This procedure yields on average fifty

announcement days per year in the 1997-2014 period, where data on all five announcements

are available, and thirty announcement days per year in the longer sample period of 1961-

2014. We summarize our main findings below and provide details of data construction in the

data appendix.

1. A large fraction of the market equity premium are realized on a relatively small number

of trading days with pre-scheduled macroeconomic news announcements (See also Savor

and Wilson [63] and Lucca and Moench [52]).

As shown in Table 1, during the 1961-2014 period, on average, thirty trading days

per year have significant macroeconomic news announcements. The cumulative stock

market excess return on the thirty news announcement days averages 3.36% per year,

accounting for about 55% of the annual equity premium (6.19%) during this period.

This pattern is even more pronounced if we focus on the later period of 1997-2014,

where data on on all five announcements are available. In this period, the market

equity premium is 7.44% per year, and the cumulative excess return of the S&P500

index on the fifty announcement days averages 8.24% per year. The equity premium

on the rest of the trading days is not statistically different from zero.
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Figure 1: thirty-minute returns around announcements
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Figure 1 plots the average returns over 30 minute intervals around macro announcements, where time 0 is the

announcement time. The solid line is the average return for all five announcements and the dashed line plots

the average return for all announcements except the FOMC announcement. The sample period is 1997-2013.

2. The equity premium increases before news announcements, peaks at the

announcements, and immediately drops afterwards.

In Table 2, we document the average daily excess stock market return on announcement

days (t), that on the days right before announcements (t−1) and that on the day right

after announcements (t + 1). The average announcement day return is 11.21 basis

points during the entire sample period (top panel) and 16.48 basis points during the

later period of 1997-2014, when more announcement data are available. The daily

equity premium before and after announcement days is not statistically different from

zero. In Figure 1, we illustrate the pattern of the evolution of market excess return in

thirty-minute intervals around macro announcements by using high-frequency data for

S&P 500 futures contracts during the period of 1997-2014. This evidence highlights

that most of the announcement premium is realized during a short time interval around

announcements.

3. The significance of the macro announcement premium is robust both intraday and

overnight.

Some announcements are pre-scheduled during financial market trading hours (e.g.,

FOMC announcements) and others are pre-scheduled prior to the opening of financial

markets (e.g., non-farm payrolls). We define intraday return (or open-to-close return) as

the stock market return from the open to the close of a trading day and overnight return

(or close-to-open return) as the return from the close of a trading day to the open of

the next trading day. We compute intraday and overnight returns for periods with and

without prescheduled announcements and report our findings in Table 3. The average
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overnight return during the 1997-2014 period averages about 3.52 basis points per day,

and the average intraday return is close to zero1. Remarkably, both intraday and

overnight return are significantly larger on pre-scheduled announcements days than on

non-announcements days. The average intraday return with announcement is 17.0 basis

points, and the average overnight return with announcement is 9.32 basis points, while

the average intraday and overnight return on non-announcement are not statistically

different from zero. This new evidence reinforces the view that most of the equity

premium realizes during periods of macroeconomic announcements.

3 Two illustrative examples

In this section, we set up a two-period model and discuss two simple examples to illustrate

conditions under which resolutions of uncertainty are associated with realizations of the

equity premium.

3.1 A two-period model

We consider a representative-agent economy with two periods (or dates), 0 and 1. There is no

uncertainty in period 0, and the period-0 aggregate endowment is a constant, C0. Aggregate

endowment in period 1, denoted C1, is a random variable. We assume a finite number of

states: n = 1, 2, · · ·N , and denote the possible realizations of C1 as {C1 (n)}n=1,2,···N . The

probability of each state is π (n) > 0 for n = 1, 2, · · · , N .

Period 0 is further divided into two subperiods. In period 0−, before any information

about about C1 is revealed, the pre-announcement asset market opens, and a full set of

Arrow-Debreu security is traded. The asset prices at this point are called pre-announcement

prices and are denoted as P−. Note that P− cannot depend on the realization of C1, which

is not known at this point.

In period 0+, the agent receives a news announcement s that carries information about

C1. Immediately after the arrival of s, the post-announcement asset market opens. Asset

prices at this point, which are called post-announcement prices, depend on s and are denoted

as P+ (s). In period 1, the payoff of the Arrow-Debreu securities are realized and C1 is

consumed. In Figure 2, we illustrate the timing of information and consumption (top panel)

and that of the asset markets (panel) assuming that N = 2 and that the news announcement

s fully reveals C1.

1The previous literature (for example, Kelly and Clark [45] and Polk, Lou, and Skouras [58]) documents
that the overnight market return is on average higher than the intraday return in the United States.
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Figure 2: consumption and asset prices in the two-period model

The announcement return of an asset, which we denote as RA (s), is defined as the

return of a strategy that buy the asset before the pre-scheduled announcement and sell

right afterwards:

RA (s) =
P+ (s)

P−
. (1)

We say that the asset requires a positive announcement premium if E [RA (s)] > 1. We also

define the post-announcement return conditioning on announcement s as: RP (X| s) = X
P+(s)

.

Clearly, the total return of asset from period 0− to period 1 is R (X) = RA (s)RP (X| s) .
We note two important properties of the news announcement in our model. First, it

affects the conditional distribution of future consumption, but rational expectations imply

that surprises in news must average to zero by the law of iterated expectation. Second, news

announcements do not impact the current-period consumption. Empirically, as we show in

Section 2, the stock market returns realized within the 30-minute intervals of announcements

account for almost all of the equity premium at the annual level. The instantaneous response

of consumption to news at this high frequency can hardly have any quantitative effect on the

total consumption of the year.2 Furthermore, our analysis remains valid in the continuous-

time model presented in Section 5, where the length of a period is infinitesimal.

2Our assumption is broadly consistent with the empirical evidence that large movements in the stock
market is typically not associated with significant immediate adjustment in aggregate consumption, for
example, Bansal and Shaliastovich [8].
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3.2 Expected utility

We first consider the case in which the representative agent has expected utility: u (C0) +

βE [u (C1)], where u is strictly increasing and continuously differentiable. For simplicity, we

assume that s fully reveals C1 in this example and the one in the following section, although

our general result in Section 3.3 does not depend on this assumption. The pre-announcement

price of an asset with payoff X is given by:

P− = E

[

βu′ (C1)

u′ (C0)
X

]

. (2)

In period 0+, because s full reveals the true state, the agent’s preference is represented by

u (C0) + βu (C1 (s)) . (3)

Therefore, for any s, the post-announcement price of the asset is

P+ (s) =
βu′ (C1 (s))

u′ (C0)
X (s) . (4)

Clearly, the expected announcement return is E [RA (s)] =
E[P+(s)]

P−
= 1. There can be no

announcement premium on any asset under expected utility.

3.3 An example with uncertainty aversion

Consider an agent with the constraint robust control preferences of Hansen and Sargent [35]:

u (C0) + βmin
m

E [mu (C1)] (5)

subject to : E [m lnm] ≤ η

E [m] = 1.

The above expression also can be interpreted as the maxmin expected utility of Gilboa and

Schmeidler [30]. The agent treats the reference probability measure, under which equity

premium is evaluated (by econometricians), as an approximation. As a result, the agent

takes into account a class of alternative probability measures, represented by the density m

close to the reference probability measure. The inequality E [m lnm] ≤ η requires that the

relative entropy of the alternative probability models to be less than η.
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In this case, the pre-announcement price of an asset with payoff X is:

P− = E

[

m∗
βu′ (C1)

u′ (C0)
X

]

, (6)

where m∗ is the density of the minimizing probability for (5) and can be expressed as a

function of s:

m∗ (s) =
e−

u(C1(s))
θ

E
[

e−
u(C1)
θ

] . (7)

The positive constant in the above expression, θ is determined by the binding relative entropy

constraint E [m∗ lnm∗] = η.

In period 0+, after the resolution of uncertainty, the agent’s utility reduces to (3). As a

result, the post-announcement price of the asset is the same as that in (4). Therefore, we

can write the pre-announcement price as:

P− = E
[

m∗ (s)P+ (s)
]

. (8)

Because m∗ is a decreasing function of date-1 utility u (C1), it is straightforward to prove the

following claim.

Claim 1. Suppose that the post-announcement price, P+ (s), is a strictly increasing function

of C1, then P
− < E [P+ (s)]. As a result, the announcement premium for the asset is strictly

positive.

The intuition of the above result is clear. Because uncertainty is resolved after the

announcement, asset prices are discounted using marginal utilities. Under expected utility,

the pre-announcement price is computed using probability-weighted marginal utilities, and

therefore the pre-announcement price must equal the expected post-announcement prices

and there can be no announcement premium under rational expectation. Under the robust

control preference, the pre-announcement price is not computed by using the reference

probability, but rather by using the pessimistic probability that overweighs low-utility states

and underweighs high-utility states as shown in equation (7). As a result, uncertainty aversion

applies an extra discounting for payoffs positively correlated with utility, and therefore the

asset market requires a premium for such payoffs relative to risk-free returns.

Because the probability distortion m∗ discounts announcement returns, we will call it

the announcement stochastic discount factor (SDF), or A-SDF to distinguish it from the

standard SDF in intertemporal asset pricing models which are derived from agents’ marginal

rate of intertemporal substitution of consumption. In our model, there is no intertemporal

consumption decision before and after the announcement. The term m∗ reflects investors’
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uncertainty aversion and identifies the probability distortion relative to rational expectation.

4 Risk preferences and the announcement premium

The asset pricing equation (8) holds under much more general conditions. In this section, we

consider a very general class of intertemporal preferences that has the recursive representation

Vt = u (Ct) + βI [Vt+1] , (9)

where β ∈ (0, 1) and I is the certainty equivalence functional that maps the next-period

utility (which is a random variable) into its certainty equivalent (which is a real number).

We assume that I is normalized and weakly increasing in first-order stochastic dominance.3

As shown by Strzalecki [65], representation (9) includes most of the dynamic preferences

under uncertainty proposed in the literature.4 Our main focus is to characterize the set

of preferences under which the announcement premium is non-negative for payoffs that are

increasing functions of continuation utility.

4.1 The announcement SDF

We continue to focus on the two-period model assuming i) a finite state space, ii) fully

revealing announcements, and iii) equal probability of each state, that is, π (s) = 1
N

for

s = 1, 2, · · · , N . Although none of the above assumptions are neccessary for our main

theorem, they allow us to avoid cumbersome notations and illustrate the basic intuition for

our results. We present and prove our general theorems without the above assumptions in a

fully dynamic setup in Appendix C.

In the two-period model, because the signal s fully reveals the state of the world, C1,s

is known at announcement. Because I is normalized and Vs is known after receiving

announcement s, the agent’s post-announcement utility can be written as: Vs = u (C0) +

βu (C1,s). With a finite number of states, the certainty equivalence functional I can be viewed

3A certainty equivalence functional I is normalized if I [k] = k whenever k is a constant. It is weakly
increasing in first-order stochastic dominance if I [X1] ≥ I [X2] whenever X1 first-order stochastic dominates
X2. See Appendix C for details.

4As Strzalecki [65] shows, this representation includes the maxmin expected utility of Gilboa and
Schmeidler [30], the second-order expected utility of Ergin and Gul [28], the smooth ambiguity preferences of
Klibanoff, Marinacci, and Mukerji [46], the variational preferences of Maccheroni, Marinacci, and Rustichini
[54], the multiplier preferences of Hansen and Sargent [34] and Strzalecki [64], and the confidence preferences
of Chateauneuf and Faro [15]. In addition, our setup is more general than that of Strzalecki [65], because we
do not require the function u (·) to be affine. In Appendix B, we provide expressions for the A-SDF for the
above-mentioned decision models.
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as a function from RN to R. We use the vector notation and denote the agent’s utility at

time 0− as I [V ], where V = [V1, V2, · · · , VN ]. Assuming I is differentiable, from date 0−

perspective, the agent’s marginal utility with respect to C0 is

∂

∂C0
I [V ] =

∑N

s=1

∂

∂Vs
I [V ] · u′ (C0) ,

and the marginal utility with respect to C1,s is

∂

∂C1,s
I [V ] =

∂

∂Vs
I [V ] · βu′ (C1,s) .

Because the pre-announcement price of an asset can be computed as the marginal utility

weighted payoffs, we can write

P− =
N
∑

s=1

∂
∂C1,s

I [V ]

∂
∂C0

I [V ]
Xs = E

[

m∗ (s) β
u′ (C1 (s))

u′ (C0)
X (s)

]

, (10)

where

m∗ (s) =
1

π (s)

∂
∂Vs

I [V ]
∑N

s=1
∂
∂Vs

I [V ]
. (11)

At time 0+, s fully reveals the state, and P+ (s) is, again, given by equation (4). Clearly,

the asset pricing equation (8) holds with the A-SDF m∗ defined by (11). We summarize our

results for the existence of A-SDF as follows.

Theorem 1. (Existence of A-SDF)

Assume that both u and I are continuously differentiable with strictly positive (partial)

derivatives. Assume also that I is normalized.5 Then in any competitive equilibrium, there

exists a strictly positive m∗ = {m∗ (s)}s=1,2,··· ,N such that

1. m∗ is a density, that is, E [m∗] = 1, and

2. for all announcement returns RA (s),

E [m∗ (s)RA (s)] = 1. (12)

To provide a precise statement about the sign of the announcement premium, we

focus our attention on payoffs that are co-monotone with continuation utility. We

define an announcement-contingent payoff f to be co-monotone with continuation utility if

[f (s)− f (s′)] [V (s)− V (s′)] ≥ 0 for all s, s′. Intuitively, co-monotonicity captures the idea

5See Definition 5 in Appendix C.
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that the payoff f is an increasing function of the continuation utility V . We are interested

in identifying properties of the certainty equivalence functional I such that the following

condition is true.

Condition 1. The announcement premium is non-negative for all payoffs that are co-

monotone with continuation utility V .

In the case of expected utility, I [V ] =
∑N

s=1 π (s)Vs is linear, and m∗ (s) = 1 for all

s by equation (11). As a result, equation (12) reduces to E [RA (s)] = 1, and there can

be no premium for any announcement return. In general, assuming m∗ (s) is a decreasing

function of aggregate consumption, C1,s, or equivalently, a decreasing functions of Vs, then

by equation (12), the announcement premium E [RA (s)] − 1 = −cov [m∗ (s) , RA (s)] must

be positive for all returns RA (s) that are co-monotone with continuation utility Vs. The

converse of the above statement is also true. That is, suppose m∗ (s) is a not a decreasing

functions of Vs, then we can always find an return that is co-monotone with Vs, but requires

a negative announcement premium.

As a result of the above observation, Condition 1 is equivalent tom∗ (s) being a decreasing

function of Vs, which is equivalent to ∂
∂Vs

I [V ] being a decreasing function of Vs by Equation

(11). Under the assumption of equal probability for all states, the latter property is known to

be equivalent to I being increasing in second-order stochastic dominance.6 We can summarize

our main results as follows.

Theorem 2. (Announcement Premium) Under the assumptions of Theorem 1,

1. the announcement premium is zero for all assets if and only I is the expectation

operator.

2. Condition 1 is equivalent to the certainty equivalence functional I being non-decreasing

with respect to second-order stochastic dominance.

The above theorem holds under much more general conditions. In Appendix D, we show

that the conclusion of the above theorem remains true in a fully dynamic model without the

assumption of fully revealing signals or a finite number of states with equal probability.7

6Under our assumptions, this property of I is also known as Schur concavity. See also Muller and Stoyan
[57] and Chew and Mao [17].

7A stronger version of the above theorem is also true. That is, the announcement premium is positive for
all payoffs that are strictly co-monotone with continuation utility Vs if and only if the certainty equivalence
functional I is strictly increasing with respect to second-order stochastic dominance. A proof for this result
is available upon request.

12



4.2 Generalized risk-sensitive preferences

Theorem 2 motivates the following definition of generalized risk sensitivity.

Definition 1. (Generalized Risk Sensitivity)

An intertemporal preference of the form (18) is said to satisfy (strictly) generalized risk

sensitivity, if the certainty equivalence functional I is (strictly) monotone with respect to

second-order stochastic dominance.

Under our definition, generalized risk-sensitive preference is precisely the class of

preferences that requires a non-negative announcement premium for all assets with payoff

co-monotone with investors’ continuation utility.

The SDF for many non-expected utility models takes the form m∗ (s)β u
′(C1(s))
u′(C0)

, as in

Equation (10).8 Theorem 2 has two important implications. First, generalized risk sensitivity

is precisely the class of preferences under which m∗ is a decreasing function of continuation

utility and therefore enhances risk compensation. Second, generalized risk sensitivty can

be identified from empirical evidence on announcement returns. In fact, as we show in

Section 4.3, the empirical evidence on the announcement premium can be used to gauge the

quantitative importance of the term m∗.

To clarify the notion of generalized risk sensitivity, we next discuss its relationship with

two other related properties of choice behavior under uncertainty that are known to be

associated with higher risk compensations, uncertainty aversion (Gilboa and Schmeidler [30]),

and the preference for early resolution of uncertainty (Kreps and Porteus [48]).

Generalized risk sensitivity and uncertainty aversion Most of the dynamic

uncertainty-averse preferences studied in the literature can be viewed as a special case of

the general representation (9). In the special case in which u (·) is affine as in Strzalecki [65],

quasiconcavity is equivalent to the uncertainty aversion axiom of Gilboa and Schmeidler [30].

We make the following observations about the relationship between uncertainty aversion and

generalized risk sensitivity.

1. Quasiconcavity of I is sufficient, but not neccessary, for generalized risk sensitivity.

A direct implication of the above result is that all uncertainty-averse preferences can

be viewed as different ways to formalize generalized risk sensitivity, and they all require

8For example, Hansen and Sargent [34] use a risk-sensitive operator to motivate the termm∗ as a decreasing
function of continuation utility. In this sense, our notion of generalizes the risk-sensitive operator of Hansen
and Sargent [34].
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a non-negative announcement premium (for all assets with payoffs co-monotone with

continuation utility). These preferences include the maxmin expected utility of Gilboa

and Schmeidler [30], the second-order expected utility of Ergin and Gul [28], the

smooth ambiguity preferences of Klibanoff, Marinacci, and Mukerji [46], the variational

preferences of Maccheroni, Marinacci, and Rustichini [54], the multiplier preferences

of Hansen and Sargent [34] and Strzalecki [64], and the confidence preferences of

Chateauneuf and Faro [15].

In Appendix D, we provide a proof for the sufficiency of quasiconcavity for generalized

risk sensitivity. To illustrate that quasiconcavity is not neccessary, in the same

appendix, we also provide an example that satisfies generalized risk sensitivity, but

not quasiconcavity.

2. If I is of the form I [V ] = φ−1 (E [φ (V )]), where φ is a strictly increasing function,

then generalized risk sensitivity is equivalent to quasiconcavity, which is also equivalent

to the concavity of φ.

The certainty equivalence function of many intertemporal preferences takes the above

form, for example the the second-order expected utility of Ergin and Gul [28] and the

recursive preferences of Kreps and Porteus [48] and Epstein and Zin [27]. For these

preferences, g-risk sensitivity is equivalent to the concavity of φ.

3. Within the class of smooth ambiguity-averse preferences, uncertainty aversion is

equivalent to generalized risk sensitivity.

The smooth ambiguity-averse preference of Klibanoff, Marinacci, and Mukerji [46, 47]

can be represented in the form of (9) with the following choice of the certainty

equivalence functional:

I [V ] = φ−1

{
∫

∆

φ (Ex [V ]) dµ (x)

}

. (13)

We use ∆ to denote a set of probability measures indexed by x, Px. The notation E
x [·]

stands for expectation under the probability Px, and µ (x) is a probability measure

over x. In Appendix D, we show that generalized risk sensitivity is equivalent to the

concavity of φ, which is also equivalent to uncertainty aversion.

Generalized risk sensitivity and preference for early resolution of uncertainty

A well-known class of model that gives rise to an additional term m∗ in the SDF in (10)

is the recursive preference with constant relative risk aversion and constant intertemporal

elasticity of substitution (IES). It is also well-known that the resultant m∗ is decreasing in
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continuation utility under preference for early resolution of uncertainty, that is, if the relative

risk aversion γ is greater than the reciprocal of IES, 1
ψ
. However, for the general representation

(9), generalized risk sensitivity is neither necessary nor sufficient for preference for early

resolution of uncertainty. A simple example of a preference with indifference toward the

timing of resolution of uncertainty, but requires a strictly positive announcement premium,

is the constraint robust control preference in Section 3.3.9 We summarize our main results

below.

1. Concavity of the certainty equivalence functional I is sufficient for both generalized risk

sensitivity and preference for early resolution of uncertainty.

Note that concavity implies quasiconcavity and therefore generalized risk sensitivity.

Theorem 2 of Strzalecki [65] also implies that these preferences satisfy preference for

early resolution of uncertainty. As a result, Theorems 2 and 3 of Strzalecki [65] imply

that the variational preference of Maccheroni, Marinacci, and Rustichini [54] is both

risk sensitive and prefers early resolution of uncertainty.

2. If I of the form I [V ] = φ−1 (E [φ (V )]) or is the smooth ambiguity preference,

I [V ] =
∫

∆
φ (Ex [V ]) dµ (x), where φ is strictly increasing and twice continuously

differentiable, then generalized risk sensitivity implies preference for early resolution

of uncertainty if either of the following two conditions hold.

(a) There exists A ≥ 0 such that −φ′′(a)
φ′(a)

∈ [βA,A] for all a ∈ R.

(b) u (C) ≥ 0 for all C, and β
[

−φ′′(k+βa)
φ′(k+βa)

]

≤ −φ′′(a)
φ′(a)

for all a, k ≥ 0.

The above two conditions are the same as Conditions 1 and 2 in Strzalecki [65].

Intuitively, they require that the Arrow-Pratt coefficient of the function φ does not

vary too much. In both cases, generalized risk sensitivity implies the concavity of φ.

By Theorem 4 of Strzalecki [65], either of the above conditions implies preference for

early resolution of uncertainty.

Because the recursive utility with constant relative risk aversion and constant IES can

be represented in the form of (9) with u (C) = 1
1− 1

ψ

C1− 1
ψ , and I [V ] = φ−1 (E [φ (V )]),

9To verify that this preference is indifferent toward the timing of resolution of uncertainty, note that the
time 0− utility of the agent is

V E = minE [m {u (C0) + βu (C1)}] ,
if uncertainty is resolved at 0+, and the utility at time 0− is

V L = u (C0) + βminE [m {u (C1)}] ,

if uncertainty is resolved at time 1. Clearly, V E = V L.
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where φ (x) =
[(

1− 1
ψ

)

x
]

1−γ
1−1/ψ

. It follows from Condition b that I is quasi-concave

and therefore requires a positive announcement premium if and only if γ ≥ 1
ψ
. That is,

for this class of preferences, preference for early resolution of uncertainty and generalized

risk sensitivity are equivalent. Therefore, assuming a recursive utility with constant

relative risk aversion and constant IES, the empirical evidence for announcement

premium can be also interpreted as evidence for preference for early resolution of

uncertainty.

3. In general, preference for early resolution of uncertainty is neither sufficient nor

necessary for a positive announcement premium.

In Appendix D, we provide an example of a generalized risk-sensitive preference that

violates preference for early resolution of uncertainty, as well as an example of an utility

function that prefers early resolution of uncertainty, but does not satisfy generalized

risk sensitivity.

4. The only class of preferences that requires a positive announcement premium and is

indifferent toward the timing of resolution of uncertainty is the maxmin expected utility

of Gilboa and Schmeidler [30].

The maxmin expected utility of Gilboa and Schmeidler [30] is the only class of preference

of the form (9) that is indifferent toward the timing of resolution of uncertainty

(Strzalecki [65]). As the example in Section 2.3 shows, this class of preference exhibits

generalized risk sensitivity.

4.3 Asset pricing implications

Decomposition of returns by the timing of its realizations In general, equity

returns can be decomposed into an announcement return and a post-announcement return.

Using the notations we setup in Section 3 of the paper, the return of an asset can be computed

as:

R (X) =
X

P−
= RP (X| s)RA (s) ,

where RA (s) is the announcement return defined in (1), and RP (X| s) = X
P+(s)

is the post-

announcement return (conditioning on s). The optimal portfolio choice problem on the

post-announcement asset market implies that for each s, there exists y∗ (C1| s), which is a

function of C1, such that

E [y∗ (C1| s)RP (X| s)| s] = 1, (14)
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for all post-announcement returns. In our simple model in which s fully reveals C1,

y∗ = βu′(C1)
u′(C0)

. In general, y∗ depends on agents’ intertemporal marginal rate of substitution

on the post-announcement asset market. Combining Equations (12) and (14), and applying

the law of iterated expectation, we have

E [m∗y∗ · R (X)] = 1.10 (15)

Equation (15) appears in many intertemporal asset pricing models. Equations (12)

and (14) provide a decomposition of intertemporal returns into an announcement return

and a post-announcement return and a decomposition of the SDF. We make the following

comments.

1. Theorem 2 implies that the announcement premium must be compensation for

generalized risk sensitivity and cannot be compensation for risk aversion associated

with the Von Neumann–Morgenstern utility function u, because the A-SDF, m∗,

depends only on the curvature of the certainty equivalence functional I [·], and not

on u. The announcement premium is determined by the properties of I [·], whereas the
post-announcement premium, which is not realized until the action of consumption is

completed, refects the curvature of u.

2. The large magnitude of announcement return in the data implies that the probability

distortion in m∗ must be significant. Just as intertemporal asset returns provide

restrictions on the SDF that prices these returns, announcement returns provide

restrictions on the magnitude of the probability distortions. For example, we can bound

the entropy of the A-SDF as in Bansal and Lehmann [7] and Backus, Chernov, and

Zin [5]: −E [ln (m∗y∗)] = −E [lnm∗] − E [ln y∗] ≥ E [lnR]. Using the average market

return during the 1997-2014 period, we have −E [ln (m∗y∗)] ≥ E [lnR] = 7.44%. The

entropy bound on the probability distortion component provides a tighter restriction:

−E [lnm∗] ≥ E [lnRA] = 8.24% using the average announcement return during the

same period. These bounds imply that the volatility of the SDF y∗ is likely to be small.

3. The Hansen-Jaganathan bound (Hansen and Jagannathan [33]) for the SDF’s leads to

a similar conclusion. Equation (12) implies that for any announcement return, RA,

σ [m∗] ≥ E[RA−1]
σ[RA]

. The Sharpe ratio for announcement returns reported in Table 1 can

be used to compute the Hansen-Jaganathan bound for A-SDF: σ [m∗] ≥ 55% for the

1961-2014 period, and σ [m∗] ≥ 88% if we focus on the later period of 1997-2014, where

more announcement data are available.

10We show in Appendix C that this decomposition holds in the fully dynamic model. See equation (43).
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In contrast, the moments of the total stock market return in the same period in fact

implies a weaker bound on SDF that prices the overall return, m∗y∗. Using equation

(15), we have

σ [m∗y∗] ≥ E [R (X)− 1]

σ [R (X)]
. (16)

Inequality (16) implies σ [m∗y∗] ≥ 40% if we focus on the period of 1961-2014 in Table

1, and σ [m∗y∗] ≥ 37% for the latter period of 1997-2014.

4. Assuming log-normality, equation (12) implies lnE [RA] = −Cov [lnRA, lnm
∗], and

equation (15) implies

lnE [R]− lnRf = −Cov [lnR, lnm∗ + ln y∗] (17)

= −Cov [lnR, lnm∗]− Cov [lnR, ln y∗] .

Because lnR = lnRA (s)+ lnRP and −Cov [lnRA, lnm
∗] = lnE [RA] by equation (12),

we have:

lnE [R]− lnRf = lnE [RA]− Cov [lnm∗, lnRP ]− Cov [ln y∗, lnR] . (18)

As we explained earlier, most of the equity premium in the data is announcement

premium. Therefore, the term −Cov [lnm∗, lnRP ] − Cov [ln y∗, lnR] must be close to

zero. Note that m∗ (s) is a function of the announcement, while RP (X|s) is the post-

announcement return; therefore, the term Cov [lnm∗, lnRP ] is likely to be close to zero.

This implies that the compensation for the curvature of the Von Neumann–Morgenstern

utility function u as captured by the term −Cov [ln y∗, lnR] must be close to zero.

5. The external habit preference does not generate an announcement premium, and the

internal habit model produces a negative announcement premium.

The external habit preference (for example, Constantinides [20] and Campbell and

Cochrane [14]) can be written as: E
[

∑T
t=0

1
1−γ

(Ct −Ht)
1−γ

]

, where {Ht}∞t=0 is the

habit process. Consider the date-0 market for announcements. The pre-announcement

price of any payoff {Xt}∞t=1 is

P− = E

[

T
∑

t=0

(

Ct −Ht

C0 −H0

)

−γ

Xt

]

,
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and the post-announcement price (after s0 is announced) is

P+ (s) = E

[

T
∑

t=0

(

Ct −Ht

C0 −H0

)

−γ

Xt

∣

∣

∣

∣

∣

s

]

.

Clearly, like in the case of expected utility, P−

0 = E
[

P+
0 (s)

]

, and there can be

no announcement premium. The external habit model is similar to expected utility

because the habit process is exogenous, and agents do not take into account of the

effect of current consumption choices on future habits when making consumption and

investment decisions. We further show in Appendix D that the internal habit model

(for example, Boldrin, Christiano, and Fisher [11]) generates a negative announcement

premium.

5 A quantitative model of announcement premium

In this section, we present a continuous-time model with the Kreps-Porteus utility and show

that our model can quantitatively account for the dynamic pattern of the announcement

premium in the data. In our model, shocks to aggregate consumption are modeled as

Brownian motions and arrive gradually over time. This setup allows us to distinguish the

announcement premium that is instantaneously realized upon news announcements and the

risk premium that investors receive incrementally as shocks to consumption materialize slowly

over time.

5.1 Model setup

The dynamics of consumption and dividends We consider a continuous-time

representative agent economy. The growth rate of aggregate consumption during an

infinitesimal interval ∆ is specified as:

lnCt+∆ − lnCt = xt∆+ σ (BC,t+∆ − BC,t) ,

where xt is a continuous time AR(1) process not observable to the agents of the economy.

The law of motion of xt is

xt+∆ = ax∆x̄+ (1− a∆) xt + σx (Bx,t+∆ − Bx,t) ,
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where x̄ is the long-run average growth rate of the economy, and BC,t+∆ + BC,t and

Bx,t+∆ − Bx,t are normally distributed innovations (increments of Brownian motions). We

assume that BC,t and Bx,t are independent. In the continuous-time notation,

dCt
Ct

= xtdt + σdBC,t,

dxt = ax (x̄− xt) dt+ σxdBx,t (19)

Our benchmark asset is a claim to the following dividend process:

dDt

Dt

= [x̄+ φ (xt − x̄)] dt+ φσdBC,t, (20)

where we assume that the long-run average growth rate of consumption and dividend are

the same, and we allow the leverage parameter φ > 1 so that dividends are more risky than

consumption, as in Bansal and Yaron [9].

Timing of information and Bayesian learning The representative agent in the

economy can use two sources of information to update beliefs about xt. First, the realized

consumption path contains information about xt, and second, an additional signal about xt is

revealed at pre-scheduled discrete time points T, 2T, 3T, · · · . For n = 1, 2, 3, · · · , we denote sn
as the signal observed at time nT and assume sn = xnT +εn, where εn is normally distributed

with mean zero and variance σ2
S. Note that announcements of the signals at t = T , 2T , 3T ,

· · · are not associated with the realization of any consumption shocks.

In the interior of (0, T ), the agent does not observe the true value of xt and updates belief

about xt based on the observed consumption process according to Bayes’ rule. We define

x̂t = E (xt|Ct) as the posterior mean of xt and time t, and define qt = E
[

(xt − x̂t)
2
∣

∣Ct
]

as

the posterior variance of xt.
11 The dynamics of xt can be written as (Kalman-Bucy filter):

dx̂t = a [x̄− x̂t] dt+
q (t)

σ
dB̃C,t, (21)

where the innovation process, B̃C,t is defined by dB̃C,t = 1
σ

[

dCt
Ct

− x̂tdt
]

. The posterior

variance, q (t) satisfies the Riccati equation:

dq (t) =

[

σ2
x − 2axq (t)−

1

σ2
q2 (t)

]

dt. (22)

The posterior distribution is updated immediately following the announcement of signals

11Here we use the notation Ct to denote the history of consumption up to time t.
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at time T, 2T, · · · . At time T , for example, the agent updates beliefs using Bayes rule:

x̂+T =
1

q+T

[

1

σ2
S

s+
1

q−T
x̂−T

]

;
1

q+T
=

1

σ2
S

+
1

q−T
, (23)

where s is the signal observed at time T , x̂−T and q−T are the posterior mean and variance of

xT before the announcement, and x̂+T and q+T denote the posterior mean and variance of xT

after the announcement at time T . We plot the dynamics of posterior variance qt in Figure

3 with the assumption that announcements are made every thirty days and they completely

reveal the information about xt, that is, σ
2
S = 0. At announcements, the posterior variance

drops immediately to zero, as indicated by the circles. After announcement, information

slowly arrives and as a result, the posterior variance gradually increases over time before the

next announcement.

Figure 3: posterior variance of xt
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Preferences and the stochastic discount factor We assume that the representative

agent has a Kreps-Porteus utility with preference for early resolution of uncertainty, γ > 1
ψ
.

In continuous time, this preference is represented by the stochastic differential utility of Duffie

and Epstein [22] that can be interpreted as the limit of the recursive relationship (9) over a

small time interval ∆ as ∆ → 0:

Vt =
(

1− e−ρ∆
)

u (Ct) + e−ρ∆I [Vt+∆| x̂t, qt] , (24)

where ρ is the time discount rate, and I [ ·| x̂t, qt] is the certainty equivalence functional

conditioning on agents’ posterior belief at time t, (x̂t, qt). To derive closed-form solutions,

we focus on the case in which ψ = 1. The corresponding choices of utility function u and

certainty equivalence functional I are: u (C) = lnC and I [V ] = 1
1−γ

lnE
[

e(1−γ)V
]

. This
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preference can also be interpreted as the multiplier robust control preference of Hansen and

Sargent [34].

As is well-known for representative agent economies with recursive preferences, any return

Rt,t+∆ must satisfy the intertemporal Euler equation E [SDFt,t+∆Rt,t+∆] = 1, where the

stochastic discount factor for the time interval (t, t+∆) given by

SDFt,t+∆ = e−ρ∆
(

Ct+∆

Ct

)

−1
e(1−γ)Vt+∆

Et [e(1−γ)Vt+∆]
. (25)

Consistent with our earlier notation, we define the A-SDF m∗

t+∆ = e
(1−γ)Vt+∆

Et[e(1−γ)Vt+∆ ]
, and the

intertemporal SDF y∗t+∆ = e−ρ∆
(

Ct+∆

Ct

)

−1

. Clearly, m∗

t+∆ is a probability density and

represents the probability distortion under the robust control interpretation of the model.

With the above specification of preferences and consumption, the value function has a closed-

form solution, which we denote Vt = V (x̂t, t, Ct), and

V (x̂, t, C) =
1

ax + ρ
x̂+

1

1− γ
h (t) + lnC, (26)

where the function h (t) is given in Appendix E of the paper. We set the parameter values of

our model to be consistent with standard long-run risk calibrations and list them in Table 4.

We now turn to the quantitative implications of the model on the announcement premium.

5.2 The announcement premium

Equity premium on non-announcement days In the interior of (nT, (n + 1)T ), the

equity premium can be calculated using the SDF (25) like in standard learning models (for

example, Veronesi [66] and Ai [2]). Let pt denote the price-to-dividend ratio of the benchmark

asset, and let rt denote the risk-free interest rate at time t. Using a log-linear approximation

of pt, the equity premium for the benchmark asset over a small time interval (t, t+∆) can

be written as:12

Et

[

pt+∆Dt+∆ +Dt+∆∆

ptDt

− ert∆
]

≈
[

γσ +
γ − 1

ax + ρ

qt
σ

] [

φσ +
φ− 1

ax + ρ

qt
σ

]

∆. (27)

12In general, the equity premium depends on the state variable x̂. The log-linear approximation does not
capture this dependence. We use the log-linear approximation to illustrate the intuition of the model. All
figures and calibration results are obtained based on the global solution of the PDE obtained by the Markov
chain approximation method.
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The above expression has intuitive interpretations. The term
[

γσ + γ−1
ax+ρ

qt
σ

]

is the sensitivity

of the SDF with respect to consumption shocks, where γσ is market price of risk due to risk

aversion, and the term γ−1
ax+ρ

qt
σ

is associated with recursive utility and aversion to long-run

risks. The second term
[

σ + φ−1
ax+ρ

qt
σ

]

is the elasticity of asset return with respect to shocks

in consumption, where φσ is the sensitivity of dividend growth with respect to consumption

growth, and φ−1
ax+ρ

qt
σ

is the response of price-dividend ratio to investors’ belief about future

consumption growth.

As we show in Figure 3, after the previous announcement and before the next

announcement, because investors do not observe the true value of xt, the posterior variance qt

increases over time. By equation (27), the equity premium also rises with qt. In Figure 4, we

plot the instantaneous equity premium
[

γσ + γ−1
ax+ρ

qt
σ

] [

φσ + φ−1
ax+ρ

qt
σ

]

on non-announcement

days. Clearly, the equity premium increases over time. This feature of our model captures

the ”pre-announcement drift” documented in empirical work.

Figure 4: Equity Premium on Non-Announcement Days
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Figure 4 plots the annualized equity premium on non-announcement days in our model with recursive utility.

As in typical continuous-time models, the amount of equity premium is proportional to the

length of holding period, ∆ by equation (27). In fact, SDFt,t+∆ → 1 as ∆ → 0. Intuitively,

the amount of risk diminishes to zero in an infinitesimally small time interval, and so does

risk premium. The situation is very different on macroeconomic announcement days, which

we turn to next.

Announcement returns Consider the stochastic discount factor in (25). As ∆ → 0,

the term y∗t+∆ = e−ρ∆
(

Ct+∆

Ct

)

−
1
ψ → 1; however, the A-SDFm∗

t+∆ does not necessarily collapse

to 1 unless the term Vt is a continuous function of t. We define m∗

t = lim∆→0+ m
∗

t+∆. In
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periods with no news announcements, because consumption evolves continuously, so does

the posterior belief (x̂t, qt). Therefore, m
∗

t = 1. In contrast, at time 0, T, 2T, · · · , upon news

announcement, x̂t and qt updates instantaneously, and

m∗

T =
e

1−γ
ax+ρ

x̂+T

E
[

e
1−γ
ax+ρ

x̂+T

∣

∣

∣
x̂−T , q

−

T

] . (28)

is the A-SDF for the announcement at time T .

We focus on asset prices and returns around announcements. We denote the time-T

pre-announcement price-to-dividend ratio as p−T and the time-T post-announcement price-

to-dividend ratio as p+T . No arbitrage implies that for all ∆,

p−TDT = E−

T

[
∫ ∆

0

SDFT,T+sDT+sds+ SDFT,T+∆pt+∆DT+∆

]

,

where E−

T denotes the expectation taken with respect to the information at time T before

announcements. Taking the limit as ∆ → 0, and using the fact that y∗t+∆ → 1, we have:

p−T = E−

T

[

m∗

T × p+T
]

, (29)

which is the continuous-time version of the asset pricing equation (8). As we show in

Appendix E, using a first-order approximation, the announcement premium can be written

as:

ln
E−

T

[

p+T
]

p−T
≈ γ − 1

ax + ρ

φ− 1

ax + ρ

(

q−T − q+T
)

. (30)

We make the following observations.

1. In contrast to non-announcement periods, the equity premium does not disappear as

∆ → 0. As long as φ > 1 and the agent prefers early resolution of uncertainty (γ > 1),

the announcement premium is positive.

In Figure 5, we plot the daily equity premium implied by our model with recursive

utility (top panel) and that in a model with expected utility (bottom panel). Because

we are calculate equity premium over a short time interval, the equity premium in

non-announcement periods is negligible compared with announcement returns. The

announcement premium is about 17 basis points in the top panel, and the equity

premium is close to zero on announcement days. The quantitative magnitude of these

returns is quite similar to their empirical counterpart in Table 1. Consistent with

our theoretical results in Section 2, the announcement premium for expected utility is

zero. The premium on the announcement days for expected utility is 0.028 basis point,
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several orders of magnitude smaller than that for recursive utility.13

Figure 5: announcement premium for recursive utility and expected utility
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Figure 5 plots daily equity premium for recursive utility (top panel) and that for expected utility (bottom

panel). Equity premium is measured in basis points. The dotted line is the equity premium on non-

announcement days, and the circles indicate the equity premium on announcement days.

2. The announcement premium identifies the probability distortion component of the SDF.

The SDF in equation (25) has two components, the term e−ρ∆
(

Ct+∆

Ct

)

−1

that arises from

standard log utility, and the A-SDF e
(1−γ)Vt+∆

Et[e(1−γ)Vt+∆ ]
that can be interpreted as probability

distortion. As we take the limit ∆ → 0, the intertemporal substitution of consumption

term vanishes, and the A-SDF, (28), only depends on probability distortion. In the

log-linear approximation (30), the term γ−1
ax+ρ

is due to investors’ probability distortion

with respect to x+T , and the term φ−1
ax+ρ

measures the sensitivity of price-to-dividend

ratio with respect to probability distortions.

3. The magnitude of announcement premium is proportional to the variance reduction

in the posterior belief of the hidden state variable xt upon the news announcement,

q−T −q+T . The higher is the information content in news, the larger is the announcement

premium. In addition, the announcement premium also increases with the persistence

of the shocks. As the mean-reversion parameter ax becomes smaller, the half life of the

impact of xt on consumption increases, and so does the announcement premium.

13The equity premium on announcement days in the expected utility model is not literally zero because
even though announcement premium is zero, compensation for consumption risks is positive with ∆ = 1

360 .

25



Figure 6: dynamics of price-to-dividend ratio
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Figure 6 plots the evolution of log price-to-dividend ratio over the announcement cycles. The dotted line is

the price-to-dividend ratio evaluated at the steady-state level of expected consumption growth rate, x̄. The

dash-dotted line is the price-to-dividend ratio for xt one standard deviation above and below its steady-state

level. The standard deviation is calculated at the monthly level, that is, h = 1
12 .

To better understand the nature of the announcement premium, in Figure 6, we plot the

price-dividend ratio in the model as a function of time under different assumptions of the

posterior belief, x̂t. The dotted line is the price-to-dividend ratio assuming x̂t = x̄, and the

dash-dotted lines are plotted under values of x̂t one standard deviation above and below x̄,

where standard deviation is calculated as the monthly standard deviation of the Brownian

motion shock dBt. Note that on average, announcements are associated with an immediately

increase in the valuation ratio. After announcements, as the discount rate increases, the

price-to-dividend ratio drops gradually until the next announcement. Because φ > 1, the

price-to-dividend ratio is increasing in the posterior belief x̂t, and therefore the market equity

requires a positive announcement premium by equation (30).

Comparison with alternative model specifications In Table 5, we present the

model-implied equity premium and announcement premium for our model with learning (left

panel). For comparison, we also present under the column ”Observable” the same moments

for an otherwise identical model, except that xt is assumed to be fully observable. Under

the column ”Expected Utility”, we report the moments of a model with expected utility by

setting γ = 1 and keeping all other features identical to our benchmark learning model. Note

that our model with learning produces a higher equity premium than the model with xt

fully observable. The average equity premium in the learning model is 5.4% per year, while

the same moment is 4.58% in the model without learning. More importantly, in the model

with learning, a large fraction of the equity premium are realized on the twelve scheduled
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announcement days: the total returns on announcement days averages 2.53% per year. In the

model in which xt is fully observable, announcements are not associated with any premium

because their information content is fully anticipated.

As we have discussed before, the announcement premium is zero under expected utility,

and therefore the magnitude of the equity premium on announcement days and that on

non-announcement days is the same. In addition, under expected utility, risks in xt are not

priced, and therefore the overall equity premium is a lot lower than that in economies with

recursive utility.

5.3 Preference for early resolution of uncertainty

As we have shown in the previous section, within the class of recursive utility with constant

relative risk aversion and constant IES, a positive announcement premium is equivalent to

preference for early resolution of uncertainty. In this section, we discuss the relationship

between the announcement premium and timing premium, defined as the welfare gain of

early resolution of uncertainty, in the context of our continuous-time model.

We define timing premium as in Epstein, Farhi, and Strzalecki [24].14 Consider a

macroeconomic announcement at time 0+ that resolves all uncertainty in the economy from

time 0+ to ∞. Let W+ be the agent’s utility at time 0+ when all uncertainty is resolved,

that is,

W+
0 (τ ) =

∫

∞

0

e−ρtρ lnCtdt. (31)

Let W− be the certainty equivalent of W+:

W− =
1

1− γ
lnE−

[

e(1−γ)W
+
]

. (32)

That is, W− is the utility of the representative agent who does not know any information

about the future, but anticipates that all uncertainty from time 0 to ∞ will be resolved

immediately at 0+. Preference for early resolution implies that V0 < W−

0 (τ ), where

V0 = V (x0, 0, C0) is the utility of the agent in the economy without advanced information as

we defined in (24).

The timing premium λ is defined as the maximum fraction of life-time consumption that

14See also Ai [1] for a decomposition of the welfare of gain of early resolution of uncertainty in production
economies.
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the representative agent is willing to pay for the announcement:

1− λ = eV0−W
−

0 (τ) =
eV0

{E− [e(1−γ)W+]}
1

1−γ

. (33)

Now consider an asset market for the announcement at time 0+. Let p+ as the price-to-

dividend ratio of the equity claim at time 0+ upon the announcement. The pre-announcement

price-to-dividend ratio is given by

p− =
E−

0

[

e(1−γ)W
+
p+

]

E−

0 [e(1−γ)W+]
, (34)

where W+ is the agent’s continuation utility after announcement as defined in equation (31).

The expected return associated with the announcement can be calculated as

E−

0

[

p+0
]

p−
=
E−

0

[

p+0
]

E−

0

[

e(1−γ)W
+
]

E−

0 [e(1−γ)W+p+]
.

It is not hard to show that λ = ln
E−

0 [p
+
0 ]

p−
= 0 for γ = 1. That is, the timing premium

and announcement premium are both zero for expected utility. In addition, as long as

p+ is positively correlated with e(1−γ)W
+
, both the timing premium and the announcement

premium increase with the measure of preference for early resolution of uncertainty, γ − 1.

As shown earlier in the paper, generalized risk sensitivity is necessary to account for

the large observed announcement premium. Within the class of Kreps-Porteus preferences,

the empirical evidence on the large announcement premium ipso facto implies a significant

preference for early resolution of uncertainty. As there is no direct measurement on what

investors are willing to pay for early resolution, it is hard to evaluate the model along this

dimension. In addition to the announcement premium, previous literature has demonstrated

that recursive preferences with a strong generalized risk sensitivity is important to account for

risk premia across different assets classes (see Bansal and Yaron [9], Hansen, Heaton, and Li

[32], Colacito and Croce [19], and Barro [10]) and other macro-economic facts (for example,

Kaltenbrunner and Lochstoer [41] and Croce [21]). The announcement premium evidence

along with this earlier papers underscore the importance of generalized risk sensitivity within

this class of recursive preferences.
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6 Conclusion

Motivated by the fact that a large fraction of the market equity premium are realized on a

small number of trading days with significant macroeconomic news announcement, in this

paper, we provide a theory and a quantitative analysis for premium for macroeconomic

announcements. We show that a positive announcement premium is equivalent to generalized

risk sensitivity, that is, investors’ certainty equivalence functional increases with respect

to second order stochastic dominance. We demonstrate that generalized risk sensitivity is

precisely the class of preferences in which deviations from expected utility enhances the

volatility of the stochastic discount factor. As a result, our theoretical framework implies

that the announcement premium can be interpreted as an asset-market-based evidence for a

broad class of non-expected utility models that feature aversion to ”Knightian uncertainty”.

We also present a dynamic model to quantitatively account for the pattern of equity premium

around news announcement days.
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Appendix

A Details of the Empirical Evidence

Here, we describe the details of our empirical evidence on the macroeconomic announcement premium.

Data description We focus on the top five macroeconomic news ranked by investor attention

among all macroeconomic announcements at the monthly or lower frequency. They are unemployment/non-

farm payroll (EMPL/NFP) and producer price index (PPI) published by the U.S. Bureau of Labor Statistics

(BLS), the FOMC statements, the gross domestic product (GDP) reported by U.S. Bureau of Economic

Analysis, and the Institute for Supply Management’s Manufacturing Report (ISM) released by Bloomberg.15

The EMPL/NFL and PPI are both published at a monthly frequency and their announcement dates

come from the BLS website. The BLS began announcing its scheduled release dates in advance in 1961

which is also the start date for our EMPL/NFL announcements sample. The PPI data series start in 1971.16

There are a total of eight FOMC meetings each calendar year and the dates of FOMC meetings are taken

from the Federal Reserve’s web site. The FOMC statements begin in 1994 when the Committee started

announcing its decision to the markets by releasing a statement at the end of each meeting. For meetings

lasting two calendar days we consider the second day (the day the statement is released) as the event date.

GDP is released quarterly beginning from 1997, which is the first year that full data are available, and the

dates come from the BEA’s website.17 Finally, ISM is a monthly announcement with dates coming from

Bloomberg starting from 1997. The last year for which we collect data on all announcements is 2014.

Equity return on announcement days Table 1 reports the mean, standard deviation, and

Sharpe ratio of the annual return of the market, and the same moments for the return on announcement

days. The announcement returns are calculated as the culmulative market returns on announcement days

within a year. This is equivalent to the return of a strategy that long the market before the day of the pre-

scheduled news announcements, hold it on the trading day with the news announcement, and sell immediately

afterwards.

In Table 2, we compare the average daily stock market return on news announcement days, which we

denote as t, that on the day before the news announcement (t − 1), and that after the news announcement

(t + 1). We present our results separately for each of the five news announcement and for all news, where

standard errors are shown in parentheses.18 Excess market returns are taken from Kenneth French’s web

15Both unemployment and non-farm payroll information are released as part of the Employment Situation
Report published by the BLS. We treat them as one announcement.

16While the CPI data is also available from the BLS back to 1961, once the PPI starts being published
it typically precedes the CPI announcement. Given the large overlap in information between the two macro
releases much of the ”news” content in the CPI announcement will already be known to the market at the
time of its release. For this reason we opt in favor of using PPI.

17GDP growth announcements are made monthly according to the following pattern: in April the advance
estimate for Q1 GDP growth is released, followed by a preliminary estimate of the same Q1 GDP growth in
May and a final estimate given in the June announcement. Arguably most uncertainty about Q1 growth is
resolved once the advance estimate is published and most learning by the markets will occur prior to this
release. For this reason we will focus only on the 4 advance estimate release dates every year.

18They are Newey-West standard errors (5-lags) of an OLS regression of excess returns on event dummies.
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site. The vast majority of announcements are made on trading days. When this is not the case we assign the

news release to the first trading day that follows the announcement.

High frequency returns In Figure 1, we plot the average stock market returns over 30-minute

intervals before and after news announcements. Here we use high frequency data for the S&P 500 SPDR that

runs from 1997 to 2013 and comes from the TAQ database. Each second the median price of all transactions

occurring that second is computed9. The price at lower frequency intervals (for example 30-min) is then

constructed as the price for the last (most recent) second in that interval when transactions were observed.

The exact time at which the news are released are reported by Bloomberg. In Figure 1, the return at time 0

is the 30-minute news event return. Employment/Non-farm payroll, GDP and PPI announcements are made

at 8:30 AM before the market begins. In these cases we will consider the 30-minute news event return to

be the return between 4:00 PM (close of trading) of the previous day and 9:30 AM when the market opens

on the day of the announcement. The 30-minute event return for ISM announcements, which are made at

10:00AM, covers the interval between 9:30 AM and 10:00 AM of the announcement day. Finally, the timing

of the FOMC news release varies. We add 30 minutes to the announcement time to account for the press

conference after the FOMC meeting.19

B Examples of Dynamic Preferences and A-SDF

In this section, we show that most of the non-expected utility proposed in the literature can be represented

in the form of (9).

• The recursive utility of Kreps and Porteus [48] and Epstein and Zin [27]. The recursive preference be

generally represented as:

Ut = u−1
{

(1− β)u (Ct) + βφ ◦ h−1E [h (Ut+1)]
}

. (35)

For example, the well-known recursive preference with constant IES and constant risk aversion is the

special case in which u (C) = 1
1−1/ψC

1−1/ψ and h (U) = 1
1−γC

1−γ . With a monotonic transformation,

V = u (U) , (36)

then the recursive relationship for V can be written in the form of (9) with the same u function in

equation (35) and the certainty equivalence functional:

I (V ) = φ ◦ h−1

(
∫

h ◦ φ−1 (V ) dP

)

.

Denoting f = h ◦ u−1, the A-SDF can be written as:

m∗ (V ) ∝ f ′ (V ) , (37)

where we suppress the normalizing constant, which is chosen so that m∗ (V ) integrates to one.

19For example if a statement is released at 14:15 PM, we add 30 minutes for the press conference that
follows and then we round the event time to 15:00 PM.

31



• The maxmin expected utility of Gilboa and Schmeidler [30]. The dynamic version of this preference is

studied in Epstein and Schneider [25] and Chen and Epstein [16]. This preference can be represented

as the special case of (9) where the certainty equivalence functional is of the form:

I (V ) = min
m∈M

∫

mV dP,

where M is a family of probability densities that is assumed to be closed in the weak∗ topology. As

we show in Section 3.3 of the paper, the A-SDF for this class of preference is the Radon-Nikodym

derivative of the minimizing probability measure with respect to P .

• The variational preferences of Maccheroni, Marinacci, and Rustichini [54], the dynamic version of which

is studied in Maccheroni, Marinacci, and Rustichini [55], features a certainty equivalence functional of

the form:

I (V ) = min
E[m]=1

∫

mV dP + c (m) ,

where c (π) is a convex and weak∗−lower semi-continuous function. Similar to the maxmin expected

utility, the A-SDF for this class of preference is minimizing probability density.

• The multiplier preferences of Hansen and Sargent [34] and Strzalecki [64] is represented by the certainty

equivalence functional:

I (V ) = min
E[m]=1

∫

mV dP + θR (m) ,

where R (m) denote the relative entropy of the density m with respect to the reference probability

measure P , and θ > 0 is a parameter. In this case, the A-SDF is also the minimizing probability that

can be written as a function of the continuation utility: m∗ (V ) ∝ e−
1
θ
V .

• The second order expected utility of Ergin and Gul [28] can be written as (9) with the following choice

of I:
I (V ) = φ−1

(
∫

φ (V ) dP

)

,

where φ is a concave function. In this case, the A-SDF can be written as a function of continuation

utility:

m∗ (V ) ∝ φ′ (V ) .

• The smooth ambiguity preferences of Klibanoff, Marinacci, and Mukerji [46] and Klibanoff, Marinacci,

and Mukerji [47] can be represented as:

I (V ) = φ−1

(
∫

M

φ

(
∫

Ω

mV dP

)

dµ (m)

)

, (38)

where µ is a probability measure on a set of probabilities densities M . The A-SDF can be written as

a function of V :

m∗ ∝
∫

M

φ′

(
∫

mV dP

)

mdµ (m) . (39)

• The disappointment aversion preference can be represented as a concave utility function u, and the

certainty equivalence functional I implicitly defined as follows: µ = I [V ], where µ is the unique

solution to the following equation:

φ (µ) =

∫

φ (V ) dP − θ

∫

µ≥V

[φ (µ)− φ (V )] dP,
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where φ is a strictly increasing and concave function.

C The Announcement SDF

In this section, we provide a formal statement of Theorem 1 and 2 in a fully dynamic model with a continuum

state space. We first setup some notations and definitions.

C.1 Definitions and Notations

We use R to denote the real line and Rn to denote the n−dimensional Euclidean space. Let (Ω,F , P ) be a

non-atomic probability space, where F is the associated Borel σ−algebra. A certainty equivalence functional

I [·] is a mapping I : L2 (Ω,F , P ) → R, where L2 (Ω,F , P ) is the set of square integrable random variables

defined on (Ω,F , P ). We first state a definition of first order stochastic dominance (FSD) and second order

stochastic dominance (SSD).

Definition 2. First order stochastic dominance: X1 first order stochastic dominates X2, or X1 ≥FSD X2

if there exist a random variable Y ≥ 0 a.s. such that X1 has the same distribution as X2 + Y . Strict

monotonicity, X1 >FSD X2 holds if P (Y > 0) > 0 in the above definition.

Definition 3. Second order stochastic dominance: X1 second order stochastic dominates X2, or X1 ≥SSD X2

if there exist a random variable Y such that E [Y |X1] = 0 and X2 has the same distribution as X1 + Y .

Strict monotonicity, X1 >SSD X2 holds if P (Y 6= 0) > 0 in the above definition.20

Monotonicity with respect to FSD and SSD are defined as:

Definition 4. Monotonicity with respect to FSD (SSD): The certainty equivalence functional I is said to be

monotone with respect to FSD (SSD) if I [X1] ≥ I [X2] whenever X1 ≥FSD X2 (X1 ≥SSD X2). I is strictly

monotone with respect to FSD (SSD) if I [X1] > I [X2] whenever X1 >FSD X2 (X1 >SSD X2).

We also assume that the certainty equivalence functional I is normalized as in Strzalecki [65]:

Definition 5. Normalized: I is normalized if I [k] = k whenever k is a constant.

To construct the A-SDF from marginal utilities, we need some concepts from standard functional analysis

(see for example, Luenberger [53] and Rall [59]) to impose a differentiability condition on the certainty

equivalence functional. We use ‖·‖ to denote the L2 norm on L2 (Ω,F , P ) and assume that I satisfy the

following differentiability condition.

Definition 6. (Fréchet Differentiable with Lipschitz Derivatives) The certainty equivalence functional I is

Fréchet Differentiable if ∀X ∈ L2 (Ω,F , P ), there exist a unique continuous linear functional, DI [X ] ∈
L2 (Ω,F , P ) such that for all ∆X ∈ L2 (Ω,F , P )

lim
‖∆X‖→0

∣

∣I [X +∆X ]− I [X ]−
∫

DI [X ] ·∆XdP
∣

∣

‖∆X‖ = 0.

20Our definition of SSD is the same as the standard concept of increasing risk (see Rothschild and Stiglitz
[61] and Werner [67]). However, it is important to note that in our model, the certainty equivalence function
I is defined on the space of continuation utilities rather than consumption.
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A Fréchet differentiable certainty equivalence functional I is said to have a Lipschitz derivatives if

∀X,Y ∈ L2 (Ω,F , P ), ‖DI [X ]−DI [Y ]‖ ≤ K ‖X − Y ‖ for some constant K.21

The above assumption is made for two purposes. First it allows us to apply the envelope theorems

in Milgrom and Segal [56] to establish differentiability of the value functions. Second, it allows us to

compute the derivatives of I to construct the A-SDF and use derivatives of I to integrate back to recover

the certainty equivalence functional.22 Intuitively, we use the following operation to relate the certainty

equivalence function I and its derivatives. ∀ X ,Y ∈ L2 (Ω,F , P ), we can define g (t) = I [X + t (Y −X)] for

t ∈ [0, 1] and compute I (Y )− I (X) as

I [Y ]− I [X ] = g (1)− g (0)

=

∫ 1

0

g′ (t) dt

=

∫ 1

0

∫

Ω

DI [X + t (Y −X)] (Y −X)dPdt. (40)

We note that Fréchet Differentiability with Lipschitz Derivatives guarantees that the function g (t) is

continuously differentiable. The differentiability of g is straightforward (see for example, Luenberger [53]).

To see that g′ (t) is continuous, note that

g′ (t1)− g′ (t2) =

∫

Ω

{DI [X + t1 (Y −X)]−DI [X + t2 (Y −X)]} (Y −X) dP

≤ ‖DI [X + t1 (Y −X)]−DI [X + t2 (Y −X)]‖ · ‖Y −X‖ .

The Lipschitz continuity DI implies that

‖DI [X + t1 (Y −X)]−DI [X + t2 (Y −X)]‖ ≤ (t1 − t2) ‖(Y −X)‖ ,

and the latter vanishes as t2 → t1. This proves the validity of (40).

For later reference, it is useful to note that we can apply the mean value theorem on g, and write for

some t̂ ∈ (0, 1),

I [Y ]− I [X ] =

∫

Ω

DI
[

X + t̂ (Y −X)
]

(Y −X)dP. (41)

C.2 A Dynamic Model with Announcements

In this section, we describe a fully dynamic model with announcements. Consider a representative agent,

pure-exchange economy where time is finite and indexed by t = 1, 2, · · · , T . The endowment process is

denoted {Yt}Tt=1, where Yt ≥ 0 for all t. In period t after Yt is realized, agents receive a public announcement

st that carries information about the future path of {Ys}Ts=t+1 but do not affect current-period endowment.

We define a filtration F−
1 = σ (Y1), F+

1 = σ (Y1, s1), F−
2 = F+

1 ∨ σ (Y2), F+
2 = F+

1 ∨ σ (Y2, s2), · · · .
21The standard definition of Fréchet Differentiability requires the existence of the derivative as a continuous

linear functional. Because we focus on functions defined on L2 (Ω,F , P ), we apply the Riesz representation
theorem and denote DI [X ] as the representation of the derivative in L2 (Ω,F , P ).

22A weaker notion of differentiability, Gâtteaux differentiability is enough to gurantee the existence of
A-SDF. However, the converse of Theorem 1 requires a stronger condition for differentiability, which is what
we assume here.
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In a every period t, after the realization of Yt but before the announcement of st, the time t− asset

market opens where a vector of J + 1 returns are traded: {RA (j, t) (st)}j=0,1,··· ,J . Here, RA (j, t) (st) are

announcement returns that require one unit of investment at time t− and provide a signal-contingent payoff

at time t+ after st is announced. At time t+, after st is revealed, the post announcement asset market

opens and the agents trade a vector of J +1 returns with payoff contingent on the realization of next period

endowment: {RP (j, t) (Yt+1)}j=0,1,··· ,J . That is, the returns, RA (j, t) (st) require one unit of investment at

time t+ after st is revealed and provide payoff at time t+1− that is a function of Yt+1, To save notation, we

suppress the dependence of RA (j, t) (st) on st and the dependence of RP (j, t) (Yt+1) on Yt+1 in the rest of

this section. We also adopt the convention that RA (0, t) and RP (0, t) are risk-free returns.

We use V +
t to denote the value function of the representative agent’s life-time utility at time t+ after

the signal st is announced, and V −
t to denote the agent’s value function at time t− before st is known. The

optimal consumption-portfolio choice problem of the agent can be solved by backward induction. In the

last period T , agents simply consume their total wealth, and therefore V −
T (W ) = V +

T (W ) = u (W ). For

t = 1, 2, · · · , T − 1,we denote ξ = [ξ0, ξ1, ξ2, · · · ξJ ] as the vector of investment in the post-announcement

asset market and write the corresponding consumption-portfolio choice problem as:

V +
t (W ) = max

C,ξ

{

u (C) + βI
[

V −
t+1 (W

′)
]}

C +
∑J

j=0
ξj = W

W ′ =
∑J

j=0
ξjRP (j, t) .

Similarly, the optimal portfolio choice problem on the pre-announcement market is

V −
t (W ) = max

ζ
I
[

V +
t (W ′)

]

W ′ = W −
∑J

j=0
ζj +

∑J

j=0
ζjRA (j, t) ,

where ζ = [ζ0, ζ1, ζ2, · · · ζJ ] is a vector of investment in announcement returns.

We assume that for some initial wealth level, W0

and a sequence of returns
{

{RP (j, t) , RA (j, t)}j=0,1,··· ,J

}

t=1,2,···T−1
, an interior competitive equilibrium

with sequential trading exists where all markets clear. We focus on the announcement premium implied by

the property of the certainty equivalence functional I [·].

C.3 Existence of A-SDF

We first state and prove our result on the existence of A-SDF. Below, we state a generalization of Theorem

1 in a fully dynamic model with a non-atomic probability space.

Theorem 3. (Existence of A-SDF)

Suppose both u and I are Lipschitz continuous, Fréchet differentiable with Lipschitz continuous

derivatives. Suppose that I is strictly monotone with respect to first order stochastic dominance, then in any

interior competitive equilibrium with sequential trading, ∀t, the risk-free announcement return RA (0, t) = 1.

In addition, there exists a non-negative measurable function m∗
t : R → R such that

E
[

m∗
t

(

V +
t

)

{RA (j, t)− 1}
∣

∣F−
t

]

= 1 for all j = 1, 2, · · ·J. (42)
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Under the regularity condition (54) below, E
[

m∗
t

(

V +
t

)∣

∣F−
t

]

= 1 and (42) can be written as:

E
[

m∗
t

(

V +
t

)

RA (j, t)
∣

∣F−
t

]

= 1 for all j = 0, 1, 2, · · ·J. (43)

Differentiability of value function To prove Theorem 3, we first establish the differentiability of

the value functions recursively. In particular, we show that the value functions are elements of D, where D
is defined as

Definition 7. D is the set of differentiable functions on the real line such that ∀f ∈ D, i) f is Lipschitz

continuous; ii) ∀x ∈ R, 1
h [f (x+ h− a)− f (x− a)] converges uniformly to f ′ (x− a) in a. That is, ∀ε > 0,

there exists δ > 0 such that |h| < δ implies that
∣

∣

1
h [f (x+ h− a)− f (x− a)]− f ′ (x− a)

∣

∣ < ε for all a ∈ R.

We first establish that V +
t , V −

t ∈ D for all t. For any v ∈ D, we define fv and gv as functions of (W, ξ),

where W is the wealth level, and ξ ∈ RJ+1 is a portfolio strategy:

fv (W, ξ) = u

(

W −
∑J

j=0
ξj

)

+ βI
[

v

(

∑J

j=0
ξjRj

)]

, (44)

gv (W, ξ) = I
[

v

(

W +
∑J

j=0
ξj (Rj − 1)

)]

. (45)

Because Rj ∈ L2 (Ω,F , P ) and v is Lipschitz continuous, v
(

∑J
j=0 ξjRj

)

and v
(

W −
∑J
j=0 ξj (Rj − 1)

)

are both square integrable and equations (44) and (45) are well-defined. To apply the envelope theorem

in Milgrom and Segal [56], we first need to establish the equi-differentiability of the family of functions

{fv (W, ξ)}ξ and {gv (W, ξ)}ξ:
Lemma 1. Suppose u, v ∈ D, as h → 0, both 1

h [fv (W + h, ξ)− fv (W, ξ)] and 1
h [gv (W + h, ξ)− gv (W, ξ)]

converge uniformly for all ξ.

Proof: First,

1

h
[fv (W + h, ξ)− fv (W, ξ)] =

1

h

[

u

(

W + h−
∑J

j=0
ξj

)

− u

(

W −
∑J

j=0
ξj

)]

converges uniformly because u ∈ D. Next, we need to show that

1

h
[gv (W + h, ξ)− gv (W, ξ)] → ∂

∂W
gv (W, ξ) (46)

and the convergence is uniform for all ξ. Note that

∂

∂W
gv (W, ξ) =

∫

DI
[

v

(

W −
∑J

j=0
ξj (Rj − 1)

)]

· v′
(

W −
∑J

j=0
ξj (Rj − 1)

)

dP

and

gv (W + h, ξ)− gv (W, ξ) = I
[

v

(

W + h+
∑J

j=0
ξj (Rj − 1)

)]

− I
[

v

(

W +
∑J

j=0
ξj (Rj − 1)

)]

=

∫

Ω

DI
[

v̄
(

t̂
)]

(v̄ (1)− v̄ (0)) dP, for some t ∈ (0, 1) ,

where we denote v̄ (t) = tv
(

W + h−
∑J
j=0 ξj (Rj − 1)

)

+ (1− t) v
(

W −
∑J
j=0 ξj (Rj − 1)

)

and applied

equation (41). Also, denote v̄′ (0) = v′
(

W −∑J
j=0 ξj (Rj − 1)

)

, then the right hand side of (46) can be
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written as
∫

Ω
DI [v̄ (0)] v̄′ (0)dP , we have:

∣

∣

∣

∣

1

h

∫

Ω

DI
[

v̄
(

t̂
)]

(v̄ (1)− v̄ (0)) dP −
∫

Ω

DI [v̄ (0)] v̄′ (0) dP

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1
h

∫

Ω DI
[

v̄
(

t̂
)]

(v̄ (1)− v̄ (0)) dP −
∫

ΩDI
[

v̄
(

t̂
)]

v̄′ (0) dP

+
∫

Ω
DI

[

v̄
(

t̂
)]

v̄′ (0) dP −
∫

Ω
DI [v̄ (0)] v̄′ (0)dP

∣

∣

∣

∣

∣

≤
∫

Ω

∣

∣DI
[

v̄
(

t̂
)]
∣

∣

∣

∣

∣

∣

1

h
(v̄ (1)− v̄ (0))− v̄′ (0)

∣

∣

∣

∣

dP +

∫

Ω

∣

∣DI
[

v̄
(

t̂
)]

−DI [v̄ (0)]
∣

∣ |v̄′ (0)| dP

≤
∥

∥DI
[

v̄
(

t̂
)]∥

∥

∥

∥

∥

∥

1

h
(v̄ (1)− v̄ (0))− v̄′ (0)

∥

∥

∥

∥

+
∥

∥DI
[

v̄
(

t̂
)]

−DI [v̄ (0)]
∥

∥ ‖v̄′ (0)‖ (47)

Because v ∈ D, for h small enough,
∣

∣

1
h (v̄ (1)− v̄ (0))− v̄′ (0)

∣

∣ ≤ ε with probability one and
∥

∥

1
h (v̄ (1)− v̄ (0))− v̄′ (0)

∥

∥ ≤ ε. Also, because DI is Lipschitz continuous,
∥

∥DI
[

v̄
(

t̂
)]

−DI [v̄ (0)]
∥

∥ ≤
K ‖v̄ (1)− v̄ (0)‖ ≤ K2h, where the second inequality is due to the Lipschitz continuity of v. This proves

the uniform convergence of (47).

Lemma 2. Suppose u ∈ D, then both T+ and T− map D into D.

Proof: Note that T+v (W ) = supξ fv (W, ξ) and T−v (W ) = supξ gv (W, ξ), where fv (W, ξ) and gv (W, ξ)

are defined in (44) and (45). It then follows from Lemma 1 that Theorem 3 in Milgrom and Segal [56] applies.

Therefore, both T+v and T−v are differentiable, and

d

dW
T+v (W ) = u′

(

W −
∑J

j=0
ξj (W )

)

d

dW
T−v (W ) =

∫

DI
[

v

(

W −
∑J

j=0
ξj (W ) (Rj − 1)

)]

· v′
(

W −
∑J

j=0
ξj (W ) (Rj − 1)

)

dP,

where ξ (W ) denotes the utility-maximizing portfolio at W .

To see that T+v (W ) is Lipschitz continuous, note that

fv (W1, ξ (W2))− fv (W2, ξ (W2)) ≤ T+v (W1)− T+v (W2) ≤ fv (W1, ξ (W1))− fv (W2, ξ (W1)) . (48)

Because ∀ξ, |f (W1, ξ)− f (W2, ξ)| =
∣

∣

∣
u
(

W1 −
∑J

j=0 ξj

)

− u
(

W2 −
∑J

j=0 ξj

)∣

∣

∣
≤ K |W1 −W2|, where K is

a Lipschitz constant for u, |Tv (W1)− Tv (W2)| ≤ K |W1 −W2|. We can prove that T−v (W ) is Lipschitz

continuous in a similary way:

gv (W1, ξ (W2))− g v (W2, ξ (W2)) ≤ T−v (W1)− T−v (W2) ≤ gv (W1, ξ (W1))− gv (W2, ξ (W1)) . (49)

Note that ∀ξ,

|gv (W1, ξ)− g v (W2, ξ)| =

∣

∣

∣

∣

I
[

v

(

W1 +
∑J

j=0
ξj (Rj − 1)

)]

− I
[

v

(

W2 +
∑J

j=0
ξj (Rj − 1)

)]∣

∣

∣

∣

≤ K

∥

∥

∥

∥

v

(

W1 +
∑J

j=0
ξj (Rj − 1)

)

− v

(

W2 +
∑J

j=0
ξj (Rj − 1)

)∥

∥

∥

∥

≤ K2 |W1 −W2| ,

where the inequalities are due to the Lipschitz continuity of I and v, respectively.

Finally, equations (48) and (49) can be used to show that the family of functions {T+v (W − a)}a and
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{T−v (W − a)}a are equi-differentiable. For example, let W1 → W2,

1

W1 −W2
[fv (W1, ξ)− fv (W2, ξ)]

converges uniformly by Lemma 1, and by equation (48), 1
W1−W2

[T+v (W1)− T+v (W2)] must also converge

uniformly.

Given that u ∈ D, Lemma 2 can be used to establish the differentiability of V +
t (W ) and V −

t (W )

recursively. Finally, we note that if u′ (x) > 0 for all x ∈ R, then V +
t (W ) and V −

t (W ) must satisfy the same

property by the envelope theorem.

Existence of A-SDF In this section, we establish the existence of SDF as stated in Theorem 3. We

write the time t− portfolio selection problem of the agent as

max
ζ

I
[

V +
t

(

W +
∑J

j=0
ζj (RA (j, t)− 1)

)∣

∣

∣

∣

F−
t

]

, (50)

where we use the notation I
[

·| F−
t

]

to emphasize that the certainty equivalence functional I maps

L2
(

Ω,F+
t , P

)

into L2
(

Ω,F−
t , P

)

. Clearly, no arbitrage implies that the risk-free announcement return

RA (0, t) = 1. The value function V + (W ) is determined by the the agent’s portfolio choice problem at time

t+ after the announcement st is made:

V +
t (W ) = max

ξ
u

(

W −
∑J

j=0
ξj

)

+ βI
[

V −
t+1

(

∑J

j=0
ξjRP (j, t)

)
∣

∣

∣

∣

F+
t

]

. (51)

Because the time-t+ value function, V +
t is differentiable, and the certainty equivalent functional, I is

Fréchet differentiable, I
[

V +
t

(

W +
∑J

j=0 ζj (RA (j, t)− 1)
)
∣

∣

∣
F−
t

]

is differentiable in ζ.23 Therefore, the first

order condition with respect to ζj implies that

E

[

DI
[

V + (W ′)
] d

dW
V +
t (W ′) (RA (j, t)− 1)

∣

∣

∣

∣

F−
t

]

= 0, (52)

where we denote W ′ = W +
∑J
j=0 ζ̂j (RA (j, t)− 1) and ζ̂ is the optimal portfolio choice. Also, the envelop

condition for (51) implies
d

dW
V +
t (W ) = u′

(

W −
∑J

j=0
ξj

)

= u′ (Yt) ,

where the last equality uses the market clearing condition because period-t consumption must equal to total

endowment. Note that u′ (Yt) > 0 and is F−
t measurable; therefore, (52) implies:

E
[

DI
[

V +
t (W )

]

(RA (j, t)− 1)
∣

∣F−
t

]

= 0. (53)

As we show in the next section, monotonicity of I guarantees that DI ≥ 0 with probability one. To derive

equation (43), we need to assume a slightly stronger condition:

DI [X ] > 0 with strictly positive probability for all X.24 (54)

23See for example Proposition 1 in Chapter 7 of Luenberger [53].
24Note that monotonicity with respect to FSD implies that DI [X ] ≥ 0 with probability one for all X . If
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In this case, the SDF in (43) can be constructed as:

m∗
t =

DI
[

V +
t (W )

]

E
[

DI
[

V +
t (W )

]∣

∣F−
t

] . (55)

Now we constructed the A-SDF as the Fréchet Derivative of the certainty equivalence functional. Because

DI
[

V +
t (W )

]

is a linear functional on L2
(

Ω,F+
t , P

)

, it has a representation as an element in L2
(

Ω,F+
t , P

)

by the Riesz representation theorem. To complete the proof of Theorem 3, we only need to show that m∗
t can

be represented as a measurable function of continuation utility: m∗
t = m∗

t

(

V +
t

)

for some measurable function

m∗
t : R,→ R. That is, m∗

t depends on st only through the continuation utility. Note that our definition

of monotonicity with respect to FSD implies invariance with respect to distribution, that is, I [X ] = I [Y ]

wheneverX and Y have the same distribution (If X has the same distribution of Y then both X ≤FSD Y and

Y ≥FSD X are true). The following lemma establishes that invariance with respect to distribution implies

the measurability of m∗
t with repect to V +

t .

Lemma 3. If I is invariant with respect to distribution, then DI [X ] can be represented by a measurable

function of X.

Proof: Take any X ∈ L2
(

Ω,F+
t , P

)

, let T be a measure-preserving transformation such that the

invariant σ−field of T differ from the σ−field generated by X (which we denote as σ (X)) only by measure zero

sets (For the existence of such measure-preserving transformations, see exercise 17.43 in Kechris [44]). Let

DI [X ] be the L2
(

Ω,F+
t , P

)

representation of the Fréchet Derivative of the certainty equivalence functional

I at X. Below, we first show that DI [X ] ◦ T must also be a Fréchet Derivative of I at X. Because the

Fréchet Derivative is unique, we must have DI [X ] = DI [X ]◦T with probability one; therefore, DI [X ] must

be measurable with respect to the invariant σ-field of T and therefore, also measurable with respect to σ (X).

Because I [·] is Fréchet differentiable, to show DI [X ]◦T is the Fréchet Derivative of I at X, it is enough

to verify that DI [X ] ◦ T is a Gâteaux derivative, that is,

lim
α→0

1

α
[V (X + αY )− V (X)] =

∫

(DI [X ] ◦ T ) · Y dP (56)

for all Y ∈ L2
(

Ω,F+
t , P

)

.

Because T is measure preserving and X is measurable with respect to the invariance σ−field of T ,

X = X ◦ T with probability one. Therefore, V (X + αY ) = V (X ◦ T + αY ) = V
(

X + αY ◦ T−1
)

, where the

second equality is due to the fact that T−1 is measure preserving, and [X ◦ T + αY ] ◦ T−1 = X + αY ◦ T−1

has the same distribution with X ◦ T + αY . As a result,

1

α
[V (X + αY )− V (X)] =

1

α

[

V
(

X + αY ◦ T−1
)

− V (X)
]

=

∫

DI [X ]× Y ◦ T−1dP,

=

∫

DI [X ] ◦ T · Y dP,

where the last equality uses the fact that
[

DI [X ] · Y ◦ T−1
]

◦ T = DI [X ] ◦ T · Y have the same distribution

condition (54) does not hold, we must have DI [X ] = 0 with probability one. If I is strictly monotone with
respect to FSD, then this cannot happen on an open set in L2. Therefore, even without assuming (54), our
result implies that the A-SDF exists generically.
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with DI [X ]× Y ◦ T−1. This proves (56).

C.4 Generalized Risk Sensitivity and the Announcement Premium

In this section, we establish the link between generalized risk sensitivity and the existence of announcement

premium. We first state a generalization of Theorem 2.

Theorem 4. (Announcement Premium) Under the assumptions of Theorem 3,

1. m∗
t

(

V +
t

)

= 1 for all V +
t if and only I is the expectation operator.

2. The following conditions are equivalent:

(a) The certainty equivalence functional I satisfies generalized risk sensitivity.

(b) The A-SDF m∗
t

(

V +
t

)

is a non-increasing function of continuation utility V +
t .

(c) The announcement premium is non-negative for all payoffs of the form f (Vs), where f ≥ 0 and

is strictly increasing at non-zero points.

Because the A-SDF, m∗
t is constructed from the derivative of the certainty equivalence functional, it is

clear from equation (55) that if I is expected utility, then m∗
t must be a constant. Conversely, if m∗

t is a

constant, then I is linear and represents expected utility.

We first prove the equivalence between (a) and (b) by the following lemmas. Lemma 4 establishes that

m∗
t

(

V +
t

)

is non-negative if and only if I is monotone with respect to FSD. Lemma 5 and 6 jointly establish

that generalized risk sensitivity of I is equivalent to m∗
t

(

V +
t

)

being a non-increasing function of V +
t .

Lemma 4. I is monotone with respect FSD if and only if DI [X ] ≥ 0 a.s.

Proof: Suppose DI [X ] ≥ 0 a.s. for all X ∈ L2 (Ω,F , P ). Take any Y such that Y ≥ 0 a.s., we have:

I [X + Y ]− I [X ] =

∫ 1

0

∫

Ω

DI [X + tY ]Y dPdt ≥ 0.

Conversely, suppose I is monotone with respect to FSD, we can prove DI [X ] ≥ 0 a.s. by contradiction.

Suppose the latter is not true and there exist an A ∈ F with P (A) > 0 and DI [X ] < 0 on A. Because DI
is continuous, we can assume that DI [X + tχA] < 0 on A for all t ∈ (0, ε) for ε small enough, where χA is

the indicator function of A. Therefore,

I [X + χA]− I [X ] =

∫ 1

0

∫

Ω

DI [X + tχA]χAdPdt < 0,

contradicting monotonicity with respect to FSD.

Next, we show that I is monotone with respect to SSD if and only if m∗
t

(

V +
t

)

is non-increasing in V +
t .

We first prove the following lemma.

Lemma 5. I is monotone with respect SSD if and only if ∀X ∈ L2 (Ω,F , P ), for any σ−field G ⊆ F ,

∫

DI [X ] · (X − E [X | G]) dP ≤ 0. (57)
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Proof: Suppose condition (57) is true, by the definition of SSD, for any X and Y such that E [Y |X ] = 0,

we need to prove

∀λ ∈ (0, 1) , I (X) ≥ I (X + Y ) .

Using (40),

I (X + Y ) ≥ I (X) =

∫ 1

0

∫

Ω

DI [X + tY ]Y dPdt

=

∫ 1

0

1

t

∫

Ω

DI [X + tY ] {tY +X −X − tE [Y |X ]} dPdt

=

∫ 1

0

1

t

∫

Ω

DI [X + tY ] {[X + tY ]− E [X + tY |X ]} dPdt

≤ 0,

where the last inequality uses (57).

Conversely, assuming I is increasing in SSD, we prove (57) by contradiction. if (57) is not true, then

by the continuity of DI [X ], for some ε > 0, ∀t ∈ (0, ε),

∫

DI [(1− t)X + tE [X | G]] · (X − E [X | G]) dP > 0.

Therefore,

I [(1− ε)X + εE [X | G]]− I [X ] =

∫ ε

0

∫

DI [(1− t)X + tE [X | G]] {E [X | G]−X} dPdt < 0.

However, (1− ε)X + εE [X | G] ≥SSD X, a contradiction.25

Due to Lemma 3, DI [X ] can be represented by a function of X , we denote DI [X ] = η (X). To establish

the equivalence between monotonicity with respect to SSD and the (negative) monotonicity of m∗
t

(

V +
t

)

, we

only need to prove that condition (57) is equivalent to η (·) being a non-increasing function, which is Lemma

6 below.

Lemma 6. Condition (57) is equivalent to η (X) being a non-increasing function of X.

Proof: First, we assume η (X) is non-increasing. To prove (57), note that E [X | G] is measurable with

respect to σ (X), and we can the Law of Iterated Expectation to write:

∫

DI [X ] · (X − E [X | G]) dP = E [η (X) · (X − E [X | G])]

≤ E [η (E [X | G]) · (X − E [X | G])]
= 0,

where the inequality follows from the fact that η (X) ≤ η (E [X | G]) when X ≥ E [X | G] and η (X) ≥
η (E [X | G]) when X ≤ E [X | G].

25An easy way to prove the statement, (1− ε)X + εE [X | G] ≥SSD X is to observe that an equivalent
definition of SSD is X1 ≥SSD X2 if E [φ (X1)] ≥ E [φ (X2)] for all concave functions φ (see Rothschild
and Stiglitz [61] and Werner [67]). If E [Z|V1] = 0, then for any concave function φ, φ (V1 + λZ1) ≥
λφ (V1 + Z) + (1− λ)φ (V1). Therefore, E [φ (V1 + λZ1)] ≥ λE [φ (V1 + Z)] + (1− λ)E [φ (V1)]
≥ E [φ (V1 + Z)], where the last inequality is true because E [φ (V1)] ≥ E [φ (V1 + Z1)].
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Second, to prove the converse of the above statement by contradiction, we assume (57) is true, but there

exist x1 < x2, both occur with positive probability such that η (x1) < η (x2). We a random variable Y :

Y =

{

0 X = x1 or x2

X otherwise
.

and denote P1 = P (X = x1), P2 = P (X = x2). Note that

∫

DI [X ] · (X − E [X |Y ]) dP

=

∫

η (X) · (X − E [X |Y ]) dP

= P1η (x1)

[

x1 −
P1x1 + P2x2

P1 + P2

]

+ P2η (x2)

[

x2 −
P1x1 + P2x2

P1 + P2

]

> 0

because η (x1) < η (x2), a contradiction.

The following lemma establishes the equivalence between (b) and (c).

Lemma 7. m∗
t

(

V +
t

)

is a non-increasing function of V +
t is equivalent to Condition 1.

Proof: If m∗
t

(

V +
t

)

is a non-decreasing function, then for any payoff f that is co-monotone with V +
t , we

have

E
[

m∗
t

(

V +
t

)

f
(

V +
t

)]

≤ E
[

m∗
t

(

V +
t

)]

E
[

f
(

V +
t

)]

= E
[

f
(

V +
t

)]

,

because m∗
t

(

V +
t

)

and f
(

V +
t

)

is negatively correlated. Conversely, if m∗
t (v1) < m∗

t (v2) for some v1 < v2,

both of which occur with positive probability, then define the payoff f (·) as

f (v) =

{

1 v = v2

0 v 6= v2
,

Note that f
(

V +
t

)

is co-monotone with V +
t and yet E

[

m∗
t

(

V +
t

)

f
(

V +
t

)]

> E
[

f
(

V +
t

)]

, contradicting a non-

negative premium for f
(

V +
t

)

.

D Generalized Risk-Sensitive Preferences

D.1 Generalized risk sensitivity and uncertainty aversion

Quasi-concavity is sufficient but not necessary for generalized risk sensitivity We first present

a lemma establishes that quasiconcavity implies generalized risk sensitivity.

Lemma 8. Suppose I : L2 (Ω,F , P ) → R is continuous invariant with respect to distribution, then

quasiconcavity implies generalized risk sensitivity.

Proof: Suppose I is continuous, invariant with respect to distribution, and quasiconcave. Let X1 ≥SSD
X2, we need to show that I [X1] ≥ I [X2]. By the definition of second order stochastic dominance, there

exist a random variable Y such that E [Y |X1] = 0 and X2 has the same distribution as X1 + Y . Because

I is invariant with respect to distribution, I [X1 + Y ] = I [X2]. Let T : Ω → Ω be any measure preserving
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transformation such that the invariant σ−field of T differs from the σ−field generated by X only by sets of

measure zero (see exercise 17.43 in Kechris [44]), then quasiconcavity implies that

I
[

1

2
(X1 + Y ) +

1

2
(X1 + Y ) ◦ T

]

≥ min {I [X1 + Y ] , I [(X1 + Y ) ◦ T ]} .

Note that because T is measure preserving and I is distribution invariant, we have I [X1 + Y ] =

I [(X1 + Y ) ◦ T ] . Therefore, I
[

1
2 (X1 + Y ) + 1

2 (X1 + Y ) ◦ T
]

≥ I [X1 + Y ]. It is therefore straightforward

to show that I
[

1
N

∑N−1
j=0 (X1 + Y ) ◦ T j

]

≥ I [X1 + Y ] for all N by induction. Note that 1
N

∑N−1
j=0 (X1 + Y )◦

T j → E [X1 + Y |X1] = X1 by Birkhoff’s ergodic theorem (note that the invariance σ−field of T is σ (X) by

construction). Continuity of I then implies I [X1] ≥ I [X1 + Y ] = I [X2], that is, I satisfies generalized risk

sensitivity.

It is clear from Lemma 8 that under continuity, the following condition is sufficient for generalized risk

sensitivty:

I [λX + (1− λ)Y ] ≥ I [X ] for all λ ∈ [0, 1] if X and Y have the same distribution. (58)

Clearly, this condition is weaker than quasiconcavity.26

Next, we provide a counterexample of I that satisfies generalized risk sensitivity but is not quasiconcave.

We continue to use the two-period example in Section 3, where we assume π (H) = π (L) = 1
2 . Given there

are two states, random variables can be represented as vectors. We denote X = {(xH , xL) : 0 ≤ xH , xL ≤ B}
to be the set of random variables bounded by B. Let I be the certainty equivalence functional defined on X

such that

∀X ∈ X, I [X ] = φ−1

{

min
m∈M

E [mφ (X)]

}

, with φ (x) = ex, (59)

where M =
{

(mH ,mL) : mH +mL = 1, max
{

mH

mL
, mL

mH

}

≤ η
}

is a collection of density of probability

meausres and the parameter η ≥ eB. Note that I defined in (59) is not concave because φ (x) is a strictly

convex function. Below we show that I satisfy generalized risk sensitivity, but is not quasiconcavity.

Using (58), to establish generalized risk sensitivity, we need to show that for any X , Y ∈ X such that

X and X have the same distribution, I [λX + (1− λ)Y ] ≥ I [X ]. Without loss of generality, we assume

X = [xH , xL] with xH > xL. Because Y has the same distribution with X , Y = [xL, xH ]. We first show that

for all λ ≥ 1
2 ,

I [λX + (1− λ)Y ] ≥ I [X ] .

Because φ is strictly increasing, it is enough to prove that for all λ ∈
[

1
2 , 1

]

,

d

dλ
φ (I [λX + (1− λ) Y ]) ≤ 0. (60)

Because xH > xL, for all λ ≥ 1
2 , λxH + (1− λ) xL ≥ λxL + (1− λ)xH and

φ (I [λX + (1− λ)Y ]) =
1

2
m∗
Hφ (λxH + (1− λ)xL) +

1

2
m∗
Lφ (λxL + (1− λ)xH) ,

26Lemma 8 requires the underlying probability space to be non-atomic. The statement in (58) remains
true if we assume that the underlying probability space is finite with equality probility for all states as in the
main text of the paper.
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where mH +mL = 1 and mH

mL
= 1

η . Therefore,

d

dλ
φ (I [λX + (1− λ) Y ]) =

1

2

[

m∗
Hφ′ (λxH + (1− λ)xL)−m∗

Lφ
′ (λxL + (1− λ)xH)

]

(xH − xL)

=
1

2
(xH − xL)

{

m∗
HeλxH+(1−λ)xL −m∗

Le
λxL+(1−λ)xH

}

.

Note that
m∗
He

λxH+(1−λ)xL

m∗
Le

λxL+(1−λ)xH
=

1

η
e(2λ−1)(xH−xL) ≤ 1

η
eB ≤ 1.

This proves (60). Similarly, one can prove I [λX + (1− λ)Y ] ≥ I [Y ] for all λ ∈
[

0, 1
2

]

. This established

generalized risk sensitivity.

To see I is not quasiconcave, consider X1 = [1, 0], and X2 = [x, x], where x = ln η+e
η+1 . One can verify

that I [X1] = I [X2], but I
[

1
2X1 +

1
2X2

]

> I [X1], contradicting quasiconcavity.

Second order expected utility Certainty equivalence functionals of the form I [V ] = φ−1 (E [φ (V )]),

where φ is strictly increasing is called second order expected utility in Ergin and Gul [28]. For this class

of preferences, generalized risk sensitivity is equivalent to quasiconcavity, which is also equivalent to the

concavity of φ. To see this, suppose φ is concave, it is straightforward to show that I [·] quasiconcave and

satisfies generalized risk sensitivity by Lemma 8. Conversely, suppose I [·] satisfies generalized risk sensitivity

then E [φ (X)] ≥ E [φ (Y )] whenever X ≥SSD Y . By remark B on page 240 of Rothschild and Stiglitz [61],

φ is concave.

Generalized sensitivity is equivalent to quasiconcavity for smooth ambiguity preferences

Using the results in Klibanoff, Marinacci, and Mukerji [46, 47], it straightforward to show that for the

class of smooth ambiguity preference, concavity of φ is equivalent to the quasiconcavity of I. As a result,

quasiconcavity implies generalized risk sensitivity by Lemma 8. The nontrivial part of the above claim is that

generalized risk sensitivity implies the concavity of φ. To see this is true, note that invariance with respect

to distribution implies that the probability measure µ (x) must satisfy the following property: for all A ∈ F ,

∫ ∫

A

dPxdµ (x) = P (A) .

Clearly, generalized risk sensitivity implies that I [E [V ]] ≥ I [V ], for all V ∈ L2 (Ω,F , P ). That is,

∫

φ (Ex [V ]) dµ (x) ≤ φ (E [V ]) .

The fact that the above inequality has to hold for all V and E [V ] =
∫

Ex [V ] dµ (x) implies that φ must be

concave.

D.2 Generalized risk sensitivity and preference for early resolution of uncertainty

Below, we provide details of Remark 3 in the discussion of preference for early resolution of uncertainty in

Section 4.2. In order to show that generalized risk sensitivity is neither necessary nor sufficient for preference

for early resolution of uncertainty, we provide two examples. The first example is a preference that satisfies

generalized risk sensitivity but strictly prefers later resolution of uncertainty and the second example is a
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certainty equivalence functional that prefers early resolution of uncertainty but is strictly decreasing in second

order stochastic dominance.

Example 1. Consider the following utility function in the two period example:

u (C) = C − b, where b = 2; I (X) =
(

E
√
X
)2

.

It straight forward to check that I is quasi-concave therefore satisfy generalized risk sensitivity. Below

we verify that this utility function prefers late resolution of uncertainty when the following consumption

plan is presented: C0 = 1, CH = 3.21, and CL = 3, where the distribution of consumption is given by

π (H) = π (L) = 1
2 .

The utility with early resolution of uncertainty is given by:

WEarly = I [u (C0) + u (C1)] .

It is straightforward to show that:

u (C0) + u (CH) = 0.21; u (C0) + u (CL) = 0

Therefore,

WEarly =
[

0.5×
√
0.21 + 0.5×

√
0
]2

= 0.0525

The utility for late resolution of uncertainty is given by:

WLate = u (C0) + I [u (C1)] = 0.1025.

Example 2. Consider the following preference:

u (C) = C − b with b = 2, I (X) =
√

E [X2], and β = 1.

Because X2 is a strictly convex function, the certainty equivalence functional I is strictly decreasing in second

order stochastic dominance. To see that the agent prefers early resolution of uncertainty, we consider the

same numerical example as in Example 1. It is straightforward to verify that the utility for early resolution

of uncertainty is

WEarly = I [u (C0) + u (C1)] = 0.1485,

and the utility for later resolution is:

WLate = u (C0) + I [u (C1)] = 0.11.

D.3 Asset Pricing Implications

In this section, we provide more examples of time non-separable preferences. For simplicity, we focus on a

two-period setup and consider utility functions of the following form:

u (C0) + βE [u (C1 + αC0)] , α ∈ (0, 1) . (61)
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With α < 0, this is the internal habit model (for example, Boldrin, Christiano, and Fisher [11]). We show in

this case the announcement premium is negative. The class of preferences with α > 0 is discussed in Dunn

and Singleton [23] and Heaton [39]. In general, the announcement premium can be positive or negative with

α > 0.

If the representative agent’s preference is given by (61), the pre-announcement price and post-

announcement price can be represented by

P− = E

[

βu′ (C1 + αC0)X

u′ (C0) + αβE [u′ (C1 + αC0)]

]

, and P+ =
βu′ (C1 + αC0)X

u′ (C0) + αβu′ (C1 + αC0)
,

repectively. Therefore, the expected announcement return is

E [P+ (X)]

P− (X)
=

E
[

βu′(C1+αC0)
u′(C0)+αβu′(C1+αC0)

X
]

E[βu′(C1+αC0)X]
u′(C0)+αβE[u′(C1+αC0)]

.

Note that

E

[

βu′ (C1 + αC0)

u′ (C0) + αβu′ (C1 + αC0)
X

]

=

E [βu′ (C1 + αC0)X ]

u′ (C0) + αβE [u′ (C1 + αC0)]
+ Cov

{

βu′ (C1 + αC0)X,
1

u′ (C0) + αβu′ (C1 + αC0)

}

.

We make the following observations.

1. The internal habit model: First, assume α < 0. This is the internal habit case. Because
1

u′(C0)+αβu′(C1+αC0)
decreases with C1 for α < 0, the fact that that P+ (X) is an increasing

function of C1 implies that βu′ (C1 + αC0)X must be increasing in C1. Under the assumption

α < 0 and that u is strictly concave, 1
u′(C0)+αβu′(C1+αC0)

decreases with C1. As a result,

Cov
{

βu′ (C1 + αC0)X, 1
u′(C0)+αβu′(C1+αC0)

}

< 0 and
E[P+(X)]
P−(X) < 1. That is, the announcement

premium is negative.

2. Durable consumption goods: with α > 0, (61) is a special case of the durable consumption goods

model of Dunn and Singleton [23]. In this case, 1
u′(C0)+αβu′(C1+αC0)

is an increasing function of C1.

Here the assumption that P+ (X) is an increasing function of C1 is not sufficient for the monotonicity

of βu′ (C1 + αC0)X with respect to C1. We have two cases.

Case 1: The term βu′ (C1 + αC0)X increases with C1.

In this case, Cov
{

βu′ (C1 + αC0)X, 1
u′(C0)+αβu′(C1+αC0)

}

> 0, and
E[P+(X)]
P−(X) > 1. This implies

that the announcement premium is positive. An example of payoff that satisfies this condition is

X = C1

u′(C1+αC0)
.

Case 2: The term βu′ (C1 + αC0)X decreases with date-1 consumption, C1. In this case

Cov
{

βu′ (C1 + αC0)X, 1
u′(C0)+αβu′(C1+αC0)

}

< 0, and we have
E[P+(X)]
P−(X) < 1. That is, a

negative announcement premium. An example of payoff that satisfies this condition is X =√
u′(C0)+αβu′(C1+αC0)

u′(C1+αC0)
.
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E Details of the Continuous-time model

E.1 Asset Pricing in the Learning Model

Value function of the representative agent In the interior of (nT, (n+ 1)T ), standard optimal

filtering implies that the posterior mean and variance of xt are given by equations (21) and (22). The posterior

variance qt has a closed form solution:

qt =
σ2
x

(

1− e−2â(t+t∗−nT )
)

(â− a) e−2â(t+t∗−nT ) + a+ â
, (62)

where â and t∗ are defined as:

â =

√

a2 + (σx/σ)
2
; t∗ =

1

2â
ln

σ2
x + (â− a) q+nT

σ2
x − (â+ a) q+nT

.

On the boundaries, q−nT and q+nT satisfy equation (23):

1

q+nT
=

1

σ2
S

+
1

q−nT
. (63)

Given a q0, equations (62) and (63) completely determine qt as a function of t. In calibrations, we focus

on the steady state where q (t) = q (tmodT ) and adopt the convention q (0) = q+nT and q (T ) = q−nT , for

n = 1, 2, · · · .

Using the results from Duffie and Epstein [22], the representative consumer’s preference is specified by

a pair of aggregators (f,A) such that the utility of the representative agent is the solution to the following

stochastic differential equation (SDU):

dV̄t = [−f(Ct, V̄t)−
1

2
A(Vt)||σV (t)||2]dt+ σV (t)dBt,

for some square-integrable process σV (t). We adopt the convenient normalization A(v) = 0 (Duffie and

Epstein [22]), and denote f̄ the normalized aggregator. Under this normalization, f̄(C, V ) is:

f̄(C, V̄ ) = ρ
{

(1− γ) V̄ lnC − V̄ ln
[

(1− γ) V̄
]}

.

Due to homogeneity, the value function is of the form

V̄ (x̂t, t, Ct) =
1

1− γ
H (x̂t, t)C

1−γ
t , (64)

where H (x̂t, t) satisfies the following Hamilton–Jacobi–Bellman (HJB) equation:

− ρ

1− γ
lnH (x̂, t)H (x, t) +

(

x̂− 1

2
γσ2

)

H (x̂, t) +
1

1− γ
Ht (x̂t, t)

+

[

1

1− γ
ax (x̄− x̂) + qt

]

Hx (x̂, t) +
1

2

1

1− γ
Hxx (x̂, t)

q2t
σ2

= 0, (65)

with the boundary condition that for all n = 1, 2 · · ·

H
(

x̂−
nT , nT

)

= E
[

H
(

x̂+
nT , nT

)
∣

∣ x̂−
nT , q

−
nT

]

. (66)
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The value function that has the representation (24) is a monotonic transformation of V̄ : Vt =
1

1−γ ln
[

(1− γ) V̄t
]

.

The solution to the partial differential equation (PDE) (65) together with the boundary condition (66)

is separable and given by:

H (x̂, t) = e
1−γ
ax+ρ

x̂+h(t),

where h (t) satisfy the following ODE:

−ρh (t) + h′ (t) + f (t) = 0, (67)

where f (t) is defined as:

f (t) =
(1− γ)

2

ax + ρ
q (t) +

1

2

(1− γ)
2

(ax + ρ)
2

1

σ2
q2 (t)− 1

2
γ (1− γ)σ2 + axx̄

1− γ

ax + ρ
.

The general solution to (67) is of the form:

h (t) = h (0) eρt − eρt
∫ t

0

e−ρsf (s) ds.

We focus on the steady state in which h (t) = h (tmodT ) and use the convention h (0) = h (0+) and h (T ) =

h (T−). Under these notations, the boundary condition (66) implies h (T ) = h (0)+ 1
2

(

1−γ
ax+ρ

)2

[q (T )− q (0)].

Asset prices In the interior of (nT, (n+ 1)T ), the law of motion of the state price density, πt satisfies

the stochastic differential equation of the form:

dπt = πt

[

−r (x̂t, t) dt− σπ (t) dB̃C,t

]

,

where

r (x̂, t) = β + x̂− γσ2 +
1− γ

ax + ρ
qt

is the risk-free interest rate, and

σπ (t) = γσ +
γ − 1

ax + ρ

qt
σ

is the market price of the Brownian motion risk.

For t ∈ (nT, (n+ 1)T ), the price of the claim to the dividend process can then be calculated as:

p (x̂t, t)Dt = Et

[

∫ (n+1)T

t

πs
πt

Dsds+
π(n+1)T

πt
p
(

x̂−
(n+1)T , (n+ 1)T−

)

D(n+1)T

]

.

The above present value relationship implies that

πtDt + lim
∆→0

1

∆
{Et [πt+∆p (x̂t+∆, t+∆)Dt+∆]− πtp (x̂t, t)Dt} = 0. (68)

Equation (68) can be used to show that the price-to-dividend ration function must satisfy the following PDE:

1− p (x̂, t)̟ (x̂, t) + pt (x̂, t)− px (x̂, t) ν (x̂, t) +
1

2
pxx (x̂, t)

q2 (t)

σ2
= 0, (69)
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where the functions ̟ (x̂, t) and ν (x̂, t) are defined by:

̟ (x̂, t) = ρ− µ+ φx̄+ (1− φ) x̂+ (φ− 1)

[

γσ2 +
1− γ

ax + ρ
q (t)

]

ν (x̂, t) = ax (x̂− x̄) + (γ − φ) q (t) +
1− γ

ax + ρ

(

q (t)

σ

)2

.

Alos, equation (34) can be used to derive the following boundary condition for p (x̂, t):

p
(

x̂−
T , T

−
)

=
E
[

e
1−γ
ax+ρ

x̂+

T p
(

x̂+
T , T

+
)

∣

∣

∣
x̂−
T , q

−
T

]

e
1−γ
ax+ρ

x̂−

T
+ 1

2 (
1−γ
ax+ρ)

2[q−T −q+
T ]

. (70)

Again, we focus on the steady-state and denote p (x̂, 0) = p (x̂, nT+), and p (x̂, T ) = p (x̂, nT−). Under this

condition PDE (69) together with the boundary condition can be used to determined the price-to-dividend

ratio function.

We define µR,t to the instantaneous risk premium, that is,

µR,t =
1

p (x̂t, t)Dt
{Dtdt+ Et d [p (x̂t, t)Dt]} .

Standard results implies that in the interior of (nT, (n+ 1)T ), the instantaneous risk premium is given by:

µR,t − r (x̂, t) = γσ2 +

[

γpx (x̂t, t)

p (x̂t, t)
+

γ − 1

ax + ρ

]

q (t) +
γ − 1

ax + ρ

px (x̂t, t)

p (x̂t, t)

q2 (t)

σ2
.

E.2 Numerical Solutions

To solve the PDE (69) with the boundary condition (70), we consider the following auxiliary problem:

p (xt, t) = E

[

∫ T

t

e−
∫

s

t
̟(xu,u)duds+ e−

∫
T

t
̟(xu,u)dup (xT , T )

]

, (71)

where the state variable xt follows the law of motion;

dxt = −ν (x̂, t) dt+
q (t)

σ
dBt. (72)

Note that the solution to (71) and (70) satisfies the same PDE. Given an initial guess of the pre-new price-

to-dividend ratio, p− (xτ , τ), we can solve (71) by the Markov chain approximation method (Kushner and

Dupuis [49]):

1. We first start with an initial guess of a pre-announcement price to dividend ratio function, p (xT , T ).

2. We construct a locally consistent Markov chain approximation of of the diffusion process (72) as

follows. We choose a small dx, let Q = |ν (x̂, t)| dx +
(

q(t)
σ

)2

, and define the time increment ∆ = dx2

Q
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be a function of dx. Define the following Markov chain on the space of x:

Pr (x+ dx |x ) =
1

Q

[

−ν (x̂, t)
+
dx+

1

2

(

q (t)

σ

)2
]

,

Pr (x− dx |x ) =
1

Q

[

−ν (x̂, t)
−
dx+

1

2

(

q (t)

σ

)2
]

.

One can verify that as dx → 0, the above Markov chain converges to the diffusion process (72) (In

the language of Kushner and Dupuis [49], this is a Markov chain that is locally consistent with the

diffusion process (72)).

3. With the initial guess of p (xT , T ), for t = T −∆, T −2∆, etc, we use the Markov chain approximation

to compute the discounted problem in (71) recursively:

p (xt, t) = ∆ + e−̟(x,t)∆E [p (xt+∆, t+∆)] ,

until we obtain p (x, 0).

4. Compute an updated pre-announcement price to dividend ratio function, p (xT , T ) using (70):

p
(

x̂−
T , T

−
)

=
E
[

e
1−γ
ax+ρ

x̂+

T p
(

x̂+
T , 0

)

∣

∣

∣
x̂−
T , q

−
T

]

e
1−γ
ax+ρ

x̂−

T
+ 1

2 (
1−γ
ax+ρ )

2[q−T −q+
T ]

.

Go back to step 1 and iterate until the function p (xT , T ) converges.
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Table 1

Market Return on Announcement and Non-announcement Days

1961-2014

# per Year Mean Ex Std Sharpe R.

Market 252 6.19 15.59 0.40

All 30 3.36 6.23 0.54

EMPL/NFP 12 0.74 3.42 0.22

PPI 12 0.91 3.84 0.24

FOMC 8 2.69 3.36 0.80

GDP 8 1.20 3.41 0.35

ISM 12 2.21 5.06 0.44

None 222 2.82 14.29 0.20

1997-2014

# per Year Mean Ex Std Sharpe R.

Market 232 7.44 20.14 0.37

All 50 8.24 9.37 0.88

EMPL/NFP 12 1.85 4.45 0.42

PPI 12 0.90 4.62 0.20

FOMC 8 2.91 3.54 0.82

GDP 8 1.20 3.41 0.35

ISM 12 2.21 5.06 0.44

None 202 −0.78 17.79 −0.04

This table documents the mean excess return of the market, its standard deviation

and Sharpe ratio on announcement and non-announcement days. The mean excess

return is computed as the average daily market excess return on event days multiplied

by the average number of events per year. The first column is the average number of

events per year during the sample period. The release dates for unemployment/non-

farm payroll (EMPL/NFP) and producer price index (PPI) come from the BLS

with data starting in 1961 and 1971 respectively. The dates of Federal Open

Market Committee (FOMC) meetings are taken from the Federal Reserve’s website

and begin in 1994. Gross domestic product (GDP) release dates come from the

BEA’s website and Institute for Supply Management’s Manufacturing Report (ISM)

announcement dates come from Bloomberg. Both are available after 1997.
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Table 2

Average Daily Return around Announcements (Basis Points)

1961-2014

# of events t-1 t t+1

All 1, 624 1.77 (0.66) 11.21(3.99) 0.84(0.27)

EMPL/NFP 648 4.24 (0.11) 6.18(1.59) −2.47(−0.65)

PPI 527 −3.09 (−0.73) 7.61(1.57) −1.05(−0.18)

FOMC 168 10.57 (0.99) 33.60(3.68) 1.10(0.10)

GDP 144 −0.08 (−0.01) 14.99(1.50) 13.64(1.32)

EMPL 216 −0.60 (−0.08) 18.42(1.86) 5.76(0.68)

None 11, 968 1.27(1.40)

1997-2014

# of events t-1 t t+1

All 897 −0.12(−0.03) 16.48(3.76) 0.21(0.05)

EMPL/NFP 216 −1.09(−0.12) 15.44(1.77) −7.15(−0.87)

PPI 216 −8.38(−1.10) 7.53(0.83) −6.20(−0.68)

FOMC 144 −13.62(1.11) 36.35(3.49) −1.34(−0.11)

GDP 144 −0.08(−0.01) 14.99(1.50) 13.64(1.32)

EMPL 216 −0.13(−0.02) 18.42(1.86) 5.76(0.68)

None 3, 633 −0.36(−0.18)

This Table documents the average daily return on the trading before announcements (t-1), at

announcements (t), and after announcements (t+1). Returns are measured in basis points and T-

stats based on Newey-West (5 lags) standard errors are included in parenthesis. The first column is

the total number of events during the sample period. The release dates for unemployment/non-farm

payroll (EMPL/NFP) and producer price index (PPI) come from the BLS with data starting in 1961

and 1971 respectively. The dates of Federal Open Market Committee (FOMC) meetings are taken

from the Federal Reserve’s website and begin in 1994. Gross domestic product (GDP) release dates

come from the BEA’s website and Institute for Supply Management’s Manufacturing Report (ISM)

announcement dates come from Bloomberg. Both are available after 1997.
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Table 3

Intraday and Overnight Return with and without Announcement

Intrady Returns

# of Events Mean (StErr) Std

All Intraday 4278 −0.55 (1.67) 109

Announcement 336 17.0 (6.43) 118

FOMC 136 23.2 (10.0) 117

ISM 204 12.1 (8.26) 118

No Announcement 3942 −2.05 (1.72) 108

Overnight Returns

# of Events Mean (StErr) Std

All Overnight 4277 3.52 (1.06) 69.4

Announcement 544 9.32 (3.38) 78.8

NFP 204 16.2 (5.47) 78.1

PPI 204 −2.17 (5.86) 83.7

GDP 136 16.2 (6.02) 70.2

No Announcement 3733 2.67 (1.11) 67.9

This table decomposes intraday and overnight returns into announcement

day returns and non-announcement day returns. The first column is the total

number of events during the sample period of 1997-2014. The mean return

on event days is measured in basis points with standard error of the point

estimate in parenthesis.
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Table 4

Calibrated Parameter Values

Parameter Value

β discount rate 0.01

γ risk aversion 10

x average consumption growth 1.8%

σ volatility of consumption growth 3.0%

ax mean reversion in x 0.10

σx volatility of x (long-run risk) 0.26

φ leverage 3

σ2
S Noise in announcement 0

1/T Frequency of announcement per year 12

Table 4 presents the calibrated parameters of our learning model.
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Table 5

Expected returns in the model with and without learning

Learning Observable Expected Utility

Equity Premium 5.4% 4.58% 0.7%

Average return on annoucement Days 2.53% 0.09% 0.08%

Average risk-free interest rate 1.75% 2.56% 2.92%

Total volatility of equity return 11.18% 11.18% 8.29%

Total volatility on announcement days 6.53% 1.01% 0.33%

Total volatility on non-announcement days 9.05% 11.18% 8.29%

Volatility of risk-free interest rate 0.81% 0.81% 0.68%

Table 5 reports the total return on equity, return on announcement days, and the risk-free interest rate in

the model with learning (left panel), those in a model where xt is fully observable (middle panel), and those

in model with learning and with expected utility (right panel). We simulate the model for 160 years and

drop the first 100 years to grantee convergence to steady-state. We run 100 such simulations and report the

sample average of the moments computed from these simulations.
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