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Abstract

We study the implications of risk entanglements on international financial (FX) markets.

Risk entanglement is a refinement of incomplete markets that some risks in asset markets cannot

be singly traded. We show that in FX markets with entangled risks (i) there exist multiple

pricing-consistent exchange rates, (ii) every exchange rate is affected by idiosyncratic risks, and

(iii) exchange rates can be smooth while stochastic discount factors (SDFs) are volatile and

almost uncorrelated. These results are in stark contrast to the case of complete markets or

incomplete markets without risk entanglements.
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1 Introduction

In complete markets the exchange rate equals the ratio of the stochastic discount factors (SDF) of

the two involved countries. The SDF growth in each country has a volatility of at least 50% to

match the equity premium (Hansen and Jagannathan, 1991), while exchange rate growths have low

volatilities of only 10% in the data. Therefore, the two SDF growths must have an extremely high

implied correlation of ρ = 1 − 0.102

2∗0.52 ≈ 98%: international risk sharing is almost perfect (Brandt

et al., 2006). Inconsistent with this inference from asset prices, macroeconomic data implies a

relatively low degree of international risk sharing; for instance Brandt et al. (2006) estimate cross-

country correlations in consumption growth of only 30%. Turning to asset prices and assuming a

correlation between SDF growths of only 30% and SDF growth volatilities of 50%, then the implied

exchange rate growth volatility must be almost 60%, which is far from the volatility of 10% in the

data. This irreconcilability of asset prices and macroeconomic data is known as the international

correlation puzzle. The dashed black line in Figure 1 illustrates this: it is impossible to jointly have

a smooth exchange rate and a low correlation between SDF growths.1

Given the correlation puzzle it is impossible to tell how much risk is actually shared in inter-

national markets, because the two approaches (based on asset prices versus macroeconomic data)

deliver completely different results and we do not know which approach is more reliable. Resolving

the puzzle is key to shed light on the important question of how efficient international risk sharing

is, which in turn, has important implications for international policy. Moreover, a resolution of the

puzzle is a step to a better understanding of how macroeconomic quantities affect asset prices.

How can we reconcile the correlation puzzle and how much risk is shared in international mar-

kets? As illustrated by the solid red line in Figure 1, we demonstrate that a smooth exchange rate

and a low correlation between SDF growths can co-exist in a jump-diffusion setting with incom-

plete markets if risks are entangled. Consequently, the asset price implications for international risk

sharing are weakened and can be reconciled with estimates based on macroeconomic quantities.

Risk entanglement is a refinement of market incompleteness. We define risks as entangled if there

exists at least one risk (diffusion or jump process) that affects the traded asset space but cannot be

singly traded or replicated by a portfolio of traded assets. In contrast, we define risks as completely

disentangled if there are sufficiently many non-redundant traded assets such that every risk that

1Details to Figure 1 are in section 4.
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Exchange Rate Volatility vs Correlation between SDFs

Figure 1: For details we refer to Section 4.

affects asset markets is singly traded by a portfolio.2 It is unlikely that there are enough traded

assets to completely span all risk sources in international financial markets and we expect risks to

be entangled in reality.

Besides the implications for the international correlation puzzle, entangled risks yield further

interesting and surprising results in FX markets. Most importantly, we find that if risks are

entangled: (i) there exist multiple pricing-consistent exchange rates and (ii) every exchange rate

loads on idiosyncratic risks if these idiosyncratic risks are entangled.3 In stark contrast, if risks are

completely disentangled: (i) there is always a unique pricing-consistent exchange rate and (ii) the

exchange rate is only exposed to systematic risks.4

We start with a traded asset space denominated in the home currency and a home country SDF

such that there is no arbitrage. We further take a foreign country SDF as given and endogenously

solve for a pricing-consistent exchange rate – units of the foreign currency per unit of the home

2The requirement of complete disentanglement of risks is less stringent than the concept of complete markets. In
contrast to complete markets, it does not require that investors can singly contract on every risk in the economy (i.e.,
all risks that affect traded assets or SDFs) but only the risks in the traded asset space.

3We define idiosyncratic risks as risks that are not priced in either country, i.e., no SDF loads on these risks.
4We define systematic risks as risks that are priced in at least one country, i.e., at least one SDF loads on these

risks.
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currency – such that the asset space denominated in the foreign currency does not permit arbitrage

either. Home and foreign investors have access to the same traded assets but denominated in

different currencies, i.e., gross returns to foreign investors are equal to gross returns to home

investors multiplied by the gross return of the exchange rate.

Intuitively, given an exchange rate, the asset return space denominated in the home currency

uniquely implies the return space denominated in the foreign currency. Moreover, in a general

jump-diffusion setting with entangled risks, the two return spaces (denominated in the home and

the foreign currency) are distinct. But if the exchange rate itself is endogenously implied by no-

arbitrage pricing as in our analysis, it is also endogenous to, and jointly determined with, the

asset return space denominated in the foreign currency. Because the presence of entangled jumps

makes two return spaces distinct, there exist multiple exchange rates, each of which is endogenously

pricing-consistent. With a numerical calibration, we illustrate that some of the pricing-consistent

exchange rates are smooth while SDFs are hardly correlated.

We further show that in the special cases of either pure-diffusion risks or completely disentangled

risks, the space spanned by assets denominated in the foreign currency always coincides with the

space spanned by assets denominated in the home currency. Consequently, the exchange rate is

unique in these two settings. Accordingly, the presence of both jumps and entanglement is essential

to derive multiple pricing-consistent exchange rates. Several papers in the literature have pointed

out the relevance of jump risks in international financial markets, though for different reasons than

the novel concept of risk entanglement in our analysis (Backus et al., 2011; Brunnermeier et al.,

2008; Burnside et al., 2011; Gavazzoni et al., 2013; Farhi et al., 2014; Farhi and Gabaix, 2014).

On a more technical note, we introduce a new portfolio approach to determine pricing-consistent

exchange rates. We assume that risk-free bonds in both currencies are traded. Tradability of the

foreign bond by home investors means that there exists a portfolio which replicates the return of

the foreign bond denominated in the home currency. The foreign bond return denominated in the

home currency is equal to the foreign risk-free gross return (denominated in the foreign currency)

divided by the gross return of the exchange rate. Accordingly, the inverse of the exchange rate

can be represented by a linear combination (”portfolio weights”) of traded assets denominated in

the home currency. It is then our task to solve for these portfolio weights after substituting the

portfolio representation of the inverse of the exchange rate into the no-arbitrage pricing equation

of foreign investors. In particular, we have one pricing equation and one unknown portfolio weight
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associated with every risky asset. This yields a system of well-behaved polynomial equations with

multiple solutions and thus, multiple pricing-consistent exchange rates. In general, the polynomial

equations are of a higher order than 1 because the pricing equations are linear in the exchange rate

but only the inverse of the exchange rate is linear in the unknown portfolio weights. Exceptions are

the settings of completely disentangled risks in which the system becomes completely decoupled

with a single solution, and the pure-diffusion setting in which by virtue of Itô’s lemma the system

becomes linear with a single solution.

The no-arbitrage pricing approach relating the exchange rate to the ratio of countries’ SDFs has

been employed in the international asset pricing literature at least since Saa-Requejo (1994). For in-

complete market settings with pure-diffusion risks, this relationship holds with SDFs being replaced

by their projections onto the traded asset space (e.g., Brandt et al. (2006), or Backus et al. (2001)),

following the single-country projection approach of Hansen and Jagannathan (1991). Burnside and

Graveline (2012) prove an intriguing impossibility result that, when markets are incomplete, the

pricing-consistent exchange rate cannot be identified with the ratio of SDF projections in general.

We observe that a reason giving rise to this impossibility result is the use of gross SDF growths in

the projection construction. We instead relate our results to the projections of net SDF growths.5

Recent works by Bakshi et al. (2015) and Lustig and Verdelhan (2015) employ incomplete

market settings to address the correlation puzzle by Brandt et al. (2006). These papers start with

highly correlated SDFs, which price financial assets and imply a reasonable exchange rate volatility.

They, then, add unspanned noises to the SDFs to reduce the correlation between them. Bakshi

et al. (2015) discipline the amount of this unspanned noise by limiting the reward-to-risk ratio

which a hypothetical asset written on this noise could earn. Lustig and Verdelhan (2015) conclude

that the noise necessary to resolve the correlation puzzle is unreasonably large in their setting and is

at odds with empirical currency risk premia. In contrast, we use risk entanglements to weaken the

link between the exchange rate volatility and the correlation of SDFs. In addition, we provide two

additional novel results that there exist multiple pricing-consistent exchange rates and idiosyncratic

risks affect exchange rates if these risks are entangled.

There is a vibrant and large literature addressing the determination of exchange rates in struc-

tural equilibrium settings, in which real exchange rates are related to country-specific preference-

5Though the current paper’s focus is not on SDF projectors (the paper’s primary pricing objects are the ex-
ogenously given full SDFs), the distinction between projections of gross versus net SDF growths is important. In
particular, by construction, whereas projections of gross SDF growths do not, projections of net SDF growths do
price asset returns correctly in respective currencies.
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based consumption baskets. Employing incomplete markets, to mention a few, Zapatero (1995)

explicitly derives how exchange rates load on fundamental country-specific and global risks in a

two country setting with fully integrated and independently incomplete markets, Sarkissian (2003)

constructs an international version of Constantinides and Duffie (1996)’s incomplete-market asset

pricing model, Dumas et al. (2003) and Chaieb and Errunza (2007) analyze the segmentation of

country-specific asset markets, Pavlova and Rigobon (2007) feature demand shocks and multiple

goods to relate exchange rates and asset prices in equilibrium, and Favilukis et al. (2015) employ

market incompleteness to explain carry trade profits through imperfect risk sharing in equilib-

rium. Within a complete market framework, Colacito and Croce (2011), Colacito et al. (2015) and

Bansal and Shaliastovich (2012) offer risk-based rationales for exchange rate movements and cur-

rency premia employing rich features of non-time separable preferences and long-run risk dynamics,

and Stathopoulos (2016) addresses the international correlation puzzle employing habit formations.

While the current paper takes full SDFs as exogenously given and primarily studies their possible

constraints on the exchange rate, these full SDFs and their characteristics can only arise from

explicit structural considerations of the literature. In Maurer and Tran (2016), we abstract from

full (structural) SDFs and instead adopt market-based pricing kernels constructed purely from

asset prices. Therein, the risk entanglement is also found to be highly relevant to exchange rate

dynamics, but only when it affects assets in FX markets (not other markets). Structural settings

incorporating risk entanglements offer novel perspectives in modeling risks and real exchange rates,

and are subject of our future research.

The paper is organized as follows. Section 2 lays out a generic protocol to determine pricing-

consistent exchange rates via a portfolio representation (no-arbitrage) approach. In a jump-diffusion

incomplete-market setting, Section 3 delivers key results of the paper. In particular, Section 3.3

defines completely disentangled risks and demonstrates the uniqueness of the pricing-consistent

exchange rate when incomplete markets are subject to these risks. Section 3.4 defines entangled risks

and demonstrates the multiplicity of pricing-consistent exchange rates when incomplete markets are

subject to these risks. Section 4 models risk entanglements to calibrate a smooth pricing-consistent

exchange rate given volatile and modestly-correlated country-specific SDF growths. Section 5

concludes. Appendices A, B, C provide technical proofs and further supporting materials that have

been omitted in the main text.
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2 No-arbitrage Determination of Exchange Rates

In this section, we present a general no-arbitrage setting of international finance and provide as-

sumptions needed to determine the exchange rate when asset (i.e., financial) markets are incomplete.

The exchange rate is constructed to consistently price every traded asset in every denomination

currency while preserving the law of one price at all time.

We consider the spot exchange rate et between any two countries H (home) and F (foreign).

Our exchange rate convention is that,

et units of currency F buy one unit of currency H at time t. (1)

The absence of arbitrage implies the existence of stochastic discount factors (SDFs) MH,t, MF,t

which price assets in respective currencies H and F . Let Y denote a traded asset in international

financial markets (also referred to as asset markets henceforth), and
Yt+dt

Yt
the gross return de-

nominated in the home currency H on asset Y . It then follows that
et+dt

et

Yt+dt

Yt
is the gross return

denominated in the foreign currency F on the same asset Y . The asset can be priced in the home

and the foreign currency.6 Assuming frictionless international asset markets, either pricing route

(denomination in the home or the foreign currency) must give the same price when express in the

same currency. Therefore, the law of one price implies,

Et

ï
MHt+dt

MHt

Yt+dt
Yt

ò
= Et

ï
MFt+dt

MFt

et+dt
et

Yt+dt
Yt

ò
= 1. (2)

Assumptions: To specify the no-arbitrage determination of exchange rates in the approach above,

we first explicitly state two customary but important assumptions.

1. Assumption A1 – Symmetric and fully integrated international asset markets: If an asset

Yt is traded in a country, it is traded in all countries without frictions.

2. Assumption A2 – Tradability of country-specific risk-free bonds: Short-term risk-free bonds

of every country are traded in international asset markets.7

6In the latter case, we need to convert the asset’s future payoffs (using the future exchange rate) into the foreign
currency and price them using the foreign SDF. The price obtained is in the foreign currency, and can be converted
to the home currency using the current exchange rate.

7Throughout the paper, bonds refer to country-specific risk-free money market accounts that pay short-term risk-
free rates. A country I’s bond price BIt (in I’s currency) satisfies dBIt = BItrItdt, where rIt is the instantaneously
risk-free rate (i.e., short rate) for the infinitesimal time period from t to t+ dt.
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Intuitively, Assumption A1 states that if a cash flow is originated and traded in a country,

investors from all other countries can also trade this cash flow as long as they can convert it back

and forth between the originated currency and their home currencies. The pricing of any traded

asset Yt in the home and the foreign currency is given by the respective Euler equation in (2). This

is in difference with the recent literature studying effects of market incompleteness on the exchange

rate dynamic; e.g., home and foreign investors do not trade identical sets of assets (due to some

frictions) in Lustig and Verdelhan (2015). Note that our assumption on the international tradability

of assets is not tantamount to an assumption of complete international asset markets, because the

set of all traded assets might not span the space of innovations to SDFs MHt, MFt (see the

characterization of market completeness below). In fact, the current paper features predominantly

incomplete asset markets while maintaining Assumption A1 throughout. We view our assumption

on the symmetric international tradability of assets as natural, in particular, when considering

developed countries.

Assumption A2 simply models after another innocuous feature that investors in a country can

participate in FX markets and, through them, in the short-term lending and borrowing of foreign

currencies. Derivatives on exchange rates might also suffice to replicate plain-vanilla foreign short-

term debt in case the latter is not directly accessible to home investors. In practice, it is this

feature that underlies the viability and popularity of currency carry trades. In the current paper’s

no-arbitrage setting, Assumption A2 gives rise to an analytical representation of the exchange

rate that can be adapted to any stochastic economic model to systematically determine pricing-

consistent exchange rates.

Procedure: We now formalize the no-arbitrage procedure to determine the exchange rate.8

Throughout, we assume that country-specific SDFs are distinctly specified, and given as exoge-

nous pricing operators.9

Protocol 1 (No-arbitrage Determination of the Exchange Rate)

Step 1: We first take as exogenously given, (i) the set of traded assets, as well as their return

processes
Yt+dt

Yt
denominated in the home currency,10 and (ii) distinctly specified SDFs MHt,

8The no-arbitrage approach to determine the exchange rate described here is known and employed in the literature
at least since Saa-Requejo (1994).

9Structural international asset pricing models may link MIt to the marginal utility of country I’s representative
investor. In the current paper, we do not address this linkage, but instead focus on the no-arbitrage international
pricing of traded assets given country-specific SDFs.

10The choice of denomination currency is non-material, so we conventionally choose it to be the home currency.
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MFt of countries involved.

Step 2: We then determine the exchange rate process et endogenously on the requirements

that, (a) it prices traded assets consistently across currency denominations (upholding law of

one price (2)), and (b) a country’s risk-free bond remains a traded asset to the other country’s

investors (after the bond’s payoff is converted to the other currency).

It turns out that Assumption A2 on the tradability of risk-free bonds can be exactly mapped

into an analytical requirement on exchange rates as we show next.

Portfolio Representation of the Exchange Rate

For concreteness, we adopt the following notations for the traded assets to home investors,

{Y } ≡ set of all risky assets, BH ≡ home bond with return
BH,t+dt
BH,t

= 1 + rHdt. (3)

Therefore, the set of all traded assets to home investors is {BH , Y }.11 Assumption A2 within

Protocol 1 of the exchange rate determination can be formalized by stipulating that the foreign

bond, which is risky to home investors, is in the set {BH , Y } of all traded assets,

BF,t+dt
BF,t

et
et+dt

=

Ñ
1−

∑
Y ∈{Y }

αY

é
BH,t+dt
BH,t

+
∑

Y ∈{Y }
αY

Yt+dt
Yt

,

where
BF,t+dt

BF,t
= 1 + rFdt is the gross return on the foreign bond in the foreign currency. Hence,

the above expression on the gross return on the foreign bond to home investors can be rewritten

as a portfolio representation for the exchange rate,

et
et+dt

=
1

1 + rFdt


Ñ

1−
∑

Y ∈{Y }
αY

é
BH,t+dt
BH,t

+
∑

Y ∈{Y }
αY

Yt+dt
Yt

 . (4)

The right-hand side of the above equation simply expresses the inverse of the exchange rate growth

as a portfolio representation constructed from all traded returns under home investors’ perspectives,

For the endogenous determination of the exchange rate from SDFs, we evidently cannot take, as exogenous inputs,
the returns on the same assets in multiple currencies (due to an over-identification issue).

11To foreign investors, the set of all traded assets is identical to {BH , Y } (Assumption A1), though their returns
differ when denominated in home and foreign currencies. In particular, the home bond is not risk-free to foreign
investors and vice versa, because of uncertain exchange rate movements.
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with weight αY on respective asset Y .12 The representation (4) can also be seen as a differential but

explicit formulation of the relationship between the exchange rate and ratio of countries’ SDFs in

incomplete markets (see Appendix B) . The gist of the no-arbitrage construction of the exchange rate

(Protocol 1) now concretely turns into the determination of weights {αY } in (4) such that the Euler

pricing equations (2) hold for every traded asset Y ∈ {Y }, and in every currency denomination.

Completeness of Asset Markets

The characterization of international asset market completeness in our study is as follows. Given

countries’ exogenous SDFs together with a set of traded assets (accessible to every investor in the

world), markets are complete if every risk, which affects either SDFs or the traded asset payoffs,

can be replicated by a portfolio of traded assets. In particular, all risks that matter for (and are

priced by) investors, i.e., the risks impacting countries’ SDFs, can be completely hedged by trading

respective replicating portfolios.

Broadly defined, then, asset markets are incomplete in our study whenever the above complete

market characterization does not hold. Thus, markets are incomplete when some risks affecting

SDFs cannot be replicated by forming a portfolio of traded assets. Furthermore, markets are

also incomplete when some risks affecting asset payoffs can not be individually replicated by any

portfolio of traded assets because, e.g., these risks are coupled with one another or with other risks

in asset markets. These refinements of market incompleteness turn out to be crucial for FX market

settings in the presence of risks of discontinuous nature (jumps).13

3 No-arbitrage Determination of Exchange Rates

We now implement the no-arbitrage determination of exchange rates along Protocol 1 for generic

incomplete-market settings. The market incompleteness arises from continuous and discontinuous

movements (diffusion-jump) in both asset payoffs and SDFs. Jumps in exchange rates are not only

an important feature documented in FX data, but also an eminent priced risk in FX markets as

pointed out by Brunnermeier et al. (2008) and Burnside et al. (2011). For such generic settings,

the portfolio representation of the exchange rate (4) proves to be a highly analytically convenient

12Note that the inverse of per-home-currency exchange rate’s growth is the per-foreign-currency exchange rate’s
growth.

13Analysis and findings concerning jump risks in FX markets of various degrees of incompleteness are topics of
Section 3.4.
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approach.

3.1 Jump-Diffusion Setup

SDFs and Return Processes

We take return processes (denominated in the home currency) and SDFs as exogenously given. In

a jump diffusion setting, SDF processes read,

MIt+dt

MIt
= 1− rItdt− ηTItdZt +

∑
i∈JI

Ä
e∆iI×dNit − 1

ä
−
∑
i∈JI

λidt
Ä
e∆iI − 1

ä
, (5)

with MI0 = 1, t ∈ [0,∞), I ∈ {H,F}, dNit ∈ Poisson(λi),

where d-dimensional standard Brownian motion Zt captures d independent diffusion risks in our

setting. There are j different and uncorrelated types of jump risks,14 each denoted by an index

i ∈ {1, . . . , j}. A jump risk of particular type i is characterized by a discrete random variable dNit

having a Poisson distribution with arrival intensity λi. Accordingly, within an infinitesimal time

interval (t, t + dt), the respective Poisson counter dNit takes value one with probability λidt, and

zero with probability 1 − λidt. Scalar ∆iI denotes the discontinuous change (i.e., jump size) in

country I’s SDF growth when a jump of type i occurs. Vector ηIt of d dimensions denotes the

prices of diffusion risks in respective country I. The expected growth of SDF MI (5) is the additive

inverse of the risk-free rate −rI because MI prices the risk-free bond of the respective country I.15

It suffices to demonstrate all key findings of this section in the simplest jump-risk setting with

constant arrival intensities and constant jump sizes. In the above equation, JI denotes the set of

jump risks priced by country I’s investors,

JI ≡ {i : jump of type i affects country I’s SDF MI}. (6)

Similarly, (cum-dividend) asset returns read,

Yt+dt
Yt

= 1 + µY tdt+ σTY tdZt +
∑
i∈JY

Ä
e∆iY×dNit − 1

ä
−
∑
i∈JY

λidt
Ä
e∆iY − 1

ä
, (7)

14Correlated jump types can be decomposed into and constructed from uncorrelated jump types.
15Our analysis holds conditional on time t. Thus, rIt, ηIt, ∆iI and λi are adapted stochastic processes, i.e., we

only need that they are known at time t.
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where scalar µY t and d−dimensional vector σY t denote asset Y ’s expected return and return volatil-

ity respectively. Scalar ∆iY denotes the jump size in asset Y ’s return associated with a jump of

type i.16 Similar to JI in (6),

JY ≡ {i : jump of type i affects the return on asset Y }, (8)

We conventionally include explicit compensation terms for each jump in SDFs and asset returns.

Hence, drift terms of these processes fully reflect the effects of both continuous and discontinuous

movements in the economy. Specifically, the drift µY t in (7) incorporates asset Y ’s compensated

return for its loadings on both diffusion and jump risks. Henceforth, we will drop time indices

whenever such an omission does not create ambiguities.

The Exchange Rate

We determine the exchange rate process endogenously under the constraint of Assumption A2. Sub-

stituting asset returns (7) into the portfolio representation (4) of the exchange rate, then applying

Itô’s lemma for jump-diffusion processes yields an expression for the exchange rate growth,17

et+dt
et

= 1 + µedt+ σTe dZt +
∑

i∈J{Y }

Ä
e∆ie×dNit − 1

ä
, (9)

where drift µe, volatility σe, and jump size ∆ie (associated with jumps of type i) of the exchange

rate are respectively,

µe = rF −

1−
∑

Y ∈{Y }
αY

 rH + σTe σe −
∑

Y ∈{Y }
αY

µY − ∑
i∈JY

λi
Ä
e∆iY − 1

ä ,
σe = −

∑
Y ∈{Y }

αY σY , e∆ie×dNit − 1 ≡ 1

1 +
∑
Y ∈Yi αY (e∆iY×dNit − 1)

− 1. (10)

In the above expressions, {Y } denotes the set of risky traded assets to home investors (3), JY the

set of jump types pertaining to asset Y (8), and J{Y } denotes the set of all jump types in the asset

16Similar to the moments of the SDFs, µY t, σY t and ∆iY are adapted stochastic processes and known at time t.
17Substituting (7) into (4) only yields an expression for the reciprocal of the exchange rate growth et

et+dt
. We need

to apply Itô’s lemma to yield the multiplicative inverse of this ratio to obtain the proper exchange rate growth
et+dt

et
.
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return space,

J{Y } ≡ ∪Y ∈{Y }JY = {i : ∃Y ∈ {Y } such that jump of type i affects the return on asset Y },

(11)

and Yi denotes the set of all assets affected by the jump of type i,

Yi = {Y : such that asset Y ’s return is affected by the jump of type i}.

Intuitively, because the exchange rate is being endogenously constructed from asset returns, the

jump size ∆ie in the exchange rate pertaining to a specific type i is a function of the jump sizes

∆iY of all assets pertaining to that type. Several observations are in order. First, by virtue of the

portfolio representation of exchange rate volatility σe in (10), the tradability of countries’ bonds

(Assumption A2) clearly implies that diffusion risks impacting the exchange rate are identical to

those impacting asset returns denominated in the home currency.18 Consequently, because the

volatility of asset Y ’s return in the foreign currency is σeY = σe +σY , we have the following simple

result pertaining exclusively to diffusion risks in the model.19

Remark 1 The tradability of risk-free bonds (Assumption A2) assures that asset return spaces

denominated in either currencies are subject to identical diffusion risks. As a results, the two

return spaces have identical diffusion subspaces.

Thus, in the absence of jump risks (i.e., pure diffusion), asset return spaces denominated in home

and foreign currencies are identical. Second, any jump that affects returns on traded assets also

enters the exchange rate dynamics in general as a result of the no-arbitrage determination of the

exchange rate (4). Put differently, the set of jump types that affect the exchange rate is (11),

Je = J{Y }. (12)

Third, the identity (10) that determines the exchange rate’s jump size holds almost surely, i.e., for

18The statement of “identical diffusion risks” does not simply mean that the the two sets of Brownian motions
(affecting asset returns in the home currency, and the exchange rate, respectively) are identical. It states a stronger
result that the diffusion of the exchange rate growth σT

e dZt can be perfectly replicated by the diffusion σT
Y dZt of asset

returns denominated in the home currency.
19A corresponding result concerning jump risk impacts on asset returns denominated in two currencies is markedly

different and much richer. We defer a detailed analysis to Remarks 2 and 3, after the key concept of risk entanglement
has been introduced.

13



the jump count being restricted to dNit ∈ {0, 1}.20 We also note that, jumps in the exchange rate

(9) do not appear in a compensated form. It is its inverse, (1+rFdt)
et

et+dt
(which is a portfolio return,

according to (4)), that has a compensated form. That is, this inverse inherits the compensated

form from the constituent asset returns in the replicating portfolio (4).

The Pricing of Risk-Free Bonds

We first observe that the pricing of the short-term risk-free bond BI in the currency of the bond-

issuing country I,

1 = Et

ñ
MI,t+dt

MI,t

BI,t+dt
BI,t

ô
= Et

ñ
MI,t+dt

MI,t
(1 + rIdt)

ô
, I ∈ {H,F},

is tantamount to the SDF MI ’s expected growth rate being −rI , and thus, is fully accounted for

by process (5). Similarly, the pricing of the foreign risk-free bond BF in the home currency,

1 = Et

ñ
MH,t+dt

MH,t

et
et+dt

BF,t+dt
BF,t

ô
= Et

ñ
MH,t+dt

MH,t

et
et+dt

(1 + rFdt)

ô
,

is automatically satisfied because the foreign bond’s gross return to home investors, et
et+dt

(1+rFdt),

is a proper portfolio return (4), every constituent return of which satisfies a separate Euler equation

of its own.

The pricing of the home risk-free bondBH in the foreign currency, 1 = Et
[
MF,t+dt

MF,t

et+dt

et
(1 + rHdt)

]
,

can be rewritten as the premium to foreign investors on the home bond,

(µe + rH)− rF = σTe ηF −
∑

i∈(J{Y }∩JF )

λi
Ä
e∆iF − 1

ä Ä
e∆ie − 1

ä
−

∑
i∈J{Y }

λi
Ä
e∆ie − 1

ä
, (13)

where J{Y } is the set of all jump types in the asset return space (11), and

J{Y } ∩ JI ≡ {i : jump of type i affects both some asset Y ’s return and country I’s SDF MI}.

(14)

Evidently, the left-hand side of (13) is the excess return (premium) on the home bond to foreign

investors, who earn a return on the home currency µe on top of bond interest rH . This premium is

intuitive, since in our exchange rate convention (1), a decrease in et is tantamount to an appreci-

20The probability that multiple Poisson jumps (dNit ≥ 2) take place within any infinitesimal time period (t, t+dt)
is of order O

(
dt2
)

or smaller, thus is identically zero in the mean-square convergence limit.
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ation of the foreign currency. Foreign investors holding the home bond are exposed exclusively to

exchange rate risks. Specifically, the return premium to foreign investors compensates for (i) load-

ings on diffusion risk (when the diffusion moves the foreign currency’s value and the foreign SDF

in the same direction, σTe ηF > 0), and (ii) loadings on jump risk (when common jumps move the

foreign currency’s value and the foreign SDF in the same direction,
Ä
e∆iF − 1

ä Ä
e∆ie − 1

ä
< 0).21

Furthermore, only jump risks associated with both the exchange rate and the foreign SDF is priced

in the home bond premium (13) to foreign investors.22

The Pricing of Risky Assets

The pricing of risky asset Y (7) in the home currency, 1 = Et
[
MH,t+dt

MH,t

Yt+dt

Yt

]
, implies the premium

on this asset to home investors,

µY − rH = σTY ηH −
∑

i∈(JY ∩JH)

λi
Ä
e∆iH − 1

ä Ä
e∆iY − 1

ä
, (15)

where JY ∩JH denotes the set of jump types common to both asset Y ’s returns and the home SDF

(14). The intuition is similar to that underlying (13), with first and second terms on the right-hand

side of (15) compensating home investors for taking diffusion and jump risks respectively. Again,

only jump risks associated with both asset Y ’s returns and the home SDF is priced in the return

premium (15).

The pricing of the same risky asset Y in the foreign currency, 1 = Et
[
MF,t+dt

MF,t

et+dt

et

Yt+dt

Yt

]
, can be

rewritten as the excess return (premium) on this asset to foreign investors,

21We recall from expression (5) that MFt decreases with ηTF dZt and increases with e∆iF , and from (9) that et
increases with both σT

e dZt and e∆ie. Furthermore, jump types affecting the exchange rate, or the currency value, are
the same as those affecting the asset return space, as seen in (12).

22We observe that the last term in (13) is a compensation term and is purely mechanical. It simply accounts for,
and neutralizes, the non-material fact that the exchange rate’s drift µe on the left-hand side of (13) also includes this
identical compensation, see (9) and the discussion following (11).
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(µe + µY )− rF =
Ä
σTY + σTe

ä
ηF − σTY σe −

∑
i∈(JY ∩JF ) λi

Ä
e∆iF+∆iY+∆ie − 1

ä
−∑i∈(J{Y }∩JF \JY ) λi

Ä
e∆iF+∆ie − 1

ä
−∑i∈(JY \JF ) λi

Ä
e∆iY+∆ie − 1

ä
(16)

+
∑
i∈(J{Y }∩JF ) λi

Ä
e∆iF − 1

ä
+
∑
i∈JY λi

Ä
e∆iY − 1

ä
−∑i∈(J{Y }\JY \JF ) λi

Ä
e∆ie − 1

ä
,

where moments of the exchange rate µe and σe are given in (10), and (JY \ JF ) denotes the set of

jumps that affect the return on asset Y under consideration but not the foreign SDF MF . Similarly,Ä
J{Y } ∩ JF \ JY

ä
denotes the set of jumps that affect the asset return space and the foreign SDF

MF but not the return on the particular asset Y under consideration, and
Ä
J{Y } \ JY \ JF

ä
denotes

the set of jumps that affect the asset return space but neither the return on the particular asset Y

under consideration nor the foreign SDF MF . It is reassuring that, in absence of jumps (λi = 0, ∀i,

or ∆iC=0, ∀C ∈ {H,F, Y, e}), excess return (16) reduces to a familiar premium (first two terms

on the right-hand side) in pure-diffusion settings.

The premium to foreign investors on the risky asset Y (expressed by the terms on the right-hand

side (16)) is intuitive. The term associated with ηF is the premium on (fundamental and exchange

rate) diffusion risks (σY + σe) borne by foreign investors holding the risky asset. The hedging

benefit (i.e., when σTY σe > 0) between asset Y ’s return denominated in the home currency and the

exchange rate reduces the risk of (and thus, the premium on) asset Y ’s return to foreign investors.

When common jumps to all the SDF MFt, the asset payoff Yt, and the exchange rate et are such

that ∆iF + ∆iY + ∆ie > 0 (the 3-simultaneous-jump term
Ä
e∆iF+∆iY+∆ie − 1

ä
is positive), the

risky asset is a net hedge to foreign investors, and acts to lower the premium.23 Similar hedging

benefits explain the reduction in the premium when ∆iF + ∆ie > 0, and ∆iY + ∆ie > 0 (the

2-simultaneous-jump terms
Ä
e∆iF+∆ie − 1

ä
and

Ä
e∆iY+∆ie − 1

ä
are positive). The remaining last

three terms in (16) arise mechanically from the convention of compensated jumps.24

23For a simple illustration suppose that jump sizes associated with type i are such that, ∆iF > 0, ∆iY > 0,
∆ie > 0. When the process of type i jumps, the asset payoff (in the home currency) increases, the home currency
appreciates and the foreign SDF increases simultaneously. Hence, the payoff to foreign investors is high when these
investors highly value this payoff, or the risky asset Y is a hedge to risk from jump i foreign investors are exposed to.

24While the convention’s consequences do affect the specific expression of the exchange drift µe (9), they are
non-material and need be neutralized in any pricing equation.

16



3.2 Exchange Rate Determination

We first observe that, in the absence of arbitrage and other frictions, the premium on any risky

asset Y to foreign investors can be decomposed into (i) the premium on that risky asset to home

investors and (ii) the premium on the home bond to foreign investors,

(µe + µY )− rF︸ ︷︷ ︸
given in (16)

= [µY − rH ]︸ ︷︷ ︸
given in (15)

+ [(µe + rH)− rF ]︸ ︷︷ ︸
given in (13)

. (17)

This identity is the basis of the no-arbitrage determination of the exchange rate in the jump-

diffusion setting. Substituting into identity (17) the expressions (13), (15) and (16) for respective

premia yields a specific expression for the above identity in the jump-diffusion setting. For each

(and every) risky traded asset Y , this expression reads,

σTY (ηH − ηF + σe) +
∑
i∈(JY ∩JF ) λie

∆iF+∆ie
Ä
e∆iY − 1

ä
+
∑
i∈(JY \JF ) λie

∆ie
Ä
e∆iY − 1

ä
=
∑
i∈(JY ∩JH) λi

Ä
e∆iH − 1

ä Ä
e∆iY − 1

ä
+
∑
i∈JY λi

Ä
e∆iY − 1

ä
, ∀Y ∈ {Y }.

(18)

Several observations on this key equation are in order. First, taking risk loadings in asset returns

(σY and ∆iY ) and market prices (ηH , ηF , ∆iH and ∆iF ) as exogenously given, (18) is an equation of

portfolio weights {αY },25 which quantify the effect of traded asset returns {Yt} on the constructed

exchange rate et (9)-(10). If we have N non-redundant risky assets, we have N non-redundant

equations of the type (18) (one equation per risky asset). Altogether, they form a system of N

equations and N unknowns {αY } (with Y ∈ {Y }) that determines the exchange rate in the no-

arbitrage approach (9).

Second, all jump types that affect SDFs MHt and MFt but not the asset return space {Yt}, drop

out from and do not contribute to the determination of the exchange rate, which is consistent with

relationship (12). This is because such jumps represent risks unspanned by and decoupled from

asset returns, to which the exchange rate belongs (via the tradability of short-term risk-free bonds).

All other risks in the asset return space {Y }, either of continuous (diffusion) or discontinuous (jump)

nature, jointly determine the solution weights {αY } in the portfolio representation (4), and thus,

the exchange rate. Sections 3.3 and 3.4 below fully characterize the joint implications of the market

incompleteness and nature of risks on the determination of the exchange rate.

25These weights are embedded in σe and e∆ie (10).
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Third, it is crucial to observe that, while σe = −∑Y ∈{Y } αY σY (10) is linear in portfolio

weights {αY }, the exchange rate’s jump sizes e∆ie = 1
1+
∑

Y ∈Yi
αY (e∆iY −1)

(10) are non-linear in

{αY }.26 Therefore, the set (18) for all traded assets constitutes a system of N nonlinear equations.

Consequently, there potentially exist multiple solution sets {αY }, and hence, potentially multiple

exchange rates et even when the exchange rate has been explicitly constructed within the traded

asset return space. As we briefly discuss below the portfolio representation of the exchange rate (4),

system (18) generalizes the standard approach relating the exchange rate with SDFs to incomplete

market settings with jump risks.27

Our finding of potentially multiple pricing-consistent exchange rates is novel and surprising.

Intuitively, jump risks generate distinct asset return spaces when returns are denominated in dif-

ferent currencies (Remarks 2 and 3 below). Therefore, when the exchange rate is an endogenous

part pinning down the asset return space in the foreign currency (Protocol 1), there are potentially

many exchange rate solutions. Every of these solutions is endogenously consistent. Indeed, given

any exchange rate solution e, foreign SDF MF price correctly all asset returns {eYn} denominated

in the foreign currency using that exchange rate. The multiplicity, or equivalently the non-linearity

of equation system (18) for all traded assets Y ∈ {Y }, requires as necessary conditions both incom-

plete markets and the presence of sizable jump risks. These conditions, however, are not sufficient

to imply the multiplicity of the exchange rate. In this regard, we note that the exchange rate is

uniquely determined in the no-arbitrage approach under either (i) incomplete markets and pure-

diffusion risks (Appendix B), or (ii) complete international asset markets and jump-diffusion risks.

Our formal analysis below establishes necessary and sufficient conditions for a multiplicity of the

exchange rate to arise.

Fourth, the key equation (18) is implied by the foreign pricing of the home bond (13), and

the foreign pricing of risky assets (16).28 A natural question is whether a solution {αY } to the

nonlinear system (18) satisfies both original pricing equations (13) and (16). This is an important

consistency check. If at least one of these two pricing equations does not hold, the exchange rate

26This non-linearity is an important feature of disaster risks, for which movements in asset returns {∆iY } are sizable
and sudden (large jumps), and the linearity associated with mean-square convergence in pure-diffusion settings, e.g.,

1
1+dt+dZt

= 1− 1
2
dt− 1

2
dZt, breaks down.

27In (incomplete-market) pure-diffusion settings, this relationship is known to simplify to a strict equality between
the exchange rate and the ratio of projected SDFs (see Appendix B). In (incomplete-market) jump-diffusion settings,
such equality does not hold when risks are entangled in FX markets Maurer and Tran (2016).

28We note that the home pricing of risky assets (15) does not involve the endogenous weights {αY }, and thus,
does not constitute a validation test for these solution weights. Rather, (15) is a constraint between exogenous asset
pricing parameters µY , σY , ∆iY .
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et (9) constructed from portfolio weights {αY } fails to price the home bond or some other traded

asset Y ∈ {Y } correctly (even though this exchange rate et is able to deliver the compounded

pricing equation (18)). In such a case, the constructed et would be evidently inconsistent with

asset pricing. The following result rules out this inconsistency.

Proposition 1 If a set of weights {αY }, and the associated exchange rate et constructed from these

weights via equations (9)-(10), are a solution to the system of equations (18) for all traded assets

Y ∈ {Y }, then both pricing equations (13) and (16) hold for such {αY } and et.

The proof of this proposition is relegated to Appendix A. The consistency result of Proposition 1

establishes the central role of the system (18) (one equation per traded asset) in the no-arbitrage

determination of the exchange rate. We summarize the gist of constructing the exchange rate in

the no-arbitrage approach, as well as our discussion following (18), in the next theorem.

Theorem 1 On the premise of Assumption A1 (symmetric and frictionless asset markets to all

investors) and Assumption A2 (risk-free bonds of all countries are traded),

1. the no-arbitrage construction of the exchange rate et (9)-(10) is feasible if and only if the

weights {αY } in these equations solve the system (18) (for all traded assets Y ∈ {Y }),

2. furthermore, every exchange rate constructed using this approach is pricing-consistent.

Specifically, in the no-arbitrage determination of the exchange rate, a pricing-consistent exchange

rate both (i) prices all traded assets consistently across currency denominations and (ii) renders all

bonds to remain traded assets by upholding the portfolio representation (4) of the exchange rate.

We next investigate the important issue of multiplicity of consistent exchange rates stemming

from the non-linearity of the system of equations (18). It turns out that the multiplicity is crucially

related to a subtle and novel characterization of asset market completeness in the presence of risks

of discontinuous and sizable movements (i.e., jump risks).

3.3 Incomplete Markets with Completely Disentangled Risks

To gain a deeper insight into the pricing of jump risks in incomplete FX markets, we first refine

the characterization of the market incompleteness with the following definition.
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Definition 1 (Completely Disentangled Risks) Incomplete markets with completely disentan-

gled risks are an asset market setting, in which,

1. markets are incomplete,29

2. every single risk affecting the traded asset space can be individually replicated by a portfolio

of traded assets (that is, asset risks are completely disentangled from one another in asset

markets).

Note that the first defining property pertains exclusively to market incompleteness (so it is related

to the risk-loading configuration of SDFs), while the second pertains exclusively to disentangled

asset risks (so it is not related to SDFs).

For the simplest illustration of a market setting with completely disentangled risks, assume

that the asset return space is affected by (i) a d-dimensional diffusion risk ZTt = (Z1t, . . . , Zdt), (ii)

j types of (uncorrelated) jump risks defined by the respective Poisson counters (dN1t, . . . , dNjt),

and (iii) some other risks affecting only SDFs (but not asset returns). Then, an incomplete market

setting with completely disentangled risks arises if there are d+j primitive risky assets – each loads

on one (and only one) of d+ j diffusion and jump risks – and a risk-free bond. Note however that

such a collection of assets is not primitive. This is because there exist infinitely many equivalent,

non-primitive, versions of these d+ j + 1 risky and risk-free assets (Proposition (2) below).

Completely Disentangled Risks: Discussion and Properties

We emphasize that the “complete disentanglement” concept of asset markets underlying Definition

1 does not require the stringent level of completeness in complete markets (also specified at the end

of section 2), but it is more refined than the effective completeness in effectively complete markets.

On one hand, in the standard complete-market setting, an asset is available by construction to singly

replicate every risk in the economy. Thus, the setting with completely disentangled risks is similar

to complete markets in the sense that there are enough traded assets so that every risk source in

asset markets can be singly replicated by a portfolio of assets. It is, however, less stringent than

the setting of complete markets because it only requires the replication of risks in asset markets

(but not necessarily risks affecting the SDFs), i.e., the concept of completely disentangled risks

does not involve SDFs à priori. In other words, in the setting with completely disentangled risks,

29That is, per characterization of the market completeness given at the end of Section 2; some risks affecting either
countries’ SDFs or asset payoffs cannot be individually replicated (hedged) by any portfolio of traded assets.
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markets are incomplete because some risks affecting SDFs do not affect asset markets. On the

other hand, in the effectively complete-market setting, while risks may remain entangled in asset

markets, entanglement patterns are identical in the asset return space and in the SDFs so that all

risk “packages” that matter for investors’ utilities can be effectively hedged. In comparison, the

subtle “complete disentanglement” classification of Definition 1 is more detailed in the sense that

there are enough traded assets to load singly on every risk, even when risks are entangled in SDFs

and promiscuously priced by investors.

Intuitively, assuming incomplete markets with completely disentangled risks is more plausible

than assuming the existence of complete markets. For instance, if a sufficient number of financial

derivatives is traded, then it is possible that there are enough assets to construct portfolios to

replicate every single risk in the traded asset space. An exception concerns the nature of rare

disasters, in which case investors may find it too costly to fully account for and contract on such

risks (e.g., disaster insurances like far out-of-the-money put options are not perfectly liquid but

they are important assets if one would like to hedge jumps of large sizes). It is, however, rather

implausible to assume that investors can contract on every single risk which affects the SDFs. There

are many examples of labor income, human capital, health, taste or other preference shocks, which

directly affect SDFs (i.e., ηIt or ∆iI), or shocks to the investment opportunity set/conditional

moments of asset returns (rIt, µY t, σY t, ∆iY or λi), which indirectly affect SDFs. Such shocks are

likely to be unspanned by asset markets but affect SDFs and markets are incomplete.30 Moreover,

frictions can also be practical reasons why investors are unable to contract on important risks and

markets are incomplete.

Completely disentangled risks are similar to pure-diffusion risks with respect to an important

aspect that both settings foster identical risk space for asset returns denominated in different

currencies. Indeed, complete risk disentanglement signifies that to each jump type i there is an

asset Y that loads only on that jump risk. Therefore, for each type i, the corresponding jump

component in the exchange rate movement (10) in this setting reduces to,

e∆ie×dNit − 1 =
1

1 + αY (e∆iY×dNit − 1)
− 1, ∀i ∈ J{Y }.

30Notice that complete disentanglement concerns only risks affecting asset returns in (t, t + dt) and not shocks
affecting conditional moments. Thus, in a setting with completely disentangled risks, it may not be possible to
contract on every shock to conditional asset return moments but at the same time it may be possible to contract on
every possible asset return realization in (t, t+ dt) given the information at time t.
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Consequently, the jump component of asset Y (which loads singly on type i) when denominated in

the foreign currency is,

e∆i(eY )×dNit − 1 =
e∆iY×dNit

1 + αY (e∆iY×dNit − 1)
− 1, ∀i ∈ J{Y },

Similar to (10), above equalities hold almost surely (i.e., for dNit ∈ {0, 1}). Clearly, in a market

setting with completely disentangled risks, if asset Y ’s return in the home currency loads singly

on the jump risk of type i, so does its return in the foreign currency. Therefore, the complete risk

disentanglement is a property invariant to currencies of denomination as long as access to asset mar-

kets is symmetric to all investors and countries’ risk-free bonds are traded.31 The following remark

recapitulates these results, which generalizes Remark 1 to the setting of completely disentangled

risks.

Remark 2 When risks are completely disentangled in asset markets (Definition 1), the tradability

of bonds (Assumption A2) assures that asset return spaces denominated in either currency are

subject to identical diffusion-jump risks. As a results, under these premises, the two return spaces

are identical.

Finally, we observe that there are infinitely many configurations of traded assets that can

disentangle (i.e., individually replicate) every risk in asset markets. Proposition 2 below shows that

all such configurations are equivalent. To be specific, suppose that asset markets collectively load

on d uncorrelated diffusion risks and j uncorrelated types of jump risks. Consider the corresponding

set T of 1+d+j traded primitive assets, which includes a risk-free bond BI , d pure-diffusion assets

{Xk} (each loads exactly on one diffusion risk), and j pure-jump assets {Wi} (each loads exactly

on one type of jump risk). Without loss of generality, we formulate T from the perspective of

investors in country I,

T = BI ∪ {Y }, where the set of risky assets {Y } ≡ {Xk,Wi : k ∈ {1, . . . , d}; i ∈ {1, . . . , j}} .

(19)

31When some assets are traded only in certain countries as in Lustig and Verdelhan (2015), or when some countries’
bonds are not available for trading, it is possible that asset markets in some countries feature completely disentangled
risks, while they do not in other countries.
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offers respective primitive returns,32

Xkt+dt

Xkt
= 1 + µkdt+ σkdZkt, µk = rI + σkηIk,

(20)

Wit+dt

Wit
= 1 + µidt+

Ä
e∆iW×dNit − 1

ä
− λidt

Ä
e∆iW − 1

ä
, µi = rI − λi

Ä
e∆iI − 1

ä Ä
e∆iW − 1

ä
.

Obviously, according to Definition 1, risks in asset market T are completely disentangled. Moreover,

we have the following result.

Proposition 2 Every asset market configuration, in which these risks are completely disentangled,

is isomorphic to the one spanned by the 1 + d+ j primitive assets in set T (19).

The proof of this proposition is relegated to Appendix A. The isomorphism formalizes the equiv-

alence between two asset markets: every asset in the first space can be perfectly replicated by a

portfolio of assets in the second market and vice versa.

We note that Proposition 2 places the concept of completely disentangled risks in asset markets

(Definition 1) on a generic (base-independent) footing. In particular, any economic property that

holds for the basic asset market configuration T remains equally valid for any other asset market

configuration in which risks are completely disentangled.

Completely Disentangled Risks: Exchange Rate Determination

Without loss of generality, we now present a key necessary and sufficient condition for the uniqueness

of the exchange rate pertaining to the basic set T (19) of traded assets.33

Theorem 2 1. The system of nonlinear equations (18) has a unique solution {αY } if and only

if risks in asset markets are completely disentangled (Definition 1).34

2. Accordingly, under complete risk disentanglement, there exists a unique exchange rate et (9)

constructed according to the no-arbitrage approach specified in Protocol 1.

32All primitive assets are special cases of the generic asset (7). Therefore, their returns follow from (15), with the
home index H replaced by a generic country specification I.

33All results remain intact for any other incomplete asset market configuration with completely disentangled risks
by virtue of Proposition 2.

34Technically, the statement “if and only if” in Theorem 2 applies as long as equation system (18) remains genuinely
non-linear. This specification rules out a special set of parametric values, under which equation system (18) reduces
to either a degenerate non-linear system or a linear system (both of which possess a single, but special, solution).
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3. The unique exchange rate process,
et+dt

et
= 1 + µedt+ σTe dZt +

∑
i∈J{Y }

Ä
e∆ie×dNit − 1

ä
(9) is

given as follows,

Jump components:



For i ∈
Ä
J{Y } ∩ JH ∩ JF

ä
: ∆ie = ∆iH −∆iF,

For i ∈
Ä
J{Y } ∩ JH

ä
\ JF : ∆ie = ∆iH,

For i ∈
Ä
J{Y } ∩ JF

ä
\ JH : ∆ie = −∆iF,

For i ∈
Ä
J{Y } \ JH

ä
\ JF : ∆ie = 0.

(21)

Diffusion and Drift components: σet = ηFt‖ − ηHt‖,

µet = rFt − rHt + ηTFt‖σet −
∑

i∈(J{Y }∩JH)

λi
Ä
e∆iH − 1

ä
−

∑
i∈(J{Y }∩JF )

λi
Ä
1− e∆iF

ä
, (22)

where ηI‖ denotes the vector of country I’s prices of diffusion risks projected onto the space

of asset return risks (denominated in respective currency I).

We observe that the exchange rate does not load on idiosyncratic jump risks (which affect only

asset payoffs but not SDFs, i ∈ J{Y } \ JH \ JF ). The intuition is standard as follows. Because

idiosyncratic risks are not priced in either country, returns denominated in either currency do

not reflect these risks, and neither does the exchange rate constructed from asset returns across

currencies. Important is that risks need be completely disentangled in asset markets so that we can

decouple and isolate these idiosyncratic movements from any systematic movements (which affect

both asset returns and SDFs), so that the constructed exchange rate only picks up the latter risks.

In contrast, Section 3.4 below demonstrates that when risks are entangled in markets, idiosyncratic

risks directly enter the exchange rate constructed in the no-arbitrage approach. Otherwise, the

constructed exchange rate fully undoes (∆ie = −∆iF ) every market jump risk priced by the

foreign country (i ∈ J{Y } ∩ JF ), and fully adopts (∆ie = ∆iH) every market jump risk priced by

the home country (i ∈ J{Y }∩JH). Therefore, for incomplete markets with completely disentangled

risks, the unique exchange rate construct (21)-(22) appears to be a straightforward generalization

of the pure-diffusion counterpart to include jump risks (see (34), Appendix B).

Intuitively, when there are enough assets to disentangle every individual risk affecting asset

markets in a pair of countries, a respective pair of Euler equations (2) holds effectively for every in-

dividual priced risk in asset markets.35 This no-arbitrage pricing requirement imposed individually

35Originally, Euler pricing equations hold for traded assets. But when risks are completely disentangled in the
markets, each individual risk can be proxied by a traded asset (or a portfolio of traded assets), so that we can
effectively associate the Euler equation (on the asset) with the individual risk that the asset loads on. Note that
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on every market risk (across two denomination currencies) then allows us to individually determine

each component of the exchange rate associated with each risk. Because the exchange rate is con-

structed endogenously within the traded asset market, the complete risk disentanglement in asset

markets is all we need to uniquely pin down the exchange rate. In particular, diffusion risks and

their pricing can be completely decoupled from jump risks and their pricing.

Proof: The key equation system determining the exchange rate is (18). We take asset markets

with completely disentangled risks in the specific configuration T (19) without loss of generality.

To isolate d diffusion risks, we apply equation (18) on each of the d pure-diffusion assets Xk

(k ∈ {1, . . . , d}). Because these assets do not load on jump risks (∆iXk = 0, ∀k, i), (18) reduces to

a d−dimensional identity,

ηH‖ − ηF‖ + σe = 0,

where v‖ denotes the projected components of a generic vector v onto the asset return space. The

above equation delivers the familiar relationship between volatilities of SDFs and the exchange rate

in a pure-diffusion setting (see also Appendix B). Combining this identity with the foreign pricing

of the home bond (13) yields the exchange rate’s expected growth µe in (22).

To isolate the j types of jump risks, we surgically apply equation (18) on each (and every)

asset Wi that loads only on a single jump type i that affects both home and foreign SDFs (i ∈

JY ∩ JH ∩ JF ). Such an asset retains only the jump terms associated with type i in (18), or,

λie
∆iF+∆ie

Ä
e∆iW − 1

ä
= λi

Ä
e∆iH − 1

ä Ä
e∆iW − 1

ä
+ λi

Ä
e∆iW − 1

ä
, i ∈ JY ∩ JH ∩ JF .

Canceling common factor λi
Ä
e∆iW − 1

ä
from both sides yields e∆iF+∆ie = e∆iH , or equivalently

the first identity in (21).

Similarly, surgically applying equation (18) on each (and every) asset Wi that loads only on a

single jump type i that affects:

a. the home but not the foreign SDF (i ∈ JY ∩ JH \ JF ) yields the second identity in (21),

b. the foreign but not the home SDF (i ∈ JY ∩ JF \ JH) yields the third identity in (21),

c. neither the home nor the foreign SDF (i ∈ JY \ JH \ JF ) yields the last identity in (21).

Substituting this exchange rate jump size configuration into the home bond premium (13) in the

there are not necessarily enough assets to hedge all risks affecting SDFs, so that markets are still possibly incomplete.
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foreign currency implies the exchange rate drift µe (22). The uniqueness of the exchange rate’s com-

ponents ({∆ie}, σe, µe) satisfying equations (21)-(22) is self-evident. Proposition 1, then, qualifies

this uniquely constructed et as a pricing-consistent exchange rate. �

Next, we turn to a richer setting in which asset markets are not only incomplete, but also risks

are not completely disentangled. Novel and surprising aspects of the exchange rate dynamics arise

in this setting.

3.4 Incomplete Markets with Entangled Risks

To fully complement Definition 1 (completely disentangled market risks) of incomplete markets, we

specify the following complementary characterization.

Definition 2 (Entangled Risks) Incomplete markets with entangled risks are a market setting,

in which,

1. asset markets are incomplete,

2. some risks affecting the traded asset space cannot be individually replicated by any portfolio

of traded assets, that is, some asset risks are entangled in asset markets.

Entangled Risks: Discussion and Properties

Intrinsically, the entanglement notion of risks stems from the nature of jump risks. This is because

each jump type is unique and two or more jumps (either of same or different types) take place

within an infinitesimal time interval with null probability. In contrast, if only diffusion risks are

present in the economic setting, these risks are always completely disentangled in asset markets.

This is because we can always combine and neatly partition the original diffusion shocks into a set of

diffusion risks impacting asset returns and a second set of residual orthogonal risks. Consequently,

the linear span of N non-redundant assets, which collectively are affected by d diffusion risks

(N < d, as markets are supposedly incomplete), can always be transformed into an asset space

governed by N redefined diffusion risks.36

In sharp contrast to either pure-diffusion risks (Remark 1) or completely disentangled risks

(Remark 2), entangled risks give rise to distinct asset return spaces when returns are denominated in

36Specifically, we linearly combine and partition d original diffusion shocks into two orthogonal subsets. N -
dimensional diffusion shocks that entirely span risks in the asset return space, and the residual (d−N)-dimensional
orthogonal shocks.
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different currencies. Intuitively, when risks are entangled in asset markets, the exchange rate’s jump

size (10) associated with some types i are necessarily proper (irreducible) combinations of jump

sizes in multiple assets. As a result, at least some jump components of asset returns denominated in

the foreign currency (i.e., returns on {eY }) are some (other) combinations of jump sizes in multiple

assets. Precisely because there are not enough assets loading singly on each jump type (i.e.,

entanglement), these two sets of combinations are not equivalent. In other words, return spaces on

{Y } (i.e., the home currency denomination) and {eY } (i.e., the foreign currency denomination) are

distinct due to risk entanglement. More crucially, this analysis implies that when risk entanglement

exists in international asset markets, how N non-redundant assets load on the set of the original

j jump types is highly relevant to asset pricing. Similar intuition holds for the entanglement of

diffusion and jump risks. Therefore, the concept of risk entanglement crucially matters in jump-

diffusion settings. We recapitulate this discussion in the following remark, which corresponds to, but

extends beyond, Remark 1 (for pure diffusion) and Remark 2 (for complete risk disentanglement).

Remark 3 When risks are entangled in asset markets (Definition 2), assuming the tradability

of risk-free bonds (Assumption A2), asset return spaces denominated in different currencies are

subject to different risk configurations. As a results, under these premises, the two return spaces

are distinct.

Entangled Risks: Exchange Rate Determination

As a corollary to Theorem 2 (by flipping the necessary and sufficient condition therein), the next

result follows immediately.

Theorem 3 1. The system of nonlinear equations (18) has multiple solutions {αY } if and only

if risks are entangled in asset markets (Definition 2).

2. Accordingly, under risk entanglement, there exist multiple exchange rates et (9) constructed

according to the no-arbitrage approach specified in Protocol 1.

3. The multiplicity as well as the expressions of pricing-consistent exchange rates are endogenous

not only to the assets available to trade, but also to the specific entanglement configuration of

risks in asset markets.

Three novel insights follow from this Theorem, and all of them are crucially related to the entan-

glement of risks in asset markets (Definition 2).
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First, there exist multiple exchange rates that can price assets and their risks consistently across

currency denominations. While the explicit inclusion of jump risks with sizable discontinuous

movements in our setting unveils a non-linear dynamic for the exchange rate determination, asset

markets must be sufficiently incomplete for this non-linear dynamic to result in a multiplicity of

pricing-consistent exchange rates. The degree of market incompleteness is exactly quantified by the

notion of risk entanglement. Reassuringly, the latter is both a necessary and sufficient condition

for the multiplicity of exchange rate solutions. The intuition follows directly from Remark 3.

By no-arbitrage (in particular, the portfolio representation (4)), the exchange rate is related to

the differential of SDF growths that are in the spaces of asset returns denominated in respective

currencies. These asset return spaces are related to one another by the exchange rate, and are

distinct in the presence of risk entanglement. Therefore, when the exchange rate is endogenous

in this process, there exist potentially many exchange rate solutions, every of which prices all

traded assets consistently across currency denominations. In contrast, the exchange rate solution

is unique for either pure-diffusion or completely disentangled risks because in such settings, asset

return spaces are identical across currency denominations.

Second, idiosyncratic risks (which impact asset payoffs but not the SDF of either country)

may impact all solutions of pricing-consistent exchange rates. This is a surprising result, given

that these idiosyncratic risks are not priced in expected asset returns in either currency, and the

exchange rate is constructed from these returns. The reason is that idiosyncratic risks are entangled

with systematic risks (which impact asset payoffs as well as SDFs) when markets are sufficiently

incomplete and fall into the classification of Definition 2. As a results, there are not enough

assets to disentangle each (idiosyncratic as well as systemic) risk affecting asset markets (though

idiosyncratic risks are not priced in any country). Therefore, both systematic and idiosyncratic

risks, enter the constructed exchange rates via their entanglement. Such a scenario is intuitive and

plausible because investors do not have incentives – idiosyncratic risks do not affect their marginal

utilities – to create a new market and trade trade idiosyncratic risks.

Third, the set of available traded assets and how risks are entangled in asset markets are critical

to the determination of the exchange rate. Plausibly, the exchange rate is endogenous to the risk

structure embedded in the space of available traded assets. This feature goes beyond the dependence

between asset markets and the exchange rate in pure-diffusion or completely disentangled risk

settings. In those settings, the exchange rate is the same regardless of how risks are packaged in

traded assets (see Proposition 2). In the presence of risk entanglement, however, the specificity of
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this risk packaging into asset markets is highly relevant because it endogenously shapes the asset

return space in the foreign currency (which now is distinct from that in the home currency, Remark

3). This endogenous dependence on the risk structure in asset markets then translates into the

specificity of all exchange rate solutions.

We illustrate these insights in the following specific settings, in which (for simplicity) there are

only two traded assets. In all settings, risks (either pure jump, or diffusion-jump) are entangled.

As a result, there are two pricing-consistent exchange rates in each setting. Furthermore, some

of our specific examples are constructed to demonstrate explicitly that idiosyncratic risks (either

jump or diffusion) affect all solutions of the exchange rate in the no-arbitrage approach.

Scenario 1: Diffusion-Jump Risk Entanglements

We consider a market setting with two countries I ∈ {H,F}, and two traded assets. Home investors

can trade the home bond BH and a single risky asset Y . A single diffusion risk (characterized by

Brownian motion Z1t) and a single type of jump risk (characterized by Poisson counter dN1t) affect

asset markets. From home investors’ perspective, these risks are embedded in the traded asset

space as follows,37

dYt
Yt

= µY dt+ σY 1dZ1t +
Ä
e∆1Y×dN1t − 1

ä
− λ1dt

Ä
e∆1Y − 1

ä
,

dBHt
BHt

= rHdt. (23)

The countries’ exogenous SDFs are also affected by the same diffusion and jump risks {dZ1t, dN1t}

(thus, JH ,JF ⊃ {1}), as well as by other unspanned (diffusion and jump) risks,38

dMIt

MIt
= −rIdt− ηTI dZt +

∑
i∈JI

Ä
e∆iI×dNit − 1

ä
−
∑
i∈JI

λidt
Ä
e∆iI − 1

ä
, I ∈ {H,F}.

We observe that this setting features entangled risks of Definition 2 because markets are incomplete

and the diffusion risk dZ1t is always entangled with the jump risk of type one dN1t in asset markets.39

We look for the exchange rate of the form (4), with weights αY on asset Y and (1−αY ) on the

37The specific return belongs to metaphor (7) adopted in our generic consideration. In (23), σY 1 ∈ R is a scalar
because the diffusion dZ1t affecting asset markets is one-dimensional.

38These specific SDFs belong to metaphor (5) adopted in our generic consideration.
39From home investors’ perspective, BH does not load on either dZ1t or dN1t. Thus, the home bond cannot be

used in a portfolio to separate these two risks from the risky asset Y (23) available to home investors.
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bond BH . Equivalently, quantities in (10) in the current setting simplify respectively to,

σe1 = −αY σY 1, e∆1e =
1

1 + αY (e∆1Y − 1)
. (24)

Substituting the above expressions into (18) yields an equation determining the exchange rate

according to our no-arbitrage approach,

σY 1 (ηH1 − ηF1 − αY σY 1) +
λ1e

∆1F
Ä
e∆1Y − 1

ä
1 + αY (e∆1Y − 1)

= λ1e
∆1H

Ä
e∆1Y − 1

ä
. (25)

This quadratic equation in the portfolio weight αY has exactly two distinct solutions, α
(1)
Y , α

(2)
Y .

Notice that weight αY can take positive or negative values without restrictions. We make several

observations. First, each of the two solutions α
(1)
Y , α

(2)
Y yields one exchange rate process according

to (24). It is important to notice that there are exactly two possible exchange rate processes; any

linear combination α̂Y = θα
(1)
Y + (1− θ)α(2)

Y for θ ∈ R \ {0, 1} is not a valid solution. The reason

lies in the non-linearity of equation (25). Second, the set of parameters is robust in the sense that

the solutions α
(1)
Y , α

(2)
Y are real numbers.40

Third, in general, none of the two exchange rate solutions in the entangled risk setting (solutions

to (24), (25)) coincides with the (unique) solution in a completely disentangled risk setting. For

illustration, the latter arises when, e.g., there is a second risky asset X loading only on the diffusion

risk, dXt
Xt

= µXdt+σX1dZ1t. Recall that (Theorem 2), if risks are completely disentangled, then the

unique exchange rate has the diffusion term σe1 = ηF1−ηH1 and the jump size ∆1e = ∆1H−∆1F .

In order for the exchange rate process in the entangled risk case to take this form, we would need

αY (that is, either α
(1)
Y or α

(2)
Y ) to satisfy the following two equations at the same time,

αY =
ηH1 − ηF1

σY
and αY =

e∆1F−∆1H − 1

e∆1Y − 1
.

In general, this knife-edge restriction does not hold (no such αY exists) and the right hand sides

of the two equations are only identical under very special and rather unlikely conditions on the

market prices of risks and the risk loadings of the risky asset.

Finally, the risk entanglement notion universally applies for both systematic (i.e., priced) and

idiosyncratic (i.e., non-priced) risks, which allows idiosyncratic risks to influence the cross-country

40It is, though, not certain that both solutions always yield an economically reasonable exchange rate, i.e., reason-
able size of drift and diffusion terms and jump size.
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pricing dynamic through its entanglement with systematic risks.41 We define diffusion dZ1t (re-

spectively, jump dN1t) as systematic if, at least for one country I ∈ {H,F}, the market price ηI1

(respectively, ∆1I) is non-zero. We define diffusion dZ1t (respectively, jump dN1t) as idiosyncratic

if their market prices ηI1 (respectively, ∆1I) are identically zero for both I ∈ {H,F}. Clearly, equa-

tions (24) and (25) are robust to whether we set ηI1 or ∆1I for any I ∈ {H,F} to zero or a non-zero

value. In particular, even in the case of entangled idiosyncratic risk we obtain multiple consistent

exchange rates, and none of these coincides with the (unique) exchange rate obtained in a market

with completely disentangled risks. This is important because it emphasizes the importance of the

market structure (that is, the risk entanglement configuration, or how risks are embedded in asset

markets) for the determination of exchange rates. Moreover, it is surprising that the exchange rate

(which after all is the relative valuation of consumption baskets between countries) may depend on

risks which are orthogonal to investors marginal utilities, or in other words, risks which investors

do not seem to care about.

Scenario 2: Pure Jump Risk Entanglements

We consider again a market setting with two countries, a risk-free bond and a risky asset (BH , Y

respectively) in home currency, and two risk sources affecting asset Y . In contrast to the previous

scenario, here we assume that both risk sources (affecting Y ) are jump processes JY = {1, 2},

characterized respectively by Poisson counters {dN1t, dN2t}. There are no diffusion risks in the

traded asset space. The dynamics of Y ’s and BH ’s values are as follows,

dYt
Yt

= µY dt+
∑

i∈{1,2}

Ä
e∆iY×dNit − 1

ä
−

∑
i∈{1,2}

λidt
Ä
e∆iY − 1

ä
,

dBHt
BHt

= rHdt. (26)

The countries’ exogenous SDFs are also affected by these asset market risks {dN1t, dN2t} (thus

JH ,JF ⊃ {1, 2}), as well as other unspanned (diffusion and jump) risks,

dMIt

MIt
= −rIdt− ηTI dZt +

∑
i∈JI

Ä
e∆iI×dNit − 1

ä
−
∑
i∈JI

λidt
Ä
e∆iI − 1

ä
, I ∈ {H,F}.

41On a related note, it is important to recall that, in our characterization given below, idiosyncratic risks are not
priced in either country.
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This setting features entangled risks of Definition 2 because markets are incomplete and two types

{dN1t, dN2t} of jump risks are always entangled with one another in asset markets.42

With αY and (1−αY ) denoting corresponding weights on asset Y and bond BH as in portfolio

representation (4), quantities in (10) in the current setting simplify respectively to,

σe = 0, e∆ie =
1

1 + αY (e∆iY − 1)
, i ∈ {1, 2}.

Substituting above expressions into (18) yields an equation determining the exchange rate,

∑
i∈{1,2}

λie
∆iF
Ä
e∆iY − 1

ä
1 + αY (e∆iY − 1)

=
∑

i∈{1,2}
λie

∆iH
Ä
e∆iY − 1

ä
.

This quadratic equation in portfolio weight αY yields exactly two distinct solutions, and thus, there

are exactly two consistent exchange rate processes in this setting. Again, none of the two exchange

rates (in general) coincides with the (unique) exchange rate in an equivalent economy with com-

pletely disentangled risks (the proof is in the same spirit as in the jump-diffusion scenario). Finally,

rich dynamics of possible consistent exchange rates are robust to whether risks are systematic or

idiosyncratic, as long as they are entangled.

4 Entangled Risks and the International Correlation Puzzle

We provide a numerical example which shows that smooth exchange rates and low correlations

between SDFs can co-exist in a jump-diffusion setting with entangled risks. Moreover, we illustrate

that the exchange rate is distinct from the ratio of SDFs and expected carry trade returns are of

an order of 5% (as in the data) in our example of entangled risks. We further contrast these results

with an example of complete markets (and completely disentangled risks), where the exchange rate

is always equal to the ratio of country-specific SDFs and the exchange rate volatility and carry trade

returns are unreasonably large when the correlation between home and foreign SDFs is moderate.

Jumps and entanglement of risks are important in our case because they introduce interesting

non-linearities in the system of equations (18) determining the exchange rate. In particular, the

exchange rate is no longer determined by only priced risks (or SDF risk loadings) but depends on

the specific entanglement configuration of risks in asset markets.

42From home investors’ perspective, BH does not load on either jump type, and thus, it cannot be used in a
portfolio to separate the two jump types from the risky asset Y (26).
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We contrast two economies: (I) an economy with complete risk disentanglement, and (II) an

economy with entangled jump and diffusion risks. In economy (I) with completely disentangled risks

we assume there are two diffusion processes dZ1t and dZ2t. In economy (II) with risk entanglement

we introduce a single Poisson jump process dN1t in addition to the two diffusion risks. Hence, the

difference between the two economies stems from the additional jump risk in economy (II). SDFs

MH and MF are exposed to all risk sources in each respective economy,

dMIt

MIt
= −rIdt− ηI1dZ1t − ηI2dZ2t +

Ä
e∆1I×dN1t − 1

ä
− λ1dt

Ä
e∆1I − 1

ä
, I ∈ {H,F},

where in economy (I) with completely disentangled risks we set ∆1I = 0, ∀I ∈ {H,F}. In both

economies we assume that home investors can trade one risk-free bond BH and three risky assets Y1,

Y2 and the foreign bond (which is risky when denominated in the home currency, i.e., BF
e ). Notice

that only two of these three risky assets are non-redundant according to equation (4). Foreign

investors trade the same assets. For simplicity we assume that all risks impacting the economy are

also in the traded asset space, that is, Y1 and Y2 are loading on all risks,

dYjt
Yjt

= µYjdt+ σYj1dZ1t + σYj2dZ2t +
Ä
e∆1Yj×dN1t − 1

ä
− λ1dt

Ä
e∆1Yj − 1

ä
, j ∈ {1, 2}

dBHt
BHt

= rHdt,

where in economy (I) with completely disentangled risks we set ∆1Yj = 0, ∀j ∈ {1, 2}. Therefore,

economy (I) is a complete market economy (2 diffusion risks and 2 non-redundant risky assets and

a risk-free bond). Assuming additional risks which affect the SDFs but not the traded assets is a

straightforward extension but does not conceptually change our numerical illustration.

Table 1 and 2 report the parameters in the two economies (”Exogenous Quantities”) and the

endogenously determined exchange rates (”Endogenous Results”). Table 1 summarizes the results

in the diffusion setting with completely disentangled risks (economy (I)). Table 2 contains the

values in the jump-diffusion setting with entangled risks (economy (II)). We choose the market

prices ηI1, ηI2 and ∆1I ∀I ∈ {H,F} such that the total volatilities of MH and MF are identical

(just under 60%), and the total correlation between the two SDF growths is 30%.43 The large

SDF volatilities are consistent with the Hansen and Jagannathan (1991) bound, and the modest

SDF correlation matches the correlation between consumption growths across developed economies

43All variances, covariances and correlations in this section are total variances, covariances and correlations, i.e.,
they include diffusion and jump risks.
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Table 1: Exchange Rate in Economy with Completely Disentangled Risk

SDFs MH ,MF : dMIt
MIt

= −rIdt− ηI1dZ1t − ηI2dZ2t

Risky Assets Y1,Y2:
dYjt
Yjt

= µYjdt+ σYj1dZ1t + σYj2dZ2t

Exogenous Quantities
MH MF Y1 Y2

Diffusion dZ1t ηH1 = 0.04 ηF1 = 0.556 σY11 = 0.099 σY21 = 0.097
Diffusion dZ2t ηH2 = 0.57 ηF2 = 0.13 σY12 = 0.113 σY22 = 0.114
Volatility 57.1% 57.1% 15% 15%
Risk Premium NA NA 7% 6.9%

Endogenous Results
Exchange Rate e

Diffusion dZ1t σe1 = 0.516
Diffusion dZ2t σe2 = −0.44
Volatility 67.8%

Corr
Ä
dMH
MH

, dMF
MF

ä
30%

Corr
Ä
dY1
Y1
, dee

ä
1.5%

Notes: Given the exogenous quantities specifying the market prices of risk (risk

loadings of SDFs MH and MF ) and the risk exposures of the two traded assets Y1

and Y2, we endogenously determine the exchange rate according to the system of

two equations (18). Corr
Ä
dMH

MH
, dMF

MF

ä
=

Cov
(

dMH
MH

,
dMF
MF

)
V ol
(

dMH
MH

)
V ol
(

dMF
MF

) is the correlation be-

tween the two SDFs, where Cov
Ä
dMH

MH
, dMF

MF

ä
=
∑2

i=1 ηHiηFidt is the covariance

between the two SDFs and V ol
Ä
dMI

MI

ä
=
»∑2

i=1 η
2
Iidt is the volatility of SDF I.

Corr
Ä
dY1

Y1
, dee

ä
=

Cov
(

dY1
Y1

, dee

)
V ol
(

dY1
Y1

)
V ol( de

e )
is the correlation between the stock market Y1

and the exchange rate, where Cov
Ä
dY1

Y1
, dee

ä
=
∑2

i=1 σY1iσeidt is the covariance be-

tween Y1 and e and V ol
Ä
dY1

Y1

ä
=
»∑2

i=1 σ
2
Y1i
dt and V ol

(
de
e

)
=
»∑2

i=1 σ
2
eidt are

volatilities of Y1 and e.
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Table 2: Exchange Rate in Economy with Entangled Risk

SDFs MH ,MF : dMIt
MIt

= −rIdt− ηI1dZ1t − ηI2dZ2t +
Ä
e∆1I×dN1t − 1

ä
− λ1dt

Ä
e∆1I − 1

ä
Risky Assets Y1,Y2:

dYjt
Yjt

= µYjdt+ σYj1dZ1t + σYj2dZ2t +
Ä
e∆1Yj×dN1t − 1

ä
− λ1dt

Ä
e∆1Yj − 1

ä
Exogenous Quantities

MH MF Y1 Y2

Diffusion dZ1t ηH1 = 0.04 ηF1 = 0.556 σY11 = 0.099 σY21 = 0.097
Diffusion dZ2t ηH2 = 0.57 ηF2 = 0.13 σY12 = 0.113 σY22 = 0.114
Jump dN1t ∆1H = 0.04 ∆1F = 0.04 ∆1Y1 = −0.03 ∆1Y2 = 0
Total Volatility 57.4% 57.4% 15.4% 15%
Risk Premium NA NA 7% 6.9%
Jump Intensity λ1 = 1.5

Endogenous Results
Exchange Rate e

Diffusion dZ1t σe1 = 0.002
Diffusion dZ2t σe2 = −0.004
Jump dN1t ∆1e = −0.039
Total Volatility 4.7%

Corr
Ä
dMH
MH

, dMF
MF

ä
30%

Corr
Ä
dY1
Y1
, dee

ä
20%

Notes: Given the exogenous quantities specifying the market prices of risk (risk loadings of SDFs

MH and MF ) and the risk exposures of the two traded assets Y1 and Y2, we endogenously de-

termine the exchange rate according to the system of two equations (18). Corr
Ä
dMH

MH
, dMF

MF

ä
=

Cov
(

dMH
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,
dMF
MF

)
V ol
(

dMH
MH

)
V ol
(

dMF
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) is the total correlation between the two SDFs, where Cov
Ä
dMH

MH
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ä
=∑2
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) (
e∆1F − 1

)
is the total covariance between the two SDFs and

V ol
Ä
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ä
=
»∑2

i=1 η
2
Iidt+ λ1dt (e∆1I − 1)

2
is the total volatility of SDF I. Corr
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V ol
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is the total correlation between the stock market Y1 and the exchange rate, where
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2

are total volatilities of Y1 and e.
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(Brandt et al., 2006). Jump sizes in the two SDFs (in the jump-diffusion economy (II)) are

symmetric (∆1H = ∆1F = 4%). We interpret Y1 as the stock market (denominated in the home

currency). Therefore, we choose the diffusion risk loadings σY11 and σY12 such that the (diffusion)

volatility of Y1 is about 15%, which roughly matches the unconditional volatility of the US stock

market. We set the jump size ∆1Y1 of asset Y1 equal to −3% and the jump intensity λ1 = 1.5, which

match the estimation by Backus et al. (2011). The total volatility increases only marginally after

adding the jump. Moreover, we choose the risk loadings of SDFs such that the risk premium on Y1

is 7%, which matches the average excess return of the US stock market. Y2 is an additional generic

asset, which helps to complete markets in economy I. When risks are completely disentangled

(economy I), then the specific risk loadings of Y2 are irrelevant (as long as they are distinct from

Y1) because the unique pricing consistent exchange rate is fully determined by the home and foreign

SDFs and is independent of the asset market configuration. In contrast, when risks are entangled

(economy II) the specification of Y2 matters. The foreign bond and thus the inverse of the exchange

rate is a portfolio of the risk-free home bond and assets Y1 and Y2 according to equation (4), and

thus, the specification of Y2 is not innocuous to the determination of the pricing consistent exchange

rates. Home and foreign risk-free rates do not affect the system of equations (18), and thus, we do

not specify them in our analysis.

Once the SDFs and asset price processes are specified, we solve for the exchange rate according

to the system of two equations (18). In economy (I) with completely disentangled risks we have a

unique exchange rate according to Theorem 2. While the model is set up to produce a reasonably

low correlation between the two SDFs (30%, which is similar to correlations in consumption growths

across developed countries), it produces an unreasonably large exchange rate volatility of 67.8%

(Table 1). Not surprisingly this finding confirms the puzzle posed by Brandt et al. (2006). We

further report the correlation between the stock market Y1 and the exchange rate (denoted by

Corr
Ä
dY1
Y1
, dee

ä
in Table 1), which is close to zero as in the data.

In contrast, in economy (II) with entangled risks we have multiple exchange rates which are con-

sistent with no-arbitrage pricing. In particular, in the case of a single jump type, two-dimensional

diffusion and two non-redundant risky assets, the system (18) boils down to two quadratic equa-

tions and there exist multiple solutions (Theorem 3). We only report one consistent solution in

Table 2, the solution we regard as the economically most reasonable one. In a more general and

realistic setting with many more assets and diffusion and jump processes there are many more

possible exchange rate candidates. The solution reported in Table 2 addresses the puzzle posed by

36



Brandt et al. (2006): the exchange rate is smooth (total volatility of 4.7%) and at the same time

the total correlation between the two SDF growths is a modest 30%. The total correlation between

the exchange rate and the stock market, Corr
Ä
dY1
Y1
, dee

ä
is 20%, which is close to the data (Brandt

et al., 2006). We emphasize that none of the exchange rates in the jump-diffusion setting with

entangled risks (neither the one reported in Table 2 nor the other less reasonable ones) coincides

with the exchange rate obtained in the diffusion model with completely disentangle risks. That is,

none of the solutions in economies (I) and (II) overlap.

Finally, we vary ηH1 and ηH2 to change the total correlation Corr
Ä
dMH
MH

, dMF
MF

ä
between the

two SDF growths.44 Figure 1 in the Introduction plots the total volatility of the endogenously

determined exchange rate in economies (I) and (II) against Corr
Ä
dMH
MH

, dMF
MF

ä
. The solid red

line in Figure 1 plots the exchange rate volatility in economy (II) with entangled jump-diffusion

risks, while the dashed black line represents the exchange rate volatility in economy (I) with

completely disentangled diffusion risks. The dashed black line illustrates the correlation puzzle: a

reasonably low correlation between the two SDF growths implies an unreasonably large variation in

the exchange rate, or an reasonably smooth exchange rate comes with almost perfectly correlated

SDFs. In contrast, the solid red line shows that independent of the total correlation between the

two SDFs, the total volatility of the exchange rate is reasonably small in the case of entangled jump-

diffusion risks. Therefore, an incomplete market setting with entangled risks is able to reconcile a

smooth exchange rate and a low cross-country correlation in SDF growths.

Furthermore, we calculate the expected carry trade return to the home investor of borrowing

the foreign currency and lending the home currency,

E
î
CTH−F/+H

ó
= σe1ηH1 + σe2ηH2 + λ1

Ä
e∆1H − 1

ä Ä
e−∆1e − 1

ä
.

The solid red line in the top panel of Figure 2 shows that the expected carry trade return is almost

5% when the correlation between the SDFs is low in the economy with entangled risks (economy

(II)). This value is similar to the average carry trade return of borrowing low and lending high

interest rate currencies in the data. In contrast, the expected carry trade return is unreasonably

large when the correlation between SDFs is moderate in the setting of completely disentangled risks

(economy (I)) as illustrated by the dashed black line.

44In particular, we fix the parameters ηF2 = 0.13, σY11 = 0.099, σY12 = 0.113, σY21 = 0.097, σY22 = 0.114, while
we vary ηH1 ∈ [−0.1, 0.5] and simultaneously adjust ηH2 to keep the equity premium of the stock market Y1 equal to
7% and set ηF1 such that variance of SDF growths of H and F are identical (i.e., η2

F1 + η2
F2 = η2

H1 + η2
H2).
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Carry Trade and Relationship between Exchange Rate and the Ratio of SDFs

Figure 2: Top Panel: Expected carry trade return if risks are entangled (solid red line) or completely
disentangled (dashed black line). Bottom Panel: Correlation between exchange rate growth and change in
ratio of home and foreign SDFs if risks are entangled (solid red line) or completely disentangled (dashed
black line). We fix the parameters ηF2 = 0.13, σY11 = 0.099, σY12 = 0.113, σY21 = 0.097, σY22 = 0.114,

while we vary ηH1 ∈ [−0.1, 0.5] in order to vary Corr
Ä
dMH

MH
, dMF

MF

ä
. We simultaneously adjust ηH2 to keep

the equity premium of the stock market Y1 equal to 7% and set ηF1 such that variance of SDF growths of
H and F are identical (i.e., η2

F1 + η2
F2 = η2

H1 + η2
H2). In the case of entangled risks (economy (II)) we set

∆1H = ∆1F = 0.04, ∆1Y1 = −0.03, ∆1Y2 = 0 and λ = 1.5. In the case of completely disentangled risks
(economy (I) there are no jumps, i.e., all jump parameters are zero.
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The bottom panel in Figure 2 further shows the correlation between changes in the exchange

rate and changes in the ratio of country-specific SDFs. In the case of complete markets (economy

(I), dashed black line), the exchange rate is equal to the ratio of SDFs and the correlation is 1. In

the case of entangled risks (economy (II), solid red line), the exchange rate is distinct from the ratio

of SDFs and the correlation between the two quantities is particularly low when the correlation

between the SDFs is low.

5 Conclusion

We discuss the concept of risk entanglements in incomplete FX markets. We define risks as com-

pletely disentangled if there is a sufficient number of non-redundant traded assets such that for every

risk (diffusion or jump process) that affects the traded asset space there exists a portfolio which is

solely exposed to this particular risk. The requirement of complete disentanglement of risks is less

stringent than the concept of complete markets, because in contrast to complete markets, it does

not require that investors can contract on every risk that affects the SDF but only the risks in the

traded asset space. On the other hand, we define risks as entangled if there exists at least one risk

affecting asset markets, which cannot be singly replicated by a portfolio of traded assets.

We, then, investigate how entangled risks affect exchange rates and find several interesting

and surprising results. First, in incomplete markets with completely disentangled risks, we show

that there exists a unique exchange rate, which only loads on systematic risk. This results is in

accordance with the current literature. In contrast, in incomplete markets with entangled (jump-

diffusion) risks, we show that multiple exchange rates may arise, all of which are consistent with

no-arbitrage pricing. This is because the system of equations which pins down the pricing-consistent

exchange rate is non-linear.45 Moreover, we show that in general, none of the possible exchange rates

coincides with the (unique) exchange rate in an “equivalent” economy with completely disentangled

risks. Interestingly, in the case of entangled risks, even idiosyncratic risks, i.e., risks that affect the

traded assets but not the SDFs, may affect every pricing-consistent exchange rate. Therefore,

exchange rates, which measure the relative valuation of consumption baskets across countries,

45In a diffusion (continuous) setting, the non-linearity disappears because increments of continuous processes are
infinitesimally small in any infinitesimal time interval. Applying Itô’s lemma on non-linear functions renders a system
linear in increments and thus a unique solution. In contrast, in a setting of prominent discontinuous processes (sizable
jumps), these features are not warranted in general. Non-linear functions render a system non-linear in jump sizes.
Interestingly, in the case of completely disentangled jump risks, the non-linear system is completely decoupled, i.e.,
each equation in the system concerns only a single jump risk. As a result, there exists again a unique exchange rate
solution.
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can be affected by risks which are otherwise unimportant to investors, i.e., idiosyncratic risks are

orthogonal to investors’ marginal utilities. Finally, we address the international correlation puzzle

(Brandt et al., 2006), and provide a robust and simple numerical calibration to demonstrate that in

a jump-diffusion setting with entangled risks, a smooth exchange rate and volatile country specific

SDF growths with a modest correlation can co-exist.
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Appendices

A Proofs and Derivations

Proof of Proposition 1: It suffices to show that any solution to the system (18) is also a solution

to the foreign pricing of the home bond (13). The other pricing equation (16) follows immediately

from identity (17).

Suppose {αY }, and the associated exchange rate et (9)-(10), solve system (18). Because (18) is

the explicit expression of the no-arbitrage pricing relationship (17), {αY } and et must also satisfy

the latter, and its equivalent version (in terms of Euler equations),

Et

ï
MFt+dt

MFt

et+dt
et

Yt+dt
Yt

ò
− 1︸ ︷︷ ︸

Euler pricing eq. (16)

= Et

ï
MHt+dt

MHt

Yt+dt
Yt

ò
− 1︸ ︷︷ ︸

Euler pricing eq. (15)

+ Et

ï
MFt+dt

MFt

et+dt
et

BHt+dt
BHt

ò
− 1︸ ︷︷ ︸

Euler pricing eq. (13)

.

By rearranging terms, the above equation can be rewritten as

Et

ï
MFt+dt

MFt

et+dt
et

ß
Yt+dt
Yt

− BHt+dt
BHt

™ò
= Et

ï
MHt+dt

MHt

Yt+dt
Yt

ò
− 1.

Note that the right-hand side is identically zero (implied from the Euler equation on the traded

asset Y ) – a property that has nothing to do with the solution of system (18). Consequently,

multiplying both sides by weight αY , then summing over all Y in the traded risky asset space {Y }

yields,

Et

MFt+dt

MFt

et+dt
et


Ñ ∑
Y ∈{Y }

αY
Yt+dt
Yt

é
− BHt+dt

BHt

∑
Y ∈{Y }

αY


 = 0,

or equivalently,

Et

MFt+dt

MFt

et+dt
et


Ñ ∑
Y ∈{Y }

αY
Yt+dt
Yt

é
+

BHt+dt
BHt

Ñ
1−

∑
Y ∈{Y }

αY

é = Et

ï
MFt+dt

MFt

et+dt
et

BHt+dt
BHt

ò
.

The portfolio representation (4) of the exchange rate, which underlies the no-arbitrage determina-

tion of the exchange rate (Protocol 1), then transforms above equation into,

Et

ñ
MFt+dt

MFt

et+dt
et

®
BF,t+dt
BF,t

et
et+dt

´ô
= Et

ï
MFt+dt

MFt

et+dt
et

BHt+dt
BHt

ò
,
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After the cancellation of the exchange rate, the left-hand side of above equation is identically

one (as an Euler equation associated with the foreign pricing of the foreign bond) – a property

that has nothing to do with the solution of system (18). Hence, the above equation reduces to

1 = Et
î
MFt+dt

MFt

et+dt

et

BHt+dt

BHt

ó
, which yields (13) �

Proof of Proposition 2: Without loss of generality, the proof is from the perspective of investors

in country I. By construction, asset markets spanned by primitive assets in set T (19) can com-

pletely disentangle any single risk in the set of d diffusion risks {dZkt}dk=1 and j types of jump risks

{dNit}ji=1. To prove Proposition 2 we then just need to show that primitive assets in T can span

any arbitrary asset return that bears these (and only these) d+ j risks in any possible way. This is

because the set A of all these arbitrary assets is the most complete possible set as long as the d+ j

asset market risks are concerned, and thus, these risks must be completely disentangled in the set

A.46

Let’s consider an arbitrary gross realized return
At+dt

At
from A,

At+dt
At

= 1 + µAdt+ σTAdZt +
j∑
i=1

Ä
e∆iA×dNit − 1

ä
−

j∑
i=1

λidt
Ä
e∆iA − 1

ä
.

We now explicitly construct a portfolio P of weights {βB, βk, βi}d,jk=1,i=1, respectively associated

with primitive assets {BI , Xk,Wi}d,jk=1,i=1 in T (19)-(20),

Pt+dt
Pt

= 1 + βBrIdt+
d∑

k=1

βk [µkdt+ σkdZkt] +
j∑

k=1

βi
î
µidt+

Ä
e∆iW×dNit − 1

ä
− λidt

Ä
e∆iW − 1

äó
,

with portfolio normalization: βB +
d∑

k=1

βk +
j∑

k=1

βi = 1, (27)

that perfectly replicates the arbitrary return
At+dt

At
. In order, we match diffusion, jump, and free

(drift) components of
At+dt

At
and

Pt+dt

Pt
.

Matching diffusion components: Because primitive asset Xk loads on a single diffusion compo-

nent dZkt (20), the respective weight βk in the replicating portfolio P is immediate and unique,

σAk = βkσk =⇒ βk =
σAk
σk

, ∀k ∈ {1, . . . , d}.

46Though markets are still possibly incomplete because some risks affecting the SDFs are not in A.
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Matching jump components: Similarly, because primitive asset Wi loads on a single type of jump

dNit (20), the matching equation is simple. Crucially, we note that because jumps of two (or

more) different types almost surely do not jump together within an infinitesimal time span of dt.

Therefore, we need to match the changes in returns
At+dt

At
and

Pt+dt

Pt
induced by each (and every)

jump type i separately.47 When a jump takes place, respective counter dNit increases from 0 to

1 (while all other counters {dNlt}l 6=i remain at 0), so the matching of jump-induced changes in

returns implies the respective weight βi in the replicating portfolio P ,Ä
e∆iA − 1

ä
= βi

Ä
e∆iW − 1

ä
=⇒ βi =

e∆iA − 1

e∆iW − 1
, ∀i ∈ {1, . . . , j}.

It is important to observe that, by forming a portfolio (e.g., of a risk-free bond with an asset Wi

sensitive to jump type i), one can replicate and transform the original asset’s jump size ∆iW to an

arbitrary jump size ∆iA associated with the same jump type i.

Matching free components: the weight associated with the risk-free bond is implied from weights

{βk, βi} found earlier via the normalization (27). Then, by virtue of no-arbitrage, the free terms

(no-jump terms associated with dt while setting all jump counters {dNit} to zero) are automatically

matched,

µA −
j∑
i=1

λi
Ä
e∆iA − 1

ä
= βBrI +

d∑
k=1

βkµk +
j∑
i=1

βi
î
µi − λi

Ä
e∆iW − 1

äó
,

This is because once the risk terms of two traded portfolios are matched, their expected returns

(i.e., free terms) must also match by no arbitrage.48 �

B Exchange Rate in Pure-Diffusion Incomplete-Market Settings

The primary objective of this appendix is to illustrate, in a pure-diffusion risk settings, the equiva-

lent relationship between two approaches to determine the exchange rate, namely (i) the portfolio

representation approach (4) of this paper, and (ii) the more familiar SDF ratio of the pure-diffusion

literature (see (36)), in either complete or incomplete market setting. Our analysis also clarifies

47The reason we care primarily about the changes (of two returns to be matched) induced by jumps is that the
no-jump (base) levels are accounted for in, and including in the matching of, the free components. See next.

48We can also directly verify the matching of the free terms using the returns (20), the expression for the bond
weight βB , and the fact that as arbitrary asset A is traded, its expected return µA must satisfy the generic relationship
(15) applied to A.
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the appropriate construction of SDF projections, which concern net growth of original SDFs. The

full analysis on the relationship between these two approaches in generic settings (beyond diffusion

risks) is beyond the scope of this appendix.49 Therefore, the illustrating results in the current

Appendix apply technically for diffusion settings.

Let the quartet {Ω,F , {Ft}t≥0, P} denote the standard filtered probability space, where {Ft}t≥0

is the natural filtration associated with d−dimensional standard Brownian motion Zt (representing

d independent diffusion risks in the economy). Net stochastic discount factor (SDF) growths of

country I ∈ {H,F} and gross asset returns respectively are,

mIt+dt ≡ MIt+dt−MIt

MIt
= −rItdt− ηTItdZt, MI0 = 1, t ∈ [0,∞),

rIt ∈ Ft, ηIt ∈ Ft, I ∈ {H,F},
Yt+dt

Yt
= 1 + µY tdt+ σTY tdZt, µY t ∈ Ft, σY t ∈ Ft, t ∈ [0,∞),

(28)

where rIt, d−vector ηIt, and Yt respectively denote the (instantaneously) risk-free rate, country I’s

prices of the d diffusion risks, and asset Y ’s price in H’s currency. Substituting the return on asset

Y above into the portfolio representation (4) of the exchange rate yields,

et+dt
et

= 1 + µetdt+ σTetdZt, with, (29)

µet = rFt −

1−
∑

Y ∈{Y }
αY t

 rHt − ∑
Y ∈{Y }

αY tµY t + σTetσet, σet = −
∑

Y ∈{Y }
αY tσY t.

The home pricing of asset Y , and the foreign pricing of the home bond and asset Y , produce

respective premia,

µY − rH = ηTHσY , rH + µe − rF = σTe ηF ,

µY + µe − rF =
Ä
σTY + σTe

ä
ηF − σTe σY ,

(30)

which then imply a no-arbitrage relationship for every asset Y ,50Ä
ηTF − ηTH − σTe

ä
σY = 0, ∀Y ∈ {Y }, (31)

where µe and σe are given in (29). Reassuringly, this is the pure-diffusion version of the general

49A general incomplete-market analysis on SDF projectors and their possible relationship to the exchange rate in
presence of entangled jump risks is intricate but offers novel insights Maurer and Tran (2016).

50Summing premium µY − rH = ηTHσY on asset Y to investors H and premium rH +µe− rF = σT
e ηF on the home

bond BH to investors F yields, µY + µe − rF = ηTHσY + σT
e ηF . Comparing this to the premium µY + µe − rF =(

σT
Y + σT

e

)
ηF − σT

e σY on asset Y to investors F yields identity (31).
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identity (16) in the main text.

Complete Markets: In complete-market settings, there exists a traded primitive risky asset Y

that loads singly on each (and every) diffusion risk Zit in Zt. Applying (31) on each (and every)

primitive asset Y yields ηFi−ηHi−σei = 0, ∀i ∈ {1, . . . , d}, or after being stacked in a vector form,

ηF − ηH − σe = 0. (29) then implies,

σe = ηF − ηH , µe = rF − rH +
Ä
ηTF − ηTH

ä
ηF . (32)

By virtue of (28), we observe that the SDF ratio process d
Ä
MHt
MFt

ä
has drift and diffusion respectively

identical to µe and σe in (32). Therefore, under mild regularity conditions for the unique solution

of the stochastic differential equation (SDE) (29), its solution coincides with the ratio of SDFs in

complete-market settings,

et =
MHt

MFt
, t ∈ [0,∞). (33)

This is the known complete-market relationship between the real exchange rate and countries’

SDFs.51

Incomplete Markets – Portfolio Representation Approach: In pure-diffusion incomplete-

market settings, only parts of the risks affecting investors’ utilities can be replicated by assets

returns. Therefore, at each time t, the linear space generated by the asset volatility vectors {σY t}

does not span the one generated by the price-of-risk vectors {ηIt}. Accordingly, we explicitly

partition the systematic volatility space (spanned by {ηI} of all countries I) into two components,

(i) a subspace spanned by all traded asset volatilities {σY } (denoted by subscript ‖) and (ii)

the residual orthogonal subspace (denoted by subscript ⊥). Similarly, the diffusion risk space is

partitioned into risks affecting asset markets and unspanned risks that investors face in incomplete

markets, Zt = Zt‖ ⊕ Zt⊥. The pricing of the foreign bond in the home currency (Assumption A2)

implies that exchange rate volatility σe is spanned by the asset return volatilities.52 Consequently,

in the incomplete-market pure-diffusion setting, (32) becomes,

σe = ηF‖ − ηH‖, µe = rF − rH +
Ä
ηTF‖ − η

T
H‖
ä
ηF‖. (34)

For every country I, we construct the projected net SDF growth processes from the respective

51In the literature, the standard derivation of (33) is typically less explicit. It first equalizes sides of (2) for a
traded asset Yt. Then exhausting a complete set of traded assets Yt (in complete markets) implies (33).

52That is, σe belongs to the traded asset (parallel) space as seen from (29) σe = −
∑

Y αY σY .
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projected prices of risk as the unique solution of the following SDE,

dMIt+dt‖
MIt‖

≡
MIt+dt‖ −MIt‖

MIt‖
= −rItdt− ηTIt‖dZt‖, t ∈ [0,∞), MI0‖ = 1, I ∈ {H,F}. (35)

Several observations are in order. First, this definition gives a specific construction of the “projec-

tor” of the SDF onto the traded asset space. It is crucial to note that the construction starts out

with projecting the price-of-risk vector ηIt onto the space of traded asset returns to obtain ηIt‖,

from which the projected net SDF growth,
dMIt+dt‖
MIt‖

, is uniquely constructed. The projected SDF

level MIt‖, then, follows uniquely from the construction of the projected net SDF growth
dMIt+dt‖
MIt‖

.53

Second, the particular definition of the drift and volatility of MIt‖ in (35) is not accidental. These

moments are constructed to enable the resulting stochastic process MIt‖ to price the risk-free bond

and all other traded assets Yt by no arbitrage.54 The combination of SDF (35) and exchange rate

moments (34), (29) implies a key no-arbitrage identity relating the exchange rate and SDFs,

in pure-diffusion incomplete-market settings: et =
MHt‖
MFt‖

, t ∈ [0,∞). (36)

As (36) generalizes the complete-market relationship (33), versions of (36) have been employed to

assess the effects of market incompleteness on the dynamics of real exchange rates in the literature.

Our portfolio representation approach to the exchange rate, via a stochastic analysis, points to an

explicit interpretation and construction of the projected SDFs in (36). Specifically, MIt‖ is obtained

via the stochastic differential equation (35), which itself evolves from the original projection of the

price-of-risk vector ηIt (or equivalently, the projection of net SDF growth
dMIt+dt‖
MIt‖

) onto the space

of traded asset returns.55

Incomplete Markets – Projection Analysis: In the literature, objectMI‖ in identity (36) arises

from a projection analysis. In diffusion settings, this section offers an alternative derivation of (36)

using projection formalism. Therefore, we connect that approach with the portfolio representation

of the exchange rate adopted in this paper. Further supporting technical details can be found in

53It is important to note that the gross SDF growth, which is
MIt+dt‖
MIt‖

= 1 +
dMIt+dt‖

MIt‖
is not the subject of our

projection.
54Indeed, by virtue of Y ’s return (28), we have,

Et

î
MIt+dt‖
MIt‖

exp (rIdt)
ó

= Et

îÄ
1 +

dMIt+dt‖
MIt‖

ä
exp (rIdt)

ó
= 1,

Et

î
MIt+dt‖
MIt‖

Yt+dt+DY tdt

Yt

ó
= Et

îÄ
1 +

dMIt+dt‖
MIt‖

ä (
1 + µY tdt+ σT

Y tdZt

)ó
= 1.

55Therefore, importantly, in (36), MIt‖ is neither the projected SDF level nor the projected gross SDF growth onto
the traded asset space.
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the Online Appendix C, also attached at the end of this paper.

First, the projection of the home net SDF growth mHt+dt = −rHdt − ηTHdZt (28) onto the

traded asset space spanned by net asset returns (in the home currency) yields,56

“mHt+dt = β̂HN+1rHtdt+
N∑
i=1

β̂HixHit+dt.

A standard minimization of squared errors associated with this projection yields (see Online Ap-

pendix C),“mHt+dt = −µ̂mHdt− σ̂TmHdZt, with, µ̂mH = rH , σ̂mH = σH
Ä
σTHσH

ä−1
σTHηH (37)

The drift µ̂mH = rH arises from the fact that the home bond is traded and priced by projection “mH .

The volatility σ̂mH possesses the exact expression of an OLS estimate. This clearly demonstrates

that the diffusion σ̂mH of the projected net SDF growth “mHt+dt is precisely the projection ηH‖

(35) of the price-of-risk vector ηH (28) onto the space spanned by the asset return volatility vectors

{σHi}Ni=1 (34). Therefore, σ̂mH = ηH‖.

Similarly, the projection of the foreign net SDF growth mFt+dt = −rFdt− ηTFdZt (28) onto the

traded asset space spanned by net asset returns (in the foreign currency) produces,“mFt+dt = −µ̂mFdt− σ̂TmFdZt, with, µ̂mF = rF , σ̂mF = σF
Ä
σTFσF

ä−1
σTF ηF = ηF‖. (38)

Substituting ηI‖, I ∈ {H,F} obtained above into (34) implies, σ̂mF − σ̂mH = ηF‖− ηH‖ = σe. As a

consequence, the incomplete-market construction of the exchange rate et =
MHt‖
MFt‖

(36) in diffusion

settings is reconfirmed using an explicit projection approach, together with our interpretation of how

“projected” SDFs MIt‖, I ∈ {H,F} are constructed.57 This result demonstrates the equivalence

of the two approaches to construct the unique SDF within the asset return space. Either approach

implies the key incomplete-market identity (36): while the portfolio representation of the exchange

rate identifies MI‖ with the solution of SDE (35), the projection analysis features the net SDF

56 We denote the gross and net return on asset i denominated in currency I by XIit+dt and xIit+dt respectively,ß
1 ≤ i ≤ N : xIit+dt = XIit+dt − 1 = µIidt+ σT

IidZt,
i = N + 1 : xIit+dt = XIit+dt − 1 = rHdt,

t ∈ [0,∞).

57Specifically, the identification of the respective moments of the projected SDF growths in the two approaches
(portfolio representation and projection analysis) to the exchange rate, µ̂mI = rI‖ and σ̂mI = ηI‖, I ∈ {H,F},
demonstrates that these SDFs are identical.
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growth projected onto the space of net asset returns.

Revisiting Burnside and Graveline (2012): Projecting the gross SDF growthMIt+dt ≡ MIt+dt

MIt

onto the space of gross assets returns {XIit+dt} (footnote 56) respectively for I ∈ {H,F},”MHt+dt =
N+1∑
i=1

γ̂HiXHit+dt, ”MFt+dt =
N+1∑
i=1

γ̂FiXFit+dt =
et+dt
et

N+1∑
i=1

γ̂FiXHit+dt, (39)

Burnside and Graveline (2012) derive an impossibility result,
M̂Ht+dt

M̂Ft+dt

6= et+dt

et
, i.e., the ratio of

SDF projections does not equal the exchange rate in general.58 This impossibility result does not

contradict key identity (36) because the latter concerns net growth quantities as we discussed earlier.

To see this, note that a standard minimization of squared errors associated with the projection (39)

yields an expression for the projected gross SDF growth, and an extra constraint for the estimates,

(see Online Appendix C),”MIt+dt = 1− rIdt− ηTI‖dZt,
1

2
ηTI‖ ηI‖ = rI , I ∈ {H,F}, (40)

where rI and ηI‖ denote respectively I’s risk-free rate and projected prices of risks. Clearly, for every

country I, projected prices of risk ηI‖ are not a sufficient statistics for I’s risk-free rate rI . Therefore,

the above constraints strongly tying these two quantities are spurious and can neither be presumed

in a generic no-arbitrage international asset pricing setting nor be expected to hold universally in

the data. Equivalently, this result simply indicates that the object ”MIt+dt – constructed as the

projection (39) of gross SDF growths onto the space of asset gross returns – are inconsistent with

its prerequisite ability to price traded assets in either currency. This is a restatement of Burnside

and Graveline (2012)’s impossibility result. While the net and gross quantities differ by a mere

constant of 1, this difference has a profound impact on the associated projection. Intuitively, the

implementation of the projection of gross quantities is constrained by three separate matchings (of

respective terms of order 1, dt, and dZt). Whereas, the implementation of the projection of net

quantities is constrained only by two separate matchings (of terms of order dt, and dZt). More

matchings are tantamount to more constraints, which incapacitate the ability of the projected gross

SDF growth ”MIt+dt (39) to price exchange rate risks as implied by the impossibility result.

58Burnside and Graveline (2012) give a simple proof by contradiction. Contrary to the impossibility result, assume

that
“MHt+dt“MFt+dt

=
et+dt

et
. Linear projections (39) then imply, et

et+dt

∑k+1
i=1 γ̂HiXHit+dt =

et+dt

et

∑k+1
i=1 γ̂FiXHit+dt. Given

arbitrary asset returns {XHit+dt}, this equality is non-linear (in
et+dt

et
), and therefore, is generally violated.
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C Online Appendix: Further Technical Derivations

This appendix provides omitted technical details concerning projected SDFs in diffusion settings.

Markets are incomplete with d−dimensional diffusion risk Zt, and N +1 traded assets (N +1 < d).

From country I’s perspective (I ∈ {H,F}), first N assets are risky, last (or N + 1-th) asset is I’s

bond. Gross and net asset returns (respectively {XIi} and {xIi}, i ∈ {1, . . . , N + 1}) are specified

in footnote 56.

Home SDF projection: First explicitly construct the projection “mHt+dt of the home net SDF

growth mHt+dt = −rHdt− ηTHdZt (28) onto the net asset return space spanned by {xHit+dt}. From

an explicit minimization of squared errors,

min
{βHi}

∣∣∣∣∣∣
Ä
−rHdt− ηTHdZt

ä
−
(
βHN+1rHdt+

N∑
i=1

βHixHit+dt

)∣∣∣∣∣∣
2

,

follow N first-order optimality conditions,

σTHi

Ñ
ηH +

N∑
j=1

β̂HjσHj

é
= 0, i ∈ {1, . . . , N}.

This system of N linear equations yields a unique solution of ordinary least-squares (OLS) type,


β̂H1

...

β̂HN

 = −
Ä
σTHσH

ä−1
σTHηH , with σH ≡


σH11 · · · σHN1

...
. . .

...

σH1d · · · σHNd

 , ηH ≡


ηH1

...

ηHd



and the projection of net SDF growth, “mHt+dt = β̂HN+1rHdt +
∑N
i=1 β̂HixHit+dt. Because the

home risk-free bond is traded, therefore is priced by the SDF projection “mHt+dt, we also have,“mHt+dt = −rHdt−σ̂TmHdZt+dt. Identifying the diffusion and drift terms of the two above expressions

proves (37),

σ̂mH = σH
Ä
σTHσH

ä−1
σTHηH , β̂HN+1 = −1−

N∑
i=1

µHi
rH

β̂Hi,

where β̂Hi for i ∈ {1, . . . , N} has been obtained earlier in in the projection.

Foreign SDF projection: Itô’s lemma relates net return dynamics (on the same assets) across
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currencies, (recall exchange rate process (29)),

xFit+dt ≡ XFit+dt − 1 =
et+dt
et

XHit+dt − 1 =
Ä
µHi + µe + σTHiσe

ä
dt+

Ä
σTHi + σTe

ä
dZt, ∀i.

Then repeating the above projection of the foreign net SDF growth onto the space of net asset

returns {xFit+dt} yields parallel results,
∑N
i=1 β̂FixFit+dt + β̂FN+1rFdt = “mFt+dt ≡ −µ̂mFdt −

σ̂TmFdZt, with,

µ̂mF = rF , σ̂mF = σF
Ä
σTFσF

ä−1
σTF ηF = ηF‖,

β̂FN+1 = −1−
N∑
i=1

µFi
rF

β̂Fi,


β̂F1

...

β̂FN

 = −
Ä
σTFσF

ä−1
σTF


ηF1

...

ηFd

 .

Gross SDF projection: To explicitly implement the projection (39) of the gross SDF growth

onto the gross return space, we consider an associated minimization of squared errors for every

country I ∈ {H,F},

min
{γIi}

∣∣∣∣∣∣
Ä
1− rIdt− ηTI dZt

ä
−
(
γIN+1[1 + rIdt] +

N∑
i=1

γIiXIit+dt

)∣∣∣∣∣∣
2

,

Using representation for gross returns XIit+dt (see footnote 56) and grouping terms transform the

objective function above into,

∣∣∣∣∣∣
(

1−
N+1∑
i=1

γIi

)
−
(
rI + rIγIN+1 +

N∑
i=1

µIiγIi

)
dt−

(
ηTI +

N∑
i=1

γIiσ
T
Ii

)
dZt

∣∣∣∣∣∣
2

,

Evidently, it is necessary that the free term vanish for this objective function to attain a minimum,

which generates an optimality constraint for the slope coefficients,
∑N+1
i=1 γIi = 1, I ∈ {H,F}. The

substitution of this constraint into the above objective function reduces it further to,

∣∣∣∣∣∣
(
rI + rIγIN+1 +

N∑
i=1

µIiγIi

)
dt+

(
ηTI +

N∑
i=1

γIiσ
T
Ii

)
dZt

∣∣∣∣∣∣
2

, I ∈ {H,F},

which has identical structure of the previous minimization. As a result, the optimal solution of the
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current minimization reads,


γ̂I1
...

γ̂IN

 = −
Ä
σTI σI

ä−1
σTI ηI , with σI ≡


σI11 · · · σIN1

...
. . .

...

σI1d · · · σINd

 , ηI ≡


ηI1
...

ηId

 , (41)

and the projection of gross SDF growth MIt,”MIt+dt = γ̂IN+1(1 + rIdt) +
N∑
i=1

γ̂IiXIit+dt = 1 +

(
rI +

N∑
i=1

γ̂Ii [µIi − rI ]
)
dt+

(
N∑
i=1

γ̂Iiσ
T
Ii

)
dZt.

In the second equality above we have used the parametrization in footnote 56 for returns and

the optimality constraint
∑N+1
i=1 γIi = 1. Furthermore, by virtue of solution (41),

∑N
i=1 γ̂IiσIi =

−σI
Ä
σTI σI

ä−1
σTI ηI . Therefore, the diffusion of the projection ”MIt+dt is precisely the projection

ηI‖ (37)-(38) of prices of risk ηI onto space spanned by volatilities {σIi}. Thus, we have,

”MIt+dt = 1 +

[
rI +

N∑
i=1

γ̂Ii (µIi − rI)
]
dt− ηTI‖dZt, ηI‖ = σI

Ä
σTI σI

ä−1
σTI ηI . (42)

The prerequisite that this projection be able to price N risky assets Et
î”MIt+dtXIit+dt

ó
= 1, as

well as I’s risk-free bond Et
î”MIt+dt exp (rIdt)

ó
= 1, together with projection of gross SDF (42)

yields respectively risk premia and the drift term for ”MIt+dt,

µIi − rI = ηTI‖σIi, i ∈ {1, . . . , N}, rI +
N∑
i=1

γ̂Ii [µIi − rI ] = −rI . (43)

As a result, the projection (42) can be written as, ”MIt+dt = 1−rIdt−ηTI‖dZt. Now substituting the

first set of identities of (43) into the last identity of that same equation, and using solution (41) for

slope coefficients {γ̂Ii} proves constraints (40), 1
2η

T
I‖ ηI‖ = rI , ∀I ∈ {H,F}, where projected prices

of risk ηI‖ are given in (41).
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